Btrfs: fix btrfs_evict_inode to handle abnormal inodes correctly
[linux-2.6-block.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
53 #include "tree-checker.h"
54 #include "ref-verify.h"
55
56 #ifdef CONFIG_X86
57 #include <asm/cpufeature.h>
58 #endif
59
60 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
61                                  BTRFS_HEADER_FLAG_RELOC |\
62                                  BTRFS_SUPER_FLAG_ERROR |\
63                                  BTRFS_SUPER_FLAG_SEEDING |\
64                                  BTRFS_SUPER_FLAG_METADUMP |\
65                                  BTRFS_SUPER_FLAG_METADUMP_V2)
66
67 static const struct extent_io_ops btree_extent_io_ops;
68 static void end_workqueue_fn(struct btrfs_work *work);
69 static void free_fs_root(struct btrfs_root *root);
70 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
71 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
72 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
73                                       struct btrfs_fs_info *fs_info);
74 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
75 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
76                                         struct extent_io_tree *dirty_pages,
77                                         int mark);
78 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
79                                        struct extent_io_tree *pinned_extents);
80 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
81 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
82
83 /*
84  * btrfs_end_io_wq structs are used to do processing in task context when an IO
85  * is complete.  This is used during reads to verify checksums, and it is used
86  * by writes to insert metadata for new file extents after IO is complete.
87  */
88 struct btrfs_end_io_wq {
89         struct bio *bio;
90         bio_end_io_t *end_io;
91         void *private;
92         struct btrfs_fs_info *info;
93         blk_status_t status;
94         enum btrfs_wq_endio_type metadata;
95         struct btrfs_work work;
96 };
97
98 static struct kmem_cache *btrfs_end_io_wq_cache;
99
100 int __init btrfs_end_io_wq_init(void)
101 {
102         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
103                                         sizeof(struct btrfs_end_io_wq),
104                                         0,
105                                         SLAB_MEM_SPREAD,
106                                         NULL);
107         if (!btrfs_end_io_wq_cache)
108                 return -ENOMEM;
109         return 0;
110 }
111
112 void btrfs_end_io_wq_exit(void)
113 {
114         kmem_cache_destroy(btrfs_end_io_wq_cache);
115 }
116
117 /*
118  * async submit bios are used to offload expensive checksumming
119  * onto the worker threads.  They checksum file and metadata bios
120  * just before they are sent down the IO stack.
121  */
122 struct async_submit_bio {
123         void *private_data;
124         struct btrfs_fs_info *fs_info;
125         struct bio *bio;
126         extent_submit_bio_hook_t *submit_bio_start;
127         extent_submit_bio_hook_t *submit_bio_done;
128         int mirror_num;
129         unsigned long bio_flags;
130         /*
131          * bio_offset is optional, can be used if the pages in the bio
132          * can't tell us where in the file the bio should go
133          */
134         u64 bio_offset;
135         struct btrfs_work work;
136         blk_status_t status;
137 };
138
139 /*
140  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
141  * eb, the lockdep key is determined by the btrfs_root it belongs to and
142  * the level the eb occupies in the tree.
143  *
144  * Different roots are used for different purposes and may nest inside each
145  * other and they require separate keysets.  As lockdep keys should be
146  * static, assign keysets according to the purpose of the root as indicated
147  * by btrfs_root->objectid.  This ensures that all special purpose roots
148  * have separate keysets.
149  *
150  * Lock-nesting across peer nodes is always done with the immediate parent
151  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
152  * subclass to avoid triggering lockdep warning in such cases.
153  *
154  * The key is set by the readpage_end_io_hook after the buffer has passed
155  * csum validation but before the pages are unlocked.  It is also set by
156  * btrfs_init_new_buffer on freshly allocated blocks.
157  *
158  * We also add a check to make sure the highest level of the tree is the
159  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
160  * needs update as well.
161  */
162 #ifdef CONFIG_DEBUG_LOCK_ALLOC
163 # if BTRFS_MAX_LEVEL != 8
164 #  error
165 # endif
166
167 static struct btrfs_lockdep_keyset {
168         u64                     id;             /* root objectid */
169         const char              *name_stem;     /* lock name stem */
170         char                    names[BTRFS_MAX_LEVEL + 1][20];
171         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
172 } btrfs_lockdep_keysets[] = {
173         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
174         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
175         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
176         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
177         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
178         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
179         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
180         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
181         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
182         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
183         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
184         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
185         { .id = 0,                              .name_stem = "tree"     },
186 };
187
188 void __init btrfs_init_lockdep(void)
189 {
190         int i, j;
191
192         /* initialize lockdep class names */
193         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
194                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
195
196                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
197                         snprintf(ks->names[j], sizeof(ks->names[j]),
198                                  "btrfs-%s-%02d", ks->name_stem, j);
199         }
200 }
201
202 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
203                                     int level)
204 {
205         struct btrfs_lockdep_keyset *ks;
206
207         BUG_ON(level >= ARRAY_SIZE(ks->keys));
208
209         /* find the matching keyset, id 0 is the default entry */
210         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
211                 if (ks->id == objectid)
212                         break;
213
214         lockdep_set_class_and_name(&eb->lock,
215                                    &ks->keys[level], ks->names[level]);
216 }
217
218 #endif
219
220 /*
221  * extents on the btree inode are pretty simple, there's one extent
222  * that covers the entire device
223  */
224 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
225                 struct page *page, size_t pg_offset, u64 start, u64 len,
226                 int create)
227 {
228         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
229         struct extent_map_tree *em_tree = &inode->extent_tree;
230         struct extent_map *em;
231         int ret;
232
233         read_lock(&em_tree->lock);
234         em = lookup_extent_mapping(em_tree, start, len);
235         if (em) {
236                 em->bdev = fs_info->fs_devices->latest_bdev;
237                 read_unlock(&em_tree->lock);
238                 goto out;
239         }
240         read_unlock(&em_tree->lock);
241
242         em = alloc_extent_map();
243         if (!em) {
244                 em = ERR_PTR(-ENOMEM);
245                 goto out;
246         }
247         em->start = 0;
248         em->len = (u64)-1;
249         em->block_len = (u64)-1;
250         em->block_start = 0;
251         em->bdev = fs_info->fs_devices->latest_bdev;
252
253         write_lock(&em_tree->lock);
254         ret = add_extent_mapping(em_tree, em, 0);
255         if (ret == -EEXIST) {
256                 free_extent_map(em);
257                 em = lookup_extent_mapping(em_tree, start, len);
258                 if (!em)
259                         em = ERR_PTR(-EIO);
260         } else if (ret) {
261                 free_extent_map(em);
262                 em = ERR_PTR(ret);
263         }
264         write_unlock(&em_tree->lock);
265
266 out:
267         return em;
268 }
269
270 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
271 {
272         return btrfs_crc32c(seed, data, len);
273 }
274
275 void btrfs_csum_final(u32 crc, u8 *result)
276 {
277         put_unaligned_le32(~crc, result);
278 }
279
280 /*
281  * compute the csum for a btree block, and either verify it or write it
282  * into the csum field of the block.
283  */
284 static int csum_tree_block(struct btrfs_fs_info *fs_info,
285                            struct extent_buffer *buf,
286                            int verify)
287 {
288         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
289         char result[BTRFS_CSUM_SIZE];
290         unsigned long len;
291         unsigned long cur_len;
292         unsigned long offset = BTRFS_CSUM_SIZE;
293         char *kaddr;
294         unsigned long map_start;
295         unsigned long map_len;
296         int err;
297         u32 crc = ~(u32)0;
298
299         len = buf->len - offset;
300         while (len > 0) {
301                 err = map_private_extent_buffer(buf, offset, 32,
302                                         &kaddr, &map_start, &map_len);
303                 if (err)
304                         return err;
305                 cur_len = min(len, map_len - (offset - map_start));
306                 crc = btrfs_csum_data(kaddr + offset - map_start,
307                                       crc, cur_len);
308                 len -= cur_len;
309                 offset += cur_len;
310         }
311         memset(result, 0, BTRFS_CSUM_SIZE);
312
313         btrfs_csum_final(crc, result);
314
315         if (verify) {
316                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
317                         u32 val;
318                         u32 found = 0;
319                         memcpy(&found, result, csum_size);
320
321                         read_extent_buffer(buf, &val, 0, csum_size);
322                         btrfs_warn_rl(fs_info,
323                                 "%s checksum verify failed on %llu wanted %X found %X level %d",
324                                 fs_info->sb->s_id, buf->start,
325                                 val, found, btrfs_header_level(buf));
326                         return -EUCLEAN;
327                 }
328         } else {
329                 write_extent_buffer(buf, result, 0, csum_size);
330         }
331
332         return 0;
333 }
334
335 /*
336  * we can't consider a given block up to date unless the transid of the
337  * block matches the transid in the parent node's pointer.  This is how we
338  * detect blocks that either didn't get written at all or got written
339  * in the wrong place.
340  */
341 static int verify_parent_transid(struct extent_io_tree *io_tree,
342                                  struct extent_buffer *eb, u64 parent_transid,
343                                  int atomic)
344 {
345         struct extent_state *cached_state = NULL;
346         int ret;
347         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
348
349         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
350                 return 0;
351
352         if (atomic)
353                 return -EAGAIN;
354
355         if (need_lock) {
356                 btrfs_tree_read_lock(eb);
357                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
358         }
359
360         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
361                          &cached_state);
362         if (extent_buffer_uptodate(eb) &&
363             btrfs_header_generation(eb) == parent_transid) {
364                 ret = 0;
365                 goto out;
366         }
367         btrfs_err_rl(eb->fs_info,
368                 "parent transid verify failed on %llu wanted %llu found %llu",
369                         eb->start,
370                         parent_transid, btrfs_header_generation(eb));
371         ret = 1;
372
373         /*
374          * Things reading via commit roots that don't have normal protection,
375          * like send, can have a really old block in cache that may point at a
376          * block that has been freed and re-allocated.  So don't clear uptodate
377          * if we find an eb that is under IO (dirty/writeback) because we could
378          * end up reading in the stale data and then writing it back out and
379          * making everybody very sad.
380          */
381         if (!extent_buffer_under_io(eb))
382                 clear_extent_buffer_uptodate(eb);
383 out:
384         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
385                              &cached_state);
386         if (need_lock)
387                 btrfs_tree_read_unlock_blocking(eb);
388         return ret;
389 }
390
391 /*
392  * Return 0 if the superblock checksum type matches the checksum value of that
393  * algorithm. Pass the raw disk superblock data.
394  */
395 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
396                                   char *raw_disk_sb)
397 {
398         struct btrfs_super_block *disk_sb =
399                 (struct btrfs_super_block *)raw_disk_sb;
400         u16 csum_type = btrfs_super_csum_type(disk_sb);
401         int ret = 0;
402
403         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
404                 u32 crc = ~(u32)0;
405                 const int csum_size = sizeof(crc);
406                 char result[csum_size];
407
408                 /*
409                  * The super_block structure does not span the whole
410                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
411                  * is filled with zeros and is included in the checksum.
412                  */
413                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
414                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
415                 btrfs_csum_final(crc, result);
416
417                 if (memcmp(raw_disk_sb, result, csum_size))
418                         ret = 1;
419         }
420
421         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
422                 btrfs_err(fs_info, "unsupported checksum algorithm %u",
423                                 csum_type);
424                 ret = 1;
425         }
426
427         return ret;
428 }
429
430 /*
431  * helper to read a given tree block, doing retries as required when
432  * the checksums don't match and we have alternate mirrors to try.
433  */
434 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
435                                           struct extent_buffer *eb,
436                                           u64 parent_transid)
437 {
438         struct extent_io_tree *io_tree;
439         int failed = 0;
440         int ret;
441         int num_copies = 0;
442         int mirror_num = 0;
443         int failed_mirror = 0;
444
445         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
446         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
447         while (1) {
448                 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
449                                                mirror_num);
450                 if (!ret) {
451                         if (!verify_parent_transid(io_tree, eb,
452                                                    parent_transid, 0))
453                                 break;
454                         else
455                                 ret = -EIO;
456                 }
457
458                 /*
459                  * This buffer's crc is fine, but its contents are corrupted, so
460                  * there is no reason to read the other copies, they won't be
461                  * any less wrong.
462                  */
463                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
464                         break;
465
466                 num_copies = btrfs_num_copies(fs_info,
467                                               eb->start, eb->len);
468                 if (num_copies == 1)
469                         break;
470
471                 if (!failed_mirror) {
472                         failed = 1;
473                         failed_mirror = eb->read_mirror;
474                 }
475
476                 mirror_num++;
477                 if (mirror_num == failed_mirror)
478                         mirror_num++;
479
480                 if (mirror_num > num_copies)
481                         break;
482         }
483
484         if (failed && !ret && failed_mirror)
485                 repair_eb_io_failure(fs_info, eb, failed_mirror);
486
487         return ret;
488 }
489
490 /*
491  * checksum a dirty tree block before IO.  This has extra checks to make sure
492  * we only fill in the checksum field in the first page of a multi-page block
493  */
494
495 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
496 {
497         u64 start = page_offset(page);
498         u64 found_start;
499         struct extent_buffer *eb;
500
501         eb = (struct extent_buffer *)page->private;
502         if (page != eb->pages[0])
503                 return 0;
504
505         found_start = btrfs_header_bytenr(eb);
506         /*
507          * Please do not consolidate these warnings into a single if.
508          * It is useful to know what went wrong.
509          */
510         if (WARN_ON(found_start != start))
511                 return -EUCLEAN;
512         if (WARN_ON(!PageUptodate(page)))
513                 return -EUCLEAN;
514
515         ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
516                         btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
517
518         return csum_tree_block(fs_info, eb, 0);
519 }
520
521 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
522                                  struct extent_buffer *eb)
523 {
524         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
525         u8 fsid[BTRFS_FSID_SIZE];
526         int ret = 1;
527
528         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
529         while (fs_devices) {
530                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
531                         ret = 0;
532                         break;
533                 }
534                 fs_devices = fs_devices->seed;
535         }
536         return ret;
537 }
538
539 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
540                                       u64 phy_offset, struct page *page,
541                                       u64 start, u64 end, int mirror)
542 {
543         u64 found_start;
544         int found_level;
545         struct extent_buffer *eb;
546         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
547         struct btrfs_fs_info *fs_info = root->fs_info;
548         int ret = 0;
549         int reads_done;
550
551         if (!page->private)
552                 goto out;
553
554         eb = (struct extent_buffer *)page->private;
555
556         /* the pending IO might have been the only thing that kept this buffer
557          * in memory.  Make sure we have a ref for all this other checks
558          */
559         extent_buffer_get(eb);
560
561         reads_done = atomic_dec_and_test(&eb->io_pages);
562         if (!reads_done)
563                 goto err;
564
565         eb->read_mirror = mirror;
566         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
567                 ret = -EIO;
568                 goto err;
569         }
570
571         found_start = btrfs_header_bytenr(eb);
572         if (found_start != eb->start) {
573                 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
574                              found_start, eb->start);
575                 ret = -EIO;
576                 goto err;
577         }
578         if (check_tree_block_fsid(fs_info, eb)) {
579                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
580                              eb->start);
581                 ret = -EIO;
582                 goto err;
583         }
584         found_level = btrfs_header_level(eb);
585         if (found_level >= BTRFS_MAX_LEVEL) {
586                 btrfs_err(fs_info, "bad tree block level %d",
587                           (int)btrfs_header_level(eb));
588                 ret = -EIO;
589                 goto err;
590         }
591
592         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
593                                        eb, found_level);
594
595         ret = csum_tree_block(fs_info, eb, 1);
596         if (ret)
597                 goto err;
598
599         /*
600          * If this is a leaf block and it is corrupt, set the corrupt bit so
601          * that we don't try and read the other copies of this block, just
602          * return -EIO.
