eff8673700362bb4a3d679184612b382fbae0328
[linux-2.6-block.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/scatterlist.h>
9 #include <linux/swap.h>
10 #include <linux/radix-tree.h>
11 #include <linux/writeback.h>
12 #include <linux/buffer_head.h>
13 #include <linux/workqueue.h>
14 #include <linux/kthread.h>
15 #include <linux/slab.h>
16 #include <linux/migrate.h>
17 #include <linux/ratelimit.h>
18 #include <linux/uuid.h>
19 #include <linux/semaphore.h>
20 #include <linux/error-injection.h>
21 #include <linux/crc32c.h>
22 #include <asm/unaligned.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "btrfs_inode.h"
27 #include "volumes.h"
28 #include "print-tree.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "free-space-cache.h"
32 #include "free-space-tree.h"
33 #include "inode-map.h"
34 #include "check-integrity.h"
35 #include "rcu-string.h"
36 #include "dev-replace.h"
37 #include "raid56.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40 #include "compression.h"
41 #include "tree-checker.h"
42 #include "ref-verify.h"
43
44 #ifdef CONFIG_X86
45 #include <asm/cpufeature.h>
46 #endif
47
48 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
49                                  BTRFS_HEADER_FLAG_RELOC |\
50                                  BTRFS_SUPER_FLAG_ERROR |\
51                                  BTRFS_SUPER_FLAG_SEEDING |\
52                                  BTRFS_SUPER_FLAG_METADUMP |\
53                                  BTRFS_SUPER_FLAG_METADUMP_V2)
54
55 static const struct extent_io_ops btree_extent_io_ops;
56 static void end_workqueue_fn(struct btrfs_work *work);
57 static void free_fs_root(struct btrfs_root *root);
58 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
59 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
60                                       struct btrfs_fs_info *fs_info);
61 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
62 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
63                                         struct extent_io_tree *dirty_pages,
64                                         int mark);
65 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
66                                        struct extent_io_tree *pinned_extents);
67 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
68 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
69
70 /*
71  * btrfs_end_io_wq structs are used to do processing in task context when an IO
72  * is complete.  This is used during reads to verify checksums, and it is used
73  * by writes to insert metadata for new file extents after IO is complete.
74  */
75 struct btrfs_end_io_wq {
76         struct bio *bio;
77         bio_end_io_t *end_io;
78         void *private;
79         struct btrfs_fs_info *info;
80         blk_status_t status;
81         enum btrfs_wq_endio_type metadata;
82         struct btrfs_work work;
83 };
84
85 static struct kmem_cache *btrfs_end_io_wq_cache;
86
87 int __init btrfs_end_io_wq_init(void)
88 {
89         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
90                                         sizeof(struct btrfs_end_io_wq),
91                                         0,
92                                         SLAB_MEM_SPREAD,
93                                         NULL);
94         if (!btrfs_end_io_wq_cache)
95                 return -ENOMEM;
96         return 0;
97 }
98
99 void __cold btrfs_end_io_wq_exit(void)
100 {
101         kmem_cache_destroy(btrfs_end_io_wq_cache);
102 }
103
104 /*
105  * async submit bios are used to offload expensive checksumming
106  * onto the worker threads.  They checksum file and metadata bios
107  * just before they are sent down the IO stack.
108  */
109 struct async_submit_bio {
110         void *private_data;
111         struct btrfs_fs_info *fs_info;
112         struct bio *bio;
113         extent_submit_bio_start_t *submit_bio_start;
114         extent_submit_bio_done_t *submit_bio_done;
115         int mirror_num;
116         unsigned long bio_flags;
117         /*
118          * bio_offset is optional, can be used if the pages in the bio
119          * can't tell us where in the file the bio should go
120          */
121         u64 bio_offset;
122         struct btrfs_work work;
123         blk_status_t status;
124 };
125
126 /*
127  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
128  * eb, the lockdep key is determined by the btrfs_root it belongs to and
129  * the level the eb occupies in the tree.
130  *
131  * Different roots are used for different purposes and may nest inside each
132  * other and they require separate keysets.  As lockdep keys should be
133  * static, assign keysets according to the purpose of the root as indicated
134  * by btrfs_root->objectid.  This ensures that all special purpose roots
135  * have separate keysets.
136  *
137  * Lock-nesting across peer nodes is always done with the immediate parent
138  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
139  * subclass to avoid triggering lockdep warning in such cases.
140  *
141  * The key is set by the readpage_end_io_hook after the buffer has passed
142  * csum validation but before the pages are unlocked.  It is also set by
143  * btrfs_init_new_buffer on freshly allocated blocks.
144  *
145  * We also add a check to make sure the highest level of the tree is the
146  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
147  * needs update as well.
148  */
149 #ifdef CONFIG_DEBUG_LOCK_ALLOC
150 # if BTRFS_MAX_LEVEL != 8
151 #  error
152 # endif
153
154 static struct btrfs_lockdep_keyset {
155         u64                     id;             /* root objectid */
156         const char              *name_stem;     /* lock name stem */
157         char                    names[BTRFS_MAX_LEVEL + 1][20];
158         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
159 } btrfs_lockdep_keysets[] = {
160         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
161         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
162         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
163         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
164         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
165         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
166         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
167         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
168         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
169         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
170         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
171         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
172         { .id = 0,                              .name_stem = "tree"     },
173 };
174
175 void __init btrfs_init_lockdep(void)
176 {
177         int i, j;
178
179         /* initialize lockdep class names */
180         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
181                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
182
183                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
184                         snprintf(ks->names[j], sizeof(ks->names[j]),
185                                  "btrfs-%s-%02d", ks->name_stem, j);
186         }
187 }
188
189 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
190                                     int level)
191 {
192         struct btrfs_lockdep_keyset *ks;
193
194         BUG_ON(level >= ARRAY_SIZE(ks->keys));
195
196         /* find the matching keyset, id 0 is the default entry */
197         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
198                 if (ks->id == objectid)
199                         break;
200
201         lockdep_set_class_and_name(&eb->lock,
202                                    &ks->keys[level], ks->names[level]);
203 }
204
205 #endif
206
207 /*
208  * extents on the btree inode are pretty simple, there's one extent
209  * that covers the entire device
210  */
211 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
212                 struct page *page, size_t pg_offset, u64 start, u64 len,
213                 int create)
214 {
215         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
216         struct extent_map_tree *em_tree = &inode->extent_tree;
217         struct extent_map *em;
218         int ret;
219
220         read_lock(&em_tree->lock);
221         em = lookup_extent_mapping(em_tree, start, len);
222         if (em) {
223                 em->bdev = fs_info->fs_devices->latest_bdev;
224                 read_unlock(&em_tree->lock);
225                 goto out;
226         }
227         read_unlock(&em_tree->lock);
228
229         em = alloc_extent_map();
230         if (!em) {
231                 em = ERR_PTR(-ENOMEM);
232                 goto out;
233         }
234         em->start = 0;
235         em->len = (u64)-1;
236         em->block_len = (u64)-1;
237         em->block_start = 0;
238         em->bdev = fs_info->fs_devices->latest_bdev;
239
240         write_lock(&em_tree->lock);
241         ret = add_extent_mapping(em_tree, em, 0);
242         if (ret == -EEXIST) {
243                 free_extent_map(em);
244                 em = lookup_extent_mapping(em_tree, start, len);
245                 if (!em)
246                         em = ERR_PTR(-EIO);
247         } else if (ret) {
248                 free_extent_map(em);
249                 em = ERR_PTR(ret);
250         }
251         write_unlock(&em_tree->lock);
252
253 out:
254         return em;
255 }
256
257 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
258 {
259         return crc32c(seed, data, len);
260 }
261
262 void btrfs_csum_final(u32 crc, u8 *result)
263 {
264         put_unaligned_le32(~crc, result);
265 }
266
267 /*
268  * compute the csum for a btree block, and either verify it or write it
269  * into the csum field of the block.
270  */
271 static int csum_tree_block(struct btrfs_fs_info *fs_info,
272                            struct extent_buffer *buf,
273                            int verify)
274 {
275         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
276         char result[BTRFS_CSUM_SIZE];
277         unsigned long len;
278         unsigned long cur_len;
279         unsigned long offset = BTRFS_CSUM_SIZE;
280         char *kaddr;
281         unsigned long map_start;
282         unsigned long map_len;
283         int err;
284         u32 crc = ~(u32)0;
285
286         len = buf->len - offset;
287         while (len > 0) {
288                 err = map_private_extent_buffer(buf, offset, 32,
289                                         &kaddr, &map_start, &map_len);
290                 if (err)
291                         return err;
292                 cur_len = min(len, map_len - (offset - map_start));
293                 crc = btrfs_csum_data(kaddr + offset - map_start,
294                                       crc, cur_len);
295                 len -= cur_len;
296                 offset += cur_len;
297         }
298         memset(result, 0, BTRFS_CSUM_SIZE);
299
300         btrfs_csum_final(crc, result);
301
302         if (verify) {
303                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
304                         u32 val;
305                         u32 found = 0;
306                         memcpy(&found, result, csum_size);
307
308                         read_extent_buffer(buf, &val, 0, csum_size);
309                         btrfs_warn_rl(fs_info,
310                                 "%s checksum verify failed on %llu wanted %X found %X level %d",
311                                 fs_info->sb->s_id, buf->start,
312                                 val, found, btrfs_header_level(buf));
313                         return -EUCLEAN;
314                 }
315         } else {
316                 write_extent_buffer(buf, result, 0, csum_size);
317         }
318
319         return 0;
320 }
321
322 /*
323  * we can't consider a given block up to date unless the transid of the
324  * block matches the transid in the parent node's pointer.  This is how we
325  * detect blocks that either didn't get written at all or got written
326  * in the wrong place.
327  */
328 static int verify_parent_transid(struct extent_io_tree *io_tree,
329                                  struct extent_buffer *eb, u64 parent_transid,
330                                  int atomic)
331 {
332         struct extent_state *cached_state = NULL;
333         int ret;
334         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
335
336         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
337                 return 0;
338
339         if (atomic)
340                 return -EAGAIN;
341
342         if (need_lock) {
343                 btrfs_tree_read_lock(eb);
344                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
345         }
346
347         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
348                          &cached_state);
349         if (extent_buffer_uptodate(eb) &&
350             btrfs_header_generation(eb) == parent_transid) {
351                 ret = 0;
352                 goto out;
353         }
354         btrfs_err_rl(eb->fs_info,
355                 "parent transid verify failed on %llu wanted %llu found %llu",
356                         eb->start,
357                         parent_transid, btrfs_header_generation(eb));
358         ret = 1;
359
360         /*
361          * Things reading via commit roots that don't have normal protection,
362          * like send, can have a really old block in cache that may point at a
363          * block that has been freed and re-allocated.  So don't clear uptodate
364          * if we find an eb that is under IO (dirty/writeback) because we could
365          * end up reading in the stale data and then writing it back out and
366          * making everybody very sad.
367          */
368         if (!extent_buffer_under_io(eb))
369                 clear_extent_buffer_uptodate(eb);
370 out:
371         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
372                              &cached_state);
373         if (need_lock)
374                 btrfs_tree_read_unlock_blocking(eb);
375         return ret;
376 }
377
378 /*
379  * Return 0 if the superblock checksum type matches the checksum value of that
380  * algorithm. Pass the raw disk superblock data.
381  */
382 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
383                                   char *raw_disk_sb)
384 {
385         struct btrfs_super_block *disk_sb =
386                 (struct btrfs_super_block *)raw_disk_sb;
387         u16 csum_type = btrfs_super_csum_type(disk_sb);
388         int ret = 0;
389
390         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
391                 u32 crc = ~(u32)0;
392                 char result[sizeof(crc)];
393
394                 /*
395                  * The super_block structure does not span the whole
396                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
397                  * is filled with zeros and is included in the checksum.
398                  */
399                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
400                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
401                 btrfs_csum_final(crc, result);
402
403                 if (memcmp(raw_disk_sb, result, sizeof(result)))
404                         ret = 1;
405         }
406
407         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
408                 btrfs_err(fs_info, "unsupported checksum algorithm %u",
409                                 csum_type);
410                 ret = 1;
411         }
412
413         return ret;
414 }
415
416 static int verify_level_key(struct btrfs_fs_info *fs_info,
417                             struct extent_buffer *eb, int level,
418                             struct btrfs_key *first_key)
419 {
420         int found_level;
421         struct btrfs_key found_key;
422         int ret;
423
424         found_level = btrfs_header_level(eb);
425         if (found_level != level) {
426 #ifdef CONFIG_BTRFS_DEBUG
427                 WARN_ON(1);
428                 btrfs_err(fs_info,
429 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
430                           eb->start, level, found_level);
431 #endif
432                 return -EIO;
433         }
434
435         if (!first_key)
436                 return 0;
437
438         /*
439          * For live tree block (new tree blocks in current transaction),
440          * we need proper lock context to avoid race, which is impossible here.
441          * So we only checks tree blocks which is read from disk, whose
442          * generation <= fs_info->last_trans_committed.
443          */
444         if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
445                 return 0;
446         if (found_level)
447                 btrfs_node_key_to_cpu(eb, &found_key, 0);
448         else
449                 btrfs_item_key_to_cpu(eb, &found_key, 0);
450         ret = btrfs_comp_cpu_keys(first_key, &found_key);
451
452 #ifdef CONFIG_BTRFS_DEBUG
453         if (ret) {
454                 WARN_ON(1);
455                 btrfs_err(fs_info,
456 "tree first key mismatch detected, bytenr=%llu key expected=(%llu, %u, %llu) has=(%llu, %u, %llu)",
457                           eb->start, first_key->objectid, first_key->type,
458                           first_key->offset, found_key.objectid,
459                           found_key.type, found_key.offset);
460         }
461 #endif
462         return ret;
463 }
464
465 /*
466  * helper to read a given tree block, doing retries as required when
467  * the checksums don't match and we have alternate mirrors to try.
468  *
469  * @parent_transid:     expected transid, skip check if 0
470  * @level:              expected level, mandatory check
471  * @first_key:          expected key of first slot, skip check if NULL
472  */
473 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
474                                           struct extent_buffer *eb,
475                                           u64 parent_transid, int level,
476                                           struct btrfs_key *first_key)
477 {
478         struct extent_io_tree *io_tree;
479         int failed = 0;
480         int ret;
481         int num_copies = 0;
482         int mirror_num = 0;
483         int failed_mirror = 0;
484
485         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
486         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
487         while (1) {
488                 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
489                                                mirror_num);
490                 if (!ret) {
491                         if (verify_parent_transid(io_tree, eb,
492                                                    parent_transid, 0))
493                                 ret = -EIO;
494                         else if (verify_level_key(fs_info, eb, level,
495                                                   first_key))
496                                 ret = -EUCLEAN;
497                         else
498                                 break;
499                 }
500
501                 /*
502                  * This buffer's crc is fine, but its contents are corrupted, so
503                  * there is no reason to read the other copies, they won't be
504                  * any less wrong.
505                  */
506                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags) ||
507                     ret == -EUCLEAN)
508                         break;
509
510                 num_copies = btrfs_num_copies(fs_info,
511                                               eb->start, eb->len);
512                 if (num_copies == 1)
513                         break;
514
515                 if (!failed_mirror) {
516                         failed = 1;
517                         failed_mirror = eb->read_mirror;
518                 }
519
520                 mirror_num++;
521                 if (mirror_num == failed_mirror)
522                         mirror_num++;
523
524                 if (mirror_num > num_copies)
525                         break;
526         }
527
528         if (failed && !ret && failed_mirror)
529                 repair_eb_io_failure(fs_info, eb, failed_mirror);
530
531         return ret;
532 }
533
534 /*
535  * checksum a dirty tree block before IO.  This has extra checks to make sure
536  * we only fill in the checksum field in the first page of a multi-page block
537  */
538
539 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
540 {
541         u64 start = page_offset(page);
542         u64 found_start;
543         struct extent_buffer *eb;
544
545         eb = (struct extent_buffer *)page->private;
546         if (page != eb->pages[0])
547                 return 0;
548
549         found_start = btrfs_header_bytenr(eb);
550         /*
551          * Please do not consolidate these warnings into a single if.
552          * It is useful to know what went wrong.
553          */
554         if (WARN_ON(found_start != start))
555                 return -EUCLEAN;
556         if (WARN_ON(!PageUptodate(page)))
557                 return -EUCLEAN;
558
559         ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
560                         btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
561
562         return csum_tree_block(fs_info, eb, 0);
563 }
564
565 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
566                                  struct extent_buffer *eb)
567 {
568         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
569         u8 fsid[BTRFS_FSID_SIZE];
570         int ret = 1;
571
572         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
573         while (fs_devices) {
574                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
575                         ret = 0;
576                         break;
577                 }
578                 fs_devices = fs_devices->seed;
579         }
580         return ret;
581 }
582
583 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
584                                       u64 phy_offset, struct page *page,
585                                       u64 start, u64 end, int mirror)
586 {
587         u64 found_start;
588         int found_level;
589         struct extent_buffer *eb;
590         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
591         struct btrfs_fs_info *fs_info = root->fs_info;
592         int ret = 0;
593         int reads_done;
594
595         if (!page->private)
596                 goto out;
597
598         eb = (struct extent_buffer *)page->private;
599
600         /* the pending IO might have been the only thing that kept this buffer
601          * in memory.  Make sure we have a ref for all this other checks
602          */
603         extent_buffer_get(eb);
604
605         reads_done = atomic_dec_and_test(&eb->io_pages);
606         if (!reads_done)
607                 goto err;
608
609         eb->read_mirror = mirror;
610         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
611                 ret = -EIO;
612                 goto err;
613         }
614
615         found_start = btrfs_header_bytenr(eb);
616         if (found_start != eb->start) {
617                 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
618                              found_start, eb->start);
619                 ret = -EIO;
620                 goto err;
621         }
622         if (check_tree_block_fsid(fs_info, eb)) {
623                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
624                              eb->start);
625                 ret = -EIO;
626                 goto err;
627         }
628         found_level = btrfs_header_level(eb);
629         if (found_level >= BTRFS_MAX_LEVEL) {
630                 btrfs_err(fs_info, "bad tree block level %d",
631                           (int)btrfs_header_level(eb));
632                 ret = -EIO;
633                 goto err;
634         }
635
636         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
637                                        eb, found_level);
638
639         ret = csum_tree_block(fs_info, eb, 1);
640         if (ret)
641                 goto err;
642
643         /*
644          * If this is a leaf block and it is corrupt, set the corrupt bit so
645          * that we don't try and read the other copies of this block, just
646          * return -EIO.
