Btrfs: check if items are ordered when a leaf is marked dirty
[linux-2.6-block.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 #include "sysfs.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61                                     int read_only);
62 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63                                              struct btrfs_root *root);
64 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
65 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66                                       struct btrfs_root *root);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69                                         struct extent_io_tree *dirty_pages,
70                                         int mark);
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72                                        struct extent_io_tree *pinned_extents);
73 static int btrfs_cleanup_transaction(struct btrfs_root *root);
74 static void btrfs_error_commit_super(struct btrfs_root *root);
75
76 /*
77  * end_io_wq structs are used to do processing in task context when an IO is
78  * complete.  This is used during reads to verify checksums, and it is used
79  * by writes to insert metadata for new file extents after IO is complete.
80  */
81 struct end_io_wq {
82         struct bio *bio;
83         bio_end_io_t *end_io;
84         void *private;
85         struct btrfs_fs_info *info;
86         int error;
87         int metadata;
88         struct list_head list;
89         struct btrfs_work work;
90 };
91
92 /*
93  * async submit bios are used to offload expensive checksumming
94  * onto the worker threads.  They checksum file and metadata bios
95  * just before they are sent down the IO stack.
96  */
97 struct async_submit_bio {
98         struct inode *inode;
99         struct bio *bio;
100         struct list_head list;
101         extent_submit_bio_hook_t *submit_bio_start;
102         extent_submit_bio_hook_t *submit_bio_done;
103         int rw;
104         int mirror_num;
105         unsigned long bio_flags;
106         /*
107          * bio_offset is optional, can be used if the pages in the bio
108          * can't tell us where in the file the bio should go
109          */
110         u64 bio_offset;
111         struct btrfs_work work;
112         int error;
113 };
114
115 /*
116  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
117  * eb, the lockdep key is determined by the btrfs_root it belongs to and
118  * the level the eb occupies in the tree.
119  *
120  * Different roots are used for different purposes and may nest inside each
121  * other and they require separate keysets.  As lockdep keys should be
122  * static, assign keysets according to the purpose of the root as indicated
123  * by btrfs_root->objectid.  This ensures that all special purpose roots
124  * have separate keysets.
125  *
126  * Lock-nesting across peer nodes is always done with the immediate parent
127  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
128  * subclass to avoid triggering lockdep warning in such cases.
129  *
130  * The key is set by the readpage_end_io_hook after the buffer has passed
131  * csum validation but before the pages are unlocked.  It is also set by
132  * btrfs_init_new_buffer on freshly allocated blocks.
133  *
134  * We also add a check to make sure the highest level of the tree is the
135  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
136  * needs update as well.
137  */
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
140 #  error
141 # endif
142
143 static struct btrfs_lockdep_keyset {
144         u64                     id;             /* root objectid */
145         const char              *name_stem;     /* lock name stem */
146         char                    names[BTRFS_MAX_LEVEL + 1][20];
147         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
148 } btrfs_lockdep_keysets[] = {
149         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
150         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
151         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
152         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
153         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
154         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
155         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
156         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
157         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
158         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
159         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
160         { .id = 0,                              .name_stem = "tree"     },
161 };
162
163 void __init btrfs_init_lockdep(void)
164 {
165         int i, j;
166
167         /* initialize lockdep class names */
168         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
169                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
170
171                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
172                         snprintf(ks->names[j], sizeof(ks->names[j]),
173                                  "btrfs-%s-%02d", ks->name_stem, j);
174         }
175 }
176
177 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
178                                     int level)
179 {
180         struct btrfs_lockdep_keyset *ks;
181
182         BUG_ON(level >= ARRAY_SIZE(ks->keys));
183
184         /* find the matching keyset, id 0 is the default entry */
185         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
186                 if (ks->id == objectid)
187                         break;
188
189         lockdep_set_class_and_name(&eb->lock,
190                                    &ks->keys[level], ks->names[level]);
191 }
192
193 #endif
194
195 /*
196  * extents on the btree inode are pretty simple, there's one extent
197  * that covers the entire device
198  */
199 static struct extent_map *btree_get_extent(struct inode *inode,
200                 struct page *page, size_t pg_offset, u64 start, u64 len,
201                 int create)
202 {
203         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
204         struct extent_map *em;
205         int ret;
206
207         read_lock(&em_tree->lock);
208         em = lookup_extent_mapping(em_tree, start, len);
209         if (em) {
210                 em->bdev =
211                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
212                 read_unlock(&em_tree->lock);
213                 goto out;
214         }
215         read_unlock(&em_tree->lock);
216
217         em = alloc_extent_map();
218         if (!em) {
219                 em = ERR_PTR(-ENOMEM);
220                 goto out;
221         }
222         em->start = 0;
223         em->len = (u64)-1;
224         em->block_len = (u64)-1;
225         em->block_start = 0;
226         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
227
228         write_lock(&em_tree->lock);
229         ret = add_extent_mapping(em_tree, em, 0);
230         if (ret == -EEXIST) {
231                 free_extent_map(em);
232                 em = lookup_extent_mapping(em_tree, start, len);
233                 if (!em)
234                         em = ERR_PTR(-EIO);
235         } else if (ret) {
236                 free_extent_map(em);
237                 em = ERR_PTR(ret);
238         }
239         write_unlock(&em_tree->lock);
240
241 out:
242         return em;
243 }
244
245 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
246 {
247         return btrfs_crc32c(seed, data, len);
248 }
249
250 void btrfs_csum_final(u32 crc, char *result)
251 {
252         put_unaligned_le32(~crc, result);
253 }
254
255 /*
256  * compute the csum for a btree block, and either verify it or write it
257  * into the csum field of the block.
258  */
259 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
260                            int verify)
261 {
262         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
263         char *result = NULL;
264         unsigned long len;
265         unsigned long cur_len;
266         unsigned long offset = BTRFS_CSUM_SIZE;
267         char *kaddr;
268         unsigned long map_start;
269         unsigned long map_len;
270         int err;
271         u32 crc = ~(u32)0;
272         unsigned long inline_result;
273
274         len = buf->len - offset;
275         while (len > 0) {
276                 err = map_private_extent_buffer(buf, offset, 32,
277                                         &kaddr, &map_start, &map_len);
278                 if (err)
279                         return 1;
280                 cur_len = min(len, map_len - (offset - map_start));
281                 crc = btrfs_csum_data(kaddr + offset - map_start,
282                                       crc, cur_len);
283                 len -= cur_len;
284                 offset += cur_len;
285         }
286         if (csum_size > sizeof(inline_result)) {
287                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
288                 if (!result)
289                         return 1;
290         } else {
291                 result = (char *)&inline_result;
292         }
293
294         btrfs_csum_final(crc, result);
295
296         if (verify) {
297                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
298                         u32 val;
299                         u32 found = 0;
300                         memcpy(&found, result, csum_size);
301
302                         read_extent_buffer(buf, &val, 0, csum_size);
303                         printk_ratelimited(KERN_INFO
304                                 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
305                                 "level %d\n",
306                                 root->fs_info->sb->s_id, buf->start,
307                                 val, found, btrfs_header_level(buf));
308                         if (result != (char *)&inline_result)
309                                 kfree(result);
310                         return 1;
311                 }
312         } else {
313                 write_extent_buffer(buf, result, 0, csum_size);
314         }
315         if (result != (char *)&inline_result)
316                 kfree(result);
317         return 0;
318 }
319
320 /*
321  * we can't consider a given block up to date unless the transid of the
322  * block matches the transid in the parent node's pointer.  This is how we
323  * detect blocks that either didn't get written at all or got written
324  * in the wrong place.
325  */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327                                  struct extent_buffer *eb, u64 parent_transid,
328                                  int atomic)
329 {
330         struct extent_state *cached_state = NULL;
331         int ret;
332         bool need_lock = (current->journal_info ==
333                           (void *)BTRFS_SEND_TRANS_STUB);
334
335         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
336                 return 0;
337
338         if (atomic)
339                 return -EAGAIN;
340
341         if (need_lock) {
342                 btrfs_tree_read_lock(eb);
343                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
344         }
345
346         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
347                          0, &cached_state);
348         if (extent_buffer_uptodate(eb) &&
349             btrfs_header_generation(eb) == parent_transid) {
350                 ret = 0;
351                 goto out;
352         }
353         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
354                        "found %llu\n",
355                        eb->start, parent_transid, btrfs_header_generation(eb));
356         ret = 1;
357
358         /*
359          * Things reading via commit roots that don't have normal protection,
360          * like send, can have a really old block in cache that may point at a
361          * block that has been free'd and re-allocated.  So don't clear uptodate
362          * if we find an eb that is under IO (dirty/writeback) because we could
363          * end up reading in the stale data and then writing it back out and
364          * making everybody very sad.
365          */
366         if (!extent_buffer_under_io(eb))
367                 clear_extent_buffer_uptodate(eb);
368 out:
369         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
370                              &cached_state, GFP_NOFS);
371         btrfs_tree_read_unlock_blocking(eb);
372         return ret;
373 }
374
375 /*
376  * Return 0 if the superblock checksum type matches the checksum value of that
377  * algorithm. Pass the raw disk superblock data.
378  */
379 static int btrfs_check_super_csum(char *raw_disk_sb)
380 {
381         struct btrfs_super_block *disk_sb =
382                 (struct btrfs_super_block *)raw_disk_sb;
383         u16 csum_type = btrfs_super_csum_type(disk_sb);
384         int ret = 0;
385
386         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
387                 u32 crc = ~(u32)0;
388                 const int csum_size = sizeof(crc);
389                 char result[csum_size];
390
391                 /*
392                  * The super_block structure does not span the whole
393                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
394                  * is filled with zeros and is included in the checkum.
395                  */
396                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
397                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
398                 btrfs_csum_final(crc, result);
399
400                 if (memcmp(raw_disk_sb, result, csum_size))
401                         ret = 1;
402
403                 if (ret && btrfs_super_generation(disk_sb) < 10) {
404                         printk(KERN_WARNING
405                                 "BTRFS: super block crcs don't match, older mkfs detected\n");
406                         ret = 0;
407                 }
408         }
409
410         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
411                 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
412                                 csum_type);
413                 ret = 1;
414         }
415
416         return ret;
417 }
418
419 /*
420  * helper to read a given tree block, doing retries as required when
421  * the checksums don't match and we have alternate mirrors to try.
422  */
423 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
424                                           struct extent_buffer *eb,
425                                           u64 start, u64 parent_transid)
426 {
427         struct extent_io_tree *io_tree;
428         int failed = 0;
429         int ret;
430         int num_copies = 0;
431         int mirror_num = 0;
432         int failed_mirror = 0;
433
434         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
435         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
436         while (1) {
437                 ret = read_extent_buffer_pages(io_tree, eb, start,
438                                                WAIT_COMPLETE,
439                                                btree_get_extent, mirror_num);
440                 if (!ret) {
441                         if (!verify_parent_transid(io_tree, eb,
442                                                    parent_transid, 0))
443                                 break;
444                         else
445                                 ret = -EIO;
446                 }
447
448                 /*
449                  * This buffer's crc is fine, but its contents are corrupted, so
450                  * there is no reason to read the other copies, they won't be
451                  * any less wrong.
452                  */
453                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
454                         break;
455
456                 num_copies = btrfs_num_copies(root->fs_info,
457                                               eb->start, eb->len);
458                 if (num_copies == 1)
459                         break;
460
461                 if (!failed_mirror) {
462                         failed = 1;
463                         failed_mirror = eb->read_mirror;
464                 }
465
466                 mirror_num++;
467                 if (mirror_num == failed_mirror)
468                         mirror_num++;
469
470                 if (mirror_num > num_copies)
471                         break;
472         }
473
474         if (failed && !ret && failed_mirror)
475                 repair_eb_io_failure(root, eb, failed_mirror);
476
477         return ret;
478 }
479
480 /*
481  * checksum a dirty tree block before IO.  This has extra checks to make sure
482  * we only fill in the checksum field in the first page of a multi-page block
483  */
484
485 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
486 {
487         u64 start = page_offset(page);
488         u64 found_start;
489         struct extent_buffer *eb;
490
491         eb = (struct extent_buffer *)page->private;
492         if (page != eb->pages[0])
493                 return 0;
494         found_start = btrfs_header_bytenr(eb);
495         if (WARN_ON(found_start != start || !PageUptodate(page)))
496                 return 0;
497         csum_tree_block(root, eb, 0);
498         return 0;
499 }
500
501 static int check_tree_block_fsid(struct btrfs_root *root,
502                                  struct extent_buffer *eb)
503 {
504         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
505         u8 fsid[BTRFS_UUID_SIZE];
506         int ret = 1;
507
508         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
509         while (fs_devices) {
510                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
511                         ret = 0;
512                         break;
513                 }
514                 fs_devices = fs_devices->seed;
515         }
516         return ret;
517 }
518
519 #define CORRUPT(reason, eb, root, slot)                         \
520         btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"       \
521                    "root=%llu, slot=%d", reason,                        \
522                btrfs_header_bytenr(eb), root->objectid, slot)
523
524 static noinline int check_leaf(struct btrfs_root *root,
525                                struct extent_buffer *leaf)
526 {
527         struct btrfs_key key;
528         struct btrfs_key leaf_key;
529         u32 nritems = btrfs_header_nritems(leaf);
530         int slot;
531
532         if (nritems == 0)
533                 return 0;
534
535         /* Check the 0 item */
536         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
537             BTRFS_LEAF_DATA_SIZE(root)) {
538                 CORRUPT("invalid item offset size pair", leaf, root, 0);
539                 return -EIO;
540         }
541
542         /*
543          * Check to make sure each items keys are in the correct order and their
544          * offsets make sense.  We only have to loop through nritems-1 because
545          * we check the current slot against the next slot, which verifies the
546          * next slot's offset+size makes sense and that the current's slot
547          * offset is correct.
