Btrfs: split the global ordered extents mutex
[linux-2.6-block.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 #include "sysfs.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61                                     int read_only);
62 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63                                              struct btrfs_root *root);
64 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
65 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66                                       struct btrfs_root *root);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69                                         struct extent_io_tree *dirty_pages,
70                                         int mark);
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72                                        struct extent_io_tree *pinned_extents);
73 static int btrfs_cleanup_transaction(struct btrfs_root *root);
74 static void btrfs_error_commit_super(struct btrfs_root *root);
75
76 /*
77  * end_io_wq structs are used to do processing in task context when an IO is
78  * complete.  This is used during reads to verify checksums, and it is used
79  * by writes to insert metadata for new file extents after IO is complete.
80  */
81 struct end_io_wq {
82         struct bio *bio;
83         bio_end_io_t *end_io;
84         void *private;
85         struct btrfs_fs_info *info;
86         int error;
87         int metadata;
88         struct list_head list;
89         struct btrfs_work work;
90 };
91
92 /*
93  * async submit bios are used to offload expensive checksumming
94  * onto the worker threads.  They checksum file and metadata bios
95  * just before they are sent down the IO stack.
96  */
97 struct async_submit_bio {
98         struct inode *inode;
99         struct bio *bio;
100         struct list_head list;
101         extent_submit_bio_hook_t *submit_bio_start;
102         extent_submit_bio_hook_t *submit_bio_done;
103         int rw;
104         int mirror_num;
105         unsigned long bio_flags;
106         /*
107          * bio_offset is optional, can be used if the pages in the bio
108          * can't tell us where in the file the bio should go
109          */
110         u64 bio_offset;
111         struct btrfs_work work;
112         int error;
113 };
114
115 /*
116  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
117  * eb, the lockdep key is determined by the btrfs_root it belongs to and
118  * the level the eb occupies in the tree.
119  *
120  * Different roots are used for different purposes and may nest inside each
121  * other and they require separate keysets.  As lockdep keys should be
122  * static, assign keysets according to the purpose of the root as indicated
123  * by btrfs_root->objectid.  This ensures that all special purpose roots
124  * have separate keysets.
125  *
126  * Lock-nesting across peer nodes is always done with the immediate parent
127  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
128  * subclass to avoid triggering lockdep warning in such cases.
129  *
130  * The key is set by the readpage_end_io_hook after the buffer has passed
131  * csum validation but before the pages are unlocked.  It is also set by
132  * btrfs_init_new_buffer on freshly allocated blocks.
133  *
134  * We also add a check to make sure the highest level of the tree is the
135  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
136  * needs update as well.
137  */
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
140 #  error
141 # endif
142
143 static struct btrfs_lockdep_keyset {
144         u64                     id;             /* root objectid */
145         const char              *name_stem;     /* lock name stem */
146         char                    names[BTRFS_MAX_LEVEL + 1][20];
147         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
148 } btrfs_lockdep_keysets[] = {
149         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
150         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
151         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
152         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
153         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
154         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
155         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
156         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
157         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
158         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
159         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
160         { .id = 0,                              .name_stem = "tree"     },
161 };
162
163 void __init btrfs_init_lockdep(void)
164 {
165         int i, j;
166
167         /* initialize lockdep class names */
168         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
169                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
170
171                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
172                         snprintf(ks->names[j], sizeof(ks->names[j]),
173                                  "btrfs-%s-%02d", ks->name_stem, j);
174         }
175 }
176
177 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
178                                     int level)
179 {
180         struct btrfs_lockdep_keyset *ks;
181
182         BUG_ON(level >= ARRAY_SIZE(ks->keys));
183
184         /* find the matching keyset, id 0 is the default entry */
185         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
186                 if (ks->id == objectid)
187                         break;
188
189         lockdep_set_class_and_name(&eb->lock,
190                                    &ks->keys[level], ks->names[level]);
191 }
192
193 #endif
194
195 /*
196  * extents on the btree inode are pretty simple, there's one extent
197  * that covers the entire device
198  */
199 static struct extent_map *btree_get_extent(struct inode *inode,
200                 struct page *page, size_t pg_offset, u64 start, u64 len,
201                 int create)
202 {
203         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
204         struct extent_map *em;
205         int ret;
206
207         read_lock(&em_tree->lock);
208         em = lookup_extent_mapping(em_tree, start, len);
209         if (em) {
210                 em->bdev =
211                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
212                 read_unlock(&em_tree->lock);
213                 goto out;
214         }
215         read_unlock(&em_tree->lock);
216
217         em = alloc_extent_map();
218         if (!em) {
219                 em = ERR_PTR(-ENOMEM);
220                 goto out;
221         }
222         em->start = 0;
223         em->len = (u64)-1;
224         em->block_len = (u64)-1;
225         em->block_start = 0;
226         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
227
228         write_lock(&em_tree->lock);
229         ret = add_extent_mapping(em_tree, em, 0);
230         if (ret == -EEXIST) {
231                 free_extent_map(em);
232                 em = lookup_extent_mapping(em_tree, start, len);
233                 if (!em)
234                         em = ERR_PTR(-EIO);
235         } else if (ret) {
236                 free_extent_map(em);
237                 em = ERR_PTR(ret);
238         }
239         write_unlock(&em_tree->lock);
240
241 out:
242         return em;
243 }
244
245 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
246 {
247         return btrfs_crc32c(seed, data, len);
248 }
249
250 void btrfs_csum_final(u32 crc, char *result)
251 {
252         put_unaligned_le32(~crc, result);
253 }
254
255 /*
256  * compute the csum for a btree block, and either verify it or write it
257  * into the csum field of the block.
258  */
259 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
260                            int verify)
261 {
262         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
263         char *result = NULL;
264         unsigned long len;
265         unsigned long cur_len;
266         unsigned long offset = BTRFS_CSUM_SIZE;
267         char *kaddr;
268         unsigned long map_start;
269         unsigned long map_len;
270         int err;
271         u32 crc = ~(u32)0;
272         unsigned long inline_result;
273
274         len = buf->len - offset;
275         while (len > 0) {
276                 err = map_private_extent_buffer(buf, offset, 32,
277                                         &kaddr, &map_start, &map_len);
278                 if (err)
279                         return 1;
280                 cur_len = min(len, map_len - (offset - map_start));
281                 crc = btrfs_csum_data(kaddr + offset - map_start,
282                                       crc, cur_len);
283                 len -= cur_len;
284                 offset += cur_len;
285         }
286         if (csum_size > sizeof(inline_result)) {
287                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
288                 if (!result)
289                         return 1;
290         } else {
291                 result = (char *)&inline_result;
292         }
293
294         btrfs_csum_final(crc, result);
295
296         if (verify) {
297                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
298                         u32 val;
299                         u32 found = 0;
300                         memcpy(&found, result, csum_size);
301
302                         read_extent_buffer(buf, &val, 0, csum_size);
303                         printk_ratelimited(KERN_INFO
304                                 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
305                                 "level %d\n",
306                                 root->fs_info->sb->s_id, buf->start,
307                                 val, found, btrfs_header_level(buf));
308                         if (result != (char *)&inline_result)
309                                 kfree(result);
310                         return 1;
311                 }
312         } else {
313                 write_extent_buffer(buf, result, 0, csum_size);
314         }
315         if (result != (char *)&inline_result)
316                 kfree(result);
317         return 0;
318 }
319
320 /*
321  * we can't consider a given block up to date unless the transid of the
322  * block matches the transid in the parent node's pointer.  This is how we
323  * detect blocks that either didn't get written at all or got written
324  * in the wrong place.
325  */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327                                  struct extent_buffer *eb, u64 parent_transid,
328                                  int atomic)
329 {
330         struct extent_state *cached_state = NULL;
331         int ret;
332
333         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334                 return 0;
335
336         if (atomic)
337                 return -EAGAIN;
338
339         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340                          0, &cached_state);
341         if (extent_buffer_uptodate(eb) &&
342             btrfs_header_generation(eb) == parent_transid) {
343                 ret = 0;
344                 goto out;
345         }
346         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347                        "found %llu\n",
348                        eb->start, parent_transid, btrfs_header_generation(eb));
349         ret = 1;
350         clear_extent_buffer_uptodate(eb);
351 out:
352         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
353                              &cached_state, GFP_NOFS);
354         return ret;
355 }
356
357 /*
358  * Return 0 if the superblock checksum type matches the checksum value of that
359  * algorithm. Pass the raw disk superblock data.
360  */
361 static int btrfs_check_super_csum(char *raw_disk_sb)
362 {
363         struct btrfs_super_block *disk_sb =
364                 (struct btrfs_super_block *)raw_disk_sb;
365         u16 csum_type = btrfs_super_csum_type(disk_sb);
366         int ret = 0;
367
368         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
369                 u32 crc = ~(u32)0;
370                 const int csum_size = sizeof(crc);
371                 char result[csum_size];
372
373                 /*
374                  * The super_block structure does not span the whole
375                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
376                  * is filled with zeros and is included in the checkum.
377                  */
378                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
379                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
380                 btrfs_csum_final(crc, result);
381
382                 if (memcmp(raw_disk_sb, result, csum_size))
383                         ret = 1;
384
385                 if (ret && btrfs_super_generation(disk_sb) < 10) {
386                         printk(KERN_WARNING
387                                 "BTRFS: super block crcs don't match, older mkfs detected\n");
388                         ret = 0;
389                 }
390         }
391
392         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
393                 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
394                                 csum_type);
395                 ret = 1;
396         }
397
398         return ret;
399 }
400
401 /*
402  * helper to read a given tree block, doing retries as required when
403  * the checksums don't match and we have alternate mirrors to try.
404  */
405 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
406                                           struct extent_buffer *eb,
407                                           u64 start, u64 parent_transid)
408 {
409         struct extent_io_tree *io_tree;
410         int failed = 0;
411         int ret;
412         int num_copies = 0;
413         int mirror_num = 0;
414         int failed_mirror = 0;
415
416         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
417         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
418         while (1) {
419                 ret = read_extent_buffer_pages(io_tree, eb, start,
420                                                WAIT_COMPLETE,
421                                                btree_get_extent, mirror_num);
422                 if (!ret) {
423                         if (!verify_parent_transid(io_tree, eb,
424                                                    parent_transid, 0))
425                                 break;
426                         else
427                                 ret = -EIO;
428                 }
429
430                 /*
431                  * This buffer's crc is fine, but its contents are corrupted, so
432                  * there is no reason to read the other copies, they won't be
433                  * any less wrong.
434                  */
435                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
436                         break;
437
438                 num_copies = btrfs_num_copies(root->fs_info,
439                                               eb->start, eb->len);
440                 if (num_copies == 1)
441                         break;
442
443                 if (!failed_mirror) {
444                         failed = 1;
445                         failed_mirror = eb->read_mirror;
446                 }
447
448                 mirror_num++;
449                 if (mirror_num == failed_mirror)
450                         mirror_num++;
451
452                 if (mirror_num > num_copies)
453                         break;
454         }
455
456         if (failed && !ret && failed_mirror)
457                 repair_eb_io_failure(root, eb, failed_mirror);
458
459         return ret;
460 }
461
462 /*
463  * checksum a dirty tree block before IO.  This has extra checks to make sure
464  * we only fill in the checksum field in the first page of a multi-page block
465  */
466
467 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
468 {
469         u64 start = page_offset(page);
470         u64 found_start;
471         struct extent_buffer *eb;
472
473         eb = (struct extent_buffer *)page->private;
474         if (page != eb->pages[0])
475                 return 0;
476         found_start = btrfs_header_bytenr(eb);
477         if (WARN_ON(found_start != start || !PageUptodate(page)))
478                 return 0;
479         csum_tree_block(root, eb, 0);
480         return 0;
481 }
482
483 static int check_tree_block_fsid(struct btrfs_root *root,
484                                  struct extent_buffer *eb)
485 {
486         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
487         u8 fsid[BTRFS_UUID_SIZE];
488         int ret = 1;
489
490         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
491         while (fs_devices) {
492                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
493                         ret = 0;
494                         break;
495                 }
496                 fs_devices = fs_devices->seed;
497         }
498         return ret;
499 }
500
501 #define CORRUPT(reason, eb, root, slot)                         \
502         btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"       \
503                    "root=%llu, slot=%d", reason,                        \
504                btrfs_header_bytenr(eb), root->objectid, slot)
505
506 static noinline int check_leaf(struct btrfs_root *root,
507                                struct extent_buffer *leaf)
508 {
509         struct btrfs_key key;
510         struct btrfs_key leaf_key;
511         u32 nritems = btrfs_header_nritems(leaf);
512         int slot;
513
514         if (nritems == 0)
515                 return 0;
516
517         /* Check the 0 item */
518         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
519             BTRFS_LEAF_DATA_SIZE(root)) {
520                 CORRUPT("invalid item offset size pair", leaf, root, 0);
521                 return -EIO;
522         }
523
524         /*
525          * Check to make sure each items keys are in the correct order and their
526          * offsets make sense.  We only have to loop through nritems-1 because
527          * we check the current slot against the next slot, which verifies the
528          * next slot's offset+size makes sense and that the current's slot
529          * offset is correct.
530          */
531         for (slot = 0; slot < nritems - 1; slot++) {
532                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
533                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
534
535                 /* Make sure the keys are in the right order */
536                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
537                         CORRUPT("bad key order", leaf, root, slot);
538                         return -EIO;
539                 }
540
541                 /*
542                  * Make sure the offset and ends are right, remember that the
543                  * item data starts at the end of the leaf and grows towards the
544                  * front.
545                  */
546                 if (btrfs_item_offset_nr(leaf, slot) !=
547                         btrfs_item_end_nr(leaf, slot + 1)) {
548                         CORRUPT("slot offset bad", leaf, root, slot);
549                         return -EIO;
550                 }
551
552                 /*
553                  * Check to make sure that we don't point outside of the leaf,
554                  * just incase all the items are consistent to eachother, but
555                  * all point outside of the leaf.
556                  */
557                 if (btrfs_item_end_nr(leaf, slot) >
558                     BTRFS_LEAF_DATA_SIZE(root)) {
559                         CORRUPT("slot end outside of leaf", leaf, root, slot);
560                         return -EIO;
561                 }
562         }
563
564         return 0;
565 }
566
567 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
568                                       u64 phy_offset, struct page *page,
569                                       u64 start, u64 end, int mirror)
570 {
571         u64 found_start;
572         int found_level;
573         struct extent_buffer *eb;
574         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
575         int ret = 0;
576         int reads_done;
577
578         if (!page->private)
579                 goto out;
580
581         eb = (struct extent_buffer *)page->private;
582
583         /* the pending IO might have been the only thing that kept this buffer
584          * in memory.  Make sure we have a ref for all this other checks
585          */
586         extent_buffer_get(eb);
587
588         reads_done = atomic_dec_and_test(&eb->io_pages);
589         if (!reads_done)
590                 goto err;
591
592         eb->read_mirror = mirror;
593         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
594                 ret = -EIO;
595                 goto err;
596         }
597
598         found_start = btrfs_header_bytenr(eb);
599         if (found_start != eb->start) {
600                 printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
601                                "%llu %llu\n",
602                                found_start, eb->start);
603                 ret = -EIO;
604                 goto err;
605         }
606         if (check_tree_block_fsid(root, eb)) {
607                 printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
608                                eb->start);
609                 ret = -EIO;
610                 goto err;
611         }
612         found_level = btrfs_header_level(eb);
613         if (found_level >= BTRFS_MAX_LEVEL) {
614                 btrfs_info(root->fs_info, "bad tree block level %d",
615                            (int)btrfs_header_level(eb));
616                 ret = -EIO;
617                 goto err;
618         }
619
620         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
621                                        eb, found_level);
622
623         ret = csum_tree_block(root, eb, 1);
624         if (ret) {
625                 ret = -EIO;
626                 goto err;
627         }
628
629         /*
630          * If this is a leaf block and it is corrupt, set the corrupt bit so
631          * that we don't try and read the other copies of this block, just
632          * return -EIO.
