Btrfs: check UUID tree during mount if required
[linux-2.6-block.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <linux/uuid.h>
34 #include <linux/semaphore.h>
35 #include <asm/unaligned.h>
36 #include "compat.h"
37 #include "ctree.h"
38 #include "disk-io.h"
39 #include "transaction.h"
40 #include "btrfs_inode.h"
41 #include "volumes.h"
42 #include "print-tree.h"
43 #include "async-thread.h"
44 #include "locking.h"
45 #include "tree-log.h"
46 #include "free-space-cache.h"
47 #include "inode-map.h"
48 #include "check-integrity.h"
49 #include "rcu-string.h"
50 #include "dev-replace.h"
51 #include "raid56.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61                                     int read_only);
62 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63                                              struct btrfs_root *root);
64 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
65 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66                                       struct btrfs_root *root);
67 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
68 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
69 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
70                                         struct extent_io_tree *dirty_pages,
71                                         int mark);
72 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
73                                        struct extent_io_tree *pinned_extents);
74 static int btrfs_cleanup_transaction(struct btrfs_root *root);
75 static void btrfs_error_commit_super(struct btrfs_root *root);
76
77 /*
78  * end_io_wq structs are used to do processing in task context when an IO is
79  * complete.  This is used during reads to verify checksums, and it is used
80  * by writes to insert metadata for new file extents after IO is complete.
81  */
82 struct end_io_wq {
83         struct bio *bio;
84         bio_end_io_t *end_io;
85         void *private;
86         struct btrfs_fs_info *info;
87         int error;
88         int metadata;
89         struct list_head list;
90         struct btrfs_work work;
91 };
92
93 /*
94  * async submit bios are used to offload expensive checksumming
95  * onto the worker threads.  They checksum file and metadata bios
96  * just before they are sent down the IO stack.
97  */
98 struct async_submit_bio {
99         struct inode *inode;
100         struct bio *bio;
101         struct list_head list;
102         extent_submit_bio_hook_t *submit_bio_start;
103         extent_submit_bio_hook_t *submit_bio_done;
104         int rw;
105         int mirror_num;
106         unsigned long bio_flags;
107         /*
108          * bio_offset is optional, can be used if the pages in the bio
109          * can't tell us where in the file the bio should go
110          */
111         u64 bio_offset;
112         struct btrfs_work work;
113         int error;
114 };
115
116 /*
117  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
118  * eb, the lockdep key is determined by the btrfs_root it belongs to and
119  * the level the eb occupies in the tree.
120  *
121  * Different roots are used for different purposes and may nest inside each
122  * other and they require separate keysets.  As lockdep keys should be
123  * static, assign keysets according to the purpose of the root as indicated
124  * by btrfs_root->objectid.  This ensures that all special purpose roots
125  * have separate keysets.
126  *
127  * Lock-nesting across peer nodes is always done with the immediate parent
128  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
129  * subclass to avoid triggering lockdep warning in such cases.
130  *
131  * The key is set by the readpage_end_io_hook after the buffer has passed
132  * csum validation but before the pages are unlocked.  It is also set by
133  * btrfs_init_new_buffer on freshly allocated blocks.
134  *
135  * We also add a check to make sure the highest level of the tree is the
136  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
137  * needs update as well.
138  */
139 #ifdef CONFIG_DEBUG_LOCK_ALLOC
140 # if BTRFS_MAX_LEVEL != 8
141 #  error
142 # endif
143
144 static struct btrfs_lockdep_keyset {
145         u64                     id;             /* root objectid */
146         const char              *name_stem;     /* lock name stem */
147         char                    names[BTRFS_MAX_LEVEL + 1][20];
148         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
149 } btrfs_lockdep_keysets[] = {
150         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
151         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
152         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
153         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
154         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
155         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
156         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
157         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
158         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
159         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
160         { .id = 0,                              .name_stem = "tree"     },
161 };
162
163 void __init btrfs_init_lockdep(void)
164 {
165         int i, j;
166
167         /* initialize lockdep class names */
168         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
169                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
170
171                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
172                         snprintf(ks->names[j], sizeof(ks->names[j]),
173                                  "btrfs-%s-%02d", ks->name_stem, j);
174         }
175 }
176
177 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
178                                     int level)
179 {
180         struct btrfs_lockdep_keyset *ks;
181
182         BUG_ON(level >= ARRAY_SIZE(ks->keys));
183
184         /* find the matching keyset, id 0 is the default entry */
185         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
186                 if (ks->id == objectid)
187                         break;
188
189         lockdep_set_class_and_name(&eb->lock,
190                                    &ks->keys[level], ks->names[level]);
191 }
192
193 #endif
194
195 /*
196  * extents on the btree inode are pretty simple, there's one extent
197  * that covers the entire device
198  */
199 static struct extent_map *btree_get_extent(struct inode *inode,
200                 struct page *page, size_t pg_offset, u64 start, u64 len,
201                 int create)
202 {
203         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
204         struct extent_map *em;
205         int ret;
206
207         read_lock(&em_tree->lock);
208         em = lookup_extent_mapping(em_tree, start, len);
209         if (em) {
210                 em->bdev =
211                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
212                 read_unlock(&em_tree->lock);
213                 goto out;
214         }
215         read_unlock(&em_tree->lock);
216
217         em = alloc_extent_map();
218         if (!em) {
219                 em = ERR_PTR(-ENOMEM);
220                 goto out;
221         }
222         em->start = 0;
223         em->len = (u64)-1;
224         em->block_len = (u64)-1;
225         em->block_start = 0;
226         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
227
228         write_lock(&em_tree->lock);
229         ret = add_extent_mapping(em_tree, em, 0);
230         if (ret == -EEXIST) {
231                 free_extent_map(em);
232                 em = lookup_extent_mapping(em_tree, start, len);
233                 if (!em)
234                         em = ERR_PTR(-EIO);
235         } else if (ret) {
236                 free_extent_map(em);
237                 em = ERR_PTR(ret);
238         }
239         write_unlock(&em_tree->lock);
240
241 out:
242         return em;
243 }
244
245 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
246 {
247         return crc32c(seed, data, len);
248 }
249
250 void btrfs_csum_final(u32 crc, char *result)
251 {
252         put_unaligned_le32(~crc, result);
253 }
254
255 /*
256  * compute the csum for a btree block, and either verify it or write it
257  * into the csum field of the block.
258  */
259 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
260                            int verify)
261 {
262         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
263         char *result = NULL;
264         unsigned long len;
265         unsigned long cur_len;
266         unsigned long offset = BTRFS_CSUM_SIZE;
267         char *kaddr;
268         unsigned long map_start;
269         unsigned long map_len;
270         int err;
271         u32 crc = ~(u32)0;
272         unsigned long inline_result;
273
274         len = buf->len - offset;
275         while (len > 0) {
276                 err = map_private_extent_buffer(buf, offset, 32,
277                                         &kaddr, &map_start, &map_len);
278                 if (err)
279                         return 1;
280                 cur_len = min(len, map_len - (offset - map_start));
281                 crc = btrfs_csum_data(kaddr + offset - map_start,
282                                       crc, cur_len);
283                 len -= cur_len;
284                 offset += cur_len;
285         }
286         if (csum_size > sizeof(inline_result)) {
287                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
288                 if (!result)
289                         return 1;
290         } else {
291                 result = (char *)&inline_result;
292         }
293
294         btrfs_csum_final(crc, result);
295
296         if (verify) {
297                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
298                         u32 val;
299                         u32 found = 0;
300                         memcpy(&found, result, csum_size);
301
302                         read_extent_buffer(buf, &val, 0, csum_size);
303                         printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
304                                        "failed on %llu wanted %X found %X "
305                                        "level %d\n",
306                                        root->fs_info->sb->s_id,
307                                        (unsigned long long)buf->start, val, found,
308                                        btrfs_header_level(buf));
309                         if (result != (char *)&inline_result)
310                                 kfree(result);
311                         return 1;
312                 }
313         } else {
314                 write_extent_buffer(buf, result, 0, csum_size);
315         }
316         if (result != (char *)&inline_result)
317                 kfree(result);
318         return 0;
319 }
320
321 /*
322  * we can't consider a given block up to date unless the transid of the
323  * block matches the transid in the parent node's pointer.  This is how we
324  * detect blocks that either didn't get written at all or got written
325  * in the wrong place.
326  */
327 static int verify_parent_transid(struct extent_io_tree *io_tree,
328                                  struct extent_buffer *eb, u64 parent_transid,
329                                  int atomic)
330 {
331         struct extent_state *cached_state = NULL;
332         int ret;
333
334         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
335                 return 0;
336
337         if (atomic)
338                 return -EAGAIN;
339
340         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
341                          0, &cached_state);
342         if (extent_buffer_uptodate(eb) &&
343             btrfs_header_generation(eb) == parent_transid) {
344                 ret = 0;
345                 goto out;
346         }
347         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
348                        "found %llu\n",
349                        (unsigned long long)eb->start,
350                        (unsigned long long)parent_transid,
351                        (unsigned long long)btrfs_header_generation(eb));
352         ret = 1;
353         clear_extent_buffer_uptodate(eb);
354 out:
355         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
356                              &cached_state, GFP_NOFS);
357         return ret;
358 }
359
360 /*
361  * Return 0 if the superblock checksum type matches the checksum value of that
362  * algorithm. Pass the raw disk superblock data.
363  */
364 static int btrfs_check_super_csum(char *raw_disk_sb)
365 {
366         struct btrfs_super_block *disk_sb =
367                 (struct btrfs_super_block *)raw_disk_sb;
368         u16 csum_type = btrfs_super_csum_type(disk_sb);
369         int ret = 0;
370
371         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
372                 u32 crc = ~(u32)0;
373                 const int csum_size = sizeof(crc);
374                 char result[csum_size];
375
376                 /*
377                  * The super_block structure does not span the whole
378                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
379                  * is filled with zeros and is included in the checkum.
380                  */
381                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
382                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
383                 btrfs_csum_final(crc, result);
384
385                 if (memcmp(raw_disk_sb, result, csum_size))
386                         ret = 1;
387
388                 if (ret && btrfs_super_generation(disk_sb) < 10) {
389                         printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
390                         ret = 0;
391                 }
392         }
393
394         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
395                 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
396                                 csum_type);
397                 ret = 1;
398         }
399
400         return ret;
401 }
402
403 /*
404  * helper to read a given tree block, doing retries as required when
405  * the checksums don't match and we have alternate mirrors to try.
406  */
407 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
408                                           struct extent_buffer *eb,
409                                           u64 start, u64 parent_transid)
410 {
411         struct extent_io_tree *io_tree;
412         int failed = 0;
413         int ret;
414         int num_copies = 0;
415         int mirror_num = 0;
416         int failed_mirror = 0;
417
418         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
419         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
420         while (1) {
421                 ret = read_extent_buffer_pages(io_tree, eb, start,
422                                                WAIT_COMPLETE,
423                                                btree_get_extent, mirror_num);
424                 if (!ret) {
425                         if (!verify_parent_transid(io_tree, eb,
426                                                    parent_transid, 0))
427                                 break;
428                         else
429                                 ret = -EIO;
430                 }
431
432                 /*
433                  * This buffer's crc is fine, but its contents are corrupted, so
434                  * there is no reason to read the other copies, they won't be
435                  * any less wrong.
436                  */
437                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
438                         break;
439
440                 num_copies = btrfs_num_copies(root->fs_info,
441                                               eb->start, eb->len);
442                 if (num_copies == 1)
443                         break;
444
445                 if (!failed_mirror) {
446                         failed = 1;
447                         failed_mirror = eb->read_mirror;
448                 }
449
450                 mirror_num++;
451                 if (mirror_num == failed_mirror)
452                         mirror_num++;
453
454                 if (mirror_num > num_copies)
455                         break;
456         }
457
458         if (failed && !ret && failed_mirror)
459                 repair_eb_io_failure(root, eb, failed_mirror);
460
461         return ret;
462 }
463
464 /*
465  * checksum a dirty tree block before IO.  This has extra checks to make sure
466  * we only fill in the checksum field in the first page of a multi-page block
467  */
468
469 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
470 {
471         struct extent_io_tree *tree;
472         u64 start = page_offset(page);
473         u64 found_start;
474         struct extent_buffer *eb;
475
476         tree = &BTRFS_I(page->mapping->host)->io_tree;
477
478         eb = (struct extent_buffer *)page->private;
479         if (page != eb->pages[0])
480                 return 0;
481         found_start = btrfs_header_bytenr(eb);
482         if (found_start != start) {
483                 WARN_ON(1);
484                 return 0;
485         }
486         if (!PageUptodate(page)) {
487                 WARN_ON(1);
488                 return 0;
489         }
490         csum_tree_block(root, eb, 0);
491         return 0;
492 }
493
494 static int check_tree_block_fsid(struct btrfs_root *root,
495                                  struct extent_buffer *eb)
496 {
497         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
498         u8 fsid[BTRFS_UUID_SIZE];
499         int ret = 1;
500
501         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
502                            BTRFS_FSID_SIZE);
503         while (fs_devices) {
504                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
505                         ret = 0;
506                         break;
507                 }
508                 fs_devices = fs_devices->seed;
509         }
510         return ret;
511 }
512
513 #define CORRUPT(reason, eb, root, slot)                         \
514         printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
515                "root=%llu, slot=%d\n", reason,                  \
516                (unsigned long long)btrfs_header_bytenr(eb),     \
517                (unsigned long long)root->objectid, slot)
518
519 static noinline int check_leaf(struct btrfs_root *root,
520                                struct extent_buffer *leaf)
521 {
522         struct btrfs_key key;
523         struct btrfs_key leaf_key;
524         u32 nritems = btrfs_header_nritems(leaf);
525         int slot;
526
527         if (nritems == 0)
528                 return 0;
529
530         /* Check the 0 item */
531         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
532             BTRFS_LEAF_DATA_SIZE(root)) {
533                 CORRUPT("invalid item offset size pair", leaf, root, 0);
534                 return -EIO;
535         }
536
537         /*
538          * Check to make sure each items keys are in the correct order and their
539          * offsets make sense.  We only have to loop through nritems-1 because
540          * we check the current slot against the next slot, which verifies the
541          * next slot's offset+size makes sense and that the current's slot
542          * offset is correct.
543          */
544         for (slot = 0; slot < nritems - 1; slot++) {
545                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
546                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
547
548                 /* Make sure the keys are in the right order */
549                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
550                         CORRUPT("bad key order", leaf, root, slot);
551                         return -EIO;
552                 }
553
554                 /*
555                  * Make sure the offset and ends are right, remember that the
556                  * item data starts at the end of the leaf and grows towards the
557                  * front.
558                  */
559                 if (btrfs_item_offset_nr(leaf, slot) !=
560                         btrfs_item_end_nr(leaf, slot + 1)) {
561                         CORRUPT("slot offset bad", leaf, root, slot);
562                         return -EIO;
563                 }
564
565                 /*
566                  * Check to make sure that we don't point outside of the leaf,
567                  * just incase all the items are consistent to eachother, but
568                  * all point outside of the leaf.
