Btrfs: cleanup of error processing in btree_get_extent()
[linux-2.6-block.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48
49 static struct extent_io_ops btree_extent_io_ops;
50 static void end_workqueue_fn(struct btrfs_work *work);
51 static void free_fs_root(struct btrfs_root *root);
52 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
53                                     int read_only);
54 static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57                                       struct btrfs_root *root);
58 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
59 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
60 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
61                                         struct extent_io_tree *dirty_pages,
62                                         int mark);
63 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
64                                        struct extent_io_tree *pinned_extents);
65
66 /*
67  * end_io_wq structs are used to do processing in task context when an IO is
68  * complete.  This is used during reads to verify checksums, and it is used
69  * by writes to insert metadata for new file extents after IO is complete.
70  */
71 struct end_io_wq {
72         struct bio *bio;
73         bio_end_io_t *end_io;
74         void *private;
75         struct btrfs_fs_info *info;
76         int error;
77         int metadata;
78         struct list_head list;
79         struct btrfs_work work;
80 };
81
82 /*
83  * async submit bios are used to offload expensive checksumming
84  * onto the worker threads.  They checksum file and metadata bios
85  * just before they are sent down the IO stack.
86  */
87 struct async_submit_bio {
88         struct inode *inode;
89         struct bio *bio;
90         struct list_head list;
91         extent_submit_bio_hook_t *submit_bio_start;
92         extent_submit_bio_hook_t *submit_bio_done;
93         int rw;
94         int mirror_num;
95         unsigned long bio_flags;
96         /*
97          * bio_offset is optional, can be used if the pages in the bio
98          * can't tell us where in the file the bio should go
99          */
100         u64 bio_offset;
101         struct btrfs_work work;
102         int error;
103 };
104
105 /*
106  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
107  * eb, the lockdep key is determined by the btrfs_root it belongs to and
108  * the level the eb occupies in the tree.
109  *
110  * Different roots are used for different purposes and may nest inside each
111  * other and they require separate keysets.  As lockdep keys should be
112  * static, assign keysets according to the purpose of the root as indicated
113  * by btrfs_root->objectid.  This ensures that all special purpose roots
114  * have separate keysets.
115  *
116  * Lock-nesting across peer nodes is always done with the immediate parent
117  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
118  * subclass to avoid triggering lockdep warning in such cases.
119  *
120  * The key is set by the readpage_end_io_hook after the buffer has passed
121  * csum validation but before the pages are unlocked.  It is also set by
122  * btrfs_init_new_buffer on freshly allocated blocks.
123  *
124  * We also add a check to make sure the highest level of the tree is the
125  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
126  * needs update as well.
127  */
128 #ifdef CONFIG_DEBUG_LOCK_ALLOC
129 # if BTRFS_MAX_LEVEL != 8
130 #  error
131 # endif
132
133 static struct btrfs_lockdep_keyset {
134         u64                     id;             /* root objectid */
135         const char              *name_stem;     /* lock name stem */
136         char                    names[BTRFS_MAX_LEVEL + 1][20];
137         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
138 } btrfs_lockdep_keysets[] = {
139         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
140         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
141         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
142         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
143         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
144         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
145         { .id = BTRFS_ORPHAN_OBJECTID,          .name_stem = "orphan"   },
146         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
147         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
148         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
149         { .id = 0,                              .name_stem = "tree"     },
150 };
151
152 void __init btrfs_init_lockdep(void)
153 {
154         int i, j;
155
156         /* initialize lockdep class names */
157         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
158                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
159
160                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
161                         snprintf(ks->names[j], sizeof(ks->names[j]),
162                                  "btrfs-%s-%02d", ks->name_stem, j);
163         }
164 }
165
166 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
167                                     int level)
168 {
169         struct btrfs_lockdep_keyset *ks;
170
171         BUG_ON(level >= ARRAY_SIZE(ks->keys));
172
173         /* find the matching keyset, id 0 is the default entry */
174         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
175                 if (ks->id == objectid)
176                         break;
177
178         lockdep_set_class_and_name(&eb->lock,
179                                    &ks->keys[level], ks->names[level]);
180 }
181
182 #endif
183
184 /*
185  * extents on the btree inode are pretty simple, there's one extent
186  * that covers the entire device
187  */
188 static struct extent_map *btree_get_extent(struct inode *inode,
189                 struct page *page, size_t pg_offset, u64 start, u64 len,
190                 int create)
191 {
192         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
193         struct extent_map *em;
194         int ret;
195
196         read_lock(&em_tree->lock);
197         em = lookup_extent_mapping(em_tree, start, len);
198         if (em) {
199                 em->bdev =
200                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
201                 read_unlock(&em_tree->lock);
202                 goto out;
203         }
204         read_unlock(&em_tree->lock);
205
206         em = alloc_extent_map();
207         if (!em) {
208                 em = ERR_PTR(-ENOMEM);
209                 goto out;
210         }
211         em->start = 0;
212         em->len = (u64)-1;
213         em->block_len = (u64)-1;
214         em->block_start = 0;
215         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
216
217         write_lock(&em_tree->lock);
218         ret = add_extent_mapping(em_tree, em);
219         if (ret == -EEXIST) {
220                 u64 failed_start = em->start;
221                 u64 failed_len = em->len;
222
223                 free_extent_map(em);
224                 em = lookup_extent_mapping(em_tree, start, len);
225                 if (!em) {
226                         lookup_extent_mapping(em_tree, failed_start,
227                                               failed_len);
228                         em = ERR_PTR(-EIO);
229                 }
230         } else if (ret) {
231                 free_extent_map(em);
232                 em = ERR_PTR(ret);
233         }
234         write_unlock(&em_tree->lock);
235
236 out:
237         return em;
238 }
239
240 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
241 {
242         return crc32c(seed, data, len);
243 }
244
245 void btrfs_csum_final(u32 crc, char *result)
246 {
247         put_unaligned_le32(~crc, result);
248 }
249
250 /*
251  * compute the csum for a btree block, and either verify it or write it
252  * into the csum field of the block.
253  */
254 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
255                            int verify)
256 {
257         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
258         char *result = NULL;
259         unsigned long len;
260         unsigned long cur_len;
261         unsigned long offset = BTRFS_CSUM_SIZE;
262         char *kaddr;
263         unsigned long map_start;
264         unsigned long map_len;
265         int err;
266         u32 crc = ~(u32)0;
267         unsigned long inline_result;
268
269         len = buf->len - offset;
270         while (len > 0) {
271                 err = map_private_extent_buffer(buf, offset, 32,
272                                         &kaddr, &map_start, &map_len);
273                 if (err)
274                         return 1;
275                 cur_len = min(len, map_len - (offset - map_start));
276                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
277                                       crc, cur_len);
278                 len -= cur_len;
279                 offset += cur_len;
280         }
281         if (csum_size > sizeof(inline_result)) {
282                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
283                 if (!result)
284                         return 1;
285         } else {
286                 result = (char *)&inline_result;
287         }
288
289         btrfs_csum_final(crc, result);
290
291         if (verify) {
292                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
293                         u32 val;
294                         u32 found = 0;
295                         memcpy(&found, result, csum_size);
296
297                         read_extent_buffer(buf, &val, 0, csum_size);
298                         printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
299                                        "failed on %llu wanted %X found %X "
300                                        "level %d\n",
301                                        root->fs_info->sb->s_id,
302                                        (unsigned long long)buf->start, val, found,
303                                        btrfs_header_level(buf));
304                         if (result != (char *)&inline_result)
305                                 kfree(result);
306                         return 1;
307                 }
308         } else {
309                 write_extent_buffer(buf, result, 0, csum_size);
310         }
311         if (result != (char *)&inline_result)
312                 kfree(result);
313         return 0;
314 }
315
316 /*
317  * we can't consider a given block up to date unless the transid of the
318  * block matches the transid in the parent node's pointer.  This is how we
319  * detect blocks that either didn't get written at all or got written
320  * in the wrong place.
321  */
322 static int verify_parent_transid(struct extent_io_tree *io_tree,
323                                  struct extent_buffer *eb, u64 parent_transid,
324                                  int atomic)
325 {
326         struct extent_state *cached_state = NULL;
327         int ret;
328
329         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
330                 return 0;
331
332         if (atomic)
333                 return -EAGAIN;
334
335         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
336                          0, &cached_state);
337         if (extent_buffer_uptodate(eb) &&
338             btrfs_header_generation(eb) == parent_transid) {
339                 ret = 0;
340                 goto out;
341         }
342         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
343                        "found %llu\n",
344                        (unsigned long long)eb->start,
345                        (unsigned long long)parent_transid,
346                        (unsigned long long)btrfs_header_generation(eb));
347         ret = 1;
348         clear_extent_buffer_uptodate(eb);
349 out:
350         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
351                              &cached_state, GFP_NOFS);
352         return ret;
353 }
354
355 /*
356  * helper to read a given tree block, doing retries as required when
357  * the checksums don't match and we have alternate mirrors to try.
358  */
359 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
360                                           struct extent_buffer *eb,
361                                           u64 start, u64 parent_transid)
362 {
363         struct extent_io_tree *io_tree;
364         int failed = 0;
365         int ret;
366         int num_copies = 0;
367         int mirror_num = 0;
368         int failed_mirror = 0;
369
370         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
371         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
372         while (1) {
373                 ret = read_extent_buffer_pages(io_tree, eb, start,
374                                                WAIT_COMPLETE,
375                                                btree_get_extent, mirror_num);
376                 if (!ret) {
377                         if (!verify_parent_transid(io_tree, eb,
378                                                    parent_transid, 0))
379                                 break;
380                         else
381                                 ret = -EIO;
382                 }
383
384                 /*
385                  * This buffer's crc is fine, but its contents are corrupted, so
386                  * there is no reason to read the other copies, they won't be
387                  * any less wrong.
388                  */
389                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
390                         break;
391
392                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
393                                               eb->start, eb->len);
394                 if (num_copies == 1)
395                         break;
396
397                 if (!failed_mirror) {
398                         failed = 1;
399                         failed_mirror = eb->read_mirror;
400                 }
401
402                 mirror_num++;
403                 if (mirror_num == failed_mirror)
404                         mirror_num++;
405
406                 if (mirror_num > num_copies)
407                         break;
408         }
409
410         if (failed && !ret && failed_mirror)
411                 repair_eb_io_failure(root, eb, failed_mirror);
412
413         return ret;
414 }
415
416 /*
417  * checksum a dirty tree block before IO.  This has extra checks to make sure
418  * we only fill in the checksum field in the first page of a multi-page block
419  */
420
421 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
422 {
423         struct extent_io_tree *tree;
424         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
425         u64 found_start;
426         struct extent_buffer *eb;
427
428         tree = &BTRFS_I(page->mapping->host)->io_tree;
429
430         eb = (struct extent_buffer *)page->private;
431         if (page != eb->pages[0])
432                 return 0;
433         found_start = btrfs_header_bytenr(eb);
434         if (found_start != start) {
435                 WARN_ON(1);
436                 return 0;
437         }
438         if (eb->pages[0] != page) {
439                 WARN_ON(1);
440                 return 0;
441         }
442         if (!PageUptodate(page)) {
443                 WARN_ON(1);
444                 return 0;
445         }
446         csum_tree_block(root, eb, 0);
447         return 0;
448 }
449
450 static int check_tree_block_fsid(struct btrfs_root *root,
451                                  struct extent_buffer *eb)
452 {
453         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
454         u8 fsid[BTRFS_UUID_SIZE];
455         int ret = 1;
456
457         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
458                            BTRFS_FSID_SIZE);
459         while (fs_devices) {
460                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
461                         ret = 0;
462                         break;
463                 }
464                 fs_devices = fs_devices->seed;
465         }
466         return ret;
467 }
468
469 #define CORRUPT(reason, eb, root, slot)                         \
470         printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
471                "root=%llu, slot=%d\n", reason,                  \
472                (unsigned long long)btrfs_header_bytenr(eb),     \
473                (unsigned long long)root->objectid, slot)
474
475 static noinline int check_leaf(struct btrfs_root *root,
476                                struct extent_buffer *leaf)
477 {
478         struct btrfs_key key;
479         struct btrfs_key leaf_key;
480         u32 nritems = btrfs_header_nritems(leaf);
481         int slot;
482
483         if (nritems == 0)
484                 return 0;
485
486         /* Check the 0 item */
487         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
488             BTRFS_LEAF_DATA_SIZE(root)) {
489                 CORRUPT("invalid item offset size pair", leaf, root, 0);
490                 return -EIO;
491         }
492
493         /*
494          * Check to make sure each items keys are in the correct order and their
495          * offsets make sense.  We only have to loop through nritems-1 because
496          * we check the current slot against the next slot, which verifies the
497          * next slot's offset+size makes sense and that the current's slot
498          * offset is correct.
499          */
500         for (slot = 0; slot < nritems - 1; slot++) {
501                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
502                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
503
504                 /* Make sure the keys are in the right order */
505                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
506                         CORRUPT("bad key order", leaf, root, slot);
507                         return -EIO;
508                 }
509
510                 /*
511                  * Make sure the offset and ends are right, remember that the
512                  * item data starts at the end of the leaf and grows towards the
513                  * front.
514                  */
515                 if (btrfs_item_offset_nr(leaf, slot) !=
516                         btrfs_item_end_nr(leaf, slot + 1)) {
517                         CORRUPT("slot offset bad", leaf, root, slot);
518                         return -EIO;
519                 }
520
521                 /*
522                  * Check to make sure that we don't point outside of the leaf,
523                  * just incase all the items are consistent to eachother, but
524                  * all point outside of the leaf.
525                  */
526                 if (btrfs_item_end_nr(leaf, slot) >
527                     BTRFS_LEAF_DATA_SIZE(root)) {
528                         CORRUPT("slot end outside of leaf", leaf, root, slot);
529                         return -EIO;
530                 }
531         }
532
533         return 0;
534 }
535
536 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
537                                        struct page *page, int max_walk)
538 {
539         struct extent_buffer *eb;
540         u64 start = page_offset(page);
541         u64 target = start;
542         u64 min_start;
543
544         if (start < max_walk)
545                 min_start = 0;
546         else
547                 min_start = start - max_walk;
548
549         while (start >= min_start) {
550                 eb = find_extent_buffer(tree, start, 0);
551                 if (eb) {
552                         /*
553                          * we found an extent buffer and it contains our page
554                          * horray!