647          */
648         if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
649                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
650                 ret = -EIO;
651         }
652
653         if (found_level > 0 && btrfs_check_node(fs_info, eb))
654                 ret = -EIO;
655
656         if (!ret)
657                 set_extent_buffer_uptodate(eb);
658 err:
659         if (reads_done &&
660             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
661                 btree_readahead_hook(eb, ret);
662
663         if (ret) {
664                 /*
665                  * our io error hook is going to dec the io pages
666                  * again, we have to make sure it has something
667                  * to decrement
668                  */
669                 atomic_inc(&eb->io_pages);
670                 clear_extent_buffer_uptodate(eb);
671         }
672         free_extent_buffer(eb);
673 out:
674         return ret;
675 }
676
677 static int btree_io_failed_hook(struct page *page, int failed_mirror)
678 {
679         struct extent_buffer *eb;
680
681         eb = (struct extent_buffer *)page->private;
682         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
683         eb->read_mirror = failed_mirror;
684         atomic_dec(&eb->io_pages);
685         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
686                 btree_readahead_hook(eb, -EIO);
687         return -EIO;    /* we fixed nothing */
688 }
689
690 static void end_workqueue_bio(struct bio *bio)
691 {
692         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
693         struct btrfs_fs_info *fs_info;
694         struct btrfs_workqueue *wq;
695         btrfs_work_func_t func;
696
697         fs_info = end_io_wq->info;
698         end_io_wq->status = bio->bi_status;
699
700         if (bio_op(bio) == REQ_OP_WRITE) {
701                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
702                         wq = fs_info->endio_meta_write_workers;
703                         func = btrfs_endio_meta_write_helper;
704                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
705                         wq = fs_info->endio_freespace_worker;
706                         func = btrfs_freespace_write_helper;
707                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
708                         wq = fs_info->endio_raid56_workers;
709                         func = btrfs_endio_raid56_helper;
710                 } else {
711                         wq = fs_info->endio_write_workers;
712                         func = btrfs_endio_write_helper;
713                 }
714         } else {
715                 if (unlikely(end_io_wq->metadata ==
716                              BTRFS_WQ_ENDIO_DIO_REPAIR)) {
717                         wq = fs_info->endio_repair_workers;
718                         func = btrfs_endio_repair_helper;
719                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
720                         wq = fs_info->endio_raid56_workers;
721                         func = btrfs_endio_raid56_helper;
722                 } else if (end_io_wq->metadata) {
723                         wq = fs_info->endio_meta_workers;
724                         func = btrfs_endio_meta_helper;
725                 } else {
726                         wq = fs_info->endio_workers;
727                         func = btrfs_endio_helper;
728                 }
729         }
730
731         btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
732         btrfs_queue_work(wq, &end_io_wq->work);
733 }
734
735 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
736                         enum btrfs_wq_endio_type metadata)
737 {
738         struct btrfs_end_io_wq *end_io_wq;
739
740         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
741         if (!end_io_wq)
742                 return BLK_STS_RESOURCE;
743
744         end_io_wq->private = bio->bi_private;
745         end_io_wq->end_io = bio->bi_end_io;
746         end_io_wq->info = info;
747         end_io_wq->status = 0;
748         end_io_wq->bio = bio;
749         end_io_wq->metadata = metadata;
750
751         bio->bi_private = end_io_wq;
752         bio->bi_end_io = end_workqueue_bio;
753         return 0;
754 }
755
756 static void run_one_async_start(struct btrfs_work *work)
757 {
758         struct async_submit_bio *async;
759         blk_status_t ret;
760
761         async = container_of(work, struct  async_submit_bio, work);
762         ret = async->submit_bio_start(async->private_data, async->bio,
763                                       async->bio_offset);
764         if (ret)
765                 async->status = ret;
766 }
767
768 static void run_one_async_done(struct btrfs_work *work)
769 {
770         struct async_submit_bio *async;
771
772         async = container_of(work, struct  async_submit_bio, work);
773
774         /* If an error occurred we just want to clean up the bio and move on */
775         if (async->status) {
776                 async->bio->bi_status = async->status;
777                 bio_endio(async->bio);
778                 return;
779         }
780
781         async->submit_bio_done(async->private_data, async->bio, async->mirror_num);
782 }
783
784 static void run_one_async_free(struct btrfs_work *work)
785 {
786         struct async_submit_bio *async;
787
788         async = container_of(work, struct  async_submit_bio, work);
789         kfree(async);
790 }
791
792 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
793                                  int mirror_num, unsigned long bio_flags,
794                                  u64 bio_offset, void *private_data,
795                                  extent_submit_bio_start_t *submit_bio_start,
796                                  extent_submit_bio_done_t *submit_bio_done)
797 {
798         struct async_submit_bio *async;
799
800         async = kmalloc(sizeof(*async), GFP_NOFS);
801         if (!async)
802                 return BLK_STS_RESOURCE;
803
804         async->private_data = private_data;
805         async->fs_info = fs_info;
806         async->bio = bio;
807         async->mirror_num = mirror_num;
808         async->submit_bio_start = submit_bio_start;
809         async->submit_bio_done = submit_bio_done;
810
811         btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
812                         run_one_async_done, run_one_async_free);
813
814         async->bio_flags = bio_flags;
815         async->bio_offset = bio_offset;
816
817         async->status = 0;
818
819         if (op_is_sync(bio->bi_opf))
820                 btrfs_set_work_high_priority(&async->work);
821
822         btrfs_queue_work(fs_info->workers, &async->work);
823         return 0;
824 }
825
826 static blk_status_t btree_csum_one_bio(struct bio *bio)
827 {
828         struct bio_vec *bvec;
829         struct btrfs_root *root;
830         int i, ret = 0;
831
832         ASSERT(!bio_flagged(bio, BIO_CLONED));
833         bio_for_each_segment_all(bvec, bio, i) {
834                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
835                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
836                 if (ret)
837                         break;
838         }
839
840         return errno_to_blk_status(ret);
841 }
842
843 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
844                                              u64 bio_offset)
845 {
846         /*
847          * when we're called for a write, we're already in the async
848          * submission context.  Just jump into btrfs_map_bio
849          */
850         return btree_csum_one_bio(bio);
851 }
852
853 static blk_status_t btree_submit_bio_done(void *private_data, struct bio *bio,
854                                             int mirror_num)
855 {
856         struct inode *inode = private_data;
857         blk_status_t ret;
858
859         /*
860          * when we're called for a write, we're already in the async
861          * submission context.  Just jump into btrfs_map_bio
862          */
863         ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
864         if (ret) {
865                 bio->bi_status = ret;
866                 bio_endio(bio);
867         }
868         return ret;
869 }
870
871 static int check_async_write(struct btrfs_inode *bi)
872 {
873         if (atomic_read(&bi->sync_writers))
874                 return 0;
875 #ifdef CONFIG_X86
876         if (static_cpu_has(X86_FEATURE_XMM4_2))
877                 return 0;
878 #endif
879         return 1;
880 }
881
882 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
883                                           int mirror_num, unsigned long bio_flags,
884                                           u64 bio_offset)
885 {
886         struct inode *inode = private_data;
887         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
888         int async = check_async_write(BTRFS_I(inode));
889         blk_status_t ret;
890
891         if (bio_op(bio) != REQ_OP_WRITE) {
892                 /*
893                  * called for a read, do the setup so that checksum validation
894                  * can happen in the async kernel threads
895                  */
896                 ret = btrfs_bio_wq_end_io(fs_info, bio,
897                                           BTRFS_WQ_ENDIO_METADATA);
898                 if (ret)
899                         goto out_w_error;
900                 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
901         } else if (!async) {
902                 ret = btree_csum_one_bio(bio);
903                 if (ret)
904                         goto out_w_error;
905                 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
906         } else {
907                 /*
908                  * kthread helpers are used to submit writes so that
909                  * checksumming can happen in parallel across all CPUs
910                  */
911                 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
912                                           bio_offset, private_data,
913                                           btree_submit_bio_start,
914                                           btree_submit_bio_done);
915         }
916
917         if (ret)
918                 goto out_w_error;
919         return 0;
920
921 out_w_error:
922         bio->bi_status = ret;
923         bio_endio(bio);
924         return ret;
925 }
926
927 #ifdef CONFIG_MIGRATION
928 static int btree_migratepage(struct address_space *mapping,
929                         struct page *newpage, struct page *page,
930                         enum migrate_mode mode)
931 {
932         /*
933          * we can't safely write a btree page from here,
934          * we haven't done the locking hook
935          */
936         if (PageDirty(page))
937                 return -EAGAIN;
938         /*
939          * Buffers may be managed in a filesystem specific way.
940          * We must have no buffers or drop them.
941          */
942         if (page_has_private(page) &&
943             !try_to_release_page(page, GFP_KERNEL))
944                 return -EAGAIN;
945         return migrate_page(mapping, newpage, page, mode);
946 }
947 #endif
948
949
950 static int btree_writepages(struct address_space *mapping,
951                             struct writeback_control *wbc)
952 {
953         struct btrfs_fs_info *fs_info;
954         int ret;
955
956         if (wbc->sync_mode == WB_SYNC_NONE) {
957
958                 if (wbc->for_kupdate)
959                         return 0;
960
961                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
962                 /* this is a bit racy, but that's ok */
963                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
964                                              BTRFS_DIRTY_METADATA_THRESH);
965                 if (ret < 0)
966                         return 0;
967         }
968         return btree_write_cache_pages(mapping, wbc);
969 }
970
971 static int btree_readpage(struct file *file, struct page *page)
972 {
973         struct extent_io_tree *tree;
974         tree = &BTRFS_I(page->mapping->host)->io_tree;
975         return extent_read_full_page(tree, page, btree_get_extent, 0);
976 }
977
978 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
979 {
980         if (PageWriteback(page) || PageDirty(page))
981                 return 0;
982
983         return try_release_extent_buffer(page);
984 }
985
986 static void btree_invalidatepage(struct page *page, unsigned int offset,
987                                  unsigned int length)
988 {
989         struct extent_io_tree *tree;
990         tree = &BTRFS_I(page->mapping->host)->io_tree;
991         extent_invalidatepage(tree, page, offset);
992         btree_releasepage(page, GFP_NOFS);
993         if (PagePrivate(page)) {
994                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
995                            "page private not zero on page %llu",
996                            (unsigned long long)page_offset(page));
997                 ClearPagePrivate(page);
998                 set_page_private(page, 0);
999                 put_page(page);
1000         }
1001 }
1002
1003 static int btree_set_page_dirty(struct page *page)
1004 {
1005 #ifdef DEBUG
1006         struct extent_buffer *eb;
1007
1008         BUG_ON(!PagePrivate(page));
1009         eb = (struct extent_buffer *)page->private;
1010         BUG_ON(!eb);
1011         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1012         BUG_ON(!atomic_read(&eb->refs));
1013         btrfs_assert_tree_locked(eb);
1014 #endif
1015         return __set_page_dirty_nobuffers(page);
1016 }
1017
1018 static const struct address_space_operations btree_aops = {
1019         .readpage       = btree_readpage,
1020         .writepages     = btree_writepages,
1021         .releasepage    = btree_releasepage,
1022         .invalidatepage = btree_invalidatepage,
1023 #ifdef CONFIG_MIGRATION
1024         .migratepage    = btree_migratepage,
1025 #endif
1026         .set_page_dirty = btree_set_page_dirty,
1027 };
1028
1029 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1030 {
1031         struct extent_buffer *buf = NULL;
1032         struct inode *btree_inode = fs_info->btree_inode;
1033
1034         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1035         if (IS_ERR(buf))
1036                 return;
1037         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1038                                  buf, WAIT_NONE, 0);
1039         free_extent_buffer(buf);
1040 }
1041
1042 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1043                          int mirror_num, struct extent_buffer **eb)
1044 {
1045         struct extent_buffer *buf = NULL;
1046         struct inode *btree_inode = fs_info->btree_inode;
1047         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1048         int ret;
1049
1050         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1051         if (IS_ERR(buf))
1052                 return 0;
1053
1054         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1055
1056         ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1057                                        mirror_num);
1058         if (ret) {
1059                 free_extent_buffer(buf);
1060                 return ret;
1061         }
1062
1063         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1064                 free_extent_buffer(buf);
1065                 return -EIO;
1066         } else if (extent_buffer_uptodate(buf)) {
1067                 *eb = buf;
1068         } else {
1069                 free_extent_buffer(buf);
1070         }
1071         return 0;
1072 }
1073
1074 struct extent_buffer *btrfs_find_create_tree_block(
1075                                                 struct btrfs_fs_info *fs_info,
1076                                                 u64 bytenr)
1077 {
1078         if (btrfs_is_testing(fs_info))
1079                 return alloc_test_extent_buffer(fs_info, bytenr);
1080         return alloc_extent_buffer(fs_info, bytenr);
1081 }
1082
1083
1084 int btrfs_write_tree_block(struct extent_buffer *buf)
1085 {
1086         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1087                                         buf->start + buf->len - 1);
1088 }
1089
1090 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1091 {
1092         filemap_fdatawait_range(buf->pages[0]->mapping,
1093                                 buf->start, buf->start + buf->len - 1);
1094 }
1095
1096 /*
1097  * Read tree block at logical address @bytenr and do variant basic but critical
1098  * verification.