569                  */
570                 if (btrfs_item_end_nr(leaf, slot) >
571                     BTRFS_LEAF_DATA_SIZE(root)) {
572                         CORRUPT("slot end outside of leaf", leaf, root, slot);
573                         return -EIO;
574                 }
575         }
576
577         return 0;
578 }
579
580 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
581                                       u64 phy_offset, struct page *page,
582                                       u64 start, u64 end, int mirror)
583 {
584         struct extent_io_tree *tree;
585         u64 found_start;
586         int found_level;
587         struct extent_buffer *eb;
588         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
589         int ret = 0;
590         int reads_done;
591
592         if (!page->private)
593                 goto out;
594
595         tree = &BTRFS_I(page->mapping->host)->io_tree;
596         eb = (struct extent_buffer *)page->private;
597
598         /* the pending IO might have been the only thing that kept this buffer
599          * in memory.  Make sure we have a ref for all this other checks
600          */
601         extent_buffer_get(eb);
602
603         reads_done = atomic_dec_and_test(&eb->io_pages);
604         if (!reads_done)
605                 goto err;
606
607         eb->read_mirror = mirror;
608         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
609                 ret = -EIO;
610                 goto err;
611         }
612
613         found_start = btrfs_header_bytenr(eb);
614         if (found_start != eb->start) {
615                 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
616                                "%llu %llu\n",
617                                (unsigned long long)found_start,
618                                (unsigned long long)eb->start);
619                 ret = -EIO;
620                 goto err;
621         }
622         if (check_tree_block_fsid(root, eb)) {
623                 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
624                                (unsigned long long)eb->start);
625                 ret = -EIO;
626                 goto err;
627         }
628         found_level = btrfs_header_level(eb);
629         if (found_level >= BTRFS_MAX_LEVEL) {
630                 btrfs_info(root->fs_info, "bad tree block level %d\n",
631                            (int)btrfs_header_level(eb));
632                 ret = -EIO;
633                 goto err;
634         }
635
636         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
637                                        eb, found_level);
638
639         ret = csum_tree_block(root, eb, 1);
640         if (ret) {
641                 ret = -EIO;
642                 goto err;
643         }
644
645         /*
646          * If this is a leaf block and it is corrupt, set the corrupt bit so
647          * that we don't try and read the other copies of this block, just
648          * return -EIO.
649          */
650         if (found_level == 0 && check_leaf(root, eb)) {
651                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
652                 ret = -EIO;
653         }
654
655         if (!ret)
656                 set_extent_buffer_uptodate(eb);
657 err:
658         if (reads_done &&
659             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
660                 btree_readahead_hook(root, eb, eb->start, ret);
661
662         if (ret) {
663                 /*
664                  * our io error hook is going to dec the io pages
665                  * again, we have to make sure it has something
666                  * to decrement
667                  */
668                 atomic_inc(&eb->io_pages);
669                 clear_extent_buffer_uptodate(eb);
670         }
671         free_extent_buffer(eb);
672 out:
673         return ret;
674 }
675
676 static int btree_io_failed_hook(struct page *page, int failed_mirror)
677 {
678         struct extent_buffer *eb;
679         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
680
681         eb = (struct extent_buffer *)page->private;
682         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
683         eb->read_mirror = failed_mirror;
684         atomic_dec(&eb->io_pages);
685         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
686                 btree_readahead_hook(root, eb, eb->start, -EIO);
687         return -EIO;    /* we fixed nothing */
688 }
689
690 static void end_workqueue_bio(struct bio *bio, int err)
691 {
692         struct end_io_wq *end_io_wq = bio->bi_private;
693         struct btrfs_fs_info *fs_info;
694
695         fs_info = end_io_wq->info;
696         end_io_wq->error = err;
697         end_io_wq->work.func = end_workqueue_fn;
698         end_io_wq->work.flags = 0;
699
700         if (bio->bi_rw & REQ_WRITE) {
701                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
702                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
703                                            &end_io_wq->work);
704                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
705                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
706                                            &end_io_wq->work);
707                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
708                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
709                                            &end_io_wq->work);
710                 else
711                         btrfs_queue_worker(&fs_info->endio_write_workers,
712                                            &end_io_wq->work);
713         } else {
714                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
715                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
716                                            &end_io_wq->work);
717                 else if (end_io_wq->metadata)
718                         btrfs_queue_worker(&fs_info->endio_meta_workers,
719                                            &end_io_wq->work);
720                 else
721                         btrfs_queue_worker(&fs_info->endio_workers,
722                                            &end_io_wq->work);
723         }
724 }
725
726 /*
727  * For the metadata arg you want
728  *
729  * 0 - if data
730  * 1 - if normal metadta
731  * 2 - if writing to the free space cache area
732  * 3 - raid parity work
733  */
734 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
735                         int metadata)
736 {
737         struct end_io_wq *end_io_wq;
738         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
739         if (!end_io_wq)
740                 return -ENOMEM;
741
742         end_io_wq->private = bio->bi_private;
743         end_io_wq->end_io = bio->bi_end_io;
744         end_io_wq->info = info;
745         end_io_wq->error = 0;
746         end_io_wq->bio = bio;
747         end_io_wq->metadata = metadata;
748
749         bio->bi_private = end_io_wq;
750         bio->bi_end_io = end_workqueue_bio;
751         return 0;
752 }
753
754 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
755 {
756         unsigned long limit = min_t(unsigned long,
757                                     info->workers.max_workers,
758                                     info->fs_devices->open_devices);
759         return 256 * limit;
760 }
761
762 static void run_one_async_start(struct btrfs_work *work)
763 {
764         struct async_submit_bio *async;
765         int ret;
766
767         async = container_of(work, struct  async_submit_bio, work);
768         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
769                                       async->mirror_num, async->bio_flags,
770                                       async->bio_offset);
771         if (ret)
772                 async->error = ret;
773 }
774
775 static void run_one_async_done(struct btrfs_work *work)
776 {
777         struct btrfs_fs_info *fs_info;
778         struct async_submit_bio *async;
779         int limit;
780
781         async = container_of(work, struct  async_submit_bio, work);
782         fs_info = BTRFS_I(async->inode)->root->fs_info;
783
784         limit = btrfs_async_submit_limit(fs_info);
785         limit = limit * 2 / 3;
786
787         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
788             waitqueue_active(&fs_info->async_submit_wait))
789                 wake_up(&fs_info->async_submit_wait);
790
791         /* If an error occured we just want to clean up the bio and move on */
792         if (async->error) {
793                 bio_endio(async->bio, async->error);
794                 return;
795         }
796
797         async->submit_bio_done(async->inode, async->rw, async->bio,
798                                async->mirror_num, async->bio_flags,
799                                async->bio_offset);
800 }
801
802 static void run_one_async_free(struct btrfs_work *work)
803 {
804         struct async_submit_bio *async;
805
806         async = container_of(work, struct  async_submit_bio, work);
807         kfree(async);
808 }
809
810 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
811                         int rw, struct bio *bio, int mirror_num,
812                         unsigned long bio_flags,
813                         u64 bio_offset,
814                         extent_submit_bio_hook_t *submit_bio_start,
815                         extent_submit_bio_hook_t *submit_bio_done)
816 {
817         struct async_submit_bio *async;
818
819         async = kmalloc(sizeof(*async), GFP_NOFS);
820         if (!async)
821                 return -ENOMEM;
822
823         async->inode = inode;
824         async->rw = rw;
825         async->bio = bio;
826         async->mirror_num = mirror_num;
827         async->submit_bio_start = submit_bio_start;
828         async->submit_bio_done = submit_bio_done;
829
830         async->work.func = run_one_async_start;
831         async->work.ordered_func = run_one_async_done;
832         async->work.ordered_free = run_one_async_free;
833
834         async->work.flags = 0;
835         async->bio_flags = bio_flags;
836         async->bio_offset = bio_offset;
837
838         async->error = 0;
839
840         atomic_inc(&fs_info->nr_async_submits);
841
842         if (rw & REQ_SYNC)
843                 btrfs_set_work_high_prio(&async->work);
844
845         btrfs_queue_worker(&fs_info->workers, &async->work);
846
847         while (atomic_read(&fs_info->async_submit_draining) &&
848               atomic_read(&fs_info->nr_async_submits)) {
849                 wait_event(fs_info->async_submit_wait,
850                            (atomic_read(&fs_info->nr_async_submits) == 0));
851         }
852
853         return 0;
854 }
855
856 static int btree_csum_one_bio(struct bio *bio)
857 {
858         struct bio_vec *bvec = bio->bi_io_vec;
859         int bio_index = 0;
860         struct btrfs_root *root;
861         int ret = 0;
862
863         WARN_ON(bio->bi_vcnt <= 0);
864         while (bio_index < bio->bi_vcnt) {
865                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
866                 ret = csum_dirty_buffer(root, bvec->bv_page);
867                 if (ret)
868                         break;
869                 bio_index++;
870                 bvec++;
871         }
872         return ret;
873 }
874
875 static int __btree_submit_bio_start(struct inode *inode, int rw,
876                                     struct bio *bio, int mirror_num,
877                                     unsigned long bio_flags,
878                                     u64 bio_offset)
879 {
880         /*
881          * when we're called for a write, we're already in the async
882          * submission context.  Just jump into btrfs_map_bio
883          */
884         return btree_csum_one_bio(bio);
885 }
886
887 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
888                                  int mirror_num, unsigned long bio_flags,
889                                  u64 bio_offset)
890 {
891         int ret;
892
893         /*
894          * when we're called for a write, we're already in the async
895          * submission context.  Just jump into btrfs_map_bio
896          */
897         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
898         if (ret)
899                 bio_endio(bio, ret);
900         return ret;
901 }
902
903 static int check_async_write(struct inode *inode, unsigned long bio_flags)
904 {
905         if (bio_flags & EXTENT_BIO_TREE_LOG)
906                 return 0;
907 #ifdef CONFIG_X86
908         if (cpu_has_xmm4_2)
909                 return 0;
910 #endif
911         return 1;
912 }
913
914 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
915                                  int mirror_num, unsigned long bio_flags,
916                                  u64 bio_offset)
917 {
918         int async = check_async_write(inode, bio_flags);
919         int ret;
920
921         if (!(rw & REQ_WRITE)) {
922                 /*
923                  * called for a read, do the setup so that checksum validation
924                  * can happen in the async kernel threads
925                  */
926                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
927                                           bio, 1);
928                 if (ret)
929                         goto out_w_error;
930                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
931                                     mirror_num, 0);
932         } else if (!async) {
933                 ret = btree_csum_one_bio(bio);
934                 if (ret)
935                         goto out_w_error;
936                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
937                                     mirror_num, 0);
938         } else {
939                 /*
940                  * kthread helpers are used to submit writes so that
941                  * checksumming can happen in parallel across all CPUs
942                  */
943                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
944                                           inode, rw, bio, mirror_num, 0,
945                                           bio_offset,
946                                           __btree_submit_bio_start,
947                                           __btree_submit_bio_done);
948         }
949
950         if (ret) {
951 out_w_error:
952                 bio_endio(bio, ret);
953         }
954         return ret;
955 }
956
957 #ifdef CONFIG_MIGRATION
958 static int btree_migratepage(struct address_space *mapping,
959                         struct page *newpage, struct page *page,
960                         enum migrate_mode mode)
961 {
962         /*
963          * we can't safely write a btree page from here,
964          * we haven't done the locking hook
965          */
966         if (PageDirty(page))
967                 return -EAGAIN;
968         /*
969          * Buffers may be managed in a filesystem specific way.
970          * We must have no buffers or drop them.
971          */
972         if (page_has_private(page) &&
973             !try_to_release_page(page, GFP_KERNEL))
974                 return -EAGAIN;
975         return migrate_page(mapping, newpage, page, mode);
976 }
977 #endif
978
979
980 static int btree_writepages(struct address_space *mapping,
981                             struct writeback_control *wbc)
982 {
983         struct extent_io_tree *tree;
984         struct btrfs_fs_info *fs_info;
985         int ret;
986
987         tree = &BTRFS_I(mapping->host)->io_tree;
988         if (wbc->sync_mode == WB_SYNC_NONE) {
989
990                 if (wbc->for_kupdate)
991                         return 0;
992
993                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
994                 /* this is a bit racy, but that's ok */
995                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
996                                              BTRFS_DIRTY_METADATA_THRESH);
997                 if (ret < 0)
998                         return 0;
999         }
1000         return btree_write_cache_pages(mapping, wbc);
1001 }
1002
1003 static int btree_readpage(struct file *file, struct page *page)
1004 {
1005         struct extent_io_tree *tree;
1006         tree = &BTRFS_I(page->mapping->host)->io_tree;
1007         return extent_read_full_page(tree, page, btree_get_extent, 0);
1008 }
1009
1010 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1011 {
1012         if (PageWriteback(page) || PageDirty(page))
1013                 return 0;
1014
1015         return try_release_extent_buffer(page);
1016 }
1017
1018 static void btree_invalidatepage(struct page *page, unsigned int offset,
1019                                  unsigned int length)
1020 {
1021         struct extent_io_tree *tree;
1022         tree = &BTRFS_I(page->mapping->host)->io_tree;
1023         extent_invalidatepage(tree, page, offset);
1024         btree_releasepage(page, GFP_NOFS);
1025         if (PagePrivate(page)) {
1026                 printk(KERN_WARNING "btrfs warning page private not zero "
1027                        "on page %llu\n", (unsigned long long)page_offset(page));
1028                 ClearPagePrivate(page);
1029                 set_page_private(page, 0);
1030                 page_cache_release(page);
1031         }
1032 }
1033
1034 static int btree_set_page_dirty(struct page *page)
1035 {
1036 #ifdef DEBUG
1037         struct extent_buffer *eb;
1038
1039         BUG_ON(!PagePrivate(page));
1040         eb = (struct extent_buffer *)page->private;
1041         BUG_ON(!eb);
1042         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1043         BUG_ON(!atomic_read(&eb->refs));
1044         btrfs_assert_tree_locked(eb);
1045 #endif
1046         return __set_page_dirty_nobuffers(page);
1047 }
1048
1049 static const struct address_space_operations btree_aops = {
1050         .readpage       = btree_readpage,
1051         .writepages     = btree_writepages,
1052         .releasepage    = btree_releasepage,
1053         .invalidatepage = btree_invalidatepage,
1054 #ifdef CONFIG_MIGRATION
1055         .migratepage    = btree_migratepage,
1056 #endif
1057         .set_page_dirty = btree_set_page_dirty,
1058 };
1059
1060 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1061                          u64 parent_transid)
1062 {
1063         struct extent_buffer *buf = NULL;
1064         struct inode *btree_inode = root->fs_info->btree_inode;
1065         int ret = 0;
1066
1067         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1068         if (!buf)
1069                 return 0;
1070         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1071                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1072         free_extent_buffer(buf);
1073         return ret;
1074 }
1075
1076 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1077                          int mirror_num, struct extent_buffer **eb)
1078 {
1079         struct extent_buffer *buf = NULL;
1080         struct inode *btree_inode = root->fs_info->btree_inode;
1081         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1082         int ret;
1083
1084         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1085         if (!buf)
1086                 return 0;
1087
1088         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1089
1090         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1091                                        btree_get_extent, mirror_num);
1092         if (ret) {
1093                 free_extent_buffer(buf);
1094                 return ret;
1095         }
1096
1097         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1098                 free_extent_buffer(buf);
1099                 return -EIO;
1100         } else if (extent_buffer_uptodate(buf)) {
1101                 *eb = buf;
1102         } else {
1103                 free_extent_buffer(buf);
1104         }
1105         return 0;
1106 }
1107
1108 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1109                                             u64 bytenr, u32 blocksize)
1110 {
1111         struct inode *btree_inode = root->fs_info->btree_inode;
1112         struct extent_buffer *eb;
1113         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1114                                 bytenr, blocksize);
1115         return eb;
1116 }
1117
1118 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1119                                                  u64 bytenr, u32 blocksize)
1120 {
1121         struct inode *btree_inode = root->fs_info->btree_inode;
1122         struct extent_buffer *eb;
1123
1124         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1125                                  bytenr, blocksize);
1126         return eb;
1127 }
1128
1129
1130 int btrfs_write_tree_block(struct extent_buffer *buf)
1131 {
1132         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1133                                         buf->start + buf->len - 1);
1134 }
1135
1136 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1137 {
1138         return filemap_fdatawait_range(buf->pages[0]->mapping,
1139                                        buf->start, buf->start + buf->len - 1);
1140 }
1141
1142 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1143                                       u32 blocksize, u64 parent_transid)