555                          */
556                         if (eb->start <= target &&
557                             eb->start + eb->len > target)
558                                 return eb;
559
560                         /* we found an extent buffer that wasn't for us */
561                         free_extent_buffer(eb);
562                         return NULL;
563                 }
564                 if (start == 0)
565                         break;
566                 start -= PAGE_CACHE_SIZE;
567         }
568         return NULL;
569 }
570
571 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
572                                struct extent_state *state, int mirror)
573 {
574         struct extent_io_tree *tree;
575         u64 found_start;
576         int found_level;
577         struct extent_buffer *eb;
578         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
579         int ret = 0;
580         int reads_done;
581
582         if (!page->private)
583                 goto out;
584
585         tree = &BTRFS_I(page->mapping->host)->io_tree;
586         eb = (struct extent_buffer *)page->private;
587
588         /* the pending IO might have been the only thing that kept this buffer
589          * in memory.  Make sure we have a ref for all this other checks
590          */
591         extent_buffer_get(eb);
592
593         reads_done = atomic_dec_and_test(&eb->io_pages);
594         if (!reads_done)
595                 goto err;
596
597         eb->read_mirror = mirror;
598         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
599                 ret = -EIO;
600                 goto err;
601         }
602
603         found_start = btrfs_header_bytenr(eb);
604         if (found_start != eb->start) {
605                 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
606                                "%llu %llu\n",
607                                (unsigned long long)found_start,
608                                (unsigned long long)eb->start);
609                 ret = -EIO;
610                 goto err;
611         }
612         if (check_tree_block_fsid(root, eb)) {
613                 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
614                                (unsigned long long)eb->start);
615                 ret = -EIO;
616                 goto err;
617         }
618         found_level = btrfs_header_level(eb);
619
620         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
621                                        eb, found_level);
622
623         ret = csum_tree_block(root, eb, 1);
624         if (ret) {
625                 ret = -EIO;
626                 goto err;
627         }
628
629         /*
630          * If this is a leaf block and it is corrupt, set the corrupt bit so
631          * that we don't try and read the other copies of this block, just
632          * return -EIO.
633          */
634         if (found_level == 0 && check_leaf(root, eb)) {
635                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
636                 ret = -EIO;
637         }
638
639         if (!ret)
640                 set_extent_buffer_uptodate(eb);
641 err:
642         if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
643                 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
644                 btree_readahead_hook(root, eb, eb->start, ret);
645         }
646
647         if (ret)
648                 clear_extent_buffer_uptodate(eb);
649         free_extent_buffer(eb);
650 out:
651         return ret;
652 }
653
654 static int btree_io_failed_hook(struct page *page, int failed_mirror)
655 {
656         struct extent_buffer *eb;
657         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
658
659         eb = (struct extent_buffer *)page->private;
660         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
661         eb->read_mirror = failed_mirror;
662         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
663                 btree_readahead_hook(root, eb, eb->start, -EIO);
664         return -EIO;    /* we fixed nothing */
665 }
666
667 static void end_workqueue_bio(struct bio *bio, int err)
668 {
669         struct end_io_wq *end_io_wq = bio->bi_private;
670         struct btrfs_fs_info *fs_info;
671
672         fs_info = end_io_wq->info;
673         end_io_wq->error = err;
674         end_io_wq->work.func = end_workqueue_fn;
675         end_io_wq->work.flags = 0;
676
677         if (bio->bi_rw & REQ_WRITE) {
678                 if (end_io_wq->metadata == 1)
679                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
680                                            &end_io_wq->work);
681                 else if (end_io_wq->metadata == 2)
682                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
683                                            &end_io_wq->work);
684                 else
685                         btrfs_queue_worker(&fs_info->endio_write_workers,
686                                            &end_io_wq->work);
687         } else {
688                 if (end_io_wq->metadata)
689                         btrfs_queue_worker(&fs_info->endio_meta_workers,
690                                            &end_io_wq->work);
691                 else
692                         btrfs_queue_worker(&fs_info->endio_workers,
693                                            &end_io_wq->work);
694         }
695 }
696
697 /*
698  * For the metadata arg you want
699  *
700  * 0 - if data
701  * 1 - if normal metadta
702  * 2 - if writing to the free space cache area
703  */
704 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
705                         int metadata)
706 {
707         struct end_io_wq *end_io_wq;
708         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
709         if (!end_io_wq)
710                 return -ENOMEM;
711
712         end_io_wq->private = bio->bi_private;
713         end_io_wq->end_io = bio->bi_end_io;
714         end_io_wq->info = info;
715         end_io_wq->error = 0;
716         end_io_wq->bio = bio;
717         end_io_wq->metadata = metadata;
718
719         bio->bi_private = end_io_wq;
720         bio->bi_end_io = end_workqueue_bio;
721         return 0;
722 }
723
724 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
725 {
726         unsigned long limit = min_t(unsigned long,
727                                     info->workers.max_workers,
728                                     info->fs_devices->open_devices);
729         return 256 * limit;
730 }
731
732 static void run_one_async_start(struct btrfs_work *work)
733 {
734         struct async_submit_bio *async;
735         int ret;
736
737         async = container_of(work, struct  async_submit_bio, work);
738         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
739                                       async->mirror_num, async->bio_flags,
740                                       async->bio_offset);
741         if (ret)
742                 async->error = ret;
743 }
744
745 static void run_one_async_done(struct btrfs_work *work)
746 {
747         struct btrfs_fs_info *fs_info;
748         struct async_submit_bio *async;
749         int limit;
750
751         async = container_of(work, struct  async_submit_bio, work);
752         fs_info = BTRFS_I(async->inode)->root->fs_info;
753
754         limit = btrfs_async_submit_limit(fs_info);
755         limit = limit * 2 / 3;
756
757         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
758             waitqueue_active(&fs_info->async_submit_wait))
759                 wake_up(&fs_info->async_submit_wait);
760
761         /* If an error occured we just want to clean up the bio and move on */
762         if (async->error) {
763                 bio_endio(async->bio, async->error);
764                 return;
765         }
766
767         async->submit_bio_done(async->inode, async->rw, async->bio,
768                                async->mirror_num, async->bio_flags,
769                                async->bio_offset);
770 }
771
772 static void run_one_async_free(struct btrfs_work *work)
773 {
774         struct async_submit_bio *async;
775
776         async = container_of(work, struct  async_submit_bio, work);
777         kfree(async);
778 }
779
780 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
781                         int rw, struct bio *bio, int mirror_num,
782                         unsigned long bio_flags,
783                         u64 bio_offset,
784                         extent_submit_bio_hook_t *submit_bio_start,
785                         extent_submit_bio_hook_t *submit_bio_done)
786 {
787         struct async_submit_bio *async;
788
789         async = kmalloc(sizeof(*async), GFP_NOFS);
790         if (!async)
791                 return -ENOMEM;
792
793         async->inode = inode;
794         async->rw = rw;
795         async->bio = bio;
796         async->mirror_num = mirror_num;
797         async->submit_bio_start = submit_bio_start;
798         async->submit_bio_done = submit_bio_done;
799
800         async->work.func = run_one_async_start;
801         async->work.ordered_func = run_one_async_done;
802         async->work.ordered_free = run_one_async_free;
803
804         async->work.flags = 0;
805         async->bio_flags = bio_flags;
806         async->bio_offset = bio_offset;
807
808         async->error = 0;
809
810         atomic_inc(&fs_info->nr_async_submits);
811
812         if (rw & REQ_SYNC)
813                 btrfs_set_work_high_prio(&async->work);
814
815         btrfs_queue_worker(&fs_info->workers, &async->work);
816
817         while (atomic_read(&fs_info->async_submit_draining) &&
818               atomic_read(&fs_info->nr_async_submits)) {
819                 wait_event(fs_info->async_submit_wait,
820                            (atomic_read(&fs_info->nr_async_submits) == 0));
821         }
822
823         return 0;
824 }
825
826 static int btree_csum_one_bio(struct bio *bio)
827 {
828         struct bio_vec *bvec = bio->bi_io_vec;
829         int bio_index = 0;
830         struct btrfs_root *root;
831         int ret = 0;
832
833         WARN_ON(bio->bi_vcnt <= 0);
834         while (bio_index < bio->bi_vcnt) {
835                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
836                 ret = csum_dirty_buffer(root, bvec->bv_page);
837                 if (ret)
838                         break;
839                 bio_index++;
840                 bvec++;
841         }
842         return ret;
843 }
844
845 static int __btree_submit_bio_start(struct inode *inode, int rw,
846                                     struct bio *bio, int mirror_num,
847                                     unsigned long bio_flags,
848                                     u64 bio_offset)
849 {
850         /*
851          * when we're called for a write, we're already in the async
852          * submission context.  Just jump into btrfs_map_bio
853          */
854         return btree_csum_one_bio(bio);
855 }
856
857 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
858                                  int mirror_num, unsigned long bio_flags,
859                                  u64 bio_offset)
860 {
861         /*
862          * when we're called for a write, we're already in the async
863          * submission context.  Just jump into btrfs_map_bio
864          */
865         return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
866 }
867
868 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
869                                  int mirror_num, unsigned long bio_flags,
870                                  u64 bio_offset)
871 {
872         int ret;
873
874         if (!(rw & REQ_WRITE)) {
875
876                 /*
877                  * called for a read, do the setup so that checksum validation
878                  * can happen in the async kernel threads
879                  */
880                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
881                                           bio, 1);
882                 if (ret)
883                         return ret;
884                 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
885                                      mirror_num, 0);
886         }
887
888         /*
889          * kthread helpers are used to submit writes so that checksumming
890          * can happen in parallel across all CPUs
891          */
892         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
893                                    inode, rw, bio, mirror_num, 0,
894                                    bio_offset,
895                                    __btree_submit_bio_start,
896                                    __btree_submit_bio_done);
897 }
898
899 #ifdef CONFIG_MIGRATION
900 static int btree_migratepage(struct address_space *mapping,
901                         struct page *newpage, struct page *page,
902                         enum migrate_mode mode)
903 {
904         /*
905          * we can't safely write a btree page from here,
906          * we haven't done the locking hook
907          */
908         if (PageDirty(page))
909                 return -EAGAIN;
910         /*
911          * Buffers may be managed in a filesystem specific way.
912          * We must have no buffers or drop them.
913          */
914         if (page_has_private(page) &&
915             !try_to_release_page(page, GFP_KERNEL))
916                 return -EAGAIN;
917         return migrate_page(mapping, newpage, page, mode);
918 }
919 #endif
920
921
922 static int btree_writepages(struct address_space *mapping,
923                             struct writeback_control *wbc)
924 {
925         struct extent_io_tree *tree;
926         tree = &BTRFS_I(mapping->host)->io_tree;
927         if (wbc->sync_mode == WB_SYNC_NONE) {
928                 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
929                 u64 num_dirty;
930                 unsigned long thresh = 32 * 1024 * 1024;
931
932                 if (wbc->for_kupdate)
933                         return 0;
934
935                 /* this is a bit racy, but that's ok */
936                 num_dirty = root->fs_info->dirty_metadata_bytes;
937                 if (num_dirty < thresh)
938                         return 0;
939         }
940         return btree_write_cache_pages(mapping, wbc);
941 }
942
943 static int btree_readpage(struct file *file, struct page *page)
944 {
945         struct extent_io_tree *tree;
946         tree = &BTRFS_I(page->mapping->host)->io_tree;
947         return extent_read_full_page(tree, page, btree_get_extent, 0);
948 }
949
950 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
951 {
952         if (PageWriteback(page) || PageDirty(page))
953                 return 0;
954         /*
955          * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
956          * slab allocation from alloc_extent_state down the callchain where
957          * it'd hit a BUG_ON as those flags are not allowed.
