btrfs: enhance superblock checks
[linux-2.6-block.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <linux/uuid.h>
34 #include <asm/unaligned.h>
35 #include "compat.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51
52 #ifdef CONFIG_X86
53 #include <asm/cpufeature.h>
54 #endif
55
56 static struct extent_io_ops btree_extent_io_ops;
57 static void end_workqueue_fn(struct btrfs_work *work);
58 static void free_fs_root(struct btrfs_root *root);
59 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
60                                     int read_only);
61 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
62                                              struct btrfs_root *root);
63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
65                                       struct btrfs_root *root);
66 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69                                         struct extent_io_tree *dirty_pages,
70                                         int mark);
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72                                        struct extent_io_tree *pinned_extents);
73 static int btrfs_cleanup_transaction(struct btrfs_root *root);
74 static void btrfs_error_commit_super(struct btrfs_root *root);
75
76 /*
77  * end_io_wq structs are used to do processing in task context when an IO is
78  * complete.  This is used during reads to verify checksums, and it is used
79  * by writes to insert metadata for new file extents after IO is complete.
80  */
81 struct end_io_wq {
82         struct bio *bio;
83         bio_end_io_t *end_io;
84         void *private;
85         struct btrfs_fs_info *info;
86         int error;
87         int metadata;
88         struct list_head list;
89         struct btrfs_work work;
90 };
91
92 /*
93  * async submit bios are used to offload expensive checksumming
94  * onto the worker threads.  They checksum file and metadata bios
95  * just before they are sent down the IO stack.
96  */
97 struct async_submit_bio {
98         struct inode *inode;
99         struct bio *bio;
100         struct list_head list;
101         extent_submit_bio_hook_t *submit_bio_start;
102         extent_submit_bio_hook_t *submit_bio_done;
103         int rw;
104         int mirror_num;
105         unsigned long bio_flags;
106         /*
107          * bio_offset is optional, can be used if the pages in the bio
108          * can't tell us where in the file the bio should go
109          */
110         u64 bio_offset;
111         struct btrfs_work work;
112         int error;
113 };
114
115 /*
116  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
117  * eb, the lockdep key is determined by the btrfs_root it belongs to and
118  * the level the eb occupies in the tree.
119  *
120  * Different roots are used for different purposes and may nest inside each
121  * other and they require separate keysets.  As lockdep keys should be
122  * static, assign keysets according to the purpose of the root as indicated
123  * by btrfs_root->objectid.  This ensures that all special purpose roots
124  * have separate keysets.
125  *
126  * Lock-nesting across peer nodes is always done with the immediate parent
127  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
128  * subclass to avoid triggering lockdep warning in such cases.
129  *
130  * The key is set by the readpage_end_io_hook after the buffer has passed
131  * csum validation but before the pages are unlocked.  It is also set by
132  * btrfs_init_new_buffer on freshly allocated blocks.
133  *
134  * We also add a check to make sure the highest level of the tree is the
135  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
136  * needs update as well.
137  */
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
140 #  error
141 # endif
142
143 static struct btrfs_lockdep_keyset {
144         u64                     id;             /* root objectid */
145         const char              *name_stem;     /* lock name stem */
146         char                    names[BTRFS_MAX_LEVEL + 1][20];
147         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
148 } btrfs_lockdep_keysets[] = {
149         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
150         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
151         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
152         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
153         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
154         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
155         { .id = BTRFS_ORPHAN_OBJECTID,          .name_stem = "orphan"   },
156         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
157         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
158         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
159         { .id = 0,                              .name_stem = "tree"     },
160 };
161
162 void __init btrfs_init_lockdep(void)
163 {
164         int i, j;
165
166         /* initialize lockdep class names */
167         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
168                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
169
170                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
171                         snprintf(ks->names[j], sizeof(ks->names[j]),
172                                  "btrfs-%s-%02d", ks->name_stem, j);
173         }
174 }
175
176 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
177                                     int level)
178 {
179         struct btrfs_lockdep_keyset *ks;
180
181         BUG_ON(level >= ARRAY_SIZE(ks->keys));
182
183         /* find the matching keyset, id 0 is the default entry */
184         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
185                 if (ks->id == objectid)
186                         break;
187
188         lockdep_set_class_and_name(&eb->lock,
189                                    &ks->keys[level], ks->names[level]);
190 }
191
192 #endif
193
194 /*
195  * extents on the btree inode are pretty simple, there's one extent
196  * that covers the entire device
197  */
198 static struct extent_map *btree_get_extent(struct inode *inode,
199                 struct page *page, size_t pg_offset, u64 start, u64 len,
200                 int create)
201 {
202         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
203         struct extent_map *em;
204         int ret;
205
206         read_lock(&em_tree->lock);
207         em = lookup_extent_mapping(em_tree, start, len);
208         if (em) {
209                 em->bdev =
210                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
211                 read_unlock(&em_tree->lock);
212                 goto out;
213         }
214         read_unlock(&em_tree->lock);
215
216         em = alloc_extent_map();
217         if (!em) {
218                 em = ERR_PTR(-ENOMEM);
219                 goto out;
220         }
221         em->start = 0;
222         em->len = (u64)-1;
223         em->block_len = (u64)-1;
224         em->block_start = 0;
225         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
226
227         write_lock(&em_tree->lock);
228         ret = add_extent_mapping(em_tree, em, 0);
229         if (ret == -EEXIST) {
230                 free_extent_map(em);
231                 em = lookup_extent_mapping(em_tree, start, len);
232                 if (!em)
233                         em = ERR_PTR(-EIO);
234         } else if (ret) {
235                 free_extent_map(em);
236                 em = ERR_PTR(ret);
237         }
238         write_unlock(&em_tree->lock);
239
240 out:
241         return em;
242 }
243
244 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
245 {
246         return crc32c(seed, data, len);
247 }
248
249 void btrfs_csum_final(u32 crc, char *result)
250 {
251         put_unaligned_le32(~crc, result);
252 }
253
254 /*
255  * compute the csum for a btree block, and either verify it or write it
256  * into the csum field of the block.
257  */
258 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
259                            int verify)
260 {
261         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
262         char *result = NULL;
263         unsigned long len;
264         unsigned long cur_len;
265         unsigned long offset = BTRFS_CSUM_SIZE;
266         char *kaddr;
267         unsigned long map_start;
268         unsigned long map_len;
269         int err;
270         u32 crc = ~(u32)0;
271         unsigned long inline_result;
272
273         len = buf->len - offset;
274         while (len > 0) {
275                 err = map_private_extent_buffer(buf, offset, 32,
276                                         &kaddr, &map_start, &map_len);
277                 if (err)
278                         return 1;
279                 cur_len = min(len, map_len - (offset - map_start));
280                 crc = btrfs_csum_data(kaddr + offset - map_start,
281                                       crc, cur_len);
282                 len -= cur_len;
283                 offset += cur_len;
284         }
285         if (csum_size > sizeof(inline_result)) {
286                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
287                 if (!result)
288                         return 1;
289         } else {
290                 result = (char *)&inline_result;
291         }
292
293         btrfs_csum_final(crc, result);
294
295         if (verify) {
296                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
297                         u32 val;
298                         u32 found = 0;
299                         memcpy(&found, result, csum_size);
300
301                         read_extent_buffer(buf, &val, 0, csum_size);
302                         printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
303                                        "failed on %llu wanted %X found %X "
304                                        "level %d\n",
305                                        root->fs_info->sb->s_id,
306                                        (unsigned long long)buf->start, val, found,
307                                        btrfs_header_level(buf));
308                         if (result != (char *)&inline_result)
309                                 kfree(result);
310                         return 1;
311                 }
312         } else {
313                 write_extent_buffer(buf, result, 0, csum_size);
314         }
315         if (result != (char *)&inline_result)
316                 kfree(result);
317         return 0;
318 }
319
320 /*
321  * we can't consider a given block up to date unless the transid of the
322  * block matches the transid in the parent node's pointer.  This is how we
323  * detect blocks that either didn't get written at all or got written
324  * in the wrong place.
325  */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327                                  struct extent_buffer *eb, u64 parent_transid,
328                                  int atomic)
329 {
330         struct extent_state *cached_state = NULL;
331         int ret;
332
333         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334                 return 0;
335
336         if (atomic)
337                 return -EAGAIN;
338
339         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340                          0, &cached_state);
341         if (extent_buffer_uptodate(eb) &&
342             btrfs_header_generation(eb) == parent_transid) {
343                 ret = 0;
344                 goto out;
345         }
346         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347                        "found %llu\n",
348                        (unsigned long long)eb->start,
349                        (unsigned long long)parent_transid,
350                        (unsigned long long)btrfs_header_generation(eb));
351         ret = 1;
352         clear_extent_buffer_uptodate(eb);
353 out:
354         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
355                              &cached_state, GFP_NOFS);
356         return ret;
357 }
358
359 /*
360  * Return 0 if the superblock checksum type matches the checksum value of that
361  * algorithm. Pass the raw disk superblock data.
362  */
363 static int btrfs_check_super_csum(char *raw_disk_sb)
364 {
365         struct btrfs_super_block *disk_sb =
366                 (struct btrfs_super_block *)raw_disk_sb;
367         u16 csum_type = btrfs_super_csum_type(disk_sb);
368         int ret = 0;
369
370         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
371                 u32 crc = ~(u32)0;
372                 const int csum_size = sizeof(crc);
373                 char result[csum_size];
374
375                 /*
376                  * The super_block structure does not span the whole
377                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
378                  * is filled with zeros and is included in the checkum.
379                  */
380                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
381                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
382                 btrfs_csum_final(crc, result);
383
384                 if (memcmp(raw_disk_sb, result, csum_size))
385                         ret = 1;
386         }
387
388         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
389                 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
390                                 csum_type);
391                 ret = 1;
392         }
393
394         return ret;
395 }
396
397 /*
398  * helper to read a given tree block, doing retries as required when
399  * the checksums don't match and we have alternate mirrors to try.
400  */
401 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
402                                           struct extent_buffer *eb,
403                                           u64 start, u64 parent_transid)
404 {
405         struct extent_io_tree *io_tree;
406         int failed = 0;
407         int ret;
408         int num_copies = 0;
409         int mirror_num = 0;
410         int failed_mirror = 0;
411
412         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
413         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
414         while (1) {
415                 ret = read_extent_buffer_pages(io_tree, eb, start,
416                                                WAIT_COMPLETE,
417                                                btree_get_extent, mirror_num);
418                 if (!ret) {
419                         if (!verify_parent_transid(io_tree, eb,
420                                                    parent_transid, 0))
421                                 break;
422                         else
423                                 ret = -EIO;
424                 }
425
426                 /*
427                  * This buffer's crc is fine, but its contents are corrupted, so
428                  * there is no reason to read the other copies, they won't be
429                  * any less wrong.
430                  */
431                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
432                         break;
433
434                 num_copies = btrfs_num_copies(root->fs_info,
435                                               eb->start, eb->len);
436                 if (num_copies == 1)
437                         break;
438
439                 if (!failed_mirror) {
440                         failed = 1;
441                         failed_mirror = eb->read_mirror;
442                 }
443
444                 mirror_num++;
445                 if (mirror_num == failed_mirror)
446                         mirror_num++;
447
448                 if (mirror_num > num_copies)
449                         break;
450         }
451
452         if (failed && !ret && failed_mirror)
453                 repair_eb_io_failure(root, eb, failed_mirror);
454
455         return ret;
456 }
457
458 /*
459  * checksum a dirty tree block before IO.  This has extra checks to make sure
460  * we only fill in the checksum field in the first page of a multi-page block
461  */
462
463 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
464 {
465         struct extent_io_tree *tree;
466         u64 start = page_offset(page);
467         u64 found_start;
468         struct extent_buffer *eb;
469
470         tree = &BTRFS_I(page->mapping->host)->io_tree;
471
472         eb = (struct extent_buffer *)page->private;
473         if (page != eb->pages[0])
474                 return 0;
475         found_start = btrfs_header_bytenr(eb);
476         if (found_start != start) {
477                 WARN_ON(1);
478                 return 0;
479         }
480         if (!PageUptodate(page)) {
481                 WARN_ON(1);
482                 return 0;
483         }
484         csum_tree_block(root, eb, 0);
485         return 0;
486 }
487
488 static int check_tree_block_fsid(struct btrfs_root *root,
489                                  struct extent_buffer *eb)
490 {
491         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
492         u8 fsid[BTRFS_UUID_SIZE];
493         int ret = 1;
494
495         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
496                            BTRFS_FSID_SIZE);
497         while (fs_devices) {
498                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
499                         ret = 0;
500                         break;
501                 }
502                 fs_devices = fs_devices->seed;
503         }
504         return ret;
505 }
506
507 #define CORRUPT(reason, eb, root, slot)                         \
508         printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
509                "root=%llu, slot=%d\n", reason,                  \
510                (unsigned long long)btrfs_header_bytenr(eb),     \
511                (unsigned long long)root->objectid, slot)
512
513 static noinline int check_leaf(struct btrfs_root *root,
514                                struct extent_buffer *leaf)
515 {
516         struct btrfs_key key;
517         struct btrfs_key leaf_key;
518         u32 nritems = btrfs_header_nritems(leaf);
519         int slot;
520
521         if (nritems == 0)
522                 return 0;
523
524         /* Check the 0 item */
525         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
526             BTRFS_LEAF_DATA_SIZE(root)) {
527                 CORRUPT("invalid item offset size pair", leaf, root, 0);
528                 return -EIO;
529         }
530
531         /*
532          * Check to make sure each items keys are in the correct order and their
533          * offsets make sense.  We only have to loop through nritems-1 because
534          * we check the current slot against the next slot, which verifies the
535          * next slot's offset+size makes sense and that the current's slot
536          * offset is correct.
537          */
538         for (slot = 0; slot < nritems - 1; slot++) {
539                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
540                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
541
542                 /* Make sure the keys are in the right order */
543                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
544                         CORRUPT("bad key order", leaf, root, slot);
545                         return -EIO;
546                 }
547
548                 /*
549                  * Make sure the offset and ends are right, remember that the
550                  * item data starts at the end of the leaf and grows towards the
551                  * front.
552                  */
553                 if (btrfs_item_offset_nr(leaf, slot) !=
554                         btrfs_item_end_nr(leaf, slot + 1)) {
555                         CORRUPT("slot offset bad", leaf, root, slot);
556                         return -EIO;
557                 }
558
559                 /*
560                  * Check to make sure that we don't point outside of the leaf,
561                  * just incase all the items are consistent to eachother, but
562                  * all point outside of the leaf.