548          */
549         for (slot = 0; slot < nritems - 1; slot++) {
550                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
551                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
552
553                 /* Make sure the keys are in the right order */
554                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
555                         CORRUPT("bad key order", leaf, root, slot);
556                         return -EIO;
557                 }
558
559                 /*
560                  * Make sure the offset and ends are right, remember that the
561                  * item data starts at the end of the leaf and grows towards the
562                  * front.
563                  */
564                 if (btrfs_item_offset_nr(leaf, slot) !=
565                         btrfs_item_end_nr(leaf, slot + 1)) {
566                         CORRUPT("slot offset bad", leaf, root, slot);
567                         return -EIO;
568                 }
569
570                 /*
571                  * Check to make sure that we don't point outside of the leaf,
572                  * just incase all the items are consistent to eachother, but
573                  * all point outside of the leaf.
574                  */
575                 if (btrfs_item_end_nr(leaf, slot) >
576                     BTRFS_LEAF_DATA_SIZE(root)) {
577                         CORRUPT("slot end outside of leaf", leaf, root, slot);
578                         return -EIO;
579                 }
580         }
581
582         return 0;
583 }
584
585 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
586                                       u64 phy_offset, struct page *page,
587                                       u64 start, u64 end, int mirror)
588 {
589         u64 found_start;
590         int found_level;
591         struct extent_buffer *eb;
592         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
593         int ret = 0;
594         int reads_done;
595
596         if (!page->private)
597                 goto out;
598
599         eb = (struct extent_buffer *)page->private;
600
601         /* the pending IO might have been the only thing that kept this buffer
602          * in memory.  Make sure we have a ref for all this other checks
603          */
604         extent_buffer_get(eb);
605
606         reads_done = atomic_dec_and_test(&eb->io_pages);
607         if (!reads_done)
608                 goto err;
609
610         eb->read_mirror = mirror;
611         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
612                 ret = -EIO;
613                 goto err;
614         }
615
616         found_start = btrfs_header_bytenr(eb);
617         if (found_start != eb->start) {
618                 printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
619                                "%llu %llu\n",
620                                found_start, eb->start);
621                 ret = -EIO;
622                 goto err;
623         }
624         if (check_tree_block_fsid(root, eb)) {
625                 printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
626                                eb->start);
627                 ret = -EIO;
628                 goto err;
629         }
630         found_level = btrfs_header_level(eb);
631         if (found_level >= BTRFS_MAX_LEVEL) {
632                 btrfs_info(root->fs_info, "bad tree block level %d",
633                            (int)btrfs_header_level(eb));
634                 ret = -EIO;
635                 goto err;
636         }
637
638         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
639                                        eb, found_level);
640
641         ret = csum_tree_block(root, eb, 1);
642         if (ret) {
643                 ret = -EIO;
644                 goto err;
645         }
646
647         /*
648          * If this is a leaf block and it is corrupt, set the corrupt bit so
649          * that we don't try and read the other copies of this block, just
650          * return -EIO.
651          */
652         if (found_level == 0 && check_leaf(root, eb)) {
653                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
654                 ret = -EIO;
655         }
656
657         if (!ret)
658                 set_extent_buffer_uptodate(eb);
659 err:
660         if (reads_done &&
661             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
662                 btree_readahead_hook(root, eb, eb->start, ret);
663
664         if (ret) {
665                 /*
666                  * our io error hook is going to dec the io pages
667                  * again, we have to make sure it has something
668                  * to decrement
669                  */
670                 atomic_inc(&eb->io_pages);
671                 clear_extent_buffer_uptodate(eb);
672         }
673         free_extent_buffer(eb);
674 out:
675         return ret;
676 }
677
678 static int btree_io_failed_hook(struct page *page, int failed_mirror)
679 {
680         struct extent_buffer *eb;
681         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
682
683         eb = (struct extent_buffer *)page->private;
684         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
685         eb->read_mirror = failed_mirror;
686         atomic_dec(&eb->io_pages);
687         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
688                 btree_readahead_hook(root, eb, eb->start, -EIO);
689         return -EIO;    /* we fixed nothing */
690 }
691
692 static void end_workqueue_bio(struct bio *bio, int err)
693 {
694         struct end_io_wq *end_io_wq = bio->bi_private;
695         struct btrfs_fs_info *fs_info;
696
697         fs_info = end_io_wq->info;
698         end_io_wq->error = err;
699         btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
700
701         if (bio->bi_rw & REQ_WRITE) {
702                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
703                         btrfs_queue_work(fs_info->endio_meta_write_workers,
704                                          &end_io_wq->work);
705                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
706                         btrfs_queue_work(fs_info->endio_freespace_worker,
707                                          &end_io_wq->work);
708                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
709                         btrfs_queue_work(fs_info->endio_raid56_workers,
710                                          &end_io_wq->work);
711                 else
712                         btrfs_queue_work(fs_info->endio_write_workers,
713                                          &end_io_wq->work);
714         } else {
715                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
716                         btrfs_queue_work(fs_info->endio_raid56_workers,
717                                          &end_io_wq->work);
718                 else if (end_io_wq->metadata)
719                         btrfs_queue_work(fs_info->endio_meta_workers,
720                                          &end_io_wq->work);
721                 else
722                         btrfs_queue_work(fs_info->endio_workers,
723                                          &end_io_wq->work);
724         }
725 }
726
727 /*
728  * For the metadata arg you want
729  *
730  * 0 - if data
731  * 1 - if normal metadta
732  * 2 - if writing to the free space cache area
733  * 3 - raid parity work
734  */
735 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
736                         int metadata)
737 {
738         struct end_io_wq *end_io_wq;
739         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
740         if (!end_io_wq)
741                 return -ENOMEM;
742
743         end_io_wq->private = bio->bi_private;
744         end_io_wq->end_io = bio->bi_end_io;
745         end_io_wq->info = info;
746         end_io_wq->error = 0;
747         end_io_wq->bio = bio;
748         end_io_wq->metadata = metadata;
749
750         bio->bi_private = end_io_wq;
751         bio->bi_end_io = end_workqueue_bio;
752         return 0;
753 }
754
755 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
756 {
757         unsigned long limit = min_t(unsigned long,
758                                     info->thread_pool_size,
759                                     info->fs_devices->open_devices);
760         return 256 * limit;
761 }
762
763 static void run_one_async_start(struct btrfs_work *work)
764 {
765         struct async_submit_bio *async;
766         int ret;
767
768         async = container_of(work, struct  async_submit_bio, work);
769         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
770                                       async->mirror_num, async->bio_flags,
771                                       async->bio_offset);
772         if (ret)
773                 async->error = ret;
774 }
775
776 static void run_one_async_done(struct btrfs_work *work)
777 {
778         struct btrfs_fs_info *fs_info;
779         struct async_submit_bio *async;
780         int limit;
781
782         async = container_of(work, struct  async_submit_bio, work);
783         fs_info = BTRFS_I(async->inode)->root->fs_info;
784
785         limit = btrfs_async_submit_limit(fs_info);
786         limit = limit * 2 / 3;
787
788         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
789             waitqueue_active(&fs_info->async_submit_wait))
790                 wake_up(&fs_info->async_submit_wait);
791
792         /* If an error occured we just want to clean up the bio and move on */
793         if (async->error) {
794                 bio_endio(async->bio, async->error);
795                 return;
796         }
797
798         async->submit_bio_done(async->inode, async->rw, async->bio,
799                                async->mirror_num, async->bio_flags,
800                                async->bio_offset);
801 }
802
803 static void run_one_async_free(struct btrfs_work *work)
804 {
805         struct async_submit_bio *async;
806
807         async = container_of(work, struct  async_submit_bio, work);
808         kfree(async);
809 }
810
811 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
812                         int rw, struct bio *bio, int mirror_num,
813                         unsigned long bio_flags,
814                         u64 bio_offset,
815                         extent_submit_bio_hook_t *submit_bio_start,
816                         extent_submit_bio_hook_t *submit_bio_done)
817 {
818         struct async_submit_bio *async;
819
820         async = kmalloc(sizeof(*async), GFP_NOFS);
821         if (!async)
822                 return -ENOMEM;
823
824         async->inode = inode;
825         async->rw = rw;
826         async->bio = bio;
827         async->mirror_num = mirror_num;
828         async->submit_bio_start = submit_bio_start;
829         async->submit_bio_done = submit_bio_done;
830
831         btrfs_init_work(&async->work, run_one_async_start,
832                         run_one_async_done, run_one_async_free);
833
834         async->bio_flags = bio_flags;
835         async->bio_offset = bio_offset;
836
837         async->error = 0;
838
839         atomic_inc(&fs_info->nr_async_submits);
840
841         if (rw & REQ_SYNC)
842                 btrfs_set_work_high_priority(&async->work);
843
844         btrfs_queue_work(fs_info->workers, &async->work);
845
846         while (atomic_read(&fs_info->async_submit_draining) &&
847               atomic_read(&fs_info->nr_async_submits)) {
848                 wait_event(fs_info->async_submit_wait,
849                            (atomic_read(&fs_info->nr_async_submits) == 0));
850         }
851
852         return 0;
853 }
854
855 static int btree_csum_one_bio(struct bio *bio)
856 {
857         struct bio_vec *bvec;
858         struct btrfs_root *root;
859         int i, ret = 0;
860
861         bio_for_each_segment_all(bvec, bio, i) {
862                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
863                 ret = csum_dirty_buffer(root, bvec->bv_page);
864                 if (ret)
865                         break;
866         }
867
868         return ret;
869 }
870
871 static int __btree_submit_bio_start(struct inode *inode, int rw,
872                                     struct bio *bio, int mirror_num,
873                                     unsigned long bio_flags,
874                                     u64 bio_offset)
875 {
876         /*
877          * when we're called for a write, we're already in the async
878          * submission context.  Just jump into btrfs_map_bio
879          */
880         return btree_csum_one_bio(bio);
881 }
882
883 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
884                                  int mirror_num, unsigned long bio_flags,
885                                  u64 bio_offset)
886 {
887         int ret;
888
889         /*
890          * when we're called for a write, we're already in the async
891          * submission context.  Just jump into btrfs_map_bio
892          */
893         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
894         if (ret)
895                 bio_endio(bio, ret);
896         return ret;
897 }
898
899 static int check_async_write(struct inode *inode, unsigned long bio_flags)
900 {
901         if (bio_flags & EXTENT_BIO_TREE_LOG)
902                 return 0;
903 #ifdef CONFIG_X86
904         if (cpu_has_xmm4_2)
905                 return 0;
906 #endif
907         return 1;
908 }
909
910 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
911                                  int mirror_num, unsigned long bio_flags,
912                                  u64 bio_offset)
913 {
914         int async = check_async_write(inode, bio_flags);
915         int ret;
916
917         if (!(rw & REQ_WRITE)) {
918                 /*
919                  * called for a read, do the setup so that checksum validation
920                  * can happen in the async kernel threads
921                  */
922                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
923                                           bio, 1);
924                 if (ret)
925                         goto out_w_error;
926                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
927                                     mirror_num, 0);
928         } else if (!async) {
929                 ret = btree_csum_one_bio(bio);
930                 if (ret)
931                         goto out_w_error;
932                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
933                                     mirror_num, 0);
934         } else {
935                 /*
936                  * kthread helpers are used to submit writes so that
937                  * checksumming can happen in parallel across all CPUs
938                  */
939                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
940                                           inode, rw, bio, mirror_num, 0,
941                                           bio_offset,
942                                           __btree_submit_bio_start,
943                                           __btree_submit_bio_done);
944         }
945
946         if (ret) {
947 out_w_error:
948                 bio_endio(bio, ret);
949         }
950         return ret;
951 }
952
953 #ifdef CONFIG_MIGRATION
954 static int btree_migratepage(struct address_space *mapping,
955                         struct page *newpage, struct page *page,
956                         enum migrate_mode mode)
957 {
958         /*
959          * we can't safely write a btree page from here,
960          * we haven't done the locking hook
961          */
962         if (PageDirty(page))
963                 return -EAGAIN;
964         /*
965          * Buffers may be managed in a filesystem specific way.
966          * We must have no buffers or drop them.