1144 {
1145         struct extent_buffer *buf = NULL;
1146         int ret;
1147
1148         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1149         if (!buf)
1150                 return NULL;
1151
1152         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1153         if (ret) {
1154                 free_extent_buffer(buf);
1155                 return NULL;
1156         }
1157         return buf;
1158
1159 }
1160
1161 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1162                       struct extent_buffer *buf)
1163 {
1164         struct btrfs_fs_info *fs_info = root->fs_info;
1165
1166         if (btrfs_header_generation(buf) ==
1167             fs_info->running_transaction->transid) {
1168                 btrfs_assert_tree_locked(buf);
1169
1170                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1171                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1172                                              -buf->len,
1173                                              fs_info->dirty_metadata_batch);
1174                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1175                         btrfs_set_lock_blocking(buf);
1176                         clear_extent_buffer_dirty(buf);
1177                 }
1178         }
1179 }
1180
1181 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1182                          u32 stripesize, struct btrfs_root *root,
1183                          struct btrfs_fs_info *fs_info,
1184                          u64 objectid)
1185 {
1186         root->node = NULL;
1187         root->commit_root = NULL;
1188         root->sectorsize = sectorsize;
1189         root->nodesize = nodesize;
1190         root->leafsize = leafsize;
1191         root->stripesize = stripesize;
1192         root->ref_cows = 0;
1193         root->track_dirty = 0;
1194         root->in_radix = 0;
1195         root->orphan_item_inserted = 0;
1196         root->orphan_cleanup_state = 0;
1197
1198         root->objectid = objectid;
1199         root->last_trans = 0;
1200         root->highest_objectid = 0;
1201         root->nr_delalloc_inodes = 0;
1202         root->nr_ordered_extents = 0;
1203         root->name = NULL;
1204         root->inode_tree = RB_ROOT;
1205         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1206         root->block_rsv = NULL;
1207         root->orphan_block_rsv = NULL;
1208
1209         INIT_LIST_HEAD(&root->dirty_list);
1210         INIT_LIST_HEAD(&root->root_list);
1211         INIT_LIST_HEAD(&root->delalloc_inodes);
1212         INIT_LIST_HEAD(&root->delalloc_root);
1213         INIT_LIST_HEAD(&root->ordered_extents);
1214         INIT_LIST_HEAD(&root->ordered_root);
1215         INIT_LIST_HEAD(&root->logged_list[0]);
1216         INIT_LIST_HEAD(&root->logged_list[1]);
1217         spin_lock_init(&root->orphan_lock);
1218         spin_lock_init(&root->inode_lock);
1219         spin_lock_init(&root->delalloc_lock);
1220         spin_lock_init(&root->ordered_extent_lock);
1221         spin_lock_init(&root->accounting_lock);
1222         spin_lock_init(&root->log_extents_lock[0]);
1223         spin_lock_init(&root->log_extents_lock[1]);
1224         mutex_init(&root->objectid_mutex);
1225         mutex_init(&root->log_mutex);
1226         init_waitqueue_head(&root->log_writer_wait);
1227         init_waitqueue_head(&root->log_commit_wait[0]);
1228         init_waitqueue_head(&root->log_commit_wait[1]);
1229         atomic_set(&root->log_commit[0], 0);
1230         atomic_set(&root->log_commit[1], 0);
1231         atomic_set(&root->log_writers, 0);
1232         atomic_set(&root->log_batch, 0);
1233         atomic_set(&root->orphan_inodes, 0);
1234         atomic_set(&root->refs, 1);
1235         root->log_transid = 0;
1236         root->last_log_commit = 0;
1237         extent_io_tree_init(&root->dirty_log_pages,
1238                              fs_info->btree_inode->i_mapping);
1239
1240         memset(&root->root_key, 0, sizeof(root->root_key));
1241         memset(&root->root_item, 0, sizeof(root->root_item));
1242         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1243         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1244         root->defrag_trans_start = fs_info->generation;
1245         init_completion(&root->kobj_unregister);
1246         root->defrag_running = 0;
1247         root->root_key.objectid = objectid;
1248         root->anon_dev = 0;
1249
1250         spin_lock_init(&root->root_item_lock);
1251 }
1252
1253 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1254 {
1255         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1256         if (root)
1257                 root->fs_info = fs_info;
1258         return root;
1259 }
1260
1261 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1262                                      struct btrfs_fs_info *fs_info,
1263                                      u64 objectid)
1264 {
1265         struct extent_buffer *leaf;
1266         struct btrfs_root *tree_root = fs_info->tree_root;
1267         struct btrfs_root *root;
1268         struct btrfs_key key;
1269         int ret = 0;
1270         u64 bytenr;
1271         uuid_le uuid;
1272
1273         root = btrfs_alloc_root(fs_info);
1274         if (!root)
1275                 return ERR_PTR(-ENOMEM);
1276
1277         __setup_root(tree_root->nodesize, tree_root->leafsize,
1278                      tree_root->sectorsize, tree_root->stripesize,
1279                      root, fs_info, objectid);
1280         root->root_key.objectid = objectid;
1281         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1282         root->root_key.offset = 0;
1283
1284         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1285                                       0, objectid, NULL, 0, 0, 0);
1286         if (IS_ERR(leaf)) {
1287                 ret = PTR_ERR(leaf);
1288                 leaf = NULL;
1289                 goto fail;
1290         }
1291
1292         bytenr = leaf->start;
1293         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1294         btrfs_set_header_bytenr(leaf, leaf->start);
1295         btrfs_set_header_generation(leaf, trans->transid);
1296         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1297         btrfs_set_header_owner(leaf, objectid);
1298         root->node = leaf;
1299
1300         write_extent_buffer(leaf, fs_info->fsid,
1301                             (unsigned long)btrfs_header_fsid(leaf),
1302                             BTRFS_FSID_SIZE);
1303         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1304                             (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1305                             BTRFS_UUID_SIZE);
1306         btrfs_mark_buffer_dirty(leaf);
1307
1308         root->commit_root = btrfs_root_node(root);
1309         root->track_dirty = 1;
1310
1311
1312         root->root_item.flags = 0;
1313         root->root_item.byte_limit = 0;
1314         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1315         btrfs_set_root_generation(&root->root_item, trans->transid);
1316         btrfs_set_root_level(&root->root_item, 0);
1317         btrfs_set_root_refs(&root->root_item, 1);
1318         btrfs_set_root_used(&root->root_item, leaf->len);
1319         btrfs_set_root_last_snapshot(&root->root_item, 0);
1320         btrfs_set_root_dirid(&root->root_item, 0);
1321         uuid_le_gen(&uuid);
1322         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1323         root->root_item.drop_level = 0;
1324
1325         key.objectid = objectid;
1326         key.type = BTRFS_ROOT_ITEM_KEY;
1327         key.offset = 0;
1328         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1329         if (ret)
1330                 goto fail;
1331
1332         btrfs_tree_unlock(leaf);
1333
1334         return root;
1335
1336 fail:
1337         if (leaf) {
1338                 btrfs_tree_unlock(leaf);
1339                 free_extent_buffer(leaf);
1340         }
1341         kfree(root);
1342
1343         return ERR_PTR(ret);
1344 }
1345
1346 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1347                                          struct btrfs_fs_info *fs_info)
1348 {
1349         struct btrfs_root *root;
1350         struct btrfs_root *tree_root = fs_info->tree_root;
1351         struct extent_buffer *leaf;
1352
1353         root = btrfs_alloc_root(fs_info);
1354         if (!root)
1355                 return ERR_PTR(-ENOMEM);
1356
1357         __setup_root(tree_root->nodesize, tree_root->leafsize,
1358                      tree_root->sectorsize, tree_root->stripesize,
1359                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1360
1361         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1362         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1363         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1364         /*
1365          * log trees do not get reference counted because they go away
1366          * before a real commit is actually done.  They do store pointers
1367          * to file data extents, and those reference counts still get
1368          * updated (along with back refs to the log tree).
1369          */
1370         root->ref_cows = 0;
1371
1372         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1373                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1374                                       0, 0, 0);
1375         if (IS_ERR(leaf)) {
1376                 kfree(root);
1377                 return ERR_CAST(leaf);
1378         }
1379
1380         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1381         btrfs_set_header_bytenr(leaf, leaf->start);
1382         btrfs_set_header_generation(leaf, trans->transid);
1383         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1384         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1385         root->node = leaf;
1386
1387         write_extent_buffer(root->node, root->fs_info->fsid,
1388                             (unsigned long)btrfs_header_fsid(root->node),
1389                             BTRFS_FSID_SIZE);
1390         btrfs_mark_buffer_dirty(root->node);
1391         btrfs_tree_unlock(root->node);
1392         return root;
1393 }
1394
1395 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1396                              struct btrfs_fs_info *fs_info)
1397 {
1398         struct btrfs_root *log_root;
1399
1400         log_root = alloc_log_tree(trans, fs_info);
1401         if (IS_ERR(log_root))
1402                 return PTR_ERR(log_root);
1403         WARN_ON(fs_info->log_root_tree);
1404         fs_info->log_root_tree = log_root;
1405         return 0;
1406 }
1407
1408 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1409                        struct btrfs_root *root)
1410 {
1411         struct btrfs_root *log_root;
1412         struct btrfs_inode_item *inode_item;
1413
1414         log_root = alloc_log_tree(trans, root->fs_info);
1415         if (IS_ERR(log_root))
1416                 return PTR_ERR(log_root);
1417
1418         log_root->last_trans = trans->transid;
1419         log_root->root_key.offset = root->root_key.objectid;
1420
1421         inode_item = &log_root->root_item.inode;
1422         btrfs_set_stack_inode_generation(inode_item, 1);
1423         btrfs_set_stack_inode_size(inode_item, 3);
1424         btrfs_set_stack_inode_nlink(inode_item, 1);
1425         btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1426         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1427
1428         btrfs_set_root_node(&log_root->root_item, log_root->node);
1429
1430         WARN_ON(root->log_root);
1431         root->log_root = log_root;
1432         root->log_transid = 0;
1433         root->last_log_commit = 0;
1434         return 0;
1435 }
1436
1437 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1438                                                struct btrfs_key *key)
1439 {
1440         struct btrfs_root *root;
1441         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1442         struct btrfs_path *path;
1443         u64 generation;
1444         u32 blocksize;
1445         int ret;
1446
1447         path = btrfs_alloc_path();
1448         if (!path)
1449                 return ERR_PTR(-ENOMEM);
1450
1451         root = btrfs_alloc_root(fs_info);
1452         if (!root) {
1453                 ret = -ENOMEM;
1454                 goto alloc_fail;
1455         }
1456
1457         __setup_root(tree_root->nodesize, tree_root->leafsize,
1458                      tree_root->sectorsize, tree_root->stripesize,
1459                      root, fs_info, key->objectid);
1460
1461         ret = btrfs_find_root(tree_root, key, path,
1462                               &root->root_item, &root->root_key);
1463         if (ret) {
1464                 if (ret > 0)
1465                         ret = -ENOENT;
1466                 goto find_fail;
1467         }
1468
1469         generation = btrfs_root_generation(&root->root_item);
1470         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1471         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1472                                      blocksize, generation);
1473         if (!root->node) {
1474                 ret = -ENOMEM;
1475                 goto find_fail;
1476         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1477                 ret = -EIO;
1478                 goto read_fail;
1479         }
1480         root->commit_root = btrfs_root_node(root);
1481 out:
1482         btrfs_free_path(path);
1483         return root;
1484
1485 read_fail:
1486         free_extent_buffer(root->node);
1487 find_fail:
1488         kfree(root);
1489 alloc_fail:
1490         root = ERR_PTR(ret);
1491         goto out;
1492 }
1493
1494 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1495                                       struct btrfs_key *location)
1496 {
1497         struct btrfs_root *root;
1498
1499         root = btrfs_read_tree_root(tree_root, location);
1500         if (IS_ERR(root))
1501                 return root;
1502
1503         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1504                 root->ref_cows = 1;
1505                 btrfs_check_and_init_root_item(&root->root_item);
1506         }
1507
1508         return root;
1509 }
1510
1511 int btrfs_init_fs_root(struct btrfs_root *root)
1512 {
1513         int ret;
1514
1515         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1516         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1517                                         GFP_NOFS);
1518         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1519                 ret = -ENOMEM;
1520                 goto fail;
1521         }
1522
1523         btrfs_init_free_ino_ctl(root);
1524         mutex_init(&root->fs_commit_mutex);
1525         spin_lock_init(&root->cache_lock);
1526         init_waitqueue_head(&root->cache_wait);
1527
1528         ret = get_anon_bdev(&root->anon_dev);
1529         if (ret)
1530                 goto fail;
1531         return 0;
1532 fail:
1533         kfree(root->free_ino_ctl);
1534         kfree(root->free_ino_pinned);
1535         return ret;
1536 }
1537
1538 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1539                                                u64 root_id)
1540 {
1541         struct btrfs_root *root;
1542
1543         spin_lock(&fs_info->fs_roots_radix_lock);
1544         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1545                                  (unsigned long)root_id);
1546         spin_unlock(&fs_info->fs_roots_radix_lock);
1547         return root;
1548 }
1549
1550 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1551                          struct btrfs_root *root)
1552 {
1553         int ret;
1554
1555         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1556         if (ret)
1557                 return ret;
1558
1559         spin_lock(&fs_info->fs_roots_radix_lock);
1560         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1561                                 (unsigned long)root->root_key.objectid,
1562                                 root);
1563         if (ret == 0)
1564                 root->in_radix = 1;
1565         spin_unlock(&fs_info->fs_roots_radix_lock);
1566         radix_tree_preload_end();
1567
1568         return ret;
1569 }
1570
1571 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1572                                               struct btrfs_key *location)
1573 {
1574         struct btrfs_root *root;
1575         int ret;
1576
1577         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1578                 return fs_info->tree_root;
1579         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1580                 return fs_info->extent_root;
1581         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1582                 return fs_info->chunk_root;
1583         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1584                 return fs_info->dev_root;
1585         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1586                 return fs_info->csum_root;
1587         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1588                 return fs_info->quota_root ? fs_info->quota_root :
1589                                              ERR_PTR(-ENOENT);
1590         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1591                 return fs_info->uuid_root ? fs_info->uuid_root :
1592                                             ERR_PTR(-ENOENT);
1593 again:
1594         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1595         if (root)
1596                 return root;
1597
1598         root = btrfs_read_fs_root(fs_info->tree_root, location);
1599         if (IS_ERR(root))
1600                 return root;
1601
1602         if (btrfs_root_refs(&root->root_item) == 0) {
1603                 ret = -ENOENT;
1604                 goto fail;
1605         }
1606
1607         ret = btrfs_init_fs_root(root);
1608         if (ret)
1609                 goto fail;
1610
1611         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1612         if (ret < 0)
1613                 goto fail;
1614         if (ret == 0)
1615                 root->orphan_item_inserted = 1;
1616
1617         ret = btrfs_insert_fs_root(fs_info, root);
1618         if (ret) {
1619                 if (ret == -EEXIST) {
1620                         free_fs_root(root);
1621                         goto again;
1622                 }
1623                 goto fail;
1624         }
1625         return root;
1626 fail:
1627         free_fs_root(root);
1628         return ERR_PTR(ret);
1629 }
1630
1631 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1632 {
1633         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1634         int ret = 0;
1635         struct btrfs_device *device;
1636         struct backing_dev_info *bdi;
1637
1638         rcu_read_lock();
1639         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1640                 if (!device->bdev)
1641                         continue;
1642                 bdi = blk_get_backing_dev_info(device->bdev);
1643                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1644                         ret = 1;
1645                         break;
1646                 }
1647         }
1648         rcu_read_unlock();
1649         return ret;
1650 }
1651
1652 /*
1653  * If this fails, caller must call bdi_destroy() to get rid of the
1654  * bdi again.
1655  */
1656 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1657 {
1658         int err;
1659
1660         bdi->capabilities = BDI_CAP_MAP_COPY;
1661         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1662         if (err)
1663                 return err;
1664
1665         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1666         bdi->congested_fn       = btrfs_congested_fn;
1667         bdi->congested_data     = info;
1668         return 0;
1669 }
1670
1671 /*
1672  * called by the kthread helper functions to finally call the bio end_io
1673  * functions.  This is where read checksum verification actually happens
1674  */
1675 static void end_workqueue_fn(struct btrfs_work *work)
1676 {
1677         struct bio *bio;
1678         struct end_io_wq *end_io_wq;
1679         struct btrfs_fs_info *fs_info;
1680         int error;
1681
1682         end_io_wq = container_of(work, struct end_io_wq, work);
1683         bio = end_io_wq->bio;
1684         fs_info = end_io_wq->info;
1685
1686         error = end_io_wq->error;
1687         bio->bi_private = end_io_wq->private;
1688         bio->bi_end_io = end_io_wq->end_io;
1689         kfree(end_io_wq);
1690         bio_endio(bio, error);
1691 }
1692
1693 static int cleaner_kthread(void *arg)
1694 {
1695         struct btrfs_root *root = arg;
1696         int again;
1697
1698         do {
1699                 again = 0;
1700
1701                 /* Make the cleaner go to sleep early. */
1702                 if (btrfs_need_cleaner_sleep(root))
1703                         goto sleep;
1704
1705                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1706                         goto sleep;
1707
1708                 /*
1709                  * Avoid the problem that we change the status of the fs
1710                  * during the above check and trylock.