603          */
604         if (found_level == 0 && btrfs_check_leaf_full(root, eb)) {
605                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
606                 ret = -EIO;
607         }
608
609         if (found_level > 0 && btrfs_check_node(root, eb))
610                 ret = -EIO;
611
612         if (!ret)
613                 set_extent_buffer_uptodate(eb);
614 err:
615         if (reads_done &&
616             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
617                 btree_readahead_hook(eb, ret);
618
619         if (ret) {
620                 /*
621                  * our io error hook is going to dec the io pages
622                  * again, we have to make sure it has something
623                  * to decrement
624                  */
625                 atomic_inc(&eb->io_pages);
626                 clear_extent_buffer_uptodate(eb);
627         }
628         free_extent_buffer(eb);
629 out:
630         return ret;
631 }
632
633 static int btree_io_failed_hook(struct page *page, int failed_mirror)
634 {
635         struct extent_buffer *eb;
636
637         eb = (struct extent_buffer *)page->private;
638         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
639         eb->read_mirror = failed_mirror;
640         atomic_dec(&eb->io_pages);
641         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
642                 btree_readahead_hook(eb, -EIO);
643         return -EIO;    /* we fixed nothing */
644 }
645
646 static void end_workqueue_bio(struct bio *bio)
647 {
648         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
649         struct btrfs_fs_info *fs_info;
650         struct btrfs_workqueue *wq;
651         btrfs_work_func_t func;
652
653         fs_info = end_io_wq->info;
654         end_io_wq->status = bio->bi_status;
655
656         if (bio_op(bio) == REQ_OP_WRITE) {
657                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
658                         wq = fs_info->endio_meta_write_workers;
659                         func = btrfs_endio_meta_write_helper;
660                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
661                         wq = fs_info->endio_freespace_worker;
662                         func = btrfs_freespace_write_helper;
663                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
664                         wq = fs_info->endio_raid56_workers;
665                         func = btrfs_endio_raid56_helper;
666                 } else {
667                         wq = fs_info->endio_write_workers;
668                         func = btrfs_endio_write_helper;
669                 }
670         } else {
671                 if (unlikely(end_io_wq->metadata ==
672                              BTRFS_WQ_ENDIO_DIO_REPAIR)) {
673                         wq = fs_info->endio_repair_workers;
674                         func = btrfs_endio_repair_helper;
675                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
676                         wq = fs_info->endio_raid56_workers;
677                         func = btrfs_endio_raid56_helper;
678                 } else if (end_io_wq->metadata) {
679                         wq = fs_info->endio_meta_workers;
680                         func = btrfs_endio_meta_helper;
681                 } else {
682                         wq = fs_info->endio_workers;
683                         func = btrfs_endio_helper;
684                 }
685         }
686
687         btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
688         btrfs_queue_work(wq, &end_io_wq->work);
689 }
690
691 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
692                         enum btrfs_wq_endio_type metadata)
693 {
694         struct btrfs_end_io_wq *end_io_wq;
695
696         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
697         if (!end_io_wq)
698                 return BLK_STS_RESOURCE;
699
700         end_io_wq->private = bio->bi_private;
701         end_io_wq->end_io = bio->bi_end_io;
702         end_io_wq->info = info;
703         end_io_wq->status = 0;
704         end_io_wq->bio = bio;
705         end_io_wq->metadata = metadata;
706
707         bio->bi_private = end_io_wq;
708         bio->bi_end_io = end_workqueue_bio;
709         return 0;
710 }
711
712 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
713 {
714         unsigned long limit = min_t(unsigned long,
715                                     info->thread_pool_size,
716                                     info->fs_devices->open_devices);
717         return 256 * limit;
718 }
719
720 static void run_one_async_start(struct btrfs_work *work)
721 {
722         struct async_submit_bio *async;
723         blk_status_t ret;
724
725         async = container_of(work, struct  async_submit_bio, work);
726         ret = async->submit_bio_start(async->private_data, async->bio,
727                                       async->mirror_num, async->bio_flags,
728                                       async->bio_offset);
729         if (ret)
730                 async->status = ret;
731 }
732
733 static void run_one_async_done(struct btrfs_work *work)
734 {
735         struct async_submit_bio *async;
736
737         async = container_of(work, struct  async_submit_bio, work);
738
739         /* If an error occurred we just want to clean up the bio and move on */
740         if (async->status) {
741                 async->bio->bi_status = async->status;
742                 bio_endio(async->bio);
743                 return;
744         }
745
746         async->submit_bio_done(async->private_data, async->bio, async->mirror_num,
747                                async->bio_flags, async->bio_offset);
748 }
749
750 static void run_one_async_free(struct btrfs_work *work)
751 {
752         struct async_submit_bio *async;
753
754         async = container_of(work, struct  async_submit_bio, work);
755         kfree(async);
756 }
757
758 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
759                                  int mirror_num, unsigned long bio_flags,
760                                  u64 bio_offset, void *private_data,
761                                  extent_submit_bio_hook_t *submit_bio_start,
762                                  extent_submit_bio_hook_t *submit_bio_done)
763 {
764         struct async_submit_bio *async;
765
766         async = kmalloc(sizeof(*async), GFP_NOFS);
767         if (!async)
768                 return BLK_STS_RESOURCE;
769
770         async->private_data = private_data;
771         async->fs_info = fs_info;
772         async->bio = bio;
773         async->mirror_num = mirror_num;
774         async->submit_bio_start = submit_bio_start;
775         async->submit_bio_done = submit_bio_done;
776
777         btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
778                         run_one_async_done, run_one_async_free);
779
780         async->bio_flags = bio_flags;
781         async->bio_offset = bio_offset;
782
783         async->status = 0;
784
785         if (op_is_sync(bio->bi_opf))
786                 btrfs_set_work_high_priority(&async->work);
787
788         btrfs_queue_work(fs_info->workers, &async->work);
789         return 0;
790 }
791
792 static blk_status_t btree_csum_one_bio(struct bio *bio)
793 {
794         struct bio_vec *bvec;
795         struct btrfs_root *root;
796         int i, ret = 0;
797
798         ASSERT(!bio_flagged(bio, BIO_CLONED));
799         bio_for_each_segment_all(bvec, bio, i) {
800                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
801                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
802                 if (ret)
803                         break;
804         }
805
806         return errno_to_blk_status(ret);
807 }
808
809 static blk_status_t __btree_submit_bio_start(void *private_data, struct bio *bio,
810                                              int mirror_num, unsigned long bio_flags,
811                                              u64 bio_offset)
812 {
813         /*
814          * when we're called for a write, we're already in the async
815          * submission context.  Just jump into btrfs_map_bio
816          */
817         return btree_csum_one_bio(bio);
818 }
819
820 static blk_status_t __btree_submit_bio_done(void *private_data, struct bio *bio,
821                                             int mirror_num, unsigned long bio_flags,
822                                             u64 bio_offset)
823 {
824         struct inode *inode = private_data;
825         blk_status_t ret;
826
827         /*
828          * when we're called for a write, we're already in the async
829          * submission context.  Just jump into btrfs_map_bio
830          */
831         ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
832         if (ret) {
833                 bio->bi_status = ret;
834                 bio_endio(bio);
835         }
836         return ret;
837 }
838
839 static int check_async_write(struct btrfs_inode *bi)
840 {
841         if (atomic_read(&bi->sync_writers))
842                 return 0;
843 #ifdef CONFIG_X86
844         if (static_cpu_has(X86_FEATURE_XMM4_2))
845                 return 0;
846 #endif
847         return 1;
848 }
849
850 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
851                                           int mirror_num, unsigned long bio_flags,
852                                           u64 bio_offset)
853 {
854         struct inode *inode = private_data;
855         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
856         int async = check_async_write(BTRFS_I(inode));
857         blk_status_t ret;
858
859         if (bio_op(bio) != REQ_OP_WRITE) {
860                 /*
861                  * called for a read, do the setup so that checksum validation
862                  * can happen in the async kernel threads
863                  */
864                 ret = btrfs_bio_wq_end_io(fs_info, bio,
865                                           BTRFS_WQ_ENDIO_METADATA);
866                 if (ret)
867                         goto out_w_error;
868                 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
869         } else if (!async) {
870                 ret = btree_csum_one_bio(bio);
871                 if (ret)
872                         goto out_w_error;
873                 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
874         } else {
875                 /*
876                  * kthread helpers are used to submit writes so that
877                  * checksumming can happen in parallel across all CPUs
878                  */
879                 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
880                                           bio_offset, private_data,
881                                           __btree_submit_bio_start,
882                                           __btree_submit_bio_done);
883         }
884
885         if (ret)
886                 goto out_w_error;
887         return 0;
888
889 out_w_error:
890         bio->bi_status = ret;
891         bio_endio(bio);
892         return ret;
893 }
894
895 #ifdef CONFIG_MIGRATION
896 static int btree_migratepage(struct address_space *mapping,
897                         struct page *newpage, struct page *page,
898                         enum migrate_mode mode)
899 {
900         /*
901          * we can't safely write a btree page from here,
902          * we haven't done the locking hook
903          */
904         if (PageDirty(page))
905                 return -EAGAIN;
906         /*
907          * Buffers may be managed in a filesystem specific way.
908          * We must have no buffers or drop them.
909          */
910         if (page_has_private(page) &&
911             !try_to_release_page(page, GFP_KERNEL))
912                 return -EAGAIN;
913         return migrate_page(mapping, newpage, page, mode);
914 }
915 #endif
916
917
918 static int btree_writepages(struct address_space *mapping,
919                             struct writeback_control *wbc)
920 {
921         struct btrfs_fs_info *fs_info;
922         int ret;
923
924         if (wbc->sync_mode == WB_SYNC_NONE) {
925
926                 if (wbc->for_kupdate)
927                         return 0;
928
929                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
930                 /* this is a bit racy, but that's ok */
931                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
932                                              BTRFS_DIRTY_METADATA_THRESH);
933                 if (ret < 0)
934                         return 0;
935         }
936         return btree_write_cache_pages(mapping, wbc);
937 }
938
939 static int btree_readpage(struct file *file, struct page *page)
940 {
941         struct extent_io_tree *tree;
942         tree = &BTRFS_I(page->mapping->host)->io_tree;
943         return extent_read_full_page(tree, page, btree_get_extent, 0);
944 }
945
946 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
947 {
948         if (PageWriteback(page) || PageDirty(page))
949                 return 0;
950
951         return try_release_extent_buffer(page);
952 }
953
954 static void btree_invalidatepage(struct page *page, unsigned int offset,
955                                  unsigned int length)
956 {
957         struct extent_io_tree *tree;
958         tree = &BTRFS_I(page->mapping->host)->io_tree;
959         extent_invalidatepage(tree, page, offset);
960         btree_releasepage(page, GFP_NOFS);
961         if (PagePrivate(page)) {
962                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
963                            "page private not zero on page %llu",
964                            (unsigned long long)page_offset(page));
965                 ClearPagePrivate(page);
966                 set_page_private(page, 0);
967                 put_page(page);
968         }
969 }
970
971 static int btree_set_page_dirty(struct page *page)
972 {
973 #ifdef DEBUG
974         struct extent_buffer *eb;
975
976         BUG_ON(!PagePrivate(page));
977         eb = (struct extent_buffer *)page->private;
978         BUG_ON(!eb);
979         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
980         BUG_ON(!atomic_read(&eb->refs));
981         btrfs_assert_tree_locked(eb);
982 #endif
983         return __set_page_dirty_nobuffers(page);
984 }
985
986 static const struct address_space_operations btree_aops = {
987         .readpage       = btree_readpage,
988         .writepages     = btree_writepages,
989         .releasepage    = btree_releasepage,
990         .invalidatepage = btree_invalidatepage,
991 #ifdef CONFIG_MIGRATION
992         .migratepage    = btree_migratepage,
993 #endif
994         .set_page_dirty = btree_set_page_dirty,
995 };
996
997 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
998 {
999         struct extent_buffer *buf = NULL;
1000         struct inode *btree_inode = fs_info->btree_inode;
1001
1002         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1003         if (IS_ERR(buf))
1004                 return;
1005         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1006                                  buf, WAIT_NONE, 0);
1007         free_extent_buffer(buf);
1008 }
1009
1010 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1011                          int mirror_num, struct extent_buffer **eb)
1012 {
1013         struct extent_buffer *buf = NULL;
1014         struct inode *btree_inode = fs_info->btree_inode;
1015         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1016         int ret;
1017
1018         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1019         if (IS_ERR(buf))
1020                 return 0;
1021
1022         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1023
1024         ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1025                                        mirror_num);
1026         if (ret) {
1027                 free_extent_buffer(buf);
1028                 return ret;
1029         }
1030
1031         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1032                 free_extent_buffer(buf);
1033                 return -EIO;
1034         } else if (extent_buffer_uptodate(buf)) {
1035                 *eb = buf;
1036         } else {
1037                 free_extent_buffer(buf);
1038         }
1039         return 0;
1040 }
1041
1042 struct extent_buffer *btrfs_find_create_tree_block(
1043                                                 struct btrfs_fs_info *fs_info,
1044                                                 u64 bytenr)
1045 {
1046         if (btrfs_is_testing(fs_info))
1047                 return alloc_test_extent_buffer(fs_info, bytenr);
1048         return alloc_extent_buffer(fs_info, bytenr);
1049 }
1050
1051
1052 int btrfs_write_tree_block(struct extent_buffer *buf)
1053 {
1054         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1055                                         buf->start + buf->len - 1);
1056 }
1057
1058 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1059 {
1060         filemap_fdatawait_range(buf->pages[0]->mapping,
1061                                 buf->start, buf->start + buf->len - 1);
1062 }
1063
1064 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1065                                       u64 parent_transid)
1066 {
1067         struct extent_buffer *buf = NULL;
1068         int ret;
1069
1070         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1071         if (IS_ERR(buf))
1072                 return buf;
1073
1074         ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
1075         if (ret) {
1076                 free_extent_buffer(buf);
1077                 return ERR_PTR(ret);
1078         }
1079         return buf;
1080
1081 }
1082
1083 void clean_tree_block(struct btrfs_fs_info *fs_info,
1084                       struct extent_buffer *buf)
1085 {
1086         if (btrfs_header_generation(buf) ==
1087             fs_info->running_transaction->transid) {
1088                 btrfs_assert_tree_locked(buf);
1089
1090                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1091                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1092                                                  -buf->len,
1093                                                  fs_info->dirty_metadata_batch);
1094                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1095                         btrfs_set_lock_blocking(buf);
1096                         clear_extent_buffer_dirty(buf);
1097                 }
1098         }
1099 }
1100
1101 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1102 {
1103         struct btrfs_subvolume_writers *writers;
1104         int ret;
1105
1106         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1107         if (!writers)
1108                 return ERR_PTR(-ENOMEM);
1109
1110         ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1111         if (ret < 0) {
1112                 kfree(writers);
1113                 return ERR_PTR(ret);
1114         }
1115
1116         init_waitqueue_head(&writers->wait);
1117         return writers;
1118 }
1119
1120 static void
1121 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1122 {
1123         percpu_counter_destroy(&writers->counter);
1124         kfree(writers);
1125 }
1126
1127 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1128                          u64 objectid)
1129 {
1130         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1131         root->node = NULL;
1132         root->commit_root = NULL;
1133         root->state = 0;
1134         root->orphan_cleanup_state = 0;
1135
1136         root->objectid = objectid;
1137         root->last_trans = 0;
1138         root->highest_objectid = 0;
1139         root->nr_delalloc_inodes = 0;
1140         root->nr_ordered_extents = 0;
1141         root->name = NULL;
1142         root->inode_tree = RB_ROOT;
1143         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1144         root->block_rsv = NULL;
1145         root->orphan_block_rsv = NULL;
1146
1147         INIT_LIST_HEAD(&root->dirty_list);
1148         INIT_LIST_HEAD(&root->root_list);
1149         INIT_LIST_HEAD(&root->delalloc_inodes);
1150         INIT_LIST_HEAD(&root->delalloc_root);
1151         INIT_LIST_HEAD(&root->ordered_extents);
1152         INIT_LIST_HEAD(&root->ordered_root);
1153         INIT_LIST_HEAD(&root->logged_list[0]);
1154         INIT_LIST_HEAD(&root->logged_list[1]);
1155         spin_lock_init(&root->orphan_lock);
1156         spin_lock_init(&root->inode_lock);
1157         spin_lock_init(&root->delalloc_lock);
1158         spin_lock_init(&root->ordered_extent_lock);
1159         spin_lock_init(&root->accounting_lock);
1160         spin_lock_init(&root->log_extents_lock[0]);
1161         spin_lock_init(&root->log_extents_lock[1]);
1162         mutex_init(&root->objectid_mutex);
1163         mutex_init(&root->log_mutex);
1164         mutex_init(&root->ordered_extent_mutex);
1165         mutex_init(&root->delalloc_mutex);
1166         init_waitqueue_head(&root->log_writer_wait);
1167         init_waitqueue_head(&root->log_commit_wait[0]);
1168         init_waitqueue_head(&root->log_commit_wait[1]);
1169         INIT_LIST_HEAD(&root->log_ctxs[0]);
1170         INIT_LIST_HEAD(&root->log_ctxs[1]);
1171         atomic_set(&root->log_commit[0], 0);
1172         atomic_set(&root->log_commit[1], 0);
1173         atomic_set(&root->log_writers, 0);
1174         atomic_set(&root->log_batch, 0);
1175         atomic_set(&root->orphan_inodes, 0);
1176         refcount_set(&root->refs, 1);
1177         atomic_set(&root->will_be_snapshotted, 0);
1178         atomic64_set(&root->qgroup_meta_rsv, 0);
1179         root->log_transid = 0;
1180         root->log_transid_committed = -1;
1181         root->last_log_commit = 0;
1182         if (!dummy)
1183                 extent_io_tree_init(&root->dirty_log_pages, NULL);
1184
1185         memset(&root->root_key, 0, sizeof(root->root_key));
1186         memset(&root->root_item, 0, sizeof(root->root_item));
1187         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1188         if (!dummy)
1189                 root->defrag_trans_start = fs_info->generation;
1190         else
1191                 root->defrag_trans_start = 0;
1192         root->root_key.objectid = objectid;
1193         root->anon_dev = 0;
1194
1195         spin_lock_init(&root->root_item_lock);
1196 }
1197
1198 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1199                 gfp_t flags)
1200 {
1201         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1202         if (root)
1203                 root->fs_info = fs_info;
1204         return root;
1205 }
1206
1207 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1208 /* Should only be used by the testing infrastructure */
1209 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1210 {
1211         struct btrfs_root *root;
1212
1213         if (!fs_info)
1214                 return ERR_PTR(-EINVAL);
1215
1216         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1217         if (!root)
1218                 return ERR_PTR(-ENOMEM);
1219
1220         /* We don't use the stripesize in selftest, set it as sectorsize */
1221         __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1222         root->alloc_bytenr = 0;
1223
1224         return root;
1225 }
1226 #endif
1227
1228 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1229                                      struct btrfs_fs_info *fs_info,
1230                                      u64 objectid)
1231 {
1232         struct extent_buffer *leaf;
1233         struct btrfs_root *tree_root = fs_info->tree_root;
1234         struct btrfs_root *root;
1235         struct btrfs_key key;
1236         int ret = 0;
1237         uuid_le uuid = NULL_UUID_LE;
1238
1239         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1240         if (!root)
1241                 return ERR_PTR(-ENOMEM);
1242
1243         __setup_root(root, fs_info, objectid);
1244         root->root_key.objectid = objectid;
1245         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1246         root->root_key.offset = 0;
1247
1248         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1249         if (IS_ERR(leaf)) {
1250                 ret = PTR_ERR(leaf);
1251                 leaf = NULL;
1252                 goto fail;
1253         }
1254
1255         memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1256         btrfs_set_header_bytenr(leaf, leaf->start);
1257         btrfs_set_header_generation(leaf, trans->transid);
1258         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1259         btrfs_set_header_owner(leaf, objectid);
1260         root->node = leaf;
1261
1262         write_extent_buffer_fsid(leaf, fs_info->fsid);
1263         write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1264         btrfs_mark_buffer_dirty(leaf);
1265
1266         root->commit_root = btrfs_root_node(root);
1267         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1268
1269         root->root_item.flags = 0;
1270         root->root_item.byte_limit = 0;
1271         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1272         btrfs_set_root_generation(&root->root_item, trans->transid);
1273         btrfs_set_root_level(&root->root_item, 0);
1274         btrfs_set_root_refs(&root->root_item, 1);
1275         btrfs_set_root_used(&root->root_item, leaf->len);
1276         btrfs_set_root_last_snapshot(&root->root_item, 0);
1277         btrfs_set_root_dirid(&root->root_item, 0);
1278         if (is_fstree(objectid))
1279                 uuid_le_gen(&uuid);
1280         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1281         root->root_item.drop_level = 0;
1282
1283         key.objectid = objectid;
1284         key.type = BTRFS_ROOT_ITEM_KEY;
1285         key.offset = 0;
1286         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1287         if (ret)
1288                 goto fail;
1289
1290         btrfs_tree_unlock(leaf);
1291
1292         return root;
1293
1294 fail:
1295         if (leaf) {
1296                 btrfs_tree_unlock(leaf);
1297                 free_extent_buffer(root->commit_root);
1298                 free_extent_buffer(leaf);
1299         }
1300         kfree(root);
1301
1302         return ERR_PTR(ret);
1303 }
1304
1305 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1306                                          struct btrfs_fs_info *fs_info)
1307 {
1308         struct btrfs_root *root;
1309         struct extent_buffer *leaf;
1310
1311         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1312         if (!root)
1313                 return ERR_PTR(-ENOMEM);
1314
1315         __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1316
1317         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1318         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1319         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1320
1321         /*
1322          * DON'T set REF_COWS for log trees
1323          *
1324          * log trees do not get reference counted because they go away
1325          * before a real commit is actually done.  They do store pointers
1326          * to file data extents, and those reference counts still get
1327          * updated (along with back refs to the log tree).