967          */
968         if (page_has_private(page) &&
969             !try_to_release_page(page, GFP_KERNEL))
970                 return -EAGAIN;
971         return migrate_page(mapping, newpage, page, mode);
972 }
973 #endif
974
975
976 static int btree_writepages(struct address_space *mapping,
977                             struct writeback_control *wbc)
978 {
979         struct btrfs_fs_info *fs_info;
980         int ret;
981
982         if (wbc->sync_mode == WB_SYNC_NONE) {
983
984                 if (wbc->for_kupdate)
985                         return 0;
986
987                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
988                 /* this is a bit racy, but that's ok */
989                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
990                                              BTRFS_DIRTY_METADATA_THRESH);
991                 if (ret < 0)
992                         return 0;
993         }
994         return btree_write_cache_pages(mapping, wbc);
995 }
996
997 static int btree_readpage(struct file *file, struct page *page)
998 {
999         struct extent_io_tree *tree;
1000         tree = &BTRFS_I(page->mapping->host)->io_tree;
1001         return extent_read_full_page(tree, page, btree_get_extent, 0);
1002 }
1003
1004 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1005 {
1006         if (PageWriteback(page) || PageDirty(page))
1007                 return 0;
1008
1009         return try_release_extent_buffer(page);
1010 }
1011
1012 static void btree_invalidatepage(struct page *page, unsigned int offset,
1013                                  unsigned int length)
1014 {
1015         struct extent_io_tree *tree;
1016         tree = &BTRFS_I(page->mapping->host)->io_tree;
1017         extent_invalidatepage(tree, page, offset);
1018         btree_releasepage(page, GFP_NOFS);
1019         if (PagePrivate(page)) {
1020                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1021                            "page private not zero on page %llu",
1022                            (unsigned long long)page_offset(page));
1023                 ClearPagePrivate(page);
1024                 set_page_private(page, 0);
1025                 page_cache_release(page);
1026         }
1027 }
1028
1029 static int btree_set_page_dirty(struct page *page)
1030 {
1031 #ifdef DEBUG
1032         struct extent_buffer *eb;
1033
1034         BUG_ON(!PagePrivate(page));
1035         eb = (struct extent_buffer *)page->private;
1036         BUG_ON(!eb);
1037         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1038         BUG_ON(!atomic_read(&eb->refs));
1039         btrfs_assert_tree_locked(eb);
1040 #endif
1041         return __set_page_dirty_nobuffers(page);
1042 }
1043
1044 static const struct address_space_operations btree_aops = {
1045         .readpage       = btree_readpage,
1046         .writepages     = btree_writepages,
1047         .releasepage    = btree_releasepage,
1048         .invalidatepage = btree_invalidatepage,
1049 #ifdef CONFIG_MIGRATION
1050         .migratepage    = btree_migratepage,
1051 #endif
1052         .set_page_dirty = btree_set_page_dirty,
1053 };
1054
1055 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1056                          u64 parent_transid)
1057 {
1058         struct extent_buffer *buf = NULL;
1059         struct inode *btree_inode = root->fs_info->btree_inode;
1060         int ret = 0;
1061
1062         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1063         if (!buf)
1064                 return 0;
1065         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1066                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1067         free_extent_buffer(buf);
1068         return ret;
1069 }
1070
1071 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1072                          int mirror_num, struct extent_buffer **eb)
1073 {
1074         struct extent_buffer *buf = NULL;
1075         struct inode *btree_inode = root->fs_info->btree_inode;
1076         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1077         int ret;
1078
1079         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1080         if (!buf)
1081                 return 0;
1082
1083         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1084
1085         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1086                                        btree_get_extent, mirror_num);
1087         if (ret) {
1088                 free_extent_buffer(buf);
1089                 return ret;
1090         }
1091
1092         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1093                 free_extent_buffer(buf);
1094                 return -EIO;
1095         } else if (extent_buffer_uptodate(buf)) {
1096                 *eb = buf;
1097         } else {
1098                 free_extent_buffer(buf);
1099         }
1100         return 0;
1101 }
1102
1103 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1104                                             u64 bytenr, u32 blocksize)
1105 {
1106         return find_extent_buffer(root->fs_info, bytenr);
1107 }
1108
1109 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1110                                                  u64 bytenr, u32 blocksize)
1111 {
1112         return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
1113 }
1114
1115
1116 int btrfs_write_tree_block(struct extent_buffer *buf)
1117 {
1118         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1119                                         buf->start + buf->len - 1);
1120 }
1121
1122 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1123 {
1124         return filemap_fdatawait_range(buf->pages[0]->mapping,
1125                                        buf->start, buf->start + buf->len - 1);
1126 }
1127
1128 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1129                                       u32 blocksize, u64 parent_transid)
1130 {
1131         struct extent_buffer *buf = NULL;
1132         int ret;
1133
1134         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1135         if (!buf)
1136                 return NULL;
1137
1138         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1139         if (ret) {
1140                 free_extent_buffer(buf);
1141                 return NULL;
1142         }
1143         return buf;
1144
1145 }
1146
1147 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1148                       struct extent_buffer *buf)
1149 {
1150         struct btrfs_fs_info *fs_info = root->fs_info;
1151
1152         if (btrfs_header_generation(buf) ==
1153             fs_info->running_transaction->transid) {
1154                 btrfs_assert_tree_locked(buf);
1155
1156                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1157                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1158                                              -buf->len,
1159                                              fs_info->dirty_metadata_batch);
1160                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1161                         btrfs_set_lock_blocking(buf);
1162                         clear_extent_buffer_dirty(buf);
1163                 }
1164         }
1165 }
1166
1167 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1168 {
1169         struct btrfs_subvolume_writers *writers;
1170         int ret;
1171
1172         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1173         if (!writers)
1174                 return ERR_PTR(-ENOMEM);
1175
1176         ret = percpu_counter_init(&writers->counter, 0);
1177         if (ret < 0) {
1178                 kfree(writers);
1179                 return ERR_PTR(ret);
1180         }
1181
1182         init_waitqueue_head(&writers->wait);
1183         return writers;
1184 }
1185
1186 static void
1187 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1188 {
1189         percpu_counter_destroy(&writers->counter);
1190         kfree(writers);
1191 }
1192
1193 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1194                          u32 stripesize, struct btrfs_root *root,
1195                          struct btrfs_fs_info *fs_info,
1196                          u64 objectid)
1197 {
1198         root->node = NULL;
1199         root->commit_root = NULL;
1200         root->sectorsize = sectorsize;
1201         root->nodesize = nodesize;
1202         root->leafsize = leafsize;
1203         root->stripesize = stripesize;
1204         root->state = 0;
1205         root->orphan_cleanup_state = 0;
1206
1207         root->objectid = objectid;
1208         root->last_trans = 0;
1209         root->highest_objectid = 0;
1210         root->nr_delalloc_inodes = 0;
1211         root->nr_ordered_extents = 0;
1212         root->name = NULL;
1213         root->inode_tree = RB_ROOT;
1214         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1215         root->block_rsv = NULL;
1216         root->orphan_block_rsv = NULL;
1217
1218         INIT_LIST_HEAD(&root->dirty_list);
1219         INIT_LIST_HEAD(&root->root_list);
1220         INIT_LIST_HEAD(&root->delalloc_inodes);
1221         INIT_LIST_HEAD(&root->delalloc_root);
1222         INIT_LIST_HEAD(&root->ordered_extents);
1223         INIT_LIST_HEAD(&root->ordered_root);
1224         INIT_LIST_HEAD(&root->logged_list[0]);
1225         INIT_LIST_HEAD(&root->logged_list[1]);
1226         spin_lock_init(&root->orphan_lock);
1227         spin_lock_init(&root->inode_lock);
1228         spin_lock_init(&root->delalloc_lock);
1229         spin_lock_init(&root->ordered_extent_lock);
1230         spin_lock_init(&root->accounting_lock);
1231         spin_lock_init(&root->log_extents_lock[0]);
1232         spin_lock_init(&root->log_extents_lock[1]);
1233         mutex_init(&root->objectid_mutex);
1234         mutex_init(&root->log_mutex);
1235         mutex_init(&root->ordered_extent_mutex);
1236         mutex_init(&root->delalloc_mutex);
1237         init_waitqueue_head(&root->log_writer_wait);
1238         init_waitqueue_head(&root->log_commit_wait[0]);
1239         init_waitqueue_head(&root->log_commit_wait[1]);
1240         INIT_LIST_HEAD(&root->log_ctxs[0]);
1241         INIT_LIST_HEAD(&root->log_ctxs[1]);
1242         atomic_set(&root->log_commit[0], 0);
1243         atomic_set(&root->log_commit[1], 0);
1244         atomic_set(&root->log_writers, 0);
1245         atomic_set(&root->log_batch, 0);
1246         atomic_set(&root->orphan_inodes, 0);
1247         atomic_set(&root->refs, 1);
1248         atomic_set(&root->will_be_snapshoted, 0);
1249         root->log_transid = 0;
1250         root->log_transid_committed = -1;
1251         root->last_log_commit = 0;
1252         if (fs_info)
1253                 extent_io_tree_init(&root->dirty_log_pages,
1254                                      fs_info->btree_inode->i_mapping);
1255
1256         memset(&root->root_key, 0, sizeof(root->root_key));
1257         memset(&root->root_item, 0, sizeof(root->root_item));
1258         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1259         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1260         if (fs_info)
1261                 root->defrag_trans_start = fs_info->generation;
1262         else
1263                 root->defrag_trans_start = 0;
1264         init_completion(&root->kobj_unregister);
1265         root->root_key.objectid = objectid;
1266         root->anon_dev = 0;
1267
1268         spin_lock_init(&root->root_item_lock);
1269 }
1270
1271 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1272 {
1273         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1274         if (root)
1275                 root->fs_info = fs_info;
1276         return root;
1277 }
1278
1279 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1280 /* Should only be used by the testing infrastructure */
1281 struct btrfs_root *btrfs_alloc_dummy_root(void)
1282 {
1283         struct btrfs_root *root;
1284
1285         root = btrfs_alloc_root(NULL);
1286         if (!root)
1287                 return ERR_PTR(-ENOMEM);
1288         __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1289         set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1290
1291         return root;
1292 }
1293 #endif
1294
1295 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1296                                      struct btrfs_fs_info *fs_info,
1297                                      u64 objectid)
1298 {
1299         struct extent_buffer *leaf;
1300         struct btrfs_root *tree_root = fs_info->tree_root;
1301         struct btrfs_root *root;
1302         struct btrfs_key key;
1303         int ret = 0;
1304         uuid_le uuid;
1305
1306         root = btrfs_alloc_root(fs_info);
1307         if (!root)
1308                 return ERR_PTR(-ENOMEM);
1309
1310         __setup_root(tree_root->nodesize, tree_root->leafsize,
1311                      tree_root->sectorsize, tree_root->stripesize,
1312                      root, fs_info, objectid);
1313         root->root_key.objectid = objectid;
1314         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1315         root->root_key.offset = 0;
1316
1317         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1318                                       0, objectid, NULL, 0, 0, 0);
1319         if (IS_ERR(leaf)) {
1320                 ret = PTR_ERR(leaf);
1321                 leaf = NULL;
1322                 goto fail;
1323         }
1324
1325         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1326         btrfs_set_header_bytenr(leaf, leaf->start);
1327         btrfs_set_header_generation(leaf, trans->transid);
1328         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1329         btrfs_set_header_owner(leaf, objectid);
1330         root->node = leaf;
1331
1332         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1333                             BTRFS_FSID_SIZE);
1334         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1335                             btrfs_header_chunk_tree_uuid(leaf),
1336                             BTRFS_UUID_SIZE);
1337         btrfs_mark_buffer_dirty(leaf);
1338
1339         root->commit_root = btrfs_root_node(root);
1340         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1341
1342         root->root_item.flags = 0;
1343         root->root_item.byte_limit = 0;
1344         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1345         btrfs_set_root_generation(&root->root_item, trans->transid);
1346         btrfs_set_root_level(&root->root_item, 0);
1347         btrfs_set_root_refs(&root->root_item, 1);
1348         btrfs_set_root_used(&root->root_item, leaf->len);
1349         btrfs_set_root_last_snapshot(&root->root_item, 0);
1350         btrfs_set_root_dirid(&root->root_item, 0);
1351         uuid_le_gen(&uuid);
1352         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1353         root->root_item.drop_level = 0;
1354
1355         key.objectid = objectid;
1356         key.type = BTRFS_ROOT_ITEM_KEY;
1357         key.offset = 0;
1358         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1359         if (ret)
1360                 goto fail;
1361
1362         btrfs_tree_unlock(leaf);
1363
1364         return root;
1365
1366 fail:
1367         if (leaf) {
1368                 btrfs_tree_unlock(leaf);
1369                 free_extent_buffer(root->commit_root);
1370                 free_extent_buffer(leaf);
1371         }
1372         kfree(root);
1373
1374         return ERR_PTR(ret);
1375 }
1376
1377 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1378                                          struct btrfs_fs_info *fs_info)
1379 {
1380         struct btrfs_root *root;
1381         struct btrfs_root *tree_root = fs_info->tree_root;
1382         struct extent_buffer *leaf;
1383
1384         root = btrfs_alloc_root(fs_info);
1385         if (!root)
1386                 return ERR_PTR(-ENOMEM);
1387
1388         __setup_root(tree_root->nodesize, tree_root->leafsize,
1389                      tree_root->sectorsize, tree_root->stripesize,
1390                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1391
1392         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1393         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1394         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1395
1396         /*
1397          * DON'T set REF_COWS for log trees
1398          *
1399          * log trees do not get reference counted because they go away
1400          * before a real commit is actually done.  They do store pointers
1401          * to file data extents, and those reference counts still get
1402          * updated (along with back refs to the log tree).
