Btrfs: Scale the bdi ra_pages by the number of devices in the FS
[linux-2.6-block.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h> // for block_sync_page
26 #include <linux/workqueue.h>
27 #include "crc32c.h"
28 #include "ctree.h"
29 #include "disk-io.h"
30 #include "transaction.h"
31 #include "btrfs_inode.h"
32 #include "volumes.h"
33 #include "print-tree.h"
34
35 #if 0
36 static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
37 {
38         if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
39                 printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
40                        (unsigned long long)extent_buffer_blocknr(buf),
41                        (unsigned long long)btrfs_header_blocknr(buf));
42                 return 1;
43         }
44         return 0;
45 }
46 #endif
47
48 static struct extent_io_ops btree_extent_io_ops;
49 static struct workqueue_struct *end_io_workqueue;
50 static struct workqueue_struct *async_submit_workqueue;
51
52 struct end_io_wq {
53         struct bio *bio;
54         bio_end_io_t *end_io;
55         void *private;
56         struct btrfs_fs_info *info;
57         int error;
58         int metadata;
59         struct list_head list;
60 };
61
62 struct async_submit_bio {
63         struct inode *inode;
64         struct bio *bio;
65         struct list_head list;
66         extent_submit_bio_hook_t *submit_bio_hook;
67         int rw;
68         int mirror_num;
69 };
70
71 struct extent_map *btree_get_extent(struct inode *inode, struct page *page,
72                                     size_t page_offset, u64 start, u64 len,
73                                     int create)
74 {
75         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
76         struct extent_map *em;
77         int ret;
78
79         spin_lock(&em_tree->lock);
80         em = lookup_extent_mapping(em_tree, start, len);
81         spin_unlock(&em_tree->lock);
82         if (em)
83                 goto out;
84
85         em = alloc_extent_map(GFP_NOFS);
86         if (!em) {
87                 em = ERR_PTR(-ENOMEM);
88                 goto out;
89         }
90         em->start = 0;
91         em->len = (u64)-1;
92         em->block_start = 0;
93         em->bdev = inode->i_sb->s_bdev;
94
95         spin_lock(&em_tree->lock);
96         ret = add_extent_mapping(em_tree, em);
97         if (ret == -EEXIST) {
98                 u64 failed_start = em->start;
99                 u64 failed_len = em->len;
100
101                 printk("failed to insert %Lu %Lu -> %Lu into tree\n",
102                        em->start, em->len, em->block_start);
103                 free_extent_map(em);
104                 em = lookup_extent_mapping(em_tree, start, len);
105                 if (em) {
106                         printk("after failing, found %Lu %Lu %Lu\n",
107                                em->start, em->len, em->block_start);
108                         ret = 0;
109                 } else {
110                         em = lookup_extent_mapping(em_tree, failed_start,
111                                                    failed_len);
112                         if (em) {
113                                 printk("double failure lookup gives us "
114                                        "%Lu %Lu -> %Lu\n", em->start,
115                                        em->len, em->block_start);
116                                 free_extent_map(em);
117                         }
118                         ret = -EIO;
119                 }
120         } else if (ret) {
121                 free_extent_map(em);
122                 em = NULL;
123         }
124         spin_unlock(&em_tree->lock);
125
126         if (ret)
127                 em = ERR_PTR(ret);
128 out:
129         return em;
130 }
131
132 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
133 {
134         return btrfs_crc32c(seed, data, len);
135 }
136
137 void btrfs_csum_final(u32 crc, char *result)
138 {
139         *(__le32 *)result = ~cpu_to_le32(crc);
140 }
141
142 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
143                            int verify)
144 {
145         char result[BTRFS_CRC32_SIZE];
146         unsigned long len;
147         unsigned long cur_len;
148         unsigned long offset = BTRFS_CSUM_SIZE;
149         char *map_token = NULL;
150         char *kaddr;
151         unsigned long map_start;
152         unsigned long map_len;
153         int err;
154         u32 crc = ~(u32)0;
155
156         len = buf->len - offset;
157         while(len > 0) {
158                 err = map_private_extent_buffer(buf, offset, 32,
159                                         &map_token, &kaddr,
160                                         &map_start, &map_len, KM_USER0);
161                 if (err) {
162                         printk("failed to map extent buffer! %lu\n",
163                                offset);
164                         return 1;
165                 }
166                 cur_len = min(len, map_len - (offset - map_start));
167                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
168                                       crc, cur_len);
169                 len -= cur_len;
170                 offset += cur_len;
171                 unmap_extent_buffer(buf, map_token, KM_USER0);
172         }
173         btrfs_csum_final(crc, result);
174
175         if (verify) {
176                 int from_this_trans = 0;
177
178                 if (root->fs_info->running_transaction &&
179                     btrfs_header_generation(buf) ==
180                     root->fs_info->running_transaction->transid)
181                         from_this_trans = 1;
182
183                 /* FIXME, this is not good */
184                 if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) {
185                         u32 val;
186                         u32 found = 0;
187                         memcpy(&found, result, BTRFS_CRC32_SIZE);
188
189                         read_extent_buffer(buf, &val, 0, BTRFS_CRC32_SIZE);
190                         printk("btrfs: %s checksum verify failed on %llu "
191                                "wanted %X found %X from_this_trans %d "
192                                "level %d\n",
193                                root->fs_info->sb->s_id,
194                                buf->start, val, found, from_this_trans,
195                                btrfs_header_level(buf));
196                         return 1;
197                 }
198         } else {
199                 write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE);
200         }
201         return 0;
202 }
203
204 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
205                                           struct extent_buffer *eb,
206                                           u64 start)
207 {
208         struct extent_io_tree *io_tree;
209         int ret;
210         int num_copies = 0;
211         int mirror_num = 0;
212
213         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
214         while (1) {
215                 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
216                                                btree_get_extent, mirror_num);
217                 if (!ret) {
218                         if (mirror_num)
219 printk("good read %Lu mirror %d total %d\n", eb->start, mirror_num, num_copies);
220                         return ret;
221                 }
222                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
223                                               eb->start, eb->len);
224 printk("failed to read %Lu mirror %d total %d\n", eb->start, mirror_num, num_copies);
225                 if (num_copies == 1) {
226 printk("reading %Lu failed only one copy\n", eb->start);
227                         return ret;
228                 }
229                 mirror_num++;
230                 if (mirror_num > num_copies) {
231 printk("bailing at mirror %d of %d\n", mirror_num, num_copies);
232                         return ret;
233                 }
234         }
235 printk("read extent buffer page last\n");
236         return -EIO;
237 }
238
239 int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
240 {
241         struct extent_io_tree *tree;
242         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
243         u64 found_start;
244         int found_level;
245         unsigned long len;