563                  */
564                 if (btrfs_item_end_nr(leaf, slot) >
565                     BTRFS_LEAF_DATA_SIZE(root)) {
566                         CORRUPT("slot end outside of leaf", leaf, root, slot);
567                         return -EIO;
568                 }
569         }
570
571         return 0;
572 }
573
574 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
575                                struct extent_state *state, int mirror)
576 {
577         struct extent_io_tree *tree;
578         u64 found_start;
579         int found_level;
580         struct extent_buffer *eb;
581         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
582         int ret = 0;
583         int reads_done;
584
585         if (!page->private)
586                 goto out;
587
588         tree = &BTRFS_I(page->mapping->host)->io_tree;
589         eb = (struct extent_buffer *)page->private;
590
591         /* the pending IO might have been the only thing that kept this buffer
592          * in memory.  Make sure we have a ref for all this other checks
593          */
594         extent_buffer_get(eb);
595
596         reads_done = atomic_dec_and_test(&eb->io_pages);
597         if (!reads_done)
598                 goto err;
599
600         eb->read_mirror = mirror;
601         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
602                 ret = -EIO;
603                 goto err;
604         }
605
606         found_start = btrfs_header_bytenr(eb);
607         if (found_start != eb->start) {
608                 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
609                                "%llu %llu\n",
610                                (unsigned long long)found_start,
611                                (unsigned long long)eb->start);
612                 ret = -EIO;
613                 goto err;
614         }
615         if (check_tree_block_fsid(root, eb)) {
616                 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
617                                (unsigned long long)eb->start);
618                 ret = -EIO;
619                 goto err;
620         }
621         found_level = btrfs_header_level(eb);
622         if (found_level >= BTRFS_MAX_LEVEL) {
623                 btrfs_info(root->fs_info, "bad tree block level %d\n",
624                            (int)btrfs_header_level(eb));
625                 ret = -EIO;
626                 goto err;
627         }
628
629         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
630                                        eb, found_level);
631
632         ret = csum_tree_block(root, eb, 1);
633         if (ret) {
634                 ret = -EIO;
635                 goto err;
636         }
637
638         /*
639          * If this is a leaf block and it is corrupt, set the corrupt bit so
640          * that we don't try and read the other copies of this block, just
641          * return -EIO.
642          */
643         if (found_level == 0 && check_leaf(root, eb)) {
644                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
645                 ret = -EIO;
646         }
647
648         if (!ret)
649                 set_extent_buffer_uptodate(eb);
650 err:
651         if (reads_done &&
652             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
653                 btree_readahead_hook(root, eb, eb->start, ret);
654
655         if (ret) {
656                 /*
657                  * our io error hook is going to dec the io pages
658                  * again, we have to make sure it has something
659                  * to decrement
660                  */
661                 atomic_inc(&eb->io_pages);
662                 clear_extent_buffer_uptodate(eb);
663         }
664         free_extent_buffer(eb);
665 out:
666         return ret;
667 }
668
669 static int btree_io_failed_hook(struct page *page, int failed_mirror)
670 {
671         struct extent_buffer *eb;
672         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
673
674         eb = (struct extent_buffer *)page->private;
675         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
676         eb->read_mirror = failed_mirror;
677         atomic_dec(&eb->io_pages);
678         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
679                 btree_readahead_hook(root, eb, eb->start, -EIO);
680         return -EIO;    /* we fixed nothing */
681 }
682
683 static void end_workqueue_bio(struct bio *bio, int err)
684 {
685         struct end_io_wq *end_io_wq = bio->bi_private;
686         struct btrfs_fs_info *fs_info;
687
688         fs_info = end_io_wq->info;
689         end_io_wq->error = err;
690         end_io_wq->work.func = end_workqueue_fn;
691         end_io_wq->work.flags = 0;
692
693         if (bio->bi_rw & REQ_WRITE) {
694                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
695                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
696                                            &end_io_wq->work);
697                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
698                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
699                                            &end_io_wq->work);
700                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
701                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
702                                            &end_io_wq->work);
703                 else
704                         btrfs_queue_worker(&fs_info->endio_write_workers,
705                                            &end_io_wq->work);
706         } else {
707                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
708                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
709                                            &end_io_wq->work);
710                 else if (end_io_wq->metadata)
711                         btrfs_queue_worker(&fs_info->endio_meta_workers,
712                                            &end_io_wq->work);
713                 else
714                         btrfs_queue_worker(&fs_info->endio_workers,
715                                            &end_io_wq->work);
716         }
717 }
718
719 /*
720  * For the metadata arg you want
721  *
722  * 0 - if data
723  * 1 - if normal metadta
724  * 2 - if writing to the free space cache area
725  * 3 - raid parity work
726  */
727 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
728                         int metadata)
729 {
730         struct end_io_wq *end_io_wq;
731         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
732         if (!end_io_wq)
733                 return -ENOMEM;
734
735         end_io_wq->private = bio->bi_private;
736         end_io_wq->end_io = bio->bi_end_io;
737         end_io_wq->info = info;
738         end_io_wq->error = 0;
739         end_io_wq->bio = bio;
740         end_io_wq->metadata = metadata;
741
742         bio->bi_private = end_io_wq;
743         bio->bi_end_io = end_workqueue_bio;
744         return 0;
745 }
746
747 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
748 {
749         unsigned long limit = min_t(unsigned long,
750                                     info->workers.max_workers,
751                                     info->fs_devices->open_devices);
752         return 256 * limit;
753 }
754
755 static void run_one_async_start(struct btrfs_work *work)
756 {
757         struct async_submit_bio *async;
758         int ret;
759
760         async = container_of(work, struct  async_submit_bio, work);
761         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
762                                       async->mirror_num, async->bio_flags,
763                                       async->bio_offset);
764         if (ret)
765                 async->error = ret;
766 }
767
768 static void run_one_async_done(struct btrfs_work *work)
769 {
770         struct btrfs_fs_info *fs_info;
771         struct async_submit_bio *async;
772         int limit;
773
774         async = container_of(work, struct  async_submit_bio, work);
775         fs_info = BTRFS_I(async->inode)->root->fs_info;
776
777         limit = btrfs_async_submit_limit(fs_info);
778         limit = limit * 2 / 3;
779
780         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
781             waitqueue_active(&fs_info->async_submit_wait))
782                 wake_up(&fs_info->async_submit_wait);
783
784         /* If an error occured we just want to clean up the bio and move on */
785         if (async->error) {
786                 bio_endio(async->bio, async->error);
787                 return;
788         }
789
790         async->submit_bio_done(async->inode, async->rw, async->bio,
791                                async->mirror_num, async->bio_flags,
792                                async->bio_offset);
793 }
794
795 static void run_one_async_free(struct btrfs_work *work)
796 {
797         struct async_submit_bio *async;
798
799         async = container_of(work, struct  async_submit_bio, work);
800         kfree(async);
801 }
802
803 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
804                         int rw, struct bio *bio, int mirror_num,
805                         unsigned long bio_flags,
806                         u64 bio_offset,
807                         extent_submit_bio_hook_t *submit_bio_start,
808                         extent_submit_bio_hook_t *submit_bio_done)
809 {
810         struct async_submit_bio *async;
811
812         async = kmalloc(sizeof(*async), GFP_NOFS);
813         if (!async)
814                 return -ENOMEM;
815
816         async->inode = inode;
817         async->rw = rw;
818         async->bio = bio;
819         async->mirror_num = mirror_num;
820         async->submit_bio_start = submit_bio_start;
821         async->submit_bio_done = submit_bio_done;
822
823         async->work.func = run_one_async_start;
824         async->work.ordered_func = run_one_async_done;
825         async->work.ordered_free = run_one_async_free;
826
827         async->work.flags = 0;
828         async->bio_flags = bio_flags;
829         async->bio_offset = bio_offset;
830
831         async->error = 0;
832
833         atomic_inc(&fs_info->nr_async_submits);
834
835         if (rw & REQ_SYNC)
836                 btrfs_set_work_high_prio(&async->work);
837
838         btrfs_queue_worker(&fs_info->workers, &async->work);
839
840         while (atomic_read(&fs_info->async_submit_draining) &&
841               atomic_read(&fs_info->nr_async_submits)) {
842                 wait_event(fs_info->async_submit_wait,
843                            (atomic_read(&fs_info->nr_async_submits) == 0));
844         }
845
846         return 0;
847 }
848
849 static int btree_csum_one_bio(struct bio *bio)
850 {
851         struct bio_vec *bvec = bio->bi_io_vec;
852         int bio_index = 0;
853         struct btrfs_root *root;
854         int ret = 0;
855
856         WARN_ON(bio->bi_vcnt <= 0);
857         while (bio_index < bio->bi_vcnt) {
858                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
859                 ret = csum_dirty_buffer(root, bvec->bv_page);
860                 if (ret)
861                         break;
862                 bio_index++;
863                 bvec++;
864         }
865         return ret;
866 }
867
868 static int __btree_submit_bio_start(struct inode *inode, int rw,
869                                     struct bio *bio, int mirror_num,
870                                     unsigned long bio_flags,
871                                     u64 bio_offset)
872 {
873         /*
874          * when we're called for a write, we're already in the async
875          * submission context.  Just jump into btrfs_map_bio
876          */
877         return btree_csum_one_bio(bio);
878 }
879
880 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
881                                  int mirror_num, unsigned long bio_flags,
882                                  u64 bio_offset)
883 {
884         int ret;
885
886         /*
887          * when we're called for a write, we're already in the async
888          * submission context.  Just jump into btrfs_map_bio
889          */
890         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
891         if (ret)
892                 bio_endio(bio, ret);
893         return ret;
894 }
895
896 static int check_async_write(struct inode *inode, unsigned long bio_flags)
897 {
898         if (bio_flags & EXTENT_BIO_TREE_LOG)
899                 return 0;
900 #ifdef CONFIG_X86
901         if (cpu_has_xmm4_2)
902                 return 0;
903 #endif
904         return 1;
905 }
906
907 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
908                                  int mirror_num, unsigned long bio_flags,
909                                  u64 bio_offset)
910 {
911         int async = check_async_write(inode, bio_flags);
912         int ret;
913
914         if (!(rw & REQ_WRITE)) {
915                 /*
916                  * called for a read, do the setup so that checksum validation
917                  * can happen in the async kernel threads
918                  */
919                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
920                                           bio, 1);
921                 if (ret)
922                         goto out_w_error;
923                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
924                                     mirror_num, 0);
925         } else if (!async) {
926                 ret = btree_csum_one_bio(bio);
927                 if (ret)
928                         goto out_w_error;
929                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
930                                     mirror_num, 0);
931         } else {
932                 /*
933                  * kthread helpers are used to submit writes so that
934                  * checksumming can happen in parallel across all CPUs
935                  */
936                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
937                                           inode, rw, bio, mirror_num, 0,
938                                           bio_offset,
939                                           __btree_submit_bio_start,
940                                           __btree_submit_bio_done);
941         }
942
943         if (ret) {
944 out_w_error:
945                 bio_endio(bio, ret);
946         }
947         return ret;
948 }
949
950 #ifdef CONFIG_MIGRATION
951 static int btree_migratepage(struct address_space *mapping,
952                         struct page *newpage, struct page *page,
953                         enum migrate_mode mode)
954 {
955         /*
956          * we can't safely write a btree page from here,
957          * we haven't done the locking hook
958          */
959         if (PageDirty(page))
960                 return -EAGAIN;
961         /*
962          * Buffers may be managed in a filesystem specific way.
963          * We must have no buffers or drop them.
964          */
965         if (page_has_private(page) &&
966             !try_to_release_page(page, GFP_KERNEL))
967                 return -EAGAIN;
968         return migrate_page(mapping, newpage, page, mode);
969 }
970 #endif
971
972
973 static int btree_writepages(struct address_space *mapping,
974                             struct writeback_control *wbc)
975 {
976         struct extent_io_tree *tree;
977         struct btrfs_fs_info *fs_info;
978         int ret;
979
980         tree = &BTRFS_I(mapping->host)->io_tree;
981         if (wbc->sync_mode == WB_SYNC_NONE) {
982
983                 if (wbc->for_kupdate)
984                         return 0;
985
986                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
987                 /* this is a bit racy, but that's ok */
988                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
989                                              BTRFS_DIRTY_METADATA_THRESH);
990                 if (ret < 0)
991                         return 0;
992         }
993         return btree_write_cache_pages(mapping, wbc);
994 }
995
996 static int btree_readpage(struct file *file, struct page *page)
997 {
998         struct extent_io_tree *tree;
999         tree = &BTRFS_I(page->mapping->host)->io_tree;
1000         return extent_read_full_page(tree, page, btree_get_extent, 0);
1001 }
1002
1003 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1004 {
1005         if (PageWriteback(page) || PageDirty(page))
1006                 return 0;
1007
1008         return try_release_extent_buffer(page);
1009 }
1010
1011 static void btree_invalidatepage(struct page *page, unsigned long offset)
1012 {
1013         struct extent_io_tree *tree;
1014         tree = &BTRFS_I(page->mapping->host)->io_tree;
1015         extent_invalidatepage(tree, page, offset);
1016         btree_releasepage(page, GFP_NOFS);
1017         if (PagePrivate(page)) {
1018                 printk(KERN_WARNING "btrfs warning page private not zero "
1019                        "on page %llu\n", (unsigned long long)page_offset(page));
1020                 ClearPagePrivate(page);
1021                 set_page_private(page, 0);
1022                 page_cache_release(page);
1023         }
1024 }
1025
1026 static int btree_set_page_dirty(struct page *page)
1027 {
1028 #ifdef DEBUG
1029         struct extent_buffer *eb;
1030
1031         BUG_ON(!PagePrivate(page));
1032         eb = (struct extent_buffer *)page->private;
1033         BUG_ON(!eb);
1034         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1035         BUG_ON(!atomic_read(&eb->refs));
1036         btrfs_assert_tree_locked(eb);
1037 #endif
1038         return __set_page_dirty_nobuffers(page);
1039 }
1040
1041 static const struct address_space_operations btree_aops = {
1042         .readpage       = btree_readpage,
1043         .writepages     = btree_writepages,
1044         .releasepage    = btree_releasepage,
1045         .invalidatepage = btree_invalidatepage,
1046 #ifdef CONFIG_MIGRATION
1047         .migratepage    = btree_migratepage,
1048 #endif
1049         .set_page_dirty = btree_set_page_dirty,
1050 };
1051
1052 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1053                          u64 parent_transid)
1054 {
1055         struct extent_buffer *buf = NULL;
1056         struct inode *btree_inode = root->fs_info->btree_inode;
1057         int ret = 0;
1058
1059         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1060         if (!buf)
1061                 return 0;
1062         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1063                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1064         free_extent_buffer(buf);
1065         return ret;
1066 }
1067
1068 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1069                          int mirror_num, struct extent_buffer **eb)
1070 {
1071         struct extent_buffer *buf = NULL;
1072         struct inode *btree_inode = root->fs_info->btree_inode;
1073         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1074         int ret;
1075
1076         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1077         if (!buf)
1078                 return 0;
1079
1080         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1081
1082         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1083                                        btree_get_extent, mirror_num);
1084         if (ret) {
1085                 free_extent_buffer(buf);
1086                 return ret;
1087         }
1088
1089         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1090                 free_extent_buffer(buf);
1091                 return -EIO;
1092         } else if (extent_buffer_uptodate(buf)) {
1093                 *eb = buf;
1094         } else {
1095                 free_extent_buffer(buf);
1096         }
1097         return 0;
1098 }
1099
1100 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1101                                             u64 bytenr, u32 blocksize)
1102 {
1103         struct inode *btree_inode = root->fs_info->btree_inode;
1104         struct extent_buffer *eb;
1105         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1106                                 bytenr, blocksize);
1107         return eb;
1108 }
1109
1110 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1111                                                  u64 bytenr, u32 blocksize)
1112 {
1113         struct inode *btree_inode = root->fs_info->btree_inode;