1403          */
1404
1405         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1406                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1407                                       0, 0, 0);
1408         if (IS_ERR(leaf)) {
1409                 kfree(root);
1410                 return ERR_CAST(leaf);
1411         }
1412
1413         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1414         btrfs_set_header_bytenr(leaf, leaf->start);
1415         btrfs_set_header_generation(leaf, trans->transid);
1416         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1417         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1418         root->node = leaf;
1419
1420         write_extent_buffer(root->node, root->fs_info->fsid,
1421                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1422         btrfs_mark_buffer_dirty(root->node);
1423         btrfs_tree_unlock(root->node);
1424         return root;
1425 }
1426
1427 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1428                              struct btrfs_fs_info *fs_info)
1429 {
1430         struct btrfs_root *log_root;
1431
1432         log_root = alloc_log_tree(trans, fs_info);
1433         if (IS_ERR(log_root))
1434                 return PTR_ERR(log_root);
1435         WARN_ON(fs_info->log_root_tree);
1436         fs_info->log_root_tree = log_root;
1437         return 0;
1438 }
1439
1440 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1441                        struct btrfs_root *root)
1442 {
1443         struct btrfs_root *log_root;
1444         struct btrfs_inode_item *inode_item;
1445
1446         log_root = alloc_log_tree(trans, root->fs_info);
1447         if (IS_ERR(log_root))
1448                 return PTR_ERR(log_root);
1449
1450         log_root->last_trans = trans->transid;
1451         log_root->root_key.offset = root->root_key.objectid;
1452
1453         inode_item = &log_root->root_item.inode;
1454         btrfs_set_stack_inode_generation(inode_item, 1);
1455         btrfs_set_stack_inode_size(inode_item, 3);
1456         btrfs_set_stack_inode_nlink(inode_item, 1);
1457         btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1458         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1459
1460         btrfs_set_root_node(&log_root->root_item, log_root->node);
1461
1462         WARN_ON(root->log_root);
1463         root->log_root = log_root;
1464         root->log_transid = 0;
1465         root->log_transid_committed = -1;
1466         root->last_log_commit = 0;
1467         return 0;
1468 }
1469
1470 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1471                                                struct btrfs_key *key)
1472 {
1473         struct btrfs_root *root;
1474         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1475         struct btrfs_path *path;
1476         u64 generation;
1477         u32 blocksize;
1478         int ret;
1479
1480         path = btrfs_alloc_path();
1481         if (!path)
1482                 return ERR_PTR(-ENOMEM);
1483
1484         root = btrfs_alloc_root(fs_info);
1485         if (!root) {
1486                 ret = -ENOMEM;
1487                 goto alloc_fail;
1488         }
1489
1490         __setup_root(tree_root->nodesize, tree_root->leafsize,
1491                      tree_root->sectorsize, tree_root->stripesize,
1492                      root, fs_info, key->objectid);
1493
1494         ret = btrfs_find_root(tree_root, key, path,
1495                               &root->root_item, &root->root_key);
1496         if (ret) {
1497                 if (ret > 0)
1498                         ret = -ENOENT;
1499                 goto find_fail;
1500         }
1501
1502         generation = btrfs_root_generation(&root->root_item);
1503         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1504         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1505                                      blocksize, generation);
1506         if (!root->node) {
1507                 ret = -ENOMEM;
1508                 goto find_fail;
1509         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1510                 ret = -EIO;
1511                 goto read_fail;
1512         }
1513         root->commit_root = btrfs_root_node(root);
1514 out:
1515         btrfs_free_path(path);
1516         return root;
1517
1518 read_fail:
1519         free_extent_buffer(root->node);
1520 find_fail:
1521         kfree(root);
1522 alloc_fail:
1523         root = ERR_PTR(ret);
1524         goto out;
1525 }
1526
1527 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1528                                       struct btrfs_key *location)
1529 {
1530         struct btrfs_root *root;
1531
1532         root = btrfs_read_tree_root(tree_root, location);
1533         if (IS_ERR(root))
1534                 return root;
1535
1536         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1537                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1538                 btrfs_check_and_init_root_item(&root->root_item);
1539         }
1540
1541         return root;
1542 }
1543
1544 int btrfs_init_fs_root(struct btrfs_root *root)
1545 {
1546         int ret;
1547         struct btrfs_subvolume_writers *writers;
1548
1549         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1550         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1551                                         GFP_NOFS);
1552         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1553                 ret = -ENOMEM;
1554                 goto fail;
1555         }
1556
1557         writers = btrfs_alloc_subvolume_writers();
1558         if (IS_ERR(writers)) {
1559                 ret = PTR_ERR(writers);
1560                 goto fail;
1561         }
1562         root->subv_writers = writers;
1563
1564         btrfs_init_free_ino_ctl(root);
1565         spin_lock_init(&root->cache_lock);
1566         init_waitqueue_head(&root->cache_wait);
1567
1568         ret = get_anon_bdev(&root->anon_dev);
1569         if (ret)
1570                 goto free_writers;
1571         return 0;
1572
1573 free_writers:
1574         btrfs_free_subvolume_writers(root->subv_writers);
1575 fail:
1576         kfree(root->free_ino_ctl);
1577         kfree(root->free_ino_pinned);
1578         return ret;
1579 }
1580
1581 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1582                                                u64 root_id)
1583 {
1584         struct btrfs_root *root;
1585
1586         spin_lock(&fs_info->fs_roots_radix_lock);
1587         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1588                                  (unsigned long)root_id);
1589         spin_unlock(&fs_info->fs_roots_radix_lock);
1590         return root;
1591 }
1592
1593 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1594                          struct btrfs_root *root)
1595 {
1596         int ret;
1597
1598         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1599         if (ret)
1600                 return ret;
1601
1602         spin_lock(&fs_info->fs_roots_radix_lock);
1603         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1604                                 (unsigned long)root->root_key.objectid,
1605                                 root);
1606         if (ret == 0)
1607                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1608         spin_unlock(&fs_info->fs_roots_radix_lock);
1609         radix_tree_preload_end();
1610
1611         return ret;
1612 }
1613
1614 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1615                                      struct btrfs_key *location,
1616                                      bool check_ref)
1617 {
1618         struct btrfs_root *root;
1619         int ret;
1620
1621         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1622                 return fs_info->tree_root;
1623         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1624                 return fs_info->extent_root;
1625         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1626                 return fs_info->chunk_root;
1627         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1628                 return fs_info->dev_root;
1629         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1630                 return fs_info->csum_root;
1631         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1632                 return fs_info->quota_root ? fs_info->quota_root :
1633                                              ERR_PTR(-ENOENT);
1634         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1635                 return fs_info->uuid_root ? fs_info->uuid_root :
1636                                             ERR_PTR(-ENOENT);
1637 again:
1638         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1639         if (root) {
1640                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1641                         return ERR_PTR(-ENOENT);
1642                 return root;
1643         }
1644
1645         root = btrfs_read_fs_root(fs_info->tree_root, location);
1646         if (IS_ERR(root))
1647                 return root;
1648
1649         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1650                 ret = -ENOENT;
1651                 goto fail;
1652         }
1653
1654         ret = btrfs_init_fs_root(root);
1655         if (ret)
1656                 goto fail;
1657
1658         ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1659                         location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
1660         if (ret < 0)
1661                 goto fail;
1662         if (ret == 0)
1663                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1664
1665         ret = btrfs_insert_fs_root(fs_info, root);
1666         if (ret) {
1667                 if (ret == -EEXIST) {
1668                         free_fs_root(root);
1669                         goto again;
1670                 }
1671                 goto fail;
1672         }
1673         return root;
1674 fail:
1675         free_fs_root(root);
1676         return ERR_PTR(ret);
1677 }
1678
1679 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1680 {
1681         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1682         int ret = 0;
1683         struct btrfs_device *device;
1684         struct backing_dev_info *bdi;
1685
1686         rcu_read_lock();
1687         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1688                 if (!device->bdev)
1689                         continue;
1690                 bdi = blk_get_backing_dev_info(device->bdev);
1691                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1692                         ret = 1;
1693                         break;
1694                 }
1695         }
1696         rcu_read_unlock();
1697         return ret;
1698 }
1699
1700 /*
1701  * If this fails, caller must call bdi_destroy() to get rid of the
1702  * bdi again.
1703  */
1704 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1705 {
1706         int err;
1707
1708         bdi->capabilities = BDI_CAP_MAP_COPY;
1709         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1710         if (err)
1711                 return err;
1712
1713         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1714         bdi->congested_fn       = btrfs_congested_fn;
1715         bdi->congested_data     = info;
1716         return 0;
1717 }
1718
1719 /*
1720  * called by the kthread helper functions to finally call the bio end_io
1721  * functions.  This is where read checksum verification actually happens
1722  */
1723 static void end_workqueue_fn(struct btrfs_work *work)
1724 {
1725         struct bio *bio;
1726         struct end_io_wq *end_io_wq;
1727         int error;
1728
1729         end_io_wq = container_of(work, struct end_io_wq, work);
1730         bio = end_io_wq->bio;
1731
1732         error = end_io_wq->error;
1733         bio->bi_private = end_io_wq->private;
1734         bio->bi_end_io = end_io_wq->end_io;
1735         kfree(end_io_wq);
1736         bio_endio_nodec(bio, error);
1737 }
1738
1739 static int cleaner_kthread(void *arg)
1740 {
1741         struct btrfs_root *root = arg;
1742         int again;
1743
1744         do {
1745                 again = 0;
1746
1747                 /* Make the cleaner go to sleep early. */
1748                 if (btrfs_need_cleaner_sleep(root))
1749                         goto sleep;
1750
1751                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1752                         goto sleep;
1753
1754                 /*
1755                  * Avoid the problem that we change the status of the fs
1756                  * during the above check and trylock.
1757                  */
1758                 if (btrfs_need_cleaner_sleep(root)) {
1759                         mutex_unlock(&root->fs_info->cleaner_mutex);
1760                         goto sleep;
1761                 }
1762
1763                 btrfs_run_delayed_iputs(root);
1764                 again = btrfs_clean_one_deleted_snapshot(root);
1765                 mutex_unlock(&root->fs_info->cleaner_mutex);
1766
1767                 /*
1768                  * The defragger has dealt with the R/O remount and umount,
1769                  * needn't do anything special here.
1770                  */
1771                 btrfs_run_defrag_inodes(root->fs_info);
1772 sleep:
1773                 if (!try_to_freeze() && !again) {
1774                         set_current_state(TASK_INTERRUPTIBLE);
1775                         if (!kthread_should_stop())
1776                                 schedule();
1777                         __set_current_state(TASK_RUNNING);
1778                 }
1779         } while (!kthread_should_stop());
1780         return 0;
1781 }
1782
1783 static int transaction_kthread(void *arg)
1784 {
1785         struct btrfs_root *root = arg;
1786         struct btrfs_trans_handle *trans;
1787         struct btrfs_transaction *cur;
1788         u64 transid;
1789         unsigned long now;
1790         unsigned long delay;
1791         bool cannot_commit;
1792
1793         do {
1794                 cannot_commit = false;
1795                 delay = HZ * root->fs_info->commit_interval;
1796                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1797
1798                 spin_lock(&root->fs_info->trans_lock);
1799                 cur = root->fs_info->running_transaction;
1800                 if (!cur) {
1801                         spin_unlock(&root->fs_info->trans_lock);
1802                         goto sleep;
1803                 }
1804
1805                 now = get_seconds();
1806                 if (cur->state < TRANS_STATE_BLOCKED &&
1807                     (now < cur->start_time ||
1808                      now - cur->start_time < root->fs_info->commit_interval)) {
1809                         spin_unlock(&root->fs_info->trans_lock);
1810                         delay = HZ * 5;
1811                         goto sleep;
1812                 }
1813                 transid = cur->transid;
1814                 spin_unlock(&root->fs_info->trans_lock);
1815
1816                 /* If the file system is aborted, this will always fail. */
1817                 trans = btrfs_attach_transaction(root);
1818                 if (IS_ERR(trans)) {
1819                         if (PTR_ERR(trans) != -ENOENT)
1820                                 cannot_commit = true;
1821                         goto sleep;
1822                 }
1823                 if (transid == trans->transid) {
1824                         btrfs_commit_transaction(trans, root);
1825                 } else {
1826                         btrfs_end_transaction(trans, root);
1827                 }
1828 sleep:
1829                 wake_up_process(root->fs_info->cleaner_kthread);
1830                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1831
1832                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1833                                       &root->fs_info->fs_state)))
1834                         btrfs_cleanup_transaction(root);
1835                 if (!try_to_freeze()) {
1836                         set_current_state(TASK_INTERRUPTIBLE);
1837                         if (!kthread_should_stop() &&
1838                             (!btrfs_transaction_blocked(root->fs_info) ||
1839                              cannot_commit))
1840                                 schedule_timeout(delay);
1841                         __set_current_state(TASK_RUNNING);
1842                 }
1843         } while (!kthread_should_stop());
1844         return 0;
1845 }
1846
1847 /*
1848  * this will find the highest generation in the array of
1849  * root backups.  The index of the highest array is returned,
1850  * or -1 if we can't find anything.
1851  *
1852  * We check to make sure the array is valid by comparing the
1853  * generation of the latest  root in the array with the generation
1854  * in the super block.  If they don't match we pitch it.
1855  */
1856 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1857 {
1858         u64 cur;
1859         int newest_index = -1;
1860         struct btrfs_root_backup *root_backup;
1861         int i;
1862
1863         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1864                 root_backup = info->super_copy->super_roots + i;
1865                 cur = btrfs_backup_tree_root_gen(root_backup);
1866                 if (cur == newest_gen)
1867                         newest_index = i;
1868         }
1869
1870         /* check to see if we actually wrapped around */
1871         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1872                 root_backup = info->super_copy->super_roots;
1873                 cur = btrfs_backup_tree_root_gen(root_backup);
1874                 if (cur == newest_gen)
1875                         newest_index = 0;
1876         }
1877         return newest_index;
1878 }
1879
1880
1881 /*
1882  * find the oldest backup so we know where to store new entries
1883  * in the backup array.  This will set the backup_root_index
1884  * field in the fs_info struct
1885  */
1886 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1887                                      u64 newest_gen)
1888 {
1889         int newest_index = -1;
1890
1891         newest_index = find_newest_super_backup(info, newest_gen);
1892         /* if there was garbage in there, just move along */
1893         if (newest_index == -1) {
1894                 info->backup_root_index = 0;
1895         } else {
1896                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1897         }
1898 }
1899
1900 /*
1901  * copy all the root pointers into the super backup array.
1902  * this will bump the backup pointer by one when it is
1903  * done
1904  */
1905 static void backup_super_roots(struct btrfs_fs_info *info)
1906 {
1907         int next_backup;
1908         struct btrfs_root_backup *root_backup;
1909         int last_backup;
1910
1911         next_backup = info->backup_root_index;
1912         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1913                 BTRFS_NUM_BACKUP_ROOTS;
1914
1915         /*
1916          * just overwrite the last backup if we're at the same generation
1917          * this happens only at umount
1918          */
1919         root_backup = info->super_for_commit->super_roots + last_backup;
1920         if (btrfs_backup_tree_root_gen(root_backup) ==
1921             btrfs_header_generation(info->tree_root->node))
1922                 next_backup = last_backup;
1923
1924         root_backup = info->super_for_commit->super_roots + next_backup;
1925
1926         /*
1927          * make sure all of our padding and empty slots get zero filled
1928          * regardless of which ones we use today
1929          */
1930         memset(root_backup, 0, sizeof(*root_backup));
1931
1932         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1933
1934         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1935         btrfs_set_backup_tree_root_gen(root_backup,
1936                                btrfs_header_generation(info->tree_root->node));
1937
1938         btrfs_set_backup_tree_root_level(root_backup,
1939                                btrfs_header_level(info->tree_root->node));
1940
1941         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1942         btrfs_set_backup_chunk_root_gen(root_backup,
1943                                btrfs_header_generation(info->chunk_root->node));
1944         btrfs_set_backup_chunk_root_level(root_backup,
1945                                btrfs_header_level(info->chunk_root->node));
1946
1947         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1948         btrfs_set_backup_extent_root_gen(root_backup,
1949                                btrfs_header_generation(info->extent_root->node));
1950         btrfs_set_backup_extent_root_level(root_backup,
1951                                btrfs_header_level(info->extent_root->node));
1952
1953         /*
1954          * we might commit during log recovery, which happens before we set
1955          * the fs_root.  Make sure it is valid before we fill it in.