246         struct extent_buffer *eb;
247         int ret;
248
249         tree = &BTRFS_I(page->mapping->host)->io_tree;
250
251         if (page->private == EXTENT_PAGE_PRIVATE)
252                 goto out;
253         if (!page->private)
254                 goto out;
255         len = page->private >> 2;
256         if (len == 0) {
257                 WARN_ON(1);
258         }
259         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
260         ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE);
261         BUG_ON(ret);
262         btrfs_clear_buffer_defrag(eb);
263         found_start = btrfs_header_bytenr(eb);
264         if (found_start != start) {
265                 printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
266                        start, found_start, len);
267                 WARN_ON(1);
268                 goto err;
269         }
270         if (eb->first_page != page) {
271                 printk("bad first page %lu %lu\n", eb->first_page->index,
272                        page->index);
273                 WARN_ON(1);
274                 goto err;
275         }
276         if (!PageUptodate(page)) {
277                 printk("csum not up to date page %lu\n", page->index);
278                 WARN_ON(1);
279                 goto err;
280         }
281         found_level = btrfs_header_level(eb);
282         spin_lock(&root->fs_info->hash_lock);
283         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
284         spin_unlock(&root->fs_info->hash_lock);
285         csum_tree_block(root, eb, 0);
286 err:
287         free_extent_buffer(eb);
288 out:
289         return 0;
290 }
291
292 static int btree_writepage_io_hook(struct page *page, u64 start, u64 end)
293 {
294         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
295
296         csum_dirty_buffer(root, page);
297         return 0;
298 }
299
300 int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
301                                struct extent_state *state)
302 {
303         struct extent_io_tree *tree;
304         u64 found_start;
305         int found_level;
306         unsigned long len;
307         struct extent_buffer *eb;
308         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
309         int ret = 0;
310
311         tree = &BTRFS_I(page->mapping->host)->io_tree;
312         if (page->private == EXTENT_PAGE_PRIVATE)
313                 goto out;
314         if (!page->private)
315                 goto out;
316         len = page->private >> 2;
317         if (len == 0) {
318                 WARN_ON(1);
319         }
320         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
321
322         btrfs_clear_buffer_defrag(eb);
323         found_start = btrfs_header_bytenr(eb);
324         if (found_start != start) {
325 printk("bad start on %Lu found %Lu\n", eb->start, found_start);
326                 ret = -EIO;
327                 goto err;
328         }
329         if (eb->first_page != page) {
330                 printk("bad first page %lu %lu\n", eb->first_page->index,
331                        page->index);
332                 WARN_ON(1);
333                 ret = -EIO;
334                 goto err;
335         }
336         found_level = btrfs_header_level(eb);
337
338         ret = csum_tree_block(root, eb, 1);
339         if (ret)
340                 ret = -EIO;
341
342         end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
343         end = eb->start + end - 1;
344         release_extent_buffer_tail_pages(eb);
345 err:
346         free_extent_buffer(eb);
347 out:
348         return ret;
349 }
350
351 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
352 static void end_workqueue_bio(struct bio *bio, int err)
353 #else
354 static int end_workqueue_bio(struct bio *bio,
355                                    unsigned int bytes_done, int err)
356 #endif
357 {
358         struct end_io_wq *end_io_wq = bio->bi_private;
359         struct btrfs_fs_info *fs_info;
360         unsigned long flags;
361
362 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
363         if (bio->bi_size)
364                 return 1;
365 #endif
366
367         fs_info = end_io_wq->info;
368         spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
369         end_io_wq->error = err;
370         list_add_tail(&end_io_wq->list, &fs_info->end_io_work_list);
371         spin_unlock_irqrestore(&fs_info->end_io_work_lock, flags);
372         queue_work(end_io_workqueue, &fs_info->end_io_work);
373
374 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
375         return 0;
376 #endif
377 }
378
379 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
380                         int metadata)
381 {
382         struct end_io_wq *end_io_wq;
383         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
384         if (!end_io_wq)
385                 return -ENOMEM;
386
387         end_io_wq->private = bio->bi_private;
388         end_io_wq->end_io = bio->bi_end_io;
389         end_io_wq->info = info;
390         end_io_wq->error = 0;
391         end_io_wq->bio = bio;
392         end_io_wq->metadata = metadata;
393
394         bio->bi_private = end_io_wq;
395         bio->bi_end_io = end_workqueue_bio;
396         return 0;
397 }
398
399 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
400                         int rw, struct bio *bio, int mirror_num,
401                         extent_submit_bio_hook_t *submit_bio_hook)
402 {
403         struct async_submit_bio *async;
404
405         /*
406          * inline writerback should stay inline, only hop to the async
407          * queue if we're pdflush
408          */
409         if (!current_is_pdflush())
410                 return submit_bio_hook(inode, rw, bio, mirror_num);
411
412         async = kmalloc(sizeof(*async), GFP_NOFS);
413         if (!async)
414                 return -ENOMEM;
415
416         async->inode = inode;
417         async->rw = rw;
418         async->bio = bio;
419         async->mirror_num = mirror_num;
420         async->submit_bio_hook = submit_bio_hook;
421
422         spin_lock(&fs_info->async_submit_work_lock);
423         list_add_tail(&async->list, &fs_info->async_submit_work_list);
424         spin_unlock(&fs_info->async_submit_work_lock);
425
426         queue_work(async_submit_workqueue, &fs_info->async_submit_work);
427         return 0;
428 }
429
430 static int __btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
431                                  int mirror_num)
432 {
433         struct btrfs_root *root = BTRFS_I(inode)->root;
434         u64 offset;
435         int ret;
436
437         offset = bio->bi_sector << 9;
438
439         if (rw & (1 << BIO_RW)) {
440                 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num);
441         }
442
443         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 1);
444         BUG_ON(ret);
445
446         if (offset == BTRFS_SUPER_INFO_OFFSET) {
447                 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
448                 submit_bio(rw, bio);
449                 return 0;
450         }
451         return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num);
452 }
453
454 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
455                                  int mirror_num)
456 {
457         if (!(rw & (1 << BIO_RW))) {
458                 return __btree_submit_bio_hook(inode, rw, bio, mirror_num);
459         }
460         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
461                                    inode, rw, bio, mirror_num,
462                                    __btree_submit_bio_hook);
463 }
464
465 static int btree_writepage(struct page *page, struct writeback_control *wbc)
466 {
467         struct extent_io_tree *tree;
468         tree = &BTRFS_I(page->mapping->host)->io_tree;
469         return extent_write_full_page(tree, page, btree_get_extent, wbc);
470 }
471
472 static int btree_writepages(struct address_space *mapping,
473                             struct writeback_control *wbc)
474 {
475         struct extent_io_tree *tree;
476         tree = &BTRFS_I(mapping->host)->io_tree;
477         if (wbc->sync_mode == WB_SYNC_NONE) {
478                 u64 num_dirty;
479                 u64 start = 0;
480                 unsigned long thresh = 96 * 1024 * 1024;
481
482                 if (wbc->for_kupdate)
483                         return 0;
484
