Btrfs: flush out and clean up any block device pages during mount
[linux-2.6-block.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47
48 static struct extent_io_ops btree_extent_io_ops;
49 static void end_workqueue_fn(struct btrfs_work *work);
50 static void free_fs_root(struct btrfs_root *root);
51 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
52                                     int read_only);
53 static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56                                       struct btrfs_root *root);
57 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
60                                         struct extent_io_tree *dirty_pages,
61                                         int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
63                                        struct extent_io_tree *pinned_extents);
64
65 /*
66  * end_io_wq structs are used to do processing in task context when an IO is
67  * complete.  This is used during reads to verify checksums, and it is used
68  * by writes to insert metadata for new file extents after IO is complete.
69  */
70 struct end_io_wq {
71         struct bio *bio;
72         bio_end_io_t *end_io;
73         void *private;
74         struct btrfs_fs_info *info;
75         int error;
76         int metadata;
77         struct list_head list;
78         struct btrfs_work work;
79 };
80
81 /*
82  * async submit bios are used to offload expensive checksumming
83  * onto the worker threads.  They checksum file and metadata bios
84  * just before they are sent down the IO stack.
85  */
86 struct async_submit_bio {
87         struct inode *inode;
88         struct bio *bio;
89         struct list_head list;
90         extent_submit_bio_hook_t *submit_bio_start;
91         extent_submit_bio_hook_t *submit_bio_done;
92         int rw;
93         int mirror_num;
94         unsigned long bio_flags;
95         /*
96          * bio_offset is optional, can be used if the pages in the bio
97          * can't tell us where in the file the bio should go
98          */
99         u64 bio_offset;
100         struct btrfs_work work;
101         int error;
102 };
103
104 /*
105  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
106  * eb, the lockdep key is determined by the btrfs_root it belongs to and
107  * the level the eb occupies in the tree.
108  *
109  * Different roots are used for different purposes and may nest inside each
110  * other and they require separate keysets.  As lockdep keys should be
111  * static, assign keysets according to the purpose of the root as indicated
112  * by btrfs_root->objectid.  This ensures that all special purpose roots
113  * have separate keysets.
114  *
115  * Lock-nesting across peer nodes is always done with the immediate parent
116  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
117  * subclass to avoid triggering lockdep warning in such cases.
118  *
119  * The key is set by the readpage_end_io_hook after the buffer has passed
120  * csum validation but before the pages are unlocked.  It is also set by
121  * btrfs_init_new_buffer on freshly allocated blocks.
122  *
123  * We also add a check to make sure the highest level of the tree is the
124  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
125  * needs update as well.
126  */
127 #ifdef CONFIG_DEBUG_LOCK_ALLOC
128 # if BTRFS_MAX_LEVEL != 8
129 #  error
130 # endif
131
132 static struct btrfs_lockdep_keyset {
133         u64                     id;             /* root objectid */
134         const char              *name_stem;     /* lock name stem */
135         char                    names[BTRFS_MAX_LEVEL + 1][20];
136         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
137 } btrfs_lockdep_keysets[] = {
138         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
139         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
140         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
141         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
142         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
143         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
144         { .id = BTRFS_ORPHAN_OBJECTID,          .name_stem = "orphan"   },
145         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
146         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
147         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
148         { .id = 0,                              .name_stem = "tree"     },
149 };
150
151 void __init btrfs_init_lockdep(void)
152 {
153         int i, j;
154
155         /* initialize lockdep class names */
156         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
157                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
158
159                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
160                         snprintf(ks->names[j], sizeof(ks->names[j]),
161                                  "btrfs-%s-%02d", ks->name_stem, j);
162         }
163 }
164
165 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
166                                     int level)
167 {
168         struct btrfs_lockdep_keyset *ks;
169
170         BUG_ON(level >= ARRAY_SIZE(ks->keys));
171
172         /* find the matching keyset, id 0 is the default entry */
173         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
174                 if (ks->id == objectid)
175                         break;
176
177         lockdep_set_class_and_name(&eb->lock,
178                                    &ks->keys[level], ks->names[level]);
179 }
180
181 #endif
182
183 /*
184  * extents on the btree inode are pretty simple, there's one extent
185  * that covers the entire device
186  */
187 static struct extent_map *btree_get_extent(struct inode *inode,
188                 struct page *page, size_t pg_offset, u64 start, u64 len,
189                 int create)
190 {
191         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
192         struct extent_map *em;
193         int ret;
194
195         read_lock(&em_tree->lock);
196         em = lookup_extent_mapping(em_tree, start, len);
197         if (em) {
198                 em->bdev =
199                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
200                 read_unlock(&em_tree->lock);
201                 goto out;
202         }
203         read_unlock(&em_tree->lock);
204
205         em = alloc_extent_map();
206         if (!em) {
207                 em = ERR_PTR(-ENOMEM);
208                 goto out;
209         }
210         em->start = 0;
211         em->len = (u64)-1;
212         em->block_len = (u64)-1;
213         em->block_start = 0;
214         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
215
216         write_lock(&em_tree->lock);
217         ret = add_extent_mapping(em_tree, em);
218         if (ret == -EEXIST) {
219                 u64 failed_start = em->start;
220                 u64 failed_len = em->len;
221
222                 free_extent_map(em);
223                 em = lookup_extent_mapping(em_tree, start, len);
224                 if (em) {
225                         ret = 0;
226                 } else {
227                         em = lookup_extent_mapping(em_tree, failed_start,
228                                                    failed_len);
229                         ret = -EIO;
230                 }
231         } else if (ret) {
232                 free_extent_map(em);
233                 em = NULL;
234         }
235         write_unlock(&em_tree->lock);
236
237         if (ret)
238                 em = ERR_PTR(ret);
239 out:
240         return em;
241 }
242
243 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
244 {
245         return crc32c(seed, data, len);
246 }
247
248 void btrfs_csum_final(u32 crc, char *result)
249 {
250         put_unaligned_le32(~crc, result);
251 }
252
253 /*
254  * compute the csum for a btree block, and either verify it or write it
255  * into the csum field of the block.
256  */
257 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
258                            int verify)
259 {
260         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
261         char *result = NULL;
262         unsigned long len;
263         unsigned long cur_len;
264         unsigned long offset = BTRFS_CSUM_SIZE;
265         char *kaddr;
266         unsigned long map_start;
267         unsigned long map_len;
268         int err;
269         u32 crc = ~(u32)0;
270         unsigned long inline_result;
271
272         len = buf->len - offset;
273         while (len > 0) {
274                 err = map_private_extent_buffer(buf, offset, 32,
275                                         &kaddr, &map_start, &map_len);
276                 if (err)
277                         return 1;
278                 cur_len = min(len, map_len - (offset - map_start));
279                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
280                                       crc, cur_len);
281                 len -= cur_len;
282                 offset += cur_len;
283         }
284         if (csum_size > sizeof(inline_result)) {
285                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
286                 if (!result)
287                         return 1;
288         } else {
289                 result = (char *)&inline_result;
290         }
291
292         btrfs_csum_final(crc, result);
293
294         if (verify) {
295                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
296                         u32 val;
297                         u32 found = 0;
298                         memcpy(&found, result, csum_size);
299
300                         read_extent_buffer(buf, &val, 0, csum_size);
301                         printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
302                                        "failed on %llu wanted %X found %X "
303                                        "level %d\n",
304                                        root->fs_info->sb->s_id,
305                                        (unsigned long long)buf->start, val, found,
306                                        btrfs_header_level(buf));
307                         if (result != (char *)&inline_result)
308                                 kfree(result);
309                         return 1;
310                 }
311         } else {
312                 write_extent_buffer(buf, result, 0, csum_size);
313         }
314         if (result != (char *)&inline_result)
315                 kfree(result);
316         return 0;
317 }
318
319 /*
320  * we can't consider a given block up to date unless the transid of the
321  * block matches the transid in the parent node's pointer.  This is how we
322  * detect blocks that either didn't get written at all or got written
323  * in the wrong place.
324  */
325 static int verify_parent_transid(struct extent_io_tree *io_tree,
326                                  struct extent_buffer *eb, u64 parent_transid)
327 {
328         struct extent_state *cached_state = NULL;
329         int ret;
330
331         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
332                 return 0;
333
334         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
335                          0, &cached_state);
336         if (extent_buffer_uptodate(eb) &&
337             btrfs_header_generation(eb) == parent_transid) {
338                 ret = 0;
339                 goto out;
340         }
341         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
342                        "found %llu\n",
343                        (unsigned long long)eb->start,
344                        (unsigned long long)parent_transid,
345                        (unsigned long long)btrfs_header_generation(eb));
346         ret = 1;
347         clear_extent_buffer_uptodate(eb);
348 out:
349         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
350                              &cached_state, GFP_NOFS);
351         return ret;
352 }
353
354 /*
355  * helper to read a given tree block, doing retries as required when
356  * the checksums don't match and we have alternate mirrors to try.
357  */
358 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
359                                           struct extent_buffer *eb,
360                                           u64 start, u64 parent_transid)
361 {
362         struct extent_io_tree *io_tree;
363         int failed = 0;
364         int ret;
365         int num_copies = 0;
366         int mirror_num = 0;
367         int failed_mirror = 0;
368
369         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
370         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
371         while (1) {
372                 ret = read_extent_buffer_pages(io_tree, eb, start,
373                                                WAIT_COMPLETE,
374                                                btree_get_extent, mirror_num);
375                 if (!ret && !verify_parent_transid(io_tree, eb, parent_transid))
376                         break;
377
378                 /*
379                  * This buffer's crc is fine, but its contents are corrupted, so
380                  * there is no reason to read the other copies, they won't be
381                  * any less wrong.
382                  */
383                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
384                         break;
385
386                 if (!failed_mirror) {
387                         failed = 1;
388                         printk(KERN_ERR "failed mirror was %d\n", eb->failed_mirror);
389                         failed_mirror = eb->failed_mirror;
390                 }
391
392                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
393                                               eb->start, eb->len);
394                 if (num_copies == 1)
395                         break;
396
397                 mirror_num++;
398                 if (mirror_num == failed_mirror)
399                         mirror_num++;
400
401                 if (mirror_num > num_copies)
402                         break;
403         }
404
405         if (failed && !ret)
406                 repair_eb_io_failure(root, eb, failed_mirror);
407
408         return ret;
409 }
410
411 /*
412  * checksum a dirty tree block before IO.  This has extra checks to make sure
413  * we only fill in the checksum field in the first page of a multi-page block
414  */
415
416 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
417 {
418         struct extent_io_tree *tree;
419         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
420         u64 found_start;
421         struct extent_buffer *eb;
422
423         tree = &BTRFS_I(page->mapping->host)->io_tree;
424
425         eb = (struct extent_buffer *)page->private;
426         if (page != eb->pages[0])
427                 return 0;
428         found_start = btrfs_header_bytenr(eb);
429         if (found_start != start) {
430                 WARN_ON(1);
431                 return 0;
432         }
433         if (eb->pages[0] != page) {
434                 WARN_ON(1);
435                 return 0;
436         }
437         if (!PageUptodate(page)) {
438                 WARN_ON(1);
439                 return 0;
440         }
441         csum_tree_block(root, eb, 0);
442         return 0;
443 }
444
445 static int check_tree_block_fsid(struct btrfs_root *root,
446                                  struct extent_buffer *eb)
447 {
448         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
449         u8 fsid[BTRFS_UUID_SIZE];
450         int ret = 1;
451
452         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
453                            BTRFS_FSID_SIZE);
454         while (fs_devices) {
455                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
456                         ret = 0;
457                         break;
458                 }
459                 fs_devices = fs_devices->seed;
460         }
461         return ret;
462 }
463
464 #define CORRUPT(reason, eb, root, slot)                         \
465         printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
466                "root=%llu, slot=%d\n", reason,                  \
467                (unsigned long long)btrfs_header_bytenr(eb),     \
468                (unsigned long long)root->objectid, slot)
469
470 static noinline int check_leaf(struct btrfs_root *root,
471                                struct extent_buffer *leaf)
472 {
473         struct btrfs_key key;
474         struct btrfs_key leaf_key;
475         u32 nritems = btrfs_header_nritems(leaf);
476         int slot;
477
478         if (nritems == 0)
479                 return 0;
480
481         /* Check the 0 item */
482         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
483             BTRFS_LEAF_DATA_SIZE(root)) {
484                 CORRUPT("invalid item offset size pair", leaf, root, 0);
485                 return -EIO;
486         }
487
488         /*
489          * Check to make sure each items keys are in the correct order and their
490          * offsets make sense.  We only have to loop through nritems-1 because
491          * we check the current slot against the next slot, which verifies the
492          * next slot's offset+size makes sense and that the current's slot
493          * offset is correct.
494          */
495         for (slot = 0; slot < nritems - 1; slot++) {
496                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
497                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
498
499                 /* Make sure the keys are in the right order */
500                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
501                         CORRUPT("bad key order", leaf, root, slot);
502                         return -EIO;
503                 }
504
505                 /*
506                  * Make sure the offset and ends are right, remember that the
507                  * item data starts at the end of the leaf and grows towards the
508                  * front.
509                  */
510                 if (btrfs_item_offset_nr(leaf, slot) !=
511                         btrfs_item_end_nr(leaf, slot + 1)) {
512                         CORRUPT("slot offset bad", leaf, root, slot);
513                         return -EIO;
514                 }
515
516                 /*
517                  * Check to make sure that we don't point outside of the leaf,
518                  * just incase all the items are consistent to eachother, but
519                  * all point outside of the leaf.
520                  */
521                 if (btrfs_item_end_nr(leaf, slot) >
522                     BTRFS_LEAF_DATA_SIZE(root)) {
523                         CORRUPT("slot end outside of leaf", leaf, root, slot);
524                         return -EIO;
525                 }
526         }
527
528         return 0;
529 }
530
531 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
532                                        struct page *page, int max_walk)
533 {
534         struct extent_buffer *eb;
535         u64 start = page_offset(page);
536         u64 target = start;
537         u64 min_start;
538
539         if (start < max_walk)
540                 min_start = 0;
541         else
542                 min_start = start - max_walk;
543
544         while (start >= min_start) {
545                 eb = find_extent_buffer(tree, start, 0);
546                 if (eb) {
547                         /*
548                          * we found an extent buffer and it contains our page
549                          * horray!