1328          */
1329
1330         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1331                         NULL, 0, 0, 0);
1332         if (IS_ERR(leaf)) {
1333                 kfree(root);
1334                 return ERR_CAST(leaf);
1335         }
1336
1337         memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1338         btrfs_set_header_bytenr(leaf, leaf->start);
1339         btrfs_set_header_generation(leaf, trans->transid);
1340         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1341         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1342         root->node = leaf;
1343
1344         write_extent_buffer_fsid(root->node, fs_info->fsid);
1345         btrfs_mark_buffer_dirty(root->node);
1346         btrfs_tree_unlock(root->node);
1347         return root;
1348 }
1349
1350 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1351                              struct btrfs_fs_info *fs_info)
1352 {
1353         struct btrfs_root *log_root;
1354
1355         log_root = alloc_log_tree(trans, fs_info);
1356         if (IS_ERR(log_root))
1357                 return PTR_ERR(log_root);
1358         WARN_ON(fs_info->log_root_tree);
1359         fs_info->log_root_tree = log_root;
1360         return 0;
1361 }
1362
1363 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1364                        struct btrfs_root *root)
1365 {
1366         struct btrfs_fs_info *fs_info = root->fs_info;
1367         struct btrfs_root *log_root;
1368         struct btrfs_inode_item *inode_item;
1369
1370         log_root = alloc_log_tree(trans, fs_info);
1371         if (IS_ERR(log_root))
1372                 return PTR_ERR(log_root);
1373
1374         log_root->last_trans = trans->transid;
1375         log_root->root_key.offset = root->root_key.objectid;
1376
1377         inode_item = &log_root->root_item.inode;
1378         btrfs_set_stack_inode_generation(inode_item, 1);
1379         btrfs_set_stack_inode_size(inode_item, 3);
1380         btrfs_set_stack_inode_nlink(inode_item, 1);
1381         btrfs_set_stack_inode_nbytes(inode_item,
1382                                      fs_info->nodesize);
1383         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1384
1385         btrfs_set_root_node(&log_root->root_item, log_root->node);
1386
1387         WARN_ON(root->log_root);
1388         root->log_root = log_root;
1389         root->log_transid = 0;
1390         root->log_transid_committed = -1;
1391         root->last_log_commit = 0;
1392         return 0;
1393 }
1394
1395 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1396                                                struct btrfs_key *key)
1397 {
1398         struct btrfs_root *root;
1399         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1400         struct btrfs_path *path;
1401         u64 generation;
1402         int ret;
1403
1404         path = btrfs_alloc_path();
1405         if (!path)
1406                 return ERR_PTR(-ENOMEM);
1407
1408         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1409         if (!root) {
1410                 ret = -ENOMEM;
1411                 goto alloc_fail;
1412         }
1413
1414         __setup_root(root, fs_info, key->objectid);
1415
1416         ret = btrfs_find_root(tree_root, key, path,
1417                               &root->root_item, &root->root_key);
1418         if (ret) {
1419                 if (ret > 0)
1420                         ret = -ENOENT;
1421                 goto find_fail;
1422         }
1423
1424         generation = btrfs_root_generation(&root->root_item);
1425         root->node = read_tree_block(fs_info,
1426                                      btrfs_root_bytenr(&root->root_item),
1427                                      generation);
1428         if (IS_ERR(root->node)) {
1429                 ret = PTR_ERR(root->node);
1430                 goto find_fail;
1431         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1432                 ret = -EIO;
1433                 free_extent_buffer(root->node);
1434                 goto find_fail;
1435         }
1436         root->commit_root = btrfs_root_node(root);
1437 out:
1438         btrfs_free_path(path);
1439         return root;
1440
1441 find_fail:
1442         kfree(root);
1443 alloc_fail:
1444         root = ERR_PTR(ret);
1445         goto out;
1446 }
1447
1448 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1449                                       struct btrfs_key *location)
1450 {
1451         struct btrfs_root *root;
1452
1453         root = btrfs_read_tree_root(tree_root, location);
1454         if (IS_ERR(root))
1455                 return root;
1456
1457         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1458                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1459                 btrfs_check_and_init_root_item(&root->root_item);
1460         }
1461
1462         return root;
1463 }
1464
1465 int btrfs_init_fs_root(struct btrfs_root *root)
1466 {
1467         int ret;
1468         struct btrfs_subvolume_writers *writers;
1469
1470         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1471         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1472                                         GFP_NOFS);
1473         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1474                 ret = -ENOMEM;
1475                 goto fail;
1476         }
1477
1478         writers = btrfs_alloc_subvolume_writers();
1479         if (IS_ERR(writers)) {
1480                 ret = PTR_ERR(writers);
1481                 goto fail;
1482         }
1483         root->subv_writers = writers;
1484
1485         btrfs_init_free_ino_ctl(root);
1486         spin_lock_init(&root->ino_cache_lock);
1487         init_waitqueue_head(&root->ino_cache_wait);
1488
1489         ret = get_anon_bdev(&root->anon_dev);
1490         if (ret)
1491                 goto fail;
1492
1493         mutex_lock(&root->objectid_mutex);
1494         ret = btrfs_find_highest_objectid(root,
1495                                         &root->highest_objectid);
1496         if (ret) {
1497                 mutex_unlock(&root->objectid_mutex);
1498                 goto fail;
1499         }
1500
1501         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1502
1503         mutex_unlock(&root->objectid_mutex);
1504
1505         return 0;
1506 fail:
1507         /* the caller is responsible to call free_fs_root */
1508         return ret;
1509 }
1510
1511 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1512                                         u64 root_id)
1513 {
1514         struct btrfs_root *root;
1515
1516         spin_lock(&fs_info->fs_roots_radix_lock);
1517         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1518                                  (unsigned long)root_id);
1519         spin_unlock(&fs_info->fs_roots_radix_lock);
1520         return root;
1521 }
1522
1523 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1524                          struct btrfs_root *root)
1525 {
1526         int ret;
1527
1528         ret = radix_tree_preload(GFP_NOFS);
1529         if (ret)
1530                 return ret;
1531
1532         spin_lock(&fs_info->fs_roots_radix_lock);
1533         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1534                                 (unsigned long)root->root_key.objectid,
1535                                 root);
1536         if (ret == 0)
1537                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1538         spin_unlock(&fs_info->fs_roots_radix_lock);
1539         radix_tree_preload_end();
1540
1541         return ret;
1542 }
1543
1544 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1545                                      struct btrfs_key *location,
1546                                      bool check_ref)
1547 {
1548         struct btrfs_root *root;
1549         struct btrfs_path *path;
1550         struct btrfs_key key;
1551         int ret;
1552
1553         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1554                 return fs_info->tree_root;
1555         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1556                 return fs_info->extent_root;
1557         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1558                 return fs_info->chunk_root;
1559         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1560                 return fs_info->dev_root;
1561         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1562                 return fs_info->csum_root;
1563         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1564                 return fs_info->quota_root ? fs_info->quota_root :
1565                                              ERR_PTR(-ENOENT);
1566         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1567                 return fs_info->uuid_root ? fs_info->uuid_root :
1568                                             ERR_PTR(-ENOENT);
1569         if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1570                 return fs_info->free_space_root ? fs_info->free_space_root :
1571                                                   ERR_PTR(-ENOENT);
1572 again:
1573         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1574         if (root) {
1575                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1576                         return ERR_PTR(-ENOENT);
1577                 return root;
1578         }
1579
1580         root = btrfs_read_fs_root(fs_info->tree_root, location);
1581         if (IS_ERR(root))
1582                 return root;
1583
1584         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1585                 ret = -ENOENT;
1586                 goto fail;
1587         }
1588
1589         ret = btrfs_init_fs_root(root);
1590         if (ret)
1591                 goto fail;
1592
1593         path = btrfs_alloc_path();
1594         if (!path) {
1595                 ret = -ENOMEM;
1596                 goto fail;
1597         }
1598         key.objectid = BTRFS_ORPHAN_OBJECTID;
1599         key.type = BTRFS_ORPHAN_ITEM_KEY;
1600         key.offset = location->objectid;
1601
1602         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1603         btrfs_free_path(path);
1604         if (ret < 0)
1605                 goto fail;
1606         if (ret == 0)
1607                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1608
1609         ret = btrfs_insert_fs_root(fs_info, root);
1610         if (ret) {
1611                 if (ret == -EEXIST) {
1612                         free_fs_root(root);
1613                         goto again;
1614                 }
1615                 goto fail;
1616         }
1617         return root;
1618 fail:
1619         free_fs_root(root);
1620         return ERR_PTR(ret);
1621 }
1622
1623 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1624 {
1625         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1626         int ret = 0;
1627         struct btrfs_device *device;
1628         struct backing_dev_info *bdi;
1629
1630         rcu_read_lock();
1631         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1632                 if (!device->bdev)
1633                         continue;
1634                 bdi = device->bdev->bd_bdi;
1635                 if (bdi_congested(bdi, bdi_bits)) {
1636                         ret = 1;
1637                         break;
1638                 }
1639         }
1640         rcu_read_unlock();
1641         return ret;
1642 }
1643
1644 /*
1645  * called by the kthread helper functions to finally call the bio end_io
1646  * functions.  This is where read checksum verification actually happens
1647  */
1648 static void end_workqueue_fn(struct btrfs_work *work)
1649 {
1650         struct bio *bio;
1651         struct btrfs_end_io_wq *end_io_wq;
1652
1653         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1654         bio = end_io_wq->bio;
1655
1656         bio->bi_status = end_io_wq->status;
1657         bio->bi_private = end_io_wq->private;
1658         bio->bi_end_io = end_io_wq->end_io;
1659         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1660         bio_endio(bio);
1661 }
1662
1663 static int cleaner_kthread(void *arg)
1664 {
1665         struct btrfs_root *root = arg;
1666         struct btrfs_fs_info *fs_info = root->fs_info;
1667         int again;
1668         struct btrfs_trans_handle *trans;
1669
1670         do {
1671                 again = 0;
1672
1673                 /* Make the cleaner go to sleep early. */
1674                 if (btrfs_need_cleaner_sleep(fs_info))
1675                         goto sleep;
1676
1677                 /*
1678                  * Do not do anything if we might cause open_ctree() to block
1679                  * before we have finished mounting the filesystem.
1680                  */
1681                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1682                         goto sleep;
1683
1684                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1685                         goto sleep;
1686
1687                 /*
1688                  * Avoid the problem that we change the status of the fs
1689                  * during the above check and trylock.
1690                  */
1691                 if (btrfs_need_cleaner_sleep(fs_info)) {
1692                         mutex_unlock(&fs_info->cleaner_mutex);
1693                         goto sleep;
1694                 }
1695
1696                 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1697                 btrfs_run_delayed_iputs(fs_info);
1698                 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1699
1700                 again = btrfs_clean_one_deleted_snapshot(root);
1701                 mutex_unlock(&fs_info->cleaner_mutex);
1702
1703                 /*
1704                  * The defragger has dealt with the R/O remount and umount,
1705                  * needn't do anything special here.
1706                  */
1707                 btrfs_run_defrag_inodes(fs_info);
1708
1709                 /*
1710                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1711                  * with relocation (btrfs_relocate_chunk) and relocation
1712                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1713                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1714                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1715                  * unused block groups.
1716                  */
1717                 btrfs_delete_unused_bgs(fs_info);
1718 sleep:
1719                 if (!again) {
1720                         set_current_state(TASK_INTERRUPTIBLE);
1721                         if (!kthread_should_stop())
1722                                 schedule();
1723                         __set_current_state(TASK_RUNNING);
1724                 }
1725         } while (!kthread_should_stop());
1726
1727         /*
1728          * Transaction kthread is stopped before us and wakes us up.
1729          * However we might have started a new transaction and COWed some
1730          * tree blocks when deleting unused block groups for example. So
1731          * make sure we commit the transaction we started to have a clean
1732          * shutdown when evicting the btree inode - if it has dirty pages
1733          * when we do the final iput() on it, eviction will trigger a
1734          * writeback for it which will fail with null pointer dereferences
1735          * since work queues and other resources were already released and
1736          * destroyed by the time the iput/eviction/writeback is made.