633          */
634         if (found_level == 0 && check_leaf(root, eb)) {
635                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
636                 ret = -EIO;
637         }
638
639         if (!ret)
640                 set_extent_buffer_uptodate(eb);
641 err:
642         if (reads_done &&
643             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
644                 btree_readahead_hook(root, eb, eb->start, ret);
645
646         if (ret) {
647                 /*
648                  * our io error hook is going to dec the io pages
649                  * again, we have to make sure it has something
650                  * to decrement
651                  */
652                 atomic_inc(&eb->io_pages);
653                 clear_extent_buffer_uptodate(eb);
654         }
655         free_extent_buffer(eb);
656 out:
657         return ret;
658 }
659
660 static int btree_io_failed_hook(struct page *page, int failed_mirror)
661 {
662         struct extent_buffer *eb;
663         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
664
665         eb = (struct extent_buffer *)page->private;
666         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
667         eb->read_mirror = failed_mirror;
668         atomic_dec(&eb->io_pages);
669         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
670                 btree_readahead_hook(root, eb, eb->start, -EIO);
671         return -EIO;    /* we fixed nothing */
672 }
673
674 static void end_workqueue_bio(struct bio *bio, int err)
675 {
676         struct end_io_wq *end_io_wq = bio->bi_private;
677         struct btrfs_fs_info *fs_info;
678
679         fs_info = end_io_wq->info;
680         end_io_wq->error = err;
681         btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
682
683         if (bio->bi_rw & REQ_WRITE) {
684                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
685                         btrfs_queue_work(fs_info->endio_meta_write_workers,
686                                          &end_io_wq->work);
687                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
688                         btrfs_queue_work(fs_info->endio_freespace_worker,
689                                          &end_io_wq->work);
690                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
691                         btrfs_queue_work(fs_info->endio_raid56_workers,
692                                          &end_io_wq->work);
693                 else
694                         btrfs_queue_work(fs_info->endio_write_workers,
695                                          &end_io_wq->work);
696         } else {
697                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
698                         btrfs_queue_work(fs_info->endio_raid56_workers,
699                                          &end_io_wq->work);
700                 else if (end_io_wq->metadata)
701                         btrfs_queue_work(fs_info->endio_meta_workers,
702                                          &end_io_wq->work);
703                 else
704                         btrfs_queue_work(fs_info->endio_workers,
705                                          &end_io_wq->work);
706         }
707 }
708
709 /*
710  * For the metadata arg you want
711  *
712  * 0 - if data
713  * 1 - if normal metadta
714  * 2 - if writing to the free space cache area
715  * 3 - raid parity work
716  */
717 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
718                         int metadata)
719 {
720         struct end_io_wq *end_io_wq;
721         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
722         if (!end_io_wq)
723                 return -ENOMEM;
724
725         end_io_wq->private = bio->bi_private;
726         end_io_wq->end_io = bio->bi_end_io;
727         end_io_wq->info = info;
728         end_io_wq->error = 0;
729         end_io_wq->bio = bio;
730         end_io_wq->metadata = metadata;
731
732         bio->bi_private = end_io_wq;
733         bio->bi_end_io = end_workqueue_bio;
734         return 0;
735 }
736
737 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
738 {
739         unsigned long limit = min_t(unsigned long,
740                                     info->thread_pool_size,
741                                     info->fs_devices->open_devices);
742         return 256 * limit;
743 }
744
745 static void run_one_async_start(struct btrfs_work *work)
746 {
747         struct async_submit_bio *async;
748         int ret;
749
750         async = container_of(work, struct  async_submit_bio, work);
751         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
752                                       async->mirror_num, async->bio_flags,
753                                       async->bio_offset);
754         if (ret)
755                 async->error = ret;
756 }
757
758 static void run_one_async_done(struct btrfs_work *work)
759 {
760         struct btrfs_fs_info *fs_info;
761         struct async_submit_bio *async;
762         int limit;
763
764         async = container_of(work, struct  async_submit_bio, work);
765         fs_info = BTRFS_I(async->inode)->root->fs_info;
766
767         limit = btrfs_async_submit_limit(fs_info);
768         limit = limit * 2 / 3;
769
770         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
771             waitqueue_active(&fs_info->async_submit_wait))
772                 wake_up(&fs_info->async_submit_wait);
773
774         /* If an error occured we just want to clean up the bio and move on */
775         if (async->error) {
776                 bio_endio(async->bio, async->error);
777                 return;
778         }
779
780         async->submit_bio_done(async->inode, async->rw, async->bio,
781                                async->mirror_num, async->bio_flags,
782                                async->bio_offset);
783 }
784
785 static void run_one_async_free(struct btrfs_work *work)
786 {
787         struct async_submit_bio *async;
788
789         async = container_of(work, struct  async_submit_bio, work);
790         kfree(async);
791 }
792
793 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
794                         int rw, struct bio *bio, int mirror_num,
795                         unsigned long bio_flags,
796                         u64 bio_offset,
797                         extent_submit_bio_hook_t *submit_bio_start,
798                         extent_submit_bio_hook_t *submit_bio_done)
799 {
800         struct async_submit_bio *async;
801
802         async = kmalloc(sizeof(*async), GFP_NOFS);
803         if (!async)
804                 return -ENOMEM;
805
806         async->inode = inode;
807         async->rw = rw;
808         async->bio = bio;
809         async->mirror_num = mirror_num;
810         async->submit_bio_start = submit_bio_start;
811         async->submit_bio_done = submit_bio_done;
812
813         btrfs_init_work(&async->work, run_one_async_start,
814                         run_one_async_done, run_one_async_free);
815
816         async->bio_flags = bio_flags;
817         async->bio_offset = bio_offset;
818
819         async->error = 0;
820
821         atomic_inc(&fs_info->nr_async_submits);
822
823         if (rw & REQ_SYNC)
824                 btrfs_set_work_high_priority(&async->work);
825
826         btrfs_queue_work(fs_info->workers, &async->work);
827
828         while (atomic_read(&fs_info->async_submit_draining) &&
829               atomic_read(&fs_info->nr_async_submits)) {
830                 wait_event(fs_info->async_submit_wait,
831                            (atomic_read(&fs_info->nr_async_submits) == 0));
832         }
833
834         return 0;
835 }
836
837 static int btree_csum_one_bio(struct bio *bio)
838 {
839         struct bio_vec *bvec = bio->bi_io_vec;
840         int bio_index = 0;
841         struct btrfs_root *root;
842         int ret = 0;
843
844         WARN_ON(bio->bi_vcnt <= 0);
845         while (bio_index < bio->bi_vcnt) {
846                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
847                 ret = csum_dirty_buffer(root, bvec->bv_page);
848                 if (ret)
849                         break;
850                 bio_index++;
851                 bvec++;
852         }
853         return ret;
854 }
855
856 static int __btree_submit_bio_start(struct inode *inode, int rw,
857                                     struct bio *bio, int mirror_num,
858                                     unsigned long bio_flags,
859                                     u64 bio_offset)
860 {
861         /*
862          * when we're called for a write, we're already in the async
863          * submission context.  Just jump into btrfs_map_bio
864          */
865         return btree_csum_one_bio(bio);
866 }
867
868 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
869                                  int mirror_num, unsigned long bio_flags,
870                                  u64 bio_offset)
871 {
872         int ret;
873
874         /*
875          * when we're called for a write, we're already in the async
876          * submission context.  Just jump into btrfs_map_bio
877          */
878         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
879         if (ret)
880                 bio_endio(bio, ret);
881         return ret;
882 }
883
884 static int check_async_write(struct inode *inode, unsigned long bio_flags)
885 {
886         if (bio_flags & EXTENT_BIO_TREE_LOG)
887                 return 0;
888 #ifdef CONFIG_X86
889         if (cpu_has_xmm4_2)
890                 return 0;
891 #endif
892         return 1;
893 }
894
895 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
896                                  int mirror_num, unsigned long bio_flags,
897                                  u64 bio_offset)
898 {
899         int async = check_async_write(inode, bio_flags);
900         int ret;
901
902         if (!(rw & REQ_WRITE)) {
903                 /*
904                  * called for a read, do the setup so that checksum validation
905                  * can happen in the async kernel threads
906                  */
907                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
908                                           bio, 1);
909                 if (ret)
910                         goto out_w_error;
911                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
912                                     mirror_num, 0);
913         } else if (!async) {
914                 ret = btree_csum_one_bio(bio);
915                 if (ret)
916                         goto out_w_error;
917                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
918                                     mirror_num, 0);
919         } else {
920                 /*
921                  * kthread helpers are used to submit writes so that
922                  * checksumming can happen in parallel across all CPUs
923                  */
924                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
925                                           inode, rw, bio, mirror_num, 0,
926                                           bio_offset,
927                                           __btree_submit_bio_start,
928                                           __btree_submit_bio_done);
929         }
930
931         if (ret) {
932 out_w_error:
933                 bio_endio(bio, ret);
934         }
935         return ret;
936 }
937
938 #ifdef CONFIG_MIGRATION
939 static int btree_migratepage(struct address_space *mapping,
940                         struct page *newpage, struct page *page,
941                         enum migrate_mode mode)
942 {
943         /*
944          * we can't safely write a btree page from here,
945          * we haven't done the locking hook
946          */
947         if (PageDirty(page))
948                 return -EAGAIN;
949         /*
950          * Buffers may be managed in a filesystem specific way.
951          * We must have no buffers or drop them.
952          */
953         if (page_has_private(page) &&
954             !try_to_release_page(page, GFP_KERNEL))
955                 return -EAGAIN;
956         return migrate_page(mapping, newpage, page, mode);
957 }
958 #endif
959
960
961 static int btree_writepages(struct address_space *mapping,
962                             struct writeback_control *wbc)
963 {
964         struct btrfs_fs_info *fs_info;
965         int ret;
966
967         if (wbc->sync_mode == WB_SYNC_NONE) {
968
969                 if (wbc->for_kupdate)
970                         return 0;
971
972                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
973                 /* this is a bit racy, but that's ok */
974                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
975                                              BTRFS_DIRTY_METADATA_THRESH);
976                 if (ret < 0)
977                         return 0;
978         }
979         return btree_write_cache_pages(mapping, wbc);
980 }
981
982 static int btree_readpage(struct file *file, struct page *page)
983 {
984         struct extent_io_tree *tree;
985         tree = &BTRFS_I(page->mapping->host)->io_tree;
986         return extent_read_full_page(tree, page, btree_get_extent, 0);
987 }
988
989 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
990 {
991         if (PageWriteback(page) || PageDirty(page))
992                 return 0;
993
994         return try_release_extent_buffer(page);
995 }
996
997 static void btree_invalidatepage(struct page *page, unsigned int offset,
998                                  unsigned int length)
999 {
1000         struct extent_io_tree *tree;
1001         tree = &BTRFS_I(page->mapping->host)->io_tree;
1002         extent_invalidatepage(tree, page, offset);
1003         btree_releasepage(page, GFP_NOFS);
1004         if (PagePrivate(page)) {
1005                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1006                            "page private not zero on page %llu",
1007                            (unsigned long long)page_offset(page));
1008                 ClearPagePrivate(page);
1009                 set_page_private(page, 0);
1010                 page_cache_release(page);
1011         }
1012 }
1013
1014 static int btree_set_page_dirty(struct page *page)
1015 {
1016 #ifdef DEBUG
1017         struct extent_buffer *eb;
1018
1019         BUG_ON(!PagePrivate(page));
1020         eb = (struct extent_buffer *)page->private;
1021         BUG_ON(!eb);
1022         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1023         BUG_ON(!atomic_read(&eb->refs));
1024         btrfs_assert_tree_locked(eb);
1025 #endif
1026         return __set_page_dirty_nobuffers(page);
1027 }
1028
1029 static const struct address_space_operations btree_aops = {
1030         .readpage       = btree_readpage,
1031         .writepages     = btree_writepages,
1032         .releasepage    = btree_releasepage,
1033         .invalidatepage = btree_invalidatepage,
1034 #ifdef CONFIG_MIGRATION
1035         .migratepage    = btree_migratepage,
1036 #endif
1037         .set_page_dirty = btree_set_page_dirty,
1038 };
1039
1040 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1041                          u64 parent_transid)
1042 {
1043         struct extent_buffer *buf = NULL;
1044         struct inode *btree_inode = root->fs_info->btree_inode;
1045         int ret = 0;
1046
1047         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1048         if (!buf)
1049                 return 0;
1050         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1051                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1052         free_extent_buffer(buf);
1053         return ret;
1054 }
1055
1056 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1057                          int mirror_num, struct extent_buffer **eb)
1058 {
1059         struct extent_buffer *buf = NULL;
1060         struct inode *btree_inode = root->fs_info->btree_inode;
1061         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1062         int ret;
1063
1064         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1065         if (!buf)
1066                 return 0;
1067
1068         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1069
1070         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1071                                        btree_get_extent, mirror_num);
1072         if (ret) {
1073                 free_extent_buffer(buf);
1074                 return ret;
1075         }
1076
1077         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1078                 free_extent_buffer(buf);
1079                 return -EIO;
1080         } else if (extent_buffer_uptodate(buf)) {
1081                 *eb = buf;
1082         } else {
1083                 free_extent_buffer(buf);
1084         }
1085         return 0;
1086 }
1087
1088 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1089                                             u64 bytenr, u32 blocksize)
1090 {
1091         return find_extent_buffer(root->fs_info, bytenr);
1092 }
1093
1094 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1095                                                  u64 bytenr, u32 blocksize)
1096 {
1097         return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
1098 }
1099
1100
1101 int btrfs_write_tree_block(struct extent_buffer *buf)
1102 {
1103         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1104                                         buf->start + buf->len - 1);
1105 }
1106
1107 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1108 {
1109         return filemap_fdatawait_range(buf->pages[0]->mapping,
1110                                        buf->start, buf->start + buf->len - 1);
1111 }
1112
1113 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1114                                       u32 blocksize, u64 parent_transid)
1115 {
1116         struct extent_buffer *buf = NULL;
1117         int ret;
1118
1119         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1120         if (!buf)
1121                 return NULL;
1122
1123         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1124         if (ret) {
1125                 free_extent_buffer(buf);
1126                 return NULL;
1127         }
1128         return buf;
1129
1130 }
1131
1132 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1133                       struct extent_buffer *buf)
1134 {
1135         struct btrfs_fs_info *fs_info = root->fs_info;
1136
1137         if (btrfs_header_generation(buf) ==
1138             fs_info->running_transaction->transid) {
1139                 btrfs_assert_tree_locked(buf);
1140
1141                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1142                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1143                                              -buf->len,
1144                                              fs_info->dirty_metadata_batch);
1145                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1146                         btrfs_set_lock_blocking(buf);
1147                         clear_extent_buffer_dirty(buf);
1148                 }
1149         }
1150 }
1151
1152 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1153 {
1154         struct btrfs_subvolume_writers *writers;
1155         int ret;
1156
1157         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1158         if (!writers)
1159                 return ERR_PTR(-ENOMEM);
1160
1161         ret = percpu_counter_init(&writers->counter, 0);
1162         if (ret < 0) {
1163                 kfree(writers);
1164                 return ERR_PTR(ret);
1165         }
1166
1167         init_waitqueue_head(&writers->wait);
1168         return writers;
1169 }
1170