1711                  */
1712                 if (btrfs_need_cleaner_sleep(root)) {
1713                         mutex_unlock(&root->fs_info->cleaner_mutex);
1714                         goto sleep;
1715                 }
1716
1717                 btrfs_run_delayed_iputs(root);
1718                 again = btrfs_clean_one_deleted_snapshot(root);
1719                 mutex_unlock(&root->fs_info->cleaner_mutex);
1720
1721                 /*
1722                  * The defragger has dealt with the R/O remount and umount,
1723                  * needn't do anything special here.
1724                  */
1725                 btrfs_run_defrag_inodes(root->fs_info);
1726 sleep:
1727                 if (!try_to_freeze() && !again) {
1728                         set_current_state(TASK_INTERRUPTIBLE);
1729                         if (!kthread_should_stop())
1730                                 schedule();
1731                         __set_current_state(TASK_RUNNING);
1732                 }
1733         } while (!kthread_should_stop());
1734         return 0;
1735 }
1736
1737 static int transaction_kthread(void *arg)
1738 {
1739         struct btrfs_root *root = arg;
1740         struct btrfs_trans_handle *trans;
1741         struct btrfs_transaction *cur;
1742         u64 transid;
1743         unsigned long now;
1744         unsigned long delay;
1745         bool cannot_commit;
1746
1747         do {
1748                 cannot_commit = false;
1749                 delay = HZ * root->fs_info->commit_interval;
1750                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1751
1752                 spin_lock(&root->fs_info->trans_lock);
1753                 cur = root->fs_info->running_transaction;
1754                 if (!cur) {
1755                         spin_unlock(&root->fs_info->trans_lock);
1756                         goto sleep;
1757                 }
1758
1759                 now = get_seconds();
1760                 if (cur->state < TRANS_STATE_BLOCKED &&
1761                     (now < cur->start_time ||
1762                      now - cur->start_time < root->fs_info->commit_interval)) {
1763                         spin_unlock(&root->fs_info->trans_lock);
1764                         delay = HZ * 5;
1765                         goto sleep;
1766                 }
1767                 transid = cur->transid;
1768                 spin_unlock(&root->fs_info->trans_lock);
1769
1770                 /* If the file system is aborted, this will always fail. */
1771                 trans = btrfs_attach_transaction(root);
1772                 if (IS_ERR(trans)) {
1773                         if (PTR_ERR(trans) != -ENOENT)
1774                                 cannot_commit = true;
1775                         goto sleep;
1776                 }
1777                 if (transid == trans->transid) {
1778                         btrfs_commit_transaction(trans, root);
1779                 } else {
1780                         btrfs_end_transaction(trans, root);
1781                 }
1782 sleep:
1783                 wake_up_process(root->fs_info->cleaner_kthread);
1784                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1785
1786                 if (!try_to_freeze()) {
1787                         set_current_state(TASK_INTERRUPTIBLE);
1788                         if (!kthread_should_stop() &&
1789                             (!btrfs_transaction_blocked(root->fs_info) ||
1790                              cannot_commit))
1791                                 schedule_timeout(delay);
1792                         __set_current_state(TASK_RUNNING);
1793                 }
1794         } while (!kthread_should_stop());
1795         return 0;
1796 }
1797
1798 /*
1799  * this will find the highest generation in the array of
1800  * root backups.  The index of the highest array is returned,
1801  * or -1 if we can't find anything.
1802  *
1803  * We check to make sure the array is valid by comparing the
1804  * generation of the latest  root in the array with the generation
1805  * in the super block.  If they don't match we pitch it.
1806  */
1807 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1808 {
1809         u64 cur;
1810         int newest_index = -1;
1811         struct btrfs_root_backup *root_backup;
1812         int i;
1813
1814         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1815                 root_backup = info->super_copy->super_roots + i;
1816                 cur = btrfs_backup_tree_root_gen(root_backup);
1817                 if (cur == newest_gen)
1818                         newest_index = i;
1819         }
1820
1821         /* check to see if we actually wrapped around */
1822         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1823                 root_backup = info->super_copy->super_roots;
1824                 cur = btrfs_backup_tree_root_gen(root_backup);
1825                 if (cur == newest_gen)
1826                         newest_index = 0;
1827         }
1828         return newest_index;
1829 }
1830
1831
1832 /*
1833  * find the oldest backup so we know where to store new entries
1834  * in the backup array.  This will set the backup_root_index
1835  * field in the fs_info struct
1836  */
1837 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1838                                      u64 newest_gen)
1839 {
1840         int newest_index = -1;
1841
1842         newest_index = find_newest_super_backup(info, newest_gen);
1843         /* if there was garbage in there, just move along */
1844         if (newest_index == -1) {
1845                 info->backup_root_index = 0;
1846         } else {
1847                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1848         }
1849 }
1850
1851 /*
1852  * copy all the root pointers into the super backup array.
1853  * this will bump the backup pointer by one when it is
1854  * done
1855  */
1856 static void backup_super_roots(struct btrfs_fs_info *info)
1857 {
1858         int next_backup;
1859         struct btrfs_root_backup *root_backup;
1860         int last_backup;
1861
1862         next_backup = info->backup_root_index;
1863         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1864                 BTRFS_NUM_BACKUP_ROOTS;
1865
1866         /*
1867          * just overwrite the last backup if we're at the same generation
1868          * this happens only at umount
1869          */
1870         root_backup = info->super_for_commit->super_roots + last_backup;
1871         if (btrfs_backup_tree_root_gen(root_backup) ==
1872             btrfs_header_generation(info->tree_root->node))
1873                 next_backup = last_backup;
1874
1875         root_backup = info->super_for_commit->super_roots + next_backup;
1876
1877         /*
1878          * make sure all of our padding and empty slots get zero filled
1879          * regardless of which ones we use today
1880          */
1881         memset(root_backup, 0, sizeof(*root_backup));
1882
1883         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1884
1885         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1886         btrfs_set_backup_tree_root_gen(root_backup,
1887                                btrfs_header_generation(info->tree_root->node));
1888
1889         btrfs_set_backup_tree_root_level(root_backup,
1890                                btrfs_header_level(info->tree_root->node));
1891
1892         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1893         btrfs_set_backup_chunk_root_gen(root_backup,
1894                                btrfs_header_generation(info->chunk_root->node));
1895         btrfs_set_backup_chunk_root_level(root_backup,
1896                                btrfs_header_level(info->chunk_root->node));
1897
1898         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1899         btrfs_set_backup_extent_root_gen(root_backup,
1900                                btrfs_header_generation(info->extent_root->node));
1901         btrfs_set_backup_extent_root_level(root_backup,
1902                                btrfs_header_level(info->extent_root->node));
1903
1904         /*
1905          * we might commit during log recovery, which happens before we set
1906          * the fs_root.  Make sure it is valid before we fill it in.
1907          */
1908         if (info->fs_root && info->fs_root->node) {
1909                 btrfs_set_backup_fs_root(root_backup,
1910                                          info->fs_root->node->start);
1911                 btrfs_set_backup_fs_root_gen(root_backup,
1912                                btrfs_header_generation(info->fs_root->node));
1913                 btrfs_set_backup_fs_root_level(root_backup,
1914                                btrfs_header_level(info->fs_root->node));
1915         }
1916
1917         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1918         btrfs_set_backup_dev_root_gen(root_backup,
1919                                btrfs_header_generation(info->dev_root->node));
1920         btrfs_set_backup_dev_root_level(root_backup,
1921                                        btrfs_header_level(info->dev_root->node));
1922
1923         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1924         btrfs_set_backup_csum_root_gen(root_backup,
1925                                btrfs_header_generation(info->csum_root->node));
1926         btrfs_set_backup_csum_root_level(root_backup,
1927                                btrfs_header_level(info->csum_root->node));
1928
1929         btrfs_set_backup_total_bytes(root_backup,
1930                              btrfs_super_total_bytes(info->super_copy));
1931         btrfs_set_backup_bytes_used(root_backup,
1932                              btrfs_super_bytes_used(info->super_copy));
1933         btrfs_set_backup_num_devices(root_backup,
1934                              btrfs_super_num_devices(info->super_copy));
1935
1936         /*
1937          * if we don't copy this out to the super_copy, it won't get remembered
1938          * for the next commit
1939          */
1940         memcpy(&info->super_copy->super_roots,
1941                &info->super_for_commit->super_roots,
1942                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1943 }
1944
1945 /*
1946  * this copies info out of the root backup array and back into
1947  * the in-memory super block.  It is meant to help iterate through
1948  * the array, so you send it the number of backups you've already
1949  * tried and the last backup index you used.
1950  *
1951  * this returns -1 when it has tried all the backups
1952  */
1953 static noinline int next_root_backup(struct btrfs_fs_info *info,
1954                                      struct btrfs_super_block *super,
1955                                      int *num_backups_tried, int *backup_index)
1956 {
1957         struct btrfs_root_backup *root_backup;
1958         int newest = *backup_index;
1959
1960         if (*num_backups_tried == 0) {
1961                 u64 gen = btrfs_super_generation(super);
1962
1963                 newest = find_newest_super_backup(info, gen);
1964                 if (newest == -1)
1965                         return -1;
1966
1967                 *backup_index = newest;
1968                 *num_backups_tried = 1;
1969         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1970                 /* we've tried all the backups, all done */
1971                 return -1;
1972         } else {
1973                 /* jump to the next oldest backup */
1974                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1975                         BTRFS_NUM_BACKUP_ROOTS;
1976                 *backup_index = newest;
1977                 *num_backups_tried += 1;
1978         }
1979         root_backup = super->super_roots + newest;
1980
1981         btrfs_set_super_generation(super,
1982                                    btrfs_backup_tree_root_gen(root_backup));
1983         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1984         btrfs_set_super_root_level(super,
1985                                    btrfs_backup_tree_root_level(root_backup));
1986         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1987
1988         /*
1989          * fixme: the total bytes and num_devices need to match or we should
1990          * need a fsck
1991          */
1992         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1993         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1994         return 0;
1995 }
1996
1997 /* helper to cleanup workers */
1998 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1999 {
2000         btrfs_stop_workers(&fs_info->generic_worker);
2001         btrfs_stop_workers(&fs_info->fixup_workers);
2002         btrfs_stop_workers(&fs_info->delalloc_workers);
2003         btrfs_stop_workers(&fs_info->workers);
2004         btrfs_stop_workers(&fs_info->endio_workers);
2005         btrfs_stop_workers(&fs_info->endio_meta_workers);
2006         btrfs_stop_workers(&fs_info->endio_raid56_workers);
2007         btrfs_stop_workers(&fs_info->rmw_workers);
2008         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2009         btrfs_stop_workers(&fs_info->endio_write_workers);
2010         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2011         btrfs_stop_workers(&fs_info->submit_workers);
2012         btrfs_stop_workers(&fs_info->delayed_workers);
2013         btrfs_stop_workers(&fs_info->caching_workers);
2014         btrfs_stop_workers(&fs_info->readahead_workers);
2015         btrfs_stop_workers(&fs_info->flush_workers);
2016         btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
2017 }
2018
2019 /* helper to cleanup tree roots */
2020 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2021 {
2022         free_extent_buffer(info->tree_root->node);
2023         free_extent_buffer(info->tree_root->commit_root);
2024         info->tree_root->node = NULL;
2025         info->tree_root->commit_root = NULL;
2026
2027         if (info->dev_root) {
2028                 free_extent_buffer(info->dev_root->node);
2029                 free_extent_buffer(info->dev_root->commit_root);
2030                 info->dev_root->node = NULL;
2031                 info->dev_root->commit_root = NULL;
2032         }
2033         if (info->extent_root) {
2034                 free_extent_buffer(info->extent_root->node);
2035                 free_extent_buffer(info->extent_root->commit_root);
2036                 info->extent_root->node = NULL;
2037                 info->extent_root->commit_root = NULL;
2038         }
2039         if (info->csum_root) {
2040                 free_extent_buffer(info->csum_root->node);
2041                 free_extent_buffer(info->csum_root->commit_root);
2042                 info->csum_root->node = NULL;
2043                 info->csum_root->commit_root = NULL;
2044         }
2045         if (info->quota_root) {
2046                 free_extent_buffer(info->quota_root->node);
2047                 free_extent_buffer(info->quota_root->commit_root);
2048                 info->quota_root->node = NULL;
2049                 info->quota_root->commit_root = NULL;
2050         }
2051         if (info->uuid_root) {
2052                 free_extent_buffer(info->uuid_root->node);
2053                 free_extent_buffer(info->uuid_root->commit_root);
2054                 info->uuid_root->node = NULL;
2055                 info->uuid_root->commit_root = NULL;
2056         }
2057         if (chunk_root) {
2058                 free_extent_buffer(info->chunk_root->node);
2059                 free_extent_buffer(info->chunk_root->commit_root);
2060                 info->chunk_root->node = NULL;
2061                 info->chunk_root->commit_root = NULL;
2062         }
2063 }
2064
2065 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2066 {
2067         int ret;
2068         struct btrfs_root *gang[8];
2069         int i;
2070
2071         while (!list_empty(&fs_info->dead_roots)) {
2072                 gang[0] = list_entry(fs_info->dead_roots.next,
2073                                      struct btrfs_root, root_list);
2074                 list_del(&gang[0]->root_list);
2075
2076                 if (gang[0]->in_radix) {
2077                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2078                 } else {
2079                         free_extent_buffer(gang[0]->node);
2080                         free_extent_buffer(gang[0]->commit_root);
2081                         btrfs_put_fs_root(gang[0]);
2082                 }
2083         }
2084
2085         while (1) {
2086                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2087                                              (void **)gang, 0,
2088                                              ARRAY_SIZE(gang));
2089                 if (!ret)
2090                         break;
2091                 for (i = 0; i < ret; i++)
2092                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2093         }
2094 }
2095
2096 int open_ctree(struct super_block *sb,
2097                struct btrfs_fs_devices *fs_devices,
2098                char *options)
2099 {
2100         u32 sectorsize;
2101         u32 nodesize;
2102         u32 leafsize;
2103         u32 blocksize;
2104         u32 stripesize;
2105         u64 generation;
2106         u64 features;
2107         struct btrfs_key location;
2108         struct buffer_head *bh;
2109         struct btrfs_super_block *disk_super;
2110         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2111         struct btrfs_root *tree_root;
2112         struct btrfs_root *extent_root;
2113         struct btrfs_root *csum_root;
2114         struct btrfs_root *chunk_root;
2115         struct btrfs_root *dev_root;
2116         struct btrfs_root *quota_root;
2117         struct btrfs_root *uuid_root;
2118         struct btrfs_root *log_tree_root;
2119         int ret;
2120         int err = -EINVAL;
2121         int num_backups_tried = 0;
2122         int backup_index = 0;
2123         bool create_uuid_tree;
2124         bool check_uuid_tree;
2125
2126         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2127         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2128         if (!tree_root || !chunk_root) {
2129                 err = -ENOMEM;
2130                 goto fail;
2131         }
2132
2133         ret = init_srcu_struct(&fs_info->subvol_srcu);
2134         if (ret) {
2135                 err = ret;
2136                 goto fail;
2137         }
2138
2139         ret = setup_bdi(fs_info, &fs_info->bdi);
2140         if (ret) {
2141                 err = ret;
2142                 goto fail_srcu;
2143         }
2144
2145         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2146         if (ret) {
2147                 err = ret;
2148                 goto fail_bdi;
2149         }
2150         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2151                                         (1 + ilog2(nr_cpu_ids));
2152
2153         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2154         if (ret) {
2155                 err = ret;
2156                 goto fail_dirty_metadata_bytes;
2157         }
2158
2159         fs_info->btree_inode = new_inode(sb);
2160         if (!fs_info->btree_inode) {
2161                 err = -ENOMEM;
2162                 goto fail_delalloc_bytes;
2163         }
2164
2165         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2166
2167         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2168         INIT_LIST_HEAD(&fs_info->trans_list);
2169         INIT_LIST_HEAD(&fs_info->dead_roots);
2170         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2171         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2172         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2173         spin_lock_init(&fs_info->delalloc_root_lock);
2174         spin_lock_init(&fs_info->trans_lock);
2175         spin_lock_init(&fs_info->fs_roots_radix_lock);
2176         spin_lock_init(&fs_info->delayed_iput_lock);
2177         spin_lock_init(&fs_info->defrag_inodes_lock);
2178         spin_lock_init(&fs_info->free_chunk_lock);
2179         spin_lock_init(&fs_info->tree_mod_seq_lock);
2180         spin_lock_init(&fs_info->super_lock);
2181         rwlock_init(&fs_info->tree_mod_log_lock);
2182         mutex_init(&fs_info->reloc_mutex);
2183         seqlock_init(&fs_info->profiles_lock);
2184
2185         init_completion(&fs_info->kobj_unregister);
2186         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2187         INIT_LIST_HEAD(&fs_info->space_info);
2188         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2189         btrfs_mapping_init(&fs_info->mapping_tree);
2190         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2191                              BTRFS_BLOCK_RSV_GLOBAL);
2192         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2193                              BTRFS_BLOCK_RSV_DELALLOC);
2194         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2195         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2196         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2197         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2198                              BTRFS_BLOCK_RSV_DELOPS);
2199         atomic_set(&fs_info->nr_async_submits, 0);
2200         atomic_set(&fs_info->async_delalloc_pages, 0);
2201         atomic_set(&fs_info->async_submit_draining, 0);
2202         atomic_set(&fs_info->nr_async_bios, 0);
2203         atomic_set(&fs_info->defrag_running, 0);
2204         atomic64_set(&fs_info->tree_mod_seq, 0);
2205         fs_info->sb = sb;
2206         fs_info->max_inline = 8192 * 1024;
2207         fs_info->metadata_ratio = 0;
2208         fs_info->defrag_inodes = RB_ROOT;
2209         fs_info->free_chunk_space = 0;
2210         fs_info->tree_mod_log = RB_ROOT;
2211         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2212
2213         /* readahead state */
2214         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2215         spin_lock_init(&fs_info->reada_lock);
2216
2217         fs_info->thread_pool_size = min_t(unsigned long,
2218                                           num_online_cpus() + 2, 8);
2219
2220         INIT_LIST_HEAD(&fs_info->ordered_roots);
2221         spin_lock_init(&fs_info->ordered_root_lock);
2222         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2223                                         GFP_NOFS);
2224         if (!fs_info->delayed_root) {
2225                 err = -ENOMEM;
2226                 goto fail_iput;
2227         }
2228         btrfs_init_delayed_root(fs_info->delayed_root);
2229
2230         mutex_init(&fs_info->scrub_lock);
2231         atomic_set(&fs_info->scrubs_running, 0);
2232         atomic_set(&fs_info->scrub_pause_req, 0);
2233         atomic_set(&fs_info->scrubs_paused, 0);
2234         atomic_set(&fs_info->scrub_cancel_req, 0);
2235         init_waitqueue_head(&fs_info->scrub_pause_wait);
2236         init_rwsem(&fs_info->scrub_super_lock);
2237         fs_info->scrub_workers_refcnt = 0;
2238 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2239         fs_info->check_integrity_print_mask = 0;
2240 #endif
2241
2242         spin_lock_init(&fs_info->balance_lock);
2243         mutex_init(&fs_info->balance_mutex);
2244         atomic_set(&fs_info->balance_running, 0);
2245         atomic_set(&fs_info->balance_pause_req, 0);
2246         atomic_set(&fs_info->balance_cancel_req, 0);
2247         fs_info->balance_ctl = NULL;
2248         init_waitqueue_head(&fs_info->balance_wait_q);
2249
2250         sb->s_blocksize = 4096;
2251         sb->s_blocksize_bits = blksize_bits(4096);
2252         sb->s_bdi = &fs_info->bdi;
2253
2254         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2255         set_nlink(fs_info->btree_inode, 1);
2256         /*
2257          * we set the i_size on the btree inode to the max possible int.