1099  *
1100  * @parent_transid:     expected transid of this tree block, skip check if 0
1101  * @level:              expected level, mandatory check
1102  * @first_key:          expected key in slot 0, skip check if NULL
1103  */
1104 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1105                                       u64 parent_transid, int level,
1106                                       struct btrfs_key *first_key)
1107 {
1108         struct extent_buffer *buf = NULL;
1109         int ret;
1110
1111         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1112         if (IS_ERR(buf))
1113                 return buf;
1114
1115         ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
1116                                              level, first_key);
1117         if (ret) {
1118                 free_extent_buffer(buf);
1119                 return ERR_PTR(ret);
1120         }
1121         return buf;
1122
1123 }
1124
1125 void clean_tree_block(struct btrfs_fs_info *fs_info,
1126                       struct extent_buffer *buf)
1127 {
1128         if (btrfs_header_generation(buf) ==
1129             fs_info->running_transaction->transid) {
1130                 btrfs_assert_tree_locked(buf);
1131
1132                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1133                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1134                                                  -buf->len,
1135                                                  fs_info->dirty_metadata_batch);
1136                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1137                         btrfs_set_lock_blocking(buf);
1138                         clear_extent_buffer_dirty(buf);
1139                 }
1140         }
1141 }
1142
1143 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1144 {
1145         struct btrfs_subvolume_writers *writers;
1146         int ret;
1147
1148         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1149         if (!writers)
1150                 return ERR_PTR(-ENOMEM);
1151
1152         ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1153         if (ret < 0) {
1154                 kfree(writers);
1155                 return ERR_PTR(ret);
1156         }
1157
1158         init_waitqueue_head(&writers->wait);
1159         return writers;
1160 }
1161
1162 static void
1163 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1164 {
1165         percpu_counter_destroy(&writers->counter);
1166         kfree(writers);
1167 }
1168
1169 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1170                          u64 objectid)
1171 {
1172         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1173         root->node = NULL;
1174         root->commit_root = NULL;
1175         root->state = 0;
1176         root->orphan_cleanup_state = 0;
1177
1178         root->objectid = objectid;
1179         root->last_trans = 0;
1180         root->highest_objectid = 0;
1181         root->nr_delalloc_inodes = 0;
1182         root->nr_ordered_extents = 0;
1183         root->name = NULL;
1184         root->inode_tree = RB_ROOT;
1185         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1186         root->block_rsv = NULL;
1187         root->orphan_block_rsv = NULL;
1188
1189         INIT_LIST_HEAD(&root->dirty_list);
1190         INIT_LIST_HEAD(&root->root_list);
1191         INIT_LIST_HEAD(&root->delalloc_inodes);
1192         INIT_LIST_HEAD(&root->delalloc_root);
1193         INIT_LIST_HEAD(&root->ordered_extents);
1194         INIT_LIST_HEAD(&root->ordered_root);
1195         INIT_LIST_HEAD(&root->logged_list[0]);
1196         INIT_LIST_HEAD(&root->logged_list[1]);
1197         spin_lock_init(&root->orphan_lock);
1198         spin_lock_init(&root->inode_lock);
1199         spin_lock_init(&root->delalloc_lock);
1200         spin_lock_init(&root->ordered_extent_lock);
1201         spin_lock_init(&root->accounting_lock);
1202         spin_lock_init(&root->log_extents_lock[0]);
1203         spin_lock_init(&root->log_extents_lock[1]);
1204         spin_lock_init(&root->qgroup_meta_rsv_lock);
1205         mutex_init(&root->objectid_mutex);
1206         mutex_init(&root->log_mutex);
1207         mutex_init(&root->ordered_extent_mutex);
1208         mutex_init(&root->delalloc_mutex);
1209         init_waitqueue_head(&root->log_writer_wait);
1210         init_waitqueue_head(&root->log_commit_wait[0]);
1211         init_waitqueue_head(&root->log_commit_wait[1]);
1212         INIT_LIST_HEAD(&root->log_ctxs[0]);
1213         INIT_LIST_HEAD(&root->log_ctxs[1]);
1214         atomic_set(&root->log_commit[0], 0);
1215         atomic_set(&root->log_commit[1], 0);
1216         atomic_set(&root->log_writers, 0);
1217         atomic_set(&root->log_batch, 0);
1218         atomic_set(&root->orphan_inodes, 0);
1219         refcount_set(&root->refs, 1);
1220         atomic_set(&root->will_be_snapshotted, 0);
1221         root->log_transid = 0;
1222         root->log_transid_committed = -1;
1223         root->last_log_commit = 0;
1224         if (!dummy)
1225                 extent_io_tree_init(&root->dirty_log_pages, NULL);
1226
1227         memset(&root->root_key, 0, sizeof(root->root_key));
1228         memset(&root->root_item, 0, sizeof(root->root_item));
1229         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1230         if (!dummy)
1231                 root->defrag_trans_start = fs_info->generation;
1232         else
1233                 root->defrag_trans_start = 0;
1234         root->root_key.objectid = objectid;
1235         root->anon_dev = 0;
1236
1237         spin_lock_init(&root->root_item_lock);
1238 }
1239
1240 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1241                 gfp_t flags)
1242 {
1243         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1244         if (root)
1245                 root->fs_info = fs_info;
1246         return root;
1247 }
1248
1249 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1250 /* Should only be used by the testing infrastructure */
1251 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1252 {
1253         struct btrfs_root *root;
1254
1255         if (!fs_info)
1256                 return ERR_PTR(-EINVAL);
1257
1258         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1259         if (!root)
1260                 return ERR_PTR(-ENOMEM);
1261
1262         /* We don't use the stripesize in selftest, set it as sectorsize */
1263         __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1264         root->alloc_bytenr = 0;
1265
1266         return root;
1267 }
1268 #endif
1269
1270 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1271                                      struct btrfs_fs_info *fs_info,
1272                                      u64 objectid)
1273 {
1274         struct extent_buffer *leaf;
1275         struct btrfs_root *tree_root = fs_info->tree_root;
1276         struct btrfs_root *root;
1277         struct btrfs_key key;
1278         int ret = 0;
1279         uuid_le uuid = NULL_UUID_LE;
1280
1281         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1282         if (!root)
1283                 return ERR_PTR(-ENOMEM);
1284
1285         __setup_root(root, fs_info, objectid);
1286         root->root_key.objectid = objectid;
1287         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1288         root->root_key.offset = 0;
1289
1290         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1291         if (IS_ERR(leaf)) {
1292                 ret = PTR_ERR(leaf);
1293                 leaf = NULL;
1294                 goto fail;
1295         }
1296
1297         memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1298         btrfs_set_header_bytenr(leaf, leaf->start);
1299         btrfs_set_header_generation(leaf, trans->transid);
1300         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1301         btrfs_set_header_owner(leaf, objectid);
1302         root->node = leaf;
1303
1304         write_extent_buffer_fsid(leaf, fs_info->fsid);
1305         write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1306         btrfs_mark_buffer_dirty(leaf);
1307
1308         root->commit_root = btrfs_root_node(root);
1309         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1310
1311         root->root_item.flags = 0;
1312         root->root_item.byte_limit = 0;
1313         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1314         btrfs_set_root_generation(&root->root_item, trans->transid);
1315         btrfs_set_root_level(&root->root_item, 0);
1316         btrfs_set_root_refs(&root->root_item, 1);
1317         btrfs_set_root_used(&root->root_item, leaf->len);
1318         btrfs_set_root_last_snapshot(&root->root_item, 0);
1319         btrfs_set_root_dirid(&root->root_item, 0);
1320         if (is_fstree(objectid))
1321                 uuid_le_gen(&uuid);
1322         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1323         root->root_item.drop_level = 0;
1324
1325         key.objectid = objectid;
1326         key.type = BTRFS_ROOT_ITEM_KEY;
1327         key.offset = 0;
1328         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1329         if (ret)
1330                 goto fail;
1331
1332         btrfs_tree_unlock(leaf);
1333
1334         return root;
1335
1336 fail:
1337         if (leaf) {
1338                 btrfs_tree_unlock(leaf);
1339                 free_extent_buffer(root->commit_root);
1340                 free_extent_buffer(leaf);
1341         }
1342         kfree(root);
1343
1344         return ERR_PTR(ret);
1345 }
1346
1347 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1348                                          struct btrfs_fs_info *fs_info)
1349 {
1350         struct btrfs_root *root;
1351         struct extent_buffer *leaf;
1352
1353         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1354         if (!root)
1355                 return ERR_PTR(-ENOMEM);
1356
1357         __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1358
1359         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1360         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1361         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1362
1363         /*
1364          * DON'T set REF_COWS for log trees
1365          *
1366          * log trees do not get reference counted because they go away
1367          * before a real commit is actually done.  They do store pointers
1368          * to file data extents, and those reference counts still get
1369          * updated (along with back refs to the log tree).
1370          */
1371
1372         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1373                         NULL, 0, 0, 0);
1374         if (IS_ERR(leaf)) {
1375                 kfree(root);
1376                 return ERR_CAST(leaf);
1377         }
1378
1379         memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1380         btrfs_set_header_bytenr(leaf, leaf->start);
1381         btrfs_set_header_generation(leaf, trans->transid);
1382         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1383         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1384         root->node = leaf;
1385
1386         write_extent_buffer_fsid(root->node, fs_info->fsid);
1387         btrfs_mark_buffer_dirty(root->node);
1388         btrfs_tree_unlock(root->node);
1389         return root;
1390 }
1391
1392 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1393                              struct btrfs_fs_info *fs_info)
1394 {
1395         struct btrfs_root *log_root;
1396
1397         log_root = alloc_log_tree(trans, fs_info);
1398         if (IS_ERR(log_root))
1399                 return PTR_ERR(log_root);
1400         WARN_ON(fs_info->log_root_tree);
1401         fs_info->log_root_tree = log_root;
1402         return 0;
1403 }
1404
1405 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1406                        struct btrfs_root *root)
1407 {
1408         struct btrfs_fs_info *fs_info = root->fs_info;
1409         struct btrfs_root *log_root;
1410         struct btrfs_inode_item *inode_item;
1411
1412         log_root = alloc_log_tree(trans, fs_info);
1413         if (IS_ERR(log_root))
1414                 return PTR_ERR(log_root);
1415
1416         log_root->last_trans = trans->transid;
1417         log_root->root_key.offset = root->root_key.objectid;
1418
1419         inode_item = &log_root->root_item.inode;
1420         btrfs_set_stack_inode_generation(inode_item, 1);
1421         btrfs_set_stack_inode_size(inode_item, 3);
1422         btrfs_set_stack_inode_nlink(inode_item, 1);
1423         btrfs_set_stack_inode_nbytes(inode_item,
1424                                      fs_info->nodesize);
1425         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1426
1427         btrfs_set_root_node(&log_root->root_item, log_root->node);
1428
1429         WARN_ON(root->log_root);
1430         root->log_root = log_root;
1431         root->log_transid = 0;
1432         root->log_transid_committed = -1;
1433         root->last_log_commit = 0;
1434         return 0;
1435 }
1436
1437 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1438                                                struct btrfs_key *key)
1439 {
1440         struct btrfs_root *root;
1441         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1442         struct btrfs_path *path;
1443         u64 generation;
1444         int ret;
1445         int level;
1446
1447         path = btrfs_alloc_path();
1448         if (!path)
1449                 return ERR_PTR(-ENOMEM);
1450
1451         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1452         if (!root) {
1453                 ret = -ENOMEM;
1454                 goto alloc_fail;
1455         }
1456
1457         __setup_root(root, fs_info, key->objectid);
1458
1459         ret = btrfs_find_root(tree_root, key, path,
1460                               &root->root_item, &root->root_key);
1461         if (ret) {
1462                 if (ret > 0)
1463                         ret = -ENOENT;
1464                 goto find_fail;
1465         }
1466
1467         generation = btrfs_root_generation(&root->root_item);
1468         level = btrfs_root_level(&root->root_item);
1469         root->node = read_tree_block(fs_info,
1470                                      btrfs_root_bytenr(&root->root_item),
1471                                      generation, level, NULL);
1472         if (IS_ERR(root->node)) {
1473                 ret = PTR_ERR(root->node);
1474                 goto find_fail;
1475         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1476                 ret = -EIO;
1477                 free_extent_buffer(root->node);
1478                 goto find_fail;
1479         }
1480         root->commit_root = btrfs_root_node(root);
1481 out:
1482         btrfs_free_path(path);
1483         return root;
1484
1485 find_fail:
1486         kfree(root);
1487 alloc_fail:
1488         root = ERR_PTR(ret);
1489         goto out;
1490 }
1491
1492 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1493                                       struct btrfs_key *location)
1494 {
1495         struct btrfs_root *root;
1496
1497         root = btrfs_read_tree_root(tree_root, location);
1498         if (IS_ERR(root))
1499                 return root;
1500
1501         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1502                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1503                 btrfs_check_and_init_root_item(&root->root_item);
1504         }
1505
1506         return root;
1507 }
1508
1509 int btrfs_init_fs_root(struct btrfs_root *root)
1510 {
1511         int ret;
1512         struct btrfs_subvolume_writers *writers;
1513
1514         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1515         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1516                                         GFP_NOFS);
1517         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1518                 ret = -ENOMEM;
1519                 goto fail;
1520         }
1521
1522         writers = btrfs_alloc_subvolume_writers();
1523         if (IS_ERR(writers)) {
1524                 ret = PTR_ERR(writers);
1525                 goto fail;
1526         }
1527         root->subv_writers = writers;
1528
1529         btrfs_init_free_ino_ctl(root);
1530         spin_lock_init(&root->ino_cache_lock);
1531         init_waitqueue_head(&root->ino_cache_wait);
1532
1533         ret = get_anon_bdev(&root->anon_dev);
1534         if (ret)
1535                 goto fail;
1536
1537         mutex_lock(&root->objectid_mutex);
1538         ret = btrfs_find_highest_objectid(root,
1539                                         &root->highest_objectid);
1540         if (ret) {
1541                 mutex_unlock(&root->objectid_mutex);
1542                 goto fail;
1543         }
1544
1545         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1546
1547         mutex_unlock(&root->objectid_mutex);
1548
1549         return 0;
1550 fail:
1551         /* the caller is responsible to call free_fs_root */
1552         return ret;
1553 }
1554
1555 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1556                                         u64 root_id)
1557 {
1558         struct btrfs_root *root;
1559
1560         spin_lock(&fs_info->fs_roots_radix_lock);
1561         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1562                                  (unsigned long)root_id);
1563         spin_unlock(&fs_info->fs_roots_radix_lock);
1564         return root;
1565 }
1566
1567 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1568                          struct btrfs_root *root)
1569 {
1570         int ret;
1571
1572         ret = radix_tree_preload(GFP_NOFS);
1573         if (ret)
1574                 return ret;
1575
1576         spin_lock(&fs_info->fs_roots_radix_lock);
1577         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1578                                 (unsigned long)root->root_key.objectid,
1579                                 root);
1580         if (ret == 0)
1581                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1582         spin_unlock(&fs_info->fs_roots_radix_lock);
1583         radix_tree_preload_end();
1584
1585         return ret;
1586 }
1587
1588 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1589                                      struct btrfs_key *location,
1590                                      bool check_ref)
1591 {
1592         struct btrfs_root *root;
1593         struct btrfs_path *path;
1594         struct btrfs_key key;
1595         int ret;
1596
1597         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1598                 return fs_info->tree_root;
1599         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1600                 return fs_info->extent_root;
1601         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1602                 return fs_info->chunk_root;
1603         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1604                 return fs_info->dev_root;
1605         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1606                 return fs_info->csum_root;
1607         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1608                 return fs_info->quota_root ? fs_info->quota_root :
1609                                              ERR_PTR(-ENOENT);
1610         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1611                 return fs_info->uuid_root ? fs_info->uuid_root :
1612                                             ERR_PTR(-ENOENT);
1613         if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1614                 return fs_info->free_space_root ? fs_info->free_space_root :
1615                                                   ERR_PTR(-ENOENT);
1616 again:
1617         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1618         if (root) {
1619                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1620                         return ERR_PTR(-ENOENT);
1621                 return root;
1622         }
1623
1624         root = btrfs_read_fs_root(fs_info->tree_root, location);
1625         if (IS_ERR(root))
1626                 return root;
1627
1628         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1629                 ret = -ENOENT;
1630                 goto fail;
1631         }
1632
1633         ret = btrfs_init_fs_root(root);
1634         if (ret)
1635                 goto fail;
1636
1637         path = btrfs_alloc_path();
1638         if (!path) {
1639                 ret = -ENOMEM;
1640                 goto fail;
1641         }
1642         key.objectid = BTRFS_ORPHAN_OBJECTID;
1643         key.type = BTRFS_ORPHAN_ITEM_KEY;
1644         key.offset = location->objectid;
1645
1646         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1647         btrfs_free_path(path);
1648         if (ret < 0)
1649                 goto fail;
1650         if (ret == 0)
1651                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1652
1653         ret = btrfs_insert_fs_root(fs_info, root);
1654         if (ret) {
1655                 if (ret == -EEXIST) {
1656                         free_fs_root(root);
1657                         goto again;
1658                 }
1659                 goto fail;
1660         }
1661         return root;
1662 fail:
1663         free_fs_root(root);
1664         return ERR_PTR(ret);
1665 }
1666
1667 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1668 {
1669         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1670         int ret = 0;
1671         struct btrfs_device *device;
1672         struct backing_dev_info *bdi;
1673
1674         rcu_read_lock();
1675         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1676                 if (!device->bdev)
1677                         continue;
1678                 bdi = device->bdev->bd_bdi;
1679                 if (bdi_congested(bdi, bdi_bits)) {
1680                         ret = 1;
1681                         break;
1682                 }
1683         }
1684         rcu_read_unlock();
1685         return ret;
1686 }
1687
1688 /*
1689  * called by the kthread helper functions to finally call the bio end_io
1690  * functions.  This is where read checksum verification actually happens
1691  */
1692 static void end_workqueue_fn(struct btrfs_work *work)
1693 {
1694         struct bio *bio;
1695         struct btrfs_end_io_wq *end_io_wq;
1696
1697         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1698         bio = end_io_wq->bio;
1699
1700         bio->bi_status = end_io_wq->status;
1701         bio->bi_private = end_io_wq->private;
1702         bio->bi_end_io = end_io_wq->end_io;
1703         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1704         bio_endio(bio);
1705 }
1706
1707 static int cleaner_kthread(void *arg)
1708 {
1709         struct btrfs_root *root = arg;
1710         struct btrfs_fs_info *fs_info = root->fs_info;
1711         int again;
1712         struct btrfs_trans_handle *trans;
1713
1714         do {
1715                 again = 0;
1716
1717                 /* Make the cleaner go to sleep early. */
1718                 if (btrfs_need_cleaner_sleep(fs_info))
1719                         goto sleep;
1720
1721                 /*
1722                  * Do not do anything if we might cause open_ctree() to block
1723                  * before we have finished mounting the filesystem.
1724                  */
1725                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1726                         goto sleep;
1727
1728                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1729                         goto sleep;
1730
1731                 /*
1732                  * Avoid the problem that we change the status of the fs
1733                  * during the above check and trylock.
1734                  */
1735                 if (btrfs_need_cleaner_sleep(fs_info)) {
1736                         mutex_unlock(&fs_info->cleaner_mutex);
1737                         goto sleep;
1738                 }
1739
1740                 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1741                 btrfs_run_delayed_iputs(fs_info);
1742                 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1743
1744                 again = btrfs_clean_one_deleted_snapshot(root);
1745                 mutex_unlock(&fs_info->cleaner_mutex);
1746
1747                 /*
1748                  * The defragger has dealt with the R/O remount and umount,
1749                  * needn't do anything special here.
1750                  */
1751                 btrfs_run_defrag_inodes(fs_info);
1752
1753                 /*
1754                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1755                  * with relocation (btrfs_relocate_chunk) and relocation
1756                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1757                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1758                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1759                  * unused block groups.
1760                  */
1761                 btrfs_delete_unused_bgs(fs_info);
1762 sleep:
1763                 if (!again) {
1764                         set_current_state(TASK_INTERRUPTIBLE);
1765                         if (!kthread_should_stop())
1766                                 schedule();
1767                         __set_current_state(TASK_RUNNING);
1768                 }
1769         } while (!kthread_should_stop());
1770
1771         /*
1772          * Transaction kthread is stopped before us and wakes us up.
1773          * However we might have started a new transaction and COWed some
1774          * tree blocks when deleting unused block groups for example. So
1775          * make sure we commit the transaction we started to have a clean
1776          * shutdown when evicting the btree inode - if it has dirty pages
1777          * when we do the final iput() on it, eviction will trigger a
1778          * writeback for it which will fail with null pointer dereferences
1779          * since work queues and other resources were already released and
1780          * destroyed by the time the iput/eviction/writeback is made.