1114         struct extent_buffer *eb;
1115
1116         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1117                                  bytenr, blocksize);
1118         return eb;
1119 }
1120
1121
1122 int btrfs_write_tree_block(struct extent_buffer *buf)
1123 {
1124         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1125                                         buf->start + buf->len - 1);
1126 }
1127
1128 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1129 {
1130         return filemap_fdatawait_range(buf->pages[0]->mapping,
1131                                        buf->start, buf->start + buf->len - 1);
1132 }
1133
1134 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1135                                       u32 blocksize, u64 parent_transid)
1136 {
1137         struct extent_buffer *buf = NULL;
1138         int ret;
1139
1140         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1141         if (!buf)
1142                 return NULL;
1143
1144         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1145         return buf;
1146
1147 }
1148
1149 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1150                       struct extent_buffer *buf)
1151 {
1152         struct btrfs_fs_info *fs_info = root->fs_info;
1153
1154         if (btrfs_header_generation(buf) ==
1155             fs_info->running_transaction->transid) {
1156                 btrfs_assert_tree_locked(buf);
1157
1158                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1159                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1160                                              -buf->len,
1161                                              fs_info->dirty_metadata_batch);
1162                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1163                         btrfs_set_lock_blocking(buf);
1164                         clear_extent_buffer_dirty(buf);
1165                 }
1166         }
1167 }
1168
1169 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1170                          u32 stripesize, struct btrfs_root *root,
1171                          struct btrfs_fs_info *fs_info,
1172                          u64 objectid)
1173 {
1174         root->node = NULL;
1175         root->commit_root = NULL;
1176         root->sectorsize = sectorsize;
1177         root->nodesize = nodesize;
1178         root->leafsize = leafsize;
1179         root->stripesize = stripesize;
1180         root->ref_cows = 0;
1181         root->track_dirty = 0;
1182         root->in_radix = 0;
1183         root->orphan_item_inserted = 0;
1184         root->orphan_cleanup_state = 0;
1185
1186         root->objectid = objectid;
1187         root->last_trans = 0;
1188         root->highest_objectid = 0;
1189         root->name = NULL;
1190         root->inode_tree = RB_ROOT;
1191         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1192         root->block_rsv = NULL;
1193         root->orphan_block_rsv = NULL;
1194
1195         INIT_LIST_HEAD(&root->dirty_list);
1196         INIT_LIST_HEAD(&root->root_list);
1197         INIT_LIST_HEAD(&root->logged_list[0]);
1198         INIT_LIST_HEAD(&root->logged_list[1]);
1199         spin_lock_init(&root->orphan_lock);
1200         spin_lock_init(&root->inode_lock);
1201         spin_lock_init(&root->accounting_lock);
1202         spin_lock_init(&root->log_extents_lock[0]);
1203         spin_lock_init(&root->log_extents_lock[1]);
1204         mutex_init(&root->objectid_mutex);
1205         mutex_init(&root->log_mutex);
1206         init_waitqueue_head(&root->log_writer_wait);
1207         init_waitqueue_head(&root->log_commit_wait[0]);
1208         init_waitqueue_head(&root->log_commit_wait[1]);
1209         atomic_set(&root->log_commit[0], 0);
1210         atomic_set(&root->log_commit[1], 0);
1211         atomic_set(&root->log_writers, 0);
1212         atomic_set(&root->log_batch, 0);
1213         atomic_set(&root->orphan_inodes, 0);
1214         root->log_transid = 0;
1215         root->last_log_commit = 0;
1216         extent_io_tree_init(&root->dirty_log_pages,
1217                              fs_info->btree_inode->i_mapping);
1218
1219         memset(&root->root_key, 0, sizeof(root->root_key));
1220         memset(&root->root_item, 0, sizeof(root->root_item));
1221         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1222         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1223         root->defrag_trans_start = fs_info->generation;
1224         init_completion(&root->kobj_unregister);
1225         root->defrag_running = 0;
1226         root->root_key.objectid = objectid;
1227         root->anon_dev = 0;
1228
1229         spin_lock_init(&root->root_item_lock);
1230 }
1231
1232 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1233                                             struct btrfs_fs_info *fs_info,
1234                                             u64 objectid,
1235                                             struct btrfs_root *root)
1236 {
1237         int ret;
1238         u32 blocksize;
1239         u64 generation;
1240
1241         __setup_root(tree_root->nodesize, tree_root->leafsize,
1242                      tree_root->sectorsize, tree_root->stripesize,
1243                      root, fs_info, objectid);
1244         ret = btrfs_find_last_root(tree_root, objectid,
1245                                    &root->root_item, &root->root_key);
1246         if (ret > 0)
1247                 return -ENOENT;
1248         else if (ret < 0)
1249                 return ret;
1250
1251         generation = btrfs_root_generation(&root->root_item);
1252         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1253         root->commit_root = NULL;
1254         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1255                                      blocksize, generation);
1256         if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1257                 free_extent_buffer(root->node);
1258                 root->node = NULL;
1259                 return -EIO;
1260         }
1261         root->commit_root = btrfs_root_node(root);
1262         return 0;
1263 }
1264
1265 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1266 {
1267         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1268         if (root)
1269                 root->fs_info = fs_info;
1270         return root;
1271 }
1272
1273 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1274                                      struct btrfs_fs_info *fs_info,
1275                                      u64 objectid)
1276 {
1277         struct extent_buffer *leaf;
1278         struct btrfs_root *tree_root = fs_info->tree_root;
1279         struct btrfs_root *root;
1280         struct btrfs_key key;
1281         int ret = 0;
1282         u64 bytenr;
1283         uuid_le uuid;
1284
1285         root = btrfs_alloc_root(fs_info);
1286         if (!root)
1287                 return ERR_PTR(-ENOMEM);
1288
1289         __setup_root(tree_root->nodesize, tree_root->leafsize,
1290                      tree_root->sectorsize, tree_root->stripesize,
1291                      root, fs_info, objectid);
1292         root->root_key.objectid = objectid;
1293         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1294         root->root_key.offset = 0;
1295
1296         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1297                                       0, objectid, NULL, 0, 0, 0);
1298         if (IS_ERR(leaf)) {
1299                 ret = PTR_ERR(leaf);
1300                 leaf = NULL;
1301                 goto fail;
1302         }
1303
1304         bytenr = leaf->start;
1305         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1306         btrfs_set_header_bytenr(leaf, leaf->start);
1307         btrfs_set_header_generation(leaf, trans->transid);
1308         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1309         btrfs_set_header_owner(leaf, objectid);
1310         root->node = leaf;
1311
1312         write_extent_buffer(leaf, fs_info->fsid,
1313                             (unsigned long)btrfs_header_fsid(leaf),
1314                             BTRFS_FSID_SIZE);
1315         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1316                             (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1317                             BTRFS_UUID_SIZE);
1318         btrfs_mark_buffer_dirty(leaf);
1319
1320         root->commit_root = btrfs_root_node(root);
1321         root->track_dirty = 1;
1322
1323
1324         root->root_item.flags = 0;
1325         root->root_item.byte_limit = 0;
1326         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1327         btrfs_set_root_generation(&root->root_item, trans->transid);
1328         btrfs_set_root_level(&root->root_item, 0);
1329         btrfs_set_root_refs(&root->root_item, 1);
1330         btrfs_set_root_used(&root->root_item, leaf->len);
1331         btrfs_set_root_last_snapshot(&root->root_item, 0);
1332         btrfs_set_root_dirid(&root->root_item, 0);
1333         uuid_le_gen(&uuid);
1334         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1335         root->root_item.drop_level = 0;
1336
1337         key.objectid = objectid;
1338         key.type = BTRFS_ROOT_ITEM_KEY;
1339         key.offset = 0;
1340         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1341         if (ret)
1342                 goto fail;
1343
1344         btrfs_tree_unlock(leaf);
1345
1346         return root;
1347
1348 fail:
1349         if (leaf) {
1350                 btrfs_tree_unlock(leaf);
1351                 free_extent_buffer(leaf);
1352         }
1353         kfree(root);
1354
1355         return ERR_PTR(ret);
1356 }
1357
1358 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1359                                          struct btrfs_fs_info *fs_info)
1360 {
1361         struct btrfs_root *root;
1362         struct btrfs_root *tree_root = fs_info->tree_root;
1363         struct extent_buffer *leaf;
1364
1365         root = btrfs_alloc_root(fs_info);
1366         if (!root)
1367                 return ERR_PTR(-ENOMEM);
1368
1369         __setup_root(tree_root->nodesize, tree_root->leafsize,
1370                      tree_root->sectorsize, tree_root->stripesize,
1371                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1372
1373         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1374         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1375         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1376         /*
1377          * log trees do not get reference counted because they go away
1378          * before a real commit is actually done.  They do store pointers
1379          * to file data extents, and those reference counts still get
1380          * updated (along with back refs to the log tree).
1381          */
1382         root->ref_cows = 0;
1383
1384         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1385                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1386                                       0, 0, 0);
1387         if (IS_ERR(leaf)) {
1388                 kfree(root);
1389                 return ERR_CAST(leaf);
1390         }
1391
1392         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1393         btrfs_set_header_bytenr(leaf, leaf->start);
1394         btrfs_set_header_generation(leaf, trans->transid);
1395         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1396         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1397         root->node = leaf;
1398
1399         write_extent_buffer(root->node, root->fs_info->fsid,
1400                             (unsigned long)btrfs_header_fsid(root->node),
1401                             BTRFS_FSID_SIZE);
1402         btrfs_mark_buffer_dirty(root->node);
1403         btrfs_tree_unlock(root->node);
1404         return root;
1405 }
1406
1407 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1408                              struct btrfs_fs_info *fs_info)
1409 {
1410         struct btrfs_root *log_root;
1411
1412         log_root = alloc_log_tree(trans, fs_info);
1413         if (IS_ERR(log_root))
1414                 return PTR_ERR(log_root);
1415         WARN_ON(fs_info->log_root_tree);
1416         fs_info->log_root_tree = log_root;
1417         return 0;
1418 }
1419
1420 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1421                        struct btrfs_root *root)
1422 {
1423         struct btrfs_root *log_root;
1424         struct btrfs_inode_item *inode_item;
1425
1426         log_root = alloc_log_tree(trans, root->fs_info);
1427         if (IS_ERR(log_root))
1428                 return PTR_ERR(log_root);
1429
1430         log_root->last_trans = trans->transid;
1431         log_root->root_key.offset = root->root_key.objectid;
1432
1433         inode_item = &log_root->root_item.inode;
1434         inode_item->generation = cpu_to_le64(1);
1435         inode_item->size = cpu_to_le64(3);
1436         inode_item->nlink = cpu_to_le32(1);
1437         inode_item->nbytes = cpu_to_le64(root->leafsize);
1438         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1439
1440         btrfs_set_root_node(&log_root->root_item, log_root->node);
1441
1442         WARN_ON(root->log_root);
1443         root->log_root = log_root;
1444         root->log_transid = 0;
1445         root->last_log_commit = 0;
1446         return 0;
1447 }
1448
1449 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1450                                                struct btrfs_key *location)
1451 {
1452         struct btrfs_root *root;
1453         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1454         struct btrfs_path *path;
1455         struct extent_buffer *l;
1456         u64 generation;
1457         u32 blocksize;
1458         int ret = 0;
1459         int slot;
1460
1461         root = btrfs_alloc_root(fs_info);
1462         if (!root)
1463                 return ERR_PTR(-ENOMEM);
1464         if (location->offset == (u64)-1) {
1465                 ret = find_and_setup_root(tree_root, fs_info,
1466                                           location->objectid, root);
1467                 if (ret) {
1468                         kfree(root);
1469                         return ERR_PTR(ret);
1470                 }
1471                 goto out;
1472         }
1473
1474         __setup_root(tree_root->nodesize, tree_root->leafsize,
1475                      tree_root->sectorsize, tree_root->stripesize,
1476                      root, fs_info, location->objectid);
1477
1478         path = btrfs_alloc_path();
1479         if (!path) {
1480                 kfree(root);
1481                 return ERR_PTR(-ENOMEM);
1482         }
1483         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1484         if (ret == 0) {
1485                 l = path->nodes[0];
1486                 slot = path->slots[0];
1487                 btrfs_read_root_item(l, slot, &root->root_item);
1488                 memcpy(&root->root_key, location, sizeof(*location));
1489         }
1490         btrfs_free_path(path);
1491         if (ret) {
1492                 kfree(root);
1493                 if (ret > 0)
1494                         ret = -ENOENT;
1495                 return ERR_PTR(ret);
1496         }
1497
1498         generation = btrfs_root_generation(&root->root_item);
1499         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1500         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1501                                      blocksize, generation);
1502         if (!root->node || !extent_buffer_uptodate(root->node)) {
1503                 ret = (!root->node) ? -ENOMEM : -EIO;
1504
1505                 free_extent_buffer(root->node);
1506                 kfree(root);
1507                 return ERR_PTR(ret);
1508         }
1509
1510         root->commit_root = btrfs_root_node(root);
1511         BUG_ON(!root->node); /* -ENOMEM */
1512 out:
1513         if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1514                 root->ref_cows = 1;
1515                 btrfs_check_and_init_root_item(&root->root_item);
1516         }
1517
1518         return root;
1519 }
1520
1521 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1522                                               struct btrfs_key *location)
1523 {
1524         struct btrfs_root *root;
1525         int ret;
1526
1527         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1528                 return fs_info->tree_root;
1529         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1530                 return fs_info->extent_root;
1531         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1532                 return fs_info->chunk_root;
1533         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1534                 return fs_info->dev_root;
1535         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1536                 return fs_info->csum_root;
1537         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1538                 return fs_info->quota_root ? fs_info->quota_root :
1539                                              ERR_PTR(-ENOENT);
1540 again:
1541         spin_lock(&fs_info->fs_roots_radix_lock);
1542         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1543                                  (unsigned long)location->objectid);
1544         spin_unlock(&fs_info->fs_roots_radix_lock);
1545         if (root)
1546                 return root;
1547
1548         root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1549         if (IS_ERR(root))
1550                 return root;
1551
1552         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1553         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1554                                         GFP_NOFS);
1555         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1556                 ret = -ENOMEM;
1557                 goto fail;
1558         }
1559
1560         btrfs_init_free_ino_ctl(root);
1561         mutex_init(&root->fs_commit_mutex);
1562         spin_lock_init(&root->cache_lock);
1563         init_waitqueue_head(&root->cache_wait);
1564
1565         ret = get_anon_bdev(&root->anon_dev);
1566         if (ret)
1567                 goto fail;
1568
1569         if (btrfs_root_refs(&root->root_item) == 0) {
1570                 ret = -ENOENT;
1571                 goto fail;
1572         }
1573
1574         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1575         if (ret < 0)
1576                 goto fail;
1577         if (ret == 0)
1578                 root->orphan_item_inserted = 1;
1579
1580         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1581         if (ret)
1582                 goto fail;
1583
1584         spin_lock(&fs_info->fs_roots_radix_lock);
1585         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1586                                 (unsigned long)root->root_key.objectid,
1587                                 root);
1588         if (ret == 0)
1589                 root->in_radix = 1;
1590
1591         spin_unlock(&fs_info->fs_roots_radix_lock);
1592         radix_tree_preload_end();
1593         if (ret) {
1594                 if (ret == -EEXIST) {
1595                         free_fs_root(root);
1596                         goto again;
1597                 }
1598                 goto fail;
1599         }
1600
1601         ret = btrfs_find_dead_roots(fs_info->tree_root,
1602                                     root->root_key.objectid);
1603         WARN_ON(ret);
1604         return root;
1605 fail:
1606         free_fs_root(root);
1607         return ERR_PTR(ret);
1608 }
1609
1610 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1611 {
1612         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1613         int ret = 0;
1614         struct btrfs_device *device;
1615         struct backing_dev_info *bdi;
1616
1617         rcu_read_lock();
1618         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1619                 if (!device->bdev)
1620                         continue;
1621                 bdi = blk_get_backing_dev_info(device->bdev);
1622                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1623                         ret = 1;
1624                         break;
1625                 }
1626         }
1627         rcu_read_unlock();
1628         return ret;
1629 }
1630
1631 /*
1632  * If this fails, caller must call bdi_destroy() to get rid of the
1633  * bdi again.