485                 if (current_is_pdflush()) {
486                         thresh = 96 * 1024 * 1024;
487                 } else {
488                         thresh = 8 * 1024 * 1024;
489                 }
490                 num_dirty = count_range_bits(tree, &start, (u64)-1,
491                                              thresh, EXTENT_DIRTY);
492                 if (num_dirty < thresh) {
493                         return 0;
494                 }
495         }
496         return extent_writepages(tree, mapping, btree_get_extent, wbc);
497 }
498
499 int btree_readpage(struct file *file, struct page *page)
500 {
501         struct extent_io_tree *tree;
502         tree = &BTRFS_I(page->mapping->host)->io_tree;
503         return extent_read_full_page(tree, page, btree_get_extent);
504 }
505
506 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
507 {
508         struct extent_io_tree *tree;
509         struct extent_map_tree *map;
510         int ret;
511
512         if (page_count(page) > 3) {
513                 /* once for page->private, once for the caller, once
514                  * once for the page cache
515                  */
516                 return 0;
517         }
518         tree = &BTRFS_I(page->mapping->host)->io_tree;
519         map = &BTRFS_I(page->mapping->host)->extent_tree;
520         ret = try_release_extent_state(map, tree, page, gfp_flags);
521         if (ret == 1) {
522                 invalidate_extent_lru(tree, page_offset(page), PAGE_CACHE_SIZE);
523                 ClearPagePrivate(page);
524                 set_page_private(page, 0);
525                 page_cache_release(page);
526         }
527         return ret;
528 }
529
530 static void btree_invalidatepage(struct page *page, unsigned long offset)
531 {
532         struct extent_io_tree *tree;
533         tree = &BTRFS_I(page->mapping->host)->io_tree;
534         extent_invalidatepage(tree, page, offset);
535         btree_releasepage(page, GFP_NOFS);
536         if (PagePrivate(page)) {
537                 printk("2invalidate page cleaning up after releasepage\n");
538                 ClearPagePrivate(page);
539                 set_page_private(page, 0);
540                 page_cache_release(page);
541         }
542 }
543
544 #if 0
545 static int btree_writepage(struct page *page, struct writeback_control *wbc)
546 {
547         struct buffer_head *bh;
548         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
549         struct buffer_head *head;
550         if (!page_has_buffers(page)) {
551                 create_empty_buffers(page, root->fs_info->sb->s_blocksize,
552                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
553         }
554         head = page_buffers(page);
555         bh = head;
556         do {
557                 if (buffer_dirty(bh))
558                         csum_tree_block(root, bh, 0);
559                 bh = bh->b_this_page;
560         } while (bh != head);
561         return block_write_full_page(page, btree_get_block, wbc);
562 }
563 #endif
564
565 static struct address_space_operations btree_aops = {
566         .readpage       = btree_readpage,
567         .writepage      = btree_writepage,
568         .writepages     = btree_writepages,
569         .releasepage    = btree_releasepage,
570         .invalidatepage = btree_invalidatepage,
571         .sync_page      = block_sync_page,
572 };
573
574 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize)
575 {
576         struct extent_buffer *buf = NULL;
577         struct inode *btree_inode = root->fs_info->btree_inode;
578         int ret = 0;
579
580         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
581         if (!buf)
582                 return 0;
583         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
584                                  buf, 0, 0, btree_get_extent, 0);
585         free_extent_buffer(buf);
586         return ret;
587 }
588
589 static int close_all_devices(struct btrfs_fs_info *fs_info)
590 {
591         struct list_head *list;
592         struct list_head *next;
593         struct btrfs_device *device;
594
595         list = &fs_info->fs_devices->devices;
596         list_for_each(next, list) {
597                 device = list_entry(next, struct btrfs_device, dev_list);
598                 if (device->bdev && device->bdev != fs_info->sb->s_bdev)
599                         close_bdev_excl(device->bdev);
600                 device->bdev = NULL;
601         }
602         return 0;
603 }
604
605 int btrfs_verify_block_csum(struct btrfs_root *root,
606                             struct extent_buffer *buf)
607 {
608         return btrfs_buffer_uptodate(buf);
609 }
610
611 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
612                                             u64 bytenr, u32 blocksize)
613 {
614         struct inode *btree_inode = root->fs_info->btree_inode;
615         struct extent_buffer *eb;
616         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
617                                 bytenr, blocksize, GFP_NOFS);
618         return eb;
619 }
620
621 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
622                                                  u64 bytenr, u32 blocksize)
623 {
624         struct inode *btree_inode = root->fs_info->btree_inode;
625         struct extent_buffer *eb;
626
627         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
628                                  bytenr, blocksize, NULL, GFP_NOFS);
629         return eb;
630 }
631
632
633 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
634                                       u32 blocksize)
635 {
636         struct extent_buffer *buf = NULL;
637         struct inode *btree_inode = root->fs_info->btree_inode;
638         struct extent_io_tree *io_tree;
639         int ret;
640
641         io_tree = &BTRFS_I(btree_inode)->io_tree;
642
643         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
644         if (!buf)
645                 return NULL;
646
647         ret = btree_read_extent_buffer_pages(root, buf, 0);
648
649         if (ret == 0) {
650                 buf->flags |= EXTENT_UPTODATE;
651         }
652         return buf;
653
654 }
655
656 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
657                      struct extent_buffer *buf)
658 {
659         struct inode *btree_inode = root->fs_info->btree_inode;
660         if (btrfs_header_generation(buf) ==
661             root->fs_info->running_transaction->transid)
662                 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
663                                           buf);
664         return 0;
665 }
666
667 int wait_on_tree_block_writeback(struct btrfs_root *root,
668                                  struct extent_buffer *buf)
669 {
670         struct inode *btree_inode = root->fs_info->btree_inode;
671         wait_on_extent_buffer_writeback(&BTRFS_I(btree_inode)->io_tree,
672                                         buf);
673         return 0;
674 }
675
676 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
677                         u32 stripesize, struct btrfs_root *root,
678                         struct btrfs_fs_info *fs_info,
679                         u64 objectid)
680 {
681         root->node = NULL;
682         root->inode = NULL;
683         root->commit_root = NULL;
684         root->sectorsize = sectorsize;
685         root->nodesize = nodesize;
686         root->leafsize = leafsize;
687         root->stripesize = stripesize;
688         root->ref_cows = 0;
689         root->track_dirty = 0;
690
691         root->fs_info = fs_info;
692         root->objectid = objectid;
693         root->last_trans = 0;
694         root->highest_inode = 0;
695         root->last_inode_alloc = 0;
696         root->name = NULL;
697         root->in_sysfs = 0;
698
699         INIT_LIST_HEAD(&root->dirty_list);
700         memset(&root->root_key, 0, sizeof(root->root_key));
701         memset(&root->root_item, 0, sizeof(root->root_item));
702         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
703         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
704         init_completion(&root->kobj_unregister);
705         root->defrag_running = 0;
706         root->defrag_level = 0;
707         root->root_key.objectid = objectid;
708         return 0;
709 }
710
711 static int find_and_setup_root(struct btrfs_root *tree_root,