1781          */
1782         trans = btrfs_attach_transaction(root);
1783         if (IS_ERR(trans)) {
1784                 if (PTR_ERR(trans) != -ENOENT)
1785                         btrfs_err(fs_info,
1786                                   "cleaner transaction attach returned %ld",
1787                                   PTR_ERR(trans));
1788         } else {
1789                 int ret;
1790
1791                 ret = btrfs_commit_transaction(trans);
1792                 if (ret)
1793                         btrfs_err(fs_info,
1794                                   "cleaner open transaction commit returned %d",
1795                                   ret);
1796         }
1797
1798         return 0;
1799 }
1800
1801 static int transaction_kthread(void *arg)
1802 {
1803         struct btrfs_root *root = arg;
1804         struct btrfs_fs_info *fs_info = root->fs_info;
1805         struct btrfs_trans_handle *trans;
1806         struct btrfs_transaction *cur;
1807         u64 transid;
1808         unsigned long now;
1809         unsigned long delay;
1810         bool cannot_commit;
1811
1812         do {
1813                 cannot_commit = false;
1814                 delay = HZ * fs_info->commit_interval;
1815                 mutex_lock(&fs_info->transaction_kthread_mutex);
1816
1817                 spin_lock(&fs_info->trans_lock);
1818                 cur = fs_info->running_transaction;
1819                 if (!cur) {
1820                         spin_unlock(&fs_info->trans_lock);
1821                         goto sleep;
1822                 }
1823
1824                 now = get_seconds();
1825                 if (cur->state < TRANS_STATE_BLOCKED &&
1826                     !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1827                     (now < cur->start_time ||
1828                      now - cur->start_time < fs_info->commit_interval)) {
1829                         spin_unlock(&fs_info->trans_lock);
1830                         delay = HZ * 5;
1831                         goto sleep;
1832                 }
1833                 transid = cur->transid;
1834                 spin_unlock(&fs_info->trans_lock);
1835
1836                 /* If the file system is aborted, this will always fail. */
1837                 trans = btrfs_attach_transaction(root);
1838                 if (IS_ERR(trans)) {
1839                         if (PTR_ERR(trans) != -ENOENT)
1840                                 cannot_commit = true;
1841                         goto sleep;
1842                 }
1843                 if (transid == trans->transid) {
1844                         btrfs_commit_transaction(trans);
1845                 } else {
1846                         btrfs_end_transaction(trans);
1847                 }
1848 sleep:
1849                 wake_up_process(fs_info->cleaner_kthread);
1850                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1851
1852                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1853                                       &fs_info->fs_state)))
1854                         btrfs_cleanup_transaction(fs_info);
1855                 if (!kthread_should_stop() &&
1856                                 (!btrfs_transaction_blocked(fs_info) ||
1857                                  cannot_commit))
1858                         schedule_timeout_interruptible(delay);
1859         } while (!kthread_should_stop());
1860         return 0;
1861 }
1862
1863 /*
1864  * this will find the highest generation in the array of
1865  * root backups.  The index of the highest array is returned,
1866  * or -1 if we can't find anything.
1867  *
1868  * We check to make sure the array is valid by comparing the
1869  * generation of the latest  root in the array with the generation
1870  * in the super block.  If they don't match we pitch it.
1871  */
1872 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1873 {
1874         u64 cur;
1875         int newest_index = -1;
1876         struct btrfs_root_backup *root_backup;
1877         int i;
1878
1879         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1880                 root_backup = info->super_copy->super_roots + i;
1881                 cur = btrfs_backup_tree_root_gen(root_backup);
1882                 if (cur == newest_gen)
1883                         newest_index = i;
1884         }
1885
1886         /* check to see if we actually wrapped around */
1887         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1888                 root_backup = info->super_copy->super_roots;
1889                 cur = btrfs_backup_tree_root_gen(root_backup);
1890                 if (cur == newest_gen)
1891                         newest_index = 0;
1892         }
1893         return newest_index;
1894 }
1895
1896
1897 /*
1898  * find the oldest backup so we know where to store new entries
1899  * in the backup array.  This will set the backup_root_index
1900  * field in the fs_info struct
1901  */
1902 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1903                                      u64 newest_gen)
1904 {
1905         int newest_index = -1;
1906
1907         newest_index = find_newest_super_backup(info, newest_gen);
1908         /* if there was garbage in there, just move along */
1909         if (newest_index == -1) {
1910                 info->backup_root_index = 0;
1911         } else {
1912                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1913         }
1914 }
1915
1916 /*
1917  * copy all the root pointers into the super backup array.
1918  * this will bump the backup pointer by one when it is
1919  * done
1920  */
1921 static void backup_super_roots(struct btrfs_fs_info *info)
1922 {
1923         int next_backup;
1924         struct btrfs_root_backup *root_backup;
1925         int last_backup;
1926
1927         next_backup = info->backup_root_index;
1928         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1929                 BTRFS_NUM_BACKUP_ROOTS;
1930
1931         /*
1932          * just overwrite the last backup if we're at the same generation
1933          * this happens only at umount
1934          */
1935         root_backup = info->super_for_commit->super_roots + last_backup;
1936         if (btrfs_backup_tree_root_gen(root_backup) ==
1937             btrfs_header_generation(info->tree_root->node))
1938                 next_backup = last_backup;
1939
1940         root_backup = info->super_for_commit->super_roots + next_backup;
1941
1942         /*
1943          * make sure all of our padding and empty slots get zero filled
1944          * regardless of which ones we use today
1945          */
1946         memset(root_backup, 0, sizeof(*root_backup));
1947
1948         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1949
1950         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1951         btrfs_set_backup_tree_root_gen(root_backup,
1952                                btrfs_header_generation(info->tree_root->node));
1953
1954         btrfs_set_backup_tree_root_level(root_backup,
1955                                btrfs_header_level(info->tree_root->node));
1956
1957         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1958         btrfs_set_backup_chunk_root_gen(root_backup,
1959                                btrfs_header_generation(info->chunk_root->node));
1960         btrfs_set_backup_chunk_root_level(root_backup,
1961                                btrfs_header_level(info->chunk_root->node));
1962
1963         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1964         btrfs_set_backup_extent_root_gen(root_backup,
1965                                btrfs_header_generation(info->extent_root->node));
1966         btrfs_set_backup_extent_root_level(root_backup,
1967                                btrfs_header_level(info->extent_root->node));
1968
1969         /*
1970          * we might commit during log recovery, which happens before we set
1971          * the fs_root.  Make sure it is valid before we fill it in.
1972          */
1973         if (info->fs_root && info->fs_root->node) {
1974                 btrfs_set_backup_fs_root(root_backup,
1975                                          info->fs_root->node->start);
1976                 btrfs_set_backup_fs_root_gen(root_backup,
1977                                btrfs_header_generation(info->fs_root->node));
1978                 btrfs_set_backup_fs_root_level(root_backup,
1979                                btrfs_header_level(info->fs_root->node));
1980         }
1981
1982         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1983         btrfs_set_backup_dev_root_gen(root_backup,
1984                                btrfs_header_generation(info->dev_root->node));
1985         btrfs_set_backup_dev_root_level(root_backup,
1986                                        btrfs_header_level(info->dev_root->node));
1987
1988         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1989         btrfs_set_backup_csum_root_gen(root_backup,
1990                                btrfs_header_generation(info->csum_root->node));
1991         btrfs_set_backup_csum_root_level(root_backup,
1992                                btrfs_header_level(info->csum_root->node));
1993
1994         btrfs_set_backup_total_bytes(root_backup,
1995                              btrfs_super_total_bytes(info->super_copy));
1996         btrfs_set_backup_bytes_used(root_backup,
1997                              btrfs_super_bytes_used(info->super_copy));
1998         btrfs_set_backup_num_devices(root_backup,
1999                              btrfs_super_num_devices(info->super_copy));
2000
2001         /*
2002          * if we don't copy this out to the super_copy, it won't get remembered
2003          * for the next commit
2004          */
2005         memcpy(&info->super_copy->super_roots,
2006                &info->super_for_commit->super_roots,
2007                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2008 }
2009
2010 /*
2011  * this copies info out of the root backup array and back into
2012  * the in-memory super block.  It is meant to help iterate through
2013  * the array, so you send it the number of backups you've already
2014  * tried and the last backup index you used.
2015  *
2016  * this returns -1 when it has tried all the backups
2017  */
2018 static noinline int next_root_backup(struct btrfs_fs_info *info,
2019                                      struct btrfs_super_block *super,
2020                                      int *num_backups_tried, int *backup_index)
2021 {
2022         struct btrfs_root_backup *root_backup;
2023         int newest = *backup_index;
2024
2025         if (*num_backups_tried == 0) {
2026                 u64 gen = btrfs_super_generation(super);
2027
2028                 newest = find_newest_super_backup(info, gen);
2029                 if (newest == -1)
2030                         return -1;
2031
2032                 *backup_index = newest;
2033                 *num_backups_tried = 1;
2034         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2035                 /* we've tried all the backups, all done */
2036                 return -1;
2037         } else {
2038                 /* jump to the next oldest backup */
2039                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2040                         BTRFS_NUM_BACKUP_ROOTS;
2041                 *backup_index = newest;
2042                 *num_backups_tried += 1;
2043         }
2044         root_backup = super->super_roots + newest;
2045
2046         btrfs_set_super_generation(super,
2047                                    btrfs_backup_tree_root_gen(root_backup));
2048         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2049         btrfs_set_super_root_level(super,
2050                                    btrfs_backup_tree_root_level(root_backup));
2051         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2052
2053         /*
2054          * fixme: the total bytes and num_devices need to match or we should
2055          * need a fsck
2056          */
2057         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2058         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2059         return 0;
2060 }
2061
2062 /* helper to cleanup workers */
2063 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2064 {
2065         btrfs_destroy_workqueue(fs_info->fixup_workers);
2066         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2067         btrfs_destroy_workqueue(fs_info->workers);
2068         btrfs_destroy_workqueue(fs_info->endio_workers);
2069         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2070         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2071         btrfs_destroy_workqueue(fs_info->rmw_workers);
2072         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2073         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2074         btrfs_destroy_workqueue(fs_info->submit_workers);
2075         btrfs_destroy_workqueue(fs_info->delayed_workers);
2076         btrfs_destroy_workqueue(fs_info->caching_workers);
2077         btrfs_destroy_workqueue(fs_info->readahead_workers);
2078         btrfs_destroy_workqueue(fs_info->flush_workers);
2079         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2080         btrfs_destroy_workqueue(fs_info->extent_workers);
2081         /*
2082          * Now that all other work queues are destroyed, we can safely destroy
2083          * the queues used for metadata I/O, since tasks from those other work
2084          * queues can do metadata I/O operations.
2085          */
2086         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2087         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2088 }
2089
2090 static void free_root_extent_buffers(struct btrfs_root *root)
2091 {
2092         if (root) {
2093                 free_extent_buffer(root->node);
2094                 free_extent_buffer(root->commit_root);
2095                 root->node = NULL;
2096                 root->commit_root = NULL;
2097         }
2098 }
2099
2100 /* helper to cleanup tree roots */
2101 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2102 {
2103         free_root_extent_buffers(info->tree_root);
2104
2105         free_root_extent_buffers(info->dev_root);
2106         free_root_extent_buffers(info->extent_root);
2107         free_root_extent_buffers(info->csum_root);
2108         free_root_extent_buffers(info->quota_root);
2109         free_root_extent_buffers(info->uuid_root);
2110         if (chunk_root)
2111                 free_root_extent_buffers(info->chunk_root);
2112         free_root_extent_buffers(info->free_space_root);
2113 }
2114
2115 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2116 {
2117         int ret;
2118         struct btrfs_root *gang[8];
2119         int i;
2120
2121         while (!list_empty(&fs_info->dead_roots)) {
2122                 gang[0] = list_entry(fs_info->dead_roots.next,
2123                                      struct btrfs_root, root_list);
2124                 list_del(&gang[0]->root_list);
2125
2126                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2127                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2128                 } else {
2129                         free_extent_buffer(gang[0]->node);
2130                         free_extent_buffer(gang[0]->commit_root);
2131                         btrfs_put_fs_root(gang[0]);
2132                 }
2133         }
2134
2135         while (1) {
2136                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2137                                              (void **)gang, 0,
2138                                              ARRAY_SIZE(gang));
2139                 if (!ret)
2140                         break;
2141                 for (i = 0; i < ret; i++)
2142                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2143         }
2144
2145         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2146                 btrfs_free_log_root_tree(NULL, fs_info);
2147                 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2148         }
2149 }
2150
2151 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2152 {
2153         mutex_init(&fs_info->scrub_lock);
2154         atomic_set(&fs_info->scrubs_running, 0);
2155         atomic_set(&fs_info->scrub_pause_req, 0);
2156         atomic_set(&fs_info->scrubs_paused, 0);
2157         atomic_set(&fs_info->scrub_cancel_req, 0);
2158         init_waitqueue_head(&fs_info->scrub_pause_wait);
2159         fs_info->scrub_workers_refcnt = 0;
2160 }
2161
2162 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2163 {
2164         spin_lock_init(&fs_info->balance_lock);
2165         mutex_init(&fs_info->balance_mutex);
2166         atomic_set(&fs_info->balance_pause_req, 0);
2167         atomic_set(&fs_info->balance_cancel_req, 0);
2168         fs_info->balance_ctl = NULL;
2169         init_waitqueue_head(&fs_info->balance_wait_q);
2170 }
2171
2172 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2173 {
2174         struct inode *inode = fs_info->btree_inode;
2175
2176         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2177         set_nlink(inode, 1);
2178         /*
2179          * we set the i_size on the btree inode to the max possible int.