1634  */
1635 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1636 {
1637         int err;
1638
1639         bdi->capabilities = BDI_CAP_MAP_COPY;
1640         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1641         if (err)
1642                 return err;
1643
1644         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1645         bdi->congested_fn       = btrfs_congested_fn;
1646         bdi->congested_data     = info;
1647         return 0;
1648 }
1649
1650 /*
1651  * called by the kthread helper functions to finally call the bio end_io
1652  * functions.  This is where read checksum verification actually happens
1653  */
1654 static void end_workqueue_fn(struct btrfs_work *work)
1655 {
1656         struct bio *bio;
1657         struct end_io_wq *end_io_wq;
1658         struct btrfs_fs_info *fs_info;
1659         int error;
1660
1661         end_io_wq = container_of(work, struct end_io_wq, work);
1662         bio = end_io_wq->bio;
1663         fs_info = end_io_wq->info;
1664
1665         error = end_io_wq->error;
1666         bio->bi_private = end_io_wq->private;
1667         bio->bi_end_io = end_io_wq->end_io;
1668         kfree(end_io_wq);
1669         bio_endio(bio, error);
1670 }
1671
1672 static int cleaner_kthread(void *arg)
1673 {
1674         struct btrfs_root *root = arg;
1675
1676         do {
1677                 int again = 0;
1678
1679                 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1680                     down_read_trylock(&root->fs_info->sb->s_umount)) {
1681                         if (mutex_trylock(&root->fs_info->cleaner_mutex)) {
1682                                 btrfs_run_delayed_iputs(root);
1683                                 again = btrfs_clean_one_deleted_snapshot(root);
1684                                 mutex_unlock(&root->fs_info->cleaner_mutex);
1685                         }
1686                         btrfs_run_defrag_inodes(root->fs_info);
1687                         up_read(&root->fs_info->sb->s_umount);
1688                 }
1689
1690                 if (!try_to_freeze() && !again) {
1691                         set_current_state(TASK_INTERRUPTIBLE);
1692                         if (!kthread_should_stop())
1693                                 schedule();
1694                         __set_current_state(TASK_RUNNING);
1695                 }
1696         } while (!kthread_should_stop());
1697         return 0;
1698 }
1699
1700 static int transaction_kthread(void *arg)
1701 {
1702         struct btrfs_root *root = arg;
1703         struct btrfs_trans_handle *trans;
1704         struct btrfs_transaction *cur;
1705         u64 transid;
1706         unsigned long now;
1707         unsigned long delay;
1708         bool cannot_commit;
1709
1710         do {
1711                 cannot_commit = false;
1712                 delay = HZ * 30;
1713                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1714
1715                 spin_lock(&root->fs_info->trans_lock);
1716                 cur = root->fs_info->running_transaction;
1717                 if (!cur) {
1718                         spin_unlock(&root->fs_info->trans_lock);
1719                         goto sleep;
1720                 }
1721
1722                 now = get_seconds();
1723                 if (!cur->blocked &&
1724                     (now < cur->start_time || now - cur->start_time < 30)) {
1725                         spin_unlock(&root->fs_info->trans_lock);
1726                         delay = HZ * 5;
1727                         goto sleep;
1728                 }
1729                 transid = cur->transid;
1730                 spin_unlock(&root->fs_info->trans_lock);
1731
1732                 /* If the file system is aborted, this will always fail. */
1733                 trans = btrfs_attach_transaction(root);
1734                 if (IS_ERR(trans)) {
1735                         if (PTR_ERR(trans) != -ENOENT)
1736                                 cannot_commit = true;
1737                         goto sleep;
1738                 }
1739                 if (transid == trans->transid) {
1740                         btrfs_commit_transaction(trans, root);
1741                 } else {
1742                         btrfs_end_transaction(trans, root);
1743                 }
1744 sleep:
1745                 wake_up_process(root->fs_info->cleaner_kthread);
1746                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1747
1748                 if (!try_to_freeze()) {
1749                         set_current_state(TASK_INTERRUPTIBLE);
1750                         if (!kthread_should_stop() &&
1751                             (!btrfs_transaction_blocked(root->fs_info) ||
1752                              cannot_commit))
1753                                 schedule_timeout(delay);
1754                         __set_current_state(TASK_RUNNING);
1755                 }
1756         } while (!kthread_should_stop());
1757         return 0;
1758 }
1759
1760 /*
1761  * this will find the highest generation in the array of
1762  * root backups.  The index of the highest array is returned,
1763  * or -1 if we can't find anything.
1764  *
1765  * We check to make sure the array is valid by comparing the
1766  * generation of the latest  root in the array with the generation
1767  * in the super block.  If they don't match we pitch it.
1768  */
1769 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1770 {
1771         u64 cur;
1772         int newest_index = -1;
1773         struct btrfs_root_backup *root_backup;
1774         int i;
1775
1776         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1777                 root_backup = info->super_copy->super_roots + i;
1778                 cur = btrfs_backup_tree_root_gen(root_backup);
1779                 if (cur == newest_gen)
1780                         newest_index = i;
1781         }
1782
1783         /* check to see if we actually wrapped around */
1784         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1785                 root_backup = info->super_copy->super_roots;
1786                 cur = btrfs_backup_tree_root_gen(root_backup);
1787                 if (cur == newest_gen)
1788                         newest_index = 0;
1789         }
1790         return newest_index;
1791 }
1792
1793
1794 /*
1795  * find the oldest backup so we know where to store new entries
1796  * in the backup array.  This will set the backup_root_index
1797  * field in the fs_info struct
1798  */
1799 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1800                                      u64 newest_gen)
1801 {
1802         int newest_index = -1;
1803
1804         newest_index = find_newest_super_backup(info, newest_gen);
1805         /* if there was garbage in there, just move along */
1806         if (newest_index == -1) {
1807                 info->backup_root_index = 0;
1808         } else {
1809                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1810         }
1811 }
1812
1813 /*
1814  * copy all the root pointers into the super backup array.
1815  * this will bump the backup pointer by one when it is
1816  * done
1817  */
1818 static void backup_super_roots(struct btrfs_fs_info *info)
1819 {
1820         int next_backup;
1821         struct btrfs_root_backup *root_backup;
1822         int last_backup;
1823
1824         next_backup = info->backup_root_index;
1825         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1826                 BTRFS_NUM_BACKUP_ROOTS;
1827
1828         /*
1829          * just overwrite the last backup if we're at the same generation
1830          * this happens only at umount
1831          */
1832         root_backup = info->super_for_commit->super_roots + last_backup;
1833         if (btrfs_backup_tree_root_gen(root_backup) ==
1834             btrfs_header_generation(info->tree_root->node))
1835                 next_backup = last_backup;
1836
1837         root_backup = info->super_for_commit->super_roots + next_backup;
1838
1839         /*
1840          * make sure all of our padding and empty slots get zero filled
1841          * regardless of which ones we use today
1842          */
1843         memset(root_backup, 0, sizeof(*root_backup));
1844
1845         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1846
1847         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1848         btrfs_set_backup_tree_root_gen(root_backup,
1849                                btrfs_header_generation(info->tree_root->node));
1850
1851         btrfs_set_backup_tree_root_level(root_backup,
1852                                btrfs_header_level(info->tree_root->node));
1853
1854         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1855         btrfs_set_backup_chunk_root_gen(root_backup,
1856                                btrfs_header_generation(info->chunk_root->node));
1857         btrfs_set_backup_chunk_root_level(root_backup,
1858                                btrfs_header_level(info->chunk_root->node));
1859
1860         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1861         btrfs_set_backup_extent_root_gen(root_backup,
1862                                btrfs_header_generation(info->extent_root->node));
1863         btrfs_set_backup_extent_root_level(root_backup,
1864                                btrfs_header_level(info->extent_root->node));
1865
1866         /*
1867          * we might commit during log recovery, which happens before we set
1868          * the fs_root.  Make sure it is valid before we fill it in.
1869          */
1870         if (info->fs_root && info->fs_root->node) {
1871                 btrfs_set_backup_fs_root(root_backup,
1872                                          info->fs_root->node->start);
1873                 btrfs_set_backup_fs_root_gen(root_backup,
1874                                btrfs_header_generation(info->fs_root->node));
1875                 btrfs_set_backup_fs_root_level(root_backup,
1876                                btrfs_header_level(info->fs_root->node));
1877         }
1878
1879         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1880         btrfs_set_backup_dev_root_gen(root_backup,
1881                                btrfs_header_generation(info->dev_root->node));
1882         btrfs_set_backup_dev_root_level(root_backup,
1883                                        btrfs_header_level(info->dev_root->node));
1884
1885         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1886         btrfs_set_backup_csum_root_gen(root_backup,
1887                                btrfs_header_generation(info->csum_root->node));
1888         btrfs_set_backup_csum_root_level(root_backup,
1889                                btrfs_header_level(info->csum_root->node));
1890
1891         btrfs_set_backup_total_bytes(root_backup,
1892                              btrfs_super_total_bytes(info->super_copy));
1893         btrfs_set_backup_bytes_used(root_backup,
1894                              btrfs_super_bytes_used(info->super_copy));
1895         btrfs_set_backup_num_devices(root_backup,
1896                              btrfs_super_num_devices(info->super_copy));
1897
1898         /*
1899          * if we don't copy this out to the super_copy, it won't get remembered
1900          * for the next commit
1901          */
1902         memcpy(&info->super_copy->super_roots,
1903                &info->super_for_commit->super_roots,
1904                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1905 }
1906
1907 /*
1908  * this copies info out of the root backup array and back into
1909  * the in-memory super block.  It is meant to help iterate through
1910  * the array, so you send it the number of backups you've already
1911  * tried and the last backup index you used.
1912  *
1913  * this returns -1 when it has tried all the backups
1914  */
1915 static noinline int next_root_backup(struct btrfs_fs_info *info,
1916                                      struct btrfs_super_block *super,
1917                                      int *num_backups_tried, int *backup_index)
1918 {
1919         struct btrfs_root_backup *root_backup;
1920         int newest = *backup_index;
1921
1922         if (*num_backups_tried == 0) {
1923                 u64 gen = btrfs_super_generation(super);
1924
1925                 newest = find_newest_super_backup(info, gen);
1926                 if (newest == -1)
1927                         return -1;
1928
1929                 *backup_index = newest;
1930                 *num_backups_tried = 1;
1931         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1932                 /* we've tried all the backups, all done */
1933                 return -1;
1934         } else {
1935                 /* jump to the next oldest backup */
1936                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1937                         BTRFS_NUM_BACKUP_ROOTS;
1938                 *backup_index = newest;
1939                 *num_backups_tried += 1;
1940         }
1941         root_backup = super->super_roots + newest;
1942
1943         btrfs_set_super_generation(super,
1944                                    btrfs_backup_tree_root_gen(root_backup));
1945         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1946         btrfs_set_super_root_level(super,
1947                                    btrfs_backup_tree_root_level(root_backup));
1948         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1949
1950         /*
1951          * fixme: the total bytes and num_devices need to match or we should
1952          * need a fsck
1953          */
1954         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1955         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1956         return 0;
1957 }
1958
1959 /* helper to cleanup workers */
1960 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1961 {
1962         btrfs_stop_workers(&fs_info->generic_worker);
1963         btrfs_stop_workers(&fs_info->fixup_workers);
1964         btrfs_stop_workers(&fs_info->delalloc_workers);
1965         btrfs_stop_workers(&fs_info->workers);
1966         btrfs_stop_workers(&fs_info->endio_workers);
1967         btrfs_stop_workers(&fs_info->endio_meta_workers);
1968         btrfs_stop_workers(&fs_info->endio_raid56_workers);
1969         btrfs_stop_workers(&fs_info->rmw_workers);
1970         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1971         btrfs_stop_workers(&fs_info->endio_write_workers);
1972         btrfs_stop_workers(&fs_info->endio_freespace_worker);
1973         btrfs_stop_workers(&fs_info->submit_workers);
1974         btrfs_stop_workers(&fs_info->delayed_workers);
1975         btrfs_stop_workers(&fs_info->caching_workers);
1976         btrfs_stop_workers(&fs_info->readahead_workers);
1977         btrfs_stop_workers(&fs_info->flush_workers);
1978         btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
1979 }
1980
1981 /* helper to cleanup tree roots */
1982 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1983 {
1984         free_extent_buffer(info->tree_root->node);
1985         free_extent_buffer(info->tree_root->commit_root);
1986         free_extent_buffer(info->dev_root->node);
1987         free_extent_buffer(info->dev_root->commit_root);
1988         free_extent_buffer(info->extent_root->node);
1989         free_extent_buffer(info->extent_root->commit_root);
1990         free_extent_buffer(info->csum_root->node);
1991         free_extent_buffer(info->csum_root->commit_root);
1992         if (info->quota_root) {
1993                 free_extent_buffer(info->quota_root->node);
1994                 free_extent_buffer(info->quota_root->commit_root);
1995         }
1996
1997         info->tree_root->node = NULL;
1998         info->tree_root->commit_root = NULL;
1999         info->dev_root->node = NULL;
2000         info->dev_root->commit_root = NULL;
2001         info->extent_root->node = NULL;
2002         info->extent_root->commit_root = NULL;
2003         info->csum_root->node = NULL;
2004         info->csum_root->commit_root = NULL;
2005         if (info->quota_root) {
2006                 info->quota_root->node = NULL;
2007                 info->quota_root->commit_root = NULL;
2008         }
2009
2010         if (chunk_root) {
2011                 free_extent_buffer(info->chunk_root->node);
2012                 free_extent_buffer(info->chunk_root->commit_root);
2013                 info->chunk_root->node = NULL;
2014                 info->chunk_root->commit_root = NULL;
2015         }
2016 }
2017
2018 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2019 {
2020         int ret;
2021         struct btrfs_root *gang[8];
2022         int i;
2023
2024         while (!list_empty(&fs_info->dead_roots)) {
2025                 gang[0] = list_entry(fs_info->dead_roots.next,
2026                                      struct btrfs_root, root_list);
2027                 list_del(&gang[0]->root_list);
2028
2029                 if (gang[0]->in_radix) {
2030                         btrfs_free_fs_root(fs_info, gang[0]);
2031                 } else {
2032                         free_extent_buffer(gang[0]->node);
2033                         free_extent_buffer(gang[0]->commit_root);
2034                         kfree(gang[0]);
2035                 }
2036         }
2037
2038         while (1) {
2039                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2040                                              (void **)gang, 0,
2041                                              ARRAY_SIZE(gang));
2042                 if (!ret)
2043                         break;
2044                 for (i = 0; i < ret; i++)
2045                         btrfs_free_fs_root(fs_info, gang[i]);
2046         }
2047 }
2048
2049 int open_ctree(struct super_block *sb,
2050                struct btrfs_fs_devices *fs_devices,
2051                char *options)
2052 {
2053         u32 sectorsize;
2054         u32 nodesize;
2055         u32 leafsize;
2056         u32 blocksize;
2057         u32 stripesize;
2058         u64 generation;
2059         u64 features;
2060         struct btrfs_key location;
2061         struct buffer_head *bh;
2062         struct btrfs_super_block *disk_super;
2063         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2064         struct btrfs_root *tree_root;
2065         struct btrfs_root *extent_root;
2066         struct btrfs_root *csum_root;
2067         struct btrfs_root *chunk_root;
2068         struct btrfs_root *dev_root;
2069         struct btrfs_root *quota_root;
2070         struct btrfs_root *log_tree_root;
2071         int ret;
2072         int err = -EINVAL;
2073         int num_backups_tried = 0;
2074         int backup_index = 0;
2075
2076         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2077         extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
2078         csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
2079         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2080         dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
2081         quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
2082
2083         if (!tree_root || !extent_root || !csum_root ||
2084             !chunk_root || !dev_root || !quota_root) {
2085                 err = -ENOMEM;
2086                 goto fail;
2087         }
2088
2089         ret = init_srcu_struct(&fs_info->subvol_srcu);
2090         if (ret) {
2091                 err = ret;
2092                 goto fail;