958          */
959         gfp_flags &= ~GFP_SLAB_BUG_MASK;
960
961         return try_release_extent_buffer(page, gfp_flags);
962 }
963
964 static void btree_invalidatepage(struct page *page, unsigned long offset)
965 {
966         struct extent_io_tree *tree;
967         tree = &BTRFS_I(page->mapping->host)->io_tree;
968         extent_invalidatepage(tree, page, offset);
969         btree_releasepage(page, GFP_NOFS);
970         if (PagePrivate(page)) {
971                 printk(KERN_WARNING "btrfs warning page private not zero "
972                        "on page %llu\n", (unsigned long long)page_offset(page));
973                 ClearPagePrivate(page);
974                 set_page_private(page, 0);
975                 page_cache_release(page);
976         }
977 }
978
979 static int btree_set_page_dirty(struct page *page)
980 {
981         struct extent_buffer *eb;
982
983         BUG_ON(!PagePrivate(page));
984         eb = (struct extent_buffer *)page->private;
985         BUG_ON(!eb);
986         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
987         BUG_ON(!atomic_read(&eb->refs));
988         btrfs_assert_tree_locked(eb);
989         return __set_page_dirty_nobuffers(page);
990 }
991
992 static const struct address_space_operations btree_aops = {
993         .readpage       = btree_readpage,
994         .writepages     = btree_writepages,
995         .releasepage    = btree_releasepage,
996         .invalidatepage = btree_invalidatepage,
997 #ifdef CONFIG_MIGRATION
998         .migratepage    = btree_migratepage,
999 #endif
1000         .set_page_dirty = btree_set_page_dirty,
1001 };
1002
1003 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1004                          u64 parent_transid)
1005 {
1006         struct extent_buffer *buf = NULL;
1007         struct inode *btree_inode = root->fs_info->btree_inode;
1008         int ret = 0;
1009
1010         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1011         if (!buf)
1012                 return 0;
1013         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1014                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1015         free_extent_buffer(buf);
1016         return ret;
1017 }
1018
1019 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1020                          int mirror_num, struct extent_buffer **eb)
1021 {
1022         struct extent_buffer *buf = NULL;
1023         struct inode *btree_inode = root->fs_info->btree_inode;
1024         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1025         int ret;
1026
1027         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1028         if (!buf)
1029                 return 0;
1030
1031         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1032
1033         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1034                                        btree_get_extent, mirror_num);
1035         if (ret) {
1036                 free_extent_buffer(buf);
1037                 return ret;
1038         }
1039
1040         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1041                 free_extent_buffer(buf);
1042                 return -EIO;
1043         } else if (extent_buffer_uptodate(buf)) {
1044                 *eb = buf;
1045         } else {
1046                 free_extent_buffer(buf);
1047         }
1048         return 0;
1049 }
1050
1051 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1052                                             u64 bytenr, u32 blocksize)
1053 {
1054         struct inode *btree_inode = root->fs_info->btree_inode;
1055         struct extent_buffer *eb;
1056         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1057                                 bytenr, blocksize);
1058         return eb;
1059 }
1060
1061 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1062                                                  u64 bytenr, u32 blocksize)
1063 {
1064         struct inode *btree_inode = root->fs_info->btree_inode;
1065         struct extent_buffer *eb;
1066
1067         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1068                                  bytenr, blocksize);
1069         return eb;
1070 }
1071
1072
1073 int btrfs_write_tree_block(struct extent_buffer *buf)
1074 {
1075         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1076                                         buf->start + buf->len - 1);
1077 }
1078
1079 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1080 {
1081         return filemap_fdatawait_range(buf->pages[0]->mapping,
1082                                        buf->start, buf->start + buf->len - 1);
1083 }
1084
1085 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1086                                       u32 blocksize, u64 parent_transid)
1087 {
1088         struct extent_buffer *buf = NULL;
1089         int ret;
1090
1091         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1092         if (!buf)
1093                 return NULL;
1094
1095         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1096         return buf;
1097
1098 }
1099
1100 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1101                       struct extent_buffer *buf)
1102 {
1103         if (btrfs_header_generation(buf) ==
1104             root->fs_info->running_transaction->transid) {
1105                 btrfs_assert_tree_locked(buf);
1106
1107                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1108                         spin_lock(&root->fs_info->delalloc_lock);
1109                         if (root->fs_info->dirty_metadata_bytes >= buf->len)
1110                                 root->fs_info->dirty_metadata_bytes -= buf->len;
1111                         else {
1112                                 spin_unlock(&root->fs_info->delalloc_lock);
1113                                 btrfs_panic(root->fs_info, -EOVERFLOW,
1114                                           "Can't clear %lu bytes from "
1115                                           " dirty_mdatadata_bytes (%llu)",
1116                                           buf->len,
1117                                           root->fs_info->dirty_metadata_bytes);
1118                         }
1119                         spin_unlock(&root->fs_info->delalloc_lock);
1120                 }
1121
1122                 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1123                 btrfs_set_lock_blocking(buf);
1124                 clear_extent_buffer_dirty(buf);
1125         }
1126 }
1127
1128 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1129                          u32 stripesize, struct btrfs_root *root,
1130                          struct btrfs_fs_info *fs_info,
1131                          u64 objectid)
1132 {
1133         root->node = NULL;
1134         root->commit_root = NULL;
1135         root->sectorsize = sectorsize;
1136         root->nodesize = nodesize;
1137         root->leafsize = leafsize;
1138         root->stripesize = stripesize;
1139         root->ref_cows = 0;
1140         root->track_dirty = 0;
1141         root->in_radix = 0;
1142         root->orphan_item_inserted = 0;
1143         root->orphan_cleanup_state = 0;
1144
1145         root->objectid = objectid;
1146         root->last_trans = 0;
1147         root->highest_objectid = 0;
1148         root->name = NULL;
1149         root->inode_tree = RB_ROOT;
1150         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1151         root->block_rsv = NULL;
1152         root->orphan_block_rsv = NULL;
1153
1154         INIT_LIST_HEAD(&root->dirty_list);
1155         INIT_LIST_HEAD(&root->root_list);
1156         spin_lock_init(&root->orphan_lock);
1157         spin_lock_init(&root->inode_lock);
1158         spin_lock_init(&root->accounting_lock);
1159         mutex_init(&root->objectid_mutex);
1160         mutex_init(&root->log_mutex);
1161         init_waitqueue_head(&root->log_writer_wait);
1162         init_waitqueue_head(&root->log_commit_wait[0]);
1163         init_waitqueue_head(&root->log_commit_wait[1]);
1164         atomic_set(&root->log_commit[0], 0);
1165         atomic_set(&root->log_commit[1], 0);
1166         atomic_set(&root->log_writers, 0);
1167         atomic_set(&root->log_batch, 0);
1168         atomic_set(&root->orphan_inodes, 0);
1169         root->log_transid = 0;
1170         root->last_log_commit = 0;
1171         extent_io_tree_init(&root->dirty_log_pages,
1172                              fs_info->btree_inode->i_mapping);
1173
1174         memset(&root->root_key, 0, sizeof(root->root_key));
1175         memset(&root->root_item, 0, sizeof(root->root_item));
1176         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1177         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1178         root->defrag_trans_start = fs_info->generation;
1179         init_completion(&root->kobj_unregister);
1180         root->defrag_running = 0;
1181         root->root_key.objectid = objectid;
1182         root->anon_dev = 0;
1183
1184         spin_lock_init(&root->root_times_lock);
1185 }
1186
1187 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1188                                             struct btrfs_fs_info *fs_info,
1189                                             u64 objectid,
1190                                             struct btrfs_root *root)
1191 {
1192         int ret;
1193         u32 blocksize;
1194         u64 generation;
1195
1196         __setup_root(tree_root->nodesize, tree_root->leafsize,
1197                      tree_root->sectorsize, tree_root->stripesize,
1198                      root, fs_info, objectid);
1199         ret = btrfs_find_last_root(tree_root, objectid,
1200                                    &root->root_item, &root->root_key);
1201         if (ret > 0)
1202                 return -ENOENT;
1203         else if (ret < 0)
1204                 return ret;
1205
1206         generation = btrfs_root_generation(&root->root_item);
1207         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1208         root->commit_root = NULL;
1209         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1210                                      blocksize, generation);
1211         if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1212                 free_extent_buffer(root->node);
1213                 root->node = NULL;
1214                 return -EIO;
1215         }
1216         root->commit_root = btrfs_root_node(root);
1217         return 0;
1218 }
1219
1220 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1221 {
1222         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1223         if (root)
1224                 root->fs_info = fs_info;
1225         return root;
1226 }
1227
1228 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1229                                      struct btrfs_fs_info *fs_info,
1230                                      u64 objectid)
1231 {
1232         struct extent_buffer *leaf;
1233         struct btrfs_root *tree_root = fs_info->tree_root;
1234         struct btrfs_root *root;
1235         struct btrfs_key key;
1236         int ret = 0;
1237         u64 bytenr;
1238
1239         root = btrfs_alloc_root(fs_info);
1240         if (!root)
1241                 return ERR_PTR(-ENOMEM);
1242
1243         __setup_root(tree_root->nodesize, tree_root->leafsize,
1244                      tree_root->sectorsize, tree_root->stripesize,
1245                      root, fs_info, objectid);
1246         root->root_key.objectid = objectid;
1247         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1248         root->root_key.offset = 0;
1249
1250         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1251                                       0, objectid, NULL, 0, 0, 0);
1252         if (IS_ERR(leaf)) {
1253                 ret = PTR_ERR(leaf);
1254                 goto fail;
1255         }
1256
1257         bytenr = leaf->start;
1258         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1259         btrfs_set_header_bytenr(leaf, leaf->start);
1260         btrfs_set_header_generation(leaf, trans->transid);
1261         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1262         btrfs_set_header_owner(leaf, objectid);
1263         root->node = leaf;
1264
1265         write_extent_buffer(leaf, fs_info->fsid,
1266                             (unsigned long)btrfs_header_fsid(leaf),
1267                             BTRFS_FSID_SIZE);
1268         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1269                             (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1270                             BTRFS_UUID_SIZE);
1271         btrfs_mark_buffer_dirty(leaf);
1272
1273         root->commit_root = btrfs_root_node(root);
1274         root->track_dirty = 1;
1275
1276
1277         root->root_item.flags = 0;
1278         root->root_item.byte_limit = 0;
1279         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1280         btrfs_set_root_generation(&root->root_item, trans->transid);
1281         btrfs_set_root_level(&root->root_item, 0);
1282         btrfs_set_root_refs(&root->root_item, 1);
1283         btrfs_set_root_used(&root->root_item, leaf->len);
1284         btrfs_set_root_last_snapshot(&root->root_item, 0);
1285         btrfs_set_root_dirid(&root->root_item, 0);
1286         root->root_item.drop_level = 0;
1287
1288         key.objectid = objectid;
1289         key.type = BTRFS_ROOT_ITEM_KEY;
1290         key.offset = 0;
1291         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1292         if (ret)
1293                 goto fail;
1294
1295         btrfs_tree_unlock(leaf);
1296
1297 fail:
1298         if (ret)
1299                 return ERR_PTR(ret);
1300
1301         return root;
1302 }
1303
1304 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1305                                          struct btrfs_fs_info *fs_info)
1306 {
1307         struct btrfs_root *root;
1308         struct btrfs_root *tree_root = fs_info->tree_root;
1309         struct extent_buffer *leaf;
1310
1311         root = btrfs_alloc_root(fs_info);
1312         if (!root)
1313                 return ERR_PTR(-ENOMEM);
1314
1315         __setup_root(tree_root->nodesize, tree_root->leafsize,
1316                      tree_root->sectorsize, tree_root->stripesize,
1317                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1318
1319         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1320         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1321         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1322         /*
1323          * log trees do not get reference counted because they go away
1324          * before a real commit is actually done.  They do store pointers
1325          * to file data extents, and those reference counts still get
1326          * updated (along with back refs to the log tree).
1327          */
1328         root->ref_cows = 0;
1329
1330         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1331                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1332                                       0, 0, 0);
1333         if (IS_ERR(leaf)) {
1334                 kfree(root);
1335                 return ERR_CAST(leaf);
1336         }
1337
1338         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1339         btrfs_set_header_bytenr(leaf, leaf->start);
1340         btrfs_set_header_generation(leaf, trans->transid);
1341         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1342         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1343         root->node = leaf;
1344
1345         write_extent_buffer(root->node, root->fs_info->fsid,
1346                             (unsigned long)btrfs_header_fsid(root->node),
1347                             BTRFS_FSID_SIZE);
1348         btrfs_mark_buffer_dirty(root->node);
1349         btrfs_tree_unlock(root->node);
1350         return root;
1351 }
1352
1353 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1354                              struct btrfs_fs_info *fs_info)
1355 {
1356         struct btrfs_root *log_root;
1357
1358         log_root = alloc_log_tree(trans, fs_info);
1359         if (IS_ERR(log_root))
1360                 return PTR_ERR(log_root);
1361         WARN_ON(fs_info->log_root_tree);
1362         fs_info->log_root_tree = log_root;
1363         return 0;
1364 }
1365
1366 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1367                        struct btrfs_root *root)
1368 {
1369         struct btrfs_root *log_root;
1370         struct btrfs_inode_item *inode_item;
1371
1372         log_root = alloc_log_tree(trans, root->fs_info);
1373         if (IS_ERR(log_root))
1374                 return PTR_ERR(log_root);
1375
1376         log_root->last_trans = trans->transid;
1377         log_root->root_key.offset = root->root_key.objectid;
1378
1379         inode_item = &log_root->root_item.inode;
1380         inode_item->generation = cpu_to_le64(1);
1381         inode_item->size = cpu_to_le64(3);
1382         inode_item->nlink = cpu_to_le32(1);
1383         inode_item->nbytes = cpu_to_le64(root->leafsize);
1384         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1385
1386         btrfs_set_root_node(&log_root->root_item, log_root->node);
1387
1388         WARN_ON(root->log_root);
1389         root->log_root = log_root;
1390         root->log_transid = 0;
1391         root->last_log_commit = 0;
1392         return 0;
1393 }
1394
1395 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1396                                                struct btrfs_key *location)
1397 {
1398         struct btrfs_root *root;
1399         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1400         struct btrfs_path *path;
1401         struct extent_buffer *l;
1402         u64 generation;
1403         u32 blocksize;
1404         int ret = 0;
1405         int slot;
1406
1407         root = btrfs_alloc_root(fs_info);
1408         if (!root)
1409                 return ERR_PTR(-ENOMEM);
1410         if (location->offset == (u64)-1) {
1411                 ret = find_and_setup_root(tree_root, fs_info,
1412                                           location->objectid, root);
1413                 if (ret) {
1414                         kfree(root);
1415                         return ERR_PTR(ret);
1416                 }
1417                 goto out;
1418         }
1419
1420         __setup_root(tree_root->nodesize, tree_root->leafsize,
1421                      tree_root->sectorsize, tree_root->stripesize,
1422                      root, fs_info, location->objectid);
1423
1424         path = btrfs_alloc_path();
1425         if (!path) {
1426                 kfree(root);
1427                 return ERR_PTR(-ENOMEM);
1428         }
1429         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1430         if (ret == 0) {
1431                 l = path->nodes[0];
1432                 slot = path->slots[0];
1433                 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
1434                 memcpy(&root->root_key, location, sizeof(*location));
1435         }
1436         btrfs_free_path(path);
1437         if (ret) {
1438                 kfree(root);
1439                 if (ret > 0)
1440                         ret = -ENOENT;
1441                 return ERR_PTR(ret);
1442         }
1443
1444         generation = btrfs_root_generation(&root->root_item);
1445         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1446         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1447                                      blocksize, generation);
1448         root->commit_root = btrfs_root_node(root);
1449         BUG_ON(!root->node); /* -ENOMEM */
1450 out:
1451         if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1452                 root->ref_cows = 1;
1453                 btrfs_check_and_init_root_item(&root->root_item);
1454         }
1455
1456         return root;
1457 }
1458
1459 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1460                                               struct btrfs_key *location)
1461 {
1462         struct btrfs_root *root;
1463         int ret;
1464
1465         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1466                 return fs_info->tree_root;
1467         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1468                 return fs_info->extent_root;
1469         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1470                 return fs_info->chunk_root;
1471         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1472                 return fs_info->dev_root;
1473         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1474                 return fs_info->csum_root;
1475         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1476                 return fs_info->quota_root ? fs_info->quota_root :
1477                                              ERR_PTR(-ENOENT);
1478 again:
1479         spin_lock(&fs_info->fs_roots_radix_lock);
1480         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1481                                  (unsigned long)location->objectid);
1482         spin_unlock(&fs_info->fs_roots_radix_lock);
1483         if (root)
1484                 return root;
1485
1486         root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1487         if (IS_ERR(root))
1488                 return root;
1489
1490         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1491         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1492                                         GFP_NOFS);
1493         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1494                 ret = -ENOMEM;
1495                 goto fail;
1496         }
1497
1498         btrfs_init_free_ino_ctl(root);
1499         mutex_init(&root->fs_commit_mutex);
1500         spin_lock_init(&root->cache_lock);
1501         init_waitqueue_head(&root->cache_wait);
1502
1503         ret = get_anon_bdev(&root->anon_dev);
1504         if (ret)
1505                 goto fail;
1506
1507         if (btrfs_root_refs(&root->root_item) == 0) {
1508                 ret = -ENOENT;
1509                 goto fail;
1510         }
1511
1512         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1513         if (ret < 0)
1514                 goto fail;
1515         if (ret == 0)
1516                 root->orphan_item_inserted = 1;
1517
1518         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1519         if (ret)
1520                 goto fail;
1521
1522         spin_lock(&fs_info->fs_roots_radix_lock);
1523         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1524                                 (unsigned long)root->root_key.objectid,
1525                                 root);
1526         if (ret == 0)
1527                 root->in_radix = 1;
1528
1529         spin_unlock(&fs_info->fs_roots_radix_lock);
1530         radix_tree_preload_end();
1531         if (ret) {
1532                 if (ret == -EEXIST) {
1533                         free_fs_root(root);
1534                         goto again;
1535                 }
1536                 goto fail;
1537         }
1538
1539         ret = btrfs_find_dead_roots(fs_info->tree_root,
1540                                     root->root_key.objectid);
1541         WARN_ON(ret);
1542         return root;
1543 fail:
1544         free_fs_root(root);
1545         return ERR_PTR(ret);
1546 }
1547
1548 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1549 {
1550         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1551         int ret = 0;
1552         struct btrfs_device *device;
1553         struct backing_dev_info *bdi;
1554
1555         rcu_read_lock();
1556         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1557                 if (!device->bdev)
1558                         continue;
1559                 bdi = blk_get_backing_dev_info(device->bdev);
1560                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1561                         ret = 1;
1562                         break;
1563                 }
1564         }
1565         rcu_read_unlock();
1566         return ret;
1567 }
1568
1569 /*
1570  * If this fails, caller must call bdi_destroy() to get rid of the
1571  * bdi again.