2258          * the real end of the address space is determined by all of
2259          * the devices in the system
2260          */
2261         fs_info->btree_inode->i_size = OFFSET_MAX;
2262         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2263         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2264
2265         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2266         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2267                              fs_info->btree_inode->i_mapping);
2268         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2269         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2270
2271         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2272
2273         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2274         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2275                sizeof(struct btrfs_key));
2276         set_bit(BTRFS_INODE_DUMMY,
2277                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2278         insert_inode_hash(fs_info->btree_inode);
2279
2280         spin_lock_init(&fs_info->block_group_cache_lock);
2281         fs_info->block_group_cache_tree = RB_ROOT;
2282         fs_info->first_logical_byte = (u64)-1;
2283
2284         extent_io_tree_init(&fs_info->freed_extents[0],
2285                              fs_info->btree_inode->i_mapping);
2286         extent_io_tree_init(&fs_info->freed_extents[1],
2287                              fs_info->btree_inode->i_mapping);
2288         fs_info->pinned_extents = &fs_info->freed_extents[0];
2289         fs_info->do_barriers = 1;
2290
2291
2292         mutex_init(&fs_info->ordered_operations_mutex);
2293         mutex_init(&fs_info->ordered_extent_flush_mutex);
2294         mutex_init(&fs_info->tree_log_mutex);
2295         mutex_init(&fs_info->chunk_mutex);
2296         mutex_init(&fs_info->transaction_kthread_mutex);
2297         mutex_init(&fs_info->cleaner_mutex);
2298         mutex_init(&fs_info->volume_mutex);
2299         init_rwsem(&fs_info->extent_commit_sem);
2300         init_rwsem(&fs_info->cleanup_work_sem);
2301         init_rwsem(&fs_info->subvol_sem);
2302         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2303         fs_info->dev_replace.lock_owner = 0;
2304         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2305         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2306         mutex_init(&fs_info->dev_replace.lock_management_lock);
2307         mutex_init(&fs_info->dev_replace.lock);
2308
2309         spin_lock_init(&fs_info->qgroup_lock);
2310         mutex_init(&fs_info->qgroup_ioctl_lock);
2311         fs_info->qgroup_tree = RB_ROOT;
2312         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2313         fs_info->qgroup_seq = 1;
2314         fs_info->quota_enabled = 0;
2315         fs_info->pending_quota_state = 0;
2316         fs_info->qgroup_ulist = NULL;
2317         mutex_init(&fs_info->qgroup_rescan_lock);
2318
2319         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2320         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2321
2322         init_waitqueue_head(&fs_info->transaction_throttle);
2323         init_waitqueue_head(&fs_info->transaction_wait);
2324         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2325         init_waitqueue_head(&fs_info->async_submit_wait);
2326
2327         ret = btrfs_alloc_stripe_hash_table(fs_info);
2328         if (ret) {
2329                 err = ret;
2330                 goto fail_alloc;
2331         }
2332
2333         __setup_root(4096, 4096, 4096, 4096, tree_root,
2334                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2335
2336         invalidate_bdev(fs_devices->latest_bdev);
2337
2338         /*
2339          * Read super block and check the signature bytes only
2340          */
2341         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2342         if (!bh) {
2343                 err = -EINVAL;
2344                 goto fail_alloc;
2345         }
2346
2347         /*
2348          * We want to check superblock checksum, the type is stored inside.
2349          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2350          */
2351         if (btrfs_check_super_csum(bh->b_data)) {
2352                 printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
2353                 err = -EINVAL;
2354                 goto fail_alloc;
2355         }
2356
2357         /*
2358          * super_copy is zeroed at allocation time and we never touch the
2359          * following bytes up to INFO_SIZE, the checksum is calculated from
2360          * the whole block of INFO_SIZE
2361          */
2362         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2363         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2364                sizeof(*fs_info->super_for_commit));
2365         brelse(bh);
2366
2367         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2368
2369         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2370         if (ret) {
2371                 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2372                 err = -EINVAL;
2373                 goto fail_alloc;
2374         }
2375
2376         disk_super = fs_info->super_copy;
2377         if (!btrfs_super_root(disk_super))
2378                 goto fail_alloc;
2379
2380         /* check FS state, whether FS is broken. */
2381         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2382                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2383
2384         /*
2385          * run through our array of backup supers and setup
2386          * our ring pointer to the oldest one
2387          */
2388         generation = btrfs_super_generation(disk_super);
2389         find_oldest_super_backup(fs_info, generation);
2390
2391         /*
2392          * In the long term, we'll store the compression type in the super
2393          * block, and it'll be used for per file compression control.
2394          */
2395         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2396
2397         ret = btrfs_parse_options(tree_root, options);
2398         if (ret) {
2399                 err = ret;
2400                 goto fail_alloc;
2401         }
2402
2403         features = btrfs_super_incompat_flags(disk_super) &
2404                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2405         if (features) {
2406                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2407                        "unsupported optional features (%Lx).\n",
2408                        (unsigned long long)features);
2409                 err = -EINVAL;
2410                 goto fail_alloc;
2411         }
2412
2413         if (btrfs_super_leafsize(disk_super) !=
2414             btrfs_super_nodesize(disk_super)) {
2415                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2416                        "blocksizes don't match.  node %d leaf %d\n",
2417                        btrfs_super_nodesize(disk_super),
2418                        btrfs_super_leafsize(disk_super));
2419                 err = -EINVAL;
2420                 goto fail_alloc;
2421         }
2422         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2423                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2424                        "blocksize (%d) was too large\n",
2425                        btrfs_super_leafsize(disk_super));
2426                 err = -EINVAL;
2427                 goto fail_alloc;
2428         }
2429
2430         features = btrfs_super_incompat_flags(disk_super);
2431         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2432         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2433                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2434
2435         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2436                 printk(KERN_ERR "btrfs: has skinny extents\n");
2437
2438         /*
2439          * flag our filesystem as having big metadata blocks if
2440          * they are bigger than the page size
2441          */
2442         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2443                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2444                         printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2445                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2446         }
2447
2448         nodesize = btrfs_super_nodesize(disk_super);
2449         leafsize = btrfs_super_leafsize(disk_super);
2450         sectorsize = btrfs_super_sectorsize(disk_super);
2451         stripesize = btrfs_super_stripesize(disk_super);
2452         fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2453         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2454
2455         /*
2456          * mixed block groups end up with duplicate but slightly offset
2457          * extent buffers for the same range.  It leads to corruptions
2458          */
2459         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2460             (sectorsize != leafsize)) {
2461                 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2462                                 "are not allowed for mixed block groups on %s\n",
2463                                 sb->s_id);
2464                 goto fail_alloc;
2465         }
2466
2467         /*
2468          * Needn't use the lock because there is no other task which will
2469          * update the flag.
2470          */
2471         btrfs_set_super_incompat_flags(disk_super, features);
2472
2473         features = btrfs_super_compat_ro_flags(disk_super) &
2474                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2475         if (!(sb->s_flags & MS_RDONLY) && features) {
2476                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2477                        "unsupported option features (%Lx).\n",
2478                        (unsigned long long)features);
2479                 err = -EINVAL;
2480                 goto fail_alloc;
2481         }
2482
2483         btrfs_init_workers(&fs_info->generic_worker,
2484                            "genwork", 1, NULL);
2485
2486         btrfs_init_workers(&fs_info->workers, "worker",
2487                            fs_info->thread_pool_size,
2488                            &fs_info->generic_worker);
2489
2490         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2491                            fs_info->thread_pool_size,
2492                            &fs_info->generic_worker);
2493
2494         btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2495                            fs_info->thread_pool_size,
2496                            &fs_info->generic_worker);
2497
2498         btrfs_init_workers(&fs_info->submit_workers, "submit",
2499                            min_t(u64, fs_devices->num_devices,
2500                            fs_info->thread_pool_size),
2501                            &fs_info->generic_worker);
2502
2503         btrfs_init_workers(&fs_info->caching_workers, "cache",
2504                            2, &fs_info->generic_worker);
2505
2506         /* a higher idle thresh on the submit workers makes it much more
2507          * likely that bios will be send down in a sane order to the
2508          * devices
2509          */
2510         fs_info->submit_workers.idle_thresh = 64;
2511
2512         fs_info->workers.idle_thresh = 16;
2513         fs_info->workers.ordered = 1;
2514
2515         fs_info->delalloc_workers.idle_thresh = 2;
2516         fs_info->delalloc_workers.ordered = 1;
2517
2518         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2519                            &fs_info->generic_worker);
2520         btrfs_init_workers(&fs_info->endio_workers, "endio",
2521                            fs_info->thread_pool_size,
2522                            &fs_info->generic_worker);
2523         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2524                            fs_info->thread_pool_size,
2525                            &fs_info->generic_worker);
2526         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2527                            "endio-meta-write", fs_info->thread_pool_size,
2528                            &fs_info->generic_worker);
2529         btrfs_init_workers(&fs_info->endio_raid56_workers,
2530                            "endio-raid56", fs_info->thread_pool_size,
2531                            &fs_info->generic_worker);
2532         btrfs_init_workers(&fs_info->rmw_workers,
2533                            "rmw", fs_info->thread_pool_size,
2534                            &fs_info->generic_worker);
2535         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2536                            fs_info->thread_pool_size,
2537                            &fs_info->generic_worker);
2538         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2539                            1, &fs_info->generic_worker);
2540         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2541                            fs_info->thread_pool_size,
2542                            &fs_info->generic_worker);
2543         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2544                            fs_info->thread_pool_size,
2545                            &fs_info->generic_worker);
2546         btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2547                            &fs_info->generic_worker);
2548
2549         /*
2550          * endios are largely parallel and should have a very
2551          * low idle thresh
2552          */
2553         fs_info->endio_workers.idle_thresh = 4;
2554         fs_info->endio_meta_workers.idle_thresh = 4;
2555         fs_info->endio_raid56_workers.idle_thresh = 4;
2556         fs_info->rmw_workers.idle_thresh = 2;
2557
2558         fs_info->endio_write_workers.idle_thresh = 2;
2559         fs_info->endio_meta_write_workers.idle_thresh = 2;
2560         fs_info->readahead_workers.idle_thresh = 2;
2561
2562         /*
2563          * btrfs_start_workers can really only fail because of ENOMEM so just
2564          * return -ENOMEM if any of these fail.