550                          */
551                         if (eb->start <= target &&
552                             eb->start + eb->len > target)
553                                 return eb;
554
555                         /* we found an extent buffer that wasn't for us */
556                         free_extent_buffer(eb);
557                         return NULL;
558                 }
559                 if (start == 0)
560                         break;
561                 start -= PAGE_CACHE_SIZE;
562         }
563         return NULL;
564 }
565
566 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
567                                struct extent_state *state)
568 {
569         struct extent_io_tree *tree;
570         u64 found_start;
571         int found_level;
572         struct extent_buffer *eb;
573         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
574         int ret = 0;
575         int reads_done;
576
577         if (!page->private)
578                 goto out;
579
580         tree = &BTRFS_I(page->mapping->host)->io_tree;
581         eb = (struct extent_buffer *)page->private;
582
583         /* the pending IO might have been the only thing that kept this buffer
584          * in memory.  Make sure we have a ref for all this other checks
585          */
586         extent_buffer_get(eb);
587
588         reads_done = atomic_dec_and_test(&eb->io_pages);
589         if (!reads_done)
590                 goto err;
591
592         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
593                 ret = -EIO;
594                 goto err;
595         }
596
597         found_start = btrfs_header_bytenr(eb);
598         if (found_start != eb->start) {
599                 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
600                                "%llu %llu\n",
601                                (unsigned long long)found_start,
602                                (unsigned long long)eb->start);
603                 ret = -EIO;
604                 goto err;
605         }
606         if (check_tree_block_fsid(root, eb)) {
607                 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
608                                (unsigned long long)eb->start);
609                 ret = -EIO;
610                 goto err;
611         }
612         found_level = btrfs_header_level(eb);
613
614         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
615                                        eb, found_level);
616
617         ret = csum_tree_block(root, eb, 1);
618         if (ret) {
619                 ret = -EIO;
620                 goto err;
621         }
622
623         /*
624          * If this is a leaf block and it is corrupt, set the corrupt bit so
625          * that we don't try and read the other copies of this block, just
626          * return -EIO.
627          */
628         if (found_level == 0 && check_leaf(root, eb)) {
629                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
630                 ret = -EIO;
631         }
632
633         if (!ret)
634                 set_extent_buffer_uptodate(eb);
635 err:
636         if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
637                 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
638                 btree_readahead_hook(root, eb, eb->start, ret);
639         }
640
641         if (ret)
642                 clear_extent_buffer_uptodate(eb);
643         free_extent_buffer(eb);
644 out:
645         return ret;
646 }
647
648 static int btree_io_failed_hook(struct page *page, int failed_mirror)
649 {
650         struct extent_buffer *eb;
651         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
652
653         eb = (struct extent_buffer *)page->private;
654         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
655         eb->failed_mirror = failed_mirror;
656         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
657                 btree_readahead_hook(root, eb, eb->start, -EIO);
658         return -EIO;    /* we fixed nothing */
659 }
660
661 static void end_workqueue_bio(struct bio *bio, int err)
662 {
663         struct end_io_wq *end_io_wq = bio->bi_private;
664         struct btrfs_fs_info *fs_info;
665
666         fs_info = end_io_wq->info;
667         end_io_wq->error = err;
668         end_io_wq->work.func = end_workqueue_fn;
669         end_io_wq->work.flags = 0;
670
671         if (bio->bi_rw & REQ_WRITE) {
672                 if (end_io_wq->metadata == 1)
673                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
674                                            &end_io_wq->work);
675                 else if (end_io_wq->metadata == 2)
676                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
677                                            &end_io_wq->work);
678                 else
679                         btrfs_queue_worker(&fs_info->endio_write_workers,
680                                            &end_io_wq->work);
681         } else {
682                 if (end_io_wq->metadata)
683                         btrfs_queue_worker(&fs_info->endio_meta_workers,
684                                            &end_io_wq->work);
685                 else
686                         btrfs_queue_worker(&fs_info->endio_workers,
687                                            &end_io_wq->work);
688         }
689 }
690
691 /*
692  * For the metadata arg you want
693  *
694  * 0 - if data
695  * 1 - if normal metadta
696  * 2 - if writing to the free space cache area
697  */
698 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
699                         int metadata)
700 {
701         struct end_io_wq *end_io_wq;
702         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
703         if (!end_io_wq)
704                 return -ENOMEM;
705
706         end_io_wq->private = bio->bi_private;
707         end_io_wq->end_io = bio->bi_end_io;
708         end_io_wq->info = info;
709         end_io_wq->error = 0;
710         end_io_wq->bio = bio;
711         end_io_wq->metadata = metadata;
712
713         bio->bi_private = end_io_wq;
714         bio->bi_end_io = end_workqueue_bio;
715         return 0;
716 }
717
718 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
719 {
720         unsigned long limit = min_t(unsigned long,
721                                     info->workers.max_workers,
722                                     info->fs_devices->open_devices);
723         return 256 * limit;
724 }
725
726 static void run_one_async_start(struct btrfs_work *work)
727 {
728         struct async_submit_bio *async;
729         int ret;
730
731         async = container_of(work, struct  async_submit_bio, work);
732         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
733                                       async->mirror_num, async->bio_flags,
734                                       async->bio_offset);
735         if (ret)
736                 async->error = ret;
737 }
738
739 static void run_one_async_done(struct btrfs_work *work)
740 {
741         struct btrfs_fs_info *fs_info;
742         struct async_submit_bio *async;
743         int limit;
744
745         async = container_of(work, struct  async_submit_bio, work);
746         fs_info = BTRFS_I(async->inode)->root->fs_info;
747
748         limit = btrfs_async_submit_limit(fs_info);
749         limit = limit * 2 / 3;
750
751         atomic_dec(&fs_info->nr_async_submits);
752
753         if (atomic_read(&fs_info->nr_async_submits) < limit &&
754             waitqueue_active(&fs_info->async_submit_wait))
755                 wake_up(&fs_info->async_submit_wait);
756
757         /* If an error occured we just want to clean up the bio and move on */
758         if (async->error) {
759                 bio_endio(async->bio, async->error);
760                 return;
761         }
762
763         async->submit_bio_done(async->inode, async->rw, async->bio,
764                                async->mirror_num, async->bio_flags,
765                                async->bio_offset);
766 }
767
768 static void run_one_async_free(struct btrfs_work *work)
769 {
770         struct async_submit_bio *async;
771
772         async = container_of(work, struct  async_submit_bio, work);
773         kfree(async);
774 }
775
776 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
777                         int rw, struct bio *bio, int mirror_num,
778                         unsigned long bio_flags,
779                         u64 bio_offset,
780                         extent_submit_bio_hook_t *submit_bio_start,
781                         extent_submit_bio_hook_t *submit_bio_done)
782 {
783         struct async_submit_bio *async;
784
785         async = kmalloc(sizeof(*async), GFP_NOFS);
786         if (!async)
787                 return -ENOMEM;
788
789         async->inode = inode;
790         async->rw = rw;
791         async->bio = bio;
792         async->mirror_num = mirror_num;
793         async->submit_bio_start = submit_bio_start;
794         async->submit_bio_done = submit_bio_done;
795
796         async->work.func = run_one_async_start;
797         async->work.ordered_func = run_one_async_done;
798         async->work.ordered_free = run_one_async_free;
799
800         async->work.flags = 0;
801         async->bio_flags = bio_flags;
802         async->bio_offset = bio_offset;
803
804         async->error = 0;
805
806         atomic_inc(&fs_info->nr_async_submits);
807
808         if (rw & REQ_SYNC)
809                 btrfs_set_work_high_prio(&async->work);
810
811         btrfs_queue_worker(&fs_info->workers, &async->work);
812
813         while (atomic_read(&fs_info->async_submit_draining) &&
814               atomic_read(&fs_info->nr_async_submits)) {
815                 wait_event(fs_info->async_submit_wait,
816                            (atomic_read(&fs_info->nr_async_submits) == 0));
817         }
818
819         return 0;
820 }
821
822 static int btree_csum_one_bio(struct bio *bio)
823 {
824         struct bio_vec *bvec = bio->bi_io_vec;
825         int bio_index = 0;
826         struct btrfs_root *root;
827         int ret = 0;
828
829         WARN_ON(bio->bi_vcnt <= 0);
830         while (bio_index < bio->bi_vcnt) {
831                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
832                 ret = csum_dirty_buffer(root, bvec->bv_page);
833                 if (ret)
834                         break;
835                 bio_index++;
836                 bvec++;
837         }
838         return ret;
839 }
840
841 static int __btree_submit_bio_start(struct inode *inode, int rw,
842                                     struct bio *bio, int mirror_num,
843                                     unsigned long bio_flags,
844                                     u64 bio_offset)
845 {
846         /*
847          * when we're called for a write, we're already in the async
848          * submission context.  Just jump into btrfs_map_bio
849          */
850         return btree_csum_one_bio(bio);
851 }
852
853 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
854                                  int mirror_num, unsigned long bio_flags,
855                                  u64 bio_offset)
856 {
857         /*
858          * when we're called for a write, we're already in the async
859          * submission context.  Just jump into btrfs_map_bio
860          */
861         return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
862 }
863
864 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
865                                  int mirror_num, unsigned long bio_flags,
866                                  u64 bio_offset)
867 {
868         int ret;
869
870         if (!(rw & REQ_WRITE)) {
871
872                 /*
873                  * called for a read, do the setup so that checksum validation
874                  * can happen in the async kernel threads
875                  */
876                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
877                                           bio, 1);
878                 if (ret)
879                         return ret;
880                 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
881                                      mirror_num, 0);
882         }
883
884         /*
885          * kthread helpers are used to submit writes so that checksumming
886          * can happen in parallel across all CPUs
887          */
888         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
889                                    inode, rw, bio, mirror_num, 0,
890                                    bio_offset,
891                                    __btree_submit_bio_start,
892                                    __btree_submit_bio_done);
893 }
894
895 #ifdef CONFIG_MIGRATION
896 static int btree_migratepage(struct address_space *mapping,
897                         struct page *newpage, struct page *page,
898                         enum migrate_mode mode)
899 {
900         /*
901          * we can't safely write a btree page from here,
902          * we haven't done the locking hook
903          */
904         if (PageDirty(page))
905                 return -EAGAIN;
906         /*
907          * Buffers may be managed in a filesystem specific way.
908          * We must have no buffers or drop them.
909          */
910         if (page_has_private(page) &&
911             !try_to_release_page(page, GFP_KERNEL))
912                 return -EAGAIN;
913         return migrate_page(mapping, newpage, page, mode);
914 }
915 #endif
916
917
918 static int btree_writepages(struct address_space *mapping,
919                             struct writeback_control *wbc)
920 {
921         struct extent_io_tree *tree;
922         tree = &BTRFS_I(mapping->host)->io_tree;
923         if (wbc->sync_mode == WB_SYNC_NONE) {
924                 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
925                 u64 num_dirty;
926                 unsigned long thresh = 32 * 1024 * 1024;
927
928                 if (wbc->for_kupdate)
929                         return 0;
930
931                 /* this is a bit racy, but that's ok */
932                 num_dirty = root->fs_info->dirty_metadata_bytes;
933                 if (num_dirty < thresh)
934                         return 0;
935         }
936         return btree_write_cache_pages(mapping, wbc);
937 }
938
939 static int btree_readpage(struct file *file, struct page *page)
940 {
941         struct extent_io_tree *tree;
942         tree = &BTRFS_I(page->mapping->host)->io_tree;
943         return extent_read_full_page(tree, page, btree_get_extent, 0);
944 }
945
946 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
947 {
948         if (PageWriteback(page) || PageDirty(page))
949                 return 0;
950         /*
951          * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
952          * slab allocation from alloc_extent_state down the callchain where
953          * it'd hit a BUG_ON as those flags are not allowed.