1572  */
1573 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1574 {
1575         int err;
1576
1577         bdi->capabilities = BDI_CAP_MAP_COPY;
1578         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1579         if (err)
1580                 return err;
1581
1582         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1583         bdi->congested_fn       = btrfs_congested_fn;
1584         bdi->congested_data     = info;
1585         return 0;
1586 }
1587
1588 /*
1589  * called by the kthread helper functions to finally call the bio end_io
1590  * functions.  This is where read checksum verification actually happens
1591  */
1592 static void end_workqueue_fn(struct btrfs_work *work)
1593 {
1594         struct bio *bio;
1595         struct end_io_wq *end_io_wq;
1596         struct btrfs_fs_info *fs_info;
1597         int error;
1598
1599         end_io_wq = container_of(work, struct end_io_wq, work);
1600         bio = end_io_wq->bio;
1601         fs_info = end_io_wq->info;
1602
1603         error = end_io_wq->error;
1604         bio->bi_private = end_io_wq->private;
1605         bio->bi_end_io = end_io_wq->end_io;
1606         kfree(end_io_wq);
1607         bio_endio(bio, error);
1608 }
1609
1610 static int cleaner_kthread(void *arg)
1611 {
1612         struct btrfs_root *root = arg;
1613
1614         do {
1615                 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1616                     mutex_trylock(&root->fs_info->cleaner_mutex)) {
1617                         btrfs_run_delayed_iputs(root);
1618                         btrfs_clean_old_snapshots(root);
1619                         mutex_unlock(&root->fs_info->cleaner_mutex);
1620                         btrfs_run_defrag_inodes(root->fs_info);
1621                 }
1622
1623                 if (!try_to_freeze()) {
1624                         set_current_state(TASK_INTERRUPTIBLE);
1625                         if (!kthread_should_stop())
1626                                 schedule();
1627                         __set_current_state(TASK_RUNNING);
1628                 }
1629         } while (!kthread_should_stop());
1630         return 0;
1631 }
1632
1633 static int transaction_kthread(void *arg)
1634 {
1635         struct btrfs_root *root = arg;
1636         struct btrfs_trans_handle *trans;
1637         struct btrfs_transaction *cur;
1638         u64 transid;
1639         unsigned long now;
1640         unsigned long delay;
1641         bool cannot_commit;
1642
1643         do {
1644                 cannot_commit = false;
1645                 delay = HZ * 30;
1646                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1647
1648                 spin_lock(&root->fs_info->trans_lock);
1649                 cur = root->fs_info->running_transaction;
1650                 if (!cur) {
1651                         spin_unlock(&root->fs_info->trans_lock);
1652                         goto sleep;
1653                 }
1654
1655                 now = get_seconds();
1656                 if (!cur->blocked &&
1657                     (now < cur->start_time || now - cur->start_time < 30)) {
1658                         spin_unlock(&root->fs_info->trans_lock);
1659                         delay = HZ * 5;
1660                         goto sleep;
1661                 }
1662                 transid = cur->transid;
1663                 spin_unlock(&root->fs_info->trans_lock);
1664
1665                 /* If the file system is aborted, this will always fail. */
1666                 trans = btrfs_join_transaction(root);
1667                 if (IS_ERR(trans)) {
1668                         cannot_commit = true;
1669                         goto sleep;
1670                 }
1671                 if (transid == trans->transid) {
1672                         btrfs_commit_transaction(trans, root);
1673                 } else {
1674                         btrfs_end_transaction(trans, root);
1675                 }
1676 sleep:
1677                 wake_up_process(root->fs_info->cleaner_kthread);
1678                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1679
1680                 if (!try_to_freeze()) {
1681                         set_current_state(TASK_INTERRUPTIBLE);
1682                         if (!kthread_should_stop() &&
1683                             (!btrfs_transaction_blocked(root->fs_info) ||
1684                              cannot_commit))
1685                                 schedule_timeout(delay);
1686                         __set_current_state(TASK_RUNNING);
1687                 }
1688         } while (!kthread_should_stop());
1689         return 0;
1690 }
1691
1692 /*
1693  * this will find the highest generation in the array of
1694  * root backups.  The index of the highest array is returned,
1695  * or -1 if we can't find anything.
1696  *
1697  * We check to make sure the array is valid by comparing the
1698  * generation of the latest  root in the array with the generation
1699  * in the super block.  If they don't match we pitch it.
1700  */
1701 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1702 {
1703         u64 cur;
1704         int newest_index = -1;
1705         struct btrfs_root_backup *root_backup;
1706         int i;
1707
1708         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1709                 root_backup = info->super_copy->super_roots + i;
1710                 cur = btrfs_backup_tree_root_gen(root_backup);
1711                 if (cur == newest_gen)
1712                         newest_index = i;
1713         }
1714
1715         /* check to see if we actually wrapped around */
1716         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1717                 root_backup = info->super_copy->super_roots;
1718                 cur = btrfs_backup_tree_root_gen(root_backup);
1719                 if (cur == newest_gen)
1720                         newest_index = 0;
1721         }
1722         return newest_index;
1723 }
1724
1725
1726 /*
1727  * find the oldest backup so we know where to store new entries
1728  * in the backup array.  This will set the backup_root_index
1729  * field in the fs_info struct
1730  */
1731 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1732                                      u64 newest_gen)
1733 {
1734         int newest_index = -1;
1735
1736         newest_index = find_newest_super_backup(info, newest_gen);
1737         /* if there was garbage in there, just move along */
1738         if (newest_index == -1) {
1739                 info->backup_root_index = 0;
1740         } else {
1741                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1742         }
1743 }
1744
1745 /*
1746  * copy all the root pointers into the super backup array.
1747  * this will bump the backup pointer by one when it is
1748  * done
1749  */
1750 static void backup_super_roots(struct btrfs_fs_info *info)
1751 {
1752         int next_backup;
1753         struct btrfs_root_backup *root_backup;
1754         int last_backup;
1755
1756         next_backup = info->backup_root_index;
1757         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1758                 BTRFS_NUM_BACKUP_ROOTS;
1759
1760         /*
1761          * just overwrite the last backup if we're at the same generation
1762          * this happens only at umount
1763          */
1764         root_backup = info->super_for_commit->super_roots + last_backup;
1765         if (btrfs_backup_tree_root_gen(root_backup) ==
1766             btrfs_header_generation(info->tree_root->node))
1767                 next_backup = last_backup;
1768
1769         root_backup = info->super_for_commit->super_roots + next_backup;
1770
1771         /*
1772          * make sure all of our padding and empty slots get zero filled
1773          * regardless of which ones we use today
1774          */
1775         memset(root_backup, 0, sizeof(*root_backup));
1776
1777         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1778
1779         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1780         btrfs_set_backup_tree_root_gen(root_backup,
1781                                btrfs_header_generation(info->tree_root->node));
1782
1783         btrfs_set_backup_tree_root_level(root_backup,
1784                                btrfs_header_level(info->tree_root->node));
1785
1786         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1787         btrfs_set_backup_chunk_root_gen(root_backup,
1788                                btrfs_header_generation(info->chunk_root->node));
1789         btrfs_set_backup_chunk_root_level(root_backup,
1790                                btrfs_header_level(info->chunk_root->node));
1791
1792         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1793         btrfs_set_backup_extent_root_gen(root_backup,
1794                                btrfs_header_generation(info->extent_root->node));
1795         btrfs_set_backup_extent_root_level(root_backup,
1796                                btrfs_header_level(info->extent_root->node));
1797
1798         /*
1799          * we might commit during log recovery, which happens before we set
1800          * the fs_root.  Make sure it is valid before we fill it in.
1801          */
1802         if (info->fs_root && info->fs_root->node) {
1803                 btrfs_set_backup_fs_root(root_backup,
1804                                          info->fs_root->node->start);
1805                 btrfs_set_backup_fs_root_gen(root_backup,
1806                                btrfs_header_generation(info->fs_root->node));
1807                 btrfs_set_backup_fs_root_level(root_backup,
1808                                btrfs_header_level(info->fs_root->node));
1809         }
1810
1811         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1812         btrfs_set_backup_dev_root_gen(root_backup,
1813                                btrfs_header_generation(info->dev_root->node));
1814         btrfs_set_backup_dev_root_level(root_backup,
1815                                        btrfs_header_level(info->dev_root->node));
1816
1817         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1818         btrfs_set_backup_csum_root_gen(root_backup,
1819                                btrfs_header_generation(info->csum_root->node));
1820         btrfs_set_backup_csum_root_level(root_backup,
1821                                btrfs_header_level(info->csum_root->node));
1822
1823         btrfs_set_backup_total_bytes(root_backup,
1824                              btrfs_super_total_bytes(info->super_copy));
1825         btrfs_set_backup_bytes_used(root_backup,
1826                              btrfs_super_bytes_used(info->super_copy));
1827         btrfs_set_backup_num_devices(root_backup,
1828                              btrfs_super_num_devices(info->super_copy));
1829
1830         /*
1831          * if we don't copy this out to the super_copy, it won't get remembered
1832          * for the next commit
1833          */
1834         memcpy(&info->super_copy->super_roots,
1835                &info->super_for_commit->super_roots,
1836                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1837 }
1838
1839 /*
1840  * this copies info out of the root backup array and back into
1841  * the in-memory super block.  It is meant to help iterate through
1842  * the array, so you send it the number of backups you've already
1843  * tried and the last backup index you used.
1844  *
1845  * this returns -1 when it has tried all the backups
1846  */
1847 static noinline int next_root_backup(struct btrfs_fs_info *info,
1848                                      struct btrfs_super_block *super,
1849                                      int *num_backups_tried, int *backup_index)
1850 {
1851         struct btrfs_root_backup *root_backup;
1852         int newest = *backup_index;
1853
1854         if (*num_backups_tried == 0) {
1855                 u64 gen = btrfs_super_generation(super);
1856
1857                 newest = find_newest_super_backup(info, gen);
1858                 if (newest == -1)
1859                         return -1;
1860
1861                 *backup_index = newest;
1862                 *num_backups_tried = 1;
1863         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1864                 /* we've tried all the backups, all done */
1865                 return -1;
1866         } else {
1867                 /* jump to the next oldest backup */
1868                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1869                         BTRFS_NUM_BACKUP_ROOTS;
1870                 *backup_index = newest;
1871                 *num_backups_tried += 1;
1872         }
1873         root_backup = super->super_roots + newest;
1874
1875         btrfs_set_super_generation(super,
1876                                    btrfs_backup_tree_root_gen(root_backup));
1877         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1878         btrfs_set_super_root_level(super,
1879                                    btrfs_backup_tree_root_level(root_backup));
1880         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1881
1882         /*
1883          * fixme: the total bytes and num_devices need to match or we should
1884          * need a fsck
1885          */
1886         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1887         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1888         return 0;
1889 }
1890
1891 /* helper to cleanup tree roots */
1892 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1893 {
1894         free_extent_buffer(info->tree_root->node);
1895         free_extent_buffer(info->tree_root->commit_root);
1896         free_extent_buffer(info->dev_root->node);
1897         free_extent_buffer(info->dev_root->commit_root);
1898         free_extent_buffer(info->extent_root->node);
1899         free_extent_buffer(info->extent_root->commit_root);
1900         free_extent_buffer(info->csum_root->node);
1901         free_extent_buffer(info->csum_root->commit_root);
1902         if (info->quota_root) {
1903                 free_extent_buffer(info->quota_root->node);
1904                 free_extent_buffer(info->quota_root->commit_root);
1905         }
1906
1907         info->tree_root->node = NULL;
1908         info->tree_root->commit_root = NULL;
1909         info->dev_root->node = NULL;
1910         info->dev_root->commit_root = NULL;
1911         info->extent_root->node = NULL;
1912         info->extent_root->commit_root = NULL;
1913         info->csum_root->node = NULL;
1914         info->csum_root->commit_root = NULL;
1915         if (info->quota_root) {
1916                 info->quota_root->node = NULL;
1917                 info->quota_root->commit_root = NULL;
1918         }
1919
1920         if (chunk_root) {
1921                 free_extent_buffer(info->chunk_root->node);
1922                 free_extent_buffer(info->chunk_root->commit_root);
1923                 info->chunk_root->node = NULL;
1924                 info->chunk_root->commit_root = NULL;
1925         }
1926 }
1927
1928
1929 int open_ctree(struct super_block *sb,
1930                struct btrfs_fs_devices *fs_devices,
1931                char *options)
1932 {
1933         u32 sectorsize;
1934         u32 nodesize;
1935         u32 leafsize;
1936         u32 blocksize;
1937         u32 stripesize;
1938         u64 generation;
1939         u64 features;
1940         struct btrfs_key location;
1941         struct buffer_head *bh;
1942         struct btrfs_super_block *disk_super;
1943         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1944         struct btrfs_root *tree_root;
1945         struct btrfs_root *extent_root;
1946         struct btrfs_root *csum_root;
1947         struct btrfs_root *chunk_root;
1948         struct btrfs_root *dev_root;
1949         struct btrfs_root *quota_root;
1950         struct btrfs_root *log_tree_root;
1951         int ret;
1952         int err = -EINVAL;
1953         int num_backups_tried = 0;
1954         int backup_index = 0;
1955
1956         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1957         extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1958         csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1959         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1960         dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1961         quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
1962
1963         if (!tree_root || !extent_root || !csum_root ||
1964             !chunk_root || !dev_root || !quota_root) {
1965                 err = -ENOMEM;
1966                 goto fail;
1967         }
1968
1969         ret = init_srcu_struct(&fs_info->subvol_srcu);
1970         if (ret) {
1971                 err = ret;
1972                 goto fail;
1973         }
1974
1975         ret = setup_bdi(fs_info, &fs_info->bdi);
1976         if (ret) {
1977                 err = ret;
1978                 goto fail_srcu;
1979         }
1980
1981         fs_info->btree_inode = new_inode(sb);
1982         if (!fs_info->btree_inode) {
1983                 err = -ENOMEM;
1984                 goto fail_bdi;
1985         }
1986
1987         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1988
1989         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1990         INIT_LIST_HEAD(&fs_info->trans_list);
1991         INIT_LIST_HEAD(&fs_info->dead_roots);
1992         INIT_LIST_HEAD(&fs_info->delayed_iputs);
1993         INIT_LIST_HEAD(&fs_info->hashers);
1994         INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1995         INIT_LIST_HEAD(&fs_info->ordered_operations);
1996         INIT_LIST_HEAD(&fs_info->caching_block_groups);
1997         spin_lock_init(&fs_info->delalloc_lock);
1998         spin_lock_init(&fs_info->trans_lock);
1999         spin_lock_init(&fs_info->fs_roots_radix_lock);
2000         spin_lock_init(&fs_info->delayed_iput_lock);
2001         spin_lock_init(&fs_info->defrag_inodes_lock);
2002         spin_lock_init(&fs_info->free_chunk_lock);
2003         spin_lock_init(&fs_info->tree_mod_seq_lock);
2004         rwlock_init(&fs_info->tree_mod_log_lock);
2005         mutex_init(&fs_info->reloc_mutex);
2006
2007         init_completion(&fs_info->kobj_unregister);
2008         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2009         INIT_LIST_HEAD(&fs_info->space_info);
2010         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2011         btrfs_mapping_init(&fs_info->mapping_tree);
2012         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2013                              BTRFS_BLOCK_RSV_GLOBAL);
2014         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2015                              BTRFS_BLOCK_RSV_DELALLOC);
2016         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2017         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2018         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2019         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2020                              BTRFS_BLOCK_RSV_DELOPS);
2021         atomic_set(&fs_info->nr_async_submits, 0);
2022         atomic_set(&fs_info->async_delalloc_pages, 0);
2023         atomic_set(&fs_info->async_submit_draining, 0);
2024         atomic_set(&fs_info->nr_async_bios, 0);
2025         atomic_set(&fs_info->defrag_running, 0);
2026         atomic_set(&fs_info->tree_mod_seq, 0);
2027         fs_info->sb = sb;
2028         fs_info->max_inline = 8192 * 1024;
2029         fs_info->metadata_ratio = 0;
2030         fs_info->defrag_inodes = RB_ROOT;
2031         fs_info->trans_no_join = 0;
2032         fs_info->free_chunk_space = 0;
2033         fs_info->tree_mod_log = RB_ROOT;
2034
2035         /* readahead state */
2036         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2037         spin_lock_init(&fs_info->reada_lock);
2038
2039         fs_info->thread_pool_size = min_t(unsigned long,
2040                                           num_online_cpus() + 2, 8);
2041
2042         INIT_LIST_HEAD(&fs_info->ordered_extents);
2043         spin_lock_init(&fs_info->ordered_extent_lock);
2044         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2045                                         GFP_NOFS);
2046         if (!fs_info->delayed_root) {
2047                 err = -ENOMEM;
2048                 goto fail_iput;
2049         }
2050         btrfs_init_delayed_root(fs_info->delayed_root);
2051
2052         mutex_init(&fs_info->scrub_lock);
2053         atomic_set(&fs_info->scrubs_running, 0);
2054         atomic_set(&fs_info->scrub_pause_req, 0);
2055         atomic_set(&fs_info->scrubs_paused, 0);
2056         atomic_set(&fs_info->scrub_cancel_req, 0);
2057         init_waitqueue_head(&fs_info->scrub_pause_wait);
2058         init_rwsem(&fs_info->scrub_super_lock);
2059         fs_info->scrub_workers_refcnt = 0;
2060 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2061         fs_info->check_integrity_print_mask = 0;
2062 #endif
2063
2064         spin_lock_init(&fs_info->balance_lock);
2065         mutex_init(&fs_info->balance_mutex);
2066         atomic_set(&fs_info->balance_running, 0);
2067         atomic_set(&fs_info->balance_pause_req, 0);
2068         atomic_set(&fs_info->balance_cancel_req, 0);
2069         fs_info->balance_ctl = NULL;
2070         init_waitqueue_head(&fs_info->balance_wait_q);
2071
2072         sb->s_blocksize = 4096;
2073         sb->s_blocksize_bits = blksize_bits(4096);
2074         sb->s_bdi = &fs_info->bdi;
2075
2076         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2077         set_nlink(fs_info->btree_inode, 1);
2078         /*
2079          * we set the i_size on the btree inode to the max possible int.