1171 static void
1172 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1173 {
1174         percpu_counter_destroy(&writers->counter);
1175         kfree(writers);
1176 }
1177
1178 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1179                          u32 stripesize, struct btrfs_root *root,
1180                          struct btrfs_fs_info *fs_info,
1181                          u64 objectid)
1182 {
1183         root->node = NULL;
1184         root->commit_root = NULL;
1185         root->sectorsize = sectorsize;
1186         root->nodesize = nodesize;
1187         root->leafsize = leafsize;
1188         root->stripesize = stripesize;
1189         root->ref_cows = 0;
1190         root->track_dirty = 0;
1191         root->in_radix = 0;
1192         root->orphan_item_inserted = 0;
1193         root->orphan_cleanup_state = 0;
1194
1195         root->objectid = objectid;
1196         root->last_trans = 0;
1197         root->highest_objectid = 0;
1198         root->nr_delalloc_inodes = 0;
1199         root->nr_ordered_extents = 0;
1200         root->name = NULL;
1201         root->inode_tree = RB_ROOT;
1202         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1203         root->block_rsv = NULL;
1204         root->orphan_block_rsv = NULL;
1205
1206         INIT_LIST_HEAD(&root->dirty_list);
1207         INIT_LIST_HEAD(&root->root_list);
1208         INIT_LIST_HEAD(&root->delalloc_inodes);
1209         INIT_LIST_HEAD(&root->delalloc_root);
1210         INIT_LIST_HEAD(&root->ordered_extents);
1211         INIT_LIST_HEAD(&root->ordered_root);
1212         INIT_LIST_HEAD(&root->logged_list[0]);
1213         INIT_LIST_HEAD(&root->logged_list[1]);
1214         spin_lock_init(&root->orphan_lock);
1215         spin_lock_init(&root->inode_lock);
1216         spin_lock_init(&root->delalloc_lock);
1217         spin_lock_init(&root->ordered_extent_lock);
1218         spin_lock_init(&root->accounting_lock);
1219         spin_lock_init(&root->log_extents_lock[0]);
1220         spin_lock_init(&root->log_extents_lock[1]);
1221         mutex_init(&root->objectid_mutex);
1222         mutex_init(&root->log_mutex);
1223         mutex_init(&root->ordered_extent_mutex);
1224         init_waitqueue_head(&root->log_writer_wait);
1225         init_waitqueue_head(&root->log_commit_wait[0]);
1226         init_waitqueue_head(&root->log_commit_wait[1]);
1227         INIT_LIST_HEAD(&root->log_ctxs[0]);
1228         INIT_LIST_HEAD(&root->log_ctxs[1]);
1229         atomic_set(&root->log_commit[0], 0);
1230         atomic_set(&root->log_commit[1], 0);
1231         atomic_set(&root->log_writers, 0);
1232         atomic_set(&root->log_batch, 0);
1233         atomic_set(&root->orphan_inodes, 0);
1234         atomic_set(&root->refs, 1);
1235         atomic_set(&root->will_be_snapshoted, 0);
1236         root->log_transid = 0;
1237         root->log_transid_committed = -1;
1238         root->last_log_commit = 0;
1239         if (fs_info)
1240                 extent_io_tree_init(&root->dirty_log_pages,
1241                                      fs_info->btree_inode->i_mapping);
1242
1243         memset(&root->root_key, 0, sizeof(root->root_key));
1244         memset(&root->root_item, 0, sizeof(root->root_item));
1245         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1246         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1247         if (fs_info)
1248                 root->defrag_trans_start = fs_info->generation;
1249         else
1250                 root->defrag_trans_start = 0;
1251         init_completion(&root->kobj_unregister);
1252         root->defrag_running = 0;
1253         root->root_key.objectid = objectid;
1254         root->anon_dev = 0;
1255
1256         spin_lock_init(&root->root_item_lock);
1257 }
1258
1259 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1260 {
1261         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1262         if (root)
1263                 root->fs_info = fs_info;
1264         return root;
1265 }
1266
1267 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1268 /* Should only be used by the testing infrastructure */
1269 struct btrfs_root *btrfs_alloc_dummy_root(void)
1270 {
1271         struct btrfs_root *root;
1272
1273         root = btrfs_alloc_root(NULL);
1274         if (!root)
1275                 return ERR_PTR(-ENOMEM);
1276         __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1277         root->dummy_root = 1;
1278
1279         return root;
1280 }
1281 #endif
1282
1283 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1284                                      struct btrfs_fs_info *fs_info,
1285                                      u64 objectid)
1286 {
1287         struct extent_buffer *leaf;
1288         struct btrfs_root *tree_root = fs_info->tree_root;
1289         struct btrfs_root *root;
1290         struct btrfs_key key;
1291         int ret = 0;
1292         uuid_le uuid;
1293
1294         root = btrfs_alloc_root(fs_info);
1295         if (!root)
1296                 return ERR_PTR(-ENOMEM);
1297
1298         __setup_root(tree_root->nodesize, tree_root->leafsize,
1299                      tree_root->sectorsize, tree_root->stripesize,
1300                      root, fs_info, objectid);
1301         root->root_key.objectid = objectid;
1302         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1303         root->root_key.offset = 0;
1304
1305         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1306                                       0, objectid, NULL, 0, 0, 0);
1307         if (IS_ERR(leaf)) {
1308                 ret = PTR_ERR(leaf);
1309                 leaf = NULL;
1310                 goto fail;
1311         }
1312
1313         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1314         btrfs_set_header_bytenr(leaf, leaf->start);
1315         btrfs_set_header_generation(leaf, trans->transid);
1316         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1317         btrfs_set_header_owner(leaf, objectid);
1318         root->node = leaf;
1319
1320         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1321                             BTRFS_FSID_SIZE);
1322         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1323                             btrfs_header_chunk_tree_uuid(leaf),
1324                             BTRFS_UUID_SIZE);
1325         btrfs_mark_buffer_dirty(leaf);
1326
1327         root->commit_root = btrfs_root_node(root);
1328         root->track_dirty = 1;
1329
1330
1331         root->root_item.flags = 0;
1332         root->root_item.byte_limit = 0;
1333         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1334         btrfs_set_root_generation(&root->root_item, trans->transid);
1335         btrfs_set_root_level(&root->root_item, 0);
1336         btrfs_set_root_refs(&root->root_item, 1);
1337         btrfs_set_root_used(&root->root_item, leaf->len);
1338         btrfs_set_root_last_snapshot(&root->root_item, 0);
1339         btrfs_set_root_dirid(&root->root_item, 0);
1340         uuid_le_gen(&uuid);
1341         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1342         root->root_item.drop_level = 0;
1343
1344         key.objectid = objectid;
1345         key.type = BTRFS_ROOT_ITEM_KEY;
1346         key.offset = 0;
1347         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1348         if (ret)
1349                 goto fail;
1350
1351         btrfs_tree_unlock(leaf);
1352
1353         return root;
1354
1355 fail:
1356         if (leaf) {
1357                 btrfs_tree_unlock(leaf);
1358                 free_extent_buffer(leaf);
1359         }
1360         kfree(root);
1361
1362         return ERR_PTR(ret);
1363 }
1364
1365 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1366                                          struct btrfs_fs_info *fs_info)
1367 {
1368         struct btrfs_root *root;
1369         struct btrfs_root *tree_root = fs_info->tree_root;
1370         struct extent_buffer *leaf;
1371
1372         root = btrfs_alloc_root(fs_info);
1373         if (!root)
1374                 return ERR_PTR(-ENOMEM);
1375
1376         __setup_root(tree_root->nodesize, tree_root->leafsize,
1377                      tree_root->sectorsize, tree_root->stripesize,
1378                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1379
1380         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1381         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1382         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1383         /*
1384          * log trees do not get reference counted because they go away
1385          * before a real commit is actually done.  They do store pointers
1386          * to file data extents, and those reference counts still get
1387          * updated (along with back refs to the log tree).
1388          */
1389         root->ref_cows = 0;
1390
1391         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1392                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1393                                       0, 0, 0);
1394         if (IS_ERR(leaf)) {
1395                 kfree(root);
1396                 return ERR_CAST(leaf);
1397         }
1398
1399         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1400         btrfs_set_header_bytenr(leaf, leaf->start);
1401         btrfs_set_header_generation(leaf, trans->transid);
1402         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1403         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1404         root->node = leaf;
1405
1406         write_extent_buffer(root->node, root->fs_info->fsid,
1407                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1408         btrfs_mark_buffer_dirty(root->node);
1409         btrfs_tree_unlock(root->node);
1410         return root;
1411 }
1412
1413 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1414                              struct btrfs_fs_info *fs_info)
1415 {
1416         struct btrfs_root *log_root;
1417
1418         log_root = alloc_log_tree(trans, fs_info);
1419         if (IS_ERR(log_root))
1420                 return PTR_ERR(log_root);
1421         WARN_ON(fs_info->log_root_tree);
1422         fs_info->log_root_tree = log_root;
1423         return 0;
1424 }
1425
1426 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1427                        struct btrfs_root *root)
1428 {
1429         struct btrfs_root *log_root;
1430         struct btrfs_inode_item *inode_item;
1431
1432         log_root = alloc_log_tree(trans, root->fs_info);
1433         if (IS_ERR(log_root))
1434                 return PTR_ERR(log_root);
1435
1436         log_root->last_trans = trans->transid;
1437         log_root->root_key.offset = root->root_key.objectid;
1438
1439         inode_item = &log_root->root_item.inode;
1440         btrfs_set_stack_inode_generation(inode_item, 1);
1441         btrfs_set_stack_inode_size(inode_item, 3);
1442         btrfs_set_stack_inode_nlink(inode_item, 1);
1443         btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1444         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1445
1446         btrfs_set_root_node(&log_root->root_item, log_root->node);
1447
1448         WARN_ON(root->log_root);
1449         root->log_root = log_root;
1450         root->log_transid = 0;
1451         root->log_transid_committed = -1;
1452         root->last_log_commit = 0;
1453         return 0;
1454 }
1455
1456 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1457                                                struct btrfs_key *key)
1458 {
1459         struct btrfs_root *root;
1460         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1461         struct btrfs_path *path;
1462         u64 generation;
1463         u32 blocksize;
1464         int ret;
1465
1466         path = btrfs_alloc_path();
1467         if (!path)
1468                 return ERR_PTR(-ENOMEM);
1469
1470         root = btrfs_alloc_root(fs_info);
1471         if (!root) {
1472                 ret = -ENOMEM;
1473                 goto alloc_fail;
1474         }
1475
1476         __setup_root(tree_root->nodesize, tree_root->leafsize,
1477                      tree_root->sectorsize, tree_root->stripesize,
1478                      root, fs_info, key->objectid);
1479
1480         ret = btrfs_find_root(tree_root, key, path,
1481                               &root->root_item, &root->root_key);
1482         if (ret) {
1483                 if (ret > 0)
1484                         ret = -ENOENT;
1485                 goto find_fail;
1486         }
1487
1488         generation = btrfs_root_generation(&root->root_item);
1489         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1490         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1491                                      blocksize, generation);
1492         if (!root->node) {
1493                 ret = -ENOMEM;
1494                 goto find_fail;
1495         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1496                 ret = -EIO;
1497                 goto read_fail;
1498         }
1499         root->commit_root = btrfs_root_node(root);
1500 out:
1501         btrfs_free_path(path);
1502         return root;
1503
1504 read_fail:
1505         free_extent_buffer(root->node);
1506 find_fail:
1507         kfree(root);
1508 alloc_fail:
1509         root = ERR_PTR(ret);
1510         goto out;
1511 }
1512
1513 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1514                                       struct btrfs_key *location)
1515 {
1516         struct btrfs_root *root;
1517
1518         root = btrfs_read_tree_root(tree_root, location);
1519         if (IS_ERR(root))
1520                 return root;
1521
1522         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1523                 root->ref_cows = 1;
1524                 btrfs_check_and_init_root_item(&root->root_item);
1525         }
1526
1527         return root;
1528 }
1529
1530 int btrfs_init_fs_root(struct btrfs_root *root)
1531 {
1532         int ret;
1533         struct btrfs_subvolume_writers *writers;
1534
1535         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1536         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1537                                         GFP_NOFS);
1538         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1539                 ret = -ENOMEM;
1540                 goto fail;
1541         }
1542
1543         writers = btrfs_alloc_subvolume_writers();
1544         if (IS_ERR(writers)) {
1545                 ret = PTR_ERR(writers);
1546                 goto fail;
1547         }
1548         root->subv_writers = writers;
1549
1550         btrfs_init_free_ino_ctl(root);
1551         mutex_init(&root->fs_commit_mutex);
1552         spin_lock_init(&root->cache_lock);
1553         init_waitqueue_head(&root->cache_wait);
1554
1555         ret = get_anon_bdev(&root->anon_dev);
1556         if (ret)
1557                 goto free_writers;
1558         return 0;
1559
1560 free_writers:
1561         btrfs_free_subvolume_writers(root->subv_writers);
1562 fail:
1563         kfree(root->free_ino_ctl);
1564         kfree(root->free_ino_pinned);
1565         return ret;
1566 }
1567
1568 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1569                                                u64 root_id)
1570 {
1571         struct btrfs_root *root;
1572
1573         spin_lock(&fs_info->fs_roots_radix_lock);
1574         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1575                                  (unsigned long)root_id);
1576         spin_unlock(&fs_info->fs_roots_radix_lock);
1577         return root;
1578 }
1579
1580 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1581                          struct btrfs_root *root)
1582 {
1583         int ret;
1584
1585         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1586         if (ret)
1587                 return ret;
1588
1589         spin_lock(&fs_info->fs_roots_radix_lock);
1590         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1591                                 (unsigned long)root->root_key.objectid,
1592                                 root);
1593         if (ret == 0)
1594                 root->in_radix = 1;
1595         spin_unlock(&fs_info->fs_roots_radix_lock);
1596         radix_tree_preload_end();
1597
1598         return ret;
1599 }
1600
1601 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1602                                      struct btrfs_key *location,
1603                                      bool check_ref)
1604 {
1605         struct btrfs_root *root;
1606         int ret;
1607
1608         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1609                 return fs_info->tree_root;
1610         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1611                 return fs_info->extent_root;
1612         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1613                 return fs_info->chunk_root;
1614         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1615                 return fs_info->dev_root;
1616         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1617                 return fs_info->csum_root;
1618         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1619                 return fs_info->quota_root ? fs_info->quota_root :
1620                                              ERR_PTR(-ENOENT);
1621         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1622                 return fs_info->uuid_root ? fs_info->uuid_root :
1623                                             ERR_PTR(-ENOENT);
1624 again:
1625         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1626         if (root) {
1627                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1628                         return ERR_PTR(-ENOENT);
1629                 return root;
1630         }
1631
1632         root = btrfs_read_fs_root(fs_info->tree_root, location);
1633         if (IS_ERR(root))
1634                 return root;
1635
1636         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1637                 ret = -ENOENT;
1638                 goto fail;
1639         }
1640
1641         ret = btrfs_init_fs_root(root);
1642         if (ret)
1643                 goto fail;
1644
1645         ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1646                         location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
1647         if (ret < 0)
1648                 goto fail;
1649         if (ret == 0)
1650                 root->orphan_item_inserted = 1;
1651
1652         ret = btrfs_insert_fs_root(fs_info, root);
1653         if (ret) {
1654                 if (ret == -EEXIST) {
1655                         free_fs_root(root);
1656                         goto again;
1657                 }
1658                 goto fail;
1659         }
1660         return root;
1661 fail:
1662         free_fs_root(root);
1663         return ERR_PTR(ret);
1664 }
1665
1666 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1667 {
1668         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1669         int ret = 0;
1670         struct btrfs_device *device;
1671         struct backing_dev_info *bdi;
1672
1673         rcu_read_lock();
1674         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1675                 if (!device->bdev)
1676                         continue;
1677                 bdi = blk_get_backing_dev_info(device->bdev);
1678                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1679                         ret = 1;
1680                         break;
1681                 }
1682         }
1683         rcu_read_unlock();
1684         return ret;
1685 }
1686
1687 /*
1688  * If this fails, caller must call bdi_destroy() to get rid of the
1689  * bdi again.