1737          */
1738         trans = btrfs_attach_transaction(root);
1739         if (IS_ERR(trans)) {
1740                 if (PTR_ERR(trans) != -ENOENT)
1741                         btrfs_err(fs_info,
1742                                   "cleaner transaction attach returned %ld",
1743                                   PTR_ERR(trans));
1744         } else {
1745                 int ret;
1746
1747                 ret = btrfs_commit_transaction(trans);
1748                 if (ret)
1749                         btrfs_err(fs_info,
1750                                   "cleaner open transaction commit returned %d",
1751                                   ret);
1752         }
1753
1754         return 0;
1755 }
1756
1757 static int transaction_kthread(void *arg)
1758 {
1759         struct btrfs_root *root = arg;
1760         struct btrfs_fs_info *fs_info = root->fs_info;
1761         struct btrfs_trans_handle *trans;
1762         struct btrfs_transaction *cur;
1763         u64 transid;
1764         unsigned long now;
1765         unsigned long delay;
1766         bool cannot_commit;
1767
1768         do {
1769                 cannot_commit = false;
1770                 delay = HZ * fs_info->commit_interval;
1771                 mutex_lock(&fs_info->transaction_kthread_mutex);
1772
1773                 spin_lock(&fs_info->trans_lock);
1774                 cur = fs_info->running_transaction;
1775                 if (!cur) {
1776                         spin_unlock(&fs_info->trans_lock);
1777                         goto sleep;
1778                 }
1779
1780                 now = get_seconds();
1781                 if (cur->state < TRANS_STATE_BLOCKED &&
1782                     (now < cur->start_time ||
1783                      now - cur->start_time < fs_info->commit_interval)) {
1784                         spin_unlock(&fs_info->trans_lock);
1785                         delay = HZ * 5;
1786                         goto sleep;
1787                 }
1788                 transid = cur->transid;
1789                 spin_unlock(&fs_info->trans_lock);
1790
1791                 /* If the file system is aborted, this will always fail. */
1792                 trans = btrfs_attach_transaction(root);
1793                 if (IS_ERR(trans)) {
1794                         if (PTR_ERR(trans) != -ENOENT)
1795                                 cannot_commit = true;
1796                         goto sleep;
1797                 }
1798                 if (transid == trans->transid) {
1799                         btrfs_commit_transaction(trans);
1800                 } else {
1801                         btrfs_end_transaction(trans);
1802                 }
1803 sleep:
1804                 wake_up_process(fs_info->cleaner_kthread);
1805                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1806
1807                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1808                                       &fs_info->fs_state)))
1809                         btrfs_cleanup_transaction(fs_info);
1810                 set_current_state(TASK_INTERRUPTIBLE);
1811                 if (!kthread_should_stop() &&
1812                                 (!btrfs_transaction_blocked(fs_info) ||
1813                                  cannot_commit))
1814                         schedule_timeout(delay);
1815                 __set_current_state(TASK_RUNNING);
1816         } while (!kthread_should_stop());
1817         return 0;
1818 }
1819
1820 /*
1821  * this will find the highest generation in the array of
1822  * root backups.  The index of the highest array is returned,
1823  * or -1 if we can't find anything.
1824  *
1825  * We check to make sure the array is valid by comparing the
1826  * generation of the latest  root in the array with the generation
1827  * in the super block.  If they don't match we pitch it.
1828  */
1829 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1830 {
1831         u64 cur;
1832         int newest_index = -1;
1833         struct btrfs_root_backup *root_backup;
1834         int i;
1835
1836         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1837                 root_backup = info->super_copy->super_roots + i;
1838                 cur = btrfs_backup_tree_root_gen(root_backup);
1839                 if (cur == newest_gen)
1840                         newest_index = i;
1841         }
1842
1843         /* check to see if we actually wrapped around */
1844         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1845                 root_backup = info->super_copy->super_roots;
1846                 cur = btrfs_backup_tree_root_gen(root_backup);
1847                 if (cur == newest_gen)
1848                         newest_index = 0;
1849         }
1850         return newest_index;
1851 }
1852
1853
1854 /*
1855  * find the oldest backup so we know where to store new entries
1856  * in the backup array.  This will set the backup_root_index
1857  * field in the fs_info struct
1858  */
1859 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1860                                      u64 newest_gen)
1861 {
1862         int newest_index = -1;
1863
1864         newest_index = find_newest_super_backup(info, newest_gen);
1865         /* if there was garbage in there, just move along */
1866         if (newest_index == -1) {
1867                 info->backup_root_index = 0;
1868         } else {
1869                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1870         }
1871 }
1872
1873 /*
1874  * copy all the root pointers into the super backup array.
1875  * this will bump the backup pointer by one when it is
1876  * done
1877  */
1878 static void backup_super_roots(struct btrfs_fs_info *info)
1879 {
1880         int next_backup;
1881         struct btrfs_root_backup *root_backup;
1882         int last_backup;
1883
1884         next_backup = info->backup_root_index;
1885         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1886                 BTRFS_NUM_BACKUP_ROOTS;
1887
1888         /*
1889          * just overwrite the last backup if we're at the same generation
1890          * this happens only at umount
1891          */
1892         root_backup = info->super_for_commit->super_roots + last_backup;
1893         if (btrfs_backup_tree_root_gen(root_backup) ==
1894             btrfs_header_generation(info->tree_root->node))
1895                 next_backup = last_backup;
1896
1897         root_backup = info->super_for_commit->super_roots + next_backup;
1898
1899         /*
1900          * make sure all of our padding and empty slots get zero filled
1901          * regardless of which ones we use today
1902          */
1903         memset(root_backup, 0, sizeof(*root_backup));
1904
1905         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1906
1907         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1908         btrfs_set_backup_tree_root_gen(root_backup,
1909                                btrfs_header_generation(info->tree_root->node));
1910
1911         btrfs_set_backup_tree_root_level(root_backup,
1912                                btrfs_header_level(info->tree_root->node));
1913
1914         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1915         btrfs_set_backup_chunk_root_gen(root_backup,
1916                                btrfs_header_generation(info->chunk_root->node));
1917         btrfs_set_backup_chunk_root_level(root_backup,
1918                                btrfs_header_level(info->chunk_root->node));
1919
1920         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1921         btrfs_set_backup_extent_root_gen(root_backup,
1922                                btrfs_header_generation(info->extent_root->node));
1923         btrfs_set_backup_extent_root_level(root_backup,
1924                                btrfs_header_level(info->extent_root->node));
1925
1926         /*
1927          * we might commit during log recovery, which happens before we set
1928          * the fs_root.  Make sure it is valid before we fill it in.
1929          */
1930         if (info->fs_root && info->fs_root->node) {
1931                 btrfs_set_backup_fs_root(root_backup,
1932                                          info->fs_root->node->start);
1933                 btrfs_set_backup_fs_root_gen(root_backup,
1934                                btrfs_header_generation(info->fs_root->node));
1935                 btrfs_set_backup_fs_root_level(root_backup,
1936                                btrfs_header_level(info->fs_root->node));
1937         }
1938
1939         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1940         btrfs_set_backup_dev_root_gen(root_backup,
1941                                btrfs_header_generation(info->dev_root->node));
1942         btrfs_set_backup_dev_root_level(root_backup,
1943                                        btrfs_header_level(info->dev_root->node));
1944
1945         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1946         btrfs_set_backup_csum_root_gen(root_backup,
1947                                btrfs_header_generation(info->csum_root->node));
1948         btrfs_set_backup_csum_root_level(root_backup,
1949                                btrfs_header_level(info->csum_root->node));
1950
1951         btrfs_set_backup_total_bytes(root_backup,
1952                              btrfs_super_total_bytes(info->super_copy));
1953         btrfs_set_backup_bytes_used(root_backup,
1954                              btrfs_super_bytes_used(info->super_copy));
1955         btrfs_set_backup_num_devices(root_backup,
1956                              btrfs_super_num_devices(info->super_copy));
1957
1958         /*
1959          * if we don't copy this out to the super_copy, it won't get remembered
1960          * for the next commit
1961          */
1962         memcpy(&info->super_copy->super_roots,
1963                &info->super_for_commit->super_roots,
1964                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1965 }
1966
1967 /*
1968  * this copies info out of the root backup array and back into
1969  * the in-memory super block.  It is meant to help iterate through
1970  * the array, so you send it the number of backups you've already
1971  * tried and the last backup index you used.
1972  *
1973  * this returns -1 when it has tried all the backups
1974  */
1975 static noinline int next_root_backup(struct btrfs_fs_info *info,
1976                                      struct btrfs_super_block *super,
1977                                      int *num_backups_tried, int *backup_index)
1978 {
1979         struct btrfs_root_backup *root_backup;
1980         int newest = *backup_index;
1981
1982         if (*num_backups_tried == 0) {
1983                 u64 gen = btrfs_super_generation(super);
1984
1985                 newest = find_newest_super_backup(info, gen);
1986                 if (newest == -1)
1987                         return -1;
1988
1989                 *backup_index = newest;
1990                 *num_backups_tried = 1;
1991         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1992                 /* we've tried all the backups, all done */
1993                 return -1;
1994         } else {
1995                 /* jump to the next oldest backup */
1996                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1997                         BTRFS_NUM_BACKUP_ROOTS;
1998                 *backup_index = newest;
1999                 *num_backups_tried += 1;
2000         }
2001         root_backup = super->super_roots + newest;
2002
2003         btrfs_set_super_generation(super,
2004                                    btrfs_backup_tree_root_gen(root_backup));
2005         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2006         btrfs_set_super_root_level(super,
2007                                    btrfs_backup_tree_root_level(root_backup));
2008         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2009
2010         /*
2011          * fixme: the total bytes and num_devices need to match or we should
2012          * need a fsck
2013          */
2014         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2015         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2016         return 0;
2017 }
2018
2019 /* helper to cleanup workers */
2020 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2021 {
2022         btrfs_destroy_workqueue(fs_info->fixup_workers);
2023         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2024         btrfs_destroy_workqueue(fs_info->workers);
2025         btrfs_destroy_workqueue(fs_info->endio_workers);
2026         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2027         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2028         btrfs_destroy_workqueue(fs_info->rmw_workers);
2029         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2030         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2031         btrfs_destroy_workqueue(fs_info->submit_workers);
2032         btrfs_destroy_workqueue(fs_info->delayed_workers);
2033         btrfs_destroy_workqueue(fs_info->caching_workers);
2034         btrfs_destroy_workqueue(fs_info->readahead_workers);
2035         btrfs_destroy_workqueue(fs_info->flush_workers);
2036         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2037         btrfs_destroy_workqueue(fs_info->extent_workers);
2038         /*
2039          * Now that all other work queues are destroyed, we can safely destroy
2040          * the queues used for metadata I/O, since tasks from those other work
2041          * queues can do metadata I/O operations.
2042          */
2043         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2044         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2045 }
2046
2047 static void free_root_extent_buffers(struct btrfs_root *root)
2048 {
2049         if (root) {
2050                 free_extent_buffer(root->node);
2051                 free_extent_buffer(root->commit_root);
2052                 root->node = NULL;
2053                 root->commit_root = NULL;
2054         }
2055 }
2056
2057 /* helper to cleanup tree roots */
2058 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2059 {
2060         free_root_extent_buffers(info->tree_root);
2061
2062         free_root_extent_buffers(info->dev_root);
2063         free_root_extent_buffers(info->extent_root);
2064         free_root_extent_buffers(info->csum_root);
2065         free_root_extent_buffers(info->quota_root);
2066         free_root_extent_buffers(info->uuid_root);
2067         if (chunk_root)
2068                 free_root_extent_buffers(info->chunk_root);
2069         free_root_extent_buffers(info->free_space_root);
2070 }
2071
2072 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2073 {
2074         int ret;
2075         struct btrfs_root *gang[8];
2076         int i;
2077
2078         while (!list_empty(&fs_info->dead_roots)) {
2079                 gang[0] = list_entry(fs_info->dead_roots.next,
2080                                      struct btrfs_root, root_list);
2081                 list_del(&gang[0]->root_list);
2082
2083                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2084                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2085                 } else {
2086                         free_extent_buffer(gang[0]->node);
2087                         free_extent_buffer(gang[0]->commit_root);
2088                         btrfs_put_fs_root(gang[0]);
2089                 }
2090         }
2091
2092         while (1) {
2093                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2094                                              (void **)gang, 0,
2095                                              ARRAY_SIZE(gang));
2096                 if (!ret)
2097                         break;
2098                 for (i = 0; i < ret; i++)
2099                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2100         }
2101
2102         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2103                 btrfs_free_log_root_tree(NULL, fs_info);
2104                 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2105         }
2106 }
2107
2108 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2109 {
2110         mutex_init(&fs_info->scrub_lock);
2111         atomic_set(&fs_info->scrubs_running, 0);
2112         atomic_set(&fs_info->scrub_pause_req, 0);
2113         atomic_set(&fs_info->scrubs_paused, 0);
2114         atomic_set(&fs_info->scrub_cancel_req, 0);
2115         init_waitqueue_head(&fs_info->scrub_pause_wait);
2116         fs_info->scrub_workers_refcnt = 0;
2117 }
2118
2119 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2120 {
2121         spin_lock_init(&fs_info->balance_lock);
2122         mutex_init(&fs_info->balance_mutex);
2123         atomic_set(&fs_info->balance_running, 0);
2124         atomic_set(&fs_info->balance_pause_req, 0);
2125         atomic_set(&fs_info->balance_cancel_req, 0);
2126         fs_info->balance_ctl = NULL;
2127         init_waitqueue_head(&fs_info->balance_wait_q);
2128 }
2129
2130 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2131 {
2132         struct inode *inode = fs_info->btree_inode;
2133
2134         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2135         set_nlink(inode, 1);
2136         /*
2137          * we set the i_size on the btree inode to the max possible int.