2093         }
2094
2095         ret = setup_bdi(fs_info, &fs_info->bdi);
2096         if (ret) {
2097                 err = ret;
2098                 goto fail_srcu;
2099         }
2100
2101         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2102         if (ret) {
2103                 err = ret;
2104                 goto fail_bdi;
2105         }
2106         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2107                                         (1 + ilog2(nr_cpu_ids));
2108
2109         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2110         if (ret) {
2111                 err = ret;
2112                 goto fail_dirty_metadata_bytes;
2113         }
2114
2115         fs_info->btree_inode = new_inode(sb);
2116         if (!fs_info->btree_inode) {
2117                 err = -ENOMEM;
2118                 goto fail_delalloc_bytes;
2119         }
2120
2121         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2122
2123         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2124         INIT_LIST_HEAD(&fs_info->trans_list);
2125         INIT_LIST_HEAD(&fs_info->dead_roots);
2126         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2127         INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2128         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2129         spin_lock_init(&fs_info->delalloc_lock);
2130         spin_lock_init(&fs_info->trans_lock);
2131         spin_lock_init(&fs_info->fs_roots_radix_lock);
2132         spin_lock_init(&fs_info->delayed_iput_lock);
2133         spin_lock_init(&fs_info->defrag_inodes_lock);
2134         spin_lock_init(&fs_info->free_chunk_lock);
2135         spin_lock_init(&fs_info->tree_mod_seq_lock);
2136         spin_lock_init(&fs_info->super_lock);
2137         rwlock_init(&fs_info->tree_mod_log_lock);
2138         mutex_init(&fs_info->reloc_mutex);
2139         seqlock_init(&fs_info->profiles_lock);
2140
2141         init_completion(&fs_info->kobj_unregister);
2142         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2143         INIT_LIST_HEAD(&fs_info->space_info);
2144         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2145         btrfs_mapping_init(&fs_info->mapping_tree);
2146         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2147                              BTRFS_BLOCK_RSV_GLOBAL);
2148         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2149                              BTRFS_BLOCK_RSV_DELALLOC);
2150         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2151         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2152         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2153         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2154                              BTRFS_BLOCK_RSV_DELOPS);
2155         atomic_set(&fs_info->nr_async_submits, 0);
2156         atomic_set(&fs_info->async_delalloc_pages, 0);
2157         atomic_set(&fs_info->async_submit_draining, 0);
2158         atomic_set(&fs_info->nr_async_bios, 0);
2159         atomic_set(&fs_info->defrag_running, 0);
2160         atomic64_set(&fs_info->tree_mod_seq, 0);
2161         fs_info->sb = sb;
2162         fs_info->max_inline = 8192 * 1024;
2163         fs_info->metadata_ratio = 0;
2164         fs_info->defrag_inodes = RB_ROOT;
2165         fs_info->trans_no_join = 0;
2166         fs_info->free_chunk_space = 0;
2167         fs_info->tree_mod_log = RB_ROOT;
2168
2169         /* readahead state */
2170         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2171         spin_lock_init(&fs_info->reada_lock);
2172
2173         fs_info->thread_pool_size = min_t(unsigned long,
2174                                           num_online_cpus() + 2, 8);
2175
2176         INIT_LIST_HEAD(&fs_info->ordered_extents);
2177         spin_lock_init(&fs_info->ordered_extent_lock);
2178         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2179                                         GFP_NOFS);
2180         if (!fs_info->delayed_root) {
2181                 err = -ENOMEM;
2182                 goto fail_iput;
2183         }
2184         btrfs_init_delayed_root(fs_info->delayed_root);
2185
2186         mutex_init(&fs_info->scrub_lock);
2187         atomic_set(&fs_info->scrubs_running, 0);
2188         atomic_set(&fs_info->scrub_pause_req, 0);
2189         atomic_set(&fs_info->scrubs_paused, 0);
2190         atomic_set(&fs_info->scrub_cancel_req, 0);
2191         init_waitqueue_head(&fs_info->scrub_pause_wait);
2192         init_rwsem(&fs_info->scrub_super_lock);
2193         fs_info->scrub_workers_refcnt = 0;
2194 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2195         fs_info->check_integrity_print_mask = 0;
2196 #endif
2197
2198         spin_lock_init(&fs_info->balance_lock);
2199         mutex_init(&fs_info->balance_mutex);
2200         atomic_set(&fs_info->balance_running, 0);
2201         atomic_set(&fs_info->balance_pause_req, 0);
2202         atomic_set(&fs_info->balance_cancel_req, 0);
2203         fs_info->balance_ctl = NULL;
2204         init_waitqueue_head(&fs_info->balance_wait_q);
2205
2206         sb->s_blocksize = 4096;
2207         sb->s_blocksize_bits = blksize_bits(4096);
2208         sb->s_bdi = &fs_info->bdi;
2209
2210         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2211         set_nlink(fs_info->btree_inode, 1);
2212         /*
2213          * we set the i_size on the btree inode to the max possible int.
2214          * the real end of the address space is determined by all of
2215          * the devices in the system
2216          */
2217         fs_info->btree_inode->i_size = OFFSET_MAX;
2218         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2219         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2220
2221         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2222         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2223                              fs_info->btree_inode->i_mapping);
2224         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2225         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2226
2227         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2228
2229         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2230         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2231                sizeof(struct btrfs_key));
2232         set_bit(BTRFS_INODE_DUMMY,
2233                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2234         insert_inode_hash(fs_info->btree_inode);
2235
2236         spin_lock_init(&fs_info->block_group_cache_lock);
2237         fs_info->block_group_cache_tree = RB_ROOT;
2238         fs_info->first_logical_byte = (u64)-1;
2239
2240         extent_io_tree_init(&fs_info->freed_extents[0],
2241                              fs_info->btree_inode->i_mapping);
2242         extent_io_tree_init(&fs_info->freed_extents[1],
2243                              fs_info->btree_inode->i_mapping);
2244         fs_info->pinned_extents = &fs_info->freed_extents[0];
2245         fs_info->do_barriers = 1;
2246
2247
2248         mutex_init(&fs_info->ordered_operations_mutex);
2249         mutex_init(&fs_info->tree_log_mutex);
2250         mutex_init(&fs_info->chunk_mutex);
2251         mutex_init(&fs_info->transaction_kthread_mutex);
2252         mutex_init(&fs_info->cleaner_mutex);
2253         mutex_init(&fs_info->volume_mutex);
2254         init_rwsem(&fs_info->extent_commit_sem);
2255         init_rwsem(&fs_info->cleanup_work_sem);
2256         init_rwsem(&fs_info->subvol_sem);
2257         fs_info->dev_replace.lock_owner = 0;
2258         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2259         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2260         mutex_init(&fs_info->dev_replace.lock_management_lock);
2261         mutex_init(&fs_info->dev_replace.lock);
2262
2263         spin_lock_init(&fs_info->qgroup_lock);
2264         mutex_init(&fs_info->qgroup_ioctl_lock);
2265         fs_info->qgroup_tree = RB_ROOT;
2266         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2267         fs_info->qgroup_seq = 1;
2268         fs_info->quota_enabled = 0;
2269         fs_info->pending_quota_state = 0;
2270         mutex_init(&fs_info->qgroup_rescan_lock);
2271
2272         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2273         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2274
2275         init_waitqueue_head(&fs_info->transaction_throttle);
2276         init_waitqueue_head(&fs_info->transaction_wait);
2277         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2278         init_waitqueue_head(&fs_info->async_submit_wait);
2279
2280         ret = btrfs_alloc_stripe_hash_table(fs_info);
2281         if (ret) {
2282                 err = ret;
2283                 goto fail_alloc;
2284         }
2285
2286         __setup_root(4096, 4096, 4096, 4096, tree_root,
2287                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2288
2289         invalidate_bdev(fs_devices->latest_bdev);
2290
2291         /*
2292          * Read super block and check the signature bytes only
2293          */
2294         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2295         if (!bh) {
2296                 err = -EINVAL;
2297                 goto fail_alloc;
2298         }
2299
2300         /*
2301          * We want to check superblock checksum, the type is stored inside.
2302          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2303          */
2304         if (btrfs_check_super_csum(bh->b_data)) {
2305                 printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
2306                 err = -EINVAL;
2307                 goto fail_alloc;
2308         }
2309
2310         /*
2311          * super_copy is zeroed at allocation time and we never touch the
2312          * following bytes up to INFO_SIZE, the checksum is calculated from
2313          * the whole block of INFO_SIZE
2314          */
2315         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2316         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2317                sizeof(*fs_info->super_for_commit));
2318         brelse(bh);
2319
2320         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2321
2322         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2323         if (ret) {
2324                 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2325                 err = -EINVAL;
2326                 goto fail_alloc;
2327         }
2328
2329         disk_super = fs_info->super_copy;
2330         if (!btrfs_super_root(disk_super))
2331                 goto fail_alloc;
2332
2333         /* check FS state, whether FS is broken. */
2334         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2335                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2336
2337         /*
2338          * run through our array of backup supers and setup
2339          * our ring pointer to the oldest one
2340          */
2341         generation = btrfs_super_generation(disk_super);
2342         find_oldest_super_backup(fs_info, generation);
2343
2344         /*
2345          * In the long term, we'll store the compression type in the super
2346          * block, and it'll be used for per file compression control.
2347          */
2348         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2349
2350         ret = btrfs_parse_options(tree_root, options);
2351         if (ret) {
2352                 err = ret;
2353                 goto fail_alloc;
2354         }
2355
2356         features = btrfs_super_incompat_flags(disk_super) &
2357                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2358         if (features) {
2359                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2360                        "unsupported optional features (%Lx).\n",
2361                        (unsigned long long)features);
2362                 err = -EINVAL;
2363                 goto fail_alloc;
2364         }
2365
2366         if (btrfs_super_leafsize(disk_super) !=
2367             btrfs_super_nodesize(disk_super)) {
2368                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2369                        "blocksizes don't match.  node %d leaf %d\n",
2370                        btrfs_super_nodesize(disk_super),
2371                        btrfs_super_leafsize(disk_super));
2372                 err = -EINVAL;
2373                 goto fail_alloc;
2374         }
2375         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2376                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2377                        "blocksize (%d) was too large\n",
2378                        btrfs_super_leafsize(disk_super));
2379                 err = -EINVAL;
2380                 goto fail_alloc;
2381         }
2382
2383         features = btrfs_super_incompat_flags(disk_super);
2384         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2385         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2386                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2387
2388         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2389                 printk(KERN_ERR "btrfs: has skinny extents\n");
2390
2391         /*
2392          * flag our filesystem as having big metadata blocks if
2393          * they are bigger than the page size
2394          */
2395         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2396                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2397                         printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2398                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2399         }
2400
2401         nodesize = btrfs_super_nodesize(disk_super);
2402         leafsize = btrfs_super_leafsize(disk_super);
2403         sectorsize = btrfs_super_sectorsize(disk_super);
2404         stripesize = btrfs_super_stripesize(disk_super);
2405         fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2406         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2407
2408         /*
2409          * mixed block groups end up with duplicate but slightly offset
2410          * extent buffers for the same range.  It leads to corruptions
2411          */
2412         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2413             (sectorsize != leafsize)) {
2414                 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2415                                 "are not allowed for mixed block groups on %s\n",
2416                                 sb->s_id);
2417                 goto fail_alloc;
2418         }
2419
2420         /*
2421          * Needn't use the lock because there is no other task which will
2422          * update the flag.
2423          */
2424         btrfs_set_super_incompat_flags(disk_super, features);
2425
2426         features = btrfs_super_compat_ro_flags(disk_super) &
2427                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2428         if (!(sb->s_flags & MS_RDONLY) && features) {
2429                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2430                        "unsupported option features (%Lx).\n",
2431                        (unsigned long long)features);
2432                 err = -EINVAL;
2433                 goto fail_alloc;
2434         }
2435
2436         btrfs_init_workers(&fs_info->generic_worker,
2437                            "genwork", 1, NULL);
2438
2439         btrfs_init_workers(&fs_info->workers, "worker",
2440                            fs_info->thread_pool_size,
2441                            &fs_info->generic_worker);
2442
2443         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2444                            fs_info->thread_pool_size,
2445                            &fs_info->generic_worker);
2446
2447         btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2448                            fs_info->thread_pool_size,
2449                            &fs_info->generic_worker);
2450
2451         btrfs_init_workers(&fs_info->submit_workers, "submit",
2452                            min_t(u64, fs_devices->num_devices,
2453                            fs_info->thread_pool_size),
2454                            &fs_info->generic_worker);
2455
2456         btrfs_init_workers(&fs_info->caching_workers, "cache",
2457                            2, &fs_info->generic_worker);
2458
2459         /* a higher idle thresh on the submit workers makes it much more
2460          * likely that bios will be send down in a sane order to the
2461          * devices
2462          */
2463         fs_info->submit_workers.idle_thresh = 64;
2464
2465         fs_info->workers.idle_thresh = 16;
2466         fs_info->workers.ordered = 1;
2467
2468         fs_info->delalloc_workers.idle_thresh = 2;
2469         fs_info->delalloc_workers.ordered = 1;
2470
2471         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2472                            &fs_info->generic_worker);
2473         btrfs_init_workers(&fs_info->endio_workers, "endio",
2474                            fs_info->thread_pool_size,
2475                            &fs_info->generic_worker);
2476         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2477                            fs_info->thread_pool_size,
2478                            &fs_info->generic_worker);
2479         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2480                            "endio-meta-write", fs_info->thread_pool_size,
2481                            &fs_info->generic_worker);
2482         btrfs_init_workers(&fs_info->endio_raid56_workers,
2483                            "endio-raid56", fs_info->thread_pool_size,
2484                            &fs_info->generic_worker);
2485         btrfs_init_workers(&fs_info->rmw_workers,
2486                            "rmw", fs_info->thread_pool_size,
2487                            &fs_info->generic_worker);
2488         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2489                            fs_info->thread_pool_size,
2490                            &fs_info->generic_worker);
2491         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2492                            1, &fs_info->generic_worker);
2493         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2494                            fs_info->thread_pool_size,
2495                            &fs_info->generic_worker);
2496         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2497                            fs_info->thread_pool_size,
2498                            &fs_info->generic_worker);
2499         btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2500                            &fs_info->generic_worker);
2501
2502         /*
2503          * endios are largely parallel and should have a very
2504          * low idle thresh
2505          */
2506         fs_info->endio_workers.idle_thresh = 4;
2507         fs_info->endio_meta_workers.idle_thresh = 4;
2508         fs_info->endio_raid56_workers.idle_thresh = 4;
2509         fs_info->rmw_workers.idle_thresh = 2;
2510
2511         fs_info->endio_write_workers.idle_thresh = 2;
2512         fs_info->endio_meta_write_workers.idle_thresh = 2;
2513         fs_info->readahead_workers.idle_thresh = 2;
2514
2515         /*
2516          * btrfs_start_workers can really only fail because of ENOMEM so just
2517          * return -ENOMEM if any of these fail.