1956          */
1957         if (info->fs_root && info->fs_root->node) {
1958                 btrfs_set_backup_fs_root(root_backup,
1959                                          info->fs_root->node->start);
1960                 btrfs_set_backup_fs_root_gen(root_backup,
1961                                btrfs_header_generation(info->fs_root->node));
1962                 btrfs_set_backup_fs_root_level(root_backup,
1963                                btrfs_header_level(info->fs_root->node));
1964         }
1965
1966         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1967         btrfs_set_backup_dev_root_gen(root_backup,
1968                                btrfs_header_generation(info->dev_root->node));
1969         btrfs_set_backup_dev_root_level(root_backup,
1970                                        btrfs_header_level(info->dev_root->node));
1971
1972         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1973         btrfs_set_backup_csum_root_gen(root_backup,
1974                                btrfs_header_generation(info->csum_root->node));
1975         btrfs_set_backup_csum_root_level(root_backup,
1976                                btrfs_header_level(info->csum_root->node));
1977
1978         btrfs_set_backup_total_bytes(root_backup,
1979                              btrfs_super_total_bytes(info->super_copy));
1980         btrfs_set_backup_bytes_used(root_backup,
1981                              btrfs_super_bytes_used(info->super_copy));
1982         btrfs_set_backup_num_devices(root_backup,
1983                              btrfs_super_num_devices(info->super_copy));
1984
1985         /*
1986          * if we don't copy this out to the super_copy, it won't get remembered
1987          * for the next commit
1988          */
1989         memcpy(&info->super_copy->super_roots,
1990                &info->super_for_commit->super_roots,
1991                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1992 }
1993
1994 /*
1995  * this copies info out of the root backup array and back into
1996  * the in-memory super block.  It is meant to help iterate through
1997  * the array, so you send it the number of backups you've already
1998  * tried and the last backup index you used.
1999  *
2000  * this returns -1 when it has tried all the backups
2001  */
2002 static noinline int next_root_backup(struct btrfs_fs_info *info,
2003                                      struct btrfs_super_block *super,
2004                                      int *num_backups_tried, int *backup_index)
2005 {
2006         struct btrfs_root_backup *root_backup;
2007         int newest = *backup_index;
2008
2009         if (*num_backups_tried == 0) {
2010                 u64 gen = btrfs_super_generation(super);
2011
2012                 newest = find_newest_super_backup(info, gen);
2013                 if (newest == -1)
2014                         return -1;
2015
2016                 *backup_index = newest;
2017                 *num_backups_tried = 1;
2018         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2019                 /* we've tried all the backups, all done */
2020                 return -1;
2021         } else {
2022                 /* jump to the next oldest backup */
2023                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2024                         BTRFS_NUM_BACKUP_ROOTS;
2025                 *backup_index = newest;
2026                 *num_backups_tried += 1;
2027         }
2028         root_backup = super->super_roots + newest;
2029
2030         btrfs_set_super_generation(super,
2031                                    btrfs_backup_tree_root_gen(root_backup));
2032         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2033         btrfs_set_super_root_level(super,
2034                                    btrfs_backup_tree_root_level(root_backup));
2035         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2036
2037         /*
2038          * fixme: the total bytes and num_devices need to match or we should
2039          * need a fsck
2040          */
2041         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2042         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2043         return 0;
2044 }
2045
2046 /* helper to cleanup workers */
2047 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2048 {
2049         btrfs_destroy_workqueue(fs_info->fixup_workers);
2050         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2051         btrfs_destroy_workqueue(fs_info->workers);
2052         btrfs_destroy_workqueue(fs_info->endio_workers);
2053         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2054         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2055         btrfs_destroy_workqueue(fs_info->rmw_workers);
2056         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2057         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2058         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2059         btrfs_destroy_workqueue(fs_info->submit_workers);
2060         btrfs_destroy_workqueue(fs_info->delayed_workers);
2061         btrfs_destroy_workqueue(fs_info->caching_workers);
2062         btrfs_destroy_workqueue(fs_info->readahead_workers);
2063         btrfs_destroy_workqueue(fs_info->flush_workers);
2064         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2065 }
2066
2067 static void free_root_extent_buffers(struct btrfs_root *root)
2068 {
2069         if (root) {
2070                 free_extent_buffer(root->node);
2071                 free_extent_buffer(root->commit_root);
2072                 root->node = NULL;
2073                 root->commit_root = NULL;
2074         }
2075 }
2076
2077 /* helper to cleanup tree roots */
2078 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2079 {
2080         free_root_extent_buffers(info->tree_root);
2081
2082         free_root_extent_buffers(info->dev_root);
2083         free_root_extent_buffers(info->extent_root);
2084         free_root_extent_buffers(info->csum_root);
2085         free_root_extent_buffers(info->quota_root);
2086         free_root_extent_buffers(info->uuid_root);
2087         if (chunk_root)
2088                 free_root_extent_buffers(info->chunk_root);
2089 }
2090
2091 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2092 {
2093         int ret;
2094         struct btrfs_root *gang[8];
2095         int i;
2096
2097         while (!list_empty(&fs_info->dead_roots)) {
2098                 gang[0] = list_entry(fs_info->dead_roots.next,
2099                                      struct btrfs_root, root_list);
2100                 list_del(&gang[0]->root_list);
2101
2102                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2103                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2104                 } else {
2105                         free_extent_buffer(gang[0]->node);
2106                         free_extent_buffer(gang[0]->commit_root);
2107                         btrfs_put_fs_root(gang[0]);
2108                 }
2109         }
2110
2111         while (1) {
2112                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2113                                              (void **)gang, 0,
2114                                              ARRAY_SIZE(gang));
2115                 if (!ret)
2116                         break;
2117                 for (i = 0; i < ret; i++)
2118                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2119         }
2120
2121         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2122                 btrfs_free_log_root_tree(NULL, fs_info);
2123                 btrfs_destroy_pinned_extent(fs_info->tree_root,
2124                                             fs_info->pinned_extents);
2125         }
2126 }
2127
2128 int open_ctree(struct super_block *sb,
2129                struct btrfs_fs_devices *fs_devices,
2130                char *options)
2131 {
2132         u32 sectorsize;
2133         u32 nodesize;
2134         u32 leafsize;
2135         u32 blocksize;
2136         u32 stripesize;
2137         u64 generation;
2138         u64 features;
2139         struct btrfs_key location;
2140         struct buffer_head *bh;
2141         struct btrfs_super_block *disk_super;
2142         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2143         struct btrfs_root *tree_root;
2144         struct btrfs_root *extent_root;
2145         struct btrfs_root *csum_root;
2146         struct btrfs_root *chunk_root;
2147         struct btrfs_root *dev_root;
2148         struct btrfs_root *quota_root;
2149         struct btrfs_root *uuid_root;
2150         struct btrfs_root *log_tree_root;
2151         int ret;
2152         int err = -EINVAL;
2153         int num_backups_tried = 0;
2154         int backup_index = 0;
2155         int max_active;
2156         int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2157         bool create_uuid_tree;
2158         bool check_uuid_tree;
2159
2160         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2161         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2162         if (!tree_root || !chunk_root) {
2163                 err = -ENOMEM;
2164                 goto fail;
2165         }
2166
2167         ret = init_srcu_struct(&fs_info->subvol_srcu);
2168         if (ret) {
2169                 err = ret;
2170                 goto fail;
2171         }
2172
2173         ret = setup_bdi(fs_info, &fs_info->bdi);
2174         if (ret) {
2175                 err = ret;
2176                 goto fail_srcu;
2177         }
2178
2179         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2180         if (ret) {
2181                 err = ret;
2182                 goto fail_bdi;
2183         }
2184         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2185                                         (1 + ilog2(nr_cpu_ids));
2186
2187         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2188         if (ret) {
2189                 err = ret;
2190                 goto fail_dirty_metadata_bytes;
2191         }
2192
2193         ret = percpu_counter_init(&fs_info->bio_counter, 0);
2194         if (ret) {
2195                 err = ret;
2196                 goto fail_delalloc_bytes;
2197         }
2198
2199         fs_info->btree_inode = new_inode(sb);
2200         if (!fs_info->btree_inode) {
2201                 err = -ENOMEM;
2202                 goto fail_bio_counter;
2203         }
2204
2205         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2206
2207         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2208         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2209         INIT_LIST_HEAD(&fs_info->trans_list);
2210         INIT_LIST_HEAD(&fs_info->dead_roots);
2211         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2212         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2213         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2214         spin_lock_init(&fs_info->delalloc_root_lock);
2215         spin_lock_init(&fs_info->trans_lock);
2216         spin_lock_init(&fs_info->fs_roots_radix_lock);
2217         spin_lock_init(&fs_info->delayed_iput_lock);
2218         spin_lock_init(&fs_info->defrag_inodes_lock);
2219         spin_lock_init(&fs_info->free_chunk_lock);
2220         spin_lock_init(&fs_info->tree_mod_seq_lock);
2221         spin_lock_init(&fs_info->super_lock);
2222         spin_lock_init(&fs_info->buffer_lock);
2223         rwlock_init(&fs_info->tree_mod_log_lock);
2224         mutex_init(&fs_info->reloc_mutex);
2225         mutex_init(&fs_info->delalloc_root_mutex);
2226         seqlock_init(&fs_info->profiles_lock);
2227
2228         init_completion(&fs_info->kobj_unregister);
2229         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2230         INIT_LIST_HEAD(&fs_info->space_info);
2231         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2232         btrfs_mapping_init(&fs_info->mapping_tree);
2233         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2234                              BTRFS_BLOCK_RSV_GLOBAL);
2235         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2236                              BTRFS_BLOCK_RSV_DELALLOC);
2237         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2238         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2239         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2240         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2241                              BTRFS_BLOCK_RSV_DELOPS);
2242         atomic_set(&fs_info->nr_async_submits, 0);
2243         atomic_set(&fs_info->async_delalloc_pages, 0);
2244         atomic_set(&fs_info->async_submit_draining, 0);
2245         atomic_set(&fs_info->nr_async_bios, 0);
2246         atomic_set(&fs_info->defrag_running, 0);
2247         atomic64_set(&fs_info->tree_mod_seq, 0);
2248         fs_info->sb = sb;
2249         fs_info->max_inline = 8192 * 1024;
2250         fs_info->metadata_ratio = 0;
2251         fs_info->defrag_inodes = RB_ROOT;
2252         fs_info->free_chunk_space = 0;
2253         fs_info->tree_mod_log = RB_ROOT;
2254         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2255         fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
2256         /* readahead state */
2257         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2258         spin_lock_init(&fs_info->reada_lock);
2259
2260         fs_info->thread_pool_size = min_t(unsigned long,
2261                                           num_online_cpus() + 2, 8);
2262
2263         INIT_LIST_HEAD(&fs_info->ordered_roots);
2264         spin_lock_init(&fs_info->ordered_root_lock);
2265         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2266                                         GFP_NOFS);
2267         if (!fs_info->delayed_root) {
2268                 err = -ENOMEM;
2269                 goto fail_iput;
2270         }
2271         btrfs_init_delayed_root(fs_info->delayed_root);
2272
2273         mutex_init(&fs_info->scrub_lock);
2274         atomic_set(&fs_info->scrubs_running, 0);
2275         atomic_set(&fs_info->scrub_pause_req, 0);
2276         atomic_set(&fs_info->scrubs_paused, 0);
2277         atomic_set(&fs_info->scrub_cancel_req, 0);
2278         init_waitqueue_head(&fs_info->replace_wait);
2279         init_waitqueue_head(&fs_info->scrub_pause_wait);
2280         fs_info->scrub_workers_refcnt = 0;
2281 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2282         fs_info->check_integrity_print_mask = 0;
2283 #endif
2284
2285         spin_lock_init(&fs_info->balance_lock);
2286         mutex_init(&fs_info->balance_mutex);
2287         atomic_set(&fs_info->balance_running, 0);
2288         atomic_set(&fs_info->balance_pause_req, 0);
2289         atomic_set(&fs_info->balance_cancel_req, 0);
2290         fs_info->balance_ctl = NULL;
2291         init_waitqueue_head(&fs_info->balance_wait_q);
2292         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2293
2294         sb->s_blocksize = 4096;
2295         sb->s_blocksize_bits = blksize_bits(4096);
2296         sb->s_bdi = &fs_info->bdi;
2297
2298         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2299         set_nlink(fs_info->btree_inode, 1);
2300         /*
2301          * we set the i_size on the btree inode to the max possible int.