2565          */
2566         ret = btrfs_start_workers(&fs_info->workers);
2567         ret |= btrfs_start_workers(&fs_info->generic_worker);
2568         ret |= btrfs_start_workers(&fs_info->submit_workers);
2569         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2570         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2571         ret |= btrfs_start_workers(&fs_info->endio_workers);
2572         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2573         ret |= btrfs_start_workers(&fs_info->rmw_workers);
2574         ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2575         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2576         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2577         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2578         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2579         ret |= btrfs_start_workers(&fs_info->caching_workers);
2580         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2581         ret |= btrfs_start_workers(&fs_info->flush_workers);
2582         ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2583         if (ret) {
2584                 err = -ENOMEM;
2585                 goto fail_sb_buffer;
2586         }
2587
2588         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2589         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2590                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2591
2592         tree_root->nodesize = nodesize;
2593         tree_root->leafsize = leafsize;
2594         tree_root->sectorsize = sectorsize;
2595         tree_root->stripesize = stripesize;
2596
2597         sb->s_blocksize = sectorsize;
2598         sb->s_blocksize_bits = blksize_bits(sectorsize);
2599
2600         if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2601                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2602                 goto fail_sb_buffer;
2603         }
2604
2605         if (sectorsize != PAGE_SIZE) {
2606                 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2607                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2608                 goto fail_sb_buffer;
2609         }
2610
2611         mutex_lock(&fs_info->chunk_mutex);
2612         ret = btrfs_read_sys_array(tree_root);
2613         mutex_unlock(&fs_info->chunk_mutex);
2614         if (ret) {
2615                 printk(KERN_WARNING "btrfs: failed to read the system "
2616                        "array on %s\n", sb->s_id);
2617                 goto fail_sb_buffer;
2618         }
2619
2620         blocksize = btrfs_level_size(tree_root,
2621                                      btrfs_super_chunk_root_level(disk_super));
2622         generation = btrfs_super_chunk_root_generation(disk_super);
2623
2624         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2625                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2626
2627         chunk_root->node = read_tree_block(chunk_root,
2628                                            btrfs_super_chunk_root(disk_super),
2629                                            blocksize, generation);
2630         if (!chunk_root->node ||
2631             !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2632                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2633                        sb->s_id);
2634                 goto fail_tree_roots;
2635         }
2636         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2637         chunk_root->commit_root = btrfs_root_node(chunk_root);
2638
2639         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2640            (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2641            BTRFS_UUID_SIZE);
2642
2643         ret = btrfs_read_chunk_tree(chunk_root);
2644         if (ret) {
2645                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2646                        sb->s_id);
2647                 goto fail_tree_roots;
2648         }
2649
2650         /*
2651          * keep the device that is marked to be the target device for the
2652          * dev_replace procedure
2653          */
2654         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2655
2656         if (!fs_devices->latest_bdev) {
2657                 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2658                        sb->s_id);
2659                 goto fail_tree_roots;
2660         }
2661
2662 retry_root_backup:
2663         blocksize = btrfs_level_size(tree_root,
2664                                      btrfs_super_root_level(disk_super));
2665         generation = btrfs_super_generation(disk_super);
2666
2667         tree_root->node = read_tree_block(tree_root,
2668                                           btrfs_super_root(disk_super),
2669                                           blocksize, generation);
2670         if (!tree_root->node ||
2671             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2672                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2673                        sb->s_id);
2674
2675                 goto recovery_tree_root;
2676         }
2677
2678         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2679         tree_root->commit_root = btrfs_root_node(tree_root);
2680
2681         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2682         location.type = BTRFS_ROOT_ITEM_KEY;
2683         location.offset = 0;
2684
2685         extent_root = btrfs_read_tree_root(tree_root, &location);
2686         if (IS_ERR(extent_root)) {
2687                 ret = PTR_ERR(extent_root);
2688                 goto recovery_tree_root;
2689         }
2690         extent_root->track_dirty = 1;
2691         fs_info->extent_root = extent_root;
2692
2693         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2694         dev_root = btrfs_read_tree_root(tree_root, &location);
2695         if (IS_ERR(dev_root)) {
2696                 ret = PTR_ERR(dev_root);
2697                 goto recovery_tree_root;
2698         }
2699         dev_root->track_dirty = 1;
2700         fs_info->dev_root = dev_root;
2701         btrfs_init_devices_late(fs_info);
2702
2703         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2704         csum_root = btrfs_read_tree_root(tree_root, &location);
2705         if (IS_ERR(csum_root)) {
2706                 ret = PTR_ERR(csum_root);
2707                 goto recovery_tree_root;
2708         }
2709         csum_root->track_dirty = 1;
2710         fs_info->csum_root = csum_root;
2711
2712         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2713         quota_root = btrfs_read_tree_root(tree_root, &location);
2714         if (!IS_ERR(quota_root)) {
2715                 quota_root->track_dirty = 1;
2716                 fs_info->quota_enabled = 1;
2717                 fs_info->pending_quota_state = 1;
2718                 fs_info->quota_root = quota_root;
2719         }
2720
2721         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2722         uuid_root = btrfs_read_tree_root(tree_root, &location);
2723         if (IS_ERR(uuid_root)) {
2724                 ret = PTR_ERR(uuid_root);
2725                 if (ret != -ENOENT)
2726                         goto recovery_tree_root;
2727                 create_uuid_tree = true;
2728                 check_uuid_tree = false;
2729         } else {
2730                 uuid_root->track_dirty = 1;
2731                 fs_info->uuid_root = uuid_root;
2732                 create_uuid_tree = false;
2733                 check_uuid_tree =
2734                     generation != btrfs_super_uuid_tree_generation(disk_super);
2735         }
2736
2737         fs_info->generation = generation;
2738         fs_info->last_trans_committed = generation;
2739
2740         ret = btrfs_recover_balance(fs_info);
2741         if (ret) {
2742                 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2743                 goto fail_block_groups;
2744         }
2745
2746         ret = btrfs_init_dev_stats(fs_info);
2747         if (ret) {
2748                 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2749                        ret);
2750                 goto fail_block_groups;
2751         }
2752
2753         ret = btrfs_init_dev_replace(fs_info);
2754         if (ret) {
2755                 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2756                 goto fail_block_groups;
2757         }
2758
2759         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2760
2761         ret = btrfs_init_space_info(fs_info);
2762         if (ret) {
2763                 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2764                 goto fail_block_groups;
2765         }
2766
2767         ret = btrfs_read_block_groups(extent_root);
2768         if (ret) {
2769                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2770                 goto fail_block_groups;
2771         }
2772         fs_info->num_tolerated_disk_barrier_failures =
2773                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2774         if (fs_info->fs_devices->missing_devices >
2775              fs_info->num_tolerated_disk_barrier_failures &&
2776             !(sb->s_flags & MS_RDONLY)) {
2777                 printk(KERN_WARNING
2778                        "Btrfs: too many missing devices, writeable mount is not allowed\n");
2779                 goto fail_block_groups;
2780         }
2781
2782         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2783                                                "btrfs-cleaner");
2784         if (IS_ERR(fs_info->cleaner_kthread))
2785                 goto fail_block_groups;
2786
2787         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2788                                                    tree_root,
2789                                                    "btrfs-transaction");
2790         if (IS_ERR(fs_info->transaction_kthread))
2791                 goto fail_cleaner;
2792
2793         if (!btrfs_test_opt(tree_root, SSD) &&
2794             !btrfs_test_opt(tree_root, NOSSD) &&
2795             !fs_info->fs_devices->rotating) {
2796                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2797                        "mode\n");
2798                 btrfs_set_opt(fs_info->mount_opt, SSD);
2799         }
2800
2801 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2802         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2803                 ret = btrfsic_mount(tree_root, fs_devices,
2804                                     btrfs_test_opt(tree_root,
2805                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2806                                     1 : 0,
2807                                     fs_info->check_integrity_print_mask);
2808                 if (ret)
2809                         printk(KERN_WARNING "btrfs: failed to initialize"
2810                                " integrity check module %s\n", sb->s_id);
2811         }
2812 #endif
2813         ret = btrfs_read_qgroup_config(fs_info);
2814         if (ret)
2815                 goto fail_trans_kthread;
2816
2817         /* do not make disk changes in broken FS */
2818         if (btrfs_super_log_root(disk_super) != 0) {
2819                 u64 bytenr = btrfs_super_log_root(disk_super);
2820
2821                 if (fs_devices->rw_devices == 0) {
2822                         printk(KERN_WARNING "Btrfs log replay required "
2823                                "on RO media\n");
2824                         err = -EIO;
2825                         goto fail_qgroup;
2826                 }
2827                 blocksize =
2828                      btrfs_level_size(tree_root,
2829                                       btrfs_super_log_root_level(disk_super));
2830
2831                 log_tree_root = btrfs_alloc_root(fs_info);
2832                 if (!log_tree_root) {
2833                         err = -ENOMEM;
2834                         goto fail_qgroup;
2835                 }
2836
2837                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2838                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2839
2840                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2841                                                       blocksize,
2842                                                       generation + 1);
2843                 if (!log_tree_root->node ||
2844                     !extent_buffer_uptodate(log_tree_root->node)) {
2845                         printk(KERN_ERR "btrfs: failed to read log tree\n");
2846                         free_extent_buffer(log_tree_root->node);
2847                         kfree(log_tree_root);
2848                         goto fail_trans_kthread;
2849                 }
2850                 /* returns with log_tree_root freed on success */
2851                 ret = btrfs_recover_log_trees(log_tree_root);
2852                 if (ret) {
2853                         btrfs_error(tree_root->fs_info, ret,
2854                                     "Failed to recover log tree");
2855                         free_extent_buffer(log_tree_root->node);
2856                         kfree(log_tree_root);
2857                         goto fail_trans_kthread;
2858                 }
2859
2860                 if (sb->s_flags & MS_RDONLY) {
2861                         ret = btrfs_commit_super(tree_root);
2862                         if (ret)
2863                                 goto fail_trans_kthread;
2864                 }
2865         }
2866
2867         ret = btrfs_find_orphan_roots(tree_root);
2868         if (ret)
2869                 goto fail_trans_kthread;
2870
2871         if (!(sb->s_flags & MS_RDONLY)) {
2872                 ret = btrfs_cleanup_fs_roots(fs_info);
2873                 if (ret)
2874                         goto fail_trans_kthread;
2875
2876                 ret = btrfs_recover_relocation(tree_root);
2877                 if (ret < 0) {
2878                         printk(KERN_WARNING
2879                                "btrfs: failed to recover relocation\n");
2880                         err = -EINVAL;
2881                         goto fail_qgroup;
2882                 }
2883         }
2884
2885         location.objectid = BTRFS_FS_TREE_OBJECTID;
2886         location.type = BTRFS_ROOT_ITEM_KEY;
2887         location.offset = 0;
2888
2889         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2890         if (IS_ERR(fs_info->fs_root)) {
2891                 err = PTR_ERR(fs_info->fs_root);
2892                 goto fail_qgroup;
2893         }
2894
2895         if (sb->s_flags & MS_RDONLY)
2896                 return 0;
2897
2898         down_read(&fs_info->cleanup_work_sem);
2899         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2900             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2901                 up_read(&fs_info->cleanup_work_sem);
2902                 close_ctree(tree_root);
2903                 return ret;
2904         }
2905         up_read(&fs_info->cleanup_work_sem);
2906
2907         ret = btrfs_resume_balance_async(fs_info);
2908         if (ret) {
2909                 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2910                 close_ctree(tree_root);
2911                 return ret;
2912         }
2913
2914         ret = btrfs_resume_dev_replace_async(fs_info);
2915         if (ret) {
2916                 pr_warn("btrfs: failed to resume dev_replace\n");
2917                 close_ctree(tree_root);
2918                 return ret;
2919         }
2920
2921         btrfs_qgroup_rescan_resume(fs_info);
2922
2923         if (create_uuid_tree) {
2924                 pr_info("btrfs: creating UUID tree\n");
2925                 ret = btrfs_create_uuid_tree(fs_info);
2926                 if (ret) {
2927                         pr_warn("btrfs: failed to create the UUID tree %d\n",
2928                                 ret);
2929                         close_ctree(tree_root);
2930                         return ret;
2931                 }
2932         } else if (check_uuid_tree) {
2933                 pr_info("btrfs: checking UUID tree\n");
2934                 ret = btrfs_check_uuid_tree(fs_info);
2935                 if (ret) {
2936                         pr_warn("btrfs: failed to check the UUID tree %d\n",
2937                                 ret);
2938                         close_ctree(tree_root);
2939                         return ret;
2940                 }
2941         } else {
2942                 fs_info->update_uuid_tree_gen = 1;
2943         }
2944
2945         return 0;
2946
2947 fail_qgroup:
2948         btrfs_free_qgroup_config(fs_info);
2949 fail_trans_kthread:
2950         kthread_stop(fs_info->transaction_kthread);
2951         btrfs_cleanup_transaction(fs_info->tree_root);
2952         del_fs_roots(fs_info);
2953 fail_cleaner:
2954         kthread_stop(fs_info->cleaner_kthread);
2955
2956         /*
2957          * make sure we're done with the btree inode before we stop our
2958          * kthreads
2959          */
2960         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2961
2962 fail_block_groups:
2963         btrfs_put_block_group_cache(fs_info);
2964         btrfs_free_block_groups(fs_info);
2965
2966 fail_tree_roots:
2967         free_root_pointers(fs_info, 1);
2968         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2969
2970 fail_sb_buffer:
2971         btrfs_stop_all_workers(fs_info);
2972 fail_alloc:
2973 fail_iput:
2974         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2975
2976         iput(fs_info->btree_inode);
2977 fail_delalloc_bytes:
2978         percpu_counter_destroy(&fs_info->delalloc_bytes);
2979 fail_dirty_metadata_bytes:
2980         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2981 fail_bdi:
2982         bdi_destroy(&fs_info->bdi);
2983 fail_srcu:
2984         cleanup_srcu_struct(&fs_info->subvol_srcu);
2985 fail:
2986         btrfs_free_stripe_hash_table(fs_info);
2987         btrfs_close_devices(fs_info->fs_devices);
2988         return err;
2989
2990 recovery_tree_root:
2991         if (!btrfs_test_opt(tree_root, RECOVERY))
2992                 goto fail_tree_roots;
2993
2994         free_root_pointers(fs_info, 0);
2995
2996         /* don't use the log in recovery mode, it won't be valid */
2997         btrfs_set_super_log_root(disk_super, 0);
2998
2999         /* we can't trust the free space cache either */
3000         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3001
3002         ret = next_root_backup(fs_info, fs_info->super_copy,
3003                                &num_backups_tried, &backup_index);
3004         if (ret == -1)
3005                 goto fail_block_groups;
3006         goto retry_root_backup;
3007 }
3008
3009 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3010 {
3011         if (uptodate) {
3012                 set_buffer_uptodate(bh);
3013         } else {
3014                 struct btrfs_device *device = (struct btrfs_device *)
3015                         bh->b_private;
3016
3017                 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
3018                                           "I/O error on %s\n",
3019                                           rcu_str_deref(device->name));
3020                 /* note, we dont' set_buffer_write_io_error because we have
3021                  * our own ways of dealing with the IO errors
3022                  */
3023                 clear_buffer_uptodate(bh);
3024                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3025         }
3026         unlock_buffer(bh);
3027         put_bh(bh);
3028 }
3029
3030 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3031 {
3032         struct buffer_head *bh;
3033         struct buffer_head *latest = NULL;
3034         struct btrfs_super_block *super;
3035         int i;
3036         u64 transid = 0;
3037         u64 bytenr;
3038
3039         /* we would like to check all the supers, but that would make
3040          * a btrfs mount succeed after a mkfs from a different FS.
3041          * So, we need to add a special mount option to scan for
3042          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3043          */
3044         for (i = 0; i < 1; i++) {
3045                 bytenr = btrfs_sb_offset(i);
3046                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3047                                         i_size_read(bdev->bd_inode))
3048                         break;
3049                 bh = __bread(bdev, bytenr / 4096,
3050                                         BTRFS_SUPER_INFO_SIZE);
3051                 if (!bh)
3052                         continue;
3053
3054                 super = (struct btrfs_super_block *)bh->b_data;
3055                 if (btrfs_super_bytenr(super) != bytenr ||
3056                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3057                         brelse(bh);
3058                         continue;
3059                 }
3060
3061                 if (!latest || btrfs_super_generation(super) > transid) {
3062                         brelse(latest);
3063                         latest = bh;
3064                         transid = btrfs_super_generation(super);
3065                 } else {
3066                         brelse(bh);
3067                 }
3068         }
3069         return latest;
3070 }
3071
3072 /*
3073  * this should be called twice, once with wait == 0 and
3074  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3075  * we write are pinned.
3076  *
3077  * They are released when wait == 1 is done.
3078  * max_mirrors must be the same for both runs, and it indicates how
3079  * many supers on this one device should be written.
3080  *
3081  * max_mirrors == 0 means to write them all.