2180          * the real end of the address space is determined by all of
2181          * the devices in the system
2182          */
2183         inode->i_size = OFFSET_MAX;
2184         inode->i_mapping->a_ops = &btree_aops;
2185
2186         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2187         extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2188         BTRFS_I(inode)->io_tree.track_uptodate = 0;
2189         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2190
2191         BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2192
2193         BTRFS_I(inode)->root = fs_info->tree_root;
2194         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2195         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2196         btrfs_insert_inode_hash(inode);
2197 }
2198
2199 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2200 {
2201         fs_info->dev_replace.lock_owner = 0;
2202         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2203         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2204         rwlock_init(&fs_info->dev_replace.lock);
2205         atomic_set(&fs_info->dev_replace.read_locks, 0);
2206         atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2207         init_waitqueue_head(&fs_info->replace_wait);
2208         init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2209 }
2210
2211 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2212 {
2213         spin_lock_init(&fs_info->qgroup_lock);
2214         mutex_init(&fs_info->qgroup_ioctl_lock);
2215         fs_info->qgroup_tree = RB_ROOT;
2216         fs_info->qgroup_op_tree = RB_ROOT;
2217         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2218         fs_info->qgroup_seq = 1;
2219         fs_info->qgroup_ulist = NULL;
2220         fs_info->qgroup_rescan_running = false;
2221         mutex_init(&fs_info->qgroup_rescan_lock);
2222 }
2223
2224 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2225                 struct btrfs_fs_devices *fs_devices)
2226 {
2227         u32 max_active = fs_info->thread_pool_size;
2228         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2229
2230         fs_info->workers =
2231                 btrfs_alloc_workqueue(fs_info, "worker",
2232                                       flags | WQ_HIGHPRI, max_active, 16);
2233
2234         fs_info->delalloc_workers =
2235                 btrfs_alloc_workqueue(fs_info, "delalloc",
2236                                       flags, max_active, 2);
2237
2238         fs_info->flush_workers =
2239                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2240                                       flags, max_active, 0);
2241
2242         fs_info->caching_workers =
2243                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2244
2245         /*
2246          * a higher idle thresh on the submit workers makes it much more
2247          * likely that bios will be send down in a sane order to the
2248          * devices
2249          */
2250         fs_info->submit_workers =
2251                 btrfs_alloc_workqueue(fs_info, "submit", flags,
2252                                       min_t(u64, fs_devices->num_devices,
2253                                             max_active), 64);
2254
2255         fs_info->fixup_workers =
2256                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2257
2258         /*
2259          * endios are largely parallel and should have a very
2260          * low idle thresh
2261          */
2262         fs_info->endio_workers =
2263                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2264         fs_info->endio_meta_workers =
2265                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2266                                       max_active, 4);
2267         fs_info->endio_meta_write_workers =
2268                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2269                                       max_active, 2);
2270         fs_info->endio_raid56_workers =
2271                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2272                                       max_active, 4);
2273         fs_info->endio_repair_workers =
2274                 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2275         fs_info->rmw_workers =
2276                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2277         fs_info->endio_write_workers =
2278                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2279                                       max_active, 2);
2280         fs_info->endio_freespace_worker =
2281                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2282                                       max_active, 0);
2283         fs_info->delayed_workers =
2284                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2285                                       max_active, 0);
2286         fs_info->readahead_workers =
2287                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2288                                       max_active, 2);
2289         fs_info->qgroup_rescan_workers =
2290                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2291         fs_info->extent_workers =
2292                 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2293                                       min_t(u64, fs_devices->num_devices,
2294                                             max_active), 8);
2295
2296         if (!(fs_info->workers && fs_info->delalloc_workers &&
2297               fs_info->submit_workers && fs_info->flush_workers &&
2298               fs_info->endio_workers && fs_info->endio_meta_workers &&
2299               fs_info->endio_meta_write_workers &&
2300               fs_info->endio_repair_workers &&
2301               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2302               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2303               fs_info->caching_workers && fs_info->readahead_workers &&
2304               fs_info->fixup_workers && fs_info->delayed_workers &&
2305               fs_info->extent_workers &&
2306               fs_info->qgroup_rescan_workers)) {
2307                 return -ENOMEM;
2308         }
2309
2310         return 0;
2311 }
2312
2313 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2314                             struct btrfs_fs_devices *fs_devices)
2315 {
2316         int ret;
2317         struct btrfs_root *log_tree_root;
2318         struct btrfs_super_block *disk_super = fs_info->super_copy;
2319         u64 bytenr = btrfs_super_log_root(disk_super);
2320         int level = btrfs_super_log_root_level(disk_super);
2321
2322         if (fs_devices->rw_devices == 0) {
2323                 btrfs_warn(fs_info, "log replay required on RO media");
2324                 return -EIO;
2325         }
2326
2327         log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2328         if (!log_tree_root)
2329                 return -ENOMEM;
2330
2331         __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2332
2333         log_tree_root->node = read_tree_block(fs_info, bytenr,
2334                                               fs_info->generation + 1,
2335                                               level, NULL);
2336         if (IS_ERR(log_tree_root->node)) {
2337                 btrfs_warn(fs_info, "failed to read log tree");
2338                 ret = PTR_ERR(log_tree_root->node);
2339                 kfree(log_tree_root);
2340                 return ret;
2341         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2342                 btrfs_err(fs_info, "failed to read log tree");
2343                 free_extent_buffer(log_tree_root->node);
2344                 kfree(log_tree_root);
2345                 return -EIO;
2346         }
2347         /* returns with log_tree_root freed on success */
2348         ret = btrfs_recover_log_trees(log_tree_root);
2349         if (ret) {
2350                 btrfs_handle_fs_error(fs_info, ret,
2351                                       "Failed to recover log tree");
2352                 free_extent_buffer(log_tree_root->node);
2353                 kfree(log_tree_root);
2354                 return ret;
2355         }
2356
2357         if (sb_rdonly(fs_info->sb)) {
2358                 ret = btrfs_commit_super(fs_info);
2359                 if (ret)
2360                         return ret;
2361         }
2362
2363         return 0;
2364 }
2365
2366 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2367 {
2368         struct btrfs_root *tree_root = fs_info->tree_root;
2369         struct btrfs_root *root;
2370         struct btrfs_key location;
2371         int ret;
2372
2373         BUG_ON(!fs_info->tree_root);
2374
2375         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2376         location.type = BTRFS_ROOT_ITEM_KEY;
2377         location.offset = 0;
2378
2379         root = btrfs_read_tree_root(tree_root, &location);
2380         if (IS_ERR(root)) {
2381                 ret = PTR_ERR(root);
2382                 goto out;
2383         }
2384         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2385         fs_info->extent_root = root;
2386
2387         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2388         root = btrfs_read_tree_root(tree_root, &location);
2389         if (IS_ERR(root)) {
2390                 ret = PTR_ERR(root);
2391                 goto out;
2392         }
2393         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2394         fs_info->dev_root = root;
2395         btrfs_init_devices_late(fs_info);
2396
2397         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2398         root = btrfs_read_tree_root(tree_root, &location);
2399         if (IS_ERR(root)) {
2400                 ret = PTR_ERR(root);
2401                 goto out;
2402         }
2403         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2404         fs_info->csum_root = root;
2405
2406         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2407         root = btrfs_read_tree_root(tree_root, &location);
2408         if (!IS_ERR(root)) {
2409                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2410                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2411                 fs_info->quota_root = root;
2412         }
2413
2414         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2415         root = btrfs_read_tree_root(tree_root, &location);
2416         if (IS_ERR(root)) {
2417                 ret = PTR_ERR(root);
2418                 if (ret != -ENOENT)
2419                         goto out;
2420         } else {
2421                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2422                 fs_info->uuid_root = root;
2423         }
2424
2425         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2426                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2427                 root = btrfs_read_tree_root(tree_root, &location);
2428                 if (IS_ERR(root)) {
2429                         ret = PTR_ERR(root);
2430                         goto out;
2431                 }
2432                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2433                 fs_info->free_space_root = root;
2434         }
2435
2436         return 0;
2437 out:
2438         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2439                    location.objectid, ret);
2440         return ret;
2441 }
2442
2443 /*
2444  * Real super block validation
2445  * NOTE: super csum type and incompat features will not be checked here.
2446  *
2447  * @sb:         super block to check
2448  * @mirror_num: the super block number to check its bytenr:
2449  *              0       the primary (1st) sb
2450  *              1, 2    2nd and 3rd backup copy
2451  *             -1       skip bytenr check
2452  */
2453 static int validate_super(struct btrfs_fs_info *fs_info,
2454                             struct btrfs_super_block *sb, int mirror_num)
2455 {
2456         u64 nodesize = btrfs_super_nodesize(sb);
2457         u64 sectorsize = btrfs_super_sectorsize(sb);
2458         int ret = 0;
2459
2460         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2461                 btrfs_err(fs_info, "no valid FS found");
2462                 ret = -EINVAL;
2463         }
2464         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2465                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2466                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2467                 ret = -EINVAL;
2468         }
2469         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2470                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2471                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2472                 ret = -EINVAL;
2473         }
2474         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2475                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2476                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2477                 ret = -EINVAL;
2478         }
2479         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2480                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2481                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2482                 ret = -EINVAL;
2483         }
2484
2485         /*
2486          * Check sectorsize and nodesize first, other check will need it.
2487          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2488          */
2489         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2490             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2491                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2492                 ret = -EINVAL;
2493         }
2494         /* Only PAGE SIZE is supported yet */
2495         if (sectorsize != PAGE_SIZE) {
2496                 btrfs_err(fs_info,
2497                         "sectorsize %llu not supported yet, only support %lu",
2498                         sectorsize, PAGE_SIZE);
2499                 ret = -EINVAL;
2500         }
2501         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2502             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2503                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2504                 ret = -EINVAL;
2505         }
2506         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2507                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2508                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2509                 ret = -EINVAL;
2510         }
2511
2512         /* Root alignment check */
2513         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2514                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2515                            btrfs_super_root(sb));
2516                 ret = -EINVAL;
2517         }
2518         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2519                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2520                            btrfs_super_chunk_root(sb));
2521                 ret = -EINVAL;
2522         }
2523         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2524                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2525                            btrfs_super_log_root(sb));
2526                 ret = -EINVAL;
2527         }
2528
2529         if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
2530                 btrfs_err(fs_info,
2531                            "dev_item UUID does not match fsid: %pU != %pU",
2532                            fs_info->fsid, sb->dev_item.fsid);
2533                 ret = -EINVAL;
2534         }
2535
2536         /*
2537          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2538          * done later
2539          */
2540         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2541                 btrfs_err(fs_info, "bytes_used is too small %llu",
2542                           btrfs_super_bytes_used(sb));
2543                 ret = -EINVAL;
2544         }
2545         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2546                 btrfs_err(fs_info, "invalid stripesize %u",
2547                           btrfs_super_stripesize(sb));
2548                 ret = -EINVAL;
2549         }
2550         if (btrfs_super_num_devices(sb) > (1UL << 31))
2551                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2552                            btrfs_super_num_devices(sb));
2553         if (btrfs_super_num_devices(sb) == 0) {
2554                 btrfs_err(fs_info, "number of devices is 0");
2555                 ret = -EINVAL;
2556         }
2557
2558         if (mirror_num >= 0 &&
2559             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2560                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2561                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2562                 ret = -EINVAL;
2563         }
2564
2565         /*
2566          * Obvious sys_chunk_array corruptions, it must hold at least one key
2567          * and one chunk
2568          */
2569         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2570                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2571                           btrfs_super_sys_array_size(sb),
2572                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2573                 ret = -EINVAL;
2574         }
2575         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2576                         + sizeof(struct btrfs_chunk)) {
2577                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2578                           btrfs_super_sys_array_size(sb),
2579                           sizeof(struct btrfs_disk_key)
2580                           + sizeof(struct btrfs_chunk));
2581                 ret = -EINVAL;
2582         }
2583
2584         /*
2585          * The generation is a global counter, we'll trust it more than the others
2586          * but it's still possible that it's the one that's wrong.
2587          */
2588         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2589                 btrfs_warn(fs_info,
2590                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2591                         btrfs_super_generation(sb),
2592                         btrfs_super_chunk_root_generation(sb));
2593         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2594             && btrfs_super_cache_generation(sb) != (u64)-1)
2595                 btrfs_warn(fs_info,
2596                         "suspicious: generation < cache_generation: %llu < %llu",
2597                         btrfs_super_generation(sb),
2598                         btrfs_super_cache_generation(sb));
2599
2600         return ret;
2601 }
2602
2603 /*
2604  * Validation of super block at mount time.
2605  * Some checks already done early at mount time, like csum type and incompat
2606  * flags will be skipped.
2607  */
2608 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2609 {
2610         return validate_super(fs_info, fs_info->super_copy, 0);
2611 }
2612
2613 int open_ctree(struct super_block *sb,
2614                struct btrfs_fs_devices *fs_devices,
2615                char *options)
2616 {
2617         u32 sectorsize;
2618         u32 nodesize;
2619         u32 stripesize;
2620         u64 generation;
2621         u64 features;
2622         struct btrfs_key location;
2623         struct buffer_head *bh;
2624         struct btrfs_super_block *disk_super;
2625         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2626         struct btrfs_root *tree_root;
2627         struct btrfs_root *chunk_root;
2628         int ret;
2629         int err = -EINVAL;
2630         int num_backups_tried = 0;
2631         int backup_index = 0;
2632         int clear_free_space_tree = 0;
2633         int level;
2634
2635         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2636         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2637         if (!tree_root || !chunk_root) {
2638                 err = -ENOMEM;
2639                 goto fail;
2640         }
2641
2642         ret = init_srcu_struct(&fs_info->subvol_srcu);
2643         if (ret) {
2644                 err = ret;
2645                 goto fail;
2646         }
2647
2648         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2649         if (ret) {
2650                 err = ret;
2651                 goto fail_srcu;
2652         }
2653         fs_info->dirty_metadata_batch = PAGE_SIZE *
2654                                         (1 + ilog2(nr_cpu_ids));
2655
2656         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2657         if (ret) {
2658                 err = ret;
2659                 goto fail_dirty_metadata_bytes;
2660         }
2661
2662         ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2663         if (ret) {
2664                 err = ret;
2665                 goto fail_delalloc_bytes;
2666         }
2667
2668         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2669         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2670         INIT_LIST_HEAD(&fs_info->trans_list);
2671         INIT_LIST_HEAD(&fs_info->dead_roots);
2672         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2673         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2674         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2675         INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2676         spin_lock_init(&fs_info->pending_raid_kobjs_lock);
2677         spin_lock_init(&fs_info->delalloc_root_lock);
2678         spin_lock_init(&fs_info->trans_lock);
2679         spin_lock_init(&fs_info->fs_roots_radix_lock);
2680         spin_lock_init(&fs_info->delayed_iput_lock);
2681         spin_lock_init(&fs_info->defrag_inodes_lock);
2682         spin_lock_init(&fs_info->tree_mod_seq_lock);
2683         spin_lock_init(&fs_info->super_lock);
2684         spin_lock_init(&fs_info->qgroup_op_lock);
2685         spin_lock_init(&fs_info->buffer_lock);
2686         spin_lock_init(&fs_info->unused_bgs_lock);
2687         rwlock_init(&fs_info->tree_mod_log_lock);
2688         mutex_init(&fs_info->unused_bg_unpin_mutex);
2689         mutex_init(&fs_info->delete_unused_bgs_mutex);
2690         mutex_init(&fs_info->reloc_mutex);
2691         mutex_init(&fs_info->delalloc_root_mutex);
2692         mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2693         seqlock_init(&fs_info->profiles_lock);
2694
2695         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2696         INIT_LIST_HEAD(&fs_info->space_info);
2697         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2698         INIT_LIST_HEAD(&fs_info->unused_bgs);
2699         btrfs_mapping_init(&fs_info->mapping_tree);
2700         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2701                              BTRFS_BLOCK_RSV_GLOBAL);
2702         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2703         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2704         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2705         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2706                              BTRFS_BLOCK_RSV_DELOPS);
2707         atomic_set(&fs_info->async_delalloc_pages, 0);
2708         atomic_set(&fs_info->defrag_running, 0);
2709         atomic_set(&fs_info->qgroup_op_seq, 0);
2710         atomic_set(&fs_info->reada_works_cnt, 0);
2711         atomic64_set(&fs_info->tree_mod_seq, 0);
2712         fs_info->sb = sb;
2713         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2714         fs_info->metadata_ratio = 0;
2715         fs_info->defrag_inodes = RB_ROOT;
2716         atomic64_set(&fs_info->free_chunk_space, 0);
2717         fs_info->tree_mod_log = RB_ROOT;
2718         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2719         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2720         /* readahead state */
2721         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2722         spin_lock_init(&fs_info->reada_lock);
2723         btrfs_init_ref_verify(fs_info);
2724
2725         fs_info->thread_pool_size = min_t(unsigned long,
2726                                           num_online_cpus() + 2, 8);
2727
2728         INIT_LIST_HEAD(&fs_info->ordered_roots);
2729         spin_lock_init(&fs_info->ordered_root_lock);
2730
2731         fs_info->btree_inode = new_inode(sb);
2732         if (!fs_info->btree_inode) {
2733                 err = -ENOMEM;
2734                 goto fail_bio_counter;
2735         }
2736         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2737
2738         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2739                                         GFP_KERNEL);
2740         if (!fs_info->delayed_root) {
2741                 err = -ENOMEM;
2742                 goto fail_iput;
2743         }
2744         btrfs_init_delayed_root(fs_info->delayed_root);
2745
2746         btrfs_init_scrub(fs_info);
2747 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2748         fs_info->check_integrity_print_mask = 0;
2749 #endif
2750         btrfs_init_balance(fs_info);
2751         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2752
2753         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2754         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2755
2756         btrfs_init_btree_inode(fs_info);
2757
2758         spin_lock_init(&fs_info->block_group_cache_lock);
2759         fs_info->block_group_cache_tree = RB_ROOT;
2760         fs_info->first_logical_byte = (u64)-1;
2761
2762         extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2763         extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2764         fs_info->pinned_extents = &fs_info->freed_extents[0];
2765         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2766
2767         mutex_init(&fs_info->ordered_operations_mutex);
2768         mutex_init(&fs_info->tree_log_mutex);
2769         mutex_init(&fs_info->chunk_mutex);
2770         mutex_init(&fs_info->transaction_kthread_mutex);
2771         mutex_init(&fs_info->cleaner_mutex);
2772         mutex_init(&fs_info->ro_block_group_mutex);
2773         init_rwsem(&fs_info->commit_root_sem);
2774         init_rwsem(&fs_info->cleanup_work_sem);
2775         init_rwsem(&fs_info->subvol_sem);
2776         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2777
2778         btrfs_init_dev_replace_locks(fs_info);
2779         btrfs_init_qgroup(fs_info);
2780
2781         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2782         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2783
2784         init_waitqueue_head(&fs_info->transaction_throttle);
2785         init_waitqueue_head(&fs_info->transaction_wait);
2786         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2787         init_waitqueue_head(&fs_info->async_submit_wait);
2788
2789         INIT_LIST_HEAD(&fs_info->pinned_chunks);
2790
2791         /* Usable values until the real ones are cached from the superblock */
2792         fs_info->nodesize = 4096;
2793         fs_info->sectorsize = 4096;
2794         fs_info->stripesize = 4096;
2795
2796         ret = btrfs_alloc_stripe_hash_table(fs_info);
2797         if (ret) {
2798                 err = ret;
2799                 goto fail_alloc;
2800         }
2801
2802         __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2803
2804         invalidate_bdev(fs_devices->latest_bdev);
2805
2806         /*
2807          * Read super block and check the signature bytes only
2808          */
2809         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2810         if (IS_ERR(bh)) {
2811                 err = PTR_ERR(bh);
2812                 goto fail_alloc;
2813         }
2814
2815         /*
2816          * We want to check superblock checksum, the type is stored inside.
2817          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2818          */
2819         if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2820                 btrfs_err(fs_info, "superblock checksum mismatch");
2821                 err = -EINVAL;
2822                 brelse(bh);
2823                 goto fail_alloc;
2824         }
2825
2826         /*
2827          * super_copy is zeroed at allocation time and we never touch the
2828          * following bytes up to INFO_SIZE, the checksum is calculated from
2829          * the whole block of INFO_SIZE
2830          */
2831         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2832         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2833                sizeof(*fs_info->super_for_commit));
2834         brelse(bh);
2835
2836         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2837
2838         ret = btrfs_validate_mount_super(fs_info);
2839         if (ret) {
2840                 btrfs_err(fs_info, "superblock contains fatal errors");
2841                 err = -EINVAL;
2842                 goto fail_alloc;
2843         }
2844
2845         disk_super = fs_info->super_copy;
2846         if (!btrfs_super_root(disk_super))
2847                 goto fail_alloc;
2848
2849         /* check FS state, whether FS is broken. */
2850         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2851                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2852
2853         /*
2854          * run through our array of backup supers and setup
2855          * our ring pointer to the oldest one
2856          */
2857         generation = btrfs_super_generation(disk_super);
2858         find_oldest_super_backup(fs_info, generation);
2859
2860         /*
2861          * In the long term, we'll store the compression type in the super
2862          * block, and it'll be used for per file compression control.