1690  */
1691 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1692 {
1693         int err;
1694
1695         bdi->capabilities = BDI_CAP_MAP_COPY;
1696         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1697         if (err)
1698                 return err;
1699
1700         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1701         bdi->congested_fn       = btrfs_congested_fn;
1702         bdi->congested_data     = info;
1703         return 0;
1704 }
1705
1706 /*
1707  * called by the kthread helper functions to finally call the bio end_io
1708  * functions.  This is where read checksum verification actually happens
1709  */
1710 static void end_workqueue_fn(struct btrfs_work *work)
1711 {
1712         struct bio *bio;
1713         struct end_io_wq *end_io_wq;
1714         int error;
1715
1716         end_io_wq = container_of(work, struct end_io_wq, work);
1717         bio = end_io_wq->bio;
1718
1719         error = end_io_wq->error;
1720         bio->bi_private = end_io_wq->private;
1721         bio->bi_end_io = end_io_wq->end_io;
1722         kfree(end_io_wq);
1723         bio_endio(bio, error);
1724 }
1725
1726 static int cleaner_kthread(void *arg)
1727 {
1728         struct btrfs_root *root = arg;
1729         int again;
1730
1731         do {
1732                 again = 0;
1733
1734                 /* Make the cleaner go to sleep early. */
1735                 if (btrfs_need_cleaner_sleep(root))
1736                         goto sleep;
1737
1738                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1739                         goto sleep;
1740
1741                 /*
1742                  * Avoid the problem that we change the status of the fs
1743                  * during the above check and trylock.
1744                  */
1745                 if (btrfs_need_cleaner_sleep(root)) {
1746                         mutex_unlock(&root->fs_info->cleaner_mutex);
1747                         goto sleep;
1748                 }
1749
1750                 btrfs_run_delayed_iputs(root);
1751                 again = btrfs_clean_one_deleted_snapshot(root);
1752                 mutex_unlock(&root->fs_info->cleaner_mutex);
1753
1754                 /*
1755                  * The defragger has dealt with the R/O remount and umount,
1756                  * needn't do anything special here.
1757                  */
1758                 btrfs_run_defrag_inodes(root->fs_info);
1759 sleep:
1760                 if (!try_to_freeze() && !again) {
1761                         set_current_state(TASK_INTERRUPTIBLE);
1762                         if (!kthread_should_stop())
1763                                 schedule();
1764                         __set_current_state(TASK_RUNNING);
1765                 }
1766         } while (!kthread_should_stop());
1767         return 0;
1768 }
1769
1770 static int transaction_kthread(void *arg)
1771 {
1772         struct btrfs_root *root = arg;
1773         struct btrfs_trans_handle *trans;
1774         struct btrfs_transaction *cur;
1775         u64 transid;
1776         unsigned long now;
1777         unsigned long delay;
1778         bool cannot_commit;
1779
1780         do {
1781                 cannot_commit = false;
1782                 delay = HZ * root->fs_info->commit_interval;
1783                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1784
1785                 spin_lock(&root->fs_info->trans_lock);
1786                 cur = root->fs_info->running_transaction;
1787                 if (!cur) {
1788                         spin_unlock(&root->fs_info->trans_lock);
1789                         goto sleep;
1790                 }
1791
1792                 now = get_seconds();
1793                 if (cur->state < TRANS_STATE_BLOCKED &&
1794                     (now < cur->start_time ||
1795                      now - cur->start_time < root->fs_info->commit_interval)) {
1796                         spin_unlock(&root->fs_info->trans_lock);
1797                         delay = HZ * 5;
1798                         goto sleep;
1799                 }
1800                 transid = cur->transid;
1801                 spin_unlock(&root->fs_info->trans_lock);
1802
1803                 /* If the file system is aborted, this will always fail. */
1804                 trans = btrfs_attach_transaction(root);
1805                 if (IS_ERR(trans)) {
1806                         if (PTR_ERR(trans) != -ENOENT)
1807                                 cannot_commit = true;
1808                         goto sleep;
1809                 }
1810                 if (transid == trans->transid) {
1811                         btrfs_commit_transaction(trans, root);
1812                 } else {
1813                         btrfs_end_transaction(trans, root);
1814                 }
1815 sleep:
1816                 wake_up_process(root->fs_info->cleaner_kthread);
1817                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1818
1819                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1820                                       &root->fs_info->fs_state)))
1821                         btrfs_cleanup_transaction(root);
1822                 if (!try_to_freeze()) {
1823                         set_current_state(TASK_INTERRUPTIBLE);
1824                         if (!kthread_should_stop() &&
1825                             (!btrfs_transaction_blocked(root->fs_info) ||
1826                              cannot_commit))
1827                                 schedule_timeout(delay);
1828                         __set_current_state(TASK_RUNNING);
1829                 }
1830         } while (!kthread_should_stop());
1831         return 0;
1832 }
1833
1834 /*
1835  * this will find the highest generation in the array of
1836  * root backups.  The index of the highest array is returned,
1837  * or -1 if we can't find anything.
1838  *
1839  * We check to make sure the array is valid by comparing the
1840  * generation of the latest  root in the array with the generation
1841  * in the super block.  If they don't match we pitch it.
1842  */
1843 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1844 {
1845         u64 cur;
1846         int newest_index = -1;
1847         struct btrfs_root_backup *root_backup;
1848         int i;
1849
1850         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1851                 root_backup = info->super_copy->super_roots + i;
1852                 cur = btrfs_backup_tree_root_gen(root_backup);
1853                 if (cur == newest_gen)
1854                         newest_index = i;
1855         }
1856
1857         /* check to see if we actually wrapped around */
1858         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1859                 root_backup = info->super_copy->super_roots;
1860                 cur = btrfs_backup_tree_root_gen(root_backup);
1861                 if (cur == newest_gen)
1862                         newest_index = 0;
1863         }
1864         return newest_index;
1865 }
1866
1867
1868 /*
1869  * find the oldest backup so we know where to store new entries
1870  * in the backup array.  This will set the backup_root_index
1871  * field in the fs_info struct
1872  */
1873 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1874                                      u64 newest_gen)
1875 {
1876         int newest_index = -1;
1877
1878         newest_index = find_newest_super_backup(info, newest_gen);
1879         /* if there was garbage in there, just move along */
1880         if (newest_index == -1) {
1881                 info->backup_root_index = 0;
1882         } else {
1883                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1884         }
1885 }
1886
1887 /*
1888  * copy all the root pointers into the super backup array.
1889  * this will bump the backup pointer by one when it is
1890  * done
1891  */
1892 static void backup_super_roots(struct btrfs_fs_info *info)
1893 {
1894         int next_backup;
1895         struct btrfs_root_backup *root_backup;
1896         int last_backup;
1897
1898         next_backup = info->backup_root_index;
1899         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1900                 BTRFS_NUM_BACKUP_ROOTS;
1901
1902         /*
1903          * just overwrite the last backup if we're at the same generation
1904          * this happens only at umount
1905          */
1906         root_backup = info->super_for_commit->super_roots + last_backup;
1907         if (btrfs_backup_tree_root_gen(root_backup) ==
1908             btrfs_header_generation(info->tree_root->node))
1909                 next_backup = last_backup;
1910
1911         root_backup = info->super_for_commit->super_roots + next_backup;
1912
1913         /*
1914          * make sure all of our padding and empty slots get zero filled
1915          * regardless of which ones we use today
1916          */
1917         memset(root_backup, 0, sizeof(*root_backup));
1918
1919         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1920
1921         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1922         btrfs_set_backup_tree_root_gen(root_backup,
1923                                btrfs_header_generation(info->tree_root->node));
1924
1925         btrfs_set_backup_tree_root_level(root_backup,
1926                                btrfs_header_level(info->tree_root->node));
1927
1928         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1929         btrfs_set_backup_chunk_root_gen(root_backup,
1930                                btrfs_header_generation(info->chunk_root->node));
1931         btrfs_set_backup_chunk_root_level(root_backup,
1932                                btrfs_header_level(info->chunk_root->node));
1933
1934         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1935         btrfs_set_backup_extent_root_gen(root_backup,
1936                                btrfs_header_generation(info->extent_root->node));
1937         btrfs_set_backup_extent_root_level(root_backup,
1938                                btrfs_header_level(info->extent_root->node));
1939
1940         /*
1941          * we might commit during log recovery, which happens before we set
1942          * the fs_root.  Make sure it is valid before we fill it in.
1943          */
1944         if (info->fs_root && info->fs_root->node) {
1945                 btrfs_set_backup_fs_root(root_backup,
1946                                          info->fs_root->node->start);
1947                 btrfs_set_backup_fs_root_gen(root_backup,
1948                                btrfs_header_generation(info->fs_root->node));
1949                 btrfs_set_backup_fs_root_level(root_backup,
1950                                btrfs_header_level(info->fs_root->node));
1951         }
1952
1953         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1954         btrfs_set_backup_dev_root_gen(root_backup,
1955                                btrfs_header_generation(info->dev_root->node));
1956         btrfs_set_backup_dev_root_level(root_backup,
1957                                        btrfs_header_level(info->dev_root->node));
1958
1959         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1960         btrfs_set_backup_csum_root_gen(root_backup,
1961                                btrfs_header_generation(info->csum_root->node));
1962         btrfs_set_backup_csum_root_level(root_backup,
1963                                btrfs_header_level(info->csum_root->node));
1964
1965         btrfs_set_backup_total_bytes(root_backup,
1966                              btrfs_super_total_bytes(info->super_copy));
1967         btrfs_set_backup_bytes_used(root_backup,
1968                              btrfs_super_bytes_used(info->super_copy));
1969         btrfs_set_backup_num_devices(root_backup,
1970                              btrfs_super_num_devices(info->super_copy));
1971
1972         /*
1973          * if we don't copy this out to the super_copy, it won't get remembered
1974          * for the next commit
1975          */
1976         memcpy(&info->super_copy->super_roots,
1977                &info->super_for_commit->super_roots,
1978                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1979 }
1980
1981 /*
1982  * this copies info out of the root backup array and back into
1983  * the in-memory super block.  It is meant to help iterate through
1984  * the array, so you send it the number of backups you've already
1985  * tried and the last backup index you used.
1986  *
1987  * this returns -1 when it has tried all the backups
1988  */
1989 static noinline int next_root_backup(struct btrfs_fs_info *info,
1990                                      struct btrfs_super_block *super,
1991                                      int *num_backups_tried, int *backup_index)
1992 {
1993         struct btrfs_root_backup *root_backup;
1994         int newest = *backup_index;
1995
1996         if (*num_backups_tried == 0) {
1997                 u64 gen = btrfs_super_generation(super);
1998
1999                 newest = find_newest_super_backup(info, gen);
2000                 if (newest == -1)
2001                         return -1;
2002
2003                 *backup_index = newest;
2004                 *num_backups_tried = 1;
2005         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2006                 /* we've tried all the backups, all done */
2007                 return -1;
2008         } else {
2009                 /* jump to the next oldest backup */
2010                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2011                         BTRFS_NUM_BACKUP_ROOTS;
2012                 *backup_index = newest;
2013                 *num_backups_tried += 1;
2014         }
2015         root_backup = super->super_roots + newest;
2016
2017         btrfs_set_super_generation(super,
2018                                    btrfs_backup_tree_root_gen(root_backup));
2019         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2020         btrfs_set_super_root_level(super,
2021                                    btrfs_backup_tree_root_level(root_backup));
2022         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2023
2024         /*
2025          * fixme: the total bytes and num_devices need to match or we should
2026          * need a fsck
2027          */
2028         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2029         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2030         return 0;
2031 }
2032
2033 /* helper to cleanup workers */
2034 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2035 {
2036         btrfs_destroy_workqueue(fs_info->fixup_workers);
2037         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2038         btrfs_destroy_workqueue(fs_info->workers);
2039         btrfs_destroy_workqueue(fs_info->endio_workers);
2040         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2041         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2042         btrfs_destroy_workqueue(fs_info->rmw_workers);
2043         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2044         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2045         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2046         btrfs_destroy_workqueue(fs_info->submit_workers);
2047         btrfs_destroy_workqueue(fs_info->delayed_workers);
2048         btrfs_destroy_workqueue(fs_info->caching_workers);
2049         btrfs_destroy_workqueue(fs_info->readahead_workers);
2050         btrfs_destroy_workqueue(fs_info->flush_workers);
2051         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2052 }
2053
2054 static void free_root_extent_buffers(struct btrfs_root *root)
2055 {
2056         if (root) {
2057                 free_extent_buffer(root->node);
2058                 free_extent_buffer(root->commit_root);
2059                 root->node = NULL;
2060                 root->commit_root = NULL;
2061         }
2062 }
2063
2064 /* helper to cleanup tree roots */
2065 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2066 {
2067         free_root_extent_buffers(info->tree_root);
2068
2069         free_root_extent_buffers(info->dev_root);
2070         free_root_extent_buffers(info->extent_root);
2071         free_root_extent_buffers(info->csum_root);
2072         free_root_extent_buffers(info->quota_root);
2073         free_root_extent_buffers(info->uuid_root);
2074         if (chunk_root)
2075                 free_root_extent_buffers(info->chunk_root);
2076 }
2077
2078 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2079 {
2080         int ret;
2081         struct btrfs_root *gang[8];
2082         int i;
2083
2084         while (!list_empty(&fs_info->dead_roots)) {
2085                 gang[0] = list_entry(fs_info->dead_roots.next,
2086                                      struct btrfs_root, root_list);
2087                 list_del(&gang[0]->root_list);
2088
2089                 if (gang[0]->in_radix) {
2090                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2091                 } else {
2092                         free_extent_buffer(gang[0]->node);
2093                         free_extent_buffer(gang[0]->commit_root);
2094                         btrfs_put_fs_root(gang[0]);
2095                 }
2096         }
2097
2098         while (1) {
2099                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2100                                              (void **)gang, 0,