2138          * the real end of the address space is determined by all of
2139          * the devices in the system
2140          */
2141         inode->i_size = OFFSET_MAX;
2142         inode->i_mapping->a_ops = &btree_aops;
2143
2144         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2145         extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2146         BTRFS_I(inode)->io_tree.track_uptodate = 0;
2147         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2148
2149         BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2150
2151         BTRFS_I(inode)->root = fs_info->tree_root;
2152         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2153         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2154         btrfs_insert_inode_hash(inode);
2155 }
2156
2157 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2158 {
2159         fs_info->dev_replace.lock_owner = 0;
2160         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2161         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2162         rwlock_init(&fs_info->dev_replace.lock);
2163         atomic_set(&fs_info->dev_replace.read_locks, 0);
2164         atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2165         init_waitqueue_head(&fs_info->replace_wait);
2166         init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2167 }
2168
2169 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2170 {
2171         spin_lock_init(&fs_info->qgroup_lock);
2172         mutex_init(&fs_info->qgroup_ioctl_lock);
2173         fs_info->qgroup_tree = RB_ROOT;
2174         fs_info->qgroup_op_tree = RB_ROOT;
2175         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2176         fs_info->qgroup_seq = 1;
2177         fs_info->qgroup_ulist = NULL;
2178         fs_info->qgroup_rescan_running = false;
2179         mutex_init(&fs_info->qgroup_rescan_lock);
2180 }
2181
2182 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2183                 struct btrfs_fs_devices *fs_devices)
2184 {
2185         int max_active = fs_info->thread_pool_size;
2186         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2187
2188         fs_info->workers =
2189                 btrfs_alloc_workqueue(fs_info, "worker",
2190                                       flags | WQ_HIGHPRI, max_active, 16);
2191
2192         fs_info->delalloc_workers =
2193                 btrfs_alloc_workqueue(fs_info, "delalloc",
2194                                       flags, max_active, 2);
2195
2196         fs_info->flush_workers =
2197                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2198                                       flags, max_active, 0);
2199
2200         fs_info->caching_workers =
2201                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2202
2203         /*
2204          * a higher idle thresh on the submit workers makes it much more
2205          * likely that bios will be send down in a sane order to the
2206          * devices
2207          */
2208         fs_info->submit_workers =
2209                 btrfs_alloc_workqueue(fs_info, "submit", flags,
2210                                       min_t(u64, fs_devices->num_devices,
2211                                             max_active), 64);
2212
2213         fs_info->fixup_workers =
2214                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2215
2216         /*
2217          * endios are largely parallel and should have a very
2218          * low idle thresh
2219          */
2220         fs_info->endio_workers =
2221                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2222         fs_info->endio_meta_workers =
2223                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2224                                       max_active, 4);
2225         fs_info->endio_meta_write_workers =
2226                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2227                                       max_active, 2);
2228         fs_info->endio_raid56_workers =
2229                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2230                                       max_active, 4);
2231         fs_info->endio_repair_workers =
2232                 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2233         fs_info->rmw_workers =
2234                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2235         fs_info->endio_write_workers =
2236                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2237                                       max_active, 2);
2238         fs_info->endio_freespace_worker =
2239                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2240                                       max_active, 0);
2241         fs_info->delayed_workers =
2242                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2243                                       max_active, 0);
2244         fs_info->readahead_workers =
2245                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2246                                       max_active, 2);
2247         fs_info->qgroup_rescan_workers =
2248                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2249         fs_info->extent_workers =
2250                 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2251                                       min_t(u64, fs_devices->num_devices,
2252                                             max_active), 8);
2253
2254         if (!(fs_info->workers && fs_info->delalloc_workers &&
2255               fs_info->submit_workers && fs_info->flush_workers &&
2256               fs_info->endio_workers && fs_info->endio_meta_workers &&
2257               fs_info->endio_meta_write_workers &&
2258               fs_info->endio_repair_workers &&
2259               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2260               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2261               fs_info->caching_workers && fs_info->readahead_workers &&
2262               fs_info->fixup_workers && fs_info->delayed_workers &&
2263               fs_info->extent_workers &&
2264               fs_info->qgroup_rescan_workers)) {
2265                 return -ENOMEM;
2266         }
2267
2268         return 0;
2269 }
2270
2271 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2272                             struct btrfs_fs_devices *fs_devices)
2273 {
2274         int ret;
2275         struct btrfs_root *log_tree_root;
2276         struct btrfs_super_block *disk_super = fs_info->super_copy;
2277         u64 bytenr = btrfs_super_log_root(disk_super);
2278
2279         if (fs_devices->rw_devices == 0) {
2280                 btrfs_warn(fs_info, "log replay required on RO media");
2281                 return -EIO;
2282         }
2283
2284         log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2285         if (!log_tree_root)
2286                 return -ENOMEM;
2287
2288         __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2289
2290         log_tree_root->node = read_tree_block(fs_info, bytenr,
2291                                               fs_info->generation + 1);
2292         if (IS_ERR(log_tree_root->node)) {
2293                 btrfs_warn(fs_info, "failed to read log tree");
2294                 ret = PTR_ERR(log_tree_root->node);
2295                 kfree(log_tree_root);
2296                 return ret;
2297         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2298                 btrfs_err(fs_info, "failed to read log tree");
2299                 free_extent_buffer(log_tree_root->node);
2300                 kfree(log_tree_root);
2301                 return -EIO;
2302         }
2303         /* returns with log_tree_root freed on success */
2304         ret = btrfs_recover_log_trees(log_tree_root);
2305         if (ret) {
2306                 btrfs_handle_fs_error(fs_info, ret,
2307                                       "Failed to recover log tree");
2308                 free_extent_buffer(log_tree_root->node);
2309                 kfree(log_tree_root);
2310                 return ret;
2311         }
2312
2313         if (sb_rdonly(fs_info->sb)) {
2314                 ret = btrfs_commit_super(fs_info);
2315                 if (ret)
2316                         return ret;
2317         }
2318
2319         return 0;
2320 }
2321
2322 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2323 {
2324         struct btrfs_root *tree_root = fs_info->tree_root;
2325         struct btrfs_root *root;
2326         struct btrfs_key location;
2327         int ret;
2328
2329         BUG_ON(!fs_info->tree_root);
2330
2331         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2332         location.type = BTRFS_ROOT_ITEM_KEY;
2333         location.offset = 0;
2334
2335         root = btrfs_read_tree_root(tree_root, &location);
2336         if (IS_ERR(root))
2337                 return PTR_ERR(root);
2338         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2339         fs_info->extent_root = root;
2340
2341         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2342         root = btrfs_read_tree_root(tree_root, &location);
2343         if (IS_ERR(root))
2344                 return PTR_ERR(root);
2345         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2346         fs_info->dev_root = root;
2347         btrfs_init_devices_late(fs_info);
2348
2349         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2350         root = btrfs_read_tree_root(tree_root, &location);
2351         if (IS_ERR(root))
2352                 return PTR_ERR(root);
2353         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2354         fs_info->csum_root = root;
2355
2356         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2357         root = btrfs_read_tree_root(tree_root, &location);
2358         if (!IS_ERR(root)) {
2359                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2360                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2361                 fs_info->quota_root = root;
2362         }
2363
2364         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2365         root = btrfs_read_tree_root(tree_root, &location);
2366         if (IS_ERR(root)) {
2367                 ret = PTR_ERR(root);
2368                 if (ret != -ENOENT)
2369                         return ret;
2370         } else {
2371                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2372                 fs_info->uuid_root = root;
2373         }
2374
2375         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2376                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2377                 root = btrfs_read_tree_root(tree_root, &location);
2378                 if (IS_ERR(root))
2379                         return PTR_ERR(root);
2380                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2381                 fs_info->free_space_root = root;
2382         }
2383
2384         return 0;
2385 }
2386
2387 int open_ctree(struct super_block *sb,
2388                struct btrfs_fs_devices *fs_devices,
2389                char *options)
2390 {
2391         u32 sectorsize;
2392         u32 nodesize;
2393         u32 stripesize;
2394         u64 generation;
2395         u64 features;
2396         struct btrfs_key location;
2397         struct buffer_head *bh;
2398         struct btrfs_super_block *disk_super;
2399         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2400         struct btrfs_root *tree_root;
2401         struct btrfs_root *chunk_root;
2402         int ret;
2403         int err = -EINVAL;
2404         int num_backups_tried = 0;
2405         int backup_index = 0;
2406         int max_active;
2407         int clear_free_space_tree = 0;
2408
2409         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2410         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2411         if (!tree_root || !chunk_root) {
2412                 err = -ENOMEM;
2413                 goto fail;
2414         }
2415
2416         ret = init_srcu_struct(&fs_info->subvol_srcu);
2417         if (ret) {
2418                 err = ret;
2419                 goto fail;
2420         }
2421
2422         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2423         if (ret) {
2424                 err = ret;
2425                 goto fail_srcu;
2426         }
2427         fs_info->dirty_metadata_batch = PAGE_SIZE *
2428                                         (1 + ilog2(nr_cpu_ids));
2429
2430         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2431         if (ret) {
2432                 err = ret;
2433                 goto fail_dirty_metadata_bytes;
2434         }
2435
2436         ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2437         if (ret) {
2438                 err = ret;
2439                 goto fail_delalloc_bytes;
2440         }
2441
2442         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2443         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2444         INIT_LIST_HEAD(&fs_info->trans_list);
2445         INIT_LIST_HEAD(&fs_info->dead_roots);
2446         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2447         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2448         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2449         spin_lock_init(&fs_info->delalloc_root_lock);
2450         spin_lock_init(&fs_info->trans_lock);
2451         spin_lock_init(&fs_info->fs_roots_radix_lock);
2452         spin_lock_init(&fs_info->delayed_iput_lock);
2453         spin_lock_init(&fs_info->defrag_inodes_lock);
2454         spin_lock_init(&fs_info->tree_mod_seq_lock);
2455         spin_lock_init(&fs_info->super_lock);
2456         spin_lock_init(&fs_info->qgroup_op_lock);
2457         spin_lock_init(&fs_info->buffer_lock);
2458         spin_lock_init(&fs_info->unused_bgs_lock);
2459         rwlock_init(&fs_info->tree_mod_log_lock);
2460         mutex_init(&fs_info->unused_bg_unpin_mutex);
2461         mutex_init(&fs_info->delete_unused_bgs_mutex);
2462         mutex_init(&fs_info->reloc_mutex);
2463         mutex_init(&fs_info->delalloc_root_mutex);
2464         mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2465         seqlock_init(&fs_info->profiles_lock);
2466
2467         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2468         INIT_LIST_HEAD(&fs_info->space_info);
2469         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2470         INIT_LIST_HEAD(&fs_info->unused_bgs);
2471         btrfs_mapping_init(&fs_info->mapping_tree);
2472         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2473                              BTRFS_BLOCK_RSV_GLOBAL);
2474         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2475         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2476         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2477         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2478                              BTRFS_BLOCK_RSV_DELOPS);
2479         atomic_set(&fs_info->async_delalloc_pages, 0);
2480         atomic_set(&fs_info->defrag_running, 0);
2481         atomic_set(&fs_info->qgroup_op_seq, 0);
2482         atomic_set(&fs_info->reada_works_cnt, 0);
2483         atomic64_set(&fs_info->tree_mod_seq, 0);
2484         fs_info->sb = sb;
2485         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2486         fs_info->metadata_ratio = 0;
2487         fs_info->defrag_inodes = RB_ROOT;
2488         atomic64_set(&fs_info->free_chunk_space, 0);
2489         fs_info->tree_mod_log = RB_ROOT;
2490         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2491         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2492         /* readahead state */
2493         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2494         spin_lock_init(&fs_info->reada_lock);
2495         btrfs_init_ref_verify(fs_info);
2496
2497         fs_info->thread_pool_size = min_t(unsigned long,
2498                                           num_online_cpus() + 2, 8);
2499
2500         INIT_LIST_HEAD(&fs_info->ordered_roots);
2501         spin_lock_init(&fs_info->ordered_root_lock);
2502
2503         fs_info->btree_inode = new_inode(sb);
2504         if (!fs_info->btree_inode) {
2505                 err = -ENOMEM;
2506                 goto fail_bio_counter;
2507         }
2508         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2509
2510         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2511                                         GFP_KERNEL);
2512         if (!fs_info->delayed_root) {
2513                 err = -ENOMEM;
2514                 goto fail_iput;
2515         }
2516         btrfs_init_delayed_root(fs_info->delayed_root);
2517
2518         btrfs_init_scrub(fs_info);
2519 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2520         fs_info->check_integrity_print_mask = 0;
2521 #endif
2522         btrfs_init_balance(fs_info);
2523         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2524
2525         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2526         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2527
2528         btrfs_init_btree_inode(fs_info);
2529
2530         spin_lock_init(&fs_info->block_group_cache_lock);
2531         fs_info->block_group_cache_tree = RB_ROOT;
2532         fs_info->first_logical_byte = (u64)-1;
2533
2534         extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2535         extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2536         fs_info->pinned_extents = &fs_info->freed_extents[0];
2537         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2538
2539         mutex_init(&fs_info->ordered_operations_mutex);
2540         mutex_init(&fs_info->tree_log_mutex);
2541         mutex_init(&fs_info->chunk_mutex);
2542         mutex_init(&fs_info->transaction_kthread_mutex);
2543         mutex_init(&fs_info->cleaner_mutex);
2544         mutex_init(&fs_info->volume_mutex);
2545         mutex_init(&fs_info->ro_block_group_mutex);
2546         init_rwsem(&fs_info->commit_root_sem);
2547         init_rwsem(&fs_info->cleanup_work_sem);
2548         init_rwsem(&fs_info->subvol_sem);
2549         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2550
2551         btrfs_init_dev_replace_locks(fs_info);
2552         btrfs_init_qgroup(fs_info);
2553
2554         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2555         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2556
2557         init_waitqueue_head(&fs_info->transaction_throttle);
2558         init_waitqueue_head(&fs_info->transaction_wait);
2559         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2560         init_waitqueue_head(&fs_info->async_submit_wait);
2561
2562         INIT_LIST_HEAD(&fs_info->pinned_chunks);
2563
2564         /* Usable values until the real ones are cached from the superblock */
2565         fs_info->nodesize = 4096;
2566         fs_info->sectorsize = 4096;
2567         fs_info->stripesize = 4096;
2568
2569         ret = btrfs_alloc_stripe_hash_table(fs_info);
2570         if (ret) {
2571                 err = ret;
2572                 goto fail_alloc;
2573         }
2574
2575         __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2576
2577         invalidate_bdev(fs_devices->latest_bdev);
2578
2579         /*
2580          * Read super block and check the signature bytes only
2581          */
2582         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2583         if (IS_ERR(bh)) {
2584                 err = PTR_ERR(bh);
2585                 goto fail_alloc;
2586         }
2587
2588         /*
2589          * We want to check superblock checksum, the type is stored inside.
2590          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2591          */
2592         if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2593                 btrfs_err(fs_info, "superblock checksum mismatch");
2594                 err = -EINVAL;
2595                 brelse(bh);
2596                 goto fail_alloc;
2597         }
2598
2599         /*
2600          * super_copy is zeroed at allocation time and we never touch the
2601          * following bytes up to INFO_SIZE, the checksum is calculated from
2602          * the whole block of INFO_SIZE
2603          */
2604         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2605         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2606                sizeof(*fs_info->super_for_commit));
2607         brelse(bh);
2608
2609         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2610
2611         ret = btrfs_check_super_valid(fs_info);
2612         if (ret) {
2613                 btrfs_err(fs_info, "superblock contains fatal errors");
2614                 err = -EINVAL;
2615                 goto fail_alloc;
2616         }
2617
2618         disk_super = fs_info->super_copy;
2619         if (!btrfs_super_root(disk_super))
2620                 goto fail_alloc;
2621
2622         /* check FS state, whether FS is broken. */
2623         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2624                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2625
2626         /*
2627          * run through our array of backup supers and setup
2628          * our ring pointer to the oldest one
2629          */
2630         generation = btrfs_super_generation(disk_super);
2631         find_oldest_super_backup(fs_info, generation);
2632
2633         /*
2634          * In the long term, we'll store the compression type in the super
2635          * block, and it'll be used for per file compression control.
2636          */
2637         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2638
2639         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2640         if (ret) {
2641                 err = ret;
2642                 goto fail_alloc;
2643         }
2644
2645         features = btrfs_super_incompat_flags(disk_super) &
2646                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2647         if (features) {
2648                 btrfs_err(fs_info,
2649                     "cannot mount because of unsupported optional features (%llx)",
2650                     features);
2651                 err = -EINVAL;
2652                 goto fail_alloc;
2653         }
2654
2655         features = btrfs_super_incompat_flags(disk_super);
2656         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2657         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2658                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2659         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2660                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2661
2662         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2663                 btrfs_info(fs_info, "has skinny extents");
2664
2665         /*
2666          * flag our filesystem as having big metadata blocks if
2667          * they are bigger than the page size
2668          */
2669         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2670                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2671                         btrfs_info(fs_info,
2672                                 "flagging fs with big metadata feature");
2673                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2674         }
2675
2676         nodesize = btrfs_super_nodesize(disk_super);
2677         sectorsize = btrfs_super_sectorsize(disk_super);
2678         stripesize = sectorsize;
2679         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2680         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2681
2682         /* Cache block sizes */
2683         fs_info->nodesize = nodesize;
2684         fs_info->sectorsize = sectorsize;
2685         fs_info->stripesize = stripesize;
2686
2687         /*
2688          * mixed block groups end up with duplicate but slightly offset
2689          * extent buffers for the same range.  It leads to corruptions
2690          */
2691         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2692             (sectorsize != nodesize)) {
2693                 btrfs_err(fs_info,
2694 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2695                         nodesize, sectorsize);
2696                 goto fail_alloc;
2697         }
2698
2699         /*
2700          * Needn't use the lock because there is no other task which will
2701          * update the flag.