2302          * the real end of the address space is determined by all of
2303          * the devices in the system
2304          */
2305         fs_info->btree_inode->i_size = OFFSET_MAX;
2306         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2307         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2308
2309         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2310         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2311                              fs_info->btree_inode->i_mapping);
2312         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2313         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2314
2315         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2316
2317         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2318         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2319                sizeof(struct btrfs_key));
2320         set_bit(BTRFS_INODE_DUMMY,
2321                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2322         btrfs_insert_inode_hash(fs_info->btree_inode);
2323
2324         spin_lock_init(&fs_info->block_group_cache_lock);
2325         fs_info->block_group_cache_tree = RB_ROOT;
2326         fs_info->first_logical_byte = (u64)-1;
2327
2328         extent_io_tree_init(&fs_info->freed_extents[0],
2329                              fs_info->btree_inode->i_mapping);
2330         extent_io_tree_init(&fs_info->freed_extents[1],
2331                              fs_info->btree_inode->i_mapping);
2332         fs_info->pinned_extents = &fs_info->freed_extents[0];
2333         fs_info->do_barriers = 1;
2334
2335
2336         mutex_init(&fs_info->ordered_operations_mutex);
2337         mutex_init(&fs_info->ordered_extent_flush_mutex);
2338         mutex_init(&fs_info->tree_log_mutex);
2339         mutex_init(&fs_info->chunk_mutex);
2340         mutex_init(&fs_info->transaction_kthread_mutex);
2341         mutex_init(&fs_info->cleaner_mutex);
2342         mutex_init(&fs_info->volume_mutex);
2343         init_rwsem(&fs_info->commit_root_sem);
2344         init_rwsem(&fs_info->cleanup_work_sem);
2345         init_rwsem(&fs_info->subvol_sem);
2346         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2347         fs_info->dev_replace.lock_owner = 0;
2348         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2349         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2350         mutex_init(&fs_info->dev_replace.lock_management_lock);
2351         mutex_init(&fs_info->dev_replace.lock);
2352
2353         spin_lock_init(&fs_info->qgroup_lock);
2354         mutex_init(&fs_info->qgroup_ioctl_lock);
2355         fs_info->qgroup_tree = RB_ROOT;
2356         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2357         fs_info->qgroup_seq = 1;
2358         fs_info->quota_enabled = 0;
2359         fs_info->pending_quota_state = 0;
2360         fs_info->qgroup_ulist = NULL;
2361         mutex_init(&fs_info->qgroup_rescan_lock);
2362
2363         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2364         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2365
2366         init_waitqueue_head(&fs_info->transaction_throttle);
2367         init_waitqueue_head(&fs_info->transaction_wait);
2368         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2369         init_waitqueue_head(&fs_info->async_submit_wait);
2370
2371         ret = btrfs_alloc_stripe_hash_table(fs_info);
2372         if (ret) {
2373                 err = ret;
2374                 goto fail_alloc;
2375         }
2376
2377         __setup_root(4096, 4096, 4096, 4096, tree_root,
2378                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2379
2380         invalidate_bdev(fs_devices->latest_bdev);
2381
2382         /*
2383          * Read super block and check the signature bytes only
2384          */
2385         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2386         if (!bh) {
2387                 err = -EINVAL;
2388                 goto fail_alloc;
2389         }
2390
2391         /*
2392          * We want to check superblock checksum, the type is stored inside.
2393          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2394          */
2395         if (btrfs_check_super_csum(bh->b_data)) {
2396                 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2397                 err = -EINVAL;
2398                 goto fail_alloc;
2399         }
2400
2401         /*
2402          * super_copy is zeroed at allocation time and we never touch the
2403          * following bytes up to INFO_SIZE, the checksum is calculated from
2404          * the whole block of INFO_SIZE
2405          */
2406         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2407         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2408                sizeof(*fs_info->super_for_commit));
2409         brelse(bh);
2410
2411         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2412
2413         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2414         if (ret) {
2415                 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2416                 err = -EINVAL;
2417                 goto fail_alloc;
2418         }
2419
2420         disk_super = fs_info->super_copy;
2421         if (!btrfs_super_root(disk_super))
2422                 goto fail_alloc;
2423
2424         /* check FS state, whether FS is broken. */
2425         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2426                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2427
2428         /*
2429          * run through our array of backup supers and setup
2430          * our ring pointer to the oldest one
2431          */
2432         generation = btrfs_super_generation(disk_super);
2433         find_oldest_super_backup(fs_info, generation);
2434
2435         /*
2436          * In the long term, we'll store the compression type in the super
2437          * block, and it'll be used for per file compression control.
2438          */
2439         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2440
2441         ret = btrfs_parse_options(tree_root, options);
2442         if (ret) {
2443                 err = ret;
2444                 goto fail_alloc;
2445         }
2446
2447         features = btrfs_super_incompat_flags(disk_super) &
2448                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2449         if (features) {
2450                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2451                        "unsupported optional features (%Lx).\n",
2452                        features);
2453                 err = -EINVAL;
2454                 goto fail_alloc;
2455         }
2456
2457         if (btrfs_super_leafsize(disk_super) !=
2458             btrfs_super_nodesize(disk_super)) {
2459                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2460                        "blocksizes don't match.  node %d leaf %d\n",
2461                        btrfs_super_nodesize(disk_super),
2462                        btrfs_super_leafsize(disk_super));
2463                 err = -EINVAL;
2464                 goto fail_alloc;
2465         }
2466         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2467                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2468                        "blocksize (%d) was too large\n",
2469                        btrfs_super_leafsize(disk_super));
2470                 err = -EINVAL;
2471                 goto fail_alloc;
2472         }
2473
2474         features = btrfs_super_incompat_flags(disk_super);
2475         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2476         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2477                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2478
2479         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2480                 printk(KERN_ERR "BTRFS: has skinny extents\n");
2481
2482         /*
2483          * flag our filesystem as having big metadata blocks if
2484          * they are bigger than the page size
2485          */
2486         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2487                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2488                         printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2489                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2490         }
2491
2492         nodesize = btrfs_super_nodesize(disk_super);
2493         leafsize = btrfs_super_leafsize(disk_super);
2494         sectorsize = btrfs_super_sectorsize(disk_super);
2495         stripesize = btrfs_super_stripesize(disk_super);
2496         fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2497         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2498
2499         /*
2500          * mixed block groups end up with duplicate but slightly offset
2501          * extent buffers for the same range.  It leads to corruptions
2502          */
2503         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2504             (sectorsize != leafsize)) {
2505                 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
2506                                 "are not allowed for mixed block groups on %s\n",
2507                                 sb->s_id);
2508                 goto fail_alloc;
2509         }
2510
2511         /*
2512          * Needn't use the lock because there is no other task which will
2513          * update the flag.
2514          */
2515         btrfs_set_super_incompat_flags(disk_super, features);
2516
2517         features = btrfs_super_compat_ro_flags(disk_super) &
2518                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2519         if (!(sb->s_flags & MS_RDONLY) && features) {
2520                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2521                        "unsupported option features (%Lx).\n",
2522                        features);
2523                 err = -EINVAL;
2524                 goto fail_alloc;
2525         }
2526
2527         max_active = fs_info->thread_pool_size;
2528
2529         fs_info->workers =
2530                 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2531                                       max_active, 16);
2532
2533         fs_info->delalloc_workers =
2534                 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2535
2536         fs_info->flush_workers =
2537                 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2538
2539         fs_info->caching_workers =
2540                 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2541
2542         /*
2543          * a higher idle thresh on the submit workers makes it much more
2544          * likely that bios will be send down in a sane order to the
2545          * devices
2546          */
2547         fs_info->submit_workers =
2548                 btrfs_alloc_workqueue("submit", flags,
2549                                       min_t(u64, fs_devices->num_devices,
2550                                             max_active), 64);
2551
2552         fs_info->fixup_workers =
2553                 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2554
2555         /*
2556          * endios are largely parallel and should have a very
2557          * low idle thresh
2558          */
2559         fs_info->endio_workers =
2560                 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2561         fs_info->endio_meta_workers =
2562                 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2563         fs_info->endio_meta_write_workers =
2564                 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2565         fs_info->endio_raid56_workers =
2566                 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2567         fs_info->rmw_workers =
2568                 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2569         fs_info->endio_write_workers =
2570                 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2571         fs_info->endio_freespace_worker =
2572                 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2573         fs_info->delayed_workers =
2574                 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2575         fs_info->readahead_workers =
2576                 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2577         fs_info->qgroup_rescan_workers =
2578                 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2579
2580         if (!(fs_info->workers && fs_info->delalloc_workers &&
2581               fs_info->submit_workers && fs_info->flush_workers &&
2582               fs_info->endio_workers && fs_info->endio_meta_workers &&
2583               fs_info->endio_meta_write_workers &&
2584               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2585               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2586               fs_info->caching_workers && fs_info->readahead_workers &&
2587               fs_info->fixup_workers && fs_info->delayed_workers &&
2588               fs_info->qgroup_rescan_workers)) {
2589                 err = -ENOMEM;
2590                 goto fail_sb_buffer;
2591         }
2592
2593         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2594         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2595                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2596
2597         tree_root->nodesize = nodesize;
2598         tree_root->leafsize = leafsize;
2599         tree_root->sectorsize = sectorsize;
2600         tree_root->stripesize = stripesize;
2601
2602         sb->s_blocksize = sectorsize;
2603         sb->s_blocksize_bits = blksize_bits(sectorsize);
2604
2605         if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2606                 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
2607                 goto fail_sb_buffer;
2608         }
2609
2610         if (sectorsize != PAGE_SIZE) {
2611                 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
2612                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2613                 goto fail_sb_buffer;
2614         }
2615
2616         mutex_lock(&fs_info->chunk_mutex);
2617         ret = btrfs_read_sys_array(tree_root);
2618         mutex_unlock(&fs_info->chunk_mutex);
2619         if (ret) {
2620                 printk(KERN_WARNING "BTRFS: failed to read the system "
2621                        "array on %s\n", sb->s_id);
2622                 goto fail_sb_buffer;
2623         }
2624
2625         blocksize = btrfs_level_size(tree_root,
2626                                      btrfs_super_chunk_root_level(disk_super));
2627         generation = btrfs_super_chunk_root_generation(disk_super);
2628
2629         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2630                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2631
2632         chunk_root->node = read_tree_block(chunk_root,
2633                                            btrfs_super_chunk_root(disk_super),
2634                                            blocksize, generation);
2635         if (!chunk_root->node ||
2636             !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2637                 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
2638                        sb->s_id);
2639                 goto fail_tree_roots;
2640         }
2641         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2642         chunk_root->commit_root = btrfs_root_node(chunk_root);
2643
2644         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2645            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2646
2647         ret = btrfs_read_chunk_tree(chunk_root);
2648         if (ret) {
2649                 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
2650                        sb->s_id);
2651                 goto fail_tree_roots;
2652         }
2653
2654         /*
2655          * keep the device that is marked to be the target device for the
2656          * dev_replace procedure
2657          */
2658         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2659
2660         if (!fs_devices->latest_bdev) {
2661                 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
2662                        sb->s_id);
2663                 goto fail_tree_roots;
2664         }
2665
2666 retry_root_backup:
2667         blocksize = btrfs_level_size(tree_root,
2668                                      btrfs_super_root_level(disk_super));
2669         generation = btrfs_super_generation(disk_super);
2670
2671         tree_root->node = read_tree_block(tree_root,
2672                                           btrfs_super_root(disk_super),
2673                                           blocksize, generation);
2674         if (!tree_root->node ||
2675             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2676                 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2677                        sb->s_id);
2678
2679                 goto recovery_tree_root;
2680         }
2681
2682         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2683         tree_root->commit_root = btrfs_root_node(tree_root);
2684         btrfs_set_root_refs(&tree_root->root_item, 1);
2685
2686         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2687         location.type = BTRFS_ROOT_ITEM_KEY;
2688         location.offset = 0;
2689
2690         extent_root = btrfs_read_tree_root(tree_root, &location);
2691         if (IS_ERR(extent_root)) {
2692                 ret = PTR_ERR(extent_root);
2693                 goto recovery_tree_root;
2694         }
2695         set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
2696         fs_info->extent_root = extent_root;
2697
2698         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2699         dev_root = btrfs_read_tree_root(tree_root, &location);
2700         if (IS_ERR(dev_root)) {
2701                 ret = PTR_ERR(dev_root);
2702                 goto recovery_tree_root;
2703         }
2704         set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
2705         fs_info->dev_root = dev_root;
2706         btrfs_init_devices_late(fs_info);
2707
2708         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2709         csum_root = btrfs_read_tree_root(tree_root, &location);
2710         if (IS_ERR(csum_root)) {
2711                 ret = PTR_ERR(csum_root);
2712                 goto recovery_tree_root;
2713         }
2714         set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
2715         fs_info->csum_root = csum_root;
2716
2717         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2718         quota_root = btrfs_read_tree_root(tree_root, &location);
2719         if (!IS_ERR(quota_root)) {
2720                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &quota_root->state);