2101                                              ARRAY_SIZE(gang));
2102                 if (!ret)
2103                         break;
2104                 for (i = 0; i < ret; i++)
2105                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2106         }
2107
2108         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2109                 btrfs_free_log_root_tree(NULL, fs_info);
2110                 btrfs_destroy_pinned_extent(fs_info->tree_root,
2111                                             fs_info->pinned_extents);
2112         }
2113 }
2114
2115 int open_ctree(struct super_block *sb,
2116                struct btrfs_fs_devices *fs_devices,
2117                char *options)
2118 {
2119         u32 sectorsize;
2120         u32 nodesize;
2121         u32 leafsize;
2122         u32 blocksize;
2123         u32 stripesize;
2124         u64 generation;
2125         u64 features;
2126         struct btrfs_key location;
2127         struct buffer_head *bh;
2128         struct btrfs_super_block *disk_super;
2129         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2130         struct btrfs_root *tree_root;
2131         struct btrfs_root *extent_root;
2132         struct btrfs_root *csum_root;
2133         struct btrfs_root *chunk_root;
2134         struct btrfs_root *dev_root;
2135         struct btrfs_root *quota_root;
2136         struct btrfs_root *uuid_root;
2137         struct btrfs_root *log_tree_root;
2138         int ret;
2139         int err = -EINVAL;
2140         int num_backups_tried = 0;
2141         int backup_index = 0;
2142         int max_active;
2143         int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2144         bool create_uuid_tree;
2145         bool check_uuid_tree;
2146
2147         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2148         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2149         if (!tree_root || !chunk_root) {
2150                 err = -ENOMEM;
2151                 goto fail;
2152         }
2153
2154         ret = init_srcu_struct(&fs_info->subvol_srcu);
2155         if (ret) {
2156                 err = ret;
2157                 goto fail;
2158         }
2159
2160         ret = setup_bdi(fs_info, &fs_info->bdi);
2161         if (ret) {
2162                 err = ret;
2163                 goto fail_srcu;
2164         }
2165
2166         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2167         if (ret) {
2168                 err = ret;
2169                 goto fail_bdi;
2170         }
2171         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2172                                         (1 + ilog2(nr_cpu_ids));
2173
2174         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2175         if (ret) {
2176                 err = ret;
2177                 goto fail_dirty_metadata_bytes;
2178         }
2179
2180         ret = percpu_counter_init(&fs_info->bio_counter, 0);
2181         if (ret) {
2182                 err = ret;
2183                 goto fail_delalloc_bytes;
2184         }
2185
2186         fs_info->btree_inode = new_inode(sb);
2187         if (!fs_info->btree_inode) {
2188                 err = -ENOMEM;
2189                 goto fail_bio_counter;
2190         }
2191
2192         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2193
2194         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2195         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2196         INIT_LIST_HEAD(&fs_info->trans_list);
2197         INIT_LIST_HEAD(&fs_info->dead_roots);
2198         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2199         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2200         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2201         spin_lock_init(&fs_info->delalloc_root_lock);
2202         spin_lock_init(&fs_info->trans_lock);
2203         spin_lock_init(&fs_info->fs_roots_radix_lock);
2204         spin_lock_init(&fs_info->delayed_iput_lock);
2205         spin_lock_init(&fs_info->defrag_inodes_lock);
2206         spin_lock_init(&fs_info->free_chunk_lock);
2207         spin_lock_init(&fs_info->tree_mod_seq_lock);
2208         spin_lock_init(&fs_info->super_lock);
2209         spin_lock_init(&fs_info->buffer_lock);
2210         rwlock_init(&fs_info->tree_mod_log_lock);
2211         mutex_init(&fs_info->reloc_mutex);
2212         seqlock_init(&fs_info->profiles_lock);
2213
2214         init_completion(&fs_info->kobj_unregister);
2215         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2216         INIT_LIST_HEAD(&fs_info->space_info);
2217         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2218         btrfs_mapping_init(&fs_info->mapping_tree);
2219         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2220                              BTRFS_BLOCK_RSV_GLOBAL);
2221         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2222                              BTRFS_BLOCK_RSV_DELALLOC);
2223         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2224         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2225         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2226         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2227                              BTRFS_BLOCK_RSV_DELOPS);
2228         atomic_set(&fs_info->nr_async_submits, 0);
2229         atomic_set(&fs_info->async_delalloc_pages, 0);
2230         atomic_set(&fs_info->async_submit_draining, 0);
2231         atomic_set(&fs_info->nr_async_bios, 0);
2232         atomic_set(&fs_info->defrag_running, 0);
2233         atomic64_set(&fs_info->tree_mod_seq, 0);
2234         fs_info->sb = sb;
2235         fs_info->max_inline = 8192 * 1024;
2236         fs_info->metadata_ratio = 0;
2237         fs_info->defrag_inodes = RB_ROOT;
2238         fs_info->free_chunk_space = 0;
2239         fs_info->tree_mod_log = RB_ROOT;
2240         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2241         fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
2242         /* readahead state */
2243         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2244         spin_lock_init(&fs_info->reada_lock);
2245
2246         fs_info->thread_pool_size = min_t(unsigned long,
2247                                           num_online_cpus() + 2, 8);
2248
2249         INIT_LIST_HEAD(&fs_info->ordered_roots);
2250         spin_lock_init(&fs_info->ordered_root_lock);
2251         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2252                                         GFP_NOFS);
2253         if (!fs_info->delayed_root) {
2254                 err = -ENOMEM;
2255                 goto fail_iput;
2256         }
2257         btrfs_init_delayed_root(fs_info->delayed_root);
2258
2259         mutex_init(&fs_info->scrub_lock);
2260         atomic_set(&fs_info->scrubs_running, 0);
2261         atomic_set(&fs_info->scrub_pause_req, 0);
2262         atomic_set(&fs_info->scrubs_paused, 0);
2263         atomic_set(&fs_info->scrub_cancel_req, 0);
2264         init_waitqueue_head(&fs_info->replace_wait);
2265         init_waitqueue_head(&fs_info->scrub_pause_wait);
2266         fs_info->scrub_workers_refcnt = 0;
2267 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2268         fs_info->check_integrity_print_mask = 0;
2269 #endif
2270
2271         spin_lock_init(&fs_info->balance_lock);
2272         mutex_init(&fs_info->balance_mutex);
2273         atomic_set(&fs_info->balance_running, 0);
2274         atomic_set(&fs_info->balance_pause_req, 0);
2275         atomic_set(&fs_info->balance_cancel_req, 0);
2276         fs_info->balance_ctl = NULL;
2277         init_waitqueue_head(&fs_info->balance_wait_q);
2278
2279         sb->s_blocksize = 4096;
2280         sb->s_blocksize_bits = blksize_bits(4096);
2281         sb->s_bdi = &fs_info->bdi;
2282
2283         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2284         set_nlink(fs_info->btree_inode, 1);
2285         /*
2286          * we set the i_size on the btree inode to the max possible int.
2287          * the real end of the address space is determined by all of
2288          * the devices in the system
2289          */
2290         fs_info->btree_inode->i_size = OFFSET_MAX;
2291         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2292         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2293
2294         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2295         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2296                              fs_info->btree_inode->i_mapping);
2297         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2298         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2299
2300         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2301
2302         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2303         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2304                sizeof(struct btrfs_key));
2305         set_bit(BTRFS_INODE_DUMMY,
2306                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2307         btrfs_insert_inode_hash(fs_info->btree_inode);
2308
2309         spin_lock_init(&fs_info->block_group_cache_lock);
2310         fs_info->block_group_cache_tree = RB_ROOT;
2311         fs_info->first_logical_byte = (u64)-1;
2312
2313         extent_io_tree_init(&fs_info->freed_extents[0],
2314                              fs_info->btree_inode->i_mapping);
2315         extent_io_tree_init(&fs_info->freed_extents[1],
2316                              fs_info->btree_inode->i_mapping);
2317         fs_info->pinned_extents = &fs_info->freed_extents[0];
2318         fs_info->do_barriers = 1;
2319
2320
2321         mutex_init(&fs_info->ordered_operations_mutex);
2322         mutex_init(&fs_info->ordered_extent_flush_mutex);
2323         mutex_init(&fs_info->tree_log_mutex);
2324         mutex_init(&fs_info->chunk_mutex);
2325         mutex_init(&fs_info->transaction_kthread_mutex);
2326         mutex_init(&fs_info->cleaner_mutex);
2327         mutex_init(&fs_info->volume_mutex);
2328         init_rwsem(&fs_info->extent_commit_sem);
2329         init_rwsem(&fs_info->cleanup_work_sem);
2330         init_rwsem(&fs_info->subvol_sem);
2331         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2332         fs_info->dev_replace.lock_owner = 0;
2333         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2334         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2335         mutex_init(&fs_info->dev_replace.lock_management_lock);
2336         mutex_init(&fs_info->dev_replace.lock);
2337
2338         spin_lock_init(&fs_info->qgroup_lock);
2339         mutex_init(&fs_info->qgroup_ioctl_lock);
2340         fs_info->qgroup_tree = RB_ROOT;
2341         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2342         fs_info->qgroup_seq = 1;
2343         fs_info->quota_enabled = 0;
2344         fs_info->pending_quota_state = 0;
2345         fs_info->qgroup_ulist = NULL;
2346         mutex_init(&fs_info->qgroup_rescan_lock);
2347
2348         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2349         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2350
2351         init_waitqueue_head(&fs_info->transaction_throttle);
2352         init_waitqueue_head(&fs_info->transaction_wait);
2353         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2354         init_waitqueue_head(&fs_info->async_submit_wait);
2355
2356         ret = btrfs_alloc_stripe_hash_table(fs_info);
2357         if (ret) {
2358                 err = ret;
2359                 goto fail_alloc;
2360         }
2361
2362         __setup_root(4096, 4096, 4096, 4096, tree_root,
2363                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2364
2365         invalidate_bdev(fs_devices->latest_bdev);
2366
2367         /*
2368          * Read super block and check the signature bytes only
2369          */
2370         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2371         if (!bh) {
2372                 err = -EINVAL;
2373                 goto fail_alloc;
2374         }
2375
2376         /*
2377          * We want to check superblock checksum, the type is stored inside.
2378          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2379          */
2380         if (btrfs_check_super_csum(bh->b_data)) {
2381                 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2382                 err = -EINVAL;
2383                 goto fail_alloc;
2384         }
2385
2386         /*
2387          * super_copy is zeroed at allocation time and we never touch the
2388          * following bytes up to INFO_SIZE, the checksum is calculated from
2389          * the whole block of INFO_SIZE
2390          */
2391         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2392         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2393                sizeof(*fs_info->super_for_commit));
2394         brelse(bh);
2395
2396         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2397
2398         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2399         if (ret) {
2400                 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2401                 err = -EINVAL;
2402                 goto fail_alloc;
2403         }
2404
2405         disk_super = fs_info->super_copy;
2406         if (!btrfs_super_root(disk_super))
2407                 goto fail_alloc;
2408
2409         /* check FS state, whether FS is broken. */
2410         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2411                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2412
2413         /*
2414          * run through our array of backup supers and setup
2415          * our ring pointer to the oldest one
2416          */
2417         generation = btrfs_super_generation(disk_super);
2418         find_oldest_super_backup(fs_info, generation);
2419
2420         /*
2421          * In the long term, we'll store the compression type in the super
2422          * block, and it'll be used for per file compression control.
2423          */
2424         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2425
2426         ret = btrfs_parse_options(tree_root, options);
2427         if (ret) {
2428                 err = ret;
2429                 goto fail_alloc;
2430         }
2431
2432         features = btrfs_super_incompat_flags(disk_super) &
2433                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2434         if (features) {
2435                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2436                        "unsupported optional features (%Lx).\n",
2437                        features);
2438                 err = -EINVAL;
2439                 goto fail_alloc;
2440         }
2441
2442         if (btrfs_super_leafsize(disk_super) !=
2443             btrfs_super_nodesize(disk_super)) {
2444                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2445                        "blocksizes don't match.  node %d leaf %d\n",
2446                        btrfs_super_nodesize(disk_super),
2447                        btrfs_super_leafsize(disk_super));
2448                 err = -EINVAL;
2449                 goto fail_alloc;
2450         }
2451         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2452                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2453                        "blocksize (%d) was too large\n",
2454                        btrfs_super_leafsize(disk_super));
2455                 err = -EINVAL;
2456                 goto fail_alloc;
2457         }
2458
2459         features = btrfs_super_incompat_flags(disk_super);
2460         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2461         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2462                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2463
2464         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2465                 printk(KERN_ERR "BTRFS: has skinny extents\n");
2466
2467         /*
2468          * flag our filesystem as having big metadata blocks if
2469          * they are bigger than the page size
2470          */
2471         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2472                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2473                         printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2474                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2475         }
2476
2477         nodesize = btrfs_super_nodesize(disk_super);
2478         leafsize = btrfs_super_leafsize(disk_super);
2479         sectorsize = btrfs_super_sectorsize(disk_super);
2480         stripesize = btrfs_super_stripesize(disk_super);
2481         fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2482         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2483
2484         /*
2485          * mixed block groups end up with duplicate but slightly offset
2486          * extent buffers for the same range.  It leads to corruptions
2487          */
2488         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2489             (sectorsize != leafsize)) {
2490                 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
2491                                 "are not allowed for mixed block groups on %s\n",
2492                                 sb->s_id);
2493                 goto fail_alloc;
2494         }
2495
2496         /*
2497          * Needn't use the lock because there is no other task which will
2498          * update the flag.