2518          */
2519         ret = btrfs_start_workers(&fs_info->workers);
2520         ret |= btrfs_start_workers(&fs_info->generic_worker);
2521         ret |= btrfs_start_workers(&fs_info->submit_workers);
2522         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2523         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2524         ret |= btrfs_start_workers(&fs_info->endio_workers);
2525         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2526         ret |= btrfs_start_workers(&fs_info->rmw_workers);
2527         ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2528         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2529         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2530         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2531         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2532         ret |= btrfs_start_workers(&fs_info->caching_workers);
2533         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2534         ret |= btrfs_start_workers(&fs_info->flush_workers);
2535         ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2536         if (ret) {
2537                 err = -ENOMEM;
2538                 goto fail_sb_buffer;
2539         }
2540
2541         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2542         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2543                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2544
2545         tree_root->nodesize = nodesize;
2546         tree_root->leafsize = leafsize;
2547         tree_root->sectorsize = sectorsize;
2548         tree_root->stripesize = stripesize;
2549
2550         sb->s_blocksize = sectorsize;
2551         sb->s_blocksize_bits = blksize_bits(sectorsize);
2552
2553         if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2554                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2555                 goto fail_sb_buffer;
2556         }
2557
2558         if (sectorsize != PAGE_SIZE) {
2559                 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2560                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2561                 goto fail_sb_buffer;
2562         }
2563
2564         mutex_lock(&fs_info->chunk_mutex);
2565         ret = btrfs_read_sys_array(tree_root);
2566         mutex_unlock(&fs_info->chunk_mutex);
2567         if (ret) {
2568                 printk(KERN_WARNING "btrfs: failed to read the system "
2569                        "array on %s\n", sb->s_id);
2570                 goto fail_sb_buffer;
2571         }
2572
2573         blocksize = btrfs_level_size(tree_root,
2574                                      btrfs_super_chunk_root_level(disk_super));
2575         generation = btrfs_super_chunk_root_generation(disk_super);
2576
2577         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2578                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2579
2580         chunk_root->node = read_tree_block(chunk_root,
2581                                            btrfs_super_chunk_root(disk_super),
2582                                            blocksize, generation);
2583         if (!chunk_root->node ||
2584             !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2585                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2586                        sb->s_id);
2587                 goto fail_tree_roots;
2588         }
2589         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2590         chunk_root->commit_root = btrfs_root_node(chunk_root);
2591
2592         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2593            (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2594            BTRFS_UUID_SIZE);
2595
2596         ret = btrfs_read_chunk_tree(chunk_root);
2597         if (ret) {
2598                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2599                        sb->s_id);
2600                 goto fail_tree_roots;
2601         }
2602
2603         /*
2604          * keep the device that is marked to be the target device for the
2605          * dev_replace procedure
2606          */
2607         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2608
2609         if (!fs_devices->latest_bdev) {
2610                 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2611                        sb->s_id);
2612                 goto fail_tree_roots;
2613         }
2614
2615 retry_root_backup:
2616         blocksize = btrfs_level_size(tree_root,
2617                                      btrfs_super_root_level(disk_super));
2618         generation = btrfs_super_generation(disk_super);
2619
2620         tree_root->node = read_tree_block(tree_root,
2621                                           btrfs_super_root(disk_super),
2622                                           blocksize, generation);
2623         if (!tree_root->node ||
2624             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2625                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2626                        sb->s_id);
2627
2628                 goto recovery_tree_root;
2629         }
2630
2631         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2632         tree_root->commit_root = btrfs_root_node(tree_root);
2633
2634         ret = find_and_setup_root(tree_root, fs_info,
2635                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2636         if (ret)
2637                 goto recovery_tree_root;
2638         extent_root->track_dirty = 1;
2639
2640         ret = find_and_setup_root(tree_root, fs_info,
2641                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
2642         if (ret)
2643                 goto recovery_tree_root;
2644         dev_root->track_dirty = 1;
2645
2646         ret = find_and_setup_root(tree_root, fs_info,
2647                                   BTRFS_CSUM_TREE_OBJECTID, csum_root);
2648         if (ret)
2649                 goto recovery_tree_root;
2650         csum_root->track_dirty = 1;
2651
2652         ret = find_and_setup_root(tree_root, fs_info,
2653                                   BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2654         if (ret) {
2655                 kfree(quota_root);
2656                 quota_root = fs_info->quota_root = NULL;
2657         } else {
2658                 quota_root->track_dirty = 1;
2659                 fs_info->quota_enabled = 1;
2660                 fs_info->pending_quota_state = 1;
2661         }
2662
2663         fs_info->generation = generation;
2664         fs_info->last_trans_committed = generation;
2665
2666         ret = btrfs_recover_balance(fs_info);
2667         if (ret) {
2668                 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2669                 goto fail_block_groups;
2670         }
2671
2672         ret = btrfs_init_dev_stats(fs_info);
2673         if (ret) {
2674                 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2675                        ret);
2676                 goto fail_block_groups;
2677         }
2678
2679         ret = btrfs_init_dev_replace(fs_info);
2680         if (ret) {
2681                 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2682                 goto fail_block_groups;
2683         }
2684
2685         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2686
2687         ret = btrfs_init_space_info(fs_info);
2688         if (ret) {
2689                 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2690                 goto fail_block_groups;
2691         }
2692
2693         ret = btrfs_read_block_groups(extent_root);
2694         if (ret) {
2695                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2696                 goto fail_block_groups;
2697         }
2698         fs_info->num_tolerated_disk_barrier_failures =
2699                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2700         if (fs_info->fs_devices->missing_devices >
2701              fs_info->num_tolerated_disk_barrier_failures &&
2702             !(sb->s_flags & MS_RDONLY)) {
2703                 printk(KERN_WARNING
2704                        "Btrfs: too many missing devices, writeable mount is not allowed\n");
2705                 goto fail_block_groups;
2706         }
2707
2708         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2709                                                "btrfs-cleaner");
2710         if (IS_ERR(fs_info->cleaner_kthread))
2711                 goto fail_block_groups;
2712
2713         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2714                                                    tree_root,
2715                                                    "btrfs-transaction");
2716         if (IS_ERR(fs_info->transaction_kthread))
2717                 goto fail_cleaner;
2718
2719         if (!btrfs_test_opt(tree_root, SSD) &&
2720             !btrfs_test_opt(tree_root, NOSSD) &&
2721             !fs_info->fs_devices->rotating) {
2722                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2723                        "mode\n");
2724                 btrfs_set_opt(fs_info->mount_opt, SSD);
2725         }
2726
2727 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2728         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2729                 ret = btrfsic_mount(tree_root, fs_devices,
2730                                     btrfs_test_opt(tree_root,
2731                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2732                                     1 : 0,
2733                                     fs_info->check_integrity_print_mask);
2734                 if (ret)
2735                         printk(KERN_WARNING "btrfs: failed to initialize"
2736                                " integrity check module %s\n", sb->s_id);
2737         }
2738 #endif
2739         ret = btrfs_read_qgroup_config(fs_info);
2740         if (ret)
2741                 goto fail_trans_kthread;
2742
2743         /* do not make disk changes in broken FS */
2744         if (btrfs_super_log_root(disk_super) != 0) {
2745                 u64 bytenr = btrfs_super_log_root(disk_super);
2746
2747                 if (fs_devices->rw_devices == 0) {
2748                         printk(KERN_WARNING "Btrfs log replay required "
2749                                "on RO media\n");
2750                         err = -EIO;
2751                         goto fail_qgroup;
2752                 }
2753                 blocksize =
2754                      btrfs_level_size(tree_root,
2755                                       btrfs_super_log_root_level(disk_super));
2756
2757                 log_tree_root = btrfs_alloc_root(fs_info);
2758                 if (!log_tree_root) {
2759                         err = -ENOMEM;
2760                         goto fail_qgroup;
2761                 }
2762
2763                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2764                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2765
2766                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2767                                                       blocksize,
2768                                                       generation + 1);
2769                 if (!log_tree_root->node ||
2770                     !extent_buffer_uptodate(log_tree_root->node)) {
2771                         printk(KERN_ERR "btrfs: failed to read log tree\n");
2772                         free_extent_buffer(log_tree_root->node);
2773                         kfree(log_tree_root);
2774                         goto fail_trans_kthread;
2775                 }
2776                 /* returns with log_tree_root freed on success */
2777                 ret = btrfs_recover_log_trees(log_tree_root);
2778                 if (ret) {
2779                         btrfs_error(tree_root->fs_info, ret,
2780                                     "Failed to recover log tree");
2781                         free_extent_buffer(log_tree_root->node);
2782                         kfree(log_tree_root);
2783                         goto fail_trans_kthread;
2784                 }
2785
2786                 if (sb->s_flags & MS_RDONLY) {
2787                         ret = btrfs_commit_super(tree_root);
2788                         if (ret)
2789                                 goto fail_trans_kthread;
2790                 }
2791         }
2792
2793         ret = btrfs_find_orphan_roots(tree_root);
2794         if (ret)
2795                 goto fail_trans_kthread;
2796
2797         if (!(sb->s_flags & MS_RDONLY)) {
2798                 ret = btrfs_cleanup_fs_roots(fs_info);
2799                 if (ret)
2800                         goto fail_trans_kthread;
2801
2802                 ret = btrfs_recover_relocation(tree_root);
2803                 if (ret < 0) {
2804                         printk(KERN_WARNING
2805                                "btrfs: failed to recover relocation\n");
2806                         err = -EINVAL;
2807                         goto fail_qgroup;
2808                 }
2809         }
2810
2811         location.objectid = BTRFS_FS_TREE_OBJECTID;
2812         location.type = BTRFS_ROOT_ITEM_KEY;
2813         location.offset = (u64)-1;
2814
2815         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2816         if (!fs_info->fs_root)
2817                 goto fail_qgroup;
2818         if (IS_ERR(fs_info->fs_root)) {
2819                 err = PTR_ERR(fs_info->fs_root);
2820                 goto fail_qgroup;
2821         }
2822
2823         if (sb->s_flags & MS_RDONLY)
2824                 return 0;
2825
2826         down_read(&fs_info->cleanup_work_sem);
2827         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2828             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2829                 up_read(&fs_info->cleanup_work_sem);
2830                 close_ctree(tree_root);
2831                 return ret;
2832         }
2833         up_read(&fs_info->cleanup_work_sem);
2834
2835         ret = btrfs_resume_balance_async(fs_info);
2836         if (ret) {
2837                 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2838                 close_ctree(tree_root);
2839                 return ret;
2840         }
2841
2842         ret = btrfs_resume_dev_replace_async(fs_info);
2843         if (ret) {
2844                 pr_warn("btrfs: failed to resume dev_replace\n");
2845                 close_ctree(tree_root);
2846                 return ret;
2847         }
2848
2849         return 0;
2850
2851 fail_qgroup:
2852         btrfs_free_qgroup_config(fs_info);
2853 fail_trans_kthread:
2854         kthread_stop(fs_info->transaction_kthread);
2855         del_fs_roots(fs_info);
2856         btrfs_cleanup_transaction(fs_info->tree_root);
2857 fail_cleaner:
2858         kthread_stop(fs_info->cleaner_kthread);
2859
2860         /*
2861          * make sure we're done with the btree inode before we stop our
2862          * kthreads
2863          */
2864         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2865
2866 fail_block_groups:
2867         btrfs_put_block_group_cache(fs_info);
2868         btrfs_free_block_groups(fs_info);
2869
2870 fail_tree_roots:
2871         free_root_pointers(fs_info, 1);
2872         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2873
2874 fail_sb_buffer:
2875         btrfs_stop_all_workers(fs_info);
2876 fail_alloc:
2877 fail_iput:
2878         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2879
2880         iput(fs_info->btree_inode);
2881 fail_delalloc_bytes:
2882         percpu_counter_destroy(&fs_info->delalloc_bytes);
2883 fail_dirty_metadata_bytes:
2884         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2885 fail_bdi:
2886         bdi_destroy(&fs_info->bdi);
2887 fail_srcu:
2888         cleanup_srcu_struct(&fs_info->subvol_srcu);
2889 fail:
2890         btrfs_free_stripe_hash_table(fs_info);
2891         btrfs_close_devices(fs_info->fs_devices);
2892         return err;
2893
2894 recovery_tree_root:
2895         if (!btrfs_test_opt(tree_root, RECOVERY))
2896                 goto fail_tree_roots;
2897
2898         free_root_pointers(fs_info, 0);
2899
2900         /* don't use the log in recovery mode, it won't be valid */
2901         btrfs_set_super_log_root(disk_super, 0);
2902
2903         /* we can't trust the free space cache either */
2904         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2905
2906         ret = next_root_backup(fs_info, fs_info->super_copy,
2907                                &num_backups_tried, &backup_index);
2908         if (ret == -1)
2909                 goto fail_block_groups;
2910         goto retry_root_backup;
2911 }
2912
2913 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2914 {
2915         if (uptodate) {
2916                 set_buffer_uptodate(bh);
2917         } else {
2918                 struct btrfs_device *device = (struct btrfs_device *)
2919                         bh->b_private;
2920
2921                 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2922                                           "I/O error on %s\n",
2923                                           rcu_str_deref(device->name));
2924                 /* note, we dont' set_buffer_write_io_error because we have
2925                  * our own ways of dealing with the IO errors
2926                  */
2927                 clear_buffer_uptodate(bh);
2928                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2929         }
2930         unlock_buffer(bh);
2931         put_bh(bh);
2932 }
2933
2934 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2935 {
2936         struct buffer_head *bh;
2937         struct buffer_head *latest = NULL;
2938         struct btrfs_super_block *super;
2939         int i;
2940         u64 transid = 0;
2941         u64 bytenr;
2942
2943         /* we would like to check all the supers, but that would make
2944          * a btrfs mount succeed after a mkfs from a different FS.
2945          * So, we need to add a special mount option to scan for
2946          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2947          */
2948         for (i = 0; i < 1; i++) {
2949                 bytenr = btrfs_sb_offset(i);
2950                 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2951                         break;
2952                 bh = __bread(bdev, bytenr / 4096, 4096);
2953                 if (!bh)
2954                         continue;
2955
2956                 super = (struct btrfs_super_block *)bh->b_data;
2957                 if (btrfs_super_bytenr(super) != bytenr ||
2958                     super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2959                         brelse(bh);
2960                         continue;
2961                 }
2962
2963                 if (!latest || btrfs_super_generation(super) > transid) {
2964                         brelse(latest);
2965                         latest = bh;
2966                         transid = btrfs_super_generation(super);
2967                 } else {
2968                         brelse(bh);
2969                 }
2970         }
2971         return latest;
2972 }
2973
2974 /*
2975  * this should be called twice, once with wait == 0 and
2976  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2977  * we write are pinned.