2080          * the real end of the address space is determined by all of
2081          * the devices in the system
2082          */
2083         fs_info->btree_inode->i_size = OFFSET_MAX;
2084         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2085         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2086
2087         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2088         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2089                              fs_info->btree_inode->i_mapping);
2090         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2091         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2092
2093         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2094
2095         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2096         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2097                sizeof(struct btrfs_key));
2098         set_bit(BTRFS_INODE_DUMMY,
2099                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2100         insert_inode_hash(fs_info->btree_inode);
2101
2102         spin_lock_init(&fs_info->block_group_cache_lock);
2103         fs_info->block_group_cache_tree = RB_ROOT;
2104
2105         extent_io_tree_init(&fs_info->freed_extents[0],
2106                              fs_info->btree_inode->i_mapping);
2107         extent_io_tree_init(&fs_info->freed_extents[1],
2108                              fs_info->btree_inode->i_mapping);
2109         fs_info->pinned_extents = &fs_info->freed_extents[0];
2110         fs_info->do_barriers = 1;
2111
2112
2113         mutex_init(&fs_info->ordered_operations_mutex);
2114         mutex_init(&fs_info->tree_log_mutex);
2115         mutex_init(&fs_info->chunk_mutex);
2116         mutex_init(&fs_info->transaction_kthread_mutex);
2117         mutex_init(&fs_info->cleaner_mutex);
2118         mutex_init(&fs_info->volume_mutex);
2119         init_rwsem(&fs_info->extent_commit_sem);
2120         init_rwsem(&fs_info->cleanup_work_sem);
2121         init_rwsem(&fs_info->subvol_sem);
2122
2123         spin_lock_init(&fs_info->qgroup_lock);
2124         fs_info->qgroup_tree = RB_ROOT;
2125         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2126         fs_info->qgroup_seq = 1;
2127         fs_info->quota_enabled = 0;
2128         fs_info->pending_quota_state = 0;
2129
2130         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2131         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2132
2133         init_waitqueue_head(&fs_info->transaction_throttle);
2134         init_waitqueue_head(&fs_info->transaction_wait);
2135         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2136         init_waitqueue_head(&fs_info->async_submit_wait);
2137
2138         __setup_root(4096, 4096, 4096, 4096, tree_root,
2139                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2140
2141         invalidate_bdev(fs_devices->latest_bdev);
2142         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2143         if (!bh) {
2144                 err = -EINVAL;
2145                 goto fail_alloc;
2146         }
2147
2148         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2149         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2150                sizeof(*fs_info->super_for_commit));
2151         brelse(bh);
2152
2153         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2154
2155         disk_super = fs_info->super_copy;
2156         if (!btrfs_super_root(disk_super))
2157                 goto fail_alloc;
2158
2159         /* check FS state, whether FS is broken. */
2160         fs_info->fs_state |= btrfs_super_flags(disk_super);
2161
2162         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2163         if (ret) {
2164                 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2165                 err = ret;
2166                 goto fail_alloc;
2167         }
2168
2169         /*
2170          * run through our array of backup supers and setup
2171          * our ring pointer to the oldest one
2172          */
2173         generation = btrfs_super_generation(disk_super);
2174         find_oldest_super_backup(fs_info, generation);
2175
2176         /*
2177          * In the long term, we'll store the compression type in the super
2178          * block, and it'll be used for per file compression control.
2179          */
2180         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2181
2182         ret = btrfs_parse_options(tree_root, options);
2183         if (ret) {
2184                 err = ret;
2185                 goto fail_alloc;
2186         }
2187
2188         features = btrfs_super_incompat_flags(disk_super) &
2189                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2190         if (features) {
2191                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2192                        "unsupported optional features (%Lx).\n",
2193                        (unsigned long long)features);
2194                 err = -EINVAL;
2195                 goto fail_alloc;
2196         }
2197
2198         if (btrfs_super_leafsize(disk_super) !=
2199             btrfs_super_nodesize(disk_super)) {
2200                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2201                        "blocksizes don't match.  node %d leaf %d\n",
2202                        btrfs_super_nodesize(disk_super),
2203                        btrfs_super_leafsize(disk_super));
2204                 err = -EINVAL;
2205                 goto fail_alloc;
2206         }
2207         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2208                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2209                        "blocksize (%d) was too large\n",
2210                        btrfs_super_leafsize(disk_super));
2211                 err = -EINVAL;
2212                 goto fail_alloc;
2213         }
2214
2215         features = btrfs_super_incompat_flags(disk_super);
2216         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2217         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2218                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2219
2220         /*
2221          * flag our filesystem as having big metadata blocks if
2222          * they are bigger than the page size
2223          */
2224         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2225                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2226                         printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2227                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2228         }
2229
2230         nodesize = btrfs_super_nodesize(disk_super);
2231         leafsize = btrfs_super_leafsize(disk_super);
2232         sectorsize = btrfs_super_sectorsize(disk_super);
2233         stripesize = btrfs_super_stripesize(disk_super);
2234
2235         /*
2236          * mixed block groups end up with duplicate but slightly offset
2237          * extent buffers for the same range.  It leads to corruptions
2238          */
2239         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2240             (sectorsize != leafsize)) {
2241                 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2242                                 "are not allowed for mixed block groups on %s\n",
2243                                 sb->s_id);
2244                 goto fail_alloc;
2245         }
2246
2247         btrfs_set_super_incompat_flags(disk_super, features);
2248
2249         features = btrfs_super_compat_ro_flags(disk_super) &
2250                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2251         if (!(sb->s_flags & MS_RDONLY) && features) {
2252                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2253                        "unsupported option features (%Lx).\n",
2254                        (unsigned long long)features);
2255                 err = -EINVAL;
2256                 goto fail_alloc;
2257         }
2258
2259         btrfs_init_workers(&fs_info->generic_worker,
2260                            "genwork", 1, NULL);
2261
2262         btrfs_init_workers(&fs_info->workers, "worker",
2263                            fs_info->thread_pool_size,
2264                            &fs_info->generic_worker);
2265
2266         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2267                            fs_info->thread_pool_size,
2268                            &fs_info->generic_worker);
2269
2270         btrfs_init_workers(&fs_info->submit_workers, "submit",
2271                            min_t(u64, fs_devices->num_devices,
2272                            fs_info->thread_pool_size),
2273                            &fs_info->generic_worker);
2274
2275         btrfs_init_workers(&fs_info->caching_workers, "cache",
2276                            2, &fs_info->generic_worker);
2277
2278         /* a higher idle thresh on the submit workers makes it much more
2279          * likely that bios will be send down in a sane order to the
2280          * devices
2281          */
2282         fs_info->submit_workers.idle_thresh = 64;
2283
2284         fs_info->workers.idle_thresh = 16;
2285         fs_info->workers.ordered = 1;
2286
2287         fs_info->delalloc_workers.idle_thresh = 2;
2288         fs_info->delalloc_workers.ordered = 1;
2289
2290         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2291                            &fs_info->generic_worker);
2292         btrfs_init_workers(&fs_info->endio_workers, "endio",
2293                            fs_info->thread_pool_size,
2294                            &fs_info->generic_worker);
2295         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2296                            fs_info->thread_pool_size,
2297                            &fs_info->generic_worker);
2298         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2299                            "endio-meta-write", fs_info->thread_pool_size,
2300                            &fs_info->generic_worker);
2301         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2302                            fs_info->thread_pool_size,
2303                            &fs_info->generic_worker);
2304         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2305                            1, &fs_info->generic_worker);
2306         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2307                            fs_info->thread_pool_size,
2308                            &fs_info->generic_worker);
2309         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2310                            fs_info->thread_pool_size,
2311                            &fs_info->generic_worker);
2312
2313         /*
2314          * endios are largely parallel and should have a very
2315          * low idle thresh
2316          */
2317         fs_info->endio_workers.idle_thresh = 4;
2318         fs_info->endio_meta_workers.idle_thresh = 4;
2319
2320         fs_info->endio_write_workers.idle_thresh = 2;
2321         fs_info->endio_meta_write_workers.idle_thresh = 2;
2322         fs_info->readahead_workers.idle_thresh = 2;
2323
2324         /*
2325          * btrfs_start_workers can really only fail because of ENOMEM so just
2326          * return -ENOMEM if any of these fail.