2499          */
2500         btrfs_set_super_incompat_flags(disk_super, features);
2501
2502         features = btrfs_super_compat_ro_flags(disk_super) &
2503                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2504         if (!(sb->s_flags & MS_RDONLY) && features) {
2505                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2506                        "unsupported option features (%Lx).\n",
2507                        features);
2508                 err = -EINVAL;
2509                 goto fail_alloc;
2510         }
2511
2512         max_active = fs_info->thread_pool_size;
2513
2514         fs_info->workers =
2515                 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2516                                       max_active, 16);
2517
2518         fs_info->delalloc_workers =
2519                 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2520
2521         fs_info->flush_workers =
2522                 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2523
2524         fs_info->caching_workers =
2525                 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2526
2527         /*
2528          * a higher idle thresh on the submit workers makes it much more
2529          * likely that bios will be send down in a sane order to the
2530          * devices
2531          */
2532         fs_info->submit_workers =
2533                 btrfs_alloc_workqueue("submit", flags,
2534                                       min_t(u64, fs_devices->num_devices,
2535                                             max_active), 64);
2536
2537         fs_info->fixup_workers =
2538                 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2539
2540         /*
2541          * endios are largely parallel and should have a very
2542          * low idle thresh
2543          */
2544         fs_info->endio_workers =
2545                 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2546         fs_info->endio_meta_workers =
2547                 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2548         fs_info->endio_meta_write_workers =
2549                 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2550         fs_info->endio_raid56_workers =
2551                 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2552         fs_info->rmw_workers =
2553                 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2554         fs_info->endio_write_workers =
2555                 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2556         fs_info->endio_freespace_worker =
2557                 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2558         fs_info->delayed_workers =
2559                 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2560         fs_info->readahead_workers =
2561                 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2562         fs_info->qgroup_rescan_workers =
2563                 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2564
2565         if (!(fs_info->workers && fs_info->delalloc_workers &&
2566               fs_info->submit_workers && fs_info->flush_workers &&
2567               fs_info->endio_workers && fs_info->endio_meta_workers &&
2568               fs_info->endio_meta_write_workers &&
2569               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2570               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2571               fs_info->caching_workers && fs_info->readahead_workers &&
2572               fs_info->fixup_workers && fs_info->delayed_workers &&
2573               fs_info->qgroup_rescan_workers)) {
2574                 err = -ENOMEM;
2575                 goto fail_sb_buffer;
2576         }
2577
2578         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2579         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2580                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2581
2582         tree_root->nodesize = nodesize;
2583         tree_root->leafsize = leafsize;
2584         tree_root->sectorsize = sectorsize;
2585         tree_root->stripesize = stripesize;
2586
2587         sb->s_blocksize = sectorsize;
2588         sb->s_blocksize_bits = blksize_bits(sectorsize);
2589
2590         if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2591                 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
2592                 goto fail_sb_buffer;
2593         }
2594
2595         if (sectorsize != PAGE_SIZE) {
2596                 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
2597                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2598                 goto fail_sb_buffer;
2599         }
2600
2601         mutex_lock(&fs_info->chunk_mutex);
2602         ret = btrfs_read_sys_array(tree_root);
2603         mutex_unlock(&fs_info->chunk_mutex);
2604         if (ret) {
2605                 printk(KERN_WARNING "BTRFS: failed to read the system "
2606                        "array on %s\n", sb->s_id);
2607                 goto fail_sb_buffer;
2608         }
2609
2610         blocksize = btrfs_level_size(tree_root,
2611                                      btrfs_super_chunk_root_level(disk_super));
2612         generation = btrfs_super_chunk_root_generation(disk_super);
2613
2614         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2615                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2616
2617         chunk_root->node = read_tree_block(chunk_root,
2618                                            btrfs_super_chunk_root(disk_super),
2619                                            blocksize, generation);
2620         if (!chunk_root->node ||
2621             !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2622                 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
2623                        sb->s_id);
2624                 goto fail_tree_roots;
2625         }
2626         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2627         chunk_root->commit_root = btrfs_root_node(chunk_root);
2628
2629         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2630            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2631
2632         ret = btrfs_read_chunk_tree(chunk_root);
2633         if (ret) {
2634                 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
2635                        sb->s_id);
2636                 goto fail_tree_roots;
2637         }
2638
2639         /*
2640          * keep the device that is marked to be the target device for the
2641          * dev_replace procedure
2642          */
2643         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2644
2645         if (!fs_devices->latest_bdev) {
2646                 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
2647                        sb->s_id);
2648                 goto fail_tree_roots;
2649         }
2650
2651 retry_root_backup:
2652         blocksize = btrfs_level_size(tree_root,
2653                                      btrfs_super_root_level(disk_super));
2654         generation = btrfs_super_generation(disk_super);
2655
2656         tree_root->node = read_tree_block(tree_root,
2657                                           btrfs_super_root(disk_super),
2658                                           blocksize, generation);
2659         if (!tree_root->node ||
2660             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2661                 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2662                        sb->s_id);
2663
2664                 goto recovery_tree_root;
2665         }
2666
2667         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2668         tree_root->commit_root = btrfs_root_node(tree_root);
2669         btrfs_set_root_refs(&tree_root->root_item, 1);
2670
2671         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2672         location.type = BTRFS_ROOT_ITEM_KEY;
2673         location.offset = 0;
2674
2675         extent_root = btrfs_read_tree_root(tree_root, &location);
2676         if (IS_ERR(extent_root)) {
2677                 ret = PTR_ERR(extent_root);
2678                 goto recovery_tree_root;
2679         }
2680         extent_root->track_dirty = 1;
2681         fs_info->extent_root = extent_root;
2682
2683         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2684         dev_root = btrfs_read_tree_root(tree_root, &location);
2685         if (IS_ERR(dev_root)) {
2686                 ret = PTR_ERR(dev_root);
2687                 goto recovery_tree_root;
2688         }
2689         dev_root->track_dirty = 1;
2690         fs_info->dev_root = dev_root;
2691         btrfs_init_devices_late(fs_info);
2692
2693         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2694         csum_root = btrfs_read_tree_root(tree_root, &location);
2695         if (IS_ERR(csum_root)) {
2696                 ret = PTR_ERR(csum_root);
2697                 goto recovery_tree_root;
2698         }
2699         csum_root->track_dirty = 1;
2700         fs_info->csum_root = csum_root;
2701
2702         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2703         quota_root = btrfs_read_tree_root(tree_root, &location);
2704         if (!IS_ERR(quota_root)) {
2705                 quota_root->track_dirty = 1;
2706                 fs_info->quota_enabled = 1;
2707                 fs_info->pending_quota_state = 1;
2708                 fs_info->quota_root = quota_root;
2709         }
2710
2711         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2712         uuid_root = btrfs_read_tree_root(tree_root, &location);
2713         if (IS_ERR(uuid_root)) {
2714                 ret = PTR_ERR(uuid_root);
2715                 if (ret != -ENOENT)
2716                         goto recovery_tree_root;
2717                 create_uuid_tree = true;
2718                 check_uuid_tree = false;
2719         } else {
2720                 uuid_root->track_dirty = 1;
2721                 fs_info->uuid_root = uuid_root;
2722                 create_uuid_tree = false;
2723                 check_uuid_tree =
2724                     generation != btrfs_super_uuid_tree_generation(disk_super);
2725         }
2726
2727         fs_info->generation = generation;
2728         fs_info->last_trans_committed = generation;
2729
2730         ret = btrfs_recover_balance(fs_info);
2731         if (ret) {
2732                 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
2733                 goto fail_block_groups;
2734         }
2735
2736         ret = btrfs_init_dev_stats(fs_info);
2737         if (ret) {
2738                 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2739                        ret);
2740                 goto fail_block_groups;
2741         }
2742
2743         ret = btrfs_init_dev_replace(fs_info);
2744         if (ret) {
2745                 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2746                 goto fail_block_groups;
2747         }
2748
2749         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2750
2751         ret = btrfs_sysfs_add_one(fs_info);
2752         if (ret) {
2753                 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2754                 goto fail_block_groups;
2755         }
2756
2757         ret = btrfs_init_space_info(fs_info);
2758         if (ret) {
2759                 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2760                 goto fail_sysfs;
2761         }
2762
2763         ret = btrfs_read_block_groups(extent_root);
2764         if (ret) {
2765                 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2766                 goto fail_sysfs;
2767         }
2768         fs_info->num_tolerated_disk_barrier_failures =
2769                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2770         if (fs_info->fs_devices->missing_devices >
2771              fs_info->num_tolerated_disk_barrier_failures &&
2772             !(sb->s_flags & MS_RDONLY)) {
2773                 printk(KERN_WARNING "BTRFS: "
2774                         "too many missing devices, writeable mount is not allowed\n");
2775                 goto fail_sysfs;
2776         }
2777
2778         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2779                                                "btrfs-cleaner");
2780         if (IS_ERR(fs_info->cleaner_kthread))
2781                 goto fail_sysfs;
2782
2783         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2784                                                    tree_root,
2785                                                    "btrfs-transaction");
2786         if (IS_ERR(fs_info->transaction_kthread))
2787                 goto fail_cleaner;
2788
2789         if (!btrfs_test_opt(tree_root, SSD) &&
2790             !btrfs_test_opt(tree_root, NOSSD) &&
2791             !fs_info->fs_devices->rotating) {
2792                 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2793                        "mode\n");
2794                 btrfs_set_opt(fs_info->mount_opt, SSD);
2795         }
2796
2797         /* Set the real inode map cache flag */
2798         if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2799                 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2800
2801 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2802         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2803                 ret = btrfsic_mount(tree_root, fs_devices,
2804                                     btrfs_test_opt(tree_root,
2805                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2806                                     1 : 0,
2807                                     fs_info->check_integrity_print_mask);
2808                 if (ret)
2809                         printk(KERN_WARNING "BTRFS: failed to initialize"
2810                                " integrity check module %s\n", sb->s_id);
2811         }
2812 #endif
2813         ret = btrfs_read_qgroup_config(fs_info);
2814         if (ret)
2815                 goto fail_trans_kthread;
2816
2817         /* do not make disk changes in broken FS */
2818         if (btrfs_super_log_root(disk_super) != 0) {
2819                 u64 bytenr = btrfs_super_log_root(disk_super);
2820
2821                 if (fs_devices->rw_devices == 0) {
2822                         printk(KERN_WARNING "BTRFS: log replay required "
2823                                "on RO media\n");
2824                         err = -EIO;
2825                         goto fail_qgroup;
2826                 }
2827                 blocksize =
2828                      btrfs_level_size(tree_root,
2829                                       btrfs_super_log_root_level(disk_super));
2830
2831                 log_tree_root = btrfs_alloc_root(fs_info);
2832                 if (!log_tree_root) {
2833                         err = -ENOMEM;
2834                         goto fail_qgroup;
2835                 }
2836
2837                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2838                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2839
2840                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2841                                                       blocksize,
2842                                                       generation + 1);
2843                 if (!log_tree_root->node ||
2844                     !extent_buffer_uptodate(log_tree_root->node)) {
2845                         printk(KERN_ERR "BTRFS: failed to read log tree\n");
2846                         free_extent_buffer(log_tree_root->node);
2847                         kfree(log_tree_root);
2848                         goto fail_trans_kthread;
2849                 }
2850                 /* returns with log_tree_root freed on success */
2851                 ret = btrfs_recover_log_trees(log_tree_root);
2852                 if (ret) {
2853                         btrfs_error(tree_root->fs_info, ret,
2854                                     "Failed to recover log tree");
2855                         free_extent_buffer(log_tree_root->node);
2856                         kfree(log_tree_root);
2857                         goto fail_trans_kthread;
2858                 }
2859
2860                 if (sb->s_flags & MS_RDONLY) {
2861                         ret = btrfs_commit_super(tree_root);
2862                         if (ret)
2863                                 goto fail_trans_kthread;
2864                 }
2865         }
2866
2867         ret = btrfs_find_orphan_roots(tree_root);
2868         if (ret)
2869                 goto fail_trans_kthread;
2870
2871         if (!(sb->s_flags & MS_RDONLY)) {
2872                 ret = btrfs_cleanup_fs_roots(fs_info);
2873                 if (ret)
2874                         goto fail_trans_kthread;
2875
2876                 ret = btrfs_recover_relocation(tree_root);
2877                 if (ret < 0) {
2878                         printk(KERN_WARNING
2879                                "BTRFS: failed to recover relocation\n");
2880                         err = -EINVAL;
2881                         goto fail_qgroup;
2882                 }
2883         }
2884
2885         location.objectid = BTRFS_FS_TREE_OBJECTID;
2886         location.type = BTRFS_ROOT_ITEM_KEY;
2887         location.offset = 0;
2888
2889         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2890         if (IS_ERR(fs_info->fs_root)) {
2891                 err = PTR_ERR(fs_info->fs_root);
2892                 goto fail_qgroup;
2893         }
2894
2895         if (sb->s_flags & MS_RDONLY)
2896                 return 0;
2897
2898         down_read(&fs_info->cleanup_work_sem);
2899         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2900             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2901                 up_read(&fs_info->cleanup_work_sem);
2902                 close_ctree(tree_root);
2903                 return ret;
2904         }
2905         up_read(&fs_info->cleanup_work_sem);
2906
2907         ret = btrfs_resume_balance_async(fs_info);
2908         if (ret) {
2909                 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2910                 close_ctree(tree_root);
2911                 return ret;
2912         }
2913
2914         ret = btrfs_resume_dev_replace_async(fs_info);
2915         if (ret) {
2916                 pr_warn("BTRFS: failed to resume dev_replace\n");
2917                 close_ctree(tree_root);
2918                 return ret;
2919         }
2920
2921         btrfs_qgroup_rescan_resume(fs_info);
2922
2923         if (create_uuid_tree) {
2924                 pr_info("BTRFS: creating UUID tree\n");
2925                 ret = btrfs_create_uuid_tree(fs_info);
2926                 if (ret) {
2927                         pr_warn("BTRFS: failed to create the UUID tree %d\n",
2928                                 ret);
2929                         close_ctree(tree_root);
2930                         return ret;
2931                 }
2932         } else if (check_uuid_tree ||
2933                    btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2934                 pr_info("BTRFS: checking UUID tree\n");
2935                 ret = btrfs_check_uuid_tree(fs_info);
2936                 if (ret) {
2937                         pr_warn("BTRFS: failed to check the UUID tree %d\n",
2938                                 ret);
2939                         close_ctree(tree_root);
2940                         return ret;
2941                 }
2942         } else {
2943                 fs_info->update_uuid_tree_gen = 1;
2944         }
2945
2946         return 0;
2947
2948 fail_qgroup:
2949         btrfs_free_qgroup_config(fs_info);
2950 fail_trans_kthread:
2951         kthread_stop(fs_info->transaction_kthread);
2952         btrfs_cleanup_transaction(fs_info->tree_root);
2953         del_fs_roots(fs_info);
2954 fail_cleaner:
2955         kthread_stop(fs_info->cleaner_kthread);
2956
2957         /*
2958          * make sure we're done with the btree inode before we stop our
2959          * kthreads
2960          */
2961         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2962
2963 fail_sysfs:
2964         btrfs_sysfs_remove_one(fs_info);
2965
2966 fail_block_groups:
2967         btrfs_put_block_group_cache(fs_info);
2968         btrfs_free_block_groups(fs_info);
2969
2970 fail_tree_roots:
2971         free_root_pointers(fs_info, 1);
2972         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2973
2974 fail_sb_buffer:
2975         btrfs_stop_all_workers(fs_info);
2976 fail_alloc:
2977 fail_iput:
2978         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2979
2980         iput(fs_info->btree_inode);
2981 fail_bio_counter:
2982         percpu_counter_destroy(&fs_info->bio_counter);
2983 fail_delalloc_bytes:
2984         percpu_counter_destroy(&fs_info->delalloc_bytes);
2985 fail_dirty_metadata_bytes:
2986         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2987 fail_bdi:
2988         bdi_destroy(&fs_info->bdi);
2989 fail_srcu:
2990         cleanup_srcu_struct(&fs_info->subvol_srcu);
2991 fail:
2992         btrfs_free_stripe_hash_table(fs_info);
2993         btrfs_close_devices(fs_info->fs_devices);
2994         return err;
2995
2996 recovery_tree_root:
2997         if (!btrfs_test_opt(tree_root, RECOVERY))
2998                 goto fail_tree_roots;
2999
3000         free_root_pointers(fs_info, 0);
3001
3002         /* don't use the log in recovery mode, it won't be valid */
3003         btrfs_set_super_log_root(disk_super, 0);
3004
3005         /* we can't trust the free space cache either */
3006         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3007
3008         ret = next_root_backup(fs_info, fs_info->super_copy,
3009                                &num_backups_tried, &backup_index);
3010         if (ret == -1)
3011                 goto fail_block_groups;
3012         goto retry_root_backup;
3013 }
3014
3015 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3016 {
3017         if (uptodate) {
3018                 set_buffer_uptodate(bh);
3019         } else {
3020                 struct btrfs_device *device = (struct btrfs_device *)
3021                         bh->b_private;
3022
3023                 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3024                                           "I/O error on %s\n",
3025                                           rcu_str_deref(device->name));
3026                 /* note, we dont' set_buffer_write_io_error because we have
3027                  * our own ways of dealing with the IO errors
3028                  */
3029                 clear_buffer_uptodate(bh);
3030                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3031         }
3032         unlock_buffer(bh);
3033         put_bh(bh);
3034 }
3035
3036 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3037 {
3038         struct buffer_head *bh;
3039         struct buffer_head *latest = NULL;
3040         struct btrfs_super_block *super;
3041         int i;
3042         u64 transid = 0;
3043         u64 bytenr;
3044
3045         /* we would like to check all the supers, but that would make
3046          * a btrfs mount succeed after a mkfs from a different FS.
3047          * So, we need to add a special mount option to scan for
3048          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3049          */
3050         for (i = 0; i < 1; i++) {
3051                 bytenr = btrfs_sb_offset(i);
3052                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3053                                         i_size_read(bdev->bd_inode))
3054                         break;
3055                 bh = __bread(bdev, bytenr / 4096,
3056                                         BTRFS_SUPER_INFO_SIZE);
3057                 if (!bh)
3058                         continue;
3059
3060                 super = (struct btrfs_super_block *)bh->b_data;
3061                 if (btrfs_super_bytenr(super) != bytenr ||
3062                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3063                         brelse(bh);
3064                         continue;
3065                 }
3066
3067                 if (!latest || btrfs_super_generation(super) > transid) {
3068                         brelse(latest);
3069                         latest = bh;
3070                         transid = btrfs_super_generation(super);
3071                 } else {
3072                         brelse(bh);
3073                 }
3074         }
3075         return latest;
3076 }
3077
3078 /*
3079  * this should be called twice, once with wait == 0 and
3080  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3081  * we write are pinned.
3082  *
3083  * They are released when wait == 1 is done.
3084  * max_mirrors must be the same for both runs, and it indicates how
3085  * many supers on this one device should be written.
3086  *
3087  * max_mirrors == 0 means to write them all.