2702          */
2703         btrfs_set_super_incompat_flags(disk_super, features);
2704
2705         features = btrfs_super_compat_ro_flags(disk_super) &
2706                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2707         if (!sb_rdonly(sb) && features) {
2708                 btrfs_err(fs_info,
2709         "cannot mount read-write because of unsupported optional features (%llx)",
2710                        features);
2711                 err = -EINVAL;
2712                 goto fail_alloc;
2713         }
2714
2715         max_active = fs_info->thread_pool_size;
2716
2717         ret = btrfs_init_workqueues(fs_info, fs_devices);
2718         if (ret) {
2719                 err = ret;
2720                 goto fail_sb_buffer;
2721         }
2722
2723         sb->s_bdi->congested_fn = btrfs_congested_fn;
2724         sb->s_bdi->congested_data = fs_info;
2725         sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2726         sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
2727         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2728         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2729
2730         sb->s_blocksize = sectorsize;
2731         sb->s_blocksize_bits = blksize_bits(sectorsize);
2732         memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
2733
2734         mutex_lock(&fs_info->chunk_mutex);
2735         ret = btrfs_read_sys_array(fs_info);
2736         mutex_unlock(&fs_info->chunk_mutex);
2737         if (ret) {
2738                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2739                 goto fail_sb_buffer;
2740         }
2741
2742         generation = btrfs_super_chunk_root_generation(disk_super);
2743
2744         __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2745
2746         chunk_root->node = read_tree_block(fs_info,
2747                                            btrfs_super_chunk_root(disk_super),
2748                                            generation);
2749         if (IS_ERR(chunk_root->node) ||
2750             !extent_buffer_uptodate(chunk_root->node)) {
2751                 btrfs_err(fs_info, "failed to read chunk root");
2752                 if (!IS_ERR(chunk_root->node))
2753                         free_extent_buffer(chunk_root->node);
2754                 chunk_root->node = NULL;
2755                 goto fail_tree_roots;
2756         }
2757         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2758         chunk_root->commit_root = btrfs_root_node(chunk_root);
2759
2760         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2761            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2762
2763         ret = btrfs_read_chunk_tree(fs_info);
2764         if (ret) {
2765                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2766                 goto fail_tree_roots;
2767         }
2768
2769         /*
2770          * keep the device that is marked to be the target device for the
2771          * dev_replace procedure
2772          */
2773         btrfs_close_extra_devices(fs_devices, 0);
2774
2775         if (!fs_devices->latest_bdev) {
2776                 btrfs_err(fs_info, "failed to read devices");
2777                 goto fail_tree_roots;
2778         }
2779
2780 retry_root_backup:
2781         generation = btrfs_super_generation(disk_super);
2782
2783         tree_root->node = read_tree_block(fs_info,
2784                                           btrfs_super_root(disk_super),
2785                                           generation);
2786         if (IS_ERR(tree_root->node) ||
2787             !extent_buffer_uptodate(tree_root->node)) {
2788                 btrfs_warn(fs_info, "failed to read tree root");
2789                 if (!IS_ERR(tree_root->node))
2790                         free_extent_buffer(tree_root->node);
2791                 tree_root->node = NULL;
2792                 goto recovery_tree_root;
2793         }
2794
2795         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2796         tree_root->commit_root = btrfs_root_node(tree_root);
2797         btrfs_set_root_refs(&tree_root->root_item, 1);
2798
2799         mutex_lock(&tree_root->objectid_mutex);
2800         ret = btrfs_find_highest_objectid(tree_root,
2801                                         &tree_root->highest_objectid);
2802         if (ret) {
2803                 mutex_unlock(&tree_root->objectid_mutex);
2804                 goto recovery_tree_root;
2805         }
2806
2807         ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2808
2809         mutex_unlock(&tree_root->objectid_mutex);
2810
2811         ret = btrfs_read_roots(fs_info);
2812         if (ret)
2813                 goto recovery_tree_root;
2814
2815         fs_info->generation = generation;
2816         fs_info->last_trans_committed = generation;
2817
2818         ret = btrfs_recover_balance(fs_info);
2819         if (ret) {
2820                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
2821                 goto fail_block_groups;
2822         }
2823
2824         ret = btrfs_init_dev_stats(fs_info);
2825         if (ret) {
2826                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2827                 goto fail_block_groups;
2828         }
2829
2830         ret = btrfs_init_dev_replace(fs_info);
2831         if (ret) {
2832                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
2833                 goto fail_block_groups;
2834         }
2835
2836         btrfs_close_extra_devices(fs_devices, 1);
2837
2838         ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2839         if (ret) {
2840                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2841                                 ret);
2842                 goto fail_block_groups;
2843         }
2844
2845         ret = btrfs_sysfs_add_device(fs_devices);
2846         if (ret) {
2847                 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2848                                 ret);
2849                 goto fail_fsdev_sysfs;
2850         }
2851
2852         ret = btrfs_sysfs_add_mounted(fs_info);
2853         if (ret) {
2854                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
2855                 goto fail_fsdev_sysfs;
2856         }
2857
2858         ret = btrfs_init_space_info(fs_info);
2859         if (ret) {
2860                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2861                 goto fail_sysfs;
2862         }
2863
2864         ret = btrfs_read_block_groups(fs_info);
2865         if (ret) {
2866                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2867                 goto fail_sysfs;
2868         }
2869
2870         if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
2871                 btrfs_warn(fs_info,
2872                 "writeable mount is not allowed due to too many missing devices");
2873                 goto fail_sysfs;
2874         }
2875
2876         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2877                                                "btrfs-cleaner");
2878         if (IS_ERR(fs_info->cleaner_kthread))
2879                 goto fail_sysfs;
2880
2881         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2882                                                    tree_root,
2883                                                    "btrfs-transaction");
2884         if (IS_ERR(fs_info->transaction_kthread))
2885                 goto fail_cleaner;
2886
2887         if (!btrfs_test_opt(fs_info, NOSSD) &&
2888             !fs_info->fs_devices->rotating) {
2889                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
2890         }
2891
2892         /*
2893          * Mount does not set all options immediately, we can do it now and do
2894          * not have to wait for transaction commit
2895          */
2896         btrfs_apply_pending_changes(fs_info);
2897
2898 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2899         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2900                 ret = btrfsic_mount(fs_info, fs_devices,
2901                                     btrfs_test_opt(fs_info,
2902                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2903                                     1 : 0,
2904                                     fs_info->check_integrity_print_mask);
2905                 if (ret)
2906                         btrfs_warn(fs_info,
2907                                 "failed to initialize integrity check module: %d",
2908                                 ret);
2909         }
2910 #endif
2911         ret = btrfs_read_qgroup_config(fs_info);
2912         if (ret)
2913                 goto fail_trans_kthread;
2914
2915         if (btrfs_build_ref_tree(fs_info))
2916                 btrfs_err(fs_info, "couldn't build ref tree");
2917
2918         /* do not make disk changes in broken FS or nologreplay is given */
2919         if (btrfs_super_log_root(disk_super) != 0 &&
2920             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
2921                 ret = btrfs_replay_log(fs_info, fs_devices);
2922                 if (ret) {
2923                         err = ret;
2924                         goto fail_qgroup;
2925                 }
2926         }
2927
2928         ret = btrfs_find_orphan_roots(fs_info);
2929         if (ret)
2930                 goto fail_qgroup;
2931
2932         if (!sb_rdonly(sb)) {
2933                 ret = btrfs_cleanup_fs_roots(fs_info);
2934                 if (ret)
2935                         goto fail_qgroup;
2936
2937                 mutex_lock(&fs_info->cleaner_mutex);
2938                 ret = btrfs_recover_relocation(tree_root);
2939                 mutex_unlock(&fs_info->cleaner_mutex);
2940                 if (ret < 0) {
2941                         btrfs_warn(fs_info, "failed to recover relocation: %d",
2942                                         ret);
2943                         err = -EINVAL;
2944                         goto fail_qgroup;
2945                 }
2946         }
2947
2948         location.objectid = BTRFS_FS_TREE_OBJECTID;
2949         location.type = BTRFS_ROOT_ITEM_KEY;
2950         location.offset = 0;
2951
2952         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2953         if (IS_ERR(fs_info->fs_root)) {
2954                 err = PTR_ERR(fs_info->fs_root);
2955                 goto fail_qgroup;
2956         }
2957
2958         if (sb_rdonly(sb))
2959                 return 0;
2960
2961         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2962             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2963                 clear_free_space_tree = 1;
2964         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2965                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2966                 btrfs_warn(fs_info, "free space tree is invalid");
2967                 clear_free_space_tree = 1;
2968         }
2969
2970         if (clear_free_space_tree) {
2971                 btrfs_info(fs_info, "clearing free space tree");
2972                 ret = btrfs_clear_free_space_tree(fs_info);
2973                 if (ret) {
2974                         btrfs_warn(fs_info,
2975                                    "failed to clear free space tree: %d", ret);
2976                         close_ctree(fs_info);
2977                         return ret;
2978                 }
2979         }
2980
2981         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
2982             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2983                 btrfs_info(fs_info, "creating free space tree");
2984                 ret = btrfs_create_free_space_tree(fs_info);
2985                 if (ret) {
2986                         btrfs_warn(fs_info,
2987                                 "failed to create free space tree: %d", ret);
2988                         close_ctree(fs_info);
2989                         return ret;
2990                 }
2991         }
2992
2993         down_read(&fs_info->cleanup_work_sem);
2994         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2995             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2996                 up_read(&fs_info->cleanup_work_sem);
2997                 close_ctree(fs_info);
2998                 return ret;
2999         }
3000         up_read(&fs_info->cleanup_work_sem);
3001
3002         ret = btrfs_resume_balance_async(fs_info);
3003         if (ret) {
3004                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3005                 close_ctree(fs_info);
3006                 return ret;
3007         }
3008
3009         ret = btrfs_resume_dev_replace_async(fs_info);
3010         if (ret) {
3011                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3012                 close_ctree(fs_info);
3013                 return ret;
3014         }
3015
3016         btrfs_qgroup_rescan_resume(fs_info);
3017
3018         if (!fs_info->uuid_root) {
3019                 btrfs_info(fs_info, "creating UUID tree");
3020                 ret = btrfs_create_uuid_tree(fs_info);
3021                 if (ret) {
3022                         btrfs_warn(fs_info,
3023                                 "failed to create the UUID tree: %d", ret);
3024                         close_ctree(fs_info);
3025                         return ret;
3026                 }
3027         } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3028                    fs_info->generation !=
3029                                 btrfs_super_uuid_tree_generation(disk_super)) {
3030                 btrfs_info(fs_info, "checking UUID tree");
3031                 ret = btrfs_check_uuid_tree(fs_info);
3032                 if (ret) {
3033                         btrfs_warn(fs_info,
3034                                 "failed to check the UUID tree: %d", ret);
3035                         close_ctree(fs_info);
3036                         return ret;
3037                 }
3038         } else {
3039                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3040         }
3041         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3042
3043         /*
3044          * backuproot only affect mount behavior, and if open_ctree succeeded,
3045          * no need to keep the flag
3046          */
3047         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3048
3049         return 0;
3050
3051 fail_qgroup:
3052         btrfs_free_qgroup_config(fs_info);
3053 fail_trans_kthread:
3054         kthread_stop(fs_info->transaction_kthread);
3055         btrfs_cleanup_transaction(fs_info);
3056         btrfs_free_fs_roots(fs_info);
3057 fail_cleaner:
3058         kthread_stop(fs_info->cleaner_kthread);
3059
3060         /*
3061          * make sure we're done with the btree inode before we stop our
3062          * kthreads
3063          */
3064         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3065
3066 fail_sysfs:
3067         btrfs_sysfs_remove_mounted(fs_info);
3068
3069 fail_fsdev_sysfs:
3070         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3071
3072 fail_block_groups:
3073         btrfs_put_block_group_cache(fs_info);
3074
3075 fail_tree_roots:
3076         free_root_pointers(fs_info, 1);
3077         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3078
3079 fail_sb_buffer:
3080         btrfs_stop_all_workers(fs_info);
3081         btrfs_free_block_groups(fs_info);
3082 fail_alloc:
3083 fail_iput:
3084         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3085
3086         iput(fs_info->btree_inode);
3087 fail_bio_counter:
3088         percpu_counter_destroy(&fs_info->bio_counter);
3089 fail_delalloc_bytes:
3090         percpu_counter_destroy(&fs_info->delalloc_bytes);
3091 fail_dirty_metadata_bytes:
3092         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3093 fail_srcu:
3094         cleanup_srcu_struct(&fs_info->subvol_srcu);
3095 fail:
3096         btrfs_free_stripe_hash_table(fs_info);
3097         btrfs_close_devices(fs_info->fs_devices);
3098         return err;
3099
3100 recovery_tree_root:
3101         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3102                 goto fail_tree_roots;
3103
3104         free_root_pointers(fs_info, 0);
3105
3106         /* don't use the log in recovery mode, it won't be valid */
3107         btrfs_set_super_log_root(disk_super, 0);
3108
3109         /* we can't trust the free space cache either */
3110         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3111
3112         ret = next_root_backup(fs_info, fs_info->super_copy,
3113                                &num_backups_tried, &backup_index);
3114         if (ret == -1)
3115                 goto fail_block_groups;
3116         goto retry_root_backup;
3117 }
3118
3119 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3120 {
3121         if (uptodate) {
3122                 set_buffer_uptodate(bh);
3123         } else {
3124                 struct btrfs_device *device = (struct btrfs_device *)
3125                         bh->b_private;
3126
3127                 btrfs_warn_rl_in_rcu(device->fs_info,
3128                                 "lost page write due to IO error on %s",
3129                                           rcu_str_deref(device->name));
3130                 /* note, we don't set_buffer_write_io_error because we have
3131                  * our own ways of dealing with the IO errors
3132                  */
3133                 clear_buffer_uptodate(bh);
3134                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3135         }
3136         unlock_buffer(bh);
3137         put_bh(bh);
3138 }
3139
3140 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3141                         struct buffer_head **bh_ret)
3142 {
3143         struct buffer_head *bh;
3144         struct btrfs_super_block *super;
3145         u64 bytenr;
3146
3147         bytenr = btrfs_sb_offset(copy_num);
3148         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3149                 return -EINVAL;
3150
3151         bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3152         /*
3153          * If we fail to read from the underlying devices, as of now
3154          * the best option we have is to mark it EIO.
3155          */
3156         if (!bh)
3157                 return -EIO;
3158
3159         super = (struct btrfs_super_block *)bh->b_data;
3160         if (btrfs_super_bytenr(super) != bytenr ||
3161                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3162                 brelse(bh);
3163                 return -EINVAL;
3164         }
3165
3166         *bh_ret = bh;
3167         return 0;
3168 }
3169
3170
3171 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3172 {
3173         struct buffer_head *bh;
3174         struct buffer_head *latest = NULL;
3175         struct btrfs_super_block *super;
3176         int i;
3177         u64 transid = 0;
3178         int ret = -EINVAL;
3179
3180         /* we would like to check all the supers, but that would make
3181          * a btrfs mount succeed after a mkfs from a different FS.
3182          * So, we need to add a special mount option to scan for
3183          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3184          */
3185         for (i = 0; i < 1; i++) {
3186                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3187                 if (ret)
3188                         continue;
3189
3190                 super = (struct btrfs_super_block *)bh->b_data;
3191
3192                 if (!latest || btrfs_super_generation(super) > transid) {
3193                         brelse(latest);
3194                         latest = bh;
3195                         transid = btrfs_super_generation(super);
3196                 } else {
3197                         brelse(bh);
3198                 }
3199         }
3200
3201         if (!latest)
3202                 return ERR_PTR(ret);
3203
3204         return latest;
3205 }
3206
3207 /*
3208  * Write superblock @sb to the @device. Do not wait for completion, all the
3209  * buffer heads we write are pinned.
3210  *
3211  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3212  * the expected device size at commit time. Note that max_mirrors must be
3213  * same for write and wait phases.
3214  *
3215  * Return number of errors when buffer head is not found or submission fails.
3216  */
3217 static int write_dev_supers(struct btrfs_device *device,
3218                             struct btrfs_super_block *sb, int max_mirrors)
3219 {
3220         struct buffer_head *bh;
3221         int i;
3222         int ret;
3223         int errors = 0;
3224         u32 crc;
3225         u64 bytenr;
3226         int op_flags;
3227
3228         if (max_mirrors == 0)
3229                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3230
3231         for (i = 0; i < max_mirrors; i++) {
3232                 bytenr = btrfs_sb_offset(i);
3233                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3234                     device->commit_total_bytes)
3235                         break;
3236
3237                 btrfs_set_super_bytenr(sb, bytenr);
3238
3239                 crc = ~(u32)0;
3240                 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3241                                       BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3242                 btrfs_csum_final(crc, sb->csum);
3243
3244                 /* One reference for us, and we leave it for the caller */
3245                 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3246                               BTRFS_SUPER_INFO_SIZE);
3247                 if (!bh) {
3248                         btrfs_err(device->fs_info,
3249                             "couldn't get super buffer head for bytenr %llu",
3250                             bytenr);
3251                         errors++;
3252                         continue;
3253                 }
3254
3255                 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3256
3257                 /* one reference for submit_bh */
3258                 get_bh(bh);
3259
3260                 set_buffer_uptodate(bh);
3261                 lock_buffer(bh);
3262                 bh->b_end_io = btrfs_end_buffer_write_sync;
3263                 bh->b_private = device;
3264
3265                 /*
3266                  * we fua the first super.  The others we allow
3267                  * to go down lazy.
3268                  */
3269                 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3270                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3271                         op_flags |= REQ_FUA;
3272                 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3273                 if (ret)
3274                         errors++;
3275         }
3276         return errors < i ? 0 : -1;
3277 }
3278
3279 /*
3280  * Wait for write completion of superblocks done by write_dev_supers,
3281  * @max_mirrors same for write and wait phases.
3282  *
3283  * Return number of errors when buffer head is not found or not marked up to
3284  * date.
3285  */
3286 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3287 {
3288         struct buffer_head *bh;
3289         int i;
3290         int errors = 0;
3291         u64 bytenr;
3292
3293         if (max_mirrors == 0)
3294                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3295
3296         for (i = 0; i < max_mirrors; i++) {
3297                 bytenr = btrfs_sb_offset(i);
3298                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3299                     device->commit_total_bytes)
3300                         break;
3301
3302                 bh = __find_get_block(device->bdev,
3303                                       bytenr / BTRFS_BDEV_BLOCKSIZE,
3304                                       BTRFS_SUPER_INFO_SIZE);
3305                 if (!bh) {
3306                         errors++;
3307                         continue;
3308                 }
3309                 wait_on_buffer(bh);
3310                 if (!buffer_uptodate(bh))
3311                         errors++;
3312
3313                 /* drop our reference */
3314                 brelse(bh);
3315
3316                 /* drop the reference from the writing run */
3317                 brelse(bh);
3318         }
3319
3320         return errors < i ? 0 : -1;
3321 }
3322
3323 /*
3324  * endio for the write_dev_flush, this will wake anyone waiting
3325  * for the barrier when it is done
3326  */
3327 static void btrfs_end_empty_barrier(struct bio *bio)
3328 {
3329         complete(bio->bi_private);
3330 }
3331
3332 /*
3333  * Submit a flush request to the device if it supports it. Error handling is
3334  * done in the waiting counterpart.
3335  */
3336 static void write_dev_flush(struct btrfs_device *device)
3337 {
3338         struct request_queue *q = bdev_get_queue(device->bdev);
3339         struct bio *bio = device->flush_bio;
3340
3341         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3342                 return;
3343
3344         bio_reset(bio);
3345         bio->bi_end_io = btrfs_end_empty_barrier;
3346         bio_set_dev(bio, device->bdev);
3347         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3348         init_completion(&device->flush_wait);
3349         bio->bi_private = &device->flush_wait;
3350
3351         btrfsic_submit_bio(bio);
3352         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3353 }
3354
3355 /*
3356  * If the flush bio has been submitted by write_dev_flush, wait for it.