954          */
955         gfp_flags &= ~GFP_SLAB_BUG_MASK;
956
957         return try_release_extent_buffer(page, gfp_flags);
958 }
959
960 static void btree_invalidatepage(struct page *page, unsigned long offset)
961 {
962         struct extent_io_tree *tree;
963         tree = &BTRFS_I(page->mapping->host)->io_tree;
964         extent_invalidatepage(tree, page, offset);
965         btree_releasepage(page, GFP_NOFS);
966         if (PagePrivate(page)) {
967                 printk(KERN_WARNING "btrfs warning page private not zero "
968                        "on page %llu\n", (unsigned long long)page_offset(page));
969                 ClearPagePrivate(page);
970                 set_page_private(page, 0);
971                 page_cache_release(page);
972         }
973 }
974
975 static int btree_set_page_dirty(struct page *page)
976 {
977         struct extent_buffer *eb;
978
979         BUG_ON(!PagePrivate(page));
980         eb = (struct extent_buffer *)page->private;
981         BUG_ON(!eb);
982         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
983         BUG_ON(!atomic_read(&eb->refs));
984         btrfs_assert_tree_locked(eb);
985         return __set_page_dirty_nobuffers(page);
986 }
987
988 static const struct address_space_operations btree_aops = {
989         .readpage       = btree_readpage,
990         .writepages     = btree_writepages,
991         .releasepage    = btree_releasepage,
992         .invalidatepage = btree_invalidatepage,
993 #ifdef CONFIG_MIGRATION
994         .migratepage    = btree_migratepage,
995 #endif
996         .set_page_dirty = btree_set_page_dirty,
997 };
998
999 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1000                          u64 parent_transid)
1001 {
1002         struct extent_buffer *buf = NULL;
1003         struct inode *btree_inode = root->fs_info->btree_inode;
1004         int ret = 0;
1005
1006         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1007         if (!buf)
1008                 return 0;
1009         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1010                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1011         free_extent_buffer(buf);
1012         return ret;
1013 }
1014
1015 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1016                          int mirror_num, struct extent_buffer **eb)
1017 {
1018         struct extent_buffer *buf = NULL;
1019         struct inode *btree_inode = root->fs_info->btree_inode;
1020         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1021         int ret;
1022
1023         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1024         if (!buf)
1025                 return 0;
1026
1027         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1028
1029         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1030                                        btree_get_extent, mirror_num);
1031         if (ret) {
1032                 free_extent_buffer(buf);
1033                 return ret;
1034         }
1035
1036         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1037                 free_extent_buffer(buf);
1038                 return -EIO;
1039         } else if (extent_buffer_uptodate(buf)) {
1040                 *eb = buf;
1041         } else {
1042                 free_extent_buffer(buf);
1043         }
1044         return 0;
1045 }
1046
1047 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1048                                             u64 bytenr, u32 blocksize)
1049 {
1050         struct inode *btree_inode = root->fs_info->btree_inode;
1051         struct extent_buffer *eb;
1052         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1053                                 bytenr, blocksize);
1054         return eb;
1055 }
1056
1057 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1058                                                  u64 bytenr, u32 blocksize)
1059 {
1060         struct inode *btree_inode = root->fs_info->btree_inode;
1061         struct extent_buffer *eb;
1062
1063         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1064                                  bytenr, blocksize);
1065         return eb;
1066 }
1067
1068
1069 int btrfs_write_tree_block(struct extent_buffer *buf)
1070 {
1071         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1072                                         buf->start + buf->len - 1);
1073 }
1074
1075 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1076 {
1077         return filemap_fdatawait_range(buf->pages[0]->mapping,
1078                                        buf->start, buf->start + buf->len - 1);
1079 }
1080
1081 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1082                                       u32 blocksize, u64 parent_transid)
1083 {
1084         struct extent_buffer *buf = NULL;
1085         int ret;
1086
1087         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1088         if (!buf)
1089                 return NULL;
1090
1091         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1092         return buf;
1093
1094 }
1095
1096 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1097                       struct extent_buffer *buf)
1098 {
1099         if (btrfs_header_generation(buf) ==
1100             root->fs_info->running_transaction->transid) {
1101                 btrfs_assert_tree_locked(buf);
1102
1103                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1104                         spin_lock(&root->fs_info->delalloc_lock);
1105                         if (root->fs_info->dirty_metadata_bytes >= buf->len)
1106                                 root->fs_info->dirty_metadata_bytes -= buf->len;
1107                         else {
1108                                 spin_unlock(&root->fs_info->delalloc_lock);
1109                                 btrfs_panic(root->fs_info, -EOVERFLOW,
1110                                           "Can't clear %lu bytes from "
1111                                           " dirty_mdatadata_bytes (%lu)",
1112                                           buf->len,
1113                                           root->fs_info->dirty_metadata_bytes);
1114                         }
1115                         spin_unlock(&root->fs_info->delalloc_lock);
1116                 }
1117
1118                 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1119                 btrfs_set_lock_blocking(buf);
1120                 clear_extent_buffer_dirty(buf);
1121         }
1122 }
1123
1124 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1125                          u32 stripesize, struct btrfs_root *root,
1126                          struct btrfs_fs_info *fs_info,
1127                          u64 objectid)
1128 {
1129         root->node = NULL;
1130         root->commit_root = NULL;
1131         root->sectorsize = sectorsize;
1132         root->nodesize = nodesize;
1133         root->leafsize = leafsize;
1134         root->stripesize = stripesize;
1135         root->ref_cows = 0;
1136         root->track_dirty = 0;
1137         root->in_radix = 0;
1138         root->orphan_item_inserted = 0;
1139         root->orphan_cleanup_state = 0;
1140
1141         root->objectid = objectid;
1142         root->last_trans = 0;
1143         root->highest_objectid = 0;
1144         root->name = NULL;
1145         root->inode_tree = RB_ROOT;
1146         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1147         root->block_rsv = NULL;
1148         root->orphan_block_rsv = NULL;
1149
1150         INIT_LIST_HEAD(&root->dirty_list);
1151         INIT_LIST_HEAD(&root->orphan_list);
1152         INIT_LIST_HEAD(&root->root_list);
1153         spin_lock_init(&root->orphan_lock);
1154         spin_lock_init(&root->inode_lock);
1155         spin_lock_init(&root->accounting_lock);
1156         mutex_init(&root->objectid_mutex);
1157         mutex_init(&root->log_mutex);
1158         init_waitqueue_head(&root->log_writer_wait);
1159         init_waitqueue_head(&root->log_commit_wait[0]);
1160         init_waitqueue_head(&root->log_commit_wait[1]);
1161         atomic_set(&root->log_commit[0], 0);
1162         atomic_set(&root->log_commit[1], 0);
1163         atomic_set(&root->log_writers, 0);
1164         root->log_batch = 0;
1165         root->log_transid = 0;
1166         root->last_log_commit = 0;
1167         extent_io_tree_init(&root->dirty_log_pages,
1168                              fs_info->btree_inode->i_mapping);
1169
1170         memset(&root->root_key, 0, sizeof(root->root_key));
1171         memset(&root->root_item, 0, sizeof(root->root_item));
1172         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1173         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1174         root->defrag_trans_start = fs_info->generation;
1175         init_completion(&root->kobj_unregister);
1176         root->defrag_running = 0;
1177         root->root_key.objectid = objectid;
1178         root->anon_dev = 0;
1179 }
1180
1181 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1182                                             struct btrfs_fs_info *fs_info,
1183                                             u64 objectid,
1184                                             struct btrfs_root *root)
1185 {
1186         int ret;
1187         u32 blocksize;
1188         u64 generation;
1189
1190         __setup_root(tree_root->nodesize, tree_root->leafsize,
1191                      tree_root->sectorsize, tree_root->stripesize,
1192                      root, fs_info, objectid);
1193         ret = btrfs_find_last_root(tree_root, objectid,
1194                                    &root->root_item, &root->root_key);
1195         if (ret > 0)
1196                 return -ENOENT;
1197         else if (ret < 0)
1198                 return ret;
1199
1200         generation = btrfs_root_generation(&root->root_item);
1201         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1202         root->commit_root = NULL;
1203         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1204                                      blocksize, generation);
1205         if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1206                 free_extent_buffer(root->node);
1207                 root->node = NULL;
1208                 return -EIO;
1209         }
1210         root->commit_root = btrfs_root_node(root);
1211         return 0;
1212 }
1213
1214 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1215 {
1216         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1217         if (root)
1218                 root->fs_info = fs_info;
1219         return root;
1220 }
1221
1222 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1223                                          struct btrfs_fs_info *fs_info)
1224 {
1225         struct btrfs_root *root;
1226         struct btrfs_root *tree_root = fs_info->tree_root;
1227         struct extent_buffer *leaf;
1228
1229         root = btrfs_alloc_root(fs_info);
1230         if (!root)
1231                 return ERR_PTR(-ENOMEM);
1232
1233         __setup_root(tree_root->nodesize, tree_root->leafsize,
1234                      tree_root->sectorsize, tree_root->stripesize,
1235                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1236
1237         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1238         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1239         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1240         /*
1241          * log trees do not get reference counted because they go away
1242          * before a real commit is actually done.  They do store pointers
1243          * to file data extents, and those reference counts still get
1244          * updated (along with back refs to the log tree).
1245          */
1246         root->ref_cows = 0;
1247
1248         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1249                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1250                                       0, 0, 0, 0);
1251         if (IS_ERR(leaf)) {
1252                 kfree(root);
1253                 return ERR_CAST(leaf);
1254         }
1255
1256         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1257         btrfs_set_header_bytenr(leaf, leaf->start);
1258         btrfs_set_header_generation(leaf, trans->transid);
1259         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1260         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1261         root->node = leaf;
1262
1263         write_extent_buffer(root->node, root->fs_info->fsid,
1264                             (unsigned long)btrfs_header_fsid(root->node),
1265                             BTRFS_FSID_SIZE);
1266         btrfs_mark_buffer_dirty(root->node);
1267         btrfs_tree_unlock(root->node);
1268         return root;
1269 }
1270
1271 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1272                              struct btrfs_fs_info *fs_info)
1273 {
1274         struct btrfs_root *log_root;
1275
1276         log_root = alloc_log_tree(trans, fs_info);
1277         if (IS_ERR(log_root))
1278                 return PTR_ERR(log_root);
1279         WARN_ON(fs_info->log_root_tree);
1280         fs_info->log_root_tree = log_root;
1281         return 0;
1282 }
1283
1284 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1285                        struct btrfs_root *root)
1286 {
1287         struct btrfs_root *log_root;
1288         struct btrfs_inode_item *inode_item;
1289
1290         log_root = alloc_log_tree(trans, root->fs_info);
1291         if (IS_ERR(log_root))
1292                 return PTR_ERR(log_root);
1293
1294         log_root->last_trans = trans->transid;
1295         log_root->root_key.offset = root->root_key.objectid;
1296
1297         inode_item = &log_root->root_item.inode;
1298         inode_item->generation = cpu_to_le64(1);
1299         inode_item->size = cpu_to_le64(3);
1300         inode_item->nlink = cpu_to_le32(1);
1301         inode_item->nbytes = cpu_to_le64(root->leafsize);
1302         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1303
1304         btrfs_set_root_node(&log_root->root_item, log_root->node);
1305
1306         WARN_ON(root->log_root);
1307         root->log_root = log_root;
1308         root->log_transid = 0;
1309         root->last_log_commit = 0;
1310         return 0;
1311 }
1312
1313 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1314                                                struct btrfs_key *location)
1315 {
1316         struct btrfs_root *root;
1317         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1318         struct btrfs_path *path;
1319         struct extent_buffer *l;
1320         u64 generation;
1321         u32 blocksize;
1322         int ret = 0;
1323
1324         root = btrfs_alloc_root(fs_info);
1325         if (!root)
1326                 return ERR_PTR(-ENOMEM);
1327         if (location->offset == (u64)-1) {
1328                 ret = find_and_setup_root(tree_root, fs_info,
1329                                           location->objectid, root);
1330                 if (ret) {
1331                         kfree(root);
1332                         return ERR_PTR(ret);
1333                 }
1334                 goto out;
1335         }
1336
1337         __setup_root(tree_root->nodesize, tree_root->leafsize,
1338                      tree_root->sectorsize, tree_root->stripesize,
1339                      root, fs_info, location->objectid);
1340
1341         path = btrfs_alloc_path();
1342         if (!path) {
1343                 kfree(root);
1344                 return ERR_PTR(-ENOMEM);
1345         }
1346         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1347         if (ret == 0) {
1348                 l = path->nodes[0];
1349                 read_extent_buffer(l, &root->root_item,
1350                                 btrfs_item_ptr_offset(l, path->slots[0]),
1351                                 sizeof(root->root_item));
1352                 memcpy(&root->root_key, location, sizeof(*location));
1353         }
1354         btrfs_free_path(path);
1355         if (ret) {
1356                 kfree(root);
1357                 if (ret > 0)
1358                         ret = -ENOENT;
1359                 return ERR_PTR(ret);
1360         }
1361
1362         generation = btrfs_root_generation(&root->root_item);
1363         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1364         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1365                                      blocksize, generation);
1366         root->commit_root = btrfs_root_node(root);
1367         BUG_ON(!root->node); /* -ENOMEM */
1368 out:
1369         if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1370                 root->ref_cows = 1;
1371                 btrfs_check_and_init_root_item(&root->root_item);
1372         }
1373
1374         return root;
1375 }
1376
1377 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1378                                               struct btrfs_key *location)
1379 {
1380         struct btrfs_root *root;
1381         int ret;
1382
1383         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1384                 return fs_info->tree_root;
1385         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1386                 return fs_info->extent_root;
1387         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1388                 return fs_info->chunk_root;
1389         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1390                 return fs_info->dev_root;
1391         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1392                 return fs_info->csum_root;
1393 again:
1394         spin_lock(&fs_info->fs_roots_radix_lock);
1395         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1396                                  (unsigned long)location->objectid);
1397         spin_unlock(&fs_info->fs_roots_radix_lock);
1398         if (root)
1399                 return root;
1400
1401         root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1402         if (IS_ERR(root))
1403                 return root;
1404
1405         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1406         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1407                                         GFP_NOFS);
1408         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1409                 ret = -ENOMEM;
1410                 goto fail;
1411         }
1412
1413         btrfs_init_free_ino_ctl(root);
1414         mutex_init(&root->fs_commit_mutex);
1415         spin_lock_init(&root->cache_lock);
1416         init_waitqueue_head(&root->cache_wait);
1417
1418         ret = get_anon_bdev(&root->anon_dev);
1419         if (ret)
1420                 goto fail;
1421
1422         if (btrfs_root_refs(&root->root_item) == 0) {
1423                 ret = -ENOENT;
1424                 goto fail;
1425         }
1426
1427         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1428         if (ret < 0)
1429                 goto fail;
1430         if (ret == 0)
1431                 root->orphan_item_inserted = 1;
1432
1433         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1434         if (ret)
1435                 goto fail;
1436
1437         spin_lock(&fs_info->fs_roots_radix_lock);
1438         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1439                                 (unsigned long)root->root_key.objectid,
1440                                 root);
1441         if (ret == 0)
1442                 root->in_radix = 1;
1443
1444         spin_unlock(&fs_info->fs_roots_radix_lock);
1445         radix_tree_preload_end();
1446         if (ret) {
1447                 if (ret == -EEXIST) {
1448                         free_fs_root(root);
1449                         goto again;
1450                 }
1451                 goto fail;
1452         }
1453
1454         ret = btrfs_find_dead_roots(fs_info->tree_root,
1455                                     root->root_key.objectid);
1456         WARN_ON(ret);
1457         return root;
1458 fail:
1459         free_fs_root(root);
1460         return ERR_PTR(ret);
1461 }
1462
1463 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1464 {
1465         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1466         int ret = 0;
1467         struct btrfs_device *device;
1468         struct backing_dev_info *bdi;
1469
1470         rcu_read_lock();
1471         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1472                 if (!device->bdev)
1473                         continue;
1474                 bdi = blk_get_backing_dev_info(device->bdev);
1475                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1476                         ret = 1;
1477                         break;
1478                 }
1479         }
1480         rcu_read_unlock();
1481         return ret;
1482 }
1483
1484 /*
1485  * If this fails, caller must call bdi_destroy() to get rid of the
1486  * bdi again.