3088  */
3089 static int write_dev_supers(struct btrfs_device *device,
3090                             struct btrfs_super_block *sb,
3091                             int do_barriers, int wait, int max_mirrors)
3092 {
3093         struct buffer_head *bh;
3094         int i;
3095         int ret;
3096         int errors = 0;
3097         u32 crc;
3098         u64 bytenr;
3099
3100         if (max_mirrors == 0)
3101                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3102
3103         for (i = 0; i < max_mirrors; i++) {
3104                 bytenr = btrfs_sb_offset(i);
3105                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3106                         break;
3107
3108                 if (wait) {
3109                         bh = __find_get_block(device->bdev, bytenr / 4096,
3110                                               BTRFS_SUPER_INFO_SIZE);
3111                         if (!bh) {
3112                                 errors++;
3113                                 continue;
3114                         }
3115                         wait_on_buffer(bh);
3116                         if (!buffer_uptodate(bh))
3117                                 errors++;
3118
3119                         /* drop our reference */
3120                         brelse(bh);
3121
3122                         /* drop the reference from the wait == 0 run */
3123                         brelse(bh);
3124                         continue;
3125                 } else {
3126                         btrfs_set_super_bytenr(sb, bytenr);
3127
3128                         crc = ~(u32)0;
3129                         crc = btrfs_csum_data((char *)sb +
3130                                               BTRFS_CSUM_SIZE, crc,
3131                                               BTRFS_SUPER_INFO_SIZE -
3132                                               BTRFS_CSUM_SIZE);
3133                         btrfs_csum_final(crc, sb->csum);
3134
3135                         /*
3136                          * one reference for us, and we leave it for the
3137                          * caller
3138                          */
3139                         bh = __getblk(device->bdev, bytenr / 4096,
3140                                       BTRFS_SUPER_INFO_SIZE);
3141                         if (!bh) {
3142                                 printk(KERN_ERR "BTRFS: couldn't get super "
3143                                        "buffer head for bytenr %Lu\n", bytenr);
3144                                 errors++;
3145                                 continue;
3146                         }
3147
3148                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3149
3150                         /* one reference for submit_bh */
3151                         get_bh(bh);
3152
3153                         set_buffer_uptodate(bh);
3154                         lock_buffer(bh);
3155                         bh->b_end_io = btrfs_end_buffer_write_sync;
3156                         bh->b_private = device;
3157                 }
3158
3159                 /*
3160                  * we fua the first super.  The others we allow
3161                  * to go down lazy.
3162                  */
3163                 if (i == 0)
3164                         ret = btrfsic_submit_bh(WRITE_FUA, bh);
3165                 else
3166                         ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3167                 if (ret)
3168                         errors++;
3169         }
3170         return errors < i ? 0 : -1;
3171 }
3172
3173 /*
3174  * endio for the write_dev_flush, this will wake anyone waiting
3175  * for the barrier when it is done
3176  */
3177 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3178 {
3179         if (err) {
3180                 if (err == -EOPNOTSUPP)
3181                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3182                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3183         }
3184         if (bio->bi_private)
3185                 complete(bio->bi_private);
3186         bio_put(bio);
3187 }
3188
3189 /*
3190  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3191  * sent down.  With wait == 1, it waits for the previous flush.
3192  *
3193  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3194  * capable
3195  */
3196 static int write_dev_flush(struct btrfs_device *device, int wait)
3197 {
3198         struct bio *bio;
3199         int ret = 0;
3200
3201         if (device->nobarriers)
3202                 return 0;
3203
3204         if (wait) {
3205                 bio = device->flush_bio;
3206                 if (!bio)
3207                         return 0;
3208
3209                 wait_for_completion(&device->flush_wait);
3210
3211                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3212                         printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3213                                       rcu_str_deref(device->name));
3214                         device->nobarriers = 1;
3215                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3216                         ret = -EIO;
3217                         btrfs_dev_stat_inc_and_print(device,
3218                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3219                 }
3220
3221                 /* drop the reference from the wait == 0 run */
3222                 bio_put(bio);
3223                 device->flush_bio = NULL;
3224
3225                 return ret;
3226         }
3227
3228         /*
3229          * one reference for us, and we leave it for the
3230          * caller
3231          */
3232         device->flush_bio = NULL;
3233         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3234         if (!bio)
3235                 return -ENOMEM;
3236
3237         bio->bi_end_io = btrfs_end_empty_barrier;
3238         bio->bi_bdev = device->bdev;
3239         init_completion(&device->flush_wait);
3240         bio->bi_private = &device->flush_wait;
3241         device->flush_bio = bio;
3242
3243         bio_get(bio);
3244         btrfsic_submit_bio(WRITE_FLUSH, bio);
3245
3246         return 0;
3247 }
3248
3249 /*
3250  * send an empty flush down to each device in parallel,
3251  * then wait for them
3252  */
3253 static int barrier_all_devices(struct btrfs_fs_info *info)
3254 {
3255         struct list_head *head;
3256         struct btrfs_device *dev;
3257         int errors_send = 0;
3258         int errors_wait = 0;
3259         int ret;
3260
3261         /* send down all the barriers */
3262         head = &info->fs_devices->devices;
3263         list_for_each_entry_rcu(dev, head, dev_list) {
3264                 if (dev->missing)
3265                         continue;
3266                 if (!dev->bdev) {
3267                         errors_send++;
3268                         continue;
3269                 }
3270                 if (!dev->in_fs_metadata || !dev->writeable)
3271                         continue;
3272
3273                 ret = write_dev_flush(dev, 0);
3274                 if (ret)
3275                         errors_send++;
3276         }
3277
3278         /* wait for all the barriers */
3279         list_for_each_entry_rcu(dev, head, dev_list) {
3280                 if (dev->missing)
3281                         continue;
3282                 if (!dev->bdev) {
3283                         errors_wait++;
3284                         continue;
3285                 }
3286                 if (!dev->in_fs_metadata || !dev->writeable)
3287                         continue;
3288
3289                 ret = write_dev_flush(dev, 1);
3290                 if (ret)
3291                         errors_wait++;
3292         }
3293         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3294             errors_wait > info->num_tolerated_disk_barrier_failures)
3295                 return -EIO;
3296         return 0;
3297 }
3298
3299 int btrfs_calc_num_tolerated_disk_barrier_failures(
3300         struct btrfs_fs_info *fs_info)
3301 {
3302         struct btrfs_ioctl_space_info space;
3303         struct btrfs_space_info *sinfo;
3304         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3305                        BTRFS_BLOCK_GROUP_SYSTEM,
3306                        BTRFS_BLOCK_GROUP_METADATA,
3307                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3308         int num_types = 4;
3309         int i;
3310         int c;
3311         int num_tolerated_disk_barrier_failures =
3312                 (int)fs_info->fs_devices->num_devices;
3313
3314         for (i = 0; i < num_types; i++) {
3315                 struct btrfs_space_info *tmp;
3316
3317                 sinfo = NULL;
3318                 rcu_read_lock();
3319                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3320                         if (tmp->flags == types[i]) {
3321                                 sinfo = tmp;
3322                                 break;
3323                         }
3324                 }
3325                 rcu_read_unlock();
3326
3327                 if (!sinfo)
3328                         continue;
3329
3330                 down_read(&sinfo->groups_sem);
3331                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3332                         if (!list_empty(&sinfo->block_groups[c])) {
3333                                 u64 flags;
3334
3335                                 btrfs_get_block_group_info(
3336                                         &sinfo->block_groups[c], &space);
3337                                 if (space.total_bytes == 0 ||
3338                                     space.used_bytes == 0)
3339                                         continue;
3340                                 flags = space.flags;
3341                                 /*
3342                                  * return
3343                                  * 0: if dup, single or RAID0 is configured for
3344                                  *    any of metadata, system or data, else
3345                                  * 1: if RAID5 is configured, or if RAID1 or
3346                                  *    RAID10 is configured and only two mirrors
3347                                  *    are used, else
3348                                  * 2: if RAID6 is configured, else
3349                                  * num_mirrors - 1: if RAID1 or RAID10 is
3350                                  *                  configured and more than
3351                                  *                  2 mirrors are used.
3352                                  */
3353                                 if (num_tolerated_disk_barrier_failures > 0 &&
3354                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3355                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3356                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3357                                       == 0)))
3358                                         num_tolerated_disk_barrier_failures = 0;
3359                                 else if (num_tolerated_disk_barrier_failures > 1) {
3360                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3361                                             BTRFS_BLOCK_GROUP_RAID5 |
3362                                             BTRFS_BLOCK_GROUP_RAID10)) {
3363                                                 num_tolerated_disk_barrier_failures = 1;
3364                                         } else if (flags &
3365                                                    BTRFS_BLOCK_GROUP_RAID6) {
3366                                                 num_tolerated_disk_barrier_failures = 2;
3367                                         }
3368                                 }
3369                         }
3370                 }
3371                 up_read(&sinfo->groups_sem);
3372         }
3373
3374         return num_tolerated_disk_barrier_failures;
3375 }
3376
3377 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3378 {
3379         struct list_head *head;
3380         struct btrfs_device *dev;
3381         struct btrfs_super_block *sb;
3382         struct btrfs_dev_item *dev_item;
3383         int ret;
3384         int do_barriers;
3385         int max_errors;
3386         int total_errors = 0;
3387         u64 flags;
3388
3389         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3390         backup_super_roots(root->fs_info);
3391
3392         sb = root->fs_info->super_for_commit;
3393         dev_item = &sb->dev_item;
3394
3395         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3396         head = &root->fs_info->fs_devices->devices;
3397         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3398
3399         if (do_barriers) {
3400                 ret = barrier_all_devices(root->fs_info);
3401                 if (ret) {
3402                         mutex_unlock(
3403                                 &root->fs_info->fs_devices->device_list_mutex);
3404                         btrfs_error(root->fs_info, ret,
3405                                     "errors while submitting device barriers.");
3406                         return ret;
3407                 }
3408         }
3409
3410         list_for_each_entry_rcu(dev, head, dev_list) {
3411                 if (!dev->bdev) {
3412                         total_errors++;
3413                         continue;
3414                 }
3415                 if (!dev->in_fs_metadata || !dev->writeable)
3416                         continue;
3417
3418                 btrfs_set_stack_device_generation(dev_item, 0);
3419                 btrfs_set_stack_device_type(dev_item, dev->type);
3420                 btrfs_set_stack_device_id(dev_item, dev->devid);
3421                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3422                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3423                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3424                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3425                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3426                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3427                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3428
3429                 flags = btrfs_super_flags(sb);
3430                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3431
3432                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3433                 if (ret)
3434                         total_errors++;
3435         }
3436         if (total_errors > max_errors) {
3437                 btrfs_err(root->fs_info, "%d errors while writing supers",
3438                        total_errors);
3439                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3440
3441                 /* FUA is masked off if unsupported and can't be the reason */
3442                 btrfs_error(root->fs_info, -EIO,
3443                             "%d errors while writing supers", total_errors);
3444                 return -EIO;
3445         }
3446
3447         total_errors = 0;
3448         list_for_each_entry_rcu(dev, head, dev_list) {
3449                 if (!dev->bdev)
3450                         continue;
3451                 if (!dev->in_fs_metadata || !dev->writeable)
3452                         continue;
3453
3454                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3455                 if (ret)
3456                         total_errors++;
3457         }
3458         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3459         if (total_errors > max_errors) {
3460                 btrfs_error(root->fs_info, -EIO,
3461                             "%d errors while writing supers", total_errors);
3462                 return -EIO;
3463         }
3464         return 0;
3465 }
3466
3467 int write_ctree_super(struct btrfs_trans_handle *trans,
3468                       struct btrfs_root *root, int max_mirrors)
3469 {
3470         return write_all_supers(root, max_mirrors);
3471 }
3472
3473 /* Drop a fs root from the radix tree and free it. */
3474 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3475                                   struct btrfs_root *root)
3476 {
3477         spin_lock(&fs_info->fs_roots_radix_lock);
3478         radix_tree_delete(&fs_info->fs_roots_radix,
3479                           (unsigned long)root->root_key.objectid);
3480         spin_unlock(&fs_info->fs_roots_radix_lock);
3481
3482         if (btrfs_root_refs(&root->root_item) == 0)
3483                 synchronize_srcu(&fs_info->subvol_srcu);
3484
3485         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3486                 btrfs_free_log(NULL, root);
3487
3488         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3489         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3490         free_fs_root(root);
3491 }
3492
3493 static void free_fs_root(struct btrfs_root *root)
3494 {
3495         iput(root->cache_inode);
3496         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3497         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3498         root->orphan_block_rsv = NULL;
3499         if (root->anon_dev)
3500                 free_anon_bdev(root->anon_dev);
3501         if (root->subv_writers)
3502                 btrfs_free_subvolume_writers(root->subv_writers);
3503         free_extent_buffer(root->node);
3504         free_extent_buffer(root->commit_root);
3505         kfree(root->free_ino_ctl);
3506         kfree(root->free_ino_pinned);
3507         kfree(root->name);
3508         btrfs_put_fs_root(root);
3509 }
3510
3511 void btrfs_free_fs_root(struct btrfs_root *root)
3512 {
3513         free_fs_root(root);
3514 }
3515
3516 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3517 {
3518         u64 root_objectid = 0;
3519         struct btrfs_root *gang[8];
3520         int i;
3521         int ret;
3522
3523         while (1) {
3524                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3525                                              (void **)gang, root_objectid,
3526                                              ARRAY_SIZE(gang));
3527                 if (!ret)
3528                         break;
3529
3530                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3531                 for (i = 0; i < ret; i++) {
3532                         int err;
3533
3534                         root_objectid = gang[i]->root_key.objectid;
3535                         err = btrfs_orphan_cleanup(gang[i]);
3536                         if (err)
3537                                 return err;
3538                 }
3539                 root_objectid++;
3540         }
3541         return 0;
3542 }
3543
3544 int btrfs_commit_super(struct btrfs_root *root)
3545 {
3546         struct btrfs_trans_handle *trans;
3547
3548         mutex_lock(&root->fs_info->cleaner_mutex);
3549         btrfs_run_delayed_iputs(root);
3550         mutex_unlock(&root->fs_info->cleaner_mutex);
3551         wake_up_process(root->fs_info->cleaner_kthread);
3552
3553         /* wait until ongoing cleanup work done */
3554         down_write(&root->fs_info->cleanup_work_sem);
3555         up_write(&root->fs_info->cleanup_work_sem);
3556
3557         trans = btrfs_join_transaction(root);
3558         if (IS_ERR(trans))
3559                 return PTR_ERR(trans);
3560         return btrfs_commit_transaction(trans, root);
3561 }
3562
3563 int close_ctree(struct btrfs_root *root)
3564 {
3565         struct btrfs_fs_info *fs_info = root->fs_info;
3566         int ret;
3567
3568         fs_info->closing = 1;
3569         smp_mb();
3570
3571         /* wait for the uuid_scan task to finish */
3572         down(&fs_info->uuid_tree_rescan_sem);
3573         /* avoid complains from lockdep et al., set sem back to initial state */
3574         up(&fs_info->uuid_tree_rescan_sem);
3575
3576         /* pause restriper - we want to resume on mount */
3577         btrfs_pause_balance(fs_info);
3578
3579         btrfs_dev_replace_suspend_for_unmount(fs_info);
3580
3581         btrfs_scrub_cancel(fs_info);
3582
3583         /* wait for any defraggers to finish */
3584         wait_event(fs_info->transaction_wait,
3585                    (atomic_read(&fs_info->defrag_running) == 0));
3586
3587         /* clear out the rbtree of defraggable inodes */
3588         btrfs_cleanup_defrag_inodes(fs_info);
3589
3590         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3591                 ret = btrfs_commit_super(root);
3592                 if (ret)
3593                         btrfs_err(root->fs_info, "commit super ret %d", ret);
3594         }
3595
3596         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3597                 btrfs_error_commit_super(root);
3598
3599         kthread_stop(fs_info->transaction_kthread);
3600         kthread_stop(fs_info->cleaner_kthread);
3601
3602         fs_info->closing = 2;
3603         smp_mb();
3604
3605         btrfs_free_qgroup_config(root->fs_info);
3606
3607         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3608                 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3609                        percpu_counter_sum(&fs_info->delalloc_bytes));
3610         }
3611
3612         btrfs_sysfs_remove_one(fs_info);
3613
3614         del_fs_roots(fs_info);
3615
3616         btrfs_put_block_group_cache(fs_info);
3617
3618         btrfs_free_block_groups(fs_info);
3619
3620         btrfs_stop_all_workers(fs_info);
3621
3622         free_root_pointers(fs_info, 1);
3623
3624         iput(fs_info->btree_inode);
3625
3626 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3627         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3628                 btrfsic_unmount(root, fs_info->fs_devices);
3629 #endif
3630
3631         btrfs_close_devices(fs_info->fs_devices);
3632         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3633
3634         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3635         percpu_counter_destroy(&fs_info->delalloc_bytes);
3636         percpu_counter_destroy(&fs_info->bio_counter);
3637         bdi_destroy(&fs_info->bdi);
3638         cleanup_srcu_struct(&fs_info->subvol_srcu);
3639
3640         btrfs_free_stripe_hash_table(fs_info);
3641
3642         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3643         root->orphan_block_rsv = NULL;
3644
3645         return 0;
3646 }
3647
3648 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3649                           int atomic)
3650 {
3651         int ret;
3652         struct inode *btree_inode = buf->pages[0]->mapping->host;
3653
3654         ret = extent_buffer_uptodate(buf);
3655         if (!ret)
3656                 return ret;
3657
3658         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3659                                     parent_transid, atomic);
3660         if (ret == -EAGAIN)
3661                 return ret;
3662         return !ret;
3663 }
3664
3665 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3666 {
3667         return set_extent_buffer_uptodate(buf);
3668 }
3669
3670 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3671 {
3672         struct btrfs_root *root;
3673         u64 transid = btrfs_header_generation(buf);
3674         int was_dirty;
3675
3676 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3677         /*
3678          * This is a fast path so only do this check if we have sanity tests
3679          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3680          * outside of the sanity tests.