2327          */
2328         ret = btrfs_start_workers(&fs_info->workers);
2329         ret |= btrfs_start_workers(&fs_info->generic_worker);
2330         ret |= btrfs_start_workers(&fs_info->submit_workers);
2331         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2332         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2333         ret |= btrfs_start_workers(&fs_info->endio_workers);
2334         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2335         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2336         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2337         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2338         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2339         ret |= btrfs_start_workers(&fs_info->caching_workers);
2340         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2341         if (ret) {
2342                 err = -ENOMEM;
2343                 goto fail_sb_buffer;
2344         }
2345
2346         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2347         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2348                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2349
2350         tree_root->nodesize = nodesize;
2351         tree_root->leafsize = leafsize;
2352         tree_root->sectorsize = sectorsize;
2353         tree_root->stripesize = stripesize;
2354
2355         sb->s_blocksize = sectorsize;
2356         sb->s_blocksize_bits = blksize_bits(sectorsize);
2357
2358         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2359                     sizeof(disk_super->magic))) {
2360                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2361                 goto fail_sb_buffer;
2362         }
2363
2364         if (sectorsize != PAGE_SIZE) {
2365                 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2366                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2367                 goto fail_sb_buffer;
2368         }
2369
2370         mutex_lock(&fs_info->chunk_mutex);
2371         ret = btrfs_read_sys_array(tree_root);
2372         mutex_unlock(&fs_info->chunk_mutex);
2373         if (ret) {
2374                 printk(KERN_WARNING "btrfs: failed to read the system "
2375                        "array on %s\n", sb->s_id);
2376                 goto fail_sb_buffer;
2377         }
2378
2379         blocksize = btrfs_level_size(tree_root,
2380                                      btrfs_super_chunk_root_level(disk_super));
2381         generation = btrfs_super_chunk_root_generation(disk_super);
2382
2383         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2384                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2385
2386         chunk_root->node = read_tree_block(chunk_root,
2387                                            btrfs_super_chunk_root(disk_super),
2388                                            blocksize, generation);
2389         BUG_ON(!chunk_root->node); /* -ENOMEM */
2390         if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2391                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2392                        sb->s_id);
2393                 goto fail_tree_roots;
2394         }
2395         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2396         chunk_root->commit_root = btrfs_root_node(chunk_root);
2397
2398         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2399            (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2400            BTRFS_UUID_SIZE);
2401
2402         ret = btrfs_read_chunk_tree(chunk_root);
2403         if (ret) {
2404                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2405                        sb->s_id);
2406                 goto fail_tree_roots;
2407         }
2408
2409         btrfs_close_extra_devices(fs_devices);
2410
2411         if (!fs_devices->latest_bdev) {
2412                 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2413                        sb->s_id);
2414                 goto fail_tree_roots;
2415         }
2416
2417 retry_root_backup:
2418         blocksize = btrfs_level_size(tree_root,
2419                                      btrfs_super_root_level(disk_super));
2420         generation = btrfs_super_generation(disk_super);
2421
2422         tree_root->node = read_tree_block(tree_root,
2423                                           btrfs_super_root(disk_super),
2424                                           blocksize, generation);
2425         if (!tree_root->node ||
2426             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2427                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2428                        sb->s_id);
2429
2430                 goto recovery_tree_root;
2431         }
2432
2433         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2434         tree_root->commit_root = btrfs_root_node(tree_root);
2435
2436         ret = find_and_setup_root(tree_root, fs_info,
2437                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2438         if (ret)
2439                 goto recovery_tree_root;
2440         extent_root->track_dirty = 1;
2441
2442         ret = find_and_setup_root(tree_root, fs_info,
2443                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
2444         if (ret)
2445                 goto recovery_tree_root;
2446         dev_root->track_dirty = 1;
2447
2448         ret = find_and_setup_root(tree_root, fs_info,
2449                                   BTRFS_CSUM_TREE_OBJECTID, csum_root);
2450         if (ret)
2451                 goto recovery_tree_root;
2452         csum_root->track_dirty = 1;
2453
2454         ret = find_and_setup_root(tree_root, fs_info,
2455                                   BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2456         if (ret) {
2457                 kfree(quota_root);
2458                 quota_root = fs_info->quota_root = NULL;
2459         } else {
2460                 quota_root->track_dirty = 1;
2461                 fs_info->quota_enabled = 1;
2462                 fs_info->pending_quota_state = 1;
2463         }
2464
2465         fs_info->generation = generation;
2466         fs_info->last_trans_committed = generation;
2467
2468         ret = btrfs_recover_balance(fs_info);
2469         if (ret) {
2470                 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2471                 goto fail_block_groups;
2472         }
2473
2474         ret = btrfs_init_dev_stats(fs_info);
2475         if (ret) {
2476                 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2477                        ret);
2478                 goto fail_block_groups;
2479         }
2480
2481         ret = btrfs_init_space_info(fs_info);
2482         if (ret) {
2483                 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2484                 goto fail_block_groups;
2485         }
2486
2487         ret = btrfs_read_block_groups(extent_root);
2488         if (ret) {
2489                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2490                 goto fail_block_groups;
2491         }
2492
2493         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2494                                                "btrfs-cleaner");
2495         if (IS_ERR(fs_info->cleaner_kthread))
2496                 goto fail_block_groups;
2497
2498         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2499                                                    tree_root,
2500                                                    "btrfs-transaction");
2501         if (IS_ERR(fs_info->transaction_kthread))
2502                 goto fail_cleaner;
2503
2504         if (!btrfs_test_opt(tree_root, SSD) &&
2505             !btrfs_test_opt(tree_root, NOSSD) &&
2506             !fs_info->fs_devices->rotating) {
2507                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2508                        "mode\n");
2509                 btrfs_set_opt(fs_info->mount_opt, SSD);
2510         }
2511
2512 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2513         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2514                 ret = btrfsic_mount(tree_root, fs_devices,
2515                                     btrfs_test_opt(tree_root,
2516                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2517                                     1 : 0,
2518                                     fs_info->check_integrity_print_mask);
2519                 if (ret)
2520                         printk(KERN_WARNING "btrfs: failed to initialize"
2521                                " integrity check module %s\n", sb->s_id);
2522         }
2523 #endif
2524         ret = btrfs_read_qgroup_config(fs_info);
2525         if (ret)
2526                 goto fail_trans_kthread;
2527
2528         /* do not make disk changes in broken FS */
2529         if (btrfs_super_log_root(disk_super) != 0) {
2530                 u64 bytenr = btrfs_super_log_root(disk_super);
2531
2532                 if (fs_devices->rw_devices == 0) {
2533                         printk(KERN_WARNING "Btrfs log replay required "
2534                                "on RO media\n");
2535                         err = -EIO;
2536                         goto fail_qgroup;
2537                 }
2538                 blocksize =
2539                      btrfs_level_size(tree_root,
2540                                       btrfs_super_log_root_level(disk_super));
2541
2542                 log_tree_root = btrfs_alloc_root(fs_info);
2543                 if (!log_tree_root) {
2544                         err = -ENOMEM;
2545                         goto fail_qgroup;
2546                 }
2547
2548                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2549                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2550
2551                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2552                                                       blocksize,
2553                                                       generation + 1);
2554                 /* returns with log_tree_root freed on success */
2555                 ret = btrfs_recover_log_trees(log_tree_root);
2556                 if (ret) {
2557                         btrfs_error(tree_root->fs_info, ret,
2558                                     "Failed to recover log tree");
2559                         free_extent_buffer(log_tree_root->node);
2560                         kfree(log_tree_root);
2561                         goto fail_trans_kthread;
2562                 }
2563
2564                 if (sb->s_flags & MS_RDONLY) {
2565                         ret = btrfs_commit_super(tree_root);
2566                         if (ret)
2567                                 goto fail_trans_kthread;
2568                 }
2569         }
2570
2571         ret = btrfs_find_orphan_roots(tree_root);
2572         if (ret)
2573                 goto fail_trans_kthread;
2574
2575         if (!(sb->s_flags & MS_RDONLY)) {
2576                 ret = btrfs_cleanup_fs_roots(fs_info);
2577                 if (ret)
2578                         goto fail_trans_kthread;
2579
2580                 ret = btrfs_recover_relocation(tree_root);
2581                 if (ret < 0) {
2582                         printk(KERN_WARNING
2583                                "btrfs: failed to recover relocation\n");
2584                         err = -EINVAL;
2585                         goto fail_qgroup;
2586                 }
2587         }
2588
2589         location.objectid = BTRFS_FS_TREE_OBJECTID;
2590         location.type = BTRFS_ROOT_ITEM_KEY;
2591         location.offset = (u64)-1;
2592
2593         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2594         if (!fs_info->fs_root)
2595                 goto fail_qgroup;
2596         if (IS_ERR(fs_info->fs_root)) {
2597                 err = PTR_ERR(fs_info->fs_root);
2598                 goto fail_qgroup;
2599         }
2600
2601         if (sb->s_flags & MS_RDONLY)
2602                 return 0;
2603
2604         down_read(&fs_info->cleanup_work_sem);
2605         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2606             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2607                 up_read(&fs_info->cleanup_work_sem);
2608                 close_ctree(tree_root);
2609                 return ret;
2610         }
2611         up_read(&fs_info->cleanup_work_sem);
2612
2613         ret = btrfs_resume_balance_async(fs_info);
2614         if (ret) {
2615                 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2616                 close_ctree(tree_root);
2617                 return ret;
2618         }
2619
2620         return 0;
2621
2622 fail_qgroup:
2623         btrfs_free_qgroup_config(fs_info);
2624 fail_trans_kthread:
2625         kthread_stop(fs_info->transaction_kthread);
2626 fail_cleaner:
2627         kthread_stop(fs_info->cleaner_kthread);
2628
2629         /*
2630          * make sure we're done with the btree inode before we stop our
2631          * kthreads
2632          */
2633         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2634         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2635
2636 fail_block_groups:
2637         btrfs_free_block_groups(fs_info);
2638
2639 fail_tree_roots:
2640         free_root_pointers(fs_info, 1);
2641
2642 fail_sb_buffer:
2643         btrfs_stop_workers(&fs_info->generic_worker);
2644         btrfs_stop_workers(&fs_info->readahead_workers);
2645         btrfs_stop_workers(&fs_info->fixup_workers);
2646         btrfs_stop_workers(&fs_info->delalloc_workers);
2647         btrfs_stop_workers(&fs_info->workers);
2648         btrfs_stop_workers(&fs_info->endio_workers);
2649         btrfs_stop_workers(&fs_info->endio_meta_workers);
2650         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2651         btrfs_stop_workers(&fs_info->endio_write_workers);
2652         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2653         btrfs_stop_workers(&fs_info->submit_workers);
2654         btrfs_stop_workers(&fs_info->delayed_workers);
2655         btrfs_stop_workers(&fs_info->caching_workers);
2656 fail_alloc:
2657 fail_iput:
2658         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2659
2660         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2661         iput(fs_info->btree_inode);
2662 fail_bdi:
2663         bdi_destroy(&fs_info->bdi);
2664 fail_srcu:
2665         cleanup_srcu_struct(&fs_info->subvol_srcu);
2666 fail:
2667         btrfs_close_devices(fs_info->fs_devices);
2668         return err;
2669
2670 recovery_tree_root:
2671         if (!btrfs_test_opt(tree_root, RECOVERY))
2672                 goto fail_tree_roots;
2673
2674         free_root_pointers(fs_info, 0);
2675
2676         /* don't use the log in recovery mode, it won't be valid */
2677         btrfs_set_super_log_root(disk_super, 0);
2678
2679         /* we can't trust the free space cache either */
2680         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2681
2682         ret = next_root_backup(fs_info, fs_info->super_copy,
2683                                &num_backups_tried, &backup_index);
2684         if (ret == -1)
2685                 goto fail_block_groups;
2686         goto retry_root_backup;
2687 }
2688
2689 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2690 {
2691         if (uptodate) {
2692                 set_buffer_uptodate(bh);
2693         } else {
2694                 struct btrfs_device *device = (struct btrfs_device *)
2695                         bh->b_private;
2696
2697                 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2698                                           "I/O error on %s\n",
2699                                           rcu_str_deref(device->name));
2700                 /* note, we dont' set_buffer_write_io_error because we have
2701                  * our own ways of dealing with the IO errors
2702                  */
2703                 clear_buffer_uptodate(bh);
2704                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2705         }
2706         unlock_buffer(bh);
2707         put_bh(bh);
2708 }
2709
2710 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2711 {
2712         struct buffer_head *bh;
2713         struct buffer_head *latest = NULL;
2714         struct btrfs_super_block *super;
2715         int i;
2716         u64 transid = 0;
2717         u64 bytenr;
2718
2719         /* we would like to check all the supers, but that would make
2720          * a btrfs mount succeed after a mkfs from a different FS.
2721          * So, we need to add a special mount option to scan for
2722          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2723          */
2724         for (i = 0; i < 1; i++) {
2725                 bytenr = btrfs_sb_offset(i);
2726                 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2727                         break;
2728                 bh = __bread(bdev, bytenr / 4096, 4096);
2729                 if (!bh)
2730                         continue;
2731
2732                 super = (struct btrfs_super_block *)bh->b_data;
2733                 if (btrfs_super_bytenr(super) != bytenr ||
2734                     strncmp((char *)(&super->magic), BTRFS_MAGIC,
2735                             sizeof(super->magic))) {
2736                         brelse(bh);
2737                         continue;
2738                 }
2739
2740                 if (!latest || btrfs_super_generation(super) > transid) {
2741                         brelse(latest);
2742                         latest = bh;
2743                         transid = btrfs_super_generation(super);
2744                 } else {
2745                         brelse(bh);
2746                 }
2747         }
2748         return latest;
2749 }
2750
2751 /*
2752  * this should be called twice, once with wait == 0 and
2753  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2754  * we write are pinned.
2755  *
2756  * They are released when wait == 1 is done.
2757  * max_mirrors must be the same for both runs, and it indicates how
2758  * many supers on this one device should be written.
2759  *
2760  * max_mirrors == 0 means to write them all.
2761  */
2762 static int write_dev_supers(struct btrfs_device *device,
2763                             struct btrfs_super_block *sb,
2764                             int do_barriers, int wait, int max_mirrors)
2765 {
2766         struct buffer_head *bh;
2767         int i;
2768         int ret;
2769         int errors = 0;
2770         u32 crc;
2771         u64 bytenr;
2772
2773         if (max_mirrors == 0)
2774                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2775
2776         for (i = 0; i < max_mirrors; i++) {
2777                 bytenr = btrfs_sb_offset(i);
2778                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2779                         break;
2780
2781                 if (wait) {
2782                         bh = __find_get_block(device->bdev, bytenr / 4096,
2783                                               BTRFS_SUPER_INFO_SIZE);
2784                         BUG_ON(!bh);
2785                         wait_on_buffer(bh);
2786                         if (!buffer_uptodate(bh))
2787                                 errors++;
2788
2789                         /* drop our reference */
2790                         brelse(bh);
2791
2792                         /* drop the reference from the wait == 0 run */
2793                         brelse(bh);
2794                         continue;
2795                 } else {
2796                         btrfs_set_super_bytenr(sb, bytenr);
2797
2798                         crc = ~(u32)0;
2799                         crc = btrfs_csum_data(NULL, (char *)sb +
2800                                               BTRFS_CSUM_SIZE, crc,
2801                                               BTRFS_SUPER_INFO_SIZE -
2802                                               BTRFS_CSUM_SIZE);
2803                         btrfs_csum_final(crc, sb->csum);
2804
2805                         /*
2806                          * one reference for us, and we leave it for the
2807                          * caller
2808                          */
2809                         bh = __getblk(device->bdev, bytenr / 4096,
2810                                       BTRFS_SUPER_INFO_SIZE);
2811                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2812
2813                         /* one reference for submit_bh */
2814                         get_bh(bh);
2815
2816                         set_buffer_uptodate(bh);
2817                         lock_buffer(bh);
2818                         bh->b_end_io = btrfs_end_buffer_write_sync;
2819                         bh->b_private = device;
2820                 }
2821
2822                 /*
2823                  * we fua the first super.  The others we allow
2824                  * to go down lazy.
2825                  */
2826                 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2827                 if (ret)
2828                         errors++;
2829         }
2830         return errors < i ? 0 : -1;
2831 }
2832
2833 /*
2834  * endio for the write_dev_flush, this will wake anyone waiting
2835  * for the barrier when it is done
2836  */
2837 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2838 {
2839         if (err) {
2840                 if (err == -EOPNOTSUPP)
2841                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2842                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2843         }
2844         if (bio->bi_private)
2845                 complete(bio->bi_private);
2846         bio_put(bio);
2847 }
2848
2849 /*
2850  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
2851  * sent down.  With wait == 1, it waits for the previous flush.