712                                struct btrfs_fs_info *fs_info,
713                                u64 objectid,
714                                struct btrfs_root *root)
715 {
716         int ret;
717         u32 blocksize;
718
719         __setup_root(tree_root->nodesize, tree_root->leafsize,
720                      tree_root->sectorsize, tree_root->stripesize,
721                      root, fs_info, objectid);
722         ret = btrfs_find_last_root(tree_root, objectid,
723                                    &root->root_item, &root->root_key);
724         BUG_ON(ret);
725
726         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
727         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
728                                      blocksize);
729         BUG_ON(!root->node);
730         return 0;
731 }
732
733 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_fs_info *fs_info,
734                                                struct btrfs_key *location)
735 {
736         struct btrfs_root *root;
737         struct btrfs_root *tree_root = fs_info->tree_root;
738         struct btrfs_path *path;
739         struct extent_buffer *l;
740         u64 highest_inode;
741         u32 blocksize;
742         int ret = 0;
743
744         root = kzalloc(sizeof(*root), GFP_NOFS);
745         if (!root)
746                 return ERR_PTR(-ENOMEM);
747         if (location->offset == (u64)-1) {
748                 ret = find_and_setup_root(tree_root, fs_info,
749                                           location->objectid, root);
750                 if (ret) {
751                         kfree(root);
752                         return ERR_PTR(ret);
753                 }
754                 goto insert;
755         }
756
757         __setup_root(tree_root->nodesize, tree_root->leafsize,
758                      tree_root->sectorsize, tree_root->stripesize,
759                      root, fs_info, location->objectid);
760
761         path = btrfs_alloc_path();
762         BUG_ON(!path);
763         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
764         if (ret != 0) {
765                 if (ret > 0)
766                         ret = -ENOENT;
767                 goto out;
768         }
769         l = path->nodes[0];
770         read_extent_buffer(l, &root->root_item,
771                btrfs_item_ptr_offset(l, path->slots[0]),
772                sizeof(root->root_item));
773         memcpy(&root->root_key, location, sizeof(*location));
774         ret = 0;
775 out:
776         btrfs_release_path(root, path);
777         btrfs_free_path(path);
778         if (ret) {
779                 kfree(root);
780                 return ERR_PTR(ret);
781         }
782         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
783         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
784                                      blocksize);
785         BUG_ON(!root->node);
786 insert:
787         root->ref_cows = 1;
788         ret = btrfs_find_highest_inode(root, &highest_inode);
789         if (ret == 0) {
790                 root->highest_inode = highest_inode;
791                 root->last_inode_alloc = highest_inode;
792         }
793         return root;
794 }
795
796 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
797                                         u64 root_objectid)
798 {
799         struct btrfs_root *root;
800
801         if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
802                 return fs_info->tree_root;
803         if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
804                 return fs_info->extent_root;
805
806         root = radix_tree_lookup(&fs_info->fs_roots_radix,
807                                  (unsigned long)root_objectid);
808         return root;
809 }
810
811 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
812                                               struct btrfs_key *location)
813 {
814         struct btrfs_root *root;
815         int ret;
816
817         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
818                 return fs_info->tree_root;
819         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
820                 return fs_info->extent_root;
821
822         root = radix_tree_lookup(&fs_info->fs_roots_radix,
823                                  (unsigned long)location->objectid);
824         if (root)
825                 return root;
826
827         root = btrfs_read_fs_root_no_radix(fs_info, location);
828         if (IS_ERR(root))
829                 return root;
830         ret = radix_tree_insert(&fs_info->fs_roots_radix,
831                                 (unsigned long)root->root_key.objectid,
832                                 root);
833         if (ret) {
834                 free_extent_buffer(root->node);
835                 kfree(root);
836                 return ERR_PTR(ret);
837         }
838         ret = btrfs_find_dead_roots(fs_info->tree_root,
839                                     root->root_key.objectid, root);
840         BUG_ON(ret);
841
842         return root;
843 }
844
845 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
846                                       struct btrfs_key *location,
847                                       const char *name, int namelen)
848 {
849         struct btrfs_root *root;
850         int ret;
851
852         root = btrfs_read_fs_root_no_name(fs_info, location);
853         if (!root)
854                 return NULL;
855
856         if (root->in_sysfs)
857                 return root;
858
859         ret = btrfs_set_root_name(root, name, namelen);
860         if (ret) {
861                 free_extent_buffer(root->node);
862                 kfree(root);
863                 return ERR_PTR(ret);
864         }
865
866         ret = btrfs_sysfs_add_root(root);
867         if (ret) {
868                 free_extent_buffer(root->node);
869                 kfree(root->name);
870                 kfree(root);
871                 return ERR_PTR(ret);
872         }
873         root->in_sysfs = 1;
874         return root;
875 }
876 #if 0
877 static int add_hasher(struct btrfs_fs_info *info, char *type) {
878         struct btrfs_hasher *hasher;
879
880         hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
881         if (!hasher)
882                 return -ENOMEM;
883         hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
884         if (!hasher->hash_tfm) {
885                 kfree(hasher);
886                 return -EINVAL;
887         }
888         spin_lock(&info->hash_lock);
889         list_add(&hasher->list, &info->hashers);
890         spin_unlock(&info->hash_lock);
891         return 0;
892 }
893 #endif
894
895 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
896 {
897         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
898         int ret = 0;
899         struct list_head *cur;
900         struct btrfs_device *device;
901         struct backing_dev_info *bdi;
902
903         list_for_each(cur, &info->fs_devices->devices) {
904                 device = list_entry(cur, struct btrfs_device, dev_list);
905                 bdi = blk_get_backing_dev_info(device->bdev);
906                 if (bdi && bdi_congested(bdi, bdi_bits)) {
907                         ret = 1;
908                         break;
909                 }
910         }
911         return ret;
912 }
913
914 void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
915 {
916         struct list_head *cur;
917         struct btrfs_device *device;
918         struct btrfs_fs_info *info;
919
920         info = (struct btrfs_fs_info *)bdi->unplug_io_data;
921         list_for_each(cur, &info->fs_devices->devices) {
922                 device = list_entry(cur, struct btrfs_device, dev_list);
923                 bdi = blk_get_backing_dev_info(device->bdev);
924                 if (bdi->unplug_io_fn) {
925                         bdi->unplug_io_fn(bdi, page);
926                 }
927         }
928 }
929
930 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
931 {
932 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
933         bdi_init(bdi);
934 #endif
935         bdi->ra_pages   = default_backing_dev_info.ra_pages;
936         bdi->state              = 0;
937         bdi->capabilities       = default_backing_dev_info.capabilities;
938         bdi->unplug_io_fn       = btrfs_unplug_io_fn;