3357  */
3358 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3359 {
3360         struct bio *bio = device->flush_bio;
3361
3362         if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3363                 return BLK_STS_OK;
3364
3365         clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3366         wait_for_completion_io(&device->flush_wait);
3367
3368         return bio->bi_status;
3369 }
3370
3371 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3372 {
3373         if (!btrfs_check_rw_degradable(fs_info, NULL))
3374                 return -EIO;
3375         return 0;
3376 }
3377
3378 /*
3379  * send an empty flush down to each device in parallel,
3380  * then wait for them
3381  */
3382 static int barrier_all_devices(struct btrfs_fs_info *info)
3383 {
3384         struct list_head *head;
3385         struct btrfs_device *dev;
3386         int errors_wait = 0;
3387         blk_status_t ret;
3388
3389         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3390         /* send down all the barriers */
3391         head = &info->fs_devices->devices;
3392         list_for_each_entry(dev, head, dev_list) {
3393                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3394                         continue;
3395                 if (!dev->bdev)
3396                         continue;
3397                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3398                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3399                         continue;
3400
3401                 write_dev_flush(dev);
3402                 dev->last_flush_error = BLK_STS_OK;
3403         }
3404
3405         /* wait for all the barriers */
3406         list_for_each_entry(dev, head, dev_list) {
3407                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3408                         continue;
3409                 if (!dev->bdev) {
3410                         errors_wait++;
3411                         continue;
3412                 }
3413                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3414                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3415                         continue;
3416
3417                 ret = wait_dev_flush(dev);
3418                 if (ret) {
3419                         dev->last_flush_error = ret;
3420                         btrfs_dev_stat_inc_and_print(dev,
3421                                         BTRFS_DEV_STAT_FLUSH_ERRS);
3422                         errors_wait++;
3423                 }
3424         }
3425
3426         if (errors_wait) {
3427                 /*
3428                  * At some point we need the status of all disks
3429                  * to arrive at the volume status. So error checking
3430                  * is being pushed to a separate loop.
3431                  */
3432                 return check_barrier_error(info);
3433         }
3434         return 0;
3435 }
3436
3437 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3438 {
3439         int raid_type;
3440         int min_tolerated = INT_MAX;
3441
3442         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3443             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3444                 min_tolerated = min(min_tolerated,
3445                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3446                                     tolerated_failures);
3447
3448         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3449                 if (raid_type == BTRFS_RAID_SINGLE)
3450                         continue;
3451                 if (!(flags & btrfs_raid_group[raid_type]))
3452                         continue;
3453                 min_tolerated = min(min_tolerated,
3454                                     btrfs_raid_array[raid_type].
3455                                     tolerated_failures);
3456         }
3457
3458         if (min_tolerated == INT_MAX) {
3459                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3460                 min_tolerated = 0;
3461         }
3462
3463         return min_tolerated;
3464 }
3465
3466 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3467 {
3468         struct list_head *head;
3469         struct btrfs_device *dev;
3470         struct btrfs_super_block *sb;
3471         struct btrfs_dev_item *dev_item;
3472         int ret;
3473         int do_barriers;
3474         int max_errors;
3475         int total_errors = 0;
3476         u64 flags;
3477
3478         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3479
3480         /*
3481          * max_mirrors == 0 indicates we're from commit_transaction,
3482          * not from fsync where the tree roots in fs_info have not
3483          * been consistent on disk.
3484          */
3485         if (max_mirrors == 0)
3486                 backup_super_roots(fs_info);
3487
3488         sb = fs_info->super_for_commit;
3489         dev_item = &sb->dev_item;
3490
3491         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3492         head = &fs_info->fs_devices->devices;
3493         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3494
3495         if (do_barriers) {
3496                 ret = barrier_all_devices(fs_info);
3497                 if (ret) {
3498                         mutex_unlock(
3499                                 &fs_info->fs_devices->device_list_mutex);
3500                         btrfs_handle_fs_error(fs_info, ret,
3501                                               "errors while submitting device barriers.");
3502                         return ret;
3503                 }
3504         }
3505
3506         list_for_each_entry(dev, head, dev_list) {
3507                 if (!dev->bdev) {
3508                         total_errors++;
3509                         continue;
3510                 }
3511                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3512                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3513                         continue;
3514
3515                 btrfs_set_stack_device_generation(dev_item, 0);
3516                 btrfs_set_stack_device_type(dev_item, dev->type);
3517                 btrfs_set_stack_device_id(dev_item, dev->devid);
3518                 btrfs_set_stack_device_total_bytes(dev_item,
3519                                                    dev->commit_total_bytes);
3520                 btrfs_set_stack_device_bytes_used(dev_item,
3521                                                   dev->commit_bytes_used);
3522                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3523                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3524                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3525                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3526                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
3527
3528                 flags = btrfs_super_flags(sb);
3529                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3530
3531                 ret = write_dev_supers(dev, sb, max_mirrors);
3532                 if (ret)
3533                         total_errors++;
3534         }
3535         if (total_errors > max_errors) {
3536                 btrfs_err(fs_info, "%d errors while writing supers",
3537                           total_errors);
3538                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3539
3540                 /* FUA is masked off if unsupported and can't be the reason */
3541                 btrfs_handle_fs_error(fs_info, -EIO,
3542                                       "%d errors while writing supers",
3543                                       total_errors);
3544                 return -EIO;
3545         }
3546
3547         total_errors = 0;
3548         list_for_each_entry(dev, head, dev_list) {
3549                 if (!dev->bdev)
3550                         continue;
3551                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3552                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3553                         continue;
3554
3555                 ret = wait_dev_supers(dev, max_mirrors);
3556                 if (ret)
3557                         total_errors++;
3558         }
3559         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3560         if (total_errors > max_errors) {
3561                 btrfs_handle_fs_error(fs_info, -EIO,
3562                                       "%d errors while writing supers",
3563                                       total_errors);
3564                 return -EIO;
3565         }
3566         return 0;
3567 }
3568
3569 /* Drop a fs root from the radix tree and free it. */
3570 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3571                                   struct btrfs_root *root)
3572 {
3573         spin_lock(&fs_info->fs_roots_radix_lock);
3574         radix_tree_delete(&fs_info->fs_roots_radix,
3575                           (unsigned long)root->root_key.objectid);
3576         spin_unlock(&fs_info->fs_roots_radix_lock);
3577
3578         if (btrfs_root_refs(&root->root_item) == 0)
3579                 synchronize_srcu(&fs_info->subvol_srcu);
3580
3581         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3582                 btrfs_free_log(NULL, root);
3583                 if (root->reloc_root) {
3584                         free_extent_buffer(root->reloc_root->node);
3585                         free_extent_buffer(root->reloc_root->commit_root);
3586                         btrfs_put_fs_root(root->reloc_root);
3587                         root->reloc_root = NULL;
3588                 }
3589         }
3590
3591         if (root->free_ino_pinned)
3592                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3593         if (root->free_ino_ctl)
3594                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3595         free_fs_root(root);
3596 }
3597
3598 static void free_fs_root(struct btrfs_root *root)
3599 {
3600         iput(root->ino_cache_inode);
3601         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3602         btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
3603         root->orphan_block_rsv = NULL;
3604         if (root->anon_dev)
3605                 free_anon_bdev(root->anon_dev);
3606         if (root->subv_writers)
3607                 btrfs_free_subvolume_writers(root->subv_writers);
3608         free_extent_buffer(root->node);
3609         free_extent_buffer(root->commit_root);
3610         kfree(root->free_ino_ctl);
3611         kfree(root->free_ino_pinned);
3612         kfree(root->name);
3613         btrfs_put_fs_root(root);
3614 }
3615
3616 void btrfs_free_fs_root(struct btrfs_root *root)
3617 {
3618         free_fs_root(root);
3619 }
3620
3621 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3622 {
3623         u64 root_objectid = 0;
3624         struct btrfs_root *gang[8];
3625         int i = 0;
3626         int err = 0;
3627         unsigned int ret = 0;
3628         int index;
3629
3630         while (1) {
3631                 index = srcu_read_lock(&fs_info->subvol_srcu);
3632                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3633                                              (void **)gang, root_objectid,
3634                                              ARRAY_SIZE(gang));
3635                 if (!ret) {
3636                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3637                         break;
3638                 }
3639                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3640
3641                 for (i = 0; i < ret; i++) {
3642                         /* Avoid to grab roots in dead_roots */
3643                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3644                                 gang[i] = NULL;
3645                                 continue;
3646                         }
3647                         /* grab all the search result for later use */
3648                         gang[i] = btrfs_grab_fs_root(gang[i]);
3649                 }
3650                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3651
3652                 for (i = 0; i < ret; i++) {
3653                         if (!gang[i])
3654                                 continue;
3655                         root_objectid = gang[i]->root_key.objectid;
3656                         err = btrfs_orphan_cleanup(gang[i]);
3657                         if (err)
3658                                 break;
3659                         btrfs_put_fs_root(gang[i]);
3660                 }
3661                 root_objectid++;
3662         }
3663
3664         /* release the uncleaned roots due to error */
3665         for (; i < ret; i++) {
3666                 if (gang[i])
3667                         btrfs_put_fs_root(gang[i]);
3668         }
3669         return err;
3670 }
3671
3672 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3673 {
3674         struct btrfs_root *root = fs_info->tree_root;
3675         struct btrfs_trans_handle *trans;
3676
3677         mutex_lock(&fs_info->cleaner_mutex);
3678         btrfs_run_delayed_iputs(fs_info);
3679         mutex_unlock(&fs_info->cleaner_mutex);
3680         wake_up_process(fs_info->cleaner_kthread);
3681
3682         /* wait until ongoing cleanup work done */
3683         down_write(&fs_info->cleanup_work_sem);
3684         up_write(&fs_info->cleanup_work_sem);
3685
3686         trans = btrfs_join_transaction(root);
3687         if (IS_ERR(trans))
3688                 return PTR_ERR(trans);
3689         return btrfs_commit_transaction(trans);
3690 }
3691
3692 void close_ctree(struct btrfs_fs_info *fs_info)
3693 {
3694         struct btrfs_root *root = fs_info->tree_root;
3695         int ret;
3696
3697         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3698
3699         /* wait for the qgroup rescan worker to stop */
3700         btrfs_qgroup_wait_for_completion(fs_info, false);
3701
3702         /* wait for the uuid_scan task to finish */
3703         down(&fs_info->uuid_tree_rescan_sem);
3704         /* avoid complains from lockdep et al., set sem back to initial state */
3705         up(&fs_info->uuid_tree_rescan_sem);
3706
3707         /* pause restriper - we want to resume on mount */
3708         btrfs_pause_balance(fs_info);
3709
3710         btrfs_dev_replace_suspend_for_unmount(fs_info);
3711
3712         btrfs_scrub_cancel(fs_info);
3713
3714         /* wait for any defraggers to finish */
3715         wait_event(fs_info->transaction_wait,
3716                    (atomic_read(&fs_info->defrag_running) == 0));
3717
3718         /* clear out the rbtree of defraggable inodes */
3719         btrfs_cleanup_defrag_inodes(fs_info);
3720
3721         cancel_work_sync(&fs_info->async_reclaim_work);
3722
3723         if (!sb_rdonly(fs_info->sb)) {
3724                 /*
3725                  * If the cleaner thread is stopped and there are
3726                  * block groups queued for removal, the deletion will be
3727                  * skipped when we quit the cleaner thread.
3728                  */
3729                 btrfs_delete_unused_bgs(fs_info);
3730
3731                 ret = btrfs_commit_super(fs_info);
3732                 if (ret)
3733                         btrfs_err(fs_info, "commit super ret %d", ret);
3734         }
3735
3736         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3737                 btrfs_error_commit_super(fs_info);
3738
3739         kthread_stop(fs_info->transaction_kthread);
3740         kthread_stop(fs_info->cleaner_kthread);
3741
3742         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3743
3744         btrfs_free_qgroup_config(fs_info);
3745
3746         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3747                 btrfs_info(fs_info, "at unmount delalloc count %lld",
3748                        percpu_counter_sum(&fs_info->delalloc_bytes));
3749         }
3750
3751         btrfs_sysfs_remove_mounted(fs_info);
3752         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3753
3754         btrfs_free_fs_roots(fs_info);
3755
3756         btrfs_put_block_group_cache(fs_info);
3757
3758         /*
3759          * we must make sure there is not any read request to
3760          * submit after we stopping all workers.
3761          */
3762         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3763         btrfs_stop_all_workers(fs_info);
3764
3765         btrfs_free_block_groups(fs_info);
3766
3767         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3768         free_root_pointers(fs_info, 1);
3769
3770         iput(fs_info->btree_inode);
3771
3772 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3773         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
3774                 btrfsic_unmount(fs_info->fs_devices);
3775 #endif
3776
3777         btrfs_close_devices(fs_info->fs_devices);
3778         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3779
3780         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3781         percpu_counter_destroy(&fs_info->delalloc_bytes);
3782         percpu_counter_destroy(&fs_info->bio_counter);
3783         cleanup_srcu_struct(&fs_info->subvol_srcu);
3784
3785         btrfs_free_stripe_hash_table(fs_info);
3786         btrfs_free_ref_cache(fs_info);
3787
3788         __btrfs_free_block_rsv(root->orphan_block_rsv);
3789         root->orphan_block_rsv = NULL;
3790
3791         while (!list_empty(&fs_info->pinned_chunks)) {
3792                 struct extent_map *em;
3793
3794                 em = list_first_entry(&fs_info->pinned_chunks,
3795                                       struct extent_map, list);
3796                 list_del_init(&em->list);
3797                 free_extent_map(em);
3798         }
3799 }
3800
3801 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3802                           int atomic)
3803 {
3804         int ret;
3805         struct inode *btree_inode = buf->pages[0]->mapping->host;
3806
3807         ret = extent_buffer_uptodate(buf);
3808         if (!ret)
3809                 return ret;
3810
3811         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3812                                     parent_transid, atomic);
3813         if (ret == -EAGAIN)
3814                 return ret;
3815         return !ret;
3816 }
3817
3818 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3819 {
3820         struct btrfs_fs_info *fs_info;
3821         struct btrfs_root *root;
3822         u64 transid = btrfs_header_generation(buf);
3823         int was_dirty;
3824
3825 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3826         /*
3827          * This is a fast path so only do this check if we have sanity tests
3828          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3829          * outside of the sanity tests.
3830          */
3831         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3832                 return;
3833 #endif
3834         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3835         fs_info = root->fs_info;
3836         btrfs_assert_tree_locked(buf);
3837         if (transid != fs_info->generation)
3838                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
3839                         buf->start, transid, fs_info->generation);
3840         was_dirty = set_extent_buffer_dirty(buf);
3841         if (!was_dirty)
3842                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3843                                          buf->len,
3844                                          fs_info->dirty_metadata_batch);
3845 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3846         /*
3847          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
3848          * but item data not updated.
3849          * So here we should only check item pointers, not item data.
3850          */
3851         if (btrfs_header_level(buf) == 0 &&
3852             btrfs_check_leaf_relaxed(root, buf)) {
3853                 btrfs_print_leaf(buf);
3854                 ASSERT(0);
3855         }
3856 #endif
3857 }
3858
3859 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
3860                                         int flush_delayed)
3861 {
3862         /*
3863          * looks as though older kernels can get into trouble with
3864          * this code, they end up stuck in balance_dirty_pages forever
3865          */
3866         int ret;
3867
3868         if (current->flags & PF_MEMALLOC)
3869                 return;
3870
3871         if (flush_delayed)
3872                 btrfs_balance_delayed_items(fs_info);
3873
3874         ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
3875                                      BTRFS_DIRTY_METADATA_THRESH);
3876         if (ret > 0) {
3877                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
3878         }
3879 }
3880
3881 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
3882 {
3883         __btrfs_btree_balance_dirty(fs_info, 1);
3884 }
3885
3886 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
3887 {
3888         __btrfs_btree_balance_dirty(fs_info, 0);
3889 }
3890
3891 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3892 {
3893         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3894         struct btrfs_fs_info *fs_info = root->fs_info;
3895
3896         return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
3897 }
3898
3899 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
3900 {
3901         struct btrfs_super_block *sb = fs_info->super_copy;
3902         u64 nodesize = btrfs_super_nodesize(sb);
3903         u64 sectorsize = btrfs_super_sectorsize(sb);
3904         int ret = 0;
3905
3906         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
3907                 btrfs_err(fs_info, "no valid FS found");
3908                 ret = -EINVAL;
3909         }
3910         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
3911                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
3912                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
3913                 ret = -EINVAL;
3914         }
3915         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3916                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
3917                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3918                 ret = -EINVAL;
3919         }
3920         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3921                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
3922                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
3923                 ret = -EINVAL;
3924         }
3925         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3926                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
3927                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
3928                 ret = -EINVAL;
3929         }
3930
3931         /*
3932          * Check sectorsize and nodesize first, other check will need it.