2863          */
2864         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2865
2866         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2867         if (ret) {
2868                 err = ret;
2869                 goto fail_alloc;
2870         }
2871
2872         features = btrfs_super_incompat_flags(disk_super) &
2873                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2874         if (features) {
2875                 btrfs_err(fs_info,
2876                     "cannot mount because of unsupported optional features (%llx)",
2877                     features);
2878                 err = -EINVAL;
2879                 goto fail_alloc;
2880         }
2881
2882         features = btrfs_super_incompat_flags(disk_super);
2883         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2884         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2885                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2886         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2887                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2888
2889         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2890                 btrfs_info(fs_info, "has skinny extents");
2891
2892         /*
2893          * flag our filesystem as having big metadata blocks if
2894          * they are bigger than the page size
2895          */
2896         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2897                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2898                         btrfs_info(fs_info,
2899                                 "flagging fs with big metadata feature");
2900                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2901         }
2902
2903         nodesize = btrfs_super_nodesize(disk_super);
2904         sectorsize = btrfs_super_sectorsize(disk_super);
2905         stripesize = sectorsize;
2906         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2907         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2908
2909         /* Cache block sizes */
2910         fs_info->nodesize = nodesize;
2911         fs_info->sectorsize = sectorsize;
2912         fs_info->stripesize = stripesize;
2913
2914         /*
2915          * mixed block groups end up with duplicate but slightly offset
2916          * extent buffers for the same range.  It leads to corruptions
2917          */
2918         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2919             (sectorsize != nodesize)) {
2920                 btrfs_err(fs_info,
2921 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2922                         nodesize, sectorsize);
2923                 goto fail_alloc;
2924         }
2925
2926         /*
2927          * Needn't use the lock because there is no other task which will
2928          * update the flag.
2929          */
2930         btrfs_set_super_incompat_flags(disk_super, features);
2931
2932         features = btrfs_super_compat_ro_flags(disk_super) &
2933                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2934         if (!sb_rdonly(sb) && features) {
2935                 btrfs_err(fs_info,
2936         "cannot mount read-write because of unsupported optional features (%llx)",
2937                        features);
2938                 err = -EINVAL;
2939                 goto fail_alloc;
2940         }
2941
2942         ret = btrfs_init_workqueues(fs_info, fs_devices);
2943         if (ret) {
2944                 err = ret;
2945                 goto fail_sb_buffer;
2946         }
2947
2948         sb->s_bdi->congested_fn = btrfs_congested_fn;
2949         sb->s_bdi->congested_data = fs_info;
2950         sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2951         sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
2952         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2953         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2954
2955         sb->s_blocksize = sectorsize;
2956         sb->s_blocksize_bits = blksize_bits(sectorsize);
2957         memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
2958
2959         mutex_lock(&fs_info->chunk_mutex);
2960         ret = btrfs_read_sys_array(fs_info);
2961         mutex_unlock(&fs_info->chunk_mutex);
2962         if (ret) {
2963                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2964                 goto fail_sb_buffer;
2965         }
2966
2967         generation = btrfs_super_chunk_root_generation(disk_super);
2968         level = btrfs_super_chunk_root_level(disk_super);
2969
2970         __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2971
2972         chunk_root->node = read_tree_block(fs_info,
2973                                            btrfs_super_chunk_root(disk_super),
2974                                            generation, level, NULL);
2975         if (IS_ERR(chunk_root->node) ||
2976             !extent_buffer_uptodate(chunk_root->node)) {
2977                 btrfs_err(fs_info, "failed to read chunk root");
2978                 if (!IS_ERR(chunk_root->node))
2979                         free_extent_buffer(chunk_root->node);
2980                 chunk_root->node = NULL;
2981                 goto fail_tree_roots;
2982         }
2983         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2984         chunk_root->commit_root = btrfs_root_node(chunk_root);
2985
2986         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2987            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2988
2989         ret = btrfs_read_chunk_tree(fs_info);
2990         if (ret) {
2991                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2992                 goto fail_tree_roots;
2993         }
2994
2995         /*
2996          * Keep the devid that is marked to be the target device for the
2997          * device replace procedure
2998          */
2999         btrfs_free_extra_devids(fs_devices, 0);
3000
3001         if (!fs_devices->latest_bdev) {
3002                 btrfs_err(fs_info, "failed to read devices");
3003                 goto fail_tree_roots;
3004         }
3005
3006 retry_root_backup:
3007         generation = btrfs_super_generation(disk_super);
3008         level = btrfs_super_root_level(disk_super);
3009
3010         tree_root->node = read_tree_block(fs_info,
3011                                           btrfs_super_root(disk_super),
3012                                           generation, level, NULL);
3013         if (IS_ERR(tree_root->node) ||
3014             !extent_buffer_uptodate(tree_root->node)) {
3015                 btrfs_warn(fs_info, "failed to read tree root");
3016                 if (!IS_ERR(tree_root->node))
3017                         free_extent_buffer(tree_root->node);
3018                 tree_root->node = NULL;
3019                 goto recovery_tree_root;
3020         }
3021
3022         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3023         tree_root->commit_root = btrfs_root_node(tree_root);
3024         btrfs_set_root_refs(&tree_root->root_item, 1);
3025
3026         mutex_lock(&tree_root->objectid_mutex);
3027         ret = btrfs_find_highest_objectid(tree_root,
3028                                         &tree_root->highest_objectid);
3029         if (ret) {
3030                 mutex_unlock(&tree_root->objectid_mutex);
3031                 goto recovery_tree_root;
3032         }
3033
3034         ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3035
3036         mutex_unlock(&tree_root->objectid_mutex);
3037
3038         ret = btrfs_read_roots(fs_info);
3039         if (ret)
3040                 goto recovery_tree_root;
3041
3042         fs_info->generation = generation;
3043         fs_info->last_trans_committed = generation;
3044
3045         ret = btrfs_recover_balance(fs_info);
3046         if (ret) {
3047                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3048                 goto fail_block_groups;
3049         }
3050
3051         ret = btrfs_init_dev_stats(fs_info);
3052         if (ret) {
3053                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3054                 goto fail_block_groups;
3055         }
3056
3057         ret = btrfs_init_dev_replace(fs_info);
3058         if (ret) {
3059                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3060                 goto fail_block_groups;
3061         }
3062
3063         btrfs_free_extra_devids(fs_devices, 1);
3064
3065         ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3066         if (ret) {
3067                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3068                                 ret);
3069                 goto fail_block_groups;
3070         }
3071
3072         ret = btrfs_sysfs_add_device(fs_devices);
3073         if (ret) {
3074                 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3075                                 ret);
3076                 goto fail_fsdev_sysfs;
3077         }
3078
3079         ret = btrfs_sysfs_add_mounted(fs_info);
3080         if (ret) {
3081                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3082                 goto fail_fsdev_sysfs;
3083         }
3084
3085         ret = btrfs_init_space_info(fs_info);
3086         if (ret) {
3087                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3088                 goto fail_sysfs;
3089         }
3090
3091         ret = btrfs_read_block_groups(fs_info);
3092         if (ret) {
3093                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3094                 goto fail_sysfs;
3095         }
3096
3097         if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3098                 btrfs_warn(fs_info,
3099                 "writeable mount is not allowed due to too many missing devices");
3100                 goto fail_sysfs;
3101         }
3102
3103         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3104                                                "btrfs-cleaner");
3105         if (IS_ERR(fs_info->cleaner_kthread))
3106                 goto fail_sysfs;
3107
3108         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3109                                                    tree_root,
3110                                                    "btrfs-transaction");
3111         if (IS_ERR(fs_info->transaction_kthread))
3112                 goto fail_cleaner;
3113
3114         if (!btrfs_test_opt(fs_info, NOSSD) &&
3115             !fs_info->fs_devices->rotating) {
3116                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3117         }
3118
3119         /*
3120          * Mount does not set all options immediately, we can do it now and do
3121          * not have to wait for transaction commit
3122          */
3123         btrfs_apply_pending_changes(fs_info);
3124
3125 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3126         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3127                 ret = btrfsic_mount(fs_info, fs_devices,
3128                                     btrfs_test_opt(fs_info,
3129                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3130                                     1 : 0,
3131                                     fs_info->check_integrity_print_mask);
3132                 if (ret)
3133                         btrfs_warn(fs_info,
3134                                 "failed to initialize integrity check module: %d",
3135                                 ret);
3136         }
3137 #endif
3138         ret = btrfs_read_qgroup_config(fs_info);
3139         if (ret)
3140                 goto fail_trans_kthread;
3141
3142         if (btrfs_build_ref_tree(fs_info))
3143                 btrfs_err(fs_info, "couldn't build ref tree");
3144
3145         /* do not make disk changes in broken FS or nologreplay is given */
3146         if (btrfs_super_log_root(disk_super) != 0 &&
3147             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3148                 ret = btrfs_replay_log(fs_info, fs_devices);
3149                 if (ret) {
3150                         err = ret;
3151                         goto fail_qgroup;
3152                 }
3153         }
3154
3155         ret = btrfs_find_orphan_roots(fs_info);
3156         if (ret)
3157                 goto fail_qgroup;
3158
3159         if (!sb_rdonly(sb)) {
3160                 ret = btrfs_cleanup_fs_roots(fs_info);
3161                 if (ret)
3162                         goto fail_qgroup;
3163
3164                 mutex_lock(&fs_info->cleaner_mutex);
3165                 ret = btrfs_recover_relocation(tree_root);
3166                 mutex_unlock(&fs_info->cleaner_mutex);
3167                 if (ret < 0) {
3168                         btrfs_warn(fs_info, "failed to recover relocation: %d",
3169                                         ret);
3170                         err = -EINVAL;
3171                         goto fail_qgroup;
3172                 }
3173         }
3174
3175         location.objectid = BTRFS_FS_TREE_OBJECTID;
3176         location.type = BTRFS_ROOT_ITEM_KEY;
3177         location.offset = 0;
3178
3179         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3180         if (IS_ERR(fs_info->fs_root)) {
3181                 err = PTR_ERR(fs_info->fs_root);
3182                 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3183                 goto fail_qgroup;
3184         }
3185
3186         if (sb_rdonly(sb))
3187                 return 0;
3188
3189         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3190             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3191                 clear_free_space_tree = 1;
3192         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3193                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3194                 btrfs_warn(fs_info, "free space tree is invalid");
3195                 clear_free_space_tree = 1;
3196         }
3197
3198         if (clear_free_space_tree) {
3199                 btrfs_info(fs_info, "clearing free space tree");
3200                 ret = btrfs_clear_free_space_tree(fs_info);
3201                 if (ret) {
3202                         btrfs_warn(fs_info,
3203                                    "failed to clear free space tree: %d", ret);
3204                         close_ctree(fs_info);
3205                         return ret;
3206                 }
3207         }
3208
3209         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3210             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3211                 btrfs_info(fs_info, "creating free space tree");
3212                 ret = btrfs_create_free_space_tree(fs_info);
3213                 if (ret) {
3214                         btrfs_warn(fs_info,
3215                                 "failed to create free space tree: %d", ret);
3216                         close_ctree(fs_info);
3217                         return ret;
3218                 }
3219         }
3220
3221         down_read(&fs_info->cleanup_work_sem);
3222         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3223             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3224                 up_read(&fs_info->cleanup_work_sem);
3225                 close_ctree(fs_info);
3226                 return ret;
3227         }
3228         up_read(&fs_info->cleanup_work_sem);
3229
3230         ret = btrfs_resume_balance_async(fs_info);
3231         if (ret) {
3232                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3233                 close_ctree(fs_info);
3234                 return ret;
3235         }
3236
3237         ret = btrfs_resume_dev_replace_async(fs_info);
3238         if (ret) {
3239                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3240                 close_ctree(fs_info);
3241                 return ret;
3242         }
3243
3244         btrfs_qgroup_rescan_resume(fs_info);
3245
3246         if (!fs_info->uuid_root) {
3247                 btrfs_info(fs_info, "creating UUID tree");
3248                 ret = btrfs_create_uuid_tree(fs_info);
3249                 if (ret) {
3250                         btrfs_warn(fs_info,
3251                                 "failed to create the UUID tree: %d", ret);
3252                         close_ctree(fs_info);
3253                         return ret;
3254                 }
3255         } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3256                    fs_info->generation !=
3257                                 btrfs_super_uuid_tree_generation(disk_super)) {
3258                 btrfs_info(fs_info, "checking UUID tree");
3259                 ret = btrfs_check_uuid_tree(fs_info);
3260                 if (ret) {
3261                         btrfs_warn(fs_info,
3262                                 "failed to check the UUID tree: %d", ret);
3263                         close_ctree(fs_info);
3264                         return ret;
3265                 }
3266         } else {
3267                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3268         }
3269         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3270
3271         /*
3272          * backuproot only affect mount behavior, and if open_ctree succeeded,
3273          * no need to keep the flag
3274          */
3275         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3276
3277         return 0;
3278
3279 fail_qgroup:
3280         btrfs_free_qgroup_config(fs_info);
3281 fail_trans_kthread:
3282         kthread_stop(fs_info->transaction_kthread);
3283         btrfs_cleanup_transaction(fs_info);
3284         btrfs_free_fs_roots(fs_info);
3285 fail_cleaner:
3286         kthread_stop(fs_info->cleaner_kthread);
3287
3288         /*
3289          * make sure we're done with the btree inode before we stop our
3290          * kthreads
3291          */
3292         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3293
3294 fail_sysfs:
3295         btrfs_sysfs_remove_mounted(fs_info);
3296
3297 fail_fsdev_sysfs:
3298         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3299
3300 fail_block_groups:
3301         btrfs_put_block_group_cache(fs_info);
3302
3303 fail_tree_roots:
3304         free_root_pointers(fs_info, 1);
3305         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3306
3307 fail_sb_buffer:
3308         btrfs_stop_all_workers(fs_info);
3309         btrfs_free_block_groups(fs_info);
3310 fail_alloc:
3311 fail_iput:
3312         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3313
3314         iput(fs_info->btree_inode);
3315 fail_bio_counter:
3316         percpu_counter_destroy(&fs_info->bio_counter);
3317 fail_delalloc_bytes:
3318         percpu_counter_destroy(&fs_info->delalloc_bytes);
3319 fail_dirty_metadata_bytes:
3320         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3321 fail_srcu:
3322         cleanup_srcu_struct(&fs_info->subvol_srcu);
3323 fail:
3324         btrfs_free_stripe_hash_table(fs_info);
3325         btrfs_close_devices(fs_info->fs_devices);
3326         return err;
3327
3328 recovery_tree_root:
3329         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3330                 goto fail_tree_roots;
3331
3332         free_root_pointers(fs_info, 0);
3333
3334         /* don't use the log in recovery mode, it won't be valid */
3335         btrfs_set_super_log_root(disk_super, 0);
3336
3337         /* we can't trust the free space cache either */
3338         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3339
3340         ret = next_root_backup(fs_info, fs_info->super_copy,
3341                                &num_backups_tried, &backup_index);
3342         if (ret == -1)
3343                 goto fail_block_groups;
3344         goto retry_root_backup;
3345 }
3346 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3347
3348 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3349 {
3350         if (uptodate) {
3351                 set_buffer_uptodate(bh);
3352         } else {
3353                 struct btrfs_device *device = (struct btrfs_device *)
3354                         bh->b_private;
3355
3356                 btrfs_warn_rl_in_rcu(device->fs_info,
3357                                 "lost page write due to IO error on %s",
3358                                           rcu_str_deref(device->name));
3359                 /* note, we don't set_buffer_write_io_error because we have
3360                  * our own ways of dealing with the IO errors
3361                  */
3362                 clear_buffer_uptodate(bh);
3363                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3364         }
3365         unlock_buffer(bh);
3366         put_bh(bh);
3367 }
3368
3369 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3370                         struct buffer_head **bh_ret)
3371 {
3372         struct buffer_head *bh;
3373         struct btrfs_super_block *super;
3374         u64 bytenr;
3375
3376         bytenr = btrfs_sb_offset(copy_num);
3377         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3378                 return -EINVAL;
3379
3380         bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3381         /*
3382          * If we fail to read from the underlying devices, as of now
3383          * the best option we have is to mark it EIO.
3384          */
3385         if (!bh)
3386                 return -EIO;
3387
3388         super = (struct btrfs_super_block *)bh->b_data;
3389         if (btrfs_super_bytenr(super) != bytenr ||
3390                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3391                 brelse(bh);
3392                 return -EINVAL;
3393         }
3394
3395         *bh_ret = bh;
3396         return 0;
3397 }
3398
3399
3400 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3401 {
3402         struct buffer_head *bh;
3403         struct buffer_head *latest = NULL;
3404         struct btrfs_super_block *super;
3405         int i;
3406         u64 transid = 0;
3407         int ret = -EINVAL;
3408
3409         /* we would like to check all the supers, but that would make
3410          * a btrfs mount succeed after a mkfs from a different FS.
3411          * So, we need to add a special mount option to scan for
3412          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3413          */
3414         for (i = 0; i < 1; i++) {
3415                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3416                 if (ret)
3417                         continue;
3418
3419                 super = (struct btrfs_super_block *)bh->b_data;
3420
3421                 if (!latest || btrfs_super_generation(super) > transid) {
3422                         brelse(latest);
3423                         latest = bh;
3424                         transid = btrfs_super_generation(super);
3425                 } else {
3426                         brelse(bh);
3427                 }
3428         }
3429
3430         if (!latest)
3431                 return ERR_PTR(ret);
3432
3433         return latest;
3434 }
3435
3436 /*
3437  * Write superblock @sb to the @device. Do not wait for completion, all the
3438  * buffer heads we write are pinned.
3439  *
3440  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3441  * the expected device size at commit time. Note that max_mirrors must be
3442  * same for write and wait phases.
3443  *
3444  * Return number of errors when buffer head is not found or submission fails.