2978  *
2979  * They are released when wait == 1 is done.
2980  * max_mirrors must be the same for both runs, and it indicates how
2981  * many supers on this one device should be written.
2982  *
2983  * max_mirrors == 0 means to write them all.
2984  */
2985 static int write_dev_supers(struct btrfs_device *device,
2986                             struct btrfs_super_block *sb,
2987                             int do_barriers, int wait, int max_mirrors)
2988 {
2989         struct buffer_head *bh;
2990         int i;
2991         int ret;
2992         int errors = 0;
2993         u32 crc;
2994         u64 bytenr;
2995
2996         if (max_mirrors == 0)
2997                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2998
2999         for (i = 0; i < max_mirrors; i++) {
3000                 bytenr = btrfs_sb_offset(i);
3001                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3002                         break;
3003
3004                 if (wait) {
3005                         bh = __find_get_block(device->bdev, bytenr / 4096,
3006                                               BTRFS_SUPER_INFO_SIZE);
3007                         if (!bh) {
3008                                 errors++;
3009                                 continue;
3010                         }
3011                         wait_on_buffer(bh);
3012                         if (!buffer_uptodate(bh))
3013                                 errors++;
3014
3015                         /* drop our reference */
3016                         brelse(bh);
3017
3018                         /* drop the reference from the wait == 0 run */
3019                         brelse(bh);
3020                         continue;
3021                 } else {
3022                         btrfs_set_super_bytenr(sb, bytenr);
3023
3024                         crc = ~(u32)0;
3025                         crc = btrfs_csum_data((char *)sb +
3026                                               BTRFS_CSUM_SIZE, crc,
3027                                               BTRFS_SUPER_INFO_SIZE -
3028                                               BTRFS_CSUM_SIZE);
3029                         btrfs_csum_final(crc, sb->csum);
3030
3031                         /*
3032                          * one reference for us, and we leave it for the
3033                          * caller
3034                          */
3035                         bh = __getblk(device->bdev, bytenr / 4096,
3036                                       BTRFS_SUPER_INFO_SIZE);
3037                         if (!bh) {
3038                                 printk(KERN_ERR "btrfs: couldn't get super "
3039                                        "buffer head for bytenr %Lu\n", bytenr);
3040                                 errors++;
3041                                 continue;
3042                         }
3043
3044                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3045
3046                         /* one reference for submit_bh */
3047                         get_bh(bh);
3048
3049                         set_buffer_uptodate(bh);
3050                         lock_buffer(bh);
3051                         bh->b_end_io = btrfs_end_buffer_write_sync;
3052                         bh->b_private = device;
3053                 }
3054
3055                 /*
3056                  * we fua the first super.  The others we allow
3057                  * to go down lazy.
3058                  */
3059                 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3060                 if (ret)
3061                         errors++;
3062         }
3063         return errors < i ? 0 : -1;
3064 }
3065
3066 /*
3067  * endio for the write_dev_flush, this will wake anyone waiting
3068  * for the barrier when it is done
3069  */
3070 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3071 {
3072         if (err) {
3073                 if (err == -EOPNOTSUPP)
3074                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3075                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3076         }
3077         if (bio->bi_private)
3078                 complete(bio->bi_private);
3079         bio_put(bio);
3080 }
3081
3082 /*
3083  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3084  * sent down.  With wait == 1, it waits for the previous flush.
3085  *
3086  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3087  * capable
3088  */
3089 static int write_dev_flush(struct btrfs_device *device, int wait)
3090 {
3091         struct bio *bio;
3092         int ret = 0;
3093
3094         if (device->nobarriers)
3095                 return 0;
3096
3097         if (wait) {
3098                 bio = device->flush_bio;
3099                 if (!bio)
3100                         return 0;
3101
3102                 wait_for_completion(&device->flush_wait);
3103
3104                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3105                         printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3106                                       rcu_str_deref(device->name));
3107                         device->nobarriers = 1;
3108                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3109                         ret = -EIO;
3110                         btrfs_dev_stat_inc_and_print(device,
3111                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3112                 }
3113
3114                 /* drop the reference from the wait == 0 run */
3115                 bio_put(bio);
3116                 device->flush_bio = NULL;
3117
3118                 return ret;
3119         }
3120
3121         /*
3122          * one reference for us, and we leave it for the
3123          * caller
3124          */
3125         device->flush_bio = NULL;
3126         bio = bio_alloc(GFP_NOFS, 0);
3127         if (!bio)
3128                 return -ENOMEM;
3129
3130         bio->bi_end_io = btrfs_end_empty_barrier;
3131         bio->bi_bdev = device->bdev;
3132         init_completion(&device->flush_wait);
3133         bio->bi_private = &device->flush_wait;
3134         device->flush_bio = bio;
3135
3136         bio_get(bio);
3137         btrfsic_submit_bio(WRITE_FLUSH, bio);
3138
3139         return 0;
3140 }
3141
3142 /*
3143  * send an empty flush down to each device in parallel,
3144  * then wait for them
3145  */
3146 static int barrier_all_devices(struct btrfs_fs_info *info)
3147 {
3148         struct list_head *head;
3149         struct btrfs_device *dev;
3150         int errors_send = 0;
3151         int errors_wait = 0;
3152         int ret;
3153
3154         /* send down all the barriers */
3155         head = &info->fs_devices->devices;
3156         list_for_each_entry_rcu(dev, head, dev_list) {
3157                 if (!dev->bdev) {
3158                         errors_send++;
3159                         continue;
3160                 }
3161                 if (!dev->in_fs_metadata || !dev->writeable)
3162                         continue;
3163
3164                 ret = write_dev_flush(dev, 0);
3165                 if (ret)
3166                         errors_send++;
3167         }
3168
3169         /* wait for all the barriers */
3170         list_for_each_entry_rcu(dev, head, dev_list) {
3171                 if (!dev->bdev) {
3172                         errors_wait++;
3173                         continue;
3174                 }
3175                 if (!dev->in_fs_metadata || !dev->writeable)
3176                         continue;
3177
3178                 ret = write_dev_flush(dev, 1);
3179                 if (ret)
3180                         errors_wait++;
3181         }
3182         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3183             errors_wait > info->num_tolerated_disk_barrier_failures)
3184                 return -EIO;
3185         return 0;
3186 }
3187
3188 int btrfs_calc_num_tolerated_disk_barrier_failures(
3189         struct btrfs_fs_info *fs_info)
3190 {
3191         struct btrfs_ioctl_space_info space;
3192         struct btrfs_space_info *sinfo;
3193         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3194                        BTRFS_BLOCK_GROUP_SYSTEM,
3195                        BTRFS_BLOCK_GROUP_METADATA,
3196                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3197         int num_types = 4;
3198         int i;
3199         int c;
3200         int num_tolerated_disk_barrier_failures =
3201                 (int)fs_info->fs_devices->num_devices;
3202
3203         for (i = 0; i < num_types; i++) {
3204                 struct btrfs_space_info *tmp;
3205
3206                 sinfo = NULL;
3207                 rcu_read_lock();
3208                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3209                         if (tmp->flags == types[i]) {
3210                                 sinfo = tmp;
3211                                 break;
3212                         }
3213                 }
3214                 rcu_read_unlock();
3215
3216                 if (!sinfo)
3217                         continue;
3218
3219                 down_read(&sinfo->groups_sem);
3220                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3221                         if (!list_empty(&sinfo->block_groups[c])) {
3222                                 u64 flags;
3223
3224                                 btrfs_get_block_group_info(
3225                                         &sinfo->block_groups[c], &space);
3226                                 if (space.total_bytes == 0 ||
3227                                     space.used_bytes == 0)
3228                                         continue;
3229                                 flags = space.flags;
3230                                 /*
3231                                  * return
3232                                  * 0: if dup, single or RAID0 is configured for
3233                                  *    any of metadata, system or data, else
3234                                  * 1: if RAID5 is configured, or if RAID1 or
3235                                  *    RAID10 is configured and only two mirrors
3236                                  *    are used, else
3237                                  * 2: if RAID6 is configured, else
3238                                  * num_mirrors - 1: if RAID1 or RAID10 is
3239                                  *                  configured and more than
3240                                  *                  2 mirrors are used.
3241                                  */
3242                                 if (num_tolerated_disk_barrier_failures > 0 &&
3243                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3244                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3245                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3246                                       == 0)))
3247                                         num_tolerated_disk_barrier_failures = 0;
3248                                 else if (num_tolerated_disk_barrier_failures > 1) {
3249                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3250                                             BTRFS_BLOCK_GROUP_RAID5 |
3251                                             BTRFS_BLOCK_GROUP_RAID10)) {
3252                                                 num_tolerated_disk_barrier_failures = 1;
3253                                         } else if (flags &
3254                                                    BTRFS_BLOCK_GROUP_RAID5) {
3255                                                 num_tolerated_disk_barrier_failures = 2;
3256                                         }
3257                                 }
3258                         }
3259                 }
3260                 up_read(&sinfo->groups_sem);
3261         }
3262
3263         return num_tolerated_disk_barrier_failures;
3264 }
3265
3266 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3267 {
3268         struct list_head *head;
3269         struct btrfs_device *dev;
3270         struct btrfs_super_block *sb;
3271         struct btrfs_dev_item *dev_item;
3272         int ret;
3273         int do_barriers;
3274         int max_errors;
3275         int total_errors = 0;
3276         u64 flags;
3277
3278         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3279         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3280         backup_super_roots(root->fs_info);
3281
3282         sb = root->fs_info->super_for_commit;
3283         dev_item = &sb->dev_item;
3284
3285         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3286         head = &root->fs_info->fs_devices->devices;
3287
3288         if (do_barriers) {
3289                 ret = barrier_all_devices(root->fs_info);
3290                 if (ret) {
3291                         mutex_unlock(
3292                                 &root->fs_info->fs_devices->device_list_mutex);
3293                         btrfs_error(root->fs_info, ret,
3294                                     "errors while submitting device barriers.");
3295                         return ret;
3296                 }
3297         }
3298
3299         list_for_each_entry_rcu(dev, head, dev_list) {
3300                 if (!dev->bdev) {
3301                         total_errors++;
3302                         continue;
3303                 }
3304                 if (!dev->in_fs_metadata || !dev->writeable)
3305                         continue;
3306
3307                 btrfs_set_stack_device_generation(dev_item, 0);
3308                 btrfs_set_stack_device_type(dev_item, dev->type);
3309                 btrfs_set_stack_device_id(dev_item, dev->devid);
3310                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3311                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3312                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3313                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3314                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3315                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3316                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3317
3318                 flags = btrfs_super_flags(sb);
3319                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3320
3321                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3322                 if (ret)
3323                         total_errors++;
3324         }
3325         if (total_errors > max_errors) {
3326                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3327                        total_errors);
3328
3329                 /* This shouldn't happen. FUA is masked off if unsupported */
3330                 BUG();
3331         }
3332
3333         total_errors = 0;
3334         list_for_each_entry_rcu(dev, head, dev_list) {
3335                 if (!dev->bdev)
3336                         continue;
3337                 if (!dev->in_fs_metadata || !dev->writeable)
3338                         continue;
3339
3340                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3341                 if (ret)
3342                         total_errors++;
3343         }
3344         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3345         if (total_errors > max_errors) {
3346                 btrfs_error(root->fs_info, -EIO,
3347                             "%d errors while writing supers", total_errors);
3348                 return -EIO;
3349         }
3350         return 0;
3351 }
3352
3353 int write_ctree_super(struct btrfs_trans_handle *trans,
3354                       struct btrfs_root *root, int max_mirrors)
3355 {
3356         int ret;
3357
3358         ret = write_all_supers(root, max_mirrors);
3359         return ret;
3360 }
3361
3362 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3363 {
3364         spin_lock(&fs_info->fs_roots_radix_lock);
3365         radix_tree_delete(&fs_info->fs_roots_radix,
3366                           (unsigned long)root->root_key.objectid);
3367         spin_unlock(&fs_info->fs_roots_radix_lock);
3368
3369         if (btrfs_root_refs(&root->root_item) == 0)
3370                 synchronize_srcu(&fs_info->subvol_srcu);
3371
3372         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3373                 btrfs_free_log(NULL, root);
3374                 btrfs_free_log_root_tree(NULL, fs_info);
3375         }
3376
3377         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3378         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3379         free_fs_root(root);
3380 }
3381
3382 static void free_fs_root(struct btrfs_root *root)
3383 {
3384         iput(root->cache_inode);
3385         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3386         if (root->anon_dev)
3387                 free_anon_bdev(root->anon_dev);
3388         free_extent_buffer(root->node);
3389         free_extent_buffer(root->commit_root);
3390         kfree(root->free_ino_ctl);
3391         kfree(root->free_ino_pinned);
3392         kfree(root->name);
3393         kfree(root);
3394 }
3395
3396 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3397 {
3398         u64 root_objectid = 0;
3399         struct btrfs_root *gang[8];
3400         int i;
3401         int ret;
3402
3403         while (1) {
3404                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3405                                              (void **)gang, root_objectid,
3406                                              ARRAY_SIZE(gang));
3407                 if (!ret)
3408                         break;
3409
3410                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3411                 for (i = 0; i < ret; i++) {
3412                         int err;
3413
3414                         root_objectid = gang[i]->root_key.objectid;
3415                         err = btrfs_orphan_cleanup(gang[i]);
3416                         if (err)
3417                                 return err;
3418                 }
3419                 root_objectid++;
3420         }
3421         return 0;
3422 }
3423
3424 int btrfs_commit_super(struct btrfs_root *root)
3425 {
3426         struct btrfs_trans_handle *trans;
3427         int ret;
3428
3429         mutex_lock(&root->fs_info->cleaner_mutex);
3430         btrfs_run_delayed_iputs(root);
3431         mutex_unlock(&root->fs_info->cleaner_mutex);
3432         wake_up_process(root->fs_info->cleaner_kthread);
3433
3434         /* wait until ongoing cleanup work done */
3435         down_write(&root->fs_info->cleanup_work_sem);
3436         up_write(&root->fs_info->cleanup_work_sem);
3437
3438         trans = btrfs_join_transaction(root);
3439         if (IS_ERR(trans))
3440                 return PTR_ERR(trans);
3441         ret = btrfs_commit_transaction(trans, root);
3442         if (ret)
3443                 return ret;
3444         /* run commit again to drop the original snapshot */
3445         trans = btrfs_join_transaction(root);
3446         if (IS_ERR(trans))
3447                 return PTR_ERR(trans);
3448         ret = btrfs_commit_transaction(trans, root);
3449         if (ret)
3450                 return ret;
3451         ret = btrfs_write_and_wait_transaction(NULL, root);
3452         if (ret) {
3453                 btrfs_error(root->fs_info, ret,