939         bdi->unplug_io_data     = info;
940         bdi->congested_fn       = btrfs_congested_fn;
941         bdi->congested_data     = info;
942         return 0;
943 }
944
945 static int bio_ready_for_csum(struct bio *bio)
946 {
947         u64 length = 0;
948         u64 buf_len = 0;
949         u64 start = 0;
950         struct page *page;
951         struct extent_io_tree *io_tree = NULL;
952         struct btrfs_fs_info *info = NULL;
953         struct bio_vec *bvec;
954         int i;
955         int ret;
956
957         bio_for_each_segment(bvec, bio, i) {
958                 page = bvec->bv_page;
959                 if (page->private == EXTENT_PAGE_PRIVATE) {
960                         length += bvec->bv_len;
961                         continue;
962                 }
963                 if (!page->private) {
964                         length += bvec->bv_len;
965                         continue;
966                 }
967                 length = bvec->bv_len;
968                 buf_len = page->private >> 2;
969                 start = page_offset(page) + bvec->bv_offset;
970                 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
971                 info = BTRFS_I(page->mapping->host)->root->fs_info;
972         }
973         /* are we fully contained in this bio? */
974         if (buf_len <= length)
975                 return 1;
976
977         ret = extent_range_uptodate(io_tree, start + length,
978                                     start + buf_len - 1);
979         if (ret == 1)
980                 return ret;
981         return ret;
982 }
983
984 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
985 static void btrfs_end_io_csum(void *p)
986 #else
987 static void btrfs_end_io_csum(struct work_struct *work)
988 #endif
989 {
990 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
991         struct btrfs_fs_info *fs_info = p;
992 #else
993         struct btrfs_fs_info *fs_info = container_of(work,
994                                                      struct btrfs_fs_info,
995                                                      end_io_work);
996 #endif
997         unsigned long flags;
998         struct end_io_wq *end_io_wq;
999         struct bio *bio;
1000         struct list_head *next;
1001         int error;
1002         int was_empty;
1003
1004         while(1) {
1005                 spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
1006                 if (list_empty(&fs_info->end_io_work_list)) {
1007                         spin_unlock_irqrestore(&fs_info->end_io_work_lock,
1008                                                flags);
1009                         return;
1010                 }
1011                 next = fs_info->end_io_work_list.next;
1012                 list_del(next);
1013                 spin_unlock_irqrestore(&fs_info->end_io_work_lock, flags);
1014
1015                 end_io_wq = list_entry(next, struct end_io_wq, list);
1016
1017                 bio = end_io_wq->bio;
1018                 if (end_io_wq->metadata && !bio_ready_for_csum(bio)) {
1019                         spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
1020                         was_empty = list_empty(&fs_info->end_io_work_list);
1021                         list_add_tail(&end_io_wq->list,
1022                                       &fs_info->end_io_work_list);
1023                         spin_unlock_irqrestore(&fs_info->end_io_work_lock,
1024                                                flags);
1025                         if (was_empty)
1026                                 return;
1027                         continue;
1028                 }
1029                 error = end_io_wq->error;
1030                 bio->bi_private = end_io_wq->private;
1031                 bio->bi_end_io = end_io_wq->end_io;
1032                 kfree(end_io_wq);
1033 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1034                 bio_endio(bio, bio->bi_size, error);
1035 #else
1036                 bio_endio(bio, error);
1037 #endif
1038         }
1039 }
1040
1041 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1042 static void btrfs_async_submit_work(void *p)
1043 #else
1044 static void btrfs_async_submit_work(struct work_struct *work)
1045 #endif
1046 {
1047 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1048         struct btrfs_fs_info *fs_info = p;
1049 #else
1050         struct btrfs_fs_info *fs_info = container_of(work,
1051                                                      struct btrfs_fs_info,
1052                                                      async_submit_work);
1053 #endif
1054         struct async_submit_bio *async;
1055         struct list_head *next;
1056
1057         while(1) {
1058                 spin_lock(&fs_info->async_submit_work_lock);
1059                 if (list_empty(&fs_info->async_submit_work_list)) {
1060                         spin_unlock(&fs_info->async_submit_work_lock);
1061                         return;
1062                 }
1063                 next = fs_info->async_submit_work_list.next;
1064                 list_del(next);
1065                 spin_unlock(&fs_info->async_submit_work_lock);
1066
1067                 async = list_entry(next, struct async_submit_bio, list);
1068                 async->submit_bio_hook(async->inode, async->rw, async->bio,
1069                                        async->mirror_num);
1070                 kfree(async);
1071         }
1072 }
1073
1074 struct btrfs_root *open_ctree(struct super_block *sb,
1075                               struct btrfs_fs_devices *fs_devices)
1076 {
1077         u32 sectorsize;
1078         u32 nodesize;
1079         u32 leafsize;
1080         u32 blocksize;
1081         u32 stripesize;
1082         struct btrfs_root *extent_root = kmalloc(sizeof(struct btrfs_root),
1083                                                  GFP_NOFS);
1084         struct btrfs_root *tree_root = kmalloc(sizeof(struct btrfs_root),
1085                                                GFP_NOFS);
1086         struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1087                                                 GFP_NOFS);
1088         struct btrfs_root *chunk_root = kmalloc(sizeof(struct btrfs_root),
1089                                                 GFP_NOFS);
1090         struct btrfs_root *dev_root = kmalloc(sizeof(struct btrfs_root),
1091                                               GFP_NOFS);
1092         int ret;
1093         int err = -EINVAL;
1094         struct btrfs_super_block *disk_super;
1095
1096         if (!extent_root || !tree_root || !fs_info) {
1097                 err = -ENOMEM;
1098                 goto fail;
1099         }
1100         end_io_workqueue = create_workqueue("btrfs-end-io");
1101         BUG_ON(!end_io_workqueue);
1102         async_submit_workqueue = create_workqueue("btrfs-async-submit");
1103
1104         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1105         INIT_LIST_HEAD(&fs_info->trans_list);
1106         INIT_LIST_HEAD(&fs_info->dead_roots);
1107         INIT_LIST_HEAD(&fs_info->hashers);
1108         INIT_LIST_HEAD(&fs_info->end_io_work_list);
1109         INIT_LIST_HEAD(&fs_info->async_submit_work_list);
1110         spin_lock_init(&fs_info->hash_lock);
1111         spin_lock_init(&fs_info->end_io_work_lock);
1112         spin_lock_init(&fs_info->async_submit_work_lock);
1113         spin_lock_init(&fs_info->delalloc_lock);
1114         spin_lock_init(&fs_info->new_trans_lock);
1115
1116         init_completion(&fs_info->kobj_unregister);
1117         sb_set_blocksize(sb, BTRFS_SUPER_INFO_SIZE);
1118         fs_info->tree_root = tree_root;
1119         fs_info->extent_root = extent_root;
1120         fs_info->chunk_root = chunk_root;
1121         fs_info->dev_root = dev_root;
1122         fs_info->fs_devices = fs_devices;
1123         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1124         INIT_LIST_HEAD(&fs_info->space_info);
1125         btrfs_mapping_init(&fs_info->mapping_tree);
1126         fs_info->sb = sb;
1127         fs_info->max_extent = (u64)-1;
1128         fs_info->max_inline = 8192 * 1024;
1129         setup_bdi(fs_info, &fs_info->bdi);
1130         fs_info->btree_inode = new_inode(sb);
1131         fs_info->btree_inode->i_ino = 1;
1132         fs_info->btree_inode->i_nlink = 1;
1133
1134         /*
1135          * we set the i_size on the btree inode to the max possible int.