3445  */
3446 static int write_dev_supers(struct btrfs_device *device,
3447                             struct btrfs_super_block *sb, int max_mirrors)
3448 {
3449         struct buffer_head *bh;
3450         int i;
3451         int ret;
3452         int errors = 0;
3453         u32 crc;
3454         u64 bytenr;
3455         int op_flags;
3456
3457         if (max_mirrors == 0)
3458                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3459
3460         for (i = 0; i < max_mirrors; i++) {
3461                 bytenr = btrfs_sb_offset(i);
3462                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3463                     device->commit_total_bytes)
3464                         break;
3465
3466                 btrfs_set_super_bytenr(sb, bytenr);
3467
3468                 crc = ~(u32)0;
3469                 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3470                                       BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3471                 btrfs_csum_final(crc, sb->csum);
3472
3473                 /* One reference for us, and we leave it for the caller */
3474                 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3475                               BTRFS_SUPER_INFO_SIZE);
3476                 if (!bh) {
3477                         btrfs_err(device->fs_info,
3478                             "couldn't get super buffer head for bytenr %llu",
3479                             bytenr);
3480                         errors++;
3481                         continue;
3482                 }
3483
3484                 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3485
3486                 /* one reference for submit_bh */
3487                 get_bh(bh);
3488
3489                 set_buffer_uptodate(bh);
3490                 lock_buffer(bh);
3491                 bh->b_end_io = btrfs_end_buffer_write_sync;
3492                 bh->b_private = device;
3493
3494                 /*
3495                  * we fua the first super.  The others we allow
3496                  * to go down lazy.
3497                  */
3498                 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3499                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3500                         op_flags |= REQ_FUA;
3501                 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3502                 if (ret)
3503                         errors++;
3504         }
3505         return errors < i ? 0 : -1;
3506 }
3507
3508 /*
3509  * Wait for write completion of superblocks done by write_dev_supers,
3510  * @max_mirrors same for write and wait phases.
3511  *
3512  * Return number of errors when buffer head is not found or not marked up to
3513  * date.
3514  */
3515 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3516 {
3517         struct buffer_head *bh;
3518         int i;
3519         int errors = 0;
3520         bool primary_failed = false;
3521         u64 bytenr;
3522
3523         if (max_mirrors == 0)
3524                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3525
3526         for (i = 0; i < max_mirrors; i++) {
3527                 bytenr = btrfs_sb_offset(i);
3528                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3529                     device->commit_total_bytes)
3530                         break;
3531
3532                 bh = __find_get_block(device->bdev,
3533                                       bytenr / BTRFS_BDEV_BLOCKSIZE,
3534                                       BTRFS_SUPER_INFO_SIZE);
3535                 if (!bh) {
3536                         errors++;
3537                         if (i == 0)
3538                                 primary_failed = true;
3539                         continue;
3540                 }
3541                 wait_on_buffer(bh);
3542                 if (!buffer_uptodate(bh)) {
3543                         errors++;
3544                         if (i == 0)
3545                                 primary_failed = true;
3546                 }
3547
3548                 /* drop our reference */
3549                 brelse(bh);
3550
3551                 /* drop the reference from the writing run */
3552                 brelse(bh);
3553         }
3554
3555         /* log error, force error return */
3556         if (primary_failed) {
3557                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3558                           device->devid);
3559                 return -1;
3560         }
3561
3562         return errors < i ? 0 : -1;
3563 }
3564
3565 /*
3566  * endio for the write_dev_flush, this will wake anyone waiting
3567  * for the barrier when it is done
3568  */
3569 static void btrfs_end_empty_barrier(struct bio *bio)
3570 {
3571         complete(bio->bi_private);
3572 }
3573
3574 /*
3575  * Submit a flush request to the device if it supports it. Error handling is
3576  * done in the waiting counterpart.
3577  */
3578 static void write_dev_flush(struct btrfs_device *device)
3579 {
3580         struct request_queue *q = bdev_get_queue(device->bdev);
3581         struct bio *bio = device->flush_bio;
3582
3583         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3584                 return;
3585
3586         bio_reset(bio);
3587         bio->bi_end_io = btrfs_end_empty_barrier;
3588         bio_set_dev(bio, device->bdev);
3589         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3590         init_completion(&device->flush_wait);
3591         bio->bi_private = &device->flush_wait;
3592
3593         btrfsic_submit_bio(bio);
3594         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3595 }
3596
3597 /*
3598  * If the flush bio has been submitted by write_dev_flush, wait for it.
3599  */
3600 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3601 {
3602         struct bio *bio = device->flush_bio;
3603
3604         if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3605                 return BLK_STS_OK;
3606
3607         clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3608         wait_for_completion_io(&device->flush_wait);
3609
3610         return bio->bi_status;
3611 }
3612
3613 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3614 {
3615         if (!btrfs_check_rw_degradable(fs_info, NULL))
3616                 return -EIO;
3617         return 0;
3618 }
3619
3620 /*
3621  * send an empty flush down to each device in parallel,
3622  * then wait for them
3623  */
3624 static int barrier_all_devices(struct btrfs_fs_info *info)
3625 {
3626         struct list_head *head;
3627         struct btrfs_device *dev;
3628         int errors_wait = 0;
3629         blk_status_t ret;
3630
3631         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3632         /* send down all the barriers */
3633         head = &info->fs_devices->devices;
3634         list_for_each_entry(dev, head, dev_list) {
3635                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3636                         continue;
3637                 if (!dev->bdev)
3638                         continue;
3639                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3640                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3641                         continue;
3642
3643                 write_dev_flush(dev);
3644                 dev->last_flush_error = BLK_STS_OK;
3645         }
3646
3647         /* wait for all the barriers */
3648         list_for_each_entry(dev, head, dev_list) {
3649                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3650                         continue;
3651                 if (!dev->bdev) {
3652                         errors_wait++;
3653                         continue;
3654                 }
3655                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3656                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3657                         continue;
3658
3659                 ret = wait_dev_flush(dev);
3660                 if (ret) {
3661                         dev->last_flush_error = ret;
3662                         btrfs_dev_stat_inc_and_print(dev,
3663                                         BTRFS_DEV_STAT_FLUSH_ERRS);
3664                         errors_wait++;
3665                 }
3666         }
3667
3668         if (errors_wait) {
3669                 /*
3670                  * At some point we need the status of all disks
3671                  * to arrive at the volume status. So error checking
3672                  * is being pushed to a separate loop.
3673                  */
3674                 return check_barrier_error(info);
3675         }
3676         return 0;
3677 }
3678
3679 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3680 {
3681         int raid_type;
3682         int min_tolerated = INT_MAX;
3683
3684         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3685             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3686                 min_tolerated = min(min_tolerated,
3687                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3688                                     tolerated_failures);
3689
3690         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3691                 if (raid_type == BTRFS_RAID_SINGLE)
3692                         continue;
3693                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3694                         continue;
3695                 min_tolerated = min(min_tolerated,
3696                                     btrfs_raid_array[raid_type].
3697                                     tolerated_failures);
3698         }
3699
3700         if (min_tolerated == INT_MAX) {
3701                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3702                 min_tolerated = 0;
3703         }
3704
3705         return min_tolerated;
3706 }
3707
3708 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3709 {
3710         struct list_head *head;
3711         struct btrfs_device *dev;
3712         struct btrfs_super_block *sb;
3713         struct btrfs_dev_item *dev_item;
3714         int ret;
3715         int do_barriers;
3716         int max_errors;
3717         int total_errors = 0;
3718         u64 flags;
3719
3720         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3721
3722         /*
3723          * max_mirrors == 0 indicates we're from commit_transaction,
3724          * not from fsync where the tree roots in fs_info have not
3725          * been consistent on disk.
3726          */
3727         if (max_mirrors == 0)
3728                 backup_super_roots(fs_info);
3729
3730         sb = fs_info->super_for_commit;
3731         dev_item = &sb->dev_item;
3732
3733         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3734         head = &fs_info->fs_devices->devices;
3735         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3736
3737         if (do_barriers) {
3738                 ret = barrier_all_devices(fs_info);
3739                 if (ret) {
3740                         mutex_unlock(
3741                                 &fs_info->fs_devices->device_list_mutex);
3742                         btrfs_handle_fs_error(fs_info, ret,
3743                                               "errors while submitting device barriers.");
3744                         return ret;
3745                 }
3746         }
3747
3748         list_for_each_entry(dev, head, dev_list) {
3749                 if (!dev->bdev) {
3750                         total_errors++;
3751                         continue;
3752                 }
3753                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3754                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3755                         continue;
3756
3757                 btrfs_set_stack_device_generation(dev_item, 0);
3758                 btrfs_set_stack_device_type(dev_item, dev->type);
3759                 btrfs_set_stack_device_id(dev_item, dev->devid);
3760                 btrfs_set_stack_device_total_bytes(dev_item,
3761                                                    dev->commit_total_bytes);
3762                 btrfs_set_stack_device_bytes_used(dev_item,
3763                                                   dev->commit_bytes_used);
3764                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3765                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3766                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3767                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3768                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
3769
3770                 flags = btrfs_super_flags(sb);
3771                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3772
3773                 ret = write_dev_supers(dev, sb, max_mirrors);
3774                 if (ret)
3775                         total_errors++;
3776         }
3777         if (total_errors > max_errors) {
3778                 btrfs_err(fs_info, "%d errors while writing supers",
3779                           total_errors);
3780                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3781
3782                 /* FUA is masked off if unsupported and can't be the reason */
3783                 btrfs_handle_fs_error(fs_info, -EIO,
3784                                       "%d errors while writing supers",
3785                                       total_errors);
3786                 return -EIO;
3787         }
3788
3789         total_errors = 0;
3790         list_for_each_entry(dev, head, dev_list) {
3791                 if (!dev->bdev)
3792                         continue;
3793                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3794                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3795                         continue;
3796
3797                 ret = wait_dev_supers(dev, max_mirrors);
3798                 if (ret)
3799                         total_errors++;
3800         }
3801         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3802         if (total_errors > max_errors) {
3803                 btrfs_handle_fs_error(fs_info, -EIO,
3804                                       "%d errors while writing supers",
3805                                       total_errors);
3806                 return -EIO;
3807         }
3808         return 0;
3809 }
3810
3811 /* Drop a fs root from the radix tree and free it. */
3812 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3813                                   struct btrfs_root *root)
3814 {
3815         spin_lock(&fs_info->fs_roots_radix_lock);
3816         radix_tree_delete(&fs_info->fs_roots_radix,
3817                           (unsigned long)root->root_key.objectid);
3818         spin_unlock(&fs_info->fs_roots_radix_lock);
3819
3820         if (btrfs_root_refs(&root->root_item) == 0)
3821                 synchronize_srcu(&fs_info->subvol_srcu);
3822
3823         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3824                 btrfs_free_log(NULL, root);
3825                 if (root->reloc_root) {
3826                         free_extent_buffer(root->reloc_root->node);
3827                         free_extent_buffer(root->reloc_root->commit_root);
3828                         btrfs_put_fs_root(root->reloc_root);
3829                         root->reloc_root = NULL;
3830                 }
3831         }
3832
3833         if (root->free_ino_pinned)
3834                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3835         if (root->free_ino_ctl)
3836                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3837         free_fs_root(root);
3838 }
3839
3840 static void free_fs_root(struct btrfs_root *root)
3841 {
3842         iput(root->ino_cache_inode);
3843         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3844         btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
3845         root->orphan_block_rsv = NULL;
3846         if (root->anon_dev)
3847                 free_anon_bdev(root->anon_dev);
3848         if (root->subv_writers)
3849                 btrfs_free_subvolume_writers(root->subv_writers);
3850         free_extent_buffer(root->node);
3851         free_extent_buffer(root->commit_root);
3852         kfree(root->free_ino_ctl);
3853         kfree(root->free_ino_pinned);
3854         kfree(root->name);
3855         btrfs_put_fs_root(root);
3856 }
3857
3858 void btrfs_free_fs_root(struct btrfs_root *root)
3859 {
3860         free_fs_root(root);
3861 }
3862
3863 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3864 {
3865         u64 root_objectid = 0;
3866         struct btrfs_root *gang[8];
3867         int i = 0;
3868         int err = 0;
3869         unsigned int ret = 0;
3870         int index;
3871
3872         while (1) {
3873                 index = srcu_read_lock(&fs_info->subvol_srcu);
3874                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3875                                              (void **)gang, root_objectid,
3876                                              ARRAY_SIZE(gang));
3877                 if (!ret) {
3878                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3879                         break;
3880                 }
3881                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3882
3883                 for (i = 0; i < ret; i++) {
3884                         /* Avoid to grab roots in dead_roots */
3885                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3886                                 gang[i] = NULL;
3887                                 continue;
3888                         }
3889                         /* grab all the search result for later use */
3890                         gang[i] = btrfs_grab_fs_root(gang[i]);
3891                 }
3892                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3893
3894                 for (i = 0; i < ret; i++) {
3895                         if (!gang[i])
3896                                 continue;
3897                         root_objectid = gang[i]->root_key.objectid;
3898                         err = btrfs_orphan_cleanup(gang[i]);
3899                         if (err)
3900                                 break;
3901                         btrfs_put_fs_root(gang[i]);
3902                 }
3903                 root_objectid++;
3904         }
3905
3906         /* release the uncleaned roots due to error */
3907         for (; i < ret; i++) {
3908                 if (gang[i])
3909                         btrfs_put_fs_root(gang[i]);
3910         }
3911         return err;
3912 }
3913
3914 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3915 {
3916         struct btrfs_root *root = fs_info->tree_root;
3917         struct btrfs_trans_handle *trans;
3918
3919         mutex_lock(&fs_info->cleaner_mutex);
3920         btrfs_run_delayed_iputs(fs_info);
3921         mutex_unlock(&fs_info->cleaner_mutex);
3922         wake_up_process(fs_info->cleaner_kthread);
3923
3924         /* wait until ongoing cleanup work done */
3925         down_write(&fs_info->cleanup_work_sem);
3926         up_write(&fs_info->cleanup_work_sem);
3927
3928         trans = btrfs_join_transaction(root);
3929         if (IS_ERR(trans))
3930                 return PTR_ERR(trans);
3931         return btrfs_commit_transaction(trans);
3932 }
3933
3934 void close_ctree(struct btrfs_fs_info *fs_info)
3935 {
3936         struct btrfs_root *root = fs_info->tree_root;
3937         int ret;
3938
3939         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3940
3941         /* wait for the qgroup rescan worker to stop */
3942         btrfs_qgroup_wait_for_completion(fs_info, false);
3943
3944         /* wait for the uuid_scan task to finish */
3945         down(&fs_info->uuid_tree_rescan_sem);
3946         /* avoid complains from lockdep et al., set sem back to initial state */
3947         up(&fs_info->uuid_tree_rescan_sem);
3948
3949         /* pause restriper - we want to resume on mount */
3950         btrfs_pause_balance(fs_info);
3951
3952         btrfs_dev_replace_suspend_for_unmount(fs_info);
3953
3954         btrfs_scrub_cancel(fs_info);
3955
3956         /* wait for any defraggers to finish */
3957         wait_event(fs_info->transaction_wait,
3958                    (atomic_read(&fs_info->defrag_running) == 0));
3959
3960         /* clear out the rbtree of defraggable inodes */
3961         btrfs_cleanup_defrag_inodes(fs_info);
3962
3963         cancel_work_sync(&fs_info->async_reclaim_work);
3964
3965         if (!sb_rdonly(fs_info->sb)) {
3966                 /*
3967                  * If the cleaner thread is stopped and there are
3968                  * block groups queued for removal, the deletion will be
3969                  * skipped when we quit the cleaner thread.
3970                  */
3971                 btrfs_delete_unused_bgs(fs_info);
3972
3973                 ret = btrfs_commit_super(fs_info);
3974                 if (ret)
3975                         btrfs_err(fs_info, "commit super ret %d", ret);
3976         }
3977
3978         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
3979             test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
3980                 btrfs_error_commit_super(fs_info);
3981
3982         kthread_stop(fs_info->transaction_kthread);
3983         kthread_stop(fs_info->cleaner_kthread);
3984
3985         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3986
3987         btrfs_free_qgroup_config(fs_info);
3988         ASSERT(list_empty(&fs_info->delalloc_roots));
3989
3990         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3991                 btrfs_info(fs_info, "at unmount delalloc count %lld",
3992                        percpu_counter_sum(&fs_info->delalloc_bytes));
3993         }
3994
3995         btrfs_sysfs_remove_mounted(fs_info);
3996         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3997
3998         btrfs_free_fs_roots(fs_info);
3999
4000         btrfs_put_block_group_cache(fs_info);
4001
4002         /*
4003          * we must make sure there is not any read request to
4004          * submit after we stopping all workers.