1487  */
1488 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1489 {
1490         int err;
1491
1492         bdi->capabilities = BDI_CAP_MAP_COPY;
1493         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1494         if (err)
1495                 return err;
1496
1497         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1498         bdi->congested_fn       = btrfs_congested_fn;
1499         bdi->congested_data     = info;
1500         return 0;
1501 }
1502
1503 /*
1504  * called by the kthread helper functions to finally call the bio end_io
1505  * functions.  This is where read checksum verification actually happens
1506  */
1507 static void end_workqueue_fn(struct btrfs_work *work)
1508 {
1509         struct bio *bio;
1510         struct end_io_wq *end_io_wq;
1511         struct btrfs_fs_info *fs_info;
1512         int error;
1513
1514         end_io_wq = container_of(work, struct end_io_wq, work);
1515         bio = end_io_wq->bio;
1516         fs_info = end_io_wq->info;
1517
1518         error = end_io_wq->error;
1519         bio->bi_private = end_io_wq->private;
1520         bio->bi_end_io = end_io_wq->end_io;
1521         kfree(end_io_wq);
1522         bio_endio(bio, error);
1523 }
1524
1525 static int cleaner_kthread(void *arg)
1526 {
1527         struct btrfs_root *root = arg;
1528
1529         do {
1530                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1531
1532                 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1533                     mutex_trylock(&root->fs_info->cleaner_mutex)) {
1534                         btrfs_run_delayed_iputs(root);
1535                         btrfs_clean_old_snapshots(root);
1536                         mutex_unlock(&root->fs_info->cleaner_mutex);
1537                         btrfs_run_defrag_inodes(root->fs_info);
1538                 }
1539
1540                 if (!try_to_freeze()) {
1541                         set_current_state(TASK_INTERRUPTIBLE);
1542                         if (!kthread_should_stop())
1543                                 schedule();
1544                         __set_current_state(TASK_RUNNING);
1545                 }
1546         } while (!kthread_should_stop());
1547         return 0;
1548 }
1549
1550 static int transaction_kthread(void *arg)
1551 {
1552         struct btrfs_root *root = arg;
1553         struct btrfs_trans_handle *trans;
1554         struct btrfs_transaction *cur;
1555         u64 transid;
1556         unsigned long now;
1557         unsigned long delay;
1558         bool cannot_commit;
1559
1560         do {
1561                 cannot_commit = false;
1562                 delay = HZ * 30;
1563                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1564                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1565
1566                 spin_lock(&root->fs_info->trans_lock);
1567                 cur = root->fs_info->running_transaction;
1568                 if (!cur) {
1569                         spin_unlock(&root->fs_info->trans_lock);
1570                         goto sleep;
1571                 }
1572
1573                 now = get_seconds();
1574                 if (!cur->blocked &&
1575                     (now < cur->start_time || now - cur->start_time < 30)) {
1576                         spin_unlock(&root->fs_info->trans_lock);
1577                         delay = HZ * 5;
1578                         goto sleep;
1579                 }
1580                 transid = cur->transid;
1581                 spin_unlock(&root->fs_info->trans_lock);
1582
1583                 /* If the file system is aborted, this will always fail. */
1584                 trans = btrfs_join_transaction(root);
1585                 if (IS_ERR(trans)) {
1586                         cannot_commit = true;
1587                         goto sleep;
1588                 }
1589                 if (transid == trans->transid) {
1590                         btrfs_commit_transaction(trans, root);
1591                 } else {
1592                         btrfs_end_transaction(trans, root);
1593                 }
1594 sleep:
1595                 wake_up_process(root->fs_info->cleaner_kthread);
1596                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1597
1598                 if (!try_to_freeze()) {
1599                         set_current_state(TASK_INTERRUPTIBLE);
1600                         if (!kthread_should_stop() &&
1601                             (!btrfs_transaction_blocked(root->fs_info) ||
1602                              cannot_commit))
1603                                 schedule_timeout(delay);
1604                         __set_current_state(TASK_RUNNING);
1605                 }
1606         } while (!kthread_should_stop());
1607         return 0;
1608 }
1609
1610 /*
1611  * this will find the highest generation in the array of
1612  * root backups.  The index of the highest array is returned,
1613  * or -1 if we can't find anything.
1614  *
1615  * We check to make sure the array is valid by comparing the
1616  * generation of the latest  root in the array with the generation
1617  * in the super block.  If they don't match we pitch it.
1618  */
1619 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1620 {
1621         u64 cur;
1622         int newest_index = -1;
1623         struct btrfs_root_backup *root_backup;
1624         int i;
1625
1626         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1627                 root_backup = info->super_copy->super_roots + i;
1628                 cur = btrfs_backup_tree_root_gen(root_backup);
1629                 if (cur == newest_gen)
1630                         newest_index = i;
1631         }
1632
1633         /* check to see if we actually wrapped around */
1634         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1635                 root_backup = info->super_copy->super_roots;
1636                 cur = btrfs_backup_tree_root_gen(root_backup);
1637                 if (cur == newest_gen)
1638                         newest_index = 0;
1639         }
1640         return newest_index;
1641 }
1642
1643
1644 /*
1645  * find the oldest backup so we know where to store new entries
1646  * in the backup array.  This will set the backup_root_index
1647  * field in the fs_info struct
1648  */
1649 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1650                                      u64 newest_gen)
1651 {
1652         int newest_index = -1;
1653
1654         newest_index = find_newest_super_backup(info, newest_gen);
1655         /* if there was garbage in there, just move along */
1656         if (newest_index == -1) {
1657                 info->backup_root_index = 0;
1658         } else {
1659                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1660         }
1661 }
1662
1663 /*
1664  * copy all the root pointers into the super backup array.
1665  * this will bump the backup pointer by one when it is
1666  * done
1667  */
1668 static void backup_super_roots(struct btrfs_fs_info *info)
1669 {
1670         int next_backup;
1671         struct btrfs_root_backup *root_backup;
1672         int last_backup;
1673
1674         next_backup = info->backup_root_index;
1675         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1676                 BTRFS_NUM_BACKUP_ROOTS;
1677
1678         /*
1679          * just overwrite the last backup if we're at the same generation
1680          * this happens only at umount
1681          */
1682         root_backup = info->super_for_commit->super_roots + last_backup;
1683         if (btrfs_backup_tree_root_gen(root_backup) ==
1684             btrfs_header_generation(info->tree_root->node))
1685                 next_backup = last_backup;
1686
1687         root_backup = info->super_for_commit->super_roots + next_backup;
1688
1689         /*
1690          * make sure all of our padding and empty slots get zero filled
1691          * regardless of which ones we use today
1692          */
1693         memset(root_backup, 0, sizeof(*root_backup));
1694
1695         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1696
1697         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1698         btrfs_set_backup_tree_root_gen(root_backup,
1699                                btrfs_header_generation(info->tree_root->node));
1700
1701         btrfs_set_backup_tree_root_level(root_backup,
1702                                btrfs_header_level(info->tree_root->node));
1703
1704         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1705         btrfs_set_backup_chunk_root_gen(root_backup,
1706                                btrfs_header_generation(info->chunk_root->node));
1707         btrfs_set_backup_chunk_root_level(root_backup,
1708                                btrfs_header_level(info->chunk_root->node));
1709
1710         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1711         btrfs_set_backup_extent_root_gen(root_backup,
1712                                btrfs_header_generation(info->extent_root->node));
1713         btrfs_set_backup_extent_root_level(root_backup,
1714                                btrfs_header_level(info->extent_root->node));
1715
1716         /*
1717          * we might commit during log recovery, which happens before we set
1718          * the fs_root.  Make sure it is valid before we fill it in.
1719          */
1720         if (info->fs_root && info->fs_root->node) {
1721                 btrfs_set_backup_fs_root(root_backup,
1722                                          info->fs_root->node->start);
1723                 btrfs_set_backup_fs_root_gen(root_backup,
1724                                btrfs_header_generation(info->fs_root->node));
1725                 btrfs_set_backup_fs_root_level(root_backup,
1726                                btrfs_header_level(info->fs_root->node));
1727         }
1728
1729         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1730         btrfs_set_backup_dev_root_gen(root_backup,
1731                                btrfs_header_generation(info->dev_root->node));
1732         btrfs_set_backup_dev_root_level(root_backup,
1733                                        btrfs_header_level(info->dev_root->node));
1734
1735         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1736         btrfs_set_backup_csum_root_gen(root_backup,
1737                                btrfs_header_generation(info->csum_root->node));
1738         btrfs_set_backup_csum_root_level(root_backup,
1739                                btrfs_header_level(info->csum_root->node));
1740
1741         btrfs_set_backup_total_bytes(root_backup,
1742                              btrfs_super_total_bytes(info->super_copy));
1743         btrfs_set_backup_bytes_used(root_backup,
1744                              btrfs_super_bytes_used(info->super_copy));
1745         btrfs_set_backup_num_devices(root_backup,
1746                              btrfs_super_num_devices(info->super_copy));
1747
1748         /*
1749          * if we don't copy this out to the super_copy, it won't get remembered
1750          * for the next commit
1751          */
1752         memcpy(&info->super_copy->super_roots,
1753                &info->super_for_commit->super_roots,
1754                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1755 }
1756
1757 /*
1758  * this copies info out of the root backup array and back into
1759  * the in-memory super block.  It is meant to help iterate through
1760  * the array, so you send it the number of backups you've already
1761  * tried and the last backup index you used.
1762  *
1763  * this returns -1 when it has tried all the backups
1764  */
1765 static noinline int next_root_backup(struct btrfs_fs_info *info,
1766                                      struct btrfs_super_block *super,
1767                                      int *num_backups_tried, int *backup_index)
1768 {
1769         struct btrfs_root_backup *root_backup;
1770         int newest = *backup_index;
1771
1772         if (*num_backups_tried == 0) {
1773                 u64 gen = btrfs_super_generation(super);
1774
1775                 newest = find_newest_super_backup(info, gen);
1776                 if (newest == -1)
1777                         return -1;
1778
1779                 *backup_index = newest;
1780                 *num_backups_tried = 1;
1781         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1782                 /* we've tried all the backups, all done */
1783                 return -1;
1784         } else {
1785                 /* jump to the next oldest backup */
1786                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1787                         BTRFS_NUM_BACKUP_ROOTS;
1788                 *backup_index = newest;
1789                 *num_backups_tried += 1;
1790         }
1791         root_backup = super->super_roots + newest;
1792
1793         btrfs_set_super_generation(super,
1794                                    btrfs_backup_tree_root_gen(root_backup));
1795         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1796         btrfs_set_super_root_level(super,
1797                                    btrfs_backup_tree_root_level(root_backup));
1798         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1799
1800         /*
1801          * fixme: the total bytes and num_devices need to match or we should
1802          * need a fsck
1803          */
1804         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1805         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1806         return 0;
1807 }
1808
1809 /* helper to cleanup tree roots */
1810 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1811 {
1812         free_extent_buffer(info->tree_root->node);
1813         free_extent_buffer(info->tree_root->commit_root);
1814         free_extent_buffer(info->dev_root->node);
1815         free_extent_buffer(info->dev_root->commit_root);
1816         free_extent_buffer(info->extent_root->node);
1817         free_extent_buffer(info->extent_root->commit_root);
1818         free_extent_buffer(info->csum_root->node);
1819         free_extent_buffer(info->csum_root->commit_root);
1820
1821         info->tree_root->node = NULL;
1822         info->tree_root->commit_root = NULL;
1823         info->dev_root->node = NULL;
1824         info->dev_root->commit_root = NULL;
1825         info->extent_root->node = NULL;
1826         info->extent_root->commit_root = NULL;
1827         info->csum_root->node = NULL;
1828         info->csum_root->commit_root = NULL;
1829
1830         if (chunk_root) {
1831                 free_extent_buffer(info->chunk_root->node);
1832                 free_extent_buffer(info->chunk_root->commit_root);
1833                 info->chunk_root->node = NULL;
1834                 info->chunk_root->commit_root = NULL;
1835         }
1836 }
1837
1838
1839 int open_ctree(struct super_block *sb,
1840                struct btrfs_fs_devices *fs_devices,
1841                char *options)
1842 {
1843         u32 sectorsize;
1844         u32 nodesize;
1845         u32 leafsize;
1846         u32 blocksize;
1847         u32 stripesize;
1848         u64 generation;
1849         u64 features;
1850         struct btrfs_key location;
1851         struct buffer_head *bh;
1852         struct btrfs_super_block *disk_super;
1853         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1854         struct btrfs_root *tree_root;
1855         struct btrfs_root *extent_root;
1856         struct btrfs_root *csum_root;
1857         struct btrfs_root *chunk_root;
1858         struct btrfs_root *dev_root;
1859         struct btrfs_root *log_tree_root;
1860         int ret;
1861         int err = -EINVAL;
1862         int num_backups_tried = 0;
1863         int backup_index = 0;
1864
1865         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1866         extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1867         csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1868         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1869         dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1870
1871         if (!tree_root || !extent_root || !csum_root ||
1872             !chunk_root || !dev_root) {
1873                 err = -ENOMEM;
1874                 goto fail;
1875         }
1876
1877         ret = init_srcu_struct(&fs_info->subvol_srcu);
1878         if (ret) {
1879                 err = ret;
1880                 goto fail;
1881         }
1882
1883         ret = setup_bdi(fs_info, &fs_info->bdi);
1884         if (ret) {
1885                 err = ret;
1886                 goto fail_srcu;
1887         }
1888
1889         fs_info->btree_inode = new_inode(sb);
1890         if (!fs_info->btree_inode) {
1891                 err = -ENOMEM;
1892                 goto fail_bdi;
1893         }
1894
1895         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1896
1897         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1898         INIT_LIST_HEAD(&fs_info->trans_list);
1899         INIT_LIST_HEAD(&fs_info->dead_roots);
1900         INIT_LIST_HEAD(&fs_info->delayed_iputs);
1901         INIT_LIST_HEAD(&fs_info->hashers);
1902         INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1903         INIT_LIST_HEAD(&fs_info->ordered_operations);
1904         INIT_LIST_HEAD(&fs_info->caching_block_groups);
1905         spin_lock_init(&fs_info->delalloc_lock);
1906         spin_lock_init(&fs_info->trans_lock);
1907         spin_lock_init(&fs_info->ref_cache_lock);
1908         spin_lock_init(&fs_info->fs_roots_radix_lock);
1909         spin_lock_init(&fs_info->delayed_iput_lock);
1910         spin_lock_init(&fs_info->defrag_inodes_lock);
1911         spin_lock_init(&fs_info->free_chunk_lock);
1912         mutex_init(&fs_info->reloc_mutex);
1913
1914         init_completion(&fs_info->kobj_unregister);
1915         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1916         INIT_LIST_HEAD(&fs_info->space_info);
1917         btrfs_mapping_init(&fs_info->mapping_tree);
1918         btrfs_init_block_rsv(&fs_info->global_block_rsv);
1919         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1920         btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1921         btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1922         btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1923         btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
1924         atomic_set(&fs_info->nr_async_submits, 0);
1925         atomic_set(&fs_info->async_delalloc_pages, 0);
1926         atomic_set(&fs_info->async_submit_draining, 0);
1927         atomic_set(&fs_info->nr_async_bios, 0);
1928         atomic_set(&fs_info->defrag_running, 0);
1929         fs_info->sb = sb;
1930         fs_info->max_inline = 8192 * 1024;
1931         fs_info->metadata_ratio = 0;
1932         fs_info->defrag_inodes = RB_ROOT;
1933         fs_info->trans_no_join = 0;
1934         fs_info->free_chunk_space = 0;
1935
1936         /* readahead state */
1937         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1938         spin_lock_init(&fs_info->reada_lock);
1939
1940         fs_info->thread_pool_size = min_t(unsigned long,
1941                                           num_online_cpus() + 2, 8);
1942
1943         INIT_LIST_HEAD(&fs_info->ordered_extents);
1944         spin_lock_init(&fs_info->ordered_extent_lock);
1945         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1946                                         GFP_NOFS);
1947         if (!fs_info->delayed_root) {
1948                 err = -ENOMEM;
1949                 goto fail_iput;
1950         }
1951         btrfs_init_delayed_root(fs_info->delayed_root);
1952
1953         mutex_init(&fs_info->scrub_lock);
1954         atomic_set(&fs_info->scrubs_running, 0);
1955         atomic_set(&fs_info->scrub_pause_req, 0);
1956         atomic_set(&fs_info->scrubs_paused, 0);
1957         atomic_set(&fs_info->scrub_cancel_req, 0);
1958         init_waitqueue_head(&fs_info->scrub_pause_wait);
1959         init_rwsem(&fs_info->scrub_super_lock);
1960         fs_info->scrub_workers_refcnt = 0;
1961 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1962         fs_info->check_integrity_print_mask = 0;
1963 #endif
1964
1965         spin_lock_init(&fs_info->balance_lock);
1966         mutex_init(&fs_info->balance_mutex);
1967         atomic_set(&fs_info->balance_running, 0);
1968         atomic_set(&fs_info->balance_pause_req, 0);
1969         atomic_set(&fs_info->balance_cancel_req, 0);
1970         fs_info->balance_ctl = NULL;
1971         init_waitqueue_head(&fs_info->balance_wait_q);
1972
1973         sb->s_blocksize = 4096;
1974         sb->s_blocksize_bits = blksize_bits(4096);
1975         sb->s_bdi = &fs_info->bdi;
1976
1977         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1978         set_nlink(fs_info->btree_inode, 1);
1979         /*
1980          * we set the i_size on the btree inode to the max possible int.