2852  *
2853  * any device where the flush fails with eopnotsupp are flagged as not-barrier
2854  * capable
2855  */
2856 static int write_dev_flush(struct btrfs_device *device, int wait)
2857 {
2858         struct bio *bio;
2859         int ret = 0;
2860
2861         if (device->nobarriers)
2862                 return 0;
2863
2864         if (wait) {
2865                 bio = device->flush_bio;
2866                 if (!bio)
2867                         return 0;
2868
2869                 wait_for_completion(&device->flush_wait);
2870
2871                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2872                         printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2873                                       rcu_str_deref(device->name));
2874                         device->nobarriers = 1;
2875                 }
2876                 if (!bio_flagged(bio, BIO_UPTODATE)) {
2877                         ret = -EIO;
2878                         if (!bio_flagged(bio, BIO_EOPNOTSUPP))
2879                                 btrfs_dev_stat_inc_and_print(device,
2880                                         BTRFS_DEV_STAT_FLUSH_ERRS);
2881                 }
2882
2883                 /* drop the reference from the wait == 0 run */
2884                 bio_put(bio);
2885                 device->flush_bio = NULL;
2886
2887                 return ret;
2888         }
2889
2890         /*
2891          * one reference for us, and we leave it for the
2892          * caller
2893          */
2894         device->flush_bio = NULL;
2895         bio = bio_alloc(GFP_NOFS, 0);
2896         if (!bio)
2897                 return -ENOMEM;
2898
2899         bio->bi_end_io = btrfs_end_empty_barrier;
2900         bio->bi_bdev = device->bdev;
2901         init_completion(&device->flush_wait);
2902         bio->bi_private = &device->flush_wait;
2903         device->flush_bio = bio;
2904
2905         bio_get(bio);
2906         btrfsic_submit_bio(WRITE_FLUSH, bio);
2907
2908         return 0;
2909 }
2910
2911 /*
2912  * send an empty flush down to each device in parallel,
2913  * then wait for them
2914  */
2915 static int barrier_all_devices(struct btrfs_fs_info *info)
2916 {
2917         struct list_head *head;
2918         struct btrfs_device *dev;
2919         int errors = 0;
2920         int ret;
2921
2922         /* send down all the barriers */
2923         head = &info->fs_devices->devices;
2924         list_for_each_entry_rcu(dev, head, dev_list) {
2925                 if (!dev->bdev) {
2926                         errors++;
2927                         continue;
2928                 }
2929                 if (!dev->in_fs_metadata || !dev->writeable)
2930                         continue;
2931
2932                 ret = write_dev_flush(dev, 0);
2933                 if (ret)
2934                         errors++;
2935         }
2936
2937         /* wait for all the barriers */
2938         list_for_each_entry_rcu(dev, head, dev_list) {
2939                 if (!dev->bdev) {
2940                         errors++;
2941                         continue;
2942                 }
2943                 if (!dev->in_fs_metadata || !dev->writeable)
2944                         continue;
2945
2946                 ret = write_dev_flush(dev, 1);
2947                 if (ret)
2948                         errors++;
2949         }
2950         if (errors)
2951                 return -EIO;
2952         return 0;
2953 }
2954
2955 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2956 {
2957         struct list_head *head;
2958         struct btrfs_device *dev;
2959         struct btrfs_super_block *sb;
2960         struct btrfs_dev_item *dev_item;
2961         int ret;
2962         int do_barriers;
2963         int max_errors;
2964         int total_errors = 0;
2965         u64 flags;
2966
2967         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2968         do_barriers = !btrfs_test_opt(root, NOBARRIER);
2969         backup_super_roots(root->fs_info);
2970
2971         sb = root->fs_info->super_for_commit;
2972         dev_item = &sb->dev_item;
2973
2974         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2975         head = &root->fs_info->fs_devices->devices;
2976
2977         if (do_barriers)
2978                 barrier_all_devices(root->fs_info);
2979
2980         list_for_each_entry_rcu(dev, head, dev_list) {
2981                 if (!dev->bdev) {
2982                         total_errors++;
2983                         continue;
2984                 }
2985                 if (!dev->in_fs_metadata || !dev->writeable)
2986                         continue;
2987
2988                 btrfs_set_stack_device_generation(dev_item, 0);
2989                 btrfs_set_stack_device_type(dev_item, dev->type);
2990                 btrfs_set_stack_device_id(dev_item, dev->devid);
2991                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2992                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2993                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2994                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2995                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2996                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2997                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2998
2999                 flags = btrfs_super_flags(sb);
3000                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3001
3002                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3003                 if (ret)
3004                         total_errors++;
3005         }
3006         if (total_errors > max_errors) {
3007                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3008                        total_errors);
3009
3010                 /* This shouldn't happen. FUA is masked off if unsupported */
3011                 BUG();
3012         }
3013
3014         total_errors = 0;
3015         list_for_each_entry_rcu(dev, head, dev_list) {
3016                 if (!dev->bdev)
3017                         continue;
3018                 if (!dev->in_fs_metadata || !dev->writeable)
3019                         continue;
3020
3021                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3022                 if (ret)
3023                         total_errors++;
3024         }
3025         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3026         if (total_errors > max_errors) {
3027                 btrfs_error(root->fs_info, -EIO,
3028                             "%d errors while writing supers", total_errors);
3029                 return -EIO;
3030         }
3031         return 0;
3032 }
3033
3034 int write_ctree_super(struct btrfs_trans_handle *trans,
3035                       struct btrfs_root *root, int max_mirrors)
3036 {
3037         int ret;
3038
3039         ret = write_all_supers(root, max_mirrors);
3040         return ret;
3041 }
3042
3043 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3044 {
3045         spin_lock(&fs_info->fs_roots_radix_lock);
3046         radix_tree_delete(&fs_info->fs_roots_radix,
3047                           (unsigned long)root->root_key.objectid);
3048         spin_unlock(&fs_info->fs_roots_radix_lock);
3049
3050         if (btrfs_root_refs(&root->root_item) == 0)
3051                 synchronize_srcu(&fs_info->subvol_srcu);
3052
3053         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3054         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3055         free_fs_root(root);
3056 }
3057
3058 static void free_fs_root(struct btrfs_root *root)
3059 {
3060         iput(root->cache_inode);
3061         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3062         if (root->anon_dev)
3063                 free_anon_bdev(root->anon_dev);
3064         free_extent_buffer(root->node);
3065         free_extent_buffer(root->commit_root);
3066         kfree(root->free_ino_ctl);
3067         kfree(root->free_ino_pinned);
3068         kfree(root->name);
3069         kfree(root);
3070 }
3071
3072 static void del_fs_roots(struct btrfs_fs_info *fs_info)
3073 {
3074         int ret;
3075         struct btrfs_root *gang[8];
3076         int i;
3077
3078         while (!list_empty(&fs_info->dead_roots)) {
3079                 gang[0] = list_entry(fs_info->dead_roots.next,
3080                                      struct btrfs_root, root_list);
3081                 list_del(&gang[0]->root_list);
3082
3083                 if (gang[0]->in_radix) {
3084                         btrfs_free_fs_root(fs_info, gang[0]);
3085                 } else {
3086                         free_extent_buffer(gang[0]->node);
3087                         free_extent_buffer(gang[0]->commit_root);
3088                         kfree(gang[0]);
3089                 }
3090         }
3091
3092         while (1) {
3093                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3094                                              (void **)gang, 0,
3095                                              ARRAY_SIZE(gang));
3096                 if (!ret)
3097                         break;
3098                 for (i = 0; i < ret; i++)
3099                         btrfs_free_fs_root(fs_info, gang[i]);
3100         }
3101 }
3102
3103 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3104 {
3105         u64 root_objectid = 0;
3106         struct btrfs_root *gang[8];
3107         int i;
3108         int ret;
3109
3110         while (1) {
3111                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3112                                              (void **)gang, root_objectid,
3113                                              ARRAY_SIZE(gang));
3114                 if (!ret)
3115                         break;
3116
3117                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3118                 for (i = 0; i < ret; i++) {
3119                         int err;
3120
3121                         root_objectid = gang[i]->root_key.objectid;
3122                         err = btrfs_orphan_cleanup(gang[i]);
3123                         if (err)
3124                                 return err;
3125                 }
3126                 root_objectid++;
3127         }
3128         return 0;
3129 }
3130
3131 int btrfs_commit_super(struct btrfs_root *root)
3132 {
3133         struct btrfs_trans_handle *trans;
3134         int ret;
3135
3136         mutex_lock(&root->fs_info->cleaner_mutex);
3137         btrfs_run_delayed_iputs(root);
3138         btrfs_clean_old_snapshots(root);
3139         mutex_unlock(&root->fs_info->cleaner_mutex);
3140
3141         /* wait until ongoing cleanup work done */
3142         down_write(&root->fs_info->cleanup_work_sem);
3143         up_write(&root->fs_info->cleanup_work_sem);
3144
3145         trans = btrfs_join_transaction(root);
3146         if (IS_ERR(trans))
3147                 return PTR_ERR(trans);
3148         ret = btrfs_commit_transaction(trans, root);
3149         if (ret)
3150                 return ret;
3151         /* run commit again to drop the original snapshot */
3152         trans = btrfs_join_transaction(root);
3153         if (IS_ERR(trans))
3154                 return PTR_ERR(trans);
3155         ret = btrfs_commit_transaction(trans, root);
3156         if (ret)
3157                 return ret;
3158         ret = btrfs_write_and_wait_transaction(NULL, root);
3159         if (ret) {
3160                 btrfs_error(root->fs_info, ret,
3161                             "Failed to sync btree inode to disk.");
3162                 return ret;
3163         }
3164
3165         ret = write_ctree_super(NULL, root, 0);
3166         return ret;
3167 }
3168
3169 int close_ctree(struct btrfs_root *root)
3170 {
3171         struct btrfs_fs_info *fs_info = root->fs_info;
3172         int ret;
3173
3174         fs_info->closing = 1;
3175         smp_mb();
3176
3177         /* pause restriper - we want to resume on mount */
3178         btrfs_pause_balance(root->fs_info);
3179
3180         btrfs_scrub_cancel(root);
3181
3182         /* wait for any defraggers to finish */
3183         wait_event(fs_info->transaction_wait,
3184                    (atomic_read(&fs_info->defrag_running) == 0));
3185
3186         /* clear out the rbtree of defraggable inodes */
3187         btrfs_run_defrag_inodes(fs_info);
3188
3189         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3190                 ret = btrfs_commit_super(root);
3191                 if (ret)
3192                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3193         }
3194
3195         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3196                 btrfs_error_commit_super(root);
3197
3198         btrfs_put_block_group_cache(fs_info);
3199
3200         kthread_stop(fs_info->transaction_kthread);
3201         kthread_stop(fs_info->cleaner_kthread);
3202
3203         fs_info->closing = 2;
3204         smp_mb();
3205
3206         btrfs_free_qgroup_config(root->fs_info);
3207
3208         if (fs_info->delalloc_bytes) {
3209                 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3210                        (unsigned long long)fs_info->delalloc_bytes);
3211         }
3212
3213         free_extent_buffer(fs_info->extent_root->node);
3214         free_extent_buffer(fs_info->extent_root->commit_root);
3215         free_extent_buffer(fs_info->tree_root->node);
3216         free_extent_buffer(fs_info->tree_root->commit_root);
3217         free_extent_buffer(fs_info->chunk_root->node);
3218         free_extent_buffer(fs_info->chunk_root->commit_root);
3219         free_extent_buffer(fs_info->dev_root->node);
3220         free_extent_buffer(fs_info->dev_root->commit_root);
3221         free_extent_buffer(fs_info->csum_root->node);
3222         free_extent_buffer(fs_info->csum_root->commit_root);
3223         if (fs_info->quota_root) {
3224                 free_extent_buffer(fs_info->quota_root->node);
3225                 free_extent_buffer(fs_info->quota_root->commit_root);
3226         }
3227
3228         btrfs_free_block_groups(fs_info);
3229
3230         del_fs_roots(fs_info);
3231
3232         iput(fs_info->btree_inode);
3233
3234         btrfs_stop_workers(&fs_info->generic_worker);
3235         btrfs_stop_workers(&fs_info->fixup_workers);
3236         btrfs_stop_workers(&fs_info->delalloc_workers);
3237         btrfs_stop_workers(&fs_info->workers);
3238         btrfs_stop_workers(&fs_info->endio_workers);
3239         btrfs_stop_workers(&fs_info->endio_meta_workers);
3240         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3241         btrfs_stop_workers(&fs_info->endio_write_workers);
3242         btrfs_stop_workers(&fs_info->endio_freespace_worker);
3243         btrfs_stop_workers(&fs_info->submit_workers);
3244         btrfs_stop_workers(&fs_info->delayed_workers);
3245         btrfs_stop_workers(&fs_info->caching_workers);
3246         btrfs_stop_workers(&fs_info->readahead_workers);
3247
3248 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3249         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3250                 btrfsic_unmount(root, fs_info->fs_devices);
3251 #endif
3252
3253         btrfs_close_devices(fs_info->fs_devices);
3254         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3255
3256         bdi_destroy(&fs_info->bdi);
3257         cleanup_srcu_struct(&fs_info->subvol_srcu);
3258
3259         return 0;
3260 }
3261
3262 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3263                           int atomic)
3264 {
3265         int ret;
3266         struct inode *btree_inode = buf->pages[0]->mapping->host;
3267
3268         ret = extent_buffer_uptodate(buf);
3269         if (!ret)
3270                 return ret;
3271
3272         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3273                                     parent_transid, atomic);
3274         if (ret == -EAGAIN)
3275                 return ret;
3276         return !ret;
3277 }
3278
3279 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3280 {
3281         return set_extent_buffer_uptodate(buf);
3282 }
3283
3284 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3285 {
3286         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3287         u64 transid = btrfs_header_generation(buf);
3288         int was_dirty;
3289
3290         btrfs_assert_tree_locked(buf);
3291         if (transid != root->fs_info->generation) {
3292                 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3293                        "found %llu running %llu\n",
3294                         (unsigned long long)buf->start,
3295                         (unsigned long long)transid,
3296                         (unsigned long long)root->fs_info->generation);
3297                 WARN_ON(1);
3298         }
3299         was_dirty = set_extent_buffer_dirty(buf);
3300         if (!was_dirty) {
3301                 spin_lock(&root->fs_info->delalloc_lock);
3302                 root->fs_info->dirty_metadata_bytes += buf->len;
3303                 spin_unlock(&root->fs_info->delalloc_lock);
3304         }
3305 }
3306
3307 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3308 {
3309         /*
3310          * looks as though older kernels can get into trouble with
3311          * this code, they end up stuck in balance_dirty_pages forever
3312          */
3313         u64 num_dirty;
3314         unsigned long thresh = 32 * 1024 * 1024;
3315
3316         if (current->flags & PF_MEMALLOC)
3317                 return;
3318
3319         btrfs_balance_delayed_items(root);
3320
3321         num_dirty = root->fs_info->dirty_metadata_bytes;
3322
3323         if (num_dirty > thresh) {
3324                 balance_dirty_pages_ratelimited_nr(
3325                                    root->fs_info->btree_inode->i_mapping, 1);
3326         }
3327         return;
3328 }
3329
3330 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3331 {
3332         /*
3333          * looks as though older kernels can get into trouble with
3334          * this code, they end up stuck in balance_dirty_pages forever
3335          */
3336         u64 num_dirty;
3337         unsigned long thresh = 32 * 1024 * 1024;
3338
3339         if (current->flags & PF_MEMALLOC)
3340                 return;
3341
3342         num_dirty = root->fs_info->dirty_metadata_bytes;
3343
3344         if (num_dirty > thresh) {
3345                 balance_dirty_pages_ratelimited_nr(
3346                                    root->fs_info->btree_inode->i_mapping, 1);
3347         }
3348         return;
3349 }
3350
3351 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3352 {
3353         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3354         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3355 }
3356
3357 int btree_lock_page_hook(struct page *page, void *data,
3358                                 void (*flush_fn)(void *))
3359 {
3360         struct inode *inode = page->mapping->host;
3361         struct btrfs_root *root = BTRFS_I(inode)->root;
3362         struct extent_buffer *eb;
3363
3364         /*
3365          * We culled this eb but the page is still hanging out on the mapping,
3366          * carry on.