3082  */
3083 static int write_dev_supers(struct btrfs_device *device,
3084                             struct btrfs_super_block *sb,
3085                             int do_barriers, int wait, int max_mirrors)
3086 {
3087         struct buffer_head *bh;
3088         int i;
3089         int ret;
3090         int errors = 0;
3091         u32 crc;
3092         u64 bytenr;
3093
3094         if (max_mirrors == 0)
3095                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3096
3097         for (i = 0; i < max_mirrors; i++) {
3098                 bytenr = btrfs_sb_offset(i);
3099                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3100                         break;
3101
3102                 if (wait) {
3103                         bh = __find_get_block(device->bdev, bytenr / 4096,
3104                                               BTRFS_SUPER_INFO_SIZE);
3105                         if (!bh) {
3106                                 errors++;
3107                                 continue;
3108                         }
3109                         wait_on_buffer(bh);
3110                         if (!buffer_uptodate(bh))
3111                                 errors++;
3112
3113                         /* drop our reference */
3114                         brelse(bh);
3115
3116                         /* drop the reference from the wait == 0 run */
3117                         brelse(bh);
3118                         continue;
3119                 } else {
3120                         btrfs_set_super_bytenr(sb, bytenr);
3121
3122                         crc = ~(u32)0;
3123                         crc = btrfs_csum_data((char *)sb +
3124                                               BTRFS_CSUM_SIZE, crc,
3125                                               BTRFS_SUPER_INFO_SIZE -
3126                                               BTRFS_CSUM_SIZE);
3127                         btrfs_csum_final(crc, sb->csum);
3128
3129                         /*
3130                          * one reference for us, and we leave it for the
3131                          * caller
3132                          */
3133                         bh = __getblk(device->bdev, bytenr / 4096,
3134                                       BTRFS_SUPER_INFO_SIZE);
3135                         if (!bh) {
3136                                 printk(KERN_ERR "btrfs: couldn't get super "
3137                                        "buffer head for bytenr %Lu\n", bytenr);
3138                                 errors++;
3139                                 continue;
3140                         }
3141
3142                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3143
3144                         /* one reference for submit_bh */
3145                         get_bh(bh);
3146
3147                         set_buffer_uptodate(bh);
3148                         lock_buffer(bh);
3149                         bh->b_end_io = btrfs_end_buffer_write_sync;
3150                         bh->b_private = device;
3151                 }
3152
3153                 /*
3154                  * we fua the first super.  The others we allow
3155                  * to go down lazy.
3156                  */
3157                 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3158                 if (ret)
3159                         errors++;
3160         }
3161         return errors < i ? 0 : -1;
3162 }
3163
3164 /*
3165  * endio for the write_dev_flush, this will wake anyone waiting
3166  * for the barrier when it is done
3167  */
3168 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3169 {
3170         if (err) {
3171                 if (err == -EOPNOTSUPP)
3172                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3173                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3174         }
3175         if (bio->bi_private)
3176                 complete(bio->bi_private);
3177         bio_put(bio);
3178 }
3179
3180 /*
3181  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3182  * sent down.  With wait == 1, it waits for the previous flush.
3183  *
3184  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3185  * capable
3186  */
3187 static int write_dev_flush(struct btrfs_device *device, int wait)
3188 {
3189         struct bio *bio;
3190         int ret = 0;
3191
3192         if (device->nobarriers)
3193                 return 0;
3194
3195         if (wait) {
3196                 bio = device->flush_bio;
3197                 if (!bio)
3198                         return 0;
3199
3200                 wait_for_completion(&device->flush_wait);
3201
3202                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3203                         printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3204                                       rcu_str_deref(device->name));
3205                         device->nobarriers = 1;
3206                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3207                         ret = -EIO;
3208                         btrfs_dev_stat_inc_and_print(device,
3209                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3210                 }
3211
3212                 /* drop the reference from the wait == 0 run */
3213                 bio_put(bio);
3214                 device->flush_bio = NULL;
3215
3216                 return ret;
3217         }
3218
3219         /*
3220          * one reference for us, and we leave it for the
3221          * caller
3222          */
3223         device->flush_bio = NULL;
3224         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3225         if (!bio)
3226                 return -ENOMEM;
3227
3228         bio->bi_end_io = btrfs_end_empty_barrier;
3229         bio->bi_bdev = device->bdev;
3230         init_completion(&device->flush_wait);
3231         bio->bi_private = &device->flush_wait;
3232         device->flush_bio = bio;
3233
3234         bio_get(bio);
3235         btrfsic_submit_bio(WRITE_FLUSH, bio);
3236
3237         return 0;
3238 }
3239
3240 /*
3241  * send an empty flush down to each device in parallel,
3242  * then wait for them
3243  */
3244 static int barrier_all_devices(struct btrfs_fs_info *info)
3245 {
3246         struct list_head *head;
3247         struct btrfs_device *dev;
3248         int errors_send = 0;
3249         int errors_wait = 0;
3250         int ret;
3251
3252         /* send down all the barriers */
3253         head = &info->fs_devices->devices;
3254         list_for_each_entry_rcu(dev, head, dev_list) {
3255                 if (!dev->bdev) {
3256                         errors_send++;
3257                         continue;
3258                 }
3259                 if (!dev->in_fs_metadata || !dev->writeable)
3260                         continue;
3261
3262                 ret = write_dev_flush(dev, 0);
3263                 if (ret)
3264                         errors_send++;
3265         }
3266
3267         /* wait for all the barriers */
3268         list_for_each_entry_rcu(dev, head, dev_list) {
3269                 if (!dev->bdev) {
3270                         errors_wait++;
3271                         continue;
3272                 }
3273                 if (!dev->in_fs_metadata || !dev->writeable)
3274                         continue;
3275
3276                 ret = write_dev_flush(dev, 1);
3277                 if (ret)
3278                         errors_wait++;
3279         }
3280         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3281             errors_wait > info->num_tolerated_disk_barrier_failures)
3282                 return -EIO;
3283         return 0;
3284 }
3285
3286 int btrfs_calc_num_tolerated_disk_barrier_failures(
3287         struct btrfs_fs_info *fs_info)
3288 {
3289         struct btrfs_ioctl_space_info space;
3290         struct btrfs_space_info *sinfo;
3291         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3292                        BTRFS_BLOCK_GROUP_SYSTEM,
3293                        BTRFS_BLOCK_GROUP_METADATA,
3294                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3295         int num_types = 4;
3296         int i;
3297         int c;
3298         int num_tolerated_disk_barrier_failures =
3299                 (int)fs_info->fs_devices->num_devices;
3300
3301         for (i = 0; i < num_types; i++) {
3302                 struct btrfs_space_info *tmp;
3303
3304                 sinfo = NULL;
3305                 rcu_read_lock();
3306                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3307                         if (tmp->flags == types[i]) {
3308                                 sinfo = tmp;
3309                                 break;
3310                         }
3311                 }
3312                 rcu_read_unlock();
3313
3314                 if (!sinfo)
3315                         continue;
3316
3317                 down_read(&sinfo->groups_sem);
3318                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3319                         if (!list_empty(&sinfo->block_groups[c])) {
3320                                 u64 flags;
3321
3322                                 btrfs_get_block_group_info(
3323                                         &sinfo->block_groups[c], &space);
3324                                 if (space.total_bytes == 0 ||
3325                                     space.used_bytes == 0)
3326                                         continue;
3327                                 flags = space.flags;
3328                                 /*
3329                                  * return
3330                                  * 0: if dup, single or RAID0 is configured for
3331                                  *    any of metadata, system or data, else
3332                                  * 1: if RAID5 is configured, or if RAID1 or
3333                                  *    RAID10 is configured and only two mirrors
3334                                  *    are used, else
3335                                  * 2: if RAID6 is configured, else
3336                                  * num_mirrors - 1: if RAID1 or RAID10 is
3337                                  *                  configured and more than
3338                                  *                  2 mirrors are used.
3339                                  */
3340                                 if (num_tolerated_disk_barrier_failures > 0 &&
3341                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3342                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3343                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3344                                       == 0)))
3345                                         num_tolerated_disk_barrier_failures = 0;
3346                                 else if (num_tolerated_disk_barrier_failures > 1) {
3347                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3348                                             BTRFS_BLOCK_GROUP_RAID5 |
3349                                             BTRFS_BLOCK_GROUP_RAID10)) {
3350                                                 num_tolerated_disk_barrier_failures = 1;
3351                                         } else if (flags &
3352                                                    BTRFS_BLOCK_GROUP_RAID6) {
3353                                                 num_tolerated_disk_barrier_failures = 2;
3354                                         }
3355                                 }
3356                         }
3357                 }
3358                 up_read(&sinfo->groups_sem);
3359         }
3360
3361         return num_tolerated_disk_barrier_failures;
3362 }
3363
3364 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3365 {
3366         struct list_head *head;
3367         struct btrfs_device *dev;
3368         struct btrfs_super_block *sb;
3369         struct btrfs_dev_item *dev_item;
3370         int ret;
3371         int do_barriers;
3372         int max_errors;
3373         int total_errors = 0;
3374         u64 flags;
3375
3376         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3377         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3378         backup_super_roots(root->fs_info);
3379
3380         sb = root->fs_info->super_for_commit;
3381         dev_item = &sb->dev_item;
3382
3383         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3384         head = &root->fs_info->fs_devices->devices;
3385
3386         if (do_barriers) {
3387                 ret = barrier_all_devices(root->fs_info);
3388                 if (ret) {
3389                         mutex_unlock(
3390                                 &root->fs_info->fs_devices->device_list_mutex);
3391                         btrfs_error(root->fs_info, ret,
3392                                     "errors while submitting device barriers.");
3393                         return ret;
3394                 }
3395         }
3396
3397         list_for_each_entry_rcu(dev, head, dev_list) {
3398                 if (!dev->bdev) {
3399                         total_errors++;
3400                         continue;
3401                 }
3402                 if (!dev->in_fs_metadata || !dev->writeable)
3403                         continue;
3404
3405                 btrfs_set_stack_device_generation(dev_item, 0);
3406                 btrfs_set_stack_device_type(dev_item, dev->type);
3407                 btrfs_set_stack_device_id(dev_item, dev->devid);
3408                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3409                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3410                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3411                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3412                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3413                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3414                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3415
3416                 flags = btrfs_super_flags(sb);
3417                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3418
3419                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3420                 if (ret)
3421                         total_errors++;
3422         }
3423         if (total_errors > max_errors) {
3424                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3425                        total_errors);
3426
3427                 /* This shouldn't happen. FUA is masked off if unsupported */
3428                 BUG();
3429         }
3430
3431         total_errors = 0;
3432         list_for_each_entry_rcu(dev, head, dev_list) {
3433                 if (!dev->bdev)
3434                         continue;
3435                 if (!dev->in_fs_metadata || !dev->writeable)
3436                         continue;
3437
3438                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3439                 if (ret)
3440                         total_errors++;
3441         }
3442         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3443         if (total_errors > max_errors) {
3444                 btrfs_error(root->fs_info, -EIO,
3445                             "%d errors while writing supers", total_errors);
3446                 return -EIO;
3447         }
3448         return 0;
3449 }
3450
3451 int write_ctree_super(struct btrfs_trans_handle *trans,
3452                       struct btrfs_root *root, int max_mirrors)
3453 {
3454         int ret;
3455
3456         ret = write_all_supers(root, max_mirrors);
3457         return ret;
3458 }
3459
3460 /* Drop a fs root from the radix tree and free it. */
3461 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3462                                   struct btrfs_root *root)
3463 {
3464         spin_lock(&fs_info->fs_roots_radix_lock);
3465         radix_tree_delete(&fs_info->fs_roots_radix,
3466                           (unsigned long)root->root_key.objectid);
3467         spin_unlock(&fs_info->fs_roots_radix_lock);
3468
3469         if (btrfs_root_refs(&root->root_item) == 0)
3470                 synchronize_srcu(&fs_info->subvol_srcu);
3471
3472         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3473                 btrfs_free_log(NULL, root);
3474                 btrfs_free_log_root_tree(NULL, fs_info);
3475         }
3476
3477         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3478         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3479         free_fs_root(root);
3480 }
3481
3482 static void free_fs_root(struct btrfs_root *root)
3483 {
3484         iput(root->cache_inode);
3485         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3486         if (root->anon_dev)
3487                 free_anon_bdev(root->anon_dev);
3488         free_extent_buffer(root->node);
3489         free_extent_buffer(root->commit_root);
3490         kfree(root->free_ino_ctl);
3491         kfree(root->free_ino_pinned);
3492         kfree(root->name);
3493         btrfs_put_fs_root(root);
3494 }
3495
3496 void btrfs_free_fs_root(struct btrfs_root *root)
3497 {
3498         free_fs_root(root);
3499 }
3500
3501 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3502 {
3503         u64 root_objectid = 0;
3504         struct btrfs_root *gang[8];
3505         int i;
3506         int ret;
3507
3508         while (1) {
3509                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3510                                              (void **)gang, root_objectid,
3511                                              ARRAY_SIZE(gang));
3512                 if (!ret)
3513                         break;
3514
3515                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3516                 for (i = 0; i < ret; i++) {
3517                         int err;
3518
3519                         root_objectid = gang[i]->root_key.objectid;
3520                         err = btrfs_orphan_cleanup(gang[i]);
3521                         if (err)
3522                                 return err;
3523                 }
3524                 root_objectid++;
3525         }
3526         return 0;
3527 }
3528
3529 int btrfs_commit_super(struct btrfs_root *root)
3530 {
3531         struct btrfs_trans_handle *trans;
3532         int ret;
3533
3534         mutex_lock(&root->fs_info->cleaner_mutex);
3535         btrfs_run_delayed_iputs(root);
3536         mutex_unlock(&root->fs_info->cleaner_mutex);
3537         wake_up_process(root->fs_info->cleaner_kthread);
3538
3539         /* wait until ongoing cleanup work done */
3540         down_write(&root->fs_info->cleanup_work_sem);
3541         up_write(&root->fs_info->cleanup_work_sem);
3542
3543         trans = btrfs_join_transaction(root);
3544         if (IS_ERR(trans))
3545                 return PTR_ERR(trans);
3546         ret = btrfs_commit_transaction(trans, root);
3547         if (ret)
3548                 return ret;
3549         /* run commit again to drop the original snapshot */
3550         trans = btrfs_join_transaction(root);
3551         if (IS_ERR(trans))
3552                 return PTR_ERR(trans);
3553         ret = btrfs_commit_transaction(trans, root);
3554         if (ret)
3555                 return ret;
3556         ret = btrfs_write_and_wait_transaction(NULL, root);
3557         if (ret) {
3558                 btrfs_error(root->fs_info, ret,
3559                             "Failed to sync btree inode to disk.");
3560                 return ret;
3561         }
3562
3563         ret = write_ctree_super(NULL, root, 0);
3564         return ret;
3565 }
3566
3567 int close_ctree(struct btrfs_root *root)
3568 {
3569         struct btrfs_fs_info *fs_info = root->fs_info;
3570         int ret;
3571
3572         fs_info->closing = 1;
3573         smp_mb();
3574
3575         /* wait for the uuid_scan task to finish */
3576         down(&fs_info->uuid_tree_rescan_sem);
3577         /* avoid complains from lockdep et al., set sem back to initial state */
3578         up(&fs_info->uuid_tree_rescan_sem);
3579
3580         /* pause restriper - we want to resume on mount */
3581         btrfs_pause_balance(fs_info);
3582
3583         btrfs_dev_replace_suspend_for_unmount(fs_info);
3584
3585         btrfs_scrub_cancel(fs_info);
3586
3587         /* wait for any defraggers to finish */
3588         wait_event(fs_info->transaction_wait,
3589                    (atomic_read(&fs_info->defrag_running) == 0));
3590
3591         /* clear out the rbtree of defraggable inodes */
3592         btrfs_cleanup_defrag_inodes(fs_info);
3593
3594         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3595                 ret = btrfs_commit_super(root);
3596                 if (ret)
3597                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3598         }
3599
3600         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3601                 btrfs_error_commit_super(root);
3602
3603         btrfs_put_block_group_cache(fs_info);
3604
3605         kthread_stop(fs_info->transaction_kthread);
3606         kthread_stop(fs_info->cleaner_kthread);
3607
3608         fs_info->closing = 2;
3609         smp_mb();
3610
3611         btrfs_free_qgroup_config(root->fs_info);
3612
3613         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3614                 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3615                        percpu_counter_sum(&fs_info->delalloc_bytes));
3616         }
3617
3618         btrfs_free_block_groups(fs_info);
3619
3620         btrfs_stop_all_workers(fs_info);
3621
3622         del_fs_roots(fs_info);
3623
3624         free_root_pointers(fs_info, 1);
3625
3626         iput(fs_info->btree_inode);
3627
3628 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3629         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3630                 btrfsic_unmount(root, fs_info->fs_devices);
3631 #endif
3632
3633         btrfs_close_devices(fs_info->fs_devices);
3634         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3635
3636         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3637         percpu_counter_destroy(&fs_info->delalloc_bytes);
3638         bdi_destroy(&fs_info->bdi);
3639         cleanup_srcu_struct(&fs_info->subvol_srcu);
3640
3641         btrfs_free_stripe_hash_table(fs_info);
3642
3643         return 0;
3644 }
3645
3646 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3647                           int atomic)
3648 {
3649         int ret;
3650         struct inode *btree_inode = buf->pages[0]->mapping->host;
3651
3652         ret = extent_buffer_uptodate(buf);
3653         if (!ret)
3654                 return ret;
3655
3656         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3657                                     parent_transid, atomic);
3658         if (ret == -EAGAIN)
3659                 return ret;
3660         return !ret;
3661 }
3662
3663 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3664 {
3665         return set_extent_buffer_uptodate(buf);
3666 }
3667
3668 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3669 {
3670         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3671         u64 transid = btrfs_header_generation(buf);
3672         int was_dirty;
3673
3674         btrfs_assert_tree_locked(buf);
3675         if (transid != root->fs_info->generation)
3676                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3677                        "found %llu running %llu\n",
3678                         (unsigned long long)buf->start,
3679                         (unsigned long long)transid,
3680                         (unsigned long long)root->fs_info->generation);
3681         was_dirty = set_extent_buffer_dirty(buf);
3682         if (!was_dirty)
3683                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3684                                      buf->len,
3685                                      root->fs_info->dirty_metadata_batch);
3686 }
3687
3688 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3689                                         int flush_delayed)
3690 {
3691         /*
3692          * looks as though older kernels can get into trouble with
3693          * this code, they end up stuck in balance_dirty_pages forever
3694          */
3695         int ret;
3696
3697         if (current->flags & PF_MEMALLOC)
3698                 return;
3699
3700         if (flush_delayed)
3701                 btrfs_balance_delayed_items(root);
3702
3703         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3704                                      BTRFS_DIRTY_METADATA_THRESH);
3705         if (ret > 0) {
3706                 balance_dirty_pages_ratelimited(
3707                                    root->fs_info->btree_inode->i_mapping);
3708         }
3709         return;
3710 }
3711
3712 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3713 {
3714         __btrfs_btree_balance_dirty(root, 1);
3715 }
3716
3717 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3718 {
3719         __btrfs_btree_balance_dirty(root, 0);
3720 }
3721
3722 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3723 {
3724         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3725         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3726 }
3727
3728 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3729                               int read_only)
3730 {
3731         /*
3732          * Placeholder for checks
3733          */
3734         return 0;
3735 }
3736
3737 static void btrfs_error_commit_super(struct btrfs_root *root)
3738 {
3739         mutex_lock(&root->fs_info->cleaner_mutex);
3740         btrfs_run_delayed_iputs(root);
3741         mutex_unlock(&root->fs_info->cleaner_mutex);
3742
3743         down_write(&root->fs_info->cleanup_work_sem);
3744         up_write(&root->fs_info->cleanup_work_sem);
3745
3746         /* cleanup FS via transaction */
3747         btrfs_cleanup_transaction(root);
3748 }
3749
3750 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3751                                              struct btrfs_root *root)
3752 {
3753         struct btrfs_inode *btrfs_inode;
3754         struct list_head splice;
3755
3756         INIT_LIST_HEAD(&splice);
3757
3758         mutex_lock(&root->fs_info->ordered_operations_mutex);
3759         spin_lock(&root->fs_info->ordered_root_lock);
3760
3761         list_splice_init(&t->ordered_operations, &splice);
3762         while (!list_empty(&splice)) {
3763                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3764                                          ordered_operations);
3765
3766                 list_del_init(&btrfs_inode->ordered_operations);
3767                 spin_unlock(&root->fs_info->ordered_root_lock);
3768
3769                 btrfs_invalidate_inodes(btrfs_inode->root);
3770
3771                 spin_lock(&root->fs_info->ordered_root_lock);
3772         }
3773
3774         spin_unlock(&root->fs_info->ordered_root_lock);
3775         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3776 }
3777
3778 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3779 {
3780         struct btrfs_ordered_extent *ordered;
3781
3782         spin_lock(&root->ordered_extent_lock);
3783         /*
3784          * This will just short circuit the ordered completion stuff which will
3785          * make sure the ordered extent gets properly cleaned up.