2721                 fs_info->quota_enabled = 1;
2722                 fs_info->pending_quota_state = 1;
2723                 fs_info->quota_root = quota_root;
2724         }
2725
2726         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2727         uuid_root = btrfs_read_tree_root(tree_root, &location);
2728         if (IS_ERR(uuid_root)) {
2729                 ret = PTR_ERR(uuid_root);
2730                 if (ret != -ENOENT)
2731                         goto recovery_tree_root;
2732                 create_uuid_tree = true;
2733                 check_uuid_tree = false;
2734         } else {
2735                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
2736                 fs_info->uuid_root = uuid_root;
2737                 create_uuid_tree = false;
2738                 check_uuid_tree =
2739                     generation != btrfs_super_uuid_tree_generation(disk_super);
2740         }
2741
2742         fs_info->generation = generation;
2743         fs_info->last_trans_committed = generation;
2744
2745         ret = btrfs_recover_balance(fs_info);
2746         if (ret) {
2747                 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
2748                 goto fail_block_groups;
2749         }
2750
2751         ret = btrfs_init_dev_stats(fs_info);
2752         if (ret) {
2753                 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2754                        ret);
2755                 goto fail_block_groups;
2756         }
2757
2758         ret = btrfs_init_dev_replace(fs_info);
2759         if (ret) {
2760                 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2761                 goto fail_block_groups;
2762         }
2763
2764         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2765
2766         ret = btrfs_sysfs_add_one(fs_info);
2767         if (ret) {
2768                 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2769                 goto fail_block_groups;
2770         }
2771
2772         ret = btrfs_init_space_info(fs_info);
2773         if (ret) {
2774                 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2775                 goto fail_sysfs;
2776         }
2777
2778         ret = btrfs_read_block_groups(extent_root);
2779         if (ret) {
2780                 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2781                 goto fail_sysfs;
2782         }
2783         fs_info->num_tolerated_disk_barrier_failures =
2784                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2785         if (fs_info->fs_devices->missing_devices >
2786              fs_info->num_tolerated_disk_barrier_failures &&
2787             !(sb->s_flags & MS_RDONLY)) {
2788                 printk(KERN_WARNING "BTRFS: "
2789                         "too many missing devices, writeable mount is not allowed\n");
2790                 goto fail_sysfs;
2791         }
2792
2793         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2794                                                "btrfs-cleaner");
2795         if (IS_ERR(fs_info->cleaner_kthread))
2796                 goto fail_sysfs;
2797
2798         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2799                                                    tree_root,
2800                                                    "btrfs-transaction");
2801         if (IS_ERR(fs_info->transaction_kthread))
2802                 goto fail_cleaner;
2803
2804         if (!btrfs_test_opt(tree_root, SSD) &&
2805             !btrfs_test_opt(tree_root, NOSSD) &&
2806             !fs_info->fs_devices->rotating) {
2807                 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2808                        "mode\n");
2809                 btrfs_set_opt(fs_info->mount_opt, SSD);
2810         }
2811
2812         /* Set the real inode map cache flag */
2813         if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2814                 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2815
2816 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2817         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2818                 ret = btrfsic_mount(tree_root, fs_devices,
2819                                     btrfs_test_opt(tree_root,
2820                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2821                                     1 : 0,
2822                                     fs_info->check_integrity_print_mask);
2823                 if (ret)
2824                         printk(KERN_WARNING "BTRFS: failed to initialize"
2825                                " integrity check module %s\n", sb->s_id);
2826         }
2827 #endif
2828         ret = btrfs_read_qgroup_config(fs_info);
2829         if (ret)
2830                 goto fail_trans_kthread;
2831
2832         /* do not make disk changes in broken FS */
2833         if (btrfs_super_log_root(disk_super) != 0) {
2834                 u64 bytenr = btrfs_super_log_root(disk_super);
2835
2836                 if (fs_devices->rw_devices == 0) {
2837                         printk(KERN_WARNING "BTRFS: log replay required "
2838                                "on RO media\n");
2839                         err = -EIO;
2840                         goto fail_qgroup;
2841                 }
2842                 blocksize =
2843                      btrfs_level_size(tree_root,
2844                                       btrfs_super_log_root_level(disk_super));
2845
2846                 log_tree_root = btrfs_alloc_root(fs_info);
2847                 if (!log_tree_root) {
2848                         err = -ENOMEM;
2849                         goto fail_qgroup;
2850                 }
2851
2852                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2853                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2854
2855                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2856                                                       blocksize,
2857                                                       generation + 1);
2858                 if (!log_tree_root->node ||
2859                     !extent_buffer_uptodate(log_tree_root->node)) {
2860                         printk(KERN_ERR "BTRFS: failed to read log tree\n");
2861                         free_extent_buffer(log_tree_root->node);
2862                         kfree(log_tree_root);
2863                         goto fail_qgroup;
2864                 }
2865                 /* returns with log_tree_root freed on success */
2866                 ret = btrfs_recover_log_trees(log_tree_root);
2867                 if (ret) {
2868                         btrfs_error(tree_root->fs_info, ret,
2869                                     "Failed to recover log tree");
2870                         free_extent_buffer(log_tree_root->node);
2871                         kfree(log_tree_root);
2872                         goto fail_qgroup;
2873                 }
2874
2875                 if (sb->s_flags & MS_RDONLY) {
2876                         ret = btrfs_commit_super(tree_root);
2877                         if (ret)
2878                                 goto fail_qgroup;
2879                 }
2880         }
2881
2882         ret = btrfs_find_orphan_roots(tree_root);
2883         if (ret)
2884                 goto fail_qgroup;
2885
2886         if (!(sb->s_flags & MS_RDONLY)) {
2887                 ret = btrfs_cleanup_fs_roots(fs_info);
2888                 if (ret)
2889                         goto fail_qgroup;
2890
2891                 ret = btrfs_recover_relocation(tree_root);
2892                 if (ret < 0) {
2893                         printk(KERN_WARNING
2894                                "BTRFS: failed to recover relocation\n");
2895                         err = -EINVAL;
2896                         goto fail_qgroup;
2897                 }
2898         }
2899
2900         location.objectid = BTRFS_FS_TREE_OBJECTID;
2901         location.type = BTRFS_ROOT_ITEM_KEY;
2902         location.offset = 0;
2903
2904         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2905         if (IS_ERR(fs_info->fs_root)) {
2906                 err = PTR_ERR(fs_info->fs_root);
2907                 goto fail_qgroup;
2908         }
2909
2910         if (sb->s_flags & MS_RDONLY)
2911                 return 0;
2912
2913         down_read(&fs_info->cleanup_work_sem);
2914         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2915             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2916                 up_read(&fs_info->cleanup_work_sem);
2917                 close_ctree(tree_root);
2918                 return ret;
2919         }
2920         up_read(&fs_info->cleanup_work_sem);
2921
2922         ret = btrfs_resume_balance_async(fs_info);
2923         if (ret) {
2924                 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2925                 close_ctree(tree_root);
2926                 return ret;
2927         }
2928
2929         ret = btrfs_resume_dev_replace_async(fs_info);
2930         if (ret) {
2931                 pr_warn("BTRFS: failed to resume dev_replace\n");
2932                 close_ctree(tree_root);
2933                 return ret;
2934         }
2935
2936         btrfs_qgroup_rescan_resume(fs_info);
2937
2938         if (create_uuid_tree) {
2939                 pr_info("BTRFS: creating UUID tree\n");
2940                 ret = btrfs_create_uuid_tree(fs_info);
2941                 if (ret) {
2942                         pr_warn("BTRFS: failed to create the UUID tree %d\n",
2943                                 ret);
2944                         close_ctree(tree_root);
2945                         return ret;
2946                 }
2947         } else if (check_uuid_tree ||
2948                    btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2949                 pr_info("BTRFS: checking UUID tree\n");
2950                 ret = btrfs_check_uuid_tree(fs_info);
2951                 if (ret) {
2952                         pr_warn("BTRFS: failed to check the UUID tree %d\n",
2953                                 ret);
2954                         close_ctree(tree_root);
2955                         return ret;
2956                 }
2957         } else {
2958                 fs_info->update_uuid_tree_gen = 1;
2959         }
2960
2961         return 0;
2962
2963 fail_qgroup:
2964         btrfs_free_qgroup_config(fs_info);
2965 fail_trans_kthread:
2966         kthread_stop(fs_info->transaction_kthread);
2967         btrfs_cleanup_transaction(fs_info->tree_root);
2968         del_fs_roots(fs_info);
2969 fail_cleaner:
2970         kthread_stop(fs_info->cleaner_kthread);
2971
2972         /*
2973          * make sure we're done with the btree inode before we stop our
2974          * kthreads
2975          */
2976         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2977
2978 fail_sysfs:
2979         btrfs_sysfs_remove_one(fs_info);
2980
2981 fail_block_groups:
2982         btrfs_put_block_group_cache(fs_info);
2983         btrfs_free_block_groups(fs_info);
2984
2985 fail_tree_roots:
2986         free_root_pointers(fs_info, 1);
2987         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2988
2989 fail_sb_buffer:
2990         btrfs_stop_all_workers(fs_info);
2991 fail_alloc:
2992 fail_iput:
2993         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2994
2995         iput(fs_info->btree_inode);
2996 fail_bio_counter:
2997         percpu_counter_destroy(&fs_info->bio_counter);
2998 fail_delalloc_bytes:
2999         percpu_counter_destroy(&fs_info->delalloc_bytes);
3000 fail_dirty_metadata_bytes:
3001         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3002 fail_bdi:
3003         bdi_destroy(&fs_info->bdi);
3004 fail_srcu:
3005         cleanup_srcu_struct(&fs_info->subvol_srcu);
3006 fail:
3007         btrfs_free_stripe_hash_table(fs_info);
3008         btrfs_close_devices(fs_info->fs_devices);
3009         return err;
3010
3011 recovery_tree_root:
3012         if (!btrfs_test_opt(tree_root, RECOVERY))
3013                 goto fail_tree_roots;
3014
3015         free_root_pointers(fs_info, 0);
3016
3017         /* don't use the log in recovery mode, it won't be valid */
3018         btrfs_set_super_log_root(disk_super, 0);
3019
3020         /* we can't trust the free space cache either */
3021         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3022
3023         ret = next_root_backup(fs_info, fs_info->super_copy,
3024                                &num_backups_tried, &backup_index);
3025         if (ret == -1)
3026                 goto fail_block_groups;
3027         goto retry_root_backup;
3028 }
3029
3030 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3031 {
3032         if (uptodate) {
3033                 set_buffer_uptodate(bh);
3034         } else {
3035                 struct btrfs_device *device = (struct btrfs_device *)
3036                         bh->b_private;
3037
3038                 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3039                                           "I/O error on %s\n",
3040                                           rcu_str_deref(device->name));
3041                 /* note, we dont' set_buffer_write_io_error because we have
3042                  * our own ways of dealing with the IO errors
3043                  */
3044                 clear_buffer_uptodate(bh);
3045                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3046         }
3047         unlock_buffer(bh);
3048         put_bh(bh);
3049 }
3050
3051 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3052 {
3053         struct buffer_head *bh;
3054         struct buffer_head *latest = NULL;
3055         struct btrfs_super_block *super;
3056         int i;
3057         u64 transid = 0;
3058         u64 bytenr;
3059
3060         /* we would like to check all the supers, but that would make
3061          * a btrfs mount succeed after a mkfs from a different FS.
3062          * So, we need to add a special mount option to scan for
3063          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3064          */
3065         for (i = 0; i < 1; i++) {
3066                 bytenr = btrfs_sb_offset(i);
3067                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3068                                         i_size_read(bdev->bd_inode))
3069                         break;
3070                 bh = __bread(bdev, bytenr / 4096,
3071                                         BTRFS_SUPER_INFO_SIZE);
3072                 if (!bh)
3073                         continue;
3074
3075                 super = (struct btrfs_super_block *)bh->b_data;
3076                 if (btrfs_super_bytenr(super) != bytenr ||
3077                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3078                         brelse(bh);
3079                         continue;
3080                 }
3081
3082                 if (!latest || btrfs_super_generation(super) > transid) {
3083                         brelse(latest);
3084                         latest = bh;
3085                         transid = btrfs_super_generation(super);
3086                 } else {
3087                         brelse(bh);
3088                 }
3089         }
3090         return latest;
3091 }
3092
3093 /*
3094  * this should be called twice, once with wait == 0 and
3095  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3096  * we write are pinned.
3097  *
3098  * They are released when wait == 1 is done.
3099  * max_mirrors must be the same for both runs, and it indicates how
3100  * many supers on this one device should be written.
3101  *
3102  * max_mirrors == 0 means to write them all.
3103  */
3104 static int write_dev_supers(struct btrfs_device *device,
3105                             struct btrfs_super_block *sb,
3106                             int do_barriers, int wait, int max_mirrors)
3107 {
3108         struct buffer_head *bh;
3109         int i;
3110         int ret;
3111         int errors = 0;
3112         u32 crc;
3113         u64 bytenr;
3114
3115         if (max_mirrors == 0)
3116                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3117
3118         for (i = 0; i < max_mirrors; i++) {
3119                 bytenr = btrfs_sb_offset(i);
3120                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3121                         break;
3122
3123                 if (wait) {
3124                         bh = __find_get_block(device->bdev, bytenr / 4096,
3125                                               BTRFS_SUPER_INFO_SIZE);
3126                         if (!bh) {
3127                                 errors++;
3128                                 continue;
3129                         }
3130                         wait_on_buffer(bh);
3131                         if (!buffer_uptodate(bh))
3132                                 errors++;
3133
3134                         /* drop our reference */
3135                         brelse(bh);
3136
3137                         /* drop the reference from the wait == 0 run */
3138                         brelse(bh);
3139                         continue;
3140                 } else {
3141                         btrfs_set_super_bytenr(sb, bytenr);
3142
3143                         crc = ~(u32)0;
3144                         crc = btrfs_csum_data((char *)sb +
3145                                               BTRFS_CSUM_SIZE, crc,
3146                                               BTRFS_SUPER_INFO_SIZE -
3147                                               BTRFS_CSUM_SIZE);
3148                         btrfs_csum_final(crc, sb->csum);
3149
3150                         /*
3151                          * one reference for us, and we leave it for the
3152                          * caller
3153                          */
3154                         bh = __getblk(device->bdev, bytenr / 4096,
3155                                       BTRFS_SUPER_INFO_SIZE);
3156                         if (!bh) {
3157                                 printk(KERN_ERR "BTRFS: couldn't get super "
3158                                        "buffer head for bytenr %Lu\n", bytenr);
3159                                 errors++;
3160                                 continue;
3161                         }
3162
3163                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3164
3165                         /* one reference for submit_bh */
3166                         get_bh(bh);
3167
3168                         set_buffer_uptodate(bh);
3169                         lock_buffer(bh);
3170                         bh->b_end_io = btrfs_end_buffer_write_sync;
3171                         bh->b_private = device;
3172                 }
3173
3174                 /*
3175                  * we fua the first super.  The others we allow
3176                  * to go down lazy.