3367          */
3368         if (!PagePrivate(page))
3369                 goto out;
3370
3371         eb = (struct extent_buffer *)page->private;
3372         if (!eb) {
3373                 WARN_ON(1);
3374                 goto out;
3375         }
3376         if (page != eb->pages[0])
3377                 goto out;
3378
3379         if (!btrfs_try_tree_write_lock(eb)) {
3380                 flush_fn(data);
3381                 btrfs_tree_lock(eb);
3382         }
3383         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3384
3385         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3386                 spin_lock(&root->fs_info->delalloc_lock);
3387                 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3388                         root->fs_info->dirty_metadata_bytes -= eb->len;
3389                 else
3390                         WARN_ON(1);
3391                 spin_unlock(&root->fs_info->delalloc_lock);
3392         }
3393
3394         btrfs_tree_unlock(eb);
3395 out:
3396         if (!trylock_page(page)) {
3397                 flush_fn(data);
3398                 lock_page(page);
3399         }
3400         return 0;
3401 }
3402
3403 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3404                               int read_only)
3405 {
3406         if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3407                 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3408                 return -EINVAL;
3409         }
3410
3411         if (read_only)
3412                 return 0;
3413
3414         return 0;
3415 }
3416
3417 void btrfs_error_commit_super(struct btrfs_root *root)
3418 {
3419         mutex_lock(&root->fs_info->cleaner_mutex);
3420         btrfs_run_delayed_iputs(root);
3421         mutex_unlock(&root->fs_info->cleaner_mutex);
3422
3423         down_write(&root->fs_info->cleanup_work_sem);
3424         up_write(&root->fs_info->cleanup_work_sem);
3425
3426         /* cleanup FS via transaction */
3427         btrfs_cleanup_transaction(root);
3428 }
3429
3430 static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3431 {
3432         struct btrfs_inode *btrfs_inode;
3433         struct list_head splice;
3434
3435         INIT_LIST_HEAD(&splice);
3436
3437         mutex_lock(&root->fs_info->ordered_operations_mutex);
3438         spin_lock(&root->fs_info->ordered_extent_lock);
3439
3440         list_splice_init(&root->fs_info->ordered_operations, &splice);
3441         while (!list_empty(&splice)) {
3442                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3443                                          ordered_operations);
3444
3445                 list_del_init(&btrfs_inode->ordered_operations);
3446
3447                 btrfs_invalidate_inodes(btrfs_inode->root);
3448         }
3449
3450         spin_unlock(&root->fs_info->ordered_extent_lock);
3451         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3452 }
3453
3454 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3455 {
3456         struct list_head splice;
3457         struct btrfs_ordered_extent *ordered;
3458         struct inode *inode;
3459
3460         INIT_LIST_HEAD(&splice);
3461
3462         spin_lock(&root->fs_info->ordered_extent_lock);
3463
3464         list_splice_init(&root->fs_info->ordered_extents, &splice);
3465         while (!list_empty(&splice)) {
3466                 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3467                                      root_extent_list);
3468
3469                 list_del_init(&ordered->root_extent_list);
3470                 atomic_inc(&ordered->refs);
3471
3472                 /* the inode may be getting freed (in sys_unlink path). */
3473                 inode = igrab(ordered->inode);
3474
3475                 spin_unlock(&root->fs_info->ordered_extent_lock);
3476                 if (inode)
3477                         iput(inode);
3478
3479                 atomic_set(&ordered->refs, 1);
3480                 btrfs_put_ordered_extent(ordered);
3481
3482                 spin_lock(&root->fs_info->ordered_extent_lock);
3483         }
3484
3485         spin_unlock(&root->fs_info->ordered_extent_lock);
3486 }
3487
3488 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3489                                struct btrfs_root *root)
3490 {
3491         struct rb_node *node;
3492         struct btrfs_delayed_ref_root *delayed_refs;
3493         struct btrfs_delayed_ref_node *ref;
3494         int ret = 0;
3495
3496         delayed_refs = &trans->delayed_refs;
3497
3498         spin_lock(&delayed_refs->lock);
3499         if (delayed_refs->num_entries == 0) {
3500                 spin_unlock(&delayed_refs->lock);
3501                 printk(KERN_INFO "delayed_refs has NO entry\n");
3502                 return ret;
3503         }
3504
3505         while ((node = rb_first(&delayed_refs->root)) != NULL) {
3506                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3507
3508                 atomic_set(&ref->refs, 1);
3509                 if (btrfs_delayed_ref_is_head(ref)) {
3510                         struct btrfs_delayed_ref_head *head;
3511
3512                         head = btrfs_delayed_node_to_head(ref);
3513                         if (!mutex_trylock(&head->mutex)) {
3514                                 atomic_inc(&ref->refs);
3515                                 spin_unlock(&delayed_refs->lock);
3516
3517                                 /* Need to wait for the delayed ref to run */
3518                                 mutex_lock(&head->mutex);
3519                                 mutex_unlock(&head->mutex);
3520                                 btrfs_put_delayed_ref(ref);
3521
3522                                 spin_lock(&delayed_refs->lock);
3523                                 continue;
3524                         }
3525
3526                         kfree(head->extent_op);
3527                         delayed_refs->num_heads--;
3528                         if (list_empty(&head->cluster))
3529                                 delayed_refs->num_heads_ready--;
3530                         list_del_init(&head->cluster);
3531                 }
3532                 ref->in_tree = 0;
3533                 rb_erase(&ref->rb_node, &delayed_refs->root);
3534                 delayed_refs->num_entries--;
3535
3536                 spin_unlock(&delayed_refs->lock);
3537                 btrfs_put_delayed_ref(ref);
3538
3539                 cond_resched();
3540                 spin_lock(&delayed_refs->lock);
3541         }
3542
3543         spin_unlock(&delayed_refs->lock);
3544
3545         return ret;
3546 }
3547
3548 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3549 {
3550         struct btrfs_pending_snapshot *snapshot;
3551         struct list_head splice;
3552
3553         INIT_LIST_HEAD(&splice);
3554
3555         list_splice_init(&t->pending_snapshots, &splice);
3556
3557         while (!list_empty(&splice)) {
3558                 snapshot = list_entry(splice.next,
3559                                       struct btrfs_pending_snapshot,
3560                                       list);
3561
3562                 list_del_init(&snapshot->list);
3563
3564                 kfree(snapshot);
3565         }
3566 }
3567
3568 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3569 {
3570         struct btrfs_inode *btrfs_inode;
3571         struct list_head splice;
3572
3573         INIT_LIST_HEAD(&splice);
3574
3575         spin_lock(&root->fs_info->delalloc_lock);
3576         list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3577
3578         while (!list_empty(&splice)) {
3579                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3580                                     delalloc_inodes);
3581
3582                 list_del_init(&btrfs_inode->delalloc_inodes);
3583
3584                 btrfs_invalidate_inodes(btrfs_inode->root);
3585         }
3586
3587         spin_unlock(&root->fs_info->delalloc_lock);
3588 }
3589
3590 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3591                                         struct extent_io_tree *dirty_pages,
3592                                         int mark)
3593 {
3594         int ret;
3595         struct page *page;
3596         struct inode *btree_inode = root->fs_info->btree_inode;
3597         struct extent_buffer *eb;
3598         u64 start = 0;
3599         u64 end;
3600         u64 offset;
3601         unsigned long index;
3602
3603         while (1) {
3604                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3605                                             mark);
3606                 if (ret)
3607                         break;
3608
3609                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3610                 while (start <= end) {
3611                         index = start >> PAGE_CACHE_SHIFT;
3612                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3613                         page = find_get_page(btree_inode->i_mapping, index);
3614                         if (!page)
3615                                 continue;
3616                         offset = page_offset(page);
3617
3618                         spin_lock(&dirty_pages->buffer_lock);
3619                         eb = radix_tree_lookup(
3620                              &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3621                                                offset >> PAGE_CACHE_SHIFT);
3622                         spin_unlock(&dirty_pages->buffer_lock);
3623                         if (eb)
3624                                 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3625                                                          &eb->bflags);
3626                         if (PageWriteback(page))
3627                                 end_page_writeback(page);
3628
3629                         lock_page(page);
3630                         if (PageDirty(page)) {
3631                                 clear_page_dirty_for_io(page);
3632                                 spin_lock_irq(&page->mapping->tree_lock);
3633                                 radix_tree_tag_clear(&page->mapping->page_tree,
3634                                                         page_index(page),
3635                                                         PAGECACHE_TAG_DIRTY);
3636                                 spin_unlock_irq(&page->mapping->tree_lock);
3637                         }
3638
3639                         unlock_page(page);
3640                         page_cache_release(page);
3641                 }
3642         }
3643
3644         return ret;
3645 }
3646
3647 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3648                                        struct extent_io_tree *pinned_extents)
3649 {
3650         struct extent_io_tree *unpin;
3651         u64 start;
3652         u64 end;
3653         int ret;
3654         bool loop = true;
3655
3656         unpin = pinned_extents;
3657 again:
3658         while (1) {
3659                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3660                                             EXTENT_DIRTY);
3661                 if (ret)
3662                         break;
3663
3664                 /* opt_discard */
3665                 if (btrfs_test_opt(root, DISCARD))
3666                         ret = btrfs_error_discard_extent(root, start,
3667                                                          end + 1 - start,
3668                                                          NULL);
3669
3670                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3671                 btrfs_error_unpin_extent_range(root, start, end);
3672                 cond_resched();
3673         }
3674
3675         if (loop) {
3676                 if (unpin == &root->fs_info->freed_extents[0])
3677                         unpin = &root->fs_info->freed_extents[1];
3678                 else
3679                         unpin = &root->fs_info->freed_extents[0];
3680                 loop = false;
3681                 goto again;
3682         }
3683
3684         return 0;
3685 }
3686
3687 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3688                                    struct btrfs_root *root)
3689 {
3690         btrfs_destroy_delayed_refs(cur_trans, root);
3691         btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3692                                 cur_trans->dirty_pages.dirty_bytes);
3693
3694         /* FIXME: cleanup wait for commit */
3695         cur_trans->in_commit = 1;
3696         cur_trans->blocked = 1;
3697         wake_up(&root->fs_info->transaction_blocked_wait);
3698
3699         cur_trans->blocked = 0;
3700         wake_up(&root->fs_info->transaction_wait);
3701
3702         cur_trans->commit_done = 1;
3703         wake_up(&cur_trans->commit_wait);
3704
3705         btrfs_destroy_delayed_inodes(root);
3706         btrfs_assert_delayed_root_empty(root);
3707
3708         btrfs_destroy_pending_snapshots(cur_trans);
3709
3710         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3711                                      EXTENT_DIRTY);
3712         btrfs_destroy_pinned_extent(root,
3713                                     root->fs_info->pinned_extents);
3714
3715         /*
3716         memset(cur_trans, 0, sizeof(*cur_trans));
3717         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3718         */
3719 }
3720
3721 int btrfs_cleanup_transaction(struct btrfs_root *root)
3722 {
3723         struct btrfs_transaction *t;
3724         LIST_HEAD(list);
3725
3726         mutex_lock(&root->fs_info->transaction_kthread_mutex);
3727
3728         spin_lock(&root->fs_info->trans_lock);
3729         list_splice_init(&root->fs_info->trans_list, &list);
3730         root->fs_info->trans_no_join = 1;
3731         spin_unlock(&root->fs_info->trans_lock);
3732
3733         while (!list_empty(&list)) {
3734                 t = list_entry(list.next, struct btrfs_transaction, list);
3735                 if (!t)
3736                         break;
3737
3738                 btrfs_destroy_ordered_operations(root);
3739
3740                 btrfs_destroy_ordered_extents(root);
3741
3742                 btrfs_destroy_delayed_refs(t, root);
3743
3744                 btrfs_block_rsv_release(root,
3745                                         &root->fs_info->trans_block_rsv,
3746                                         t->dirty_pages.dirty_bytes);
3747
3748                 /* FIXME: cleanup wait for commit */
3749                 t->in_commit = 1;
3750                 t->blocked = 1;
3751                 smp_mb();
3752                 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3753                         wake_up(&root->fs_info->transaction_blocked_wait);
3754
3755                 t->blocked = 0;
3756                 smp_mb();
3757                 if (waitqueue_active(&root->fs_info->transaction_wait))
3758                         wake_up(&root->fs_info->transaction_wait);
3759
3760                 t->commit_done = 1;
3761                 smp_mb();
3762                 if (waitqueue_active(&t->commit_wait))
3763                         wake_up(&t->commit_wait);
3764
3765                 btrfs_destroy_delayed_inodes(root);
3766                 btrfs_assert_delayed_root_empty(root);
3767
3768                 btrfs_destroy_pending_snapshots(t);
3769
3770                 btrfs_destroy_delalloc_inodes(root);
3771
3772                 spin_lock(&root->fs_info->trans_lock);
3773                 root->fs_info->running_transaction = NULL;
3774                 spin_unlock(&root->fs_info->trans_lock);
3775
3776                 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3777                                              EXTENT_DIRTY);
3778
3779                 btrfs_destroy_pinned_extent(root,
3780                                             root->fs_info->pinned_extents);
3781
3782                 atomic_set(&t->use_count, 0);
3783                 list_del_init(&t->list);
3784                 memset(t, 0, sizeof(*t));
3785                 kmem_cache_free(btrfs_transaction_cachep, t);
3786         }
3787
3788         spin_lock(&root->fs_info->trans_lock);
3789         root->fs_info->trans_no_join = 0;
3790         spin_unlock(&root->fs_info->trans_lock);
3791         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3792
3793         return 0;
3794 }
3795
3796 static struct extent_io_ops btree_extent_io_ops = {
3797         .write_cache_pages_lock_hook = btree_lock_page_hook,
3798         .readpage_end_io_hook = btree_readpage_end_io_hook,
3799         .readpage_io_failed_hook = btree_io_failed_hook,
3800         .submit_bio_hook = btree_submit_bio_hook,
3801         /* note we're sharing with inode.c for the merge bio hook */
3802         .merge_bio_hook = btrfs_merge_bio_hook,
3803 };