1981          * the real end of the address space is determined by all of
1982          * the devices in the system
1983          */
1984         fs_info->btree_inode->i_size = OFFSET_MAX;
1985         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1986         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1987
1988         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1989         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1990                              fs_info->btree_inode->i_mapping);
1991         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
1992         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
1993
1994         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1995
1996         BTRFS_I(fs_info->btree_inode)->root = tree_root;
1997         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1998                sizeof(struct btrfs_key));
1999         BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
2000         insert_inode_hash(fs_info->btree_inode);
2001
2002         spin_lock_init(&fs_info->block_group_cache_lock);
2003         fs_info->block_group_cache_tree = RB_ROOT;
2004
2005         extent_io_tree_init(&fs_info->freed_extents[0],
2006                              fs_info->btree_inode->i_mapping);
2007         extent_io_tree_init(&fs_info->freed_extents[1],
2008                              fs_info->btree_inode->i_mapping);
2009         fs_info->pinned_extents = &fs_info->freed_extents[0];
2010         fs_info->do_barriers = 1;
2011
2012
2013         mutex_init(&fs_info->ordered_operations_mutex);
2014         mutex_init(&fs_info->tree_log_mutex);
2015         mutex_init(&fs_info->chunk_mutex);
2016         mutex_init(&fs_info->transaction_kthread_mutex);
2017         mutex_init(&fs_info->cleaner_mutex);
2018         mutex_init(&fs_info->volume_mutex);
2019         init_rwsem(&fs_info->extent_commit_sem);
2020         init_rwsem(&fs_info->cleanup_work_sem);
2021         init_rwsem(&fs_info->subvol_sem);
2022
2023         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2024         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2025
2026         init_waitqueue_head(&fs_info->transaction_throttle);
2027         init_waitqueue_head(&fs_info->transaction_wait);
2028         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2029         init_waitqueue_head(&fs_info->async_submit_wait);
2030
2031         __setup_root(4096, 4096, 4096, 4096, tree_root,
2032                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2033
2034         invalidate_bdev(fs_devices->latest_bdev);
2035         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2036         if (!bh) {
2037                 err = -EINVAL;
2038                 goto fail_alloc;
2039         }
2040
2041         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2042         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2043                sizeof(*fs_info->super_for_commit));
2044         brelse(bh);
2045
2046         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2047
2048         disk_super = fs_info->super_copy;
2049         if (!btrfs_super_root(disk_super))
2050                 goto fail_alloc;
2051
2052         /* check FS state, whether FS is broken. */
2053         fs_info->fs_state |= btrfs_super_flags(disk_super);
2054
2055         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2056         if (ret) {
2057                 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2058                 err = ret;
2059                 goto fail_alloc;
2060         }
2061
2062         /*
2063          * run through our array of backup supers and setup
2064          * our ring pointer to the oldest one
2065          */
2066         generation = btrfs_super_generation(disk_super);
2067         find_oldest_super_backup(fs_info, generation);
2068
2069         /*
2070          * In the long term, we'll store the compression type in the super
2071          * block, and it'll be used for per file compression control.
2072          */
2073         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2074
2075         ret = btrfs_parse_options(tree_root, options);
2076         if (ret) {
2077                 err = ret;
2078                 goto fail_alloc;
2079         }
2080
2081         features = btrfs_super_incompat_flags(disk_super) &
2082                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2083         if (features) {
2084                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2085                        "unsupported optional features (%Lx).\n",
2086                        (unsigned long long)features);
2087                 err = -EINVAL;
2088                 goto fail_alloc;
2089         }
2090
2091         if (btrfs_super_leafsize(disk_super) !=
2092             btrfs_super_nodesize(disk_super)) {
2093                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2094                        "blocksizes don't match.  node %d leaf %d\n",
2095                        btrfs_super_nodesize(disk_super),
2096                        btrfs_super_leafsize(disk_super));
2097                 err = -EINVAL;
2098                 goto fail_alloc;
2099         }
2100         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2101                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2102                        "blocksize (%d) was too large\n",
2103                        btrfs_super_leafsize(disk_super));
2104                 err = -EINVAL;
2105                 goto fail_alloc;
2106         }
2107
2108         features = btrfs_super_incompat_flags(disk_super);
2109         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2110         if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
2111                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2112
2113         /*
2114          * flag our filesystem as having big metadata blocks if
2115          * they are bigger than the page size
2116          */
2117         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2118                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2119                         printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2120                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2121         }
2122
2123         btrfs_set_super_incompat_flags(disk_super, features);
2124
2125         features = btrfs_super_compat_ro_flags(disk_super) &
2126                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2127         if (!(sb->s_flags & MS_RDONLY) && features) {
2128                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2129                        "unsupported option features (%Lx).\n",
2130                        (unsigned long long)features);
2131                 err = -EINVAL;
2132                 goto fail_alloc;
2133         }
2134
2135         btrfs_init_workers(&fs_info->generic_worker,
2136                            "genwork", 1, NULL);
2137
2138         btrfs_init_workers(&fs_info->workers, "worker",
2139                            fs_info->thread_pool_size,
2140                            &fs_info->generic_worker);
2141
2142         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2143                            fs_info->thread_pool_size,
2144                            &fs_info->generic_worker);
2145
2146         btrfs_init_workers(&fs_info->submit_workers, "submit",
2147                            min_t(u64, fs_devices->num_devices,
2148                            fs_info->thread_pool_size),
2149                            &fs_info->generic_worker);
2150
2151         btrfs_init_workers(&fs_info->caching_workers, "cache",
2152                            2, &fs_info->generic_worker);
2153
2154         /* a higher idle thresh on the submit workers makes it much more
2155          * likely that bios will be send down in a sane order to the
2156          * devices
2157          */
2158         fs_info->submit_workers.idle_thresh = 64;
2159
2160         fs_info->workers.idle_thresh = 16;
2161         fs_info->workers.ordered = 1;
2162
2163         fs_info->delalloc_workers.idle_thresh = 2;
2164         fs_info->delalloc_workers.ordered = 1;
2165
2166         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2167                            &fs_info->generic_worker);
2168         btrfs_init_workers(&fs_info->endio_workers, "endio",
2169                            fs_info->thread_pool_size,
2170                            &fs_info->generic_worker);
2171         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2172                            fs_info->thread_pool_size,
2173                            &fs_info->generic_worker);
2174         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2175                            "endio-meta-write", fs_info->thread_pool_size,
2176                            &fs_info->generic_worker);
2177         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2178                            fs_info->thread_pool_size,
2179                            &fs_info->generic_worker);
2180         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2181                            1, &fs_info->generic_worker);
2182         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2183                            fs_info->thread_pool_size,
2184                            &fs_info->generic_worker);
2185         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2186                            fs_info->thread_pool_size,
2187                            &fs_info->generic_worker);
2188
2189         /*
2190          * endios are largely parallel and should have a very
2191          * low idle thresh
2192          */
2193         fs_info->endio_workers.idle_thresh = 4;
2194         fs_info->endio_meta_workers.idle_thresh = 4;
2195
2196         fs_info->endio_write_workers.idle_thresh = 2;
2197         fs_info->endio_meta_write_workers.idle_thresh = 2;
2198         fs_info->readahead_workers.idle_thresh = 2;
2199
2200         /*
2201          * btrfs_start_workers can really only fail because of ENOMEM so just
2202          * return -ENOMEM if any of these fail.
2203          */
2204         ret = btrfs_start_workers(&fs_info->workers);
2205         ret |= btrfs_start_workers(&fs_info->generic_worker);
2206         ret |= btrfs_start_workers(&fs_info->submit_workers);
2207         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2208         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2209         ret |= btrfs_start_workers(&fs_info->endio_workers);
2210         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2211         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2212         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2213         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2214         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2215         ret |= btrfs_start_workers(&fs_info->caching_workers);
2216         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2217         if (ret) {
2218                 ret = -ENOMEM;
2219                 goto fail_sb_buffer;
2220         }
2221
2222         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2223         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2224                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2225
2226         nodesize = btrfs_super_nodesize(disk_super);
2227         leafsize = btrfs_super_leafsize(disk_super);
2228         sectorsize = btrfs_super_sectorsize(disk_super);
2229         stripesize = btrfs_super_stripesize(disk_super);
2230         tree_root->nodesize = nodesize;
2231         tree_root->leafsize = leafsize;
2232         tree_root->sectorsize = sectorsize;
2233         tree_root->stripesize = stripesize;
2234
2235         sb->s_blocksize = sectorsize;
2236         sb->s_blocksize_bits = blksize_bits(sectorsize);
2237
2238         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2239                     sizeof(disk_super->magic))) {
2240                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2241                 goto fail_sb_buffer;
2242         }
2243
2244         if (sectorsize < PAGE_SIZE) {
2245                 printk(KERN_WARNING "btrfs: Incompatible sector size "
2246                        "found on %s\n", sb->s_id);
2247                 goto fail_sb_buffer;
2248         }
2249
2250         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2251                         (leafsize != nodesize || sectorsize != nodesize)) {
2252                 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2253                                 "are not allowed for mixed block groups on %s\n",
2254                                 sb->s_id);
2255                 goto fail_sb_buffer;
2256         }
2257
2258         mutex_lock(&fs_info->chunk_mutex);
2259         ret = btrfs_read_sys_array(tree_root);
2260         mutex_unlock(&fs_info->chunk_mutex);
2261         if (ret) {
2262                 printk(KERN_WARNING "btrfs: failed to read the system "
2263                        "array on %s\n", sb->s_id);
2264                 goto fail_sb_buffer;
2265         }
2266
2267         blocksize = btrfs_level_size(tree_root,
2268                                      btrfs_super_chunk_root_level(disk_super));
2269         generation = btrfs_super_chunk_root_generation(disk_super);
2270
2271         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2272                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2273
2274         chunk_root->node = read_tree_block(chunk_root,
2275                                            btrfs_super_chunk_root(disk_super),
2276                                            blocksize, generation);
2277         BUG_ON(!chunk_root->node); /* -ENOMEM */
2278         if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2279                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2280                        sb->s_id);
2281                 goto fail_tree_roots;
2282         }
2283         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2284         chunk_root->commit_root = btrfs_root_node(chunk_root);
2285
2286         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2287            (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2288            BTRFS_UUID_SIZE);
2289
2290         ret = btrfs_read_chunk_tree(chunk_root);
2291         if (ret) {
2292                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2293                        sb->s_id);
2294                 goto fail_tree_roots;
2295         }
2296
2297         btrfs_close_extra_devices(fs_devices);
2298
2299         if (!fs_devices->latest_bdev) {
2300                 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2301                        sb->s_id);
2302                 goto fail_tree_roots;
2303         }
2304
2305 retry_root_backup:
2306         blocksize = btrfs_level_size(tree_root,
2307                                      btrfs_super_root_level(disk_super));
2308         generation = btrfs_super_generation(disk_super);
2309
2310         tree_root->node = read_tree_block(tree_root,
2311                                           btrfs_super_root(disk_super),
2312                                           blocksize, generation);
2313         if (!tree_root->node ||
2314             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2315                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2316                        sb->s_id);
2317
2318                 goto recovery_tree_root;
2319         }
2320
2321         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2322         tree_root->commit_root = btrfs_root_node(tree_root);