3786          */
3787         list_for_each_entry(ordered, &root->ordered_extents,
3788                             root_extent_list)
3789                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3790         spin_unlock(&root->ordered_extent_lock);
3791 }
3792
3793 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3794 {
3795         struct btrfs_root *root;
3796         struct list_head splice;
3797
3798         INIT_LIST_HEAD(&splice);
3799
3800         spin_lock(&fs_info->ordered_root_lock);
3801         list_splice_init(&fs_info->ordered_roots, &splice);
3802         while (!list_empty(&splice)) {
3803                 root = list_first_entry(&splice, struct btrfs_root,
3804                                         ordered_root);
3805                 list_del_init(&root->ordered_root);
3806
3807                 btrfs_destroy_ordered_extents(root);
3808
3809                 cond_resched_lock(&fs_info->ordered_root_lock);
3810         }
3811         spin_unlock(&fs_info->ordered_root_lock);
3812 }
3813
3814 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3815                                       struct btrfs_root *root)
3816 {
3817         struct rb_node *node;
3818         struct btrfs_delayed_ref_root *delayed_refs;
3819         struct btrfs_delayed_ref_node *ref;
3820         int ret = 0;
3821
3822         delayed_refs = &trans->delayed_refs;
3823
3824         spin_lock(&delayed_refs->lock);
3825         if (delayed_refs->num_entries == 0) {
3826                 spin_unlock(&delayed_refs->lock);
3827                 printk(KERN_INFO "delayed_refs has NO entry\n");
3828                 return ret;
3829         }
3830
3831         while ((node = rb_first(&delayed_refs->root)) != NULL) {
3832                 struct btrfs_delayed_ref_head *head = NULL;
3833                 bool pin_bytes = false;
3834
3835                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3836                 atomic_set(&ref->refs, 1);
3837                 if (btrfs_delayed_ref_is_head(ref)) {
3838
3839                         head = btrfs_delayed_node_to_head(ref);
3840                         if (!mutex_trylock(&head->mutex)) {
3841                                 atomic_inc(&ref->refs);
3842                                 spin_unlock(&delayed_refs->lock);
3843
3844                                 /* Need to wait for the delayed ref to run */
3845                                 mutex_lock(&head->mutex);
3846                                 mutex_unlock(&head->mutex);
3847                                 btrfs_put_delayed_ref(ref);
3848
3849                                 spin_lock(&delayed_refs->lock);
3850                                 continue;
3851                         }
3852
3853                         if (head->must_insert_reserved)
3854                                 pin_bytes = true;
3855                         btrfs_free_delayed_extent_op(head->extent_op);
3856                         delayed_refs->num_heads--;
3857                         if (list_empty(&head->cluster))
3858                                 delayed_refs->num_heads_ready--;
3859                         list_del_init(&head->cluster);
3860                 }
3861
3862                 ref->in_tree = 0;
3863                 rb_erase(&ref->rb_node, &delayed_refs->root);
3864                 delayed_refs->num_entries--;
3865                 spin_unlock(&delayed_refs->lock);
3866                 if (head) {
3867                         if (pin_bytes)
3868                                 btrfs_pin_extent(root, ref->bytenr,
3869                                                  ref->num_bytes, 1);
3870                         mutex_unlock(&head->mutex);
3871                 }
3872                 btrfs_put_delayed_ref(ref);
3873
3874                 cond_resched();
3875                 spin_lock(&delayed_refs->lock);
3876         }
3877
3878         spin_unlock(&delayed_refs->lock);
3879
3880         return ret;
3881 }
3882
3883 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
3884 {
3885         struct btrfs_pending_snapshot *snapshot;
3886         struct list_head splice;
3887
3888         INIT_LIST_HEAD(&splice);
3889
3890         list_splice_init(&t->pending_snapshots, &splice);
3891
3892         while (!list_empty(&splice)) {
3893                 snapshot = list_entry(splice.next,
3894                                       struct btrfs_pending_snapshot,
3895                                       list);
3896                 snapshot->error = -ECANCELED;
3897                 list_del_init(&snapshot->list);
3898         }
3899 }
3900
3901 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3902 {
3903         struct btrfs_inode *btrfs_inode;
3904         struct list_head splice;
3905
3906         INIT_LIST_HEAD(&splice);
3907
3908         spin_lock(&root->delalloc_lock);
3909         list_splice_init(&root->delalloc_inodes, &splice);
3910
3911         while (!list_empty(&splice)) {
3912                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3913                                                delalloc_inodes);
3914
3915                 list_del_init(&btrfs_inode->delalloc_inodes);
3916                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3917                           &btrfs_inode->runtime_flags);
3918                 spin_unlock(&root->delalloc_lock);
3919
3920                 btrfs_invalidate_inodes(btrfs_inode->root);
3921
3922                 spin_lock(&root->delalloc_lock);
3923         }
3924
3925         spin_unlock(&root->delalloc_lock);
3926 }
3927
3928 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3929 {
3930         struct btrfs_root *root;
3931         struct list_head splice;
3932
3933         INIT_LIST_HEAD(&splice);
3934
3935         spin_lock(&fs_info->delalloc_root_lock);
3936         list_splice_init(&fs_info->delalloc_roots, &splice);
3937         while (!list_empty(&splice)) {
3938                 root = list_first_entry(&splice, struct btrfs_root,
3939                                          delalloc_root);
3940                 list_del_init(&root->delalloc_root);
3941                 root = btrfs_grab_fs_root(root);
3942                 BUG_ON(!root);
3943                 spin_unlock(&fs_info->delalloc_root_lock);
3944
3945                 btrfs_destroy_delalloc_inodes(root);
3946                 btrfs_put_fs_root(root);
3947
3948                 spin_lock(&fs_info->delalloc_root_lock);
3949         }
3950         spin_unlock(&fs_info->delalloc_root_lock);
3951 }
3952
3953 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3954                                         struct extent_io_tree *dirty_pages,
3955                                         int mark)
3956 {
3957         int ret;
3958         struct extent_buffer *eb;
3959         u64 start = 0;
3960         u64 end;
3961
3962         while (1) {
3963                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3964                                             mark, NULL);
3965                 if (ret)
3966                         break;
3967
3968                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3969                 while (start <= end) {
3970                         eb = btrfs_find_tree_block(root, start,
3971                                                    root->leafsize);
3972                         start += root->leafsize;
3973                         if (!eb)
3974                                 continue;
3975                         wait_on_extent_buffer_writeback(eb);
3976
3977                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3978                                                &eb->bflags))
3979                                 clear_extent_buffer_dirty(eb);
3980                         free_extent_buffer_stale(eb);
3981                 }
3982         }
3983
3984         return ret;
3985 }
3986
3987 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3988                                        struct extent_io_tree *pinned_extents)
3989 {
3990         struct extent_io_tree *unpin;
3991         u64 start;
3992         u64 end;
3993         int ret;
3994         bool loop = true;
3995
3996         unpin = pinned_extents;
3997 again:
3998         while (1) {
3999                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4000                                             EXTENT_DIRTY, NULL);
4001                 if (ret)
4002                         break;
4003
4004                 /* opt_discard */
4005                 if (btrfs_test_opt(root, DISCARD))
4006                         ret = btrfs_error_discard_extent(root, start,
4007                                                          end + 1 - start,
4008                                                          NULL);
4009
4010                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4011                 btrfs_error_unpin_extent_range(root, start, end);
4012                 cond_resched();
4013         }
4014
4015         if (loop) {
4016                 if (unpin == &root->fs_info->freed_extents[0])
4017                         unpin = &root->fs_info->freed_extents[1];
4018                 else
4019                         unpin = &root->fs_info->freed_extents[0];
4020                 loop = false;
4021                 goto again;
4022         }
4023
4024         return 0;
4025 }
4026
4027 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4028                                    struct btrfs_root *root)
4029 {
4030         btrfs_destroy_delayed_refs(cur_trans, root);
4031         btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
4032                                 cur_trans->dirty_pages.dirty_bytes);
4033
4034         cur_trans->state = TRANS_STATE_COMMIT_START;
4035         wake_up(&root->fs_info->transaction_blocked_wait);
4036
4037         btrfs_evict_pending_snapshots(cur_trans);
4038
4039         cur_trans->state = TRANS_STATE_UNBLOCKED;
4040         wake_up(&root->fs_info->transaction_wait);
4041
4042         btrfs_destroy_delayed_inodes(root);
4043         btrfs_assert_delayed_root_empty(root);
4044
4045         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4046                                      EXTENT_DIRTY);
4047         btrfs_destroy_pinned_extent(root,
4048                                     root->fs_info->pinned_extents);
4049
4050         cur_trans->state =TRANS_STATE_COMPLETED;
4051         wake_up(&cur_trans->commit_wait);
4052
4053         /*
4054         memset(cur_trans, 0, sizeof(*cur_trans));
4055         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4056         */
4057 }
4058
4059 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4060 {
4061         struct btrfs_transaction *t;
4062         LIST_HEAD(list);
4063
4064         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4065
4066         spin_lock(&root->fs_info->trans_lock);
4067         list_splice_init(&root->fs_info->trans_list, &list);
4068         root->fs_info->running_transaction = NULL;
4069         spin_unlock(&root->fs_info->trans_lock);
4070
4071         while (!list_empty(&list)) {
4072                 t = list_entry(list.next, struct btrfs_transaction, list);
4073
4074                 btrfs_destroy_ordered_operations(t, root);
4075
4076                 btrfs_destroy_all_ordered_extents(root->fs_info);
4077
4078                 btrfs_destroy_delayed_refs(t, root);
4079
4080                 /*
4081                  *  FIXME: cleanup wait for commit
4082                  *  We needn't acquire the lock here, because we are during
4083                  *  the umount, there is no other task which will change it.
4084                  */
4085                 t->state = TRANS_STATE_COMMIT_START;
4086                 smp_mb();
4087                 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
4088                         wake_up(&root->fs_info->transaction_blocked_wait);
4089
4090                 btrfs_evict_pending_snapshots(t);
4091
4092                 t->state = TRANS_STATE_UNBLOCKED;
4093                 smp_mb();
4094                 if (waitqueue_active(&root->fs_info->transaction_wait))
4095                         wake_up(&root->fs_info->transaction_wait);
4096
4097                 btrfs_destroy_delayed_inodes(root);
4098                 btrfs_assert_delayed_root_empty(root);
4099
4100                 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4101
4102                 btrfs_destroy_marked_extents(root, &t->dirty_pages,
4103                                              EXTENT_DIRTY);
4104
4105                 btrfs_destroy_pinned_extent(root,
4106                                             root->fs_info->pinned_extents);
4107
4108                 t->state = TRANS_STATE_COMPLETED;
4109                 smp_mb();
4110                 if (waitqueue_active(&t->commit_wait))
4111                         wake_up(&t->commit_wait);
4112
4113                 atomic_set(&t->use_count, 0);
4114                 list_del_init(&t->list);
4115                 memset(t, 0, sizeof(*t));
4116                 kmem_cache_free(btrfs_transaction_cachep, t);
4117         }
4118
4119         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4120
4121         return 0;
4122 }
4123
4124 static struct extent_io_ops btree_extent_io_ops = {
4125         .readpage_end_io_hook = btree_readpage_end_io_hook,
4126         .readpage_io_failed_hook = btree_io_failed_hook,
4127         .submit_bio_hook = btree_submit_bio_hook,
4128         /* note we're sharing with inode.c for the merge bio hook */
4129         .merge_bio_hook = btrfs_merge_bio_hook,
4130 };