3177                  */
3178                 if (i == 0)
3179                         ret = btrfsic_submit_bh(WRITE_FUA, bh);
3180                 else
3181                         ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3182                 if (ret)
3183                         errors++;
3184         }
3185         return errors < i ? 0 : -1;
3186 }
3187
3188 /*
3189  * endio for the write_dev_flush, this will wake anyone waiting
3190  * for the barrier when it is done
3191  */
3192 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3193 {
3194         if (err) {
3195                 if (err == -EOPNOTSUPP)
3196                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3197                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3198         }
3199         if (bio->bi_private)
3200                 complete(bio->bi_private);
3201         bio_put(bio);
3202 }
3203
3204 /*
3205  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3206  * sent down.  With wait == 1, it waits for the previous flush.
3207  *
3208  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3209  * capable
3210  */
3211 static int write_dev_flush(struct btrfs_device *device, int wait)
3212 {
3213         struct bio *bio;
3214         int ret = 0;
3215
3216         if (device->nobarriers)
3217                 return 0;
3218
3219         if (wait) {
3220                 bio = device->flush_bio;
3221                 if (!bio)
3222                         return 0;
3223
3224                 wait_for_completion(&device->flush_wait);
3225
3226                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3227                         printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3228                                       rcu_str_deref(device->name));
3229                         device->nobarriers = 1;
3230                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3231                         ret = -EIO;
3232                         btrfs_dev_stat_inc_and_print(device,
3233                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3234                 }
3235
3236                 /* drop the reference from the wait == 0 run */
3237                 bio_put(bio);
3238                 device->flush_bio = NULL;
3239
3240                 return ret;
3241         }
3242
3243         /*
3244          * one reference for us, and we leave it for the
3245          * caller
3246          */
3247         device->flush_bio = NULL;
3248         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3249         if (!bio)
3250                 return -ENOMEM;
3251
3252         bio->bi_end_io = btrfs_end_empty_barrier;
3253         bio->bi_bdev = device->bdev;
3254         init_completion(&device->flush_wait);
3255         bio->bi_private = &device->flush_wait;
3256         device->flush_bio = bio;
3257
3258         bio_get(bio);
3259         btrfsic_submit_bio(WRITE_FLUSH, bio);
3260
3261         return 0;
3262 }
3263
3264 /*
3265  * send an empty flush down to each device in parallel,
3266  * then wait for them
3267  */
3268 static int barrier_all_devices(struct btrfs_fs_info *info)
3269 {
3270         struct list_head *head;
3271         struct btrfs_device *dev;
3272         int errors_send = 0;
3273         int errors_wait = 0;
3274         int ret;
3275
3276         /* send down all the barriers */
3277         head = &info->fs_devices->devices;
3278         list_for_each_entry_rcu(dev, head, dev_list) {
3279                 if (dev->missing)
3280                         continue;
3281                 if (!dev->bdev) {
3282                         errors_send++;
3283                         continue;
3284                 }
3285                 if (!dev->in_fs_metadata || !dev->writeable)
3286                         continue;
3287
3288                 ret = write_dev_flush(dev, 0);
3289                 if (ret)
3290                         errors_send++;
3291         }
3292
3293         /* wait for all the barriers */
3294         list_for_each_entry_rcu(dev, head, dev_list) {
3295                 if (dev->missing)
3296                         continue;
3297                 if (!dev->bdev) {
3298                         errors_wait++;
3299                         continue;
3300                 }
3301                 if (!dev->in_fs_metadata || !dev->writeable)
3302                         continue;
3303
3304                 ret = write_dev_flush(dev, 1);
3305                 if (ret)
3306                         errors_wait++;
3307         }
3308         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3309             errors_wait > info->num_tolerated_disk_barrier_failures)
3310                 return -EIO;
3311         return 0;
3312 }
3313
3314 int btrfs_calc_num_tolerated_disk_barrier_failures(
3315         struct btrfs_fs_info *fs_info)
3316 {
3317         struct btrfs_ioctl_space_info space;
3318         struct btrfs_space_info *sinfo;
3319         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3320                        BTRFS_BLOCK_GROUP_SYSTEM,
3321                        BTRFS_BLOCK_GROUP_METADATA,
3322                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3323         int num_types = 4;
3324         int i;
3325         int c;
3326         int num_tolerated_disk_barrier_failures =
3327                 (int)fs_info->fs_devices->num_devices;
3328
3329         for (i = 0; i < num_types; i++) {
3330                 struct btrfs_space_info *tmp;
3331
3332                 sinfo = NULL;
3333                 rcu_read_lock();
3334                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3335                         if (tmp->flags == types[i]) {
3336                                 sinfo = tmp;
3337                                 break;
3338                         }
3339                 }
3340                 rcu_read_unlock();
3341
3342                 if (!sinfo)
3343                         continue;
3344
3345                 down_read(&sinfo->groups_sem);
3346                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3347                         if (!list_empty(&sinfo->block_groups[c])) {
3348                                 u64 flags;
3349
3350                                 btrfs_get_block_group_info(
3351                                         &sinfo->block_groups[c], &space);
3352                                 if (space.total_bytes == 0 ||
3353                                     space.used_bytes == 0)
3354                                         continue;
3355                                 flags = space.flags;
3356                                 /*
3357                                  * return
3358                                  * 0: if dup, single or RAID0 is configured for
3359                                  *    any of metadata, system or data, else
3360                                  * 1: if RAID5 is configured, or if RAID1 or
3361                                  *    RAID10 is configured and only two mirrors
3362                                  *    are used, else
3363                                  * 2: if RAID6 is configured, else
3364                                  * num_mirrors - 1: if RAID1 or RAID10 is
3365                                  *                  configured and more than
3366                                  *                  2 mirrors are used.
3367                                  */
3368                                 if (num_tolerated_disk_barrier_failures > 0 &&
3369                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3370                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3371                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3372                                       == 0)))
3373                                         num_tolerated_disk_barrier_failures = 0;
3374                                 else if (num_tolerated_disk_barrier_failures > 1) {
3375                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3376                                             BTRFS_BLOCK_GROUP_RAID5 |
3377                                             BTRFS_BLOCK_GROUP_RAID10)) {
3378                                                 num_tolerated_disk_barrier_failures = 1;
3379                                         } else if (flags &
3380                                                    BTRFS_BLOCK_GROUP_RAID6) {
3381                                                 num_tolerated_disk_barrier_failures = 2;
3382                                         }
3383                                 }
3384                         }
3385                 }
3386                 up_read(&sinfo->groups_sem);
3387         }
3388
3389         return num_tolerated_disk_barrier_failures;
3390 }
3391
3392 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3393 {
3394         struct list_head *head;
3395         struct btrfs_device *dev;
3396         struct btrfs_super_block *sb;
3397         struct btrfs_dev_item *dev_item;
3398         int ret;
3399         int do_barriers;
3400         int max_errors;
3401         int total_errors = 0;
3402         u64 flags;
3403
3404         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3405         backup_super_roots(root->fs_info);
3406
3407         sb = root->fs_info->super_for_commit;
3408         dev_item = &sb->dev_item;
3409
3410         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3411         head = &root->fs_info->fs_devices->devices;
3412         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3413
3414         if (do_barriers) {
3415                 ret = barrier_all_devices(root->fs_info);
3416                 if (ret) {
3417                         mutex_unlock(
3418                                 &root->fs_info->fs_devices->device_list_mutex);
3419                         btrfs_error(root->fs_info, ret,
3420                                     "errors while submitting device barriers.");
3421                         return ret;
3422                 }
3423         }
3424
3425         list_for_each_entry_rcu(dev, head, dev_list) {
3426                 if (!dev->bdev) {
3427                         total_errors++;
3428                         continue;
3429                 }
3430                 if (!dev->in_fs_metadata || !dev->writeable)
3431                         continue;
3432
3433                 btrfs_set_stack_device_generation(dev_item, 0);
3434                 btrfs_set_stack_device_type(dev_item, dev->type);
3435                 btrfs_set_stack_device_id(dev_item, dev->devid);
3436                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3437                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3438                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3439                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3440                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3441                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3442                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3443
3444                 flags = btrfs_super_flags(sb);
3445                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3446
3447                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3448                 if (ret)
3449                         total_errors++;
3450         }
3451         if (total_errors > max_errors) {
3452                 btrfs_err(root->fs_info, "%d errors while writing supers",
3453                        total_errors);
3454                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3455
3456                 /* FUA is masked off if unsupported and can't be the reason */
3457                 btrfs_error(root->fs_info, -EIO,
3458                             "%d errors while writing supers", total_errors);
3459                 return -EIO;
3460         }
3461
3462         total_errors = 0;
3463         list_for_each_entry_rcu(dev, head, dev_list) {
3464                 if (!dev->bdev)
3465                         continue;
3466                 if (!dev->in_fs_metadata || !dev->writeable)
3467                         continue;
3468
3469                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3470                 if (ret)
3471                         total_errors++;
3472         }
3473         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3474         if (total_errors > max_errors) {
3475                 btrfs_error(root->fs_info, -EIO,
3476                             "%d errors while writing supers", total_errors);
3477                 return -EIO;
3478         }
3479         return 0;
3480 }
3481
3482 int write_ctree_super(struct btrfs_trans_handle *trans,
3483                       struct btrfs_root *root, int max_mirrors)
3484 {
3485         return write_all_supers(root, max_mirrors);
3486 }
3487
3488 /* Drop a fs root from the radix tree and free it. */
3489 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3490                                   struct btrfs_root *root)
3491 {
3492         spin_lock(&fs_info->fs_roots_radix_lock);
3493         radix_tree_delete(&fs_info->fs_roots_radix,
3494                           (unsigned long)root->root_key.objectid);
3495         spin_unlock(&fs_info->fs_roots_radix_lock);
3496
3497         if (btrfs_root_refs(&root->root_item) == 0)
3498                 synchronize_srcu(&fs_info->subvol_srcu);
3499
3500         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3501                 btrfs_free_log(NULL, root);
3502
3503         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3504         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3505         free_fs_root(root);
3506 }
3507
3508 static void free_fs_root(struct btrfs_root *root)
3509 {
3510         iput(root->cache_inode);
3511         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3512         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3513         root->orphan_block_rsv = NULL;
3514         if (root->anon_dev)
3515                 free_anon_bdev(root->anon_dev);
3516         if (root->subv_writers)
3517                 btrfs_free_subvolume_writers(root->subv_writers);
3518         free_extent_buffer(root->node);
3519         free_extent_buffer(root->commit_root);
3520         kfree(root->free_ino_ctl);
3521         kfree(root->free_ino_pinned);
3522         kfree(root->name);
3523         btrfs_put_fs_root(root);
3524 }
3525
3526 void btrfs_free_fs_root(struct btrfs_root *root)
3527 {
3528         free_fs_root(root);
3529 }
3530
3531 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3532 {
3533         u64 root_objectid = 0;
3534         struct btrfs_root *gang[8];
3535         int i = 0;
3536         int err = 0;
3537         unsigned int ret = 0;
3538         int index;
3539
3540         while (1) {
3541                 index = srcu_read_lock(&fs_info->subvol_srcu);
3542                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3543                                              (void **)gang, root_objectid,
3544                                              ARRAY_SIZE(gang));
3545                 if (!ret) {
3546                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3547                         break;
3548                 }
3549                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3550
3551                 for (i = 0; i < ret; i++) {
3552                         /* Avoid to grab roots in dead_roots */
3553                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3554                                 gang[i] = NULL;
3555                                 continue;
3556                         }
3557                         /* grab all the search result for later use */
3558                         gang[i] = btrfs_grab_fs_root(gang[i]);
3559                 }
3560                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3561
3562                 for (i = 0; i < ret; i++) {
3563                         if (!gang[i])
3564                                 continue;
3565                         root_objectid = gang[i]->root_key.objectid;
3566                         err = btrfs_orphan_cleanup(gang[i]);
3567                         if (err)
3568                                 break;
3569                         btrfs_put_fs_root(gang[i]);
3570                 }
3571                 root_objectid++;
3572         }
3573
3574         /* release the uncleaned roots due to error */
3575         for (; i < ret; i++) {
3576                 if (gang[i])
3577                         btrfs_put_fs_root(gang[i]);
3578         }
3579         return err;
3580 }
3581
3582 int btrfs_commit_super(struct btrfs_root *root)
3583 {
3584         struct btrfs_trans_handle *trans;
3585
3586         mutex_lock(&root->fs_info->cleaner_mutex);
3587         btrfs_run_delayed_iputs(root);
3588         mutex_unlock(&root->fs_info->cleaner_mutex);
3589         wake_up_process(root->fs_info->cleaner_kthread);
3590
3591         /* wait until ongoing cleanup work done */
3592         down_write(&root->fs_info->cleanup_work_sem);
3593         up_write(&root->fs_info->cleanup_work_sem);
3594
3595         trans = btrfs_join_transaction(root);
3596         if (IS_ERR(trans))
3597                 return PTR_ERR(trans);
3598         return btrfs_commit_transaction(trans, root);
3599 }
3600
3601 int close_ctree(struct btrfs_root *root)
3602 {
3603         struct btrfs_fs_info *fs_info = root->fs_info;
3604         int ret;
3605
3606         fs_info->closing = 1;
3607         smp_mb();
3608
3609         /* wait for the uuid_scan task to finish */
3610         down(&fs_info->uuid_tree_rescan_sem);
3611         /* avoid complains from lockdep et al., set sem back to initial state */
3612         up(&fs_info->uuid_tree_rescan_sem);
3613
3614         /* pause restriper - we want to resume on mount */
3615         btrfs_pause_balance(fs_info);
3616
3617         btrfs_dev_replace_suspend_for_unmount(fs_info);
3618
3619         btrfs_scrub_cancel(fs_info);
3620
3621         /* wait for any defraggers to finish */
3622         wait_event(fs_info->transaction_