2323
2324         ret = find_and_setup_root(tree_root, fs_info,
2325                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2326         if (ret)
2327                 goto recovery_tree_root;
2328         extent_root->track_dirty = 1;
2329
2330         ret = find_and_setup_root(tree_root, fs_info,
2331                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
2332         if (ret)
2333                 goto recovery_tree_root;
2334         dev_root->track_dirty = 1;
2335
2336         ret = find_and_setup_root(tree_root, fs_info,
2337                                   BTRFS_CSUM_TREE_OBJECTID, csum_root);
2338         if (ret)
2339                 goto recovery_tree_root;
2340
2341         csum_root->track_dirty = 1;
2342
2343         fs_info->generation = generation;
2344         fs_info->last_trans_committed = generation;
2345
2346         ret = btrfs_init_space_info(fs_info);
2347         if (ret) {
2348                 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2349                 goto fail_block_groups;
2350         }
2351
2352         ret = btrfs_read_block_groups(extent_root);
2353         if (ret) {
2354                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2355                 goto fail_block_groups;
2356         }
2357
2358         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2359                                                "btrfs-cleaner");
2360         if (IS_ERR(fs_info->cleaner_kthread))
2361                 goto fail_block_groups;
2362
2363         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2364                                                    tree_root,
2365                                                    "btrfs-transaction");
2366         if (IS_ERR(fs_info->transaction_kthread))
2367                 goto fail_cleaner;
2368
2369         if (!btrfs_test_opt(tree_root, SSD) &&
2370             !btrfs_test_opt(tree_root, NOSSD) &&
2371             !fs_info->fs_devices->rotating) {
2372                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2373                        "mode\n");
2374                 btrfs_set_opt(fs_info->mount_opt, SSD);
2375         }
2376
2377 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2378         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2379                 ret = btrfsic_mount(tree_root, fs_devices,
2380                                     btrfs_test_opt(tree_root,
2381                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2382                                     1 : 0,
2383                                     fs_info->check_integrity_print_mask);
2384                 if (ret)
2385                         printk(KERN_WARNING "btrfs: failed to initialize"
2386                                " integrity check module %s\n", sb->s_id);
2387         }
2388 #endif
2389
2390         /* do not make disk changes in broken FS */
2391         if (btrfs_super_log_root(disk_super) != 0 &&
2392             !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2393                 u64 bytenr = btrfs_super_log_root(disk_super);
2394
2395                 if (fs_devices->rw_devices == 0) {
2396                         printk(KERN_WARNING "Btrfs log replay required "
2397                                "on RO media\n");
2398                         err = -EIO;
2399                         goto fail_trans_kthread;
2400                 }
2401                 blocksize =
2402                      btrfs_level_size(tree_root,
2403                                       btrfs_super_log_root_level(disk_super));
2404
2405                 log_tree_root = btrfs_alloc_root(fs_info);
2406                 if (!log_tree_root) {
2407                         err = -ENOMEM;
2408                         goto fail_trans_kthread;
2409                 }
2410
2411                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2412                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2413
2414                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2415                                                       blocksize,
2416                                                       generation + 1);
2417                 /* returns with log_tree_root freed on success */
2418                 ret = btrfs_recover_log_trees(log_tree_root);
2419                 if (ret) {
2420                         btrfs_error(tree_root->fs_info, ret,
2421                                     "Failed to recover log tree");
2422                         free_extent_buffer(log_tree_root->node);
2423                         kfree(log_tree_root);
2424                         goto fail_trans_kthread;
2425                 }
2426
2427                 if (sb->s_flags & MS_RDONLY) {
2428                         ret = btrfs_commit_super(tree_root);
2429                         if (ret)
2430                                 goto fail_trans_kthread;
2431                 }
2432         }
2433
2434         ret = btrfs_find_orphan_roots(tree_root);
2435         if (ret)
2436                 goto fail_trans_kthread;
2437
2438         if (!(sb->s_flags & MS_RDONLY)) {
2439                 ret = btrfs_cleanup_fs_roots(fs_info);
2440                 if (ret) {
2441                         }
2442
2443                 ret = btrfs_recover_relocation(tree_root);
2444                 if (ret < 0) {
2445                         printk(KERN_WARNING
2446                                "btrfs: failed to recover relocation\n");
2447                         err = -EINVAL;
2448                         goto fail_trans_kthread;
2449                 }
2450         }
2451
2452         location.objectid = BTRFS_FS_TREE_OBJECTID;
2453         location.type = BTRFS_ROOT_ITEM_KEY;
2454         location.offset = (u64)-1;
2455
2456         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2457         if (!fs_info->fs_root)
2458                 goto fail_trans_kthread;
2459         if (IS_ERR(fs_info->fs_root)) {
2460                 err = PTR_ERR(fs_info->fs_root);
2461                 goto fail_trans_kthread;
2462         }
2463
2464         if (!(sb->s_flags & MS_RDONLY)) {
2465                 down_read(&fs_info->cleanup_work_sem);
2466                 err = btrfs_orphan_cleanup(fs_info->fs_root);
2467                 if (!err)
2468                         err = btrfs_orphan_cleanup(fs_info->tree_root);
2469                 up_read(&fs_info->cleanup_work_sem);
2470
2471                 if (!err)
2472                         err = btrfs_recover_balance(fs_info->tree_root);
2473
2474                 if (err) {
2475                         close_ctree(tree_root);
2476                         return err;
2477                 }
2478         }
2479
2480         return 0;
2481
2482 fail_trans_kthread:
2483         kthread_stop(fs_info->transaction_kthread);
2484 fail_cleaner:
2485         kthread_stop(fs_info->cleaner_kthread);
2486
2487         /*
2488          * make sure we're done with the btree inode before we stop our
2489          * kthreads
2490          */
2491         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2492         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2493
2494 fail_block_groups:
2495         btrfs_free_block_groups(fs_info);
2496
2497 fail_tree_roots:
2498         free_root_pointers(fs_info, 1);
2499
2500 fail_sb_buffer:
2501         btrfs_stop_workers(&fs_info->generic_worker);
2502         btrfs_stop_workers(&fs_info->readahead_workers);
2503         btrfs_stop_workers(&fs_info->fixup_workers);
2504         btrfs_stop_workers(&fs_info->delalloc_workers);
2505         btrfs_stop_workers(&fs_info->workers);
2506         btrfs_stop_workers(&fs_info->endio_workers);
2507         btrfs_stop_workers(&fs_info->endio_meta_workers);
2508         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2509         btrfs_stop_workers(&fs_info->endio_write_workers);
2510         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2511         btrfs_stop_workers(&fs_info->submit_workers);
2512         btrfs_stop_workers(&fs_info->delayed_workers);
2513         btrfs_stop_workers(&fs_info->caching_workers);
2514 fail_alloc:
2515 fail_iput:
2516         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2517
2518         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2519         iput(fs_info->btree_inode);
2520 fail_bdi:
2521         bdi_destroy(&fs_info->bdi);
2522 fail_srcu:
2523         cleanup_srcu_struct(&fs_info->subvol_srcu);
2524 fail:
2525         btrfs_close_devices(fs_info->fs_devices);
2526         return err;
2527
2528 recovery_tree_root:
2529         if (!btrfs_test_opt(tree_root, RECOVERY))
2530                 goto fail_tree_roots;
2531
2532         free_root_pointers(fs_info, 0);
2533
2534         /* don't use the log in recovery mode, it won't be valid */
2535         btrfs_set_super_log_root(disk_super, 0);
2536
2537         /* we can't trust the free space cache either */
2538         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2539
2540         ret = next_root_backup(fs_info, fs_info->super_copy,
2541                                &num_backups_tried, &backup_index);
2542         if (ret == -1)
2543                 goto fail_block_groups;
2544         goto retry_root_backup;
2545 }
2546
2547 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2548 {
2549         char b[BDEVNAME_SIZE];
2550
2551         if (uptodate) {
2552                 set_buffer_uptodate(bh);
2553         } else {
2554                 printk_ratelimited(KERN_WARNING "lost page write due to "
2555                                         "I/O error on %s\n",
2556                                        bdevname(bh->b_bdev, b));
2557                 /* note, we dont' set_buffer_write_io_error because we have
2558                  * our own ways of dealing with the IO errors
2559                  */
2560                 clear_buffer_uptodate(bh);
2561         }
2562         unlock_buffer(bh);
2563         put_bh(bh);
2564 }
2565
2566 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2567 {
2568         struct buffer_head *bh;
2569         struct buffer_head *latest = NULL;
2570         struct btrfs_super_block *super;
2571         int i;
2572         u64 transid = 0;
2573         u64 bytenr;
2574
2575         /* we would like to check all the supers, but that would make
2576          * a btrfs mount succeed after a mkfs from a different FS.
2577          * So, we need to add a special mount option to scan for
2578          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2579          */
2580         for (i = 0; i < 1; i++) {
2581                 bytenr = btrfs_sb_offset(i);
2582                 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2583                         break;
2584                 bh = __bread(bdev, bytenr / 4096, 4096);
2585                 if (!bh)
2586                         continue;
2587
2588                 super = (struct btrfs_super_block *)bh->b_data;
2589                 if (btrfs_super_bytenr(super) != bytenr ||
2590                     strncmp((char *)(&super->magic), BTRFS_MAGIC,
2591                             sizeof(super->magic))) {
2592                         brelse(bh);
2593                         continue;
2594                 }
2595
2596                 if (!latest || btrfs_super_generation(super) > transid) {
2597                         brelse(latest);
2598                         latest = bh;
2599                         transid = btrfs_super_generation(super);
2600                 } else {
2601                         brelse(bh);
2602                 }
2603         }
2604         return latest;
2605 }
2606
2607 /*
2608  * this should be called twice, once with wait == 0 and
2609  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2610  * we write are pinned.
2611  *
2612  * They are released when wait == 1 is done.
2613  * max_mirrors must be the same for both runs, and it indicates how
2614  * many supers on this one device should be written.
2615  *
2616  * max_mirrors == 0 means to write them all.
2617  */
2618 static int write_dev_supers(struct btrfs_device *device,
2619                             struct btrfs_super_block *sb,
2620                             int do_barriers, int wait, int max_mirrors)
2621 {
2622         struct buffer_head *bh;
2623         int i;
2624         int ret;
2625         int errors = 0;
2626         u32 crc;
2627         u64 bytenr;
2628
2629         if (max_mirrors == 0)
2630                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2631
2632         for (i = 0; i < max_mirrors; i++) {
2633                 bytenr = btrfs_sb_offset(i);
2634                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2635                         break;
2636
2637                 if (wait) {
2638                         bh = __find_get_block(device->bdev, bytenr / 4096,
2639                                               BTRFS_SUPER_INFO_SIZE);
2640                         BUG_ON(!bh);
2641                         wait_on_buffer(bh);
2642                         if (!buffer_uptodate(bh))
2643                                 errors++;
2644
2645                         /* drop our reference */
2646                         brelse(bh);
2647
2648                         /* drop the reference from the wait == 0 run */
2649                         brelse(bh);
2650                         continue;
2651                 } else {
2652                         btrfs_set_super_bytenr(sb, bytenr);
2653
2654                         crc = ~(u32)0;
2655                         crc = btrfs_csum_data(NULL, (char *)sb +
2656                                               BTRFS_CSUM_SIZE, crc,
2657                                               BTRFS_SUPER_INFO_SIZE -
2658                                               BTRFS_CSUM_SIZE);
2659                         btrfs_csum_final(crc, sb->csum);
2660
2661                         /*
2662                          * one reference for us, and we leave it for the
2663                          * caller
2664                          */
2665                         bh = __getblk(device->bdev, bytenr / 4096,
2666                                       BTRFS_SUPER_INFO_SIZE);
2667                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2668
2669                         /* one reference for submit_bh */
2670                         get_bh(bh);
2671
2672                         set_buffer_uptodate(bh);
2673                         lock_buffer(bh);
2674                         bh->b_end_io = btrfs_end_buffer_write_sync;
2675                 }
2676
2677                 /*
2678                  * we fua the first super.  The others we allow
2679                  * to go down lazy.
2680                  */
2681                 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2682                 if (ret)
2683                         errors++;
2684         }
2685         return errors < i ? 0 : -1;
2686 }
2687
2688 /*
2689  * endio for the write_dev_flush, this will wake anyone waiting
2690  * for the barrier when it is done
2691  */
2692 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2693 {
2694         if (err) {
2695                 if (err == -EOPNOTSUPP)
2696                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2697                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2698         }
2699         if (bio->bi_private)
2700                 complete(bio->bi_private);
2701         bio_put(bio);
2702 }
2703
2704 /*
2705  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
2706  * sent down.  With wait == 1, it waits for the previous flush.