4005          */
4006         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4007         btrfs_stop_all_workers(fs_info);
4008
4009         btrfs_free_block_groups(fs_info);
4010
4011         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4012         free_root_pointers(fs_info, 1);
4013
4014         iput(fs_info->btree_inode);
4015
4016 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4017         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4018                 btrfsic_unmount(fs_info->fs_devices);
4019 #endif
4020
4021         btrfs_close_devices(fs_info->fs_devices);
4022         btrfs_mapping_tree_free(&fs_info->mapping_tree);
4023
4024         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4025         percpu_counter_destroy(&fs_info->delalloc_bytes);
4026         percpu_counter_destroy(&fs_info->bio_counter);
4027         cleanup_srcu_struct(&fs_info->subvol_srcu);
4028
4029         btrfs_free_stripe_hash_table(fs_info);
4030         btrfs_free_ref_cache(fs_info);
4031
4032         __btrfs_free_block_rsv(root->orphan_block_rsv);
4033         root->orphan_block_rsv = NULL;
4034
4035         while (!list_empty(&fs_info->pinned_chunks)) {
4036                 struct extent_map *em;
4037
4038                 em = list_first_entry(&fs_info->pinned_chunks,
4039                                       struct extent_map, list);
4040                 list_del_init(&em->list);
4041                 free_extent_map(em);
4042         }
4043 }
4044
4045 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4046                           int atomic)
4047 {
4048         int ret;
4049         struct inode *btree_inode = buf->pages[0]->mapping->host;
4050
4051         ret = extent_buffer_uptodate(buf);
4052         if (!ret)
4053                 return ret;
4054
4055         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4056                                     parent_transid, atomic);
4057         if (ret == -EAGAIN)
4058                 return ret;
4059         return !ret;
4060 }
4061
4062 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4063 {
4064         struct btrfs_fs_info *fs_info;
4065         struct btrfs_root *root;
4066         u64 transid = btrfs_header_generation(buf);
4067         int was_dirty;
4068
4069 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4070         /*
4071          * This is a fast path so only do this check if we have sanity tests
4072          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
4073          * outside of the sanity tests.
4074          */
4075         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4076                 return;
4077 #endif
4078         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4079         fs_info = root->fs_info;
4080         btrfs_assert_tree_locked(buf);
4081         if (transid != fs_info->generation)
4082                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4083                         buf->start, transid, fs_info->generation);
4084         was_dirty = set_extent_buffer_dirty(buf);
4085         if (!was_dirty)
4086                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4087                                          buf->len,
4088                                          fs_info->dirty_metadata_batch);
4089 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4090         /*
4091          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4092          * but item data not updated.
4093          * So here we should only check item pointers, not item data.
4094          */
4095         if (btrfs_header_level(buf) == 0 &&
4096             btrfs_check_leaf_relaxed(fs_info, buf)) {
4097                 btrfs_print_leaf(buf);
4098                 ASSERT(0);
4099         }
4100 #endif
4101 }
4102
4103 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4104                                         int flush_delayed)
4105 {
4106         /*
4107          * looks as though older kernels can get into trouble with
4108          * this code, they end up stuck in balance_dirty_pages forever
4109          */
4110         int ret;
4111
4112         if (current->flags & PF_MEMALLOC)
4113                 return;
4114
4115         if (flush_delayed)
4116                 btrfs_balance_delayed_items(fs_info);
4117
4118         ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4119                                      BTRFS_DIRTY_METADATA_THRESH);
4120         if (ret > 0) {
4121                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4122         }
4123 }
4124
4125 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4126 {
4127         __btrfs_btree_balance_dirty(fs_info, 1);
4128 }
4129
4130 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4131 {
4132         __btrfs_btree_balance_dirty(fs_info, 0);
4133 }
4134
4135 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4136                       struct btrfs_key *first_key)
4137 {
4138         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4139         struct btrfs_fs_info *fs_info = root->fs_info;
4140
4141         return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
4142                                               level, first_key);
4143 }
4144
4145 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4146 {
4147         /* cleanup FS via transaction */
4148         btrfs_cleanup_transaction(fs_info);
4149
4150         mutex_lock(&fs_info->cleaner_mutex);
4151         btrfs_run_delayed_iputs(fs_info);
4152         mutex_unlock(&fs_info->cleaner_mutex);
4153
4154         down_write(&fs_info->cleanup_work_sem);
4155         up_write(&fs_info->cleanup_work_sem);
4156 }
4157
4158 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4159 {
4160         struct btrfs_ordered_extent *ordered;
4161
4162         spin_lock(&root->ordered_extent_lock);
4163         /*
4164          * This will just short circuit the ordered completion stuff which will
4165          * make sure the ordered extent gets properly cleaned up.
4166          */
4167         list_for_each_entry(ordered, &root->ordered_extents,
4168                             root_extent_list)
4169                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4170         spin_unlock(&root->ordered_extent_lock);
4171 }
4172
4173 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4174 {
4175         struct btrfs_root *root;
4176         struct list_head splice;
4177
4178         INIT_LIST_HEAD(&splice);
4179
4180         spin_lock(&fs_info->ordered_root_lock);
4181         list_splice_init(&fs_info->ordered_roots, &splice);
4182         while (!list_empty(&splice)) {
4183                 root = list_first_entry(&splice, struct btrfs_root,
4184                                         ordered_root);
4185                 list_move_tail(&root->ordered_root,
4186                                &fs_info->ordered_roots);
4187
4188                 spin_unlock(&fs_info->ordered_root_lock);
4189                 btrfs_destroy_ordered_extents(root);
4190
4191                 cond_resched();
4192                 spin_lock(&fs_info->ordered_root_lock);
4193         }
4194         spin_unlock(&fs_info->ordered_root_lock);
4195 }
4196
4197 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4198                                       struct btrfs_fs_info *fs_info)
4199 {
4200         struct rb_node *node;
4201         struct btrfs_delayed_ref_root *delayed_refs;
4202         struct btrfs_delayed_ref_node *ref;
4203         int ret = 0;
4204
4205         delayed_refs = &trans->delayed_refs;
4206
4207         spin_lock(&delayed_refs->lock);
4208         if (atomic_read(&delayed_refs->num_entries) == 0) {
4209                 spin_unlock(&delayed_refs->lock);
4210                 btrfs_info(fs_info, "delayed_refs has NO entry");
4211                 return ret;
4212         }
4213
4214         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4215                 struct btrfs_delayed_ref_head *head;
4216                 struct rb_node *n;
4217                 bool pin_bytes = false;
4218
4219                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4220                                 href_node);
4221                 if (!mutex_trylock(&head->mutex)) {
4222                         refcount_inc(&head->refs);
4223                         spin_unlock(&delayed_refs->lock);
4224
4225                         mutex_lock(&head->mutex);
4226                         mutex_unlock(&head->mutex);
4227                         btrfs_put_delayed_ref_head(head);
4228                         spin_lock(&delayed_refs->lock);
4229                         continue;
4230                 }
4231                 spin_lock(&head->lock);
4232                 while ((n = rb_first(&head->ref_tree)) != NULL) {
4233                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4234                                        ref_node);
4235                         ref->in_tree = 0;
4236                         rb_erase(&ref->ref_node, &head->ref_tree);
4237                         RB_CLEAR_NODE(&ref->ref_node);
4238                         if (!list_empty(&ref->add_list))
4239                                 list_del(&ref->add_list);
4240                         atomic_dec(&delayed_refs->num_entries);
4241                         btrfs_put_delayed_ref(ref);
4242                 }
4243                 if (head->must_insert_reserved)
4244                         pin_bytes = true;
4245                 btrfs_free_delayed_extent_op(head->extent_op);
4246                 delayed_refs->num_heads--;
4247                 if (head->processing == 0)
4248                         delayed_refs->num_heads_ready--;
4249                 atomic_dec(&delayed_refs->num_entries);
4250                 rb_erase(&head->href_node, &delayed_refs->href_root);
4251                 RB_CLEAR_NODE(&head->href_node);
4252                 spin_unlock(&head->lock);
4253                 spin_unlock(&delayed_refs->lock);
4254                 mutex_unlock(&head->mutex);
4255
4256                 if (pin_bytes)
4257                         btrfs_pin_extent(fs_info, head->bytenr,
4258                                          head->num_bytes, 1);
4259                 btrfs_put_delayed_ref_head(head);
4260                 cond_resched();
4261                 spin_lock(&delayed_refs->lock);
4262         }
4263
4264         spin_unlock(&delayed_refs->lock);
4265
4266         return ret;
4267 }
4268
4269 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4270 {
4271         struct btrfs_inode *btrfs_inode;
4272         struct list_head splice;
4273
4274         INIT_LIST_HEAD(&splice);
4275
4276         spin_lock(&root->delalloc_lock);
4277         list_splice_init(&root->delalloc_inodes, &splice);
4278
4279         while (!list_empty(&splice)) {
4280                 struct inode *inode = NULL;
4281                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4282                                                delalloc_inodes);
4283                 __btrfs_del_delalloc_inode(root, btrfs_inode);
4284                 spin_unlock(&root->delalloc_lock);
4285
4286                 /*
4287                  * Make sure we get a live inode and that it'll not disappear
4288                  * meanwhile.
4289                  */
4290                 inode = igrab(&btrfs_inode->vfs_inode);
4291                 if (inode) {
4292                         invalidate_inode_pages2(inode->i_mapping);
4293                         iput(inode);
4294                 }
4295                 spin_lock(&root->delalloc_lock);
4296         }
4297         spin_unlock(&root->delalloc_lock);
4298 }
4299
4300 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4301 {
4302         struct btrfs_root *root;
4303         struct list_head splice;
4304
4305         INIT_LIST_HEAD(&splice);
4306
4307         spin_lock(&fs_info->delalloc_root_lock);
4308         list_splice_init(&fs_info->delalloc_roots, &splice);
4309         while (!list_empty(&splice)) {
4310                 root = list_first_entry(&splice, struct btrfs_root,
4311                                          delalloc_root);
4312                 root = btrfs_grab_fs_root(root);
4313                 BUG_ON(!root);
4314                 spin_unlock(&fs_info->delalloc_root_lock);
4315
4316                 btrfs_destroy_delalloc_inodes(root);
4317                 btrfs_put_fs_root(root);
4318
4319                 spin_lock(&fs_info->delalloc_root_lock);
4320         }
4321         spin_unlock(&fs_info->delalloc_root_lock);
4322 }
4323
4324 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4325                                         struct extent_io_tree *dirty_pages,
4326                                         int mark)
4327 {
4328         int ret;
4329         struct extent_buffer *eb;
4330         u64 start = 0;
4331         u64 end;
4332
4333         while (1) {
4334                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4335                                             mark, NULL);
4336                 if (ret)
4337                         break;
4338
4339                 clear_extent_bits(dirty_pages, start, end, mark);
4340                 while (start <= end) {
4341                         eb = find_extent_buffer(fs_info, start);
4342                         start += fs_info->nodesize;
4343                         if (!eb)
4344                                 continue;
4345                         wait_on_extent_buffer_writeback(eb);
4346
4347                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4348                                                &eb->bflags))
4349                                 clear_extent_buffer_dirty(eb);
4350                         free_extent_buffer_stale(eb);
4351                 }
4352         }
4353
4354         return ret;
4355 }
4356
4357 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4358                                        struct extent_io_tree *pinned_extents)
4359 {
4360         struct extent_io_tree *unpin;
4361         u64 start;
4362         u64 end;
4363         int ret;
4364         bool loop = true;
4365
4366         unpin = pinned_extents;
4367 again:
4368         while (1) {
4369                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4370                                             EXTENT_DIRTY, NULL);
4371                 if (ret)
4372                         break;
4373
4374                 clear_extent_dirty(unpin, start, end);
4375                 btrfs_error_unpin_extent_range(fs_info, start, end);
4376                 cond_resched();
4377         }
4378
4379         if (loop) {
4380                 if (unpin == &fs_info->freed_extents[0])
4381                         unpin = &fs_info->freed_extents[1];
4382                 else
4383                         unpin = &fs_info->freed_extents[0];
4384                 loop = false;
4385                 goto again;
4386         }
4387
4388         return 0;
4389 }
4390
4391 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4392 {
4393         struct inode *inode;
4394
4395         inode = cache->io_ctl.inode;
4396         if (inode) {
4397                 invalidate_inode_pages2(inode->i_mapping);
4398                 BTRFS_I(inode)->generation = 0;
4399                 cache->io_ctl.inode = NULL;
4400                 iput(inode);
4401         }
4402         btrfs_put_block_group(cache);
4403 }
4404
4405 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4406                              struct btrfs_fs_info *fs_info)
4407 {
4408         struct btrfs_block_group_cache *cache;
4409
4410         spin_lock(&cur_trans->dirty_bgs_lock);
4411         while (!list_empty(&cur_trans->dirty_bgs)) {
4412                 cache = list_first_entry(&cur_trans->dirty_bgs,
4413                                          struct btrfs_block_group_cache,
4414                                          dirty_list);
4415
4416                 if (!list_empty(&cache->io_list)) {
4417                         spin_unlock(&cur_trans->dirty_bgs_lock);
4418                         list_del_init(&cache->io_list);
4419                         btrfs_cleanup_bg_io(cache);
4420                         spin_lock(&cur_trans->dirty_bgs_lock);
4421                 }
4422
4423                 list_del_init(&cache->dirty_list);
4424                 spin_lock(&cache->lock);
4425                 cache->disk_cache_state = BTRFS_DC_ERROR;
4426                 spin_unlock(&cache->lock);
4427
4428                 spin_unlock(&cur_trans->dirty_bgs_lock);
4429                 btrfs_put_block_group(cache);
4430                 spin_lock(&cur_trans->dirty_bgs_lock);
4431         }
4432         spin_unlock(&cur_trans->dirty_bgs_lock);
4433
4434         /*
4435          * Refer to the definition of io_bgs member for details why it's safe
4436          * to use it without any locking
4437          */
4438         while (!list_empty(&cur_trans->io_bgs)) {
4439                 cache = list_first_entry(&cur_trans->io_bgs,
4440                                          struct btrfs_block_group_cache,
4441                                          io_list);
4442
4443                 list_del_init(&cache->io_list);
4444                 spin_lock(&cache->lock);
4445                 cache->disk_cache_state = BTRFS_DC_ERROR;
4446                 spin_unlock(&cache->lock);
4447                 btrfs_cleanup_bg_io(cache);
4448         }
4449 }
4450
4451 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4452                                    struct btrfs_fs_info *fs_info)
4453 {
4454         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4455         ASSERT(list_empty(&cur_trans->dirty_bgs));
4456         ASSERT(list_empty(&cur_trans->io_bgs));
4457
4458         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4459
4460         cur_trans->state = TRANS_STATE_COMMIT_START;
4461         wake_up(&fs_info->transaction_blocked_wait);
4462
4463         cur_trans->state = TRANS_STATE_UNBLOCKED;
4464         wake_up(&fs_info->transaction_wait);
4465
4466         btrfs_destroy_delayed_inodes(fs_info);
4467         btrfs_assert_delayed_root_empty(fs_info);
4468
4469         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4470                                      EXTENT_DIRTY);
4471         btrfs_destroy_pinned_extent(fs_info,
4472                                     fs_info->pinned_extents);
4473
4474         cur_trans->state =TRANS_STATE_COMPLETED;
4475         wake_up(&cur_trans->commit_wait);
4476 }
4477
4478 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4479 {
4480         struct btrfs_transaction *t;
4481
4482         mutex_lock(&fs_info->transaction_kthread_mutex);
4483
4484         spin_lock(&fs_info->trans_lock);
4485         while (!list_empty(&fs_info->trans_list)) {
4486                 t = list_first_entry(&fs_info->trans_list,
4487                                      struct btrfs_transaction, list);
4488                 if (t->state >= TRANS_STATE_COMMIT_START) {
4489                         refcount_inc(&t->use_count);
4490                         spin_unlock(&fs_info->trans_lock);
4491                         btrfs_wait_for_commit(fs_info, t->transid);
4492                         btrfs_put_transaction(t);
4493                         spin_lock(&fs_info->trans_lock);
4494                         continue;
4495                 }
4496                 if (t == fs_info->running_transaction) {
4497                         t->state = TRANS_STATE_COMMIT_DOING;
4498                         spin_unlock(&fs_info->trans_lock);
4499                         /*
4500                          * We wait for 0 num_writers since we don't hold a trans
4501                          * handle open currently for this transaction.
4502                          */
4503                         wait_event(t->writer_wait,
4504                                    atomic_read(&t->num_writers) == 0);
4505                 } else {
4506                         spin_unlock(&fs_info->trans_lock);
4507                 }
4508                 btrfs_cleanup_one_transaction(t, fs_info);
4509
4510                 spin_lock(&fs_info->trans_lock);
4511                 if (t == fs_info->running_transaction)
4512                         fs_info->running_transaction = NULL;
4513                 list_del_init(&t->list);
4514                 spin_unlock(&fs_info->trans_lock);
4515
4516                 btrfs_put_transaction(t);
4517                 trace_btrfs_transaction_commit(fs_info->tree_root);
4518                 spin_lock(&fs_info->trans_lock);
4519         }
4520         spin_unlock(&fs_info->trans_lock);
4521         btrfs_destroy_all_ordered_extents(fs_info);
4522         btrfs_destroy_delayed_inodes(fs_info);
4523         btrfs_assert_delayed_root_empty(fs_info);
4524         btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4525         btrfs_destroy_all_delalloc_inodes(fs_info);
4526         mutex_unlock(&fs_info->transaction_kthread_mutex);
4527
4528         return 0;
4529 }
4530
4531 static struct btrfs_fs_info *btree_fs_info(void *private_data)
4532 {
4533         struct inode *inode = private_data;
4534         return btrfs_sb(inode->i_sb);
4535 }
4536
4537 static const struct extent_io_ops btree_extent_io_ops = {
4538         /* mandatory callbacks */
4539         .submit_bio_hook = btree_submit_bio_hook,
4540         .readpage_end_io_hook = btree_readpage_end_io_hook,
4541         /* note we're sharing with inode.c for the merge bio hook */
4542         .merge_bio_hook = btrfs_merge_bio_hook,
4543         .readpage_io_failed_hook = btree_io_failed_hook,
4544         .set_range_writeback = btrfs_set_range_writeback,
4545         .tree_fs_info = btree_fs_info,
4546
4547         /* optional callbacks */
4548 };