1136          * the real end of the address space is determined by all of
1137          * the devices in the system
1138          */
1139         fs_info->btree_inode->i_size = OFFSET_MAX;
1140         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1141         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1142
1143         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1144                              fs_info->btree_inode->i_mapping,
1145                              GFP_NOFS);
1146         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1147                              GFP_NOFS);
1148
1149         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1150
1151         extent_io_tree_init(&fs_info->free_space_cache,
1152                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1153         extent_io_tree_init(&fs_info->block_group_cache,
1154                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1155         extent_io_tree_init(&fs_info->pinned_extents,
1156                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1157         extent_io_tree_init(&fs_info->pending_del,
1158                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1159         extent_io_tree_init(&fs_info->extent_ins,
1160                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1161         fs_info->do_barriers = 1;
1162
1163 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1164         INIT_WORK(&fs_info->end_io_work, btrfs_end_io_csum, fs_info);
1165         INIT_WORK(&fs_info->async_submit_work, btrfs_async_submit_work,
1166                   fs_info);
1167         INIT_WORK(&fs_info->trans_work, btrfs_transaction_cleaner, fs_info);
1168 #else
1169         INIT_WORK(&fs_info->end_io_work, btrfs_end_io_csum);
1170         INIT_WORK(&fs_info->async_submit_work, btrfs_async_submit_work);
1171         INIT_DELAYED_WORK(&fs_info->trans_work, btrfs_transaction_cleaner);
1172 #endif
1173         BTRFS_I(fs_info->btree_inode)->root = tree_root;
1174         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1175                sizeof(struct btrfs_key));
1176         insert_inode_hash(fs_info->btree_inode);
1177         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1178
1179         mutex_init(&fs_info->trans_mutex);
1180         mutex_init(&fs_info->fs_mutex);
1181
1182 #if 0
1183         ret = add_hasher(fs_info, "crc32c");
1184         if (ret) {
1185                 printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
1186                 err = -ENOMEM;
1187                 goto fail_iput;
1188         }
1189 #endif
1190         __setup_root(4096, 4096, 4096, 4096, tree_root,
1191                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
1192
1193         fs_info->sb_buffer = read_tree_block(tree_root,
1194                                              BTRFS_SUPER_INFO_OFFSET,
1195                                              4096);
1196
1197         if (!fs_info->sb_buffer)
1198                 goto fail_iput;
1199
1200         read_extent_buffer(fs_info->sb_buffer, &fs_info->super_copy, 0,
1201                            sizeof(fs_info->super_copy));
1202
1203         read_extent_buffer(fs_info->sb_buffer, fs_info->fsid,
1204                            (unsigned long)btrfs_super_fsid(fs_info->sb_buffer),
1205                            BTRFS_FSID_SIZE);
1206
1207         disk_super = &fs_info->super_copy;
1208         if (!btrfs_super_root(disk_super))
1209                 goto fail_sb_buffer;
1210
1211         if (btrfs_super_num_devices(disk_super) != fs_devices->num_devices) {
1212                 printk("Btrfs: wanted %llu devices, but found %llu\n",
1213                        (unsigned long long)btrfs_super_num_devices(disk_super),
1214                        (unsigned long long)fs_devices->num_devices);
1215                 goto fail_sb_buffer;
1216         }
1217         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1218
1219         nodesize = btrfs_super_nodesize(disk_super);
1220         leafsize = btrfs_super_leafsize(disk_super);
1221         sectorsize = btrfs_super_sectorsize(disk_super);
1222         stripesize = btrfs_super_stripesize(disk_super);
1223         tree_root->nodesize = nodesize;
1224         tree_root->leafsize = leafsize;
1225         tree_root->sectorsize = sectorsize;
1226         tree_root->stripesize = stripesize;
1227         sb_set_blocksize(sb, sectorsize);
1228
1229         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1230                     sizeof(disk_super->magic))) {
1231                 printk("btrfs: valid FS not found on %s\n", sb->s_id);
1232                 goto fail_sb_buffer;
1233         }
1234
1235         mutex_lock(&fs_info->fs_mutex);
1236
1237         ret = btrfs_read_sys_array(tree_root);
1238         BUG_ON(ret);
1239
1240         blocksize = btrfs_level_size(tree_root,
1241                                      btrfs_super_chunk_root_level(disk_super));
1242
1243         __setup_root(nodesize, leafsize, sectorsize, stripesize,
1244                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1245
1246         chunk_root->node = read_tree_block(chunk_root,
1247                                            btrfs_super_chunk_root(disk_super),
1248                                            blocksize);
1249         BUG_ON(!chunk_root->node);
1250
1251         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1252                  (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1253                  BTRFS_UUID_SIZE);
1254
1255         ret = btrfs_read_chunk_tree(chunk_root);
1256         BUG_ON(ret);
1257
1258         blocksize = btrfs_level_size(tree_root,
1259                                      btrfs_super_root_level(disk_super));
1260
1261
1262         tree_root->node = read_tree_block(tree_root,
1263                                           btrfs_super_root(disk_super),
1264                                           blocksize);
1265         if (!tree_root->node)
1266                 goto fail_sb_buffer;
1267
1268
1269         ret = find_and_setup_root(tree_root, fs_info,
1270                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1271         if (ret)
1272                 goto fail_tree_root;
1273         extent_root->track_dirty = 1;
1274
1275         ret = find_and_setup_root(tree_root, fs_info,
1276                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
1277         dev_root->track_dirty = 1;
1278
1279         if (ret)
1280                 goto fail_extent_root;
1281
1282         btrfs_read_block_groups(extent_root);
1283
1284         fs_info->generation = btrfs_super_generation(disk_super) + 1;
1285         fs_info->data_alloc_profile = (u64)-1;
1286         fs_info->metadata_alloc_profile = (u64)-1;
1287         fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1288
1289         mutex_unlock(&fs_info->fs_mutex);
1290         return tree_root;
1291
1292 fail_extent_root:
1293         free_extent_buffer(extent_root->node);
1294 fail_tree_root:
1295         mutex_unlock(&fs_info->fs_mutex);
1296         free_extent_buffer(tree_root->node);
1297 fail_sb_buffer:
1298         free_extent_buffer(fs_info->sb_buffer);
1299         extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
1300 fail_iput:
1301         iput(fs_info->btree_inode);
1302 fail:
1303         close_all_devices(fs_info);
1304         kfree(extent_root);
1305         kfree(tree_root);
1306 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
1307         bdi_destroy(&fs_info->bdi);
1308 #endif
1309         kfree(fs_info);