3933          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
3934          */
3935         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
3936             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
3937                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
3938                 ret = -EINVAL;
3939         }
3940         /* Only PAGE SIZE is supported yet */
3941         if (sectorsize != PAGE_SIZE) {
3942                 btrfs_err(fs_info,
3943                         "sectorsize %llu not supported yet, only support %lu",
3944                         sectorsize, PAGE_SIZE);
3945                 ret = -EINVAL;
3946         }
3947         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
3948             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
3949                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
3950                 ret = -EINVAL;
3951         }
3952         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
3953                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
3954                           le32_to_cpu(sb->__unused_leafsize), nodesize);
3955                 ret = -EINVAL;
3956         }
3957
3958         /* Root alignment check */
3959         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
3960                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
3961                            btrfs_super_root(sb));
3962                 ret = -EINVAL;
3963         }
3964         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
3965                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
3966                            btrfs_super_chunk_root(sb));
3967                 ret = -EINVAL;
3968         }
3969         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
3970                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
3971                            btrfs_super_log_root(sb));
3972                 ret = -EINVAL;
3973         }
3974
3975         if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
3976                 btrfs_err(fs_info,
3977                            "dev_item UUID does not match fsid: %pU != %pU",
3978                            fs_info->fsid, sb->dev_item.fsid);
3979                 ret = -EINVAL;
3980         }
3981
3982         /*
3983          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
3984          * done later
3985          */
3986         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
3987                 btrfs_err(fs_info, "bytes_used is too small %llu",
3988                           btrfs_super_bytes_used(sb));
3989                 ret = -EINVAL;
3990         }
3991         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
3992                 btrfs_err(fs_info, "invalid stripesize %u",
3993                           btrfs_super_stripesize(sb));
3994                 ret = -EINVAL;
3995         }
3996         if (btrfs_super_num_devices(sb) > (1UL << 31))
3997                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
3998                            btrfs_super_num_devices(sb));
3999         if (btrfs_super_num_devices(sb) == 0) {
4000                 btrfs_err(fs_info, "number of devices is 0");
4001                 ret = -EINVAL;
4002         }
4003
4004         if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4005                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
4006                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4007                 ret = -EINVAL;
4008         }
4009
4010         /*
4011          * Obvious sys_chunk_array corruptions, it must hold at least one key
4012          * and one chunk
4013          */
4014         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4015                 btrfs_err(fs_info, "system chunk array too big %u > %u",
4016                           btrfs_super_sys_array_size(sb),
4017                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4018                 ret = -EINVAL;
4019         }
4020         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4021                         + sizeof(struct btrfs_chunk)) {
4022                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
4023                           btrfs_super_sys_array_size(sb),
4024                           sizeof(struct btrfs_disk_key)
4025                           + sizeof(struct btrfs_chunk));
4026                 ret = -EINVAL;
4027         }
4028
4029         /*
4030          * The generation is a global counter, we'll trust it more than the others
4031          * but it's still possible that it's the one that's wrong.
4032          */
4033         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4034                 btrfs_warn(fs_info,
4035                         "suspicious: generation < chunk_root_generation: %llu < %llu",
4036                         btrfs_super_generation(sb),
4037                         btrfs_super_chunk_root_generation(sb));
4038         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4039             && btrfs_super_cache_generation(sb) != (u64)-1)
4040                 btrfs_warn(fs_info,
4041                         "suspicious: generation < cache_generation: %llu < %llu",
4042                         btrfs_super_generation(sb),
4043                         btrfs_super_cache_generation(sb));
4044
4045         return ret;
4046 }
4047
4048 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4049 {
4050         mutex_lock(&fs_info->cleaner_mutex);
4051         btrfs_run_delayed_iputs(fs_info);
4052         mutex_unlock(&fs_info->cleaner_mutex);
4053
4054         down_write(&fs_info->cleanup_work_sem);
4055         up_write(&fs_info->cleanup_work_sem);
4056
4057         /* cleanup FS via transaction */
4058         btrfs_cleanup_transaction(fs_info);
4059 }
4060
4061 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4062 {
4063         struct btrfs_ordered_extent *ordered;
4064
4065         spin_lock(&root->ordered_extent_lock);
4066         /*
4067          * This will just short circuit the ordered completion stuff which will
4068          * make sure the ordered extent gets properly cleaned up.
4069          */
4070         list_for_each_entry(ordered, &root->ordered_extents,
4071                             root_extent_list)
4072                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4073         spin_unlock(&root->ordered_extent_lock);
4074 }
4075
4076 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4077 {
4078         struct btrfs_root *root;
4079         struct list_head splice;
4080
4081         INIT_LIST_HEAD(&splice);
4082
4083         spin_lock(&fs_info->ordered_root_lock);
4084         list_splice_init(&fs_info->ordered_roots, &splice);
4085         while (!list_empty(&splice)) {
4086                 root = list_first_entry(&splice, struct btrfs_root,
4087                                         ordered_root);
4088                 list_move_tail(&root->ordered_root,
4089                                &fs_info->ordered_roots);
4090
4091                 spin_unlock(&fs_info->ordered_root_lock);
4092                 btrfs_destroy_ordered_extents(root);
4093
4094                 cond_resched();
4095                 spin_lock(&fs_info->ordered_root_lock);
4096         }
4097         spin_unlock(&fs_info->ordered_root_lock);
4098 }
4099
4100 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4101                                       struct btrfs_fs_info *fs_info)
4102 {
4103         struct rb_node *node;
4104         struct btrfs_delayed_ref_root *delayed_refs;
4105         struct btrfs_delayed_ref_node *ref;
4106         int ret = 0;
4107
4108         delayed_refs = &trans->delayed_refs;
4109
4110         spin_lock(&delayed_refs->lock);
4111         if (atomic_read(&delayed_refs->num_entries) == 0) {
4112                 spin_unlock(&delayed_refs->lock);
4113                 btrfs_info(fs_info, "delayed_refs has NO entry");
4114                 return ret;
4115         }
4116
4117         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4118                 struct btrfs_delayed_ref_head *head;
4119                 struct rb_node *n;
4120                 bool pin_bytes = false;
4121
4122                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4123                                 href_node);
4124                 if (!mutex_trylock(&head->mutex)) {
4125                         refcount_inc(&head->refs);
4126                         spin_unlock(&delayed_refs->lock);
4127
4128                         mutex_lock(&head->mutex);
4129                         mutex_unlock(&head->mutex);
4130                         btrfs_put_delayed_ref_head(head);
4131                         spin_lock(&delayed_refs->lock);
4132                         continue;
4133                 }
4134                 spin_lock(&head->lock);
4135                 while ((n = rb_first(&head->ref_tree)) != NULL) {
4136                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4137                                        ref_node);
4138                         ref->in_tree = 0;
4139                         rb_erase(&ref->ref_node, &head->ref_tree);
4140                         RB_CLEAR_NODE(&ref->ref_node);
4141                         if (!list_empty(&ref->add_list))
4142                                 list_del(&ref->add_list);
4143                         atomic_dec(&delayed_refs->num_entries);
4144                         btrfs_put_delayed_ref(ref);
4145                 }
4146                 if (head->must_insert_reserved)
4147                         pin_bytes = true;
4148                 btrfs_free_delayed_extent_op(head->extent_op);
4149                 delayed_refs->num_heads--;
4150                 if (head->processing == 0)
4151                         delayed_refs->num_heads_ready--;
4152                 atomic_dec(&delayed_refs->num_entries);
4153                 rb_erase(&head->href_node, &delayed_refs->href_root);
4154                 RB_CLEAR_NODE(&head->href_node);
4155                 spin_unlock(&head->lock);
4156                 spin_unlock(&delayed_refs->lock);
4157                 mutex_unlock(&head->mutex);
4158
4159                 if (pin_bytes)
4160                         btrfs_pin_extent(fs_info, head->bytenr,
4161                                          head->num_bytes, 1);
4162                 btrfs_put_delayed_ref_head(head);
4163                 cond_resched();
4164                 spin_lock(&delayed_refs->lock);
4165         }
4166
4167         spin_unlock(&delayed_refs->lock);
4168
4169         return ret;
4170 }
4171
4172 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4173 {
4174         struct btrfs_inode *btrfs_inode;
4175         struct list_head splice;
4176
4177         INIT_LIST_HEAD(&splice);
4178
4179         spin_lock(&root->delalloc_lock);
4180         list_splice_init(&root->delalloc_inodes, &splice);
4181
4182         while (!list_empty(&splice)) {
4183                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4184                                                delalloc_inodes);
4185
4186                 list_del_init(&btrfs_inode->delalloc_inodes);
4187                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4188                           &btrfs_inode->runtime_flags);
4189                 spin_unlock(&root->delalloc_lock);
4190
4191                 btrfs_invalidate_inodes(btrfs_inode->root);
4192
4193                 spin_lock(&root->delalloc_lock);
4194         }
4195
4196         spin_unlock(&root->delalloc_lock);
4197 }
4198
4199 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4200 {
4201         struct btrfs_root *root;
4202         struct list_head splice;
4203
4204         INIT_LIST_HEAD(&splice);
4205
4206         spin_lock(&fs_info->delalloc_root_lock);
4207         list_splice_init(&fs_info->delalloc_roots, &splice);
4208         while (!list_empty(&splice)) {
4209                 root = list_first_entry(&splice, struct btrfs_root,
4210                                          delalloc_root);
4211                 list_del_init(&root->delalloc_root);
4212                 root = btrfs_grab_fs_root(root);
4213                 BUG_ON(!root);
4214                 spin_unlock(&fs_info->delalloc_root_lock);
4215
4216                 btrfs_destroy_delalloc_inodes(root);
4217                 btrfs_put_fs_root(root);
4218
4219                 spin_lock(&fs_info->delalloc_root_lock);
4220         }
4221         spin_unlock(&fs_info->delalloc_root_lock);
4222 }
4223
4224 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4225                                         struct extent_io_tree *dirty_pages,
4226                                         int mark)
4227 {
4228         int ret;
4229         struct extent_buffer *eb;
4230         u64 start = 0;
4231         u64 end;
4232
4233         while (1) {
4234                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4235                                             mark, NULL);
4236                 if (ret)
4237                         break;
4238
4239                 clear_extent_bits(dirty_pages, start, end, mark);
4240                 while (start <= end) {
4241                         eb = find_extent_buffer(fs_info, start);
4242                         start += fs_info->nodesize;
4243                         if (!eb)
4244                                 continue;
4245                         wait_on_extent_buffer_writeback(eb);
4246
4247                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4248                                                &eb->bflags))
4249                                 clear_extent_buffer_dirty(eb);
4250                         free_extent_buffer_stale(eb);
4251                 }
4252         }
4253
4254         return ret;
4255 }
4256
4257 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4258                                        struct extent_io_tree *pinned_extents)
4259 {
4260         struct extent_io_tree *unpin;
4261         u64 start;
4262         u64 end;
4263         int ret;
4264         bool loop = true;
4265
4266         unpin = pinned_extents;
4267 again:
4268         while (1) {
4269                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4270                                             EXTENT_DIRTY, NULL);
4271                 if (ret)
4272                         break;
4273
4274                 clear_extent_dirty(unpin, start, end);
4275                 btrfs_error_unpin_extent_range(fs_info, start, end);
4276                 cond_resched();
4277         }
4278
4279         if (loop) {
4280                 if (unpin == &fs_info->freed_extents[0])
4281                         unpin = &fs_info->freed_extents[1];
4282                 else
4283                         unpin = &fs_info->freed_extents[0];
4284                 loop = false;
4285                 goto again;
4286         }
4287
4288         return 0;
4289 }
4290
4291 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4292 {
4293         struct inode *inode;
4294
4295         inode = cache->io_ctl.inode;
4296         if (inode) {
4297                 invalidate_inode_pages2(inode->i_mapping);
4298                 BTRFS_I(inode)->generation = 0;
4299                 cache->io_ctl.inode = NULL;
4300                 iput(inode);
4301         }
4302         btrfs_put_block_group(cache);
4303 }
4304
4305 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4306                              struct btrfs_fs_info *fs_info)
4307 {
4308         struct btrfs_block_group_cache *cache;
4309
4310         spin_lock(&cur_trans->dirty_bgs_lock);
4311         while (!list_empty(&cur_trans->dirty_bgs)) {
4312                 cache = list_first_entry(&cur_trans->dirty_bgs,
4313                                          struct btrfs_block_group_cache,
4314                                          dirty_list);
4315                 if (!cache) {
4316                         btrfs_err(fs_info, "orphan block group dirty_bgs list");
4317                         spin_unlock(&cur_trans->dirty_bgs_lock);
4318                         return;
4319                 }
4320
4321                 if (!list_empty(&cache->io_list)) {
4322                         spin_unlock(&cur_trans->dirty_bgs_lock);
4323                         list_del_init(&cache->io_list);
4324                         btrfs_cleanup_bg_io(cache);
4325                         spin_lock(&cur_trans->dirty_bgs_lock);
4326                 }
4327
4328                 list_del_init(&cache->dirty_list);
4329                 spin_lock(&cache->lock);
4330                 cache->disk_cache_state = BTRFS_DC_ERROR;
4331                 spin_unlock(&cache->lock);
4332
4333                 spin_unlock(&cur_trans->dirty_bgs_lock);
4334                 btrfs_put_block_group(cache);
4335                 spin_lock(&cur_trans->dirty_bgs_lock);
4336         }
4337         spin_unlock(&cur_trans->dirty_bgs_lock);
4338
4339         while (!list_empty(&cur_trans->io_bgs)) {
4340                 cache = list_first_entry(&cur_trans->io_bgs,
4341                                          struct btrfs_block_group_cache,
4342                                          io_list);
4343                 if (!cache) {
4344                         btrfs_err(fs_info, "orphan block group on io_bgs list");
4345                         return;
4346                 }
4347
4348                 list_del_init(&cache->io_list);
4349                 spin_lock(&cache->lock);
4350                 cache->disk_cache_state = BTRFS_DC_ERROR;
4351                 spin_unlock(&cache->lock);
4352                 btrfs_cleanup_bg_io(cache);
4353         }
4354 }
4355
4356 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4357                                    struct btrfs_fs_info *fs_info)
4358 {
4359         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4360         ASSERT(list_empty(&cur_trans->dirty_bgs));
4361         ASSERT(list_empty(&cur_trans->io_bgs));
4362
4363         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4364
4365         cur_trans->state = TRANS_STATE_COMMIT_START;
4366         wake_up(&fs_info->transaction_blocked_wait);
4367
4368         cur_trans->state = TRANS_STATE_UNBLOCKED;
4369         wake_up(&fs_info->transaction_wait);
4370
4371         btrfs_destroy_delayed_inodes(fs_info);
4372         btrfs_assert_delayed_root_empty(fs_info);
4373
4374         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4375                                      EXTENT_DIRTY);
4376         btrfs_destroy_pinned_extent(fs_info,
4377                                     fs_info->pinned_extents);
4378
4379         cur_trans->state =TRANS_STATE_COMPLETED;
4380         wake_up(&cur_trans->commit_wait);
4381 }
4382
4383 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4384 {
4385         struct btrfs_transaction *t;
4386
4387         mutex_lock(&fs_info->transaction_kthread_mutex);
4388
4389         spin_lock(&fs_info->trans_lock);
4390         while (!list_empty(&fs_info->trans_list)) {
4391                 t = list_first_entry(&fs_info->trans_list,
4392                                      struct btrfs_transaction, list);
4393                 if (t->state >= TRANS_STATE_COMMIT_START) {
4394                         refcount_inc(&t->use_count);
4395                         spin_unlock(&fs_info->trans_lock);
4396                         btrfs_wait_for_commit(fs_info, t->transid);
4397                         btrfs_put_transaction(t);
4398                         spin_lock(&fs_info->trans_lock);
4399                         continue;
4400                 }
4401                 if (t == fs_info->running_transaction) {
4402                         t->state = TRANS_STATE_COMMIT_DOING;
4403                         spin_unlock(&fs_info->trans_lock);
4404                         /*
4405                          * We wait for 0 num_writers since we don't hold a trans
4406                          * handle open currently for this transaction.
4407                          */
4408                         wait_event(t->writer_wait,
4409                                    atomic_read(&t->num_writers) == 0);
4410                 } else {
4411                         spin_unlock(&fs_info->trans_lock);
4412                 }
4413                 btrfs_cleanup_one_transaction(t, fs_info);
4414
4415                 spin_lock(&fs_info->trans_lock);
4416                 if (t == fs_info->running_transaction)
4417                         fs_info->running_transaction = NULL;
4418                 list_del_init(&t->list);
4419                 spin_unlock(&fs_info->trans_lock);
4420
4421                 btrfs_put_transaction(t);
4422                 trace_btrfs_transaction_commit(fs_info->tree_root);
4423                 spin_lock(&fs_info->trans_lock);
4424         }
4425         spin_unlock(&fs_info->trans_lock);
4426         btrfs_destroy_all_ordered_extents(fs_info);
4427         btrfs_destroy_delayed_inodes(fs_info);
4428         btrfs_assert_delayed_root_empty(fs_info);
4429         btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4430         btrfs_destroy_all_delalloc_inodes(fs_info);
4431         mutex_unlock(&fs_info->transaction_kthread_mutex);
4432
4433         return 0;
4434 }
4435
4436 static struct btrfs_fs_info *btree_fs_info(void *private_data)
4437 {
4438         struct inode *inode = private_data;
4439         return btrfs_sb(inode->i_sb);
4440 }
4441
4442 static const struct extent_io_ops btree_extent_io_ops = {
4443         /* mandatory callbacks */
4444         .submit_bio_hook = btree_submit_bio_hook,
4445         .readpage_end_io_hook = btree_readpage_end_io_hook,
4446         /* note we're sharing with inode.c for the merge bio hook */
4447         .merge_bio_hook = btrfs_merge_bio_hook,
4448         .readpage_io_failed_hook = btree_io_failed_hook,
4449         .set_range_writeback = btrfs_set_range_writeback,
4450         .tree_fs_info = btree_fs_info,
4451
4452         /* optional callbacks */
4453 };