3681          */
3682         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3683                 return;
3684 #endif
3685         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3686         btrfs_assert_tree_locked(buf);
3687         if (transid != root->fs_info->generation)
3688                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3689                        "found %llu running %llu\n",
3690                         buf->start, transid, root->fs_info->generation);
3691         was_dirty = set_extent_buffer_dirty(buf);
3692         if (!was_dirty)
3693                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3694                                      buf->len,
3695                                      root->fs_info->dirty_metadata_batch);
3696 }
3697
3698 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3699                                         int flush_delayed)
3700 {
3701         /*
3702          * looks as though older kernels can get into trouble with
3703          * this code, they end up stuck in balance_dirty_pages forever
3704          */
3705         int ret;
3706
3707         if (current->flags & PF_MEMALLOC)
3708                 return;
3709
3710         if (flush_delayed)
3711                 btrfs_balance_delayed_items(root);
3712
3713         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3714                                      BTRFS_DIRTY_METADATA_THRESH);
3715         if (ret > 0) {
3716                 balance_dirty_pages_ratelimited(
3717                                    root->fs_info->btree_inode->i_mapping);
3718         }
3719         return;
3720 }
3721
3722 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3723 {
3724         __btrfs_btree_balance_dirty(root, 1);
3725 }
3726
3727 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3728 {
3729         __btrfs_btree_balance_dirty(root, 0);
3730 }
3731
3732 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3733 {
3734         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3735         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3736 }
3737
3738 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3739                               int read_only)
3740 {
3741         /*
3742          * Placeholder for checks
3743          */
3744         return 0;
3745 }
3746
3747 static void btrfs_error_commit_super(struct btrfs_root *root)
3748 {
3749         mutex_lock(&root->fs_info->cleaner_mutex);
3750         btrfs_run_delayed_iputs(root);
3751         mutex_unlock(&root->fs_info->cleaner_mutex);
3752
3753         down_write(&root->fs_info->cleanup_work_sem);
3754         up_write(&root->fs_info->cleanup_work_sem);
3755
3756         /* cleanup FS via transaction */
3757         btrfs_cleanup_transaction(root);
3758 }
3759
3760 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3761                                              struct btrfs_root *root)
3762 {
3763         struct btrfs_inode *btrfs_inode;
3764         struct list_head splice;
3765
3766         INIT_LIST_HEAD(&splice);
3767
3768         mutex_lock(&root->fs_info->ordered_operations_mutex);
3769         spin_lock(&root->fs_info->ordered_root_lock);
3770
3771         list_splice_init(&t->ordered_operations, &splice);
3772         while (!list_empty(&splice)) {
3773                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3774                                          ordered_operations);
3775
3776                 list_del_init(&btrfs_inode->ordered_operations);
3777                 spin_unlock(&root->fs_info->ordered_root_lock);
3778
3779                 btrfs_invalidate_inodes(btrfs_inode->root);
3780
3781                 spin_lock(&root->fs_info->ordered_root_lock);
3782         }
3783
3784         spin_unlock(&root->fs_info->ordered_root_lock);
3785         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3786 }
3787
3788 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3789 {
3790         struct btrfs_ordered_extent *ordered;
3791
3792         spin_lock(&root->ordered_extent_lock);
3793         /*
3794          * This will just short circuit the ordered completion stuff which will
3795          * make sure the ordered extent gets properly cleaned up.
3796          */
3797         list_for_each_entry(ordered, &root->ordered_extents,
3798                             root_extent_list)
3799                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3800         spin_unlock(&root->ordered_extent_lock);
3801 }
3802
3803 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3804 {
3805         struct btrfs_root *root;
3806         struct list_head splice;
3807
3808         INIT_LIST_HEAD(&splice);
3809
3810         spin_lock(&fs_info->ordered_root_lock);
3811         list_splice_init(&fs_info->ordered_roots, &splice);
3812         while (!list_empty(&splice)) {
3813                 root = list_first_entry(&splice, struct btrfs_root,
3814                                         ordered_root);
3815                 list_move_tail(&root->ordered_root,
3816                                &fs_info->ordered_roots);
3817
3818                 spin_unlock(&fs_info->ordered_root_lock);
3819                 btrfs_destroy_ordered_extents(root);
3820
3821                 cond_resched();
3822                 spin_lock(&fs_info->ordered_root_lock);
3823         }
3824         spin_unlock(&fs_info->ordered_root_lock);
3825 }
3826
3827 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3828                                       struct btrfs_root *root)
3829 {
3830         struct rb_node *node;
3831         struct btrfs_delayed_ref_root *delayed_refs;
3832         struct btrfs_delayed_ref_node *ref;
3833         int ret = 0;
3834
3835         delayed_refs = &trans->delayed_refs;
3836
3837         spin_lock(&delayed_refs->lock);
3838         if (atomic_read(&delayed_refs->num_entries) == 0) {
3839                 spin_unlock(&delayed_refs->lock);
3840                 btrfs_info(root->fs_info, "delayed_refs has NO entry");
3841                 return ret;
3842         }
3843
3844         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3845                 struct btrfs_delayed_ref_head *head;
3846                 bool pin_bytes = false;
3847
3848                 head = rb_entry(node, struct btrfs_delayed_ref_head,
3849                                 href_node);
3850                 if (!mutex_trylock(&head->mutex)) {
3851                         atomic_inc(&head->node.refs);
3852                         spin_unlock(&delayed_refs->lock);
3853
3854                         mutex_lock(&head->mutex);
3855                         mutex_unlock(&head->mutex);
3856                         btrfs_put_delayed_ref(&head->node);
3857                         spin_lock(&delayed_refs->lock);
3858                         continue;
3859                 }
3860                 spin_lock(&head->lock);
3861                 while ((node = rb_first(&head->ref_root)) != NULL) {
3862                         ref = rb_entry(node, struct btrfs_delayed_ref_node,
3863                                        rb_node);
3864                         ref->in_tree = 0;
3865                         rb_erase(&ref->rb_node, &head->ref_root);
3866                         atomic_dec(&delayed_refs->num_entries);
3867                         btrfs_put_delayed_ref(ref);
3868                 }
3869                 if (head->must_insert_reserved)
3870                         pin_bytes = true;
3871                 btrfs_free_delayed_extent_op(head->extent_op);
3872                 delayed_refs->num_heads--;
3873                 if (head->processing == 0)
3874                         delayed_refs->num_heads_ready--;
3875                 atomic_dec(&delayed_refs->num_entries);
3876                 head->node.in_tree = 0;
3877                 rb_erase(&head->href_node, &delayed_refs->href_root);
3878                 spin_unlock(&head->lock);
3879                 spin_unlock(&delayed_refs->lock);
3880                 mutex_unlock(&head->mutex);
3881
3882                 if (pin_bytes)
3883                         btrfs_pin_extent(root, head->node.bytenr,
3884                                          head->node.num_bytes, 1);
3885                 btrfs_put_delayed_ref(&head->node);
3886                 cond_resched();
3887                 spin_lock(&delayed_refs->lock);
3888         }
3889
3890         spin_unlock(&delayed_refs->lock);
3891
3892         return ret;
3893 }
3894
3895 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3896 {
3897         struct btrfs_inode *btrfs_inode;
3898         struct list_head splice;
3899
3900         INIT_LIST_HEAD(&splice);
3901
3902         spin_lock(&root->delalloc_lock);
3903         list_splice_init(&root->delalloc_inodes, &splice);
3904
3905         while (!list_empty(&splice)) {
3906                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3907                                                delalloc_inodes);
3908
3909                 list_del_init(&btrfs_inode->delalloc_inodes);
3910                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3911                           &btrfs_inode->runtime_flags);
3912                 spin_unlock(&root->delalloc_lock);
3913
3914                 btrfs_invalidate_inodes(btrfs_inode->root);
3915
3916                 spin_lock(&root->delalloc_lock);
3917         }
3918
3919         spin_unlock(&root->delalloc_lock);
3920 }
3921
3922 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3923 {
3924         struct btrfs_root *root;
3925         struct list_head splice;
3926
3927         INIT_LIST_HEAD(&splice);
3928
3929         spin_lock(&fs_info->delalloc_root_lock);
3930         list_splice_init(&fs_info->delalloc_roots, &splice);
3931         while (!list_empty(&splice)) {
3932                 root = list_first_entry(&splice, struct btrfs_root,
3933                                          delalloc_root);
3934                 list_del_init(&root->delalloc_root);
3935                 root = btrfs_grab_fs_root(root);
3936                 BUG_ON(!root);
3937                 spin_unlock(&fs_info->delalloc_root_lock);
3938
3939                 btrfs_destroy_delalloc_inodes(root);
3940                 btrfs_put_fs_root(root);
3941
3942                 spin_lock(&fs_info->delalloc_root_lock);
3943         }
3944         spin_unlock(&fs_info->delalloc_root_lock);
3945 }
3946
3947 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3948                                         struct extent_io_tree *dirty_pages,
3949                                         int mark)
3950 {
3951         int ret;
3952         struct extent_buffer *eb;
3953         u64 start = 0;
3954         u64 end;
3955
3956         while (1) {
3957                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3958                                             mark, NULL);
3959                 if (ret)
3960                         break;
3961
3962                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3963                 while (start <= end) {
3964                         eb = btrfs_find_tree_block(root, start,
3965                                                    root->leafsize);
3966                         start += root->leafsize;
3967                         if (!eb)
3968                                 continue;
3969                         wait_on_extent_buffer_writeback(eb);
3970
3971                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3972                                                &eb->bflags))
3973                                 clear_extent_buffer_dirty(eb);
3974                         free_extent_buffer_stale(eb);
3975                 }
3976         }
3977
3978         return ret;
3979 }
3980
3981 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3982                                        struct extent_io_tree *pinned_extents)
3983 {
3984         struct extent_io_tree *unpin;
3985         u64 start;
3986         u64 end;
3987         int ret;
3988         bool loop = true;
3989
3990         unpin = pinned_extents;
3991 again:
3992         while (1) {
3993                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3994                                             EXTENT_DIRTY, NULL);
3995                 if (ret)
3996                         break;
3997
3998                 /* opt_discard */
3999                 if (btrfs_test_opt(root, DISCARD))
4000                         ret = btrfs_error_discard_extent(root, start,
4001                                                          end + 1 - start,
4002                                                          NULL);
4003
4004                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4005                 btrfs_error_unpin_extent_range(root, start, end);
4006                 cond_resched();
4007         }
4008
4009         if (loop) {
4010                 if (unpin == &root->fs_info->freed_extents[0])
4011                         unpin = &root->fs_info->freed_extents[1];
4012                 else
4013                         unpin = &root->fs_info->freed_extents[0];
4014                 loop = false;
4015                 goto again;
4016         }
4017
4018         return 0;
4019 }
4020
4021 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4022                                    struct btrfs_root *root)
4023 {
4024         btrfs_destroy_ordered_operations(cur_trans, root);
4025
4026         btrfs_destroy_delayed_refs(cur_trans, root);
4027
4028         cur_trans->state = TRANS_STATE_COMMIT_START;
4029         wake_up(&root->fs_info->transaction_blocked_wait);
4030
4031         cur_trans->state = TRANS_STATE_UNBLOCKED;
4032         wake_up(&root->fs_info->transaction_wait);
4033
4034         btrfs_destroy_delayed_inodes(root);
4035         btrfs_assert_delayed_root_empty(root);
4036
4037         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4038                                      EXTENT_DIRTY);
4039         btrfs_destroy_pinned_extent(root,
4040                                     root->fs_info->pinned_extents);
4041
4042         cur_trans->state =TRANS_STATE_COMPLETED;
4043         wake_up(&cur_trans->commit_wait);
4044
4045         /*
4046         memset(cur_trans, 0, sizeof(*cur_trans));
4047         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4048         */
4049 }
4050
4051 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4052 {
4053         struct btrfs_transaction *t;
4054
4055         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4056
4057         spin_lock(&root->fs_info->trans_lock);
4058         while (!list_empty(&root->fs_info->trans_list)) {
4059                 t = list_first_entry(&root->fs_info->trans_list,
4060                                      struct btrfs_transaction, list);
4061                 if (t->state >= TRANS_STATE_COMMIT_START) {
4062                         atomic_inc(&t->use_count);
4063                         spin_unlock(&root->fs_info->trans_lock);
4064                         btrfs_wait_for_commit(root, t->transid);
4065                         btrfs_put_transaction(t);
4066                         spin_lock(&root->fs_info->trans_lock);
4067                         continue;
4068                 }
4069                 if (t == root->fs_info->running_transaction) {
4070                         t->state = TRANS_STATE_COMMIT_DOING;
4071                         spin_unlock(&root->fs_info->trans_lock);
4072                         /*
4073                          * We wait for 0 num_writers since we don't hold a trans
4074                          * handle open currently for this transaction.
4075                          */
4076                         wait_event(t->writer_wait,
4077                                    atomic_read(&t->num_writers) == 0);
4078                 } else {
4079                         spin_unlock(&root->fs_info->trans_lock);
4080                 }
4081                 btrfs_cleanup_one_transaction(t, root);
4082
4083                 spin_lock(&root->fs_info->trans_lock);
4084                 if (t == root->fs_info->running_transaction)
4085                         root->fs_info->running_transaction = NULL;
4086                 list_del_init(&t->list);
4087                 spin_unlock(&root->fs_info->trans_lock);
4088
4089                 btrfs_put_transaction(t);
4090                 trace_btrfs_transaction_commit(root);
4091                 spin_lock(&root->fs_info->trans_lock);
4092         }
4093         spin_unlock(&root->fs_info->trans_lock);
4094         btrfs_destroy_all_ordered_extents(root->fs_info);
4095         btrfs_destroy_delayed_inodes(root);
4096         btrfs_assert_delayed_root_empty(root);
4097         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4098         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4099         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4100
4101         return 0;
4102 }
4103
4104 static struct extent_io_ops btree_extent_io_ops = {
4105         .readpage_end_io_hook = btree_readpage_end_io_hook,
4106         .readpage_io_failed_hook = btree_io_failed_hook,
4107         .submit_bio_hook = btree_submit_bio_hook,
4108         /* note we're sharing with inode.c for the merge bio hook */
4109         .merge_bio_hook = btrfs_merge_bio_hook,
4110 };