1310         return ERR_PTR(err);
1311 }
1312
1313 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1314 {
1315         char b[BDEVNAME_SIZE];
1316
1317         if (uptodate) {
1318                 set_buffer_uptodate(bh);
1319         } else {
1320                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1321                         printk(KERN_WARNING "lost page write due to "
1322                                         "I/O error on %s\n",
1323                                        bdevname(bh->b_bdev, b));
1324                 }
1325                 set_buffer_write_io_error(bh);
1326                 clear_buffer_uptodate(bh);
1327         }
1328         unlock_buffer(bh);
1329         put_bh(bh);
1330 }
1331
1332 int write_all_supers(struct btrfs_root *root)
1333 {
1334         struct list_head *cur;
1335         struct list_head *head = &root->fs_info->fs_devices->devices;
1336         struct btrfs_device *dev;
1337         struct extent_buffer *sb;
1338         struct btrfs_dev_item *dev_item;
1339         struct buffer_head *bh;
1340         int ret;
1341         int do_barriers;
1342
1343         do_barriers = !btrfs_test_opt(root, NOBARRIER);
1344
1345         sb = root->fs_info->sb_buffer;
1346         dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
1347                                                       dev_item);
1348         list_for_each(cur, head) {
1349                 dev = list_entry(cur, struct btrfs_device, dev_list);
1350                 btrfs_set_device_type(sb, dev_item, dev->type);
1351                 btrfs_set_device_id(sb, dev_item, dev->devid);
1352                 btrfs_set_device_total_bytes(sb, dev_item, dev->total_bytes);
1353                 btrfs_set_device_bytes_used(sb, dev_item, dev->bytes_used);
1354                 btrfs_set_device_io_align(sb, dev_item, dev->io_align);
1355                 btrfs_set_device_io_width(sb, dev_item, dev->io_width);
1356                 btrfs_set_device_sector_size(sb, dev_item, dev->sector_size);
1357                 write_extent_buffer(sb, dev->uuid,
1358                                     (unsigned long)btrfs_device_uuid(dev_item),
1359                                     BTRFS_UUID_SIZE);
1360
1361                 btrfs_set_header_flag(sb, BTRFS_HEADER_FLAG_WRITTEN);
1362                 csum_tree_block(root, sb, 0);
1363
1364                 bh = __getblk(dev->bdev, BTRFS_SUPER_INFO_OFFSET /
1365                               root->fs_info->sb->s_blocksize,
1366                               BTRFS_SUPER_INFO_SIZE);
1367
1368                 read_extent_buffer(sb, bh->b_data, 0, BTRFS_SUPER_INFO_SIZE);
1369                 dev->pending_io = bh;
1370
1371                 get_bh(bh);
1372                 set_buffer_uptodate(bh);
1373                 lock_buffer(bh);
1374                 bh->b_end_io = btrfs_end_buffer_write_sync;
1375
1376                 if (do_barriers && dev->barriers) {
1377                         ret = submit_bh(WRITE_BARRIER, bh);
1378                         if (ret == -EOPNOTSUPP) {
1379                                 printk("btrfs: disabling barriers on dev %s\n",
1380                                        dev->name);
1381                                 set_buffer_uptodate(bh);
1382                                 dev->barriers = 0;
1383                                 get_bh(bh);
1384                                 lock_buffer(bh);
1385                                 ret = submit_bh(WRITE, bh);
1386                         }
1387                 } else {
1388                         ret = submit_bh(WRITE, bh);
1389                 }
1390                 BUG_ON(ret);
1391         }
1392
1393         list_for_each(cur, head) {
1394                 dev = list_entry(cur, struct btrfs_device, dev_list);
1395                 BUG_ON(!dev->pending_io);
1396                 bh = dev->pending_io;
1397                 wait_on_buffer(bh);
1398                 if (!buffer_uptodate(dev->pending_io)) {
1399                         if (do_barriers && dev->barriers) {
1400                                 printk("btrfs: disabling barriers on dev %s\n",
1401                                        dev->name);
1402                                 set_buffer_uptodate(bh);
1403                                 get_bh(bh);
1404                                 lock_buffer(bh);
1405                                 dev->barriers = 0;
1406                                 ret = submit_bh(WRITE, bh);
1407                                 BUG_ON(ret);
1408                                 wait_on_buffer(bh);
1409                                 BUG_ON(!buffer_uptodate(bh));
1410                         } else {
1411                                 BUG();
1412                         }
1413
1414                 }
1415                 dev->pending_io = NULL;
1416                 brelse(bh);
1417         }
1418         return 0;
1419 }
1420
1421 int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
1422                       *root)
1423 {
1424         int ret;
1425
1426         ret = write_all_supers(root);
1427 #if 0
1428         if (!btrfs_test_opt(root, NOBARRIER))
1429                 blkdev_issue_flush(sb->s_bdev, NULL);
1430         set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, super);
1431         ret = sync_page_range_nolock(btree_inode, btree_inode->i_mapping,
1432                                      super->start, super->len);
1433         if (!btrfs_test_opt(root, NOBARRIER))
1434                 blkdev_issue_flush(sb->s_bdev, NULL);
1435 #endif
1436         return ret;
1437 }
1438
1439 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
1440 {
1441         radix_tree_delete(&fs_info->fs_roots_radix,
1442                           (unsigned long)root->root_key.objectid);
1443         if (root->in_sysfs)
1444                 btrfs_sysfs_del_root(root);
1445         if (root->inode)
1446                 iput(root->inode);
1447         if (root->node)
1448                 free_extent_buffer(root->node);
1449         if (root->commit_root)
1450                 free_extent_buffer(root->commit_root);
1451         if (root->name)
1452                 kfree(root->name);
1453         kfree(root);
1454         return 0;
1455 }
1456
1457 static int del_fs_roots(struct btrfs_fs_info *fs_info)
1458 {
1459         int ret;
1460         struct btrfs_root *gang[8];
1461         int i;
1462
1463         while(1) {
1464                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1465                                              (void **)gang, 0,
1466                                              ARRAY_SIZE(gang));
1467                 if (!ret)
1468                         break;
1469                 for (i = 0; i < ret; i++)
1470                         btrfs_free_fs_root(fs_info, gang[i]);
1471         }
1472         return 0;
1473 }
1474
1475 int close_ctree(struct btrfs_root *root)
1476 {
1477         int ret;
1478         struct btrfs_trans_handle *trans;
1479         struct btrfs_fs_info *fs_info = root->fs_info;
1480
1481         fs_info->closing = 1;
1482         btrfs_transaction_flush_work(root);
1483         mutex_lock(&fs_info->fs_mutex);
1484         btrfs_defrag_dirty_roots(root->fs_info);
1485         trans = btrfs_start_transaction(root, 1);
1486         ret = btrfs_commit_transaction(trans, root);
1487         /* run commit again to  drop the original snapshot */
1488         trans = btrfs_start_transaction(root, 1);
1489         btrfs_commit_transaction(trans, root);
1490         ret = btrfs_write_and_wait_transaction(NULL, root);
1491         BUG_ON(ret);
1492         write_ctree_super(NULL, root);