2707  *
2708  * any device where the flush fails with eopnotsupp are flagged as not-barrier
2709  * capable
2710  */
2711 static int write_dev_flush(struct btrfs_device *device, int wait)
2712 {
2713         struct bio *bio;
2714         int ret = 0;
2715
2716         if (device->nobarriers)
2717                 return 0;
2718
2719         if (wait) {
2720                 bio = device->flush_bio;
2721                 if (!bio)
2722                         return 0;
2723
2724                 wait_for_completion(&device->flush_wait);
2725
2726                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2727                         printk("btrfs: disabling barriers on dev %s\n",
2728                                device->name);
2729                         device->nobarriers = 1;
2730                 }
2731                 if (!bio_flagged(bio, BIO_UPTODATE)) {
2732                         ret = -EIO;
2733                 }
2734
2735                 /* drop the reference from the wait == 0 run */
2736                 bio_put(bio);
2737                 device->flush_bio = NULL;
2738
2739                 return ret;
2740         }
2741
2742         /*
2743          * one reference for us, and we leave it for the
2744          * caller
2745          */
2746         device->flush_bio = NULL;;
2747         bio = bio_alloc(GFP_NOFS, 0);
2748         if (!bio)
2749                 return -ENOMEM;
2750
2751         bio->bi_end_io = btrfs_end_empty_barrier;
2752         bio->bi_bdev = device->bdev;
2753         init_completion(&device->flush_wait);
2754         bio->bi_private = &device->flush_wait;
2755         device->flush_bio = bio;
2756
2757         bio_get(bio);
2758         btrfsic_submit_bio(WRITE_FLUSH, bio);
2759
2760         return 0;
2761 }
2762
2763 /*
2764  * send an empty flush down to each device in parallel,
2765  * then wait for them
2766  */
2767 static int barrier_all_devices(struct btrfs_fs_info *info)
2768 {
2769         struct list_head *head;
2770         struct btrfs_device *dev;
2771         int errors = 0;
2772         int ret;
2773
2774         /* send down all the barriers */
2775         head = &info->fs_devices->devices;
2776         list_for_each_entry_rcu(dev, head, dev_list) {
2777                 if (!dev->bdev) {
2778                         errors++;
2779                         continue;
2780                 }
2781                 if (!dev->in_fs_metadata || !dev->writeable)
2782                         continue;
2783
2784                 ret = write_dev_flush(dev, 0);
2785                 if (ret)
2786                         errors++;
2787         }
2788
2789         /* wait for all the barriers */
2790         list_for_each_entry_rcu(dev, head, dev_list) {
2791                 if (!dev->bdev) {
2792                         errors++;
2793                         continue;
2794                 }
2795                 if (!dev->in_fs_metadata || !dev->writeable)
2796                         continue;
2797
2798                 ret = write_dev_flush(dev, 1);
2799                 if (ret)
2800                         errors++;
2801         }
2802         if (errors)
2803                 return -EIO;
2804         return 0;
2805 }
2806
2807 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2808 {
2809         struct list_head *head;
2810         struct btrfs_device *dev;
2811         struct btrfs_super_block *sb;
2812         struct btrfs_dev_item *dev_item;
2813         int ret;
2814         int do_barriers;
2815         int max_errors;
2816         int total_errors = 0;
2817         u64 flags;
2818
2819         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2820         do_barriers = !btrfs_test_opt(root, NOBARRIER);
2821         backup_super_roots(root->fs_info);
2822
2823         sb = root->fs_info->super_for_commit;
2824         dev_item = &sb->dev_item;
2825
2826         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2827         head = &root->fs_info->fs_devices->devices;
2828
2829         if (do_barriers)
2830                 barrier_all_devices(root->fs_info);
2831
2832         list_for_each_entry_rcu(dev, head, dev_list) {
2833                 if (!dev->bdev) {
2834                         total_errors++;
2835                         continue;
2836                 }
2837                 if (!dev->in_fs_metadata || !dev->writeable)
2838                         continue;
2839
2840                 btrfs_set_stack_device_generation(dev_item, 0);
2841                 btrfs_set_stack_device_type(dev_item, dev->type);
2842                 btrfs_set_stack_device_id(dev_item, dev->devid);
2843                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2844                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2845                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2846                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2847                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2848                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2849                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2850
2851                 flags = btrfs_super_flags(sb);
2852                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2853
2854                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2855                 if (ret)
2856                         total_errors++;
2857         }
2858         if (total_errors > max_errors) {
2859                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2860                        total_errors);
2861
2862                 /* This shouldn't happen. FUA is masked off if unsupported */
2863                 BUG();
2864         }
2865
2866         total_errors = 0;
2867         list_for_each_entry_rcu(dev, head, dev_list) {
2868                 if (!dev->bdev)
2869                         continue;
2870                 if (!dev->in_fs_metadata || !dev->writeable)
2871                         continue;
2872
2873                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2874                 if (ret)
2875                         total_errors++;
2876         }
2877         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2878         if (total_errors > max_errors) {
2879                 btrfs_error(root->fs_info, -EIO,
2880                             "%d errors while writing supers", total_errors);
2881                 return -EIO;
2882         }
2883         return 0;
2884 }
2885
2886 int write_ctree_super(struct btrfs_trans_handle *trans,
2887                       struct btrfs_root *root, int max_mirrors)
2888 {
2889         int ret;
2890
2891         ret = write_all_supers(root, max_mirrors);
2892         return ret;
2893 }
2894
2895 /* Kill all outstanding I/O */
2896 void btrfs_abort_devices(struct btrfs_root *root)
2897 {
2898         struct list_head *head;
2899         struct btrfs_device *dev;
2900         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2901         head = &root->fs_info->fs_devices->devices;
2902         list_for_each_entry_rcu(dev, head, dev_list) {
2903                 blk_abort_queue(dev->bdev->bd_disk->queue);
2904         }
2905         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2906 }
2907
2908 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2909 {
2910         spin_lock(&fs_info->fs_roots_radix_lock);
2911         radix_tree_delete(&fs_info->fs_roots_radix,
2912                           (unsigned long)root->root_key.objectid);
2913         spin_unlock(&fs_info->fs_roots_radix_lock);
2914
2915         if (btrfs_root_refs(&root->root_item) == 0)
2916                 synchronize_srcu(&fs_info->subvol_srcu);
2917
2918         __btrfs_remove_free_space_cache(root->free_ino_pinned);
2919         __btrfs_remove_free_space_cache(root->free_ino_ctl);
2920         free_fs_root(root);
2921 }
2922
2923 static void free_fs_root(struct btrfs_root *root)
2924 {
2925         iput(root->cache_inode);
2926         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2927         if (root->anon_dev)
2928                 free_anon_bdev(root->anon_dev);
2929         free_extent_buffer(root->node);
2930         free_extent_buffer(root->commit_root);
2931         kfree(root->free_ino_ctl);
2932         kfree(root->free_ino_pinned);
2933         kfree(root->name);
2934         kfree(root);
2935 }
2936
2937 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2938 {
2939         int ret;
2940         struct btrfs_root *gang[8];
2941         int i;
2942
2943         while (!list_empty(&fs_info->dead_roots)) {
2944                 gang[0] = list_entry(fs_info->dead_roots.next,
2945                                      struct btrfs_root, root_list);
2946                 list_del(&gang[0]->root_list);
2947
2948                 if (gang[0]->in_radix) {
2949                         btrfs_free_fs_root(fs_info, gang[0]);
2950                 } else {
2951                         free_extent_buffer(gang[0]->node);
2952                         free_extent_buffer(gang[0]->commit_root);
2953                         kfree(gang[0]);
2954                 }
2955         }
2956
2957         while (1) {
2958                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2959                                              (void **)gang, 0,
2960                                              ARRAY_SIZE(gang));
2961                 if (!ret)
2962                         break;
2963                 for (i = 0; i < ret; i++)
2964                         btrfs_free_fs_root(fs_info, gang[i]);
2965         }
2966 }
2967
2968 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2969 {
2970         u64 root_objectid = 0;
2971         struct btrfs_root *gang[8];
2972         int i;
2973         int ret;
2974
2975         while (1) {
2976                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2977                                              (void **)gang, root_objectid,
2978                                              ARRAY_SIZE(gang));
2979                 if (!ret)
2980                         break;
2981
2982                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2983                 for (i = 0; i < ret; i++) {
2984                         int err;
2985
2986                         root_objectid = gang[i]->root_key.objectid;
2987                         err = btrfs_orphan_cleanup(gang[i]);
2988                         if (err)
2989                                 return err;
2990                 }
2991                 root_objectid++;
2992         }
2993         return 0;
2994 }
2995
2996 int btrfs_commit_super(struct btrfs_root *root)
2997 {
2998         struct btrfs_trans_handle *trans;
2999         int ret;
3000
3001         mutex_lock(&root->fs_info->cleaner_mutex);
3002         btrfs_run_delayed_iputs(root);
3003         btrfs_clean_old_snapshots(root);
3004         mutex_unlock(&root->fs_info->cleaner_mutex);
3005
3006         /* wait until ongoing cleanup work done */
3007         down_write(&root->fs_info->cleanup_work_sem);
3008         up_write(&root->fs_info->cleanup_work_sem);
3009
3010         trans = btrfs_join_transaction(root);
3011         if (IS_ERR(trans))
3012                 return PTR_ERR(trans);
3013         ret = btrfs_commit_transaction(trans, root);
3014         if (ret)
3015                 return ret;
3016         /* run commit again to drop the original snapshot */
3017         trans = btrfs_join_transaction(root);
3018         if (IS_ERR(trans))
3019                 return PTR_ERR(trans);
3020         ret = btrfs_commit_transaction(trans, root);
3021         if (ret)
3022                 return ret;
3023         ret = btrfs_write_and_wait_transaction(NULL, root);
3024         if (ret) {
3025                 btrfs_error(root->fs_info, ret,
3026                             "Failed to sync btree inode to disk.");
3027                 return ret;
3028         }
3029
3030         ret = write_ctree_super(NULL, root, 0);
3031         return ret;
3032 }
3033
3034 int close_ctree(struct btrfs_root *root)
3035 {
3036         struct btrfs_fs_info *fs_info = root->fs_info;
3037         int ret;
3038
3039         fs_info->closing = 1;
3040         smp_mb();
3041
3042         /* pause restriper - we want to resume on mount */
3043         btrfs_pause_balance(root->fs_info);
3044
3045         btrfs_scrub_cancel(root);
3046
3047         /* wait for any defraggers to finish */
3048         wait_event(fs_info->transaction_wait,
3049                    (atomic_read(&fs_info->defrag_running) == 0));
3050
3051         /* clear out the rbtree of defraggable inodes */
3052         btrfs_run_defrag_inodes(fs_info);
3053
3054         /*
3055          * Here come 2 situations when btrfs is broken to flip readonly:
3056          *
3057          * 1. when btrfs flips readonly somewhere else before
3058          * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3059          * and btrfs will skip to write sb directly to keep
3060          * ERROR state on disk.
3061          *
3062          * 2. when btrfs flips readonly just in btrfs_commit_super,
3063          * and in such case, btrfs cannot write sb via btrfs_commit_super,
3064          * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3065          * btrfs will cleanup all FS resources first and write sb then.
3066          */
3067         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3068                 ret = btrfs_commit_super(root);
3069                 if (ret)
3070                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3071         }
3072
3073         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3074                 ret = btrfs_error_commit_super(root);
3075                 if (ret)
3076                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3077         }
3078
3079         btrfs_put_block_group_cache(fs_info);
3080
3081         kthread_stop(fs_info->transaction_kthread);
3082         kthread_stop(fs_info->cleaner_kthread);
3083
3084         fs_info->closing = 2;
3085         smp_mb();
3086
3087         if (fs_info->delalloc_bytes) {
3088                 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3089                        (unsigned long long)fs_info->delalloc_bytes);
3090         }
3091         if (fs_info->total_ref_cache_size) {
3092                 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3093                        (unsigned long long)fs_info->total_ref_cache_size);
3094         }
3095
3096         free_extent_buffer(fs_info->extent_root->node);
3097         free_extent_buffer(fs_info->extent_root->commit_root);
3098         free_extent_buffer(fs_info->tree_root->node);
3099         free_extent_buffer(fs_info->tree_root->commit_root);
3100         free_extent_buffer(fs_info->chunk_root->node);
3101         free_extent_buffer(fs_info->chunk_root->commit_root);
3102         free_extent_buffer(fs_info->dev_root->node);
3103         free_extent_buffer(fs_info->dev_root->commit_root);
3104         free_extent_buffer(fs_info->csum_root->node);
3105         free_extent_buffer(fs_info->csum_root->commit_root);
3106
3107         btrfs_free_block_groups(fs_info);
3108
3109         del_fs_roots(fs_info);
3110
3111         iput(fs_info->btree_inode);
3112
3113         btrfs_stop_workers(&fs_info->generic_worker);
3114         btrfs_stop_workers(&fs_info->fixup_workers);
3115         btrfs_stop_workers(&fs_info->delalloc_workers);
3116         btrfs_stop_workers(&fs_info->workers);
3117         btrfs_stop_workers(&fs_info->endio_workers);
3118         btrfs_stop_workers(&fs_info->endio_meta_workers);
3119         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3120         btrfs_stop_workers(&fs_info->endio_write_workers);
3121         btrfs_stop_workers(&fs_info->endio_freespace_worker);
3122         btrfs_stop_workers(&fs_info->submit_workers);
3123         btrfs_stop_workers(&fs_info->delayed_workers);
3124         btrfs_stop_workers(&fs_info->caching_workers);
3125         btrfs_stop_workers(&fs_info->readahead_workers);
3126
3127 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3128         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3129                 btrfsic_unmount(root, fs_info->fs_devices);
3130 #endif
3131
3132         btrfs_close_devices(fs_info->fs_devices);
3133         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3134
3135         bdi_destroy(&fs_info->bdi);
3136         cleanup_srcu_struct(&fs_info->subvol_srcu);
3137
3138         return 0;
3139 }
3140
3141 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
3142 {
3143         int ret;
3144         struct inode *btree_inode = buf->pages[0]->mapping->host;
3145
3146         ret = extent_buffer_uptodate(buf);
3147         if (!ret)
3148                 return ret;
3149
3150         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3151                                     parent_transid);
3152         return !ret;
3153 }
3154
3155 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3156 {
3157         return set_extent_buffer_uptodate(buf);
3158 }
3159
3160 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3161 {
3162         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3163         u64 transid = btrfs_header_generation(buf);
3164         int was_dirty;
3165
3166         btrfs_assert_tree_locked(buf);
3167         if (transid != root->fs_info->generation) {
3168                 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3169                        "found %llu running %llu\n",
3170                         (unsigned long long)buf->start,
3171                         (unsigned long long)transid,
3172                         (unsigned long long)root->fs_info->generation);
3173                 WARN_ON(1);
3174         }
3175         was_dirty = set_extent_buffer_dirty(buf);
3176         if (!was_dirty) {
3177                 spin_lock(&root->fs_info->delalloc_lock);
3178                 root->fs_info->dirty_metadata_bytes += buf->len;
3179                 spin_unlock(&root->fs_info->delalloc_lock);
3180         }
3181 }
3182
3183 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3184 {
3185         /*
3186          * looks as though older kernels can get into trouble with
3187          * this code, they end up stuck in balance_dirty_pages forever
3188          */
3189         u64 num_dirty;
3190         unsigned long thresh = 32 * 1024 * 1024;
3191
3192         if (current->flags & PF_MEMALLOC)
3193                 return;
3194
3195         btrfs_balance_delayed_items(root);
3196
3197         num_dirty = root->fs_info->dirty_metadata_bytes;
3198
3199         if (num_dirty > thresh) {
3200                 balance_dirty_pages_ratelimited_nr(
3201                                    root->fs_info->btree_inode->i_mapping, 1);
3202         }
3203         return;
3204 }
3205
3206 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3207 {
3208         /*
3209          * looks as though older kernels can get into trouble with
3210          * this code, they end up stuck in balance_dirty_pages forever
3211          */
3212         u64 num_dirty;
3213         unsigned long thresh = 32 * 1024 * 1024;
3214
3215         if (current->flags & PF_MEMALLOC)
3216                 return;
3217
3218         num_dirty = root->fs_info->dirty_metadata_bytes;
3219
3220         if (num_dirty > thresh) {
3221                 balance_dirty_pages_ratelimited_nr(
3222                                    root->fs_info->btree_inode->i_mapping, 1);
3223         }
3224         return;
3225 }
3226
3227 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3228 {
3229         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3230         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3231 }
3232
3233 static int btree_lock_page_hook(struct page *page, void *data,
3234                                 void (*flush_fn)(void *))
3235 {
3236         struct inode *inode = page->mapping->host;
3237         struct btrfs_root *root = BTRFS_I(inode)->root;
3238         struct extent_buffer *eb;
3239
3240         /*
3241          * We culled this eb but the page is still hanging out on the mapping,
3242          * carry on.