3454                             "Failed to sync btree inode to disk.");
3455                 return ret;
3456         }
3457
3458         ret = write_ctree_super(NULL, root, 0);
3459         return ret;
3460 }
3461
3462 int close_ctree(struct btrfs_root *root)
3463 {
3464         struct btrfs_fs_info *fs_info = root->fs_info;
3465         int ret;
3466
3467         fs_info->closing = 1;
3468         smp_mb();
3469
3470         /* pause restriper - we want to resume on mount */
3471         btrfs_pause_balance(fs_info);
3472
3473         btrfs_dev_replace_suspend_for_unmount(fs_info);
3474
3475         btrfs_scrub_cancel(fs_info);
3476
3477         /* wait for any defraggers to finish */
3478         wait_event(fs_info->transaction_wait,
3479                    (atomic_read(&fs_info->defrag_running) == 0));
3480
3481         /* clear out the rbtree of defraggable inodes */
3482         btrfs_cleanup_defrag_inodes(fs_info);
3483
3484         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3485                 ret = btrfs_commit_super(root);
3486                 if (ret)
3487                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3488         }
3489
3490         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3491                 btrfs_error_commit_super(root);
3492
3493         btrfs_put_block_group_cache(fs_info);
3494
3495         kthread_stop(fs_info->transaction_kthread);
3496         kthread_stop(fs_info->cleaner_kthread);
3497
3498         fs_info->closing = 2;
3499         smp_mb();
3500
3501         btrfs_free_qgroup_config(root->fs_info);
3502
3503         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3504                 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3505                        percpu_counter_sum(&fs_info->delalloc_bytes));
3506         }
3507
3508         free_root_pointers(fs_info, 1);
3509
3510         btrfs_free_block_groups(fs_info);
3511
3512         del_fs_roots(fs_info);
3513
3514         iput(fs_info->btree_inode);
3515
3516         btrfs_stop_all_workers(fs_info);
3517
3518 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3519         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3520                 btrfsic_unmount(root, fs_info->fs_devices);
3521 #endif
3522
3523         btrfs_close_devices(fs_info->fs_devices);
3524         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3525
3526         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3527         percpu_counter_destroy(&fs_info->delalloc_bytes);
3528         bdi_destroy(&fs_info->bdi);
3529         cleanup_srcu_struct(&fs_info->subvol_srcu);
3530
3531         btrfs_free_stripe_hash_table(fs_info);
3532
3533         return 0;
3534 }
3535
3536 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3537                           int atomic)
3538 {
3539         int ret;
3540         struct inode *btree_inode = buf->pages[0]->mapping->host;
3541
3542         ret = extent_buffer_uptodate(buf);
3543         if (!ret)
3544                 return ret;
3545
3546         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3547                                     parent_transid, atomic);
3548         if (ret == -EAGAIN)
3549                 return ret;
3550         return !ret;
3551 }
3552
3553 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3554 {
3555         return set_extent_buffer_uptodate(buf);
3556 }
3557
3558 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3559 {
3560         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3561         u64 transid = btrfs_header_generation(buf);
3562         int was_dirty;
3563
3564         btrfs_assert_tree_locked(buf);
3565         if (transid != root->fs_info->generation)
3566                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3567                        "found %llu running %llu\n",
3568                         (unsigned long long)buf->start,
3569                         (unsigned long long)transid,
3570                         (unsigned long long)root->fs_info->generation);
3571         was_dirty = set_extent_buffer_dirty(buf);
3572         if (!was_dirty)
3573                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3574                                      buf->len,
3575                                      root->fs_info->dirty_metadata_batch);
3576 }
3577
3578 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3579                                         int flush_delayed)
3580 {
3581         /*
3582          * looks as though older kernels can get into trouble with
3583          * this code, they end up stuck in balance_dirty_pages forever
3584          */
3585         int ret;
3586
3587         if (current->flags & PF_MEMALLOC)
3588                 return;
3589
3590         if (flush_delayed)
3591                 btrfs_balance_delayed_items(root);
3592
3593         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3594                                      BTRFS_DIRTY_METADATA_THRESH);
3595         if (ret > 0) {
3596                 balance_dirty_pages_ratelimited(
3597                                    root->fs_info->btree_inode->i_mapping);
3598         }
3599         return;
3600 }
3601
3602 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3603 {
3604         __btrfs_btree_balance_dirty(root, 1);
3605 }
3606
3607 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3608 {
3609         __btrfs_btree_balance_dirty(root, 0);
3610 }
3611
3612 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3613 {
3614         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3615         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3616 }
3617
3618 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3619                               int read_only)
3620 {
3621         /*
3622          * Placeholder for checks
3623          */
3624         return 0;
3625 }
3626
3627 static void btrfs_error_commit_super(struct btrfs_root *root)
3628 {
3629         mutex_lock(&root->fs_info->cleaner_mutex);
3630         btrfs_run_delayed_iputs(root);
3631         mutex_unlock(&root->fs_info->cleaner_mutex);
3632
3633         down_write(&root->fs_info->cleanup_work_sem);
3634         up_write(&root->fs_info->cleanup_work_sem);
3635
3636         /* cleanup FS via transaction */
3637         btrfs_cleanup_transaction(root);
3638 }
3639
3640 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3641                                              struct btrfs_root *root)
3642 {
3643         struct btrfs_inode *btrfs_inode;
3644         struct list_head splice;
3645
3646         INIT_LIST_HEAD(&splice);
3647
3648         mutex_lock(&root->fs_info->ordered_operations_mutex);
3649         spin_lock(&root->fs_info->ordered_extent_lock);
3650
3651         list_splice_init(&t->ordered_operations, &splice);
3652         while (!list_empty(&splice)) {
3653                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3654                                          ordered_operations);
3655
3656                 list_del_init(&btrfs_inode->ordered_operations);
3657
3658                 btrfs_invalidate_inodes(btrfs_inode->root);
3659         }
3660
3661         spin_unlock(&root->fs_info->ordered_extent_lock);
3662         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3663 }
3664
3665 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3666 {
3667         struct btrfs_ordered_extent *ordered;
3668
3669         spin_lock(&root->fs_info->ordered_extent_lock);
3670         /*
3671          * This will just short circuit the ordered completion stuff which will
3672          * make sure the ordered extent gets properly cleaned up.
3673          */
3674         list_for_each_entry(ordered, &root->fs_info->ordered_extents,
3675                             root_extent_list)
3676                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3677         spin_unlock(&root->fs_info->ordered_extent_lock);
3678 }
3679
3680 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3681                                struct btrfs_root *root)
3682 {
3683         struct rb_node *node;
3684         struct btrfs_delayed_ref_root *delayed_refs;
3685         struct btrfs_delayed_ref_node *ref;
3686         int ret = 0;
3687
3688         delayed_refs = &trans->delayed_refs;
3689
3690         spin_lock(&delayed_refs->lock);
3691         if (delayed_refs->num_entries == 0) {
3692                 spin_unlock(&delayed_refs->lock);
3693                 printk(KERN_INFO "delayed_refs has NO entry\n");
3694                 return ret;
3695         }
3696
3697         while ((node = rb_first(&delayed_refs->root)) != NULL) {
3698                 struct btrfs_delayed_ref_head *head = NULL;
3699
3700                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3701                 atomic_set(&ref->refs, 1);
3702                 if (btrfs_delayed_ref_is_head(ref)) {
3703
3704                         head = btrfs_delayed_node_to_head(ref);
3705                         if (!mutex_trylock(&head->mutex)) {
3706                                 atomic_inc(&ref->refs);
3707                                 spin_unlock(&delayed_refs->lock);
3708
3709                                 /* Need to wait for the delayed ref to run */
3710                                 mutex_lock(&head->mutex);
3711                                 mutex_unlock(&head->mutex);
3712                                 btrfs_put_delayed_ref(ref);
3713
3714                                 spin_lock(&delayed_refs->lock);
3715                                 continue;
3716                         }
3717
3718                         if (head->must_insert_reserved)
3719                                 btrfs_pin_extent(root, ref->bytenr,
3720                                                  ref->num_bytes, 1);
3721                         btrfs_free_delayed_extent_op(head->extent_op);
3722                         delayed_refs->num_heads--;
3723                         if (list_empty(&head->cluster))
3724                                 delayed_refs->num_heads_ready--;
3725                         list_del_init(&head->cluster);
3726                 }
3727
3728                 ref->in_tree = 0;
3729                 rb_erase(&ref->rb_node, &delayed_refs->root);
3730                 delayed_refs->num_entries--;
3731                 if (head)
3732                         mutex_unlock(&head->mutex);
3733                 spin_unlock(&delayed_refs->lock);
3734                 btrfs_put_delayed_ref(ref);
3735
3736                 cond_resched();
3737                 spin_lock(&delayed_refs->lock);
3738         }
3739
3740         spin_unlock(&delayed_refs->lock);
3741
3742         return ret;
3743 }
3744
3745 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
3746 {
3747         struct btrfs_pending_snapshot *snapshot;
3748         struct list_head splice;
3749
3750         INIT_LIST_HEAD(&splice);
3751
3752         list_splice_init(&t->pending_snapshots, &splice);
3753
3754         while (!list_empty(&splice)) {
3755                 snapshot = list_entry(splice.next,
3756                                       struct btrfs_pending_snapshot,
3757                                       list);
3758                 snapshot->error = -ECANCELED;
3759                 list_del_init(&snapshot->list);
3760         }
3761 }
3762
3763 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3764 {
3765         struct btrfs_inode *btrfs_inode;
3766         struct list_head splice;
3767
3768         INIT_LIST_HEAD(&splice);
3769
3770         spin_lock(&root->fs_info->delalloc_lock);
3771         list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3772
3773         while (!list_empty(&splice)) {
3774                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3775                                     delalloc_inodes);
3776
3777                 list_del_init(&btrfs_inode->delalloc_inodes);
3778                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3779                           &btrfs_inode->runtime_flags);
3780
3781                 btrfs_invalidate_inodes(btrfs_inode->root);
3782         }
3783
3784         spin_unlock(&root->fs_info->delalloc_lock);
3785 }
3786
3787 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3788                                         struct extent_io_tree *dirty_pages,
3789                                         int mark)
3790 {
3791         int ret;
3792         struct extent_buffer *eb;
3793         u64 start = 0;
3794         u64 end;
3795
3796         while (1) {
3797                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3798                                             mark, NULL);
3799                 if (ret)
3800                         break;
3801
3802                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3803                 while (start <= end) {
3804                         eb = btrfs_find_tree_block(root, start,
3805                                                    root->leafsize);
3806                         start += eb->len;
3807                         if (!eb)
3808                                 continue;
3809                         wait_on_extent_buffer_writeback(eb);
3810
3811                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3812                                                &eb->bflags))
3813                                 clear_extent_buffer_dirty(eb);
3814                         free_extent_buffer_stale(eb);
3815                 }
3816         }
3817
3818         return ret;
3819 }
3820
3821 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3822                                        struct extent_io_tree *pinned_extents)
3823 {
3824         struct extent_io_tree *unpin;
3825         u64 start;
3826         u64 end;
3827         int ret;
3828         bool loop = true;
3829
3830         unpin = pinned_extents;
3831 again:
3832         while (1) {
3833                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3834                                             EXTENT_DIRTY, NULL);
3835                 if (ret)
3836                         break;
3837
3838                 /* opt_discard */
3839                 if (btrfs_test_opt(root, DISCARD))
3840                         ret = btrfs_error_discard_extent(root, start,
3841                                                          end + 1 - start,
3842                                                          NULL);
3843
3844                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3845                 btrfs_error_unpin_extent_range(root, start, end);
3846                 cond_resched();
3847         }
3848
3849         if (loop) {
3850                 if (unpin == &root->fs_info->freed_extents[0])
3851                         unpin = &root->fs_info->freed_extents[1];
3852                 else
3853                         unpin = &root->fs_info->freed_extents[0];
3854                 loop = false;
3855                 goto again;
3856         }
3857
3858         return 0;
3859 }
3860
3861 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3862                                    struct btrfs_root *root)
3863 {
3864         btrfs_destroy_delayed_refs(cur_trans, root);
3865         btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3866                                 cur_trans->dirty_pages.dirty_bytes);
3867
3868         /* FIXME: cleanup wait for commit */
3869         cur_trans->in_commit = 1;
3870         cur_trans->blocked = 1;
3871         wake_up(&root->fs_info->transaction_blocked_wait);
3872
3873         btrfs_evict_pending_snapshots(cur_trans);
3874
3875         cur_trans->blocked = 0;
3876         wake_up(&root->fs_info->transaction_wait);
3877
3878         cur_trans->commit_done = 1;
3879         wake_up(&cur_trans->commit_wait);
3880
3881         btrfs_destroy_delayed_inodes(root);
3882         btrfs_assert_delayed_root_empty(root);
3883
3884         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3885                                      EXTENT_DIRTY);
3886         btrfs_destroy_pinned_extent(root,
3887                                     root->fs_info->pinned_extents);
3888
3889         /*
3890         memset(cur_trans, 0, sizeof(*cur_trans));
3891         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3892         */
3893 }
3894
3895 static int btrfs_cleanup_transaction(struct btrfs_root *root)
3896 {
3897         struct btrfs_transaction *t;
3898         LIST_HEAD(list);
3899
3900         mutex_lock(&root->fs_info->transaction_kthread_mutex);
3901
3902         spin_lock(&root->fs_info->trans_lock);
3903         list_splice_init(&root->fs_info->trans_list, &list);
3904         root->fs_info->trans_no_join = 1;
3905         spin_unlock(&root->fs_info->trans_lock);
3906
3907         while (!list_empty(&list)) {
3908                 t = list_entry(list.next, struct btrfs_transaction, list);
3909
3910                 btrfs_destroy_ordered_operations(t, root);
3911
3912                 btrfs_destroy_ordered_extents(root);
3913
3914                 btrfs_destroy_delayed_refs(t, root);
3915
3916                 /* FIXME: cleanup wait for commit */
3917                 t->in_commit = 1;
3918                 t->blocked = 1;
3919                 smp_mb();
3920                 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3921                         wake_up(&root->fs_info->transaction_blocked_wait);
3922
3923                 btrfs_evict_pending_snapshots(t);
3924
3925                 t->blocked = 0;
3926                 smp_mb();
3927                 if (waitqueue_active(&root->fs_info->transaction_wait))
3928                         wake_up(&root->fs_info->transaction_wait);
3929
3930                 t->commit_done = 1;
3931                 smp_mb();
3932                 if (waitqueue_active(&t->commit_wait))
3933                         wake_up(&t->commit_wait);
3934
3935                 btrfs_destroy_delayed_inodes(root);
3936                 btrfs_assert_delayed_root_empty(root);
3937
3938                 btrfs_destroy_delalloc_inodes(root);
3939
3940                 spin_lock(&root->fs_info->trans_lock);
3941                 root->fs_info->running_transaction = NULL;
3942                 spin_unlock(&root->fs_info->trans_lock);
3943
3944                 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3945                                              EXTENT_DIRTY);
3946
3947                 btrfs_destroy_pinned_extent(root,
3948                                             root->fs_info->pinned_extents);
3949
3950                 atomic_set(&t->use_count, 0);
3951                 list_del_init(&t->list);
3952                 memset(t, 0, sizeof(*t));
3953                 kmem_cache_free(btrfs_transaction_cachep, t);
3954         }
3955
3956         spin_lock(&root->fs_info->trans_lock);
3957         root->fs_info->trans_no_join = 0;
3958         spin_unlock(&root->fs_info->trans_lock);
3959         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3960
3961         return 0;
3962 }
3963
3964 static struct extent_io_ops btree_extent_io_ops = {
3965         .readpage_end_io_hook = btree_readpage_end_io_hook,
3966         .readpage_io_failed_hook = btree_io_failed_hook,
3967         .submit_bio_hook = btree_submit_bio_hook,
3968         /* note we're sharing with inode.c for the merge bio hook */
3969         .merge_bio_hook = btrfs_merge_bio_hook,
3970 };