1493         mutex_unlock(&fs_info->fs_mutex);
1494
1495         btrfs_transaction_flush_work(root);
1496
1497         if (fs_info->delalloc_bytes) {
1498                 printk("btrfs: at unmount delalloc count %Lu\n",
1499                        fs_info->delalloc_bytes);
1500         }
1501         if (fs_info->extent_root->node)
1502                 free_extent_buffer(fs_info->extent_root->node);
1503
1504         if (fs_info->tree_root->node)
1505                 free_extent_buffer(fs_info->tree_root->node);
1506
1507         if (root->fs_info->chunk_root->node);
1508                 free_extent_buffer(root->fs_info->chunk_root->node);
1509
1510         if (root->fs_info->dev_root->node);
1511                 free_extent_buffer(root->fs_info->dev_root->node);
1512
1513         free_extent_buffer(fs_info->sb_buffer);
1514
1515         btrfs_free_block_groups(root->fs_info);
1516         del_fs_roots(fs_info);
1517
1518         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1519
1520         extent_io_tree_empty_lru(&fs_info->free_space_cache);
1521         extent_io_tree_empty_lru(&fs_info->block_group_cache);
1522         extent_io_tree_empty_lru(&fs_info->pinned_extents);
1523         extent_io_tree_empty_lru(&fs_info->pending_del);
1524         extent_io_tree_empty_lru(&fs_info->extent_ins);
1525         extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
1526
1527         flush_workqueue(end_io_workqueue);
1528         flush_workqueue(async_submit_workqueue);
1529
1530         truncate_inode_pages(fs_info->btree_inode->i_mapping, 0);
1531
1532         flush_workqueue(end_io_workqueue);
1533         destroy_workqueue(end_io_workqueue);
1534
1535         flush_workqueue(async_submit_workqueue);
1536         destroy_workqueue(async_submit_workqueue);
1537
1538         iput(fs_info->btree_inode);
1539 #if 0
1540         while(!list_empty(&fs_info->hashers)) {
1541                 struct btrfs_hasher *hasher;
1542                 hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
1543                                     hashers);
1544                 list_del(&hasher->hashers);
1545                 crypto_free_hash(&fs_info->hash_tfm);
1546                 kfree(hasher);
1547         }
1548 #endif
1549         close_all_devices(fs_info);
1550         btrfs_mapping_tree_free(&fs_info->mapping_tree);
1551
1552 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
1553         bdi_destroy(&fs_info->bdi);
1554 #endif
1555
1556         kfree(fs_info->extent_root);
1557         kfree(fs_info->tree_root);
1558         kfree(fs_info->chunk_root);
1559         kfree(fs_info->dev_root);
1560         return 0;
1561 }
1562
1563 int btrfs_buffer_uptodate(struct extent_buffer *buf)
1564 {
1565         struct inode *btree_inode = buf->first_page->mapping->host;
1566         return extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
1567 }
1568
1569 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
1570 {
1571         struct inode *btree_inode = buf->first_page->mapping->host;
1572         return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
1573                                           buf);
1574 }
1575
1576 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
1577 {
1578         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1579         u64 transid = btrfs_header_generation(buf);
1580         struct inode *btree_inode = root->fs_info->btree_inode;
1581
1582         if (transid != root->fs_info->generation) {
1583                 printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
1584                         (unsigned long long)buf->start,
1585                         transid, root->fs_info->generation);
1586                 WARN_ON(1);
1587         }
1588         set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
1589 }
1590
1591 void btrfs_throttle(struct btrfs_root *root)
1592 {
1593         struct backing_dev_info *bdi;
1594
1595         bdi = root->fs_info->sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
1596         if (root->fs_info->throttles && bdi_write_congested(bdi)) {
1597 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,18)
1598                 congestion_wait(WRITE, HZ/20);
1599 #else
1600                 blk_congestion_wait(WRITE, HZ/20);
1601 #endif
1602         }
1603 }
1604
1605 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
1606 {
1607         balance_dirty_pages_ratelimited_nr(
1608                                    root->fs_info->btree_inode->i_mapping, 1);
1609 }
1610
1611 void btrfs_set_buffer_defrag(struct extent_buffer *buf)
1612 {
1613         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1614         struct inode *btree_inode = root->fs_info->btree_inode;
1615         set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start,
1616                         buf->start + buf->len - 1, EXTENT_DEFRAG, GFP_NOFS);
1617 }
1618
1619 void btrfs_set_buffer_defrag_done(struct extent_buffer *buf)
1620 {
1621         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1622         struct inode *btree_inode = root->fs_info->btree_inode;
1623         set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start,
1624                         buf->start + buf->len - 1, EXTENT_DEFRAG_DONE,
1625                         GFP_NOFS);
1626 }
1627
1628 int btrfs_buffer_defrag(struct extent_buffer *buf)
1629 {
1630         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1631         struct inode *btree_inode = root->fs_info->btree_inode;
1632         return test_range_bit(&BTRFS_I(btree_inode)->io_tree,
1633                      buf->start, buf->start + buf->len - 1, EXTENT_DEFRAG, 0);
1634 }
1635
1636 int btrfs_buffer_defrag_done(struct extent_buffer *buf)
1637 {
1638         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1639         struct inode *btree_inode = root->fs_info->btree_inode;
1640         return test_range_bit(&BTRFS_I(btree_inode)->io_tree,
1641                      buf->start, buf->start + buf->len - 1,
1642                      EXTENT_DEFRAG_DONE, 0);
1643 }
1644
1645 int btrfs_clear_buffer_defrag_done(struct extent_buffer *buf)
1646 {
1647         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1648         struct inode *btree_inode = root->fs_info->btree_inode;
1649         return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree,
1650                      buf->start, buf->start + buf->len - 1,
1651                      EXTENT_DEFRAG_DONE, GFP_NOFS);
1652 }
1653
1654 int btrfs_clear_buffer_defrag(struct extent_buffer *buf)
1655 {
1656         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1657         struct inode *btree_inode = root->fs_info->btree_inode;
1658         return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree,
1659                      buf->start, buf->start + buf->len - 1,
1660                      EXTENT_DEFRAG, GFP_NOFS);
1661 }
1662
1663 int btrfs_read_buffer(struct extent_buffer *buf)
1664 {
1665         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1666         int ret;
1667         ret = btree_read_extent_buffer_pages(root, buf, 0);
1668         if (ret == 0) {
1669                 buf->flags |= EXTENT_UPTODATE;
1670         }
1671         return ret;
1672 }
1673
1674 static struct extent_io_ops btree_extent_io_ops = {
1675         .writepage_io_hook = btree_writepage_io_hook,
1676         .readpage_end_io_hook = btree_readpage_end_io_hook,
1677         .submit_bio_hook = btree_submit_bio_hook,
1678         /* note we're sharing with inode.c for the merge bio hook */
1679         .merge_bio_hook = btrfs_merge_bio_hook,
1680 };