3243          */
3244         if (!PagePrivate(page))
3245                 goto out;
3246
3247         eb = (struct extent_buffer *)page->private;
3248         if (!eb) {
3249                 WARN_ON(1);
3250                 goto out;
3251         }
3252         if (page != eb->pages[0])
3253                 goto out;
3254
3255         if (!btrfs_try_tree_write_lock(eb)) {
3256                 flush_fn(data);
3257                 btrfs_tree_lock(eb);
3258         }
3259         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3260
3261         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3262                 spin_lock(&root->fs_info->delalloc_lock);
3263                 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3264                         root->fs_info->dirty_metadata_bytes -= eb->len;
3265                 else
3266                         WARN_ON(1);
3267                 spin_unlock(&root->fs_info->delalloc_lock);
3268         }
3269
3270         btrfs_tree_unlock(eb);
3271 out:
3272         if (!trylock_page(page)) {
3273                 flush_fn(data);
3274                 lock_page(page);
3275         }
3276         return 0;
3277 }
3278
3279 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3280                               int read_only)
3281 {
3282         if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3283                 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3284                 return -EINVAL;
3285         }
3286
3287         if (read_only)
3288                 return 0;
3289
3290         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3291                 printk(KERN_WARNING "warning: mount fs with errors, "
3292                        "running btrfsck is recommended\n");
3293         }
3294
3295         return 0;
3296 }
3297
3298 int btrfs_error_commit_super(struct btrfs_root *root)
3299 {
3300         int ret;
3301
3302         mutex_lock(&root->fs_info->cleaner_mutex);
3303         btrfs_run_delayed_iputs(root);
3304         mutex_unlock(&root->fs_info->cleaner_mutex);
3305
3306         down_write(&root->fs_info->cleanup_work_sem);
3307         up_write(&root->fs_info->cleanup_work_sem);
3308
3309         /* cleanup FS via transaction */
3310         btrfs_cleanup_transaction(root);
3311
3312         ret = write_ctree_super(NULL, root, 0);
3313
3314         return ret;
3315 }
3316
3317 static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3318 {
3319         struct btrfs_inode *btrfs_inode;
3320         struct list_head splice;
3321
3322         INIT_LIST_HEAD(&splice);
3323
3324         mutex_lock(&root->fs_info->ordered_operations_mutex);
3325         spin_lock(&root->fs_info->ordered_extent_lock);
3326
3327         list_splice_init(&root->fs_info->ordered_operations, &splice);
3328         while (!list_empty(&splice)) {
3329                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3330                                          ordered_operations);
3331
3332                 list_del_init(&btrfs_inode->ordered_operations);
3333
3334                 btrfs_invalidate_inodes(btrfs_inode->root);
3335         }
3336
3337         spin_unlock(&root->fs_info->ordered_extent_lock);
3338         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3339 }
3340
3341 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3342 {
3343         struct list_head splice;
3344         struct btrfs_ordered_extent *ordered;
3345         struct inode *inode;
3346
3347         INIT_LIST_HEAD(&splice);
3348
3349         spin_lock(&root->fs_info->ordered_extent_lock);
3350
3351         list_splice_init(&root->fs_info->ordered_extents, &splice);
3352         while (!list_empty(&splice)) {
3353                 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3354                                      root_extent_list);
3355
3356                 list_del_init(&ordered->root_extent_list);
3357                 atomic_inc(&ordered->refs);
3358
3359                 /* the inode may be getting freed (in sys_unlink path). */
3360                 inode = igrab(ordered->inode);
3361
3362                 spin_unlock(&root->fs_info->ordered_extent_lock);
3363                 if (inode)
3364                         iput(inode);
3365
3366                 atomic_set(&ordered->refs, 1);
3367                 btrfs_put_ordered_extent(ordered);
3368
3369                 spin_lock(&root->fs_info->ordered_extent_lock);
3370         }
3371
3372         spin_unlock(&root->fs_info->ordered_extent_lock);
3373 }
3374
3375 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3376                                struct btrfs_root *root)
3377 {
3378         struct rb_node *node;
3379         struct btrfs_delayed_ref_root *delayed_refs;
3380         struct btrfs_delayed_ref_node *ref;
3381         int ret = 0;
3382
3383         delayed_refs = &trans->delayed_refs;
3384
3385 again:
3386         spin_lock(&delayed_refs->lock);
3387         if (delayed_refs->num_entries == 0) {
3388                 spin_unlock(&delayed_refs->lock);
3389                 printk(KERN_INFO "delayed_refs has NO entry\n");
3390                 return ret;
3391         }
3392
3393         node = rb_first(&delayed_refs->root);
3394         while (node) {
3395                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3396                 node = rb_next(node);
3397
3398                 ref->in_tree = 0;
3399                 rb_erase(&ref->rb_node, &delayed_refs->root);
3400                 delayed_refs->num_entries--;
3401
3402                 atomic_set(&ref->refs, 1);
3403                 if (btrfs_delayed_ref_is_head(ref)) {
3404                         struct btrfs_delayed_ref_head *head;
3405
3406                         head = btrfs_delayed_node_to_head(ref);
3407                         spin_unlock(&delayed_refs->lock);
3408                         mutex_lock(&head->mutex);
3409                         kfree(head->extent_op);
3410                         delayed_refs->num_heads--;
3411                         if (list_empty(&head->cluster))
3412                                 delayed_refs->num_heads_ready--;
3413                         list_del_init(&head->cluster);
3414                         mutex_unlock(&head->mutex);
3415                         btrfs_put_delayed_ref(ref);
3416                         goto again;
3417                 }
3418                 spin_unlock(&delayed_refs->lock);
3419                 btrfs_put_delayed_ref(ref);
3420
3421                 cond_resched();
3422                 spin_lock(&delayed_refs->lock);
3423         }
3424
3425         spin_unlock(&delayed_refs->lock);
3426
3427         return ret;
3428 }
3429
3430 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3431 {
3432         struct btrfs_pending_snapshot *snapshot;
3433         struct list_head splice;
3434
3435         INIT_LIST_HEAD(&splice);
3436
3437         list_splice_init(&t->pending_snapshots, &splice);
3438
3439         while (!list_empty(&splice)) {
3440                 snapshot = list_entry(splice.next,
3441                                       struct btrfs_pending_snapshot,
3442                                       list);
3443
3444                 list_del_init(&snapshot->list);
3445
3446                 kfree(snapshot);
3447         }
3448 }
3449
3450 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3451 {
3452         struct btrfs_inode *btrfs_inode;
3453         struct list_head splice;
3454
3455         INIT_LIST_HEAD(&splice);
3456
3457         spin_lock(&root->fs_info->delalloc_lock);
3458         list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3459
3460         while (!list_empty(&splice)) {
3461                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3462                                     delalloc_inodes);
3463
3464                 list_del_init(&btrfs_inode->delalloc_inodes);
3465
3466                 btrfs_invalidate_inodes(btrfs_inode->root);
3467         }
3468
3469         spin_unlock(&root->fs_info->delalloc_lock);
3470 }
3471
3472 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3473                                         struct extent_io_tree *dirty_pages,
3474                                         int mark)
3475 {
3476         int ret;
3477         struct page *page;
3478         struct inode *btree_inode = root->fs_info->btree_inode;
3479         struct extent_buffer *eb;
3480         u64 start = 0;
3481         u64 end;
3482         u64 offset;
3483         unsigned long index;
3484
3485         while (1) {
3486                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3487                                             mark);
3488                 if (ret)
3489                         break;
3490
3491                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3492                 while (start <= end) {
3493                         index = start >> PAGE_CACHE_SHIFT;
3494                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3495                         page = find_get_page(btree_inode->i_mapping, index);
3496                         if (!page)
3497                                 continue;
3498                         offset = page_offset(page);
3499
3500                         spin_lock(&dirty_pages->buffer_lock);
3501                         eb = radix_tree_lookup(
3502                              &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3503                                                offset >> PAGE_CACHE_SHIFT);
3504                         spin_unlock(&dirty_pages->buffer_lock);
3505                         if (eb) {
3506                                 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3507                                                          &eb->bflags);
3508                                 atomic_set(&eb->refs, 1);
3509                         }
3510                         if (PageWriteback(page))
3511                                 end_page_writeback(page);
3512
3513                         lock_page(page);
3514                         if (PageDirty(page)) {
3515                                 clear_page_dirty_for_io(page);
3516                                 spin_lock_irq(&page->mapping->tree_lock);
3517                                 radix_tree_tag_clear(&page->mapping->page_tree,
3518                                                         page_index(page),
3519                                                         PAGECACHE_TAG_DIRTY);
3520                                 spin_unlock_irq(&page->mapping->tree_lock);
3521                         }
3522
3523                         page->mapping->a_ops->invalidatepage(page, 0);
3524                         unlock_page(page);
3525                 }
3526         }
3527
3528         return ret;
3529 }
3530
3531 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3532                                        struct extent_io_tree *pinned_extents)
3533 {
3534         struct extent_io_tree *unpin;
3535         u64 start;
3536         u64 end;
3537         int ret;
3538
3539         unpin = pinned_extents;
3540         while (1) {
3541                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3542                                             EXTENT_DIRTY);
3543                 if (ret)
3544                         break;
3545
3546                 /* opt_discard */
3547                 if (btrfs_test_opt(root, DISCARD))
3548                         ret = btrfs_error_discard_extent(root, start,
3549                                                          end + 1 - start,
3550                                                          NULL);
3551
3552                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3553                 btrfs_error_unpin_extent_range(root, start, end);
3554                 cond_resched();
3555         }
3556
3557         return 0;
3558 }
3559
3560 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3561                                    struct btrfs_root *root)
3562 {
3563         btrfs_destroy_delayed_refs(cur_trans, root);
3564         btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3565                                 cur_trans->dirty_pages.dirty_bytes);
3566
3567         /* FIXME: cleanup wait for commit */
3568         cur_trans->in_commit = 1;
3569         cur_trans->blocked = 1;
3570         if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3571                 wake_up(&root->fs_info->transaction_blocked_wait);
3572
3573         cur_trans->blocked = 0;
3574         if (waitqueue_active(&root->fs_info->transaction_wait))
3575                 wake_up(&root->fs_info->transaction_wait);
3576
3577         cur_trans->commit_done = 1;
3578         if (waitqueue_active(&cur_trans->commit_wait))
3579                 wake_up(&cur_trans->commit_wait);
3580
3581         btrfs_destroy_pending_snapshots(cur_trans);
3582
3583         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3584                                      EXTENT_DIRTY);
3585
3586         /*
3587         memset(cur_trans, 0, sizeof(*cur_trans));
3588         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3589         */
3590 }
3591
3592 int btrfs_cleanup_transaction(struct btrfs_root *root)
3593 {
3594         struct btrfs_transaction *t;
3595         LIST_HEAD(list);
3596
3597         mutex_lock(&root->fs_info->transaction_kthread_mutex);
3598
3599         spin_lock(&root->fs_info->trans_lock);
3600         list_splice_init(&root->fs_info->trans_list, &list);
3601         root->fs_info->trans_no_join = 1;
3602         spin_unlock(&root->fs_info->trans_lock);
3603
3604         while (!list_empty(&list)) {
3605                 t = list_entry(list.next, struct btrfs_transaction, list);
3606                 if (!t)
3607                         break;
3608
3609                 btrfs_destroy_ordered_operations(root);
3610
3611                 btrfs_destroy_ordered_extents(root);
3612
3613                 btrfs_destroy_delayed_refs(t, root);
3614
3615                 btrfs_block_rsv_release(root,
3616                                         &root->fs_info->trans_block_rsv,
3617                                         t->dirty_pages.dirty_bytes);
3618
3619                 /* FIXME: cleanup wait for commit */
3620                 t->in_commit = 1;
3621                 t->blocked = 1;
3622                 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3623                         wake_up(&root->fs_info->transaction_blocked_wait);
3624
3625                 t->blocked = 0;
3626                 if (waitqueue_active(&root->fs_info->transaction_wait))
3627                         wake_up(&root->fs_info->transaction_wait);
3628
3629                 t->commit_done = 1;
3630                 if (waitqueue_active(&t->commit_wait))
3631                         wake_up(&t->commit_wait);
3632
3633                 btrfs_destroy_pending_snapshots(t);
3634
3635                 btrfs_destroy_delalloc_inodes(root);
3636
3637                 spin_lock(&root->fs_info->trans_lock);
3638                 root->fs_info->running_transaction = NULL;
3639                 spin_unlock(&root->fs_info->trans_lock);
3640
3641                 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3642                                              EXTENT_DIRTY);
3643
3644                 btrfs_destroy_pinned_extent(root,
3645                                             root->fs_info->pinned_extents);
3646
3647                 atomic_set(&t->use_count, 0);
3648                 list_del_init(&t->list);
3649                 memset(t, 0, sizeof(*t));
3650                 kmem_cache_free(btrfs_transaction_cachep, t);
3651         }
3652
3653         spin_lock(&root->fs_info->trans_lock);
3654         root->fs_info->trans_no_join = 0;
3655         spin_unlock(&root->fs_info->trans_lock);
3656         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3657
3658         return 0;
3659 }
3660
3661 static int btree_writepage_io_failed_hook(struct bio *bio, struct page *page,
3662                                           u64 start, u64 end,
3663                                           struct extent_state *state)
3664 {
3665         struct super_block *sb = page->mapping->host->i_sb;
3666         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3667         btrfs_error(fs_info, -EIO,
3668                     "Error occured while writing out btree at %llu", start);
3669         return -EIO;
3670 }
3671
3672 static struct extent_io_ops btree_extent_io_ops = {
3673         .write_cache_pages_lock_hook = btree_lock_page_hook,
3674         .readpage_end_io_hook = btree_readpage_end_io_hook,
3675         .readpage_io_failed_hook = btree_io_failed_hook,
3676         .submit_bio_hook = btree_submit_bio_hook,
3677         /* note we're sharing with inode.c for the merge bio hook */
3678         .merge_bio_hook = btrfs_merge_bio_hook,
3679         .writepage_io_failed_hook = btree_writepage_io_failed_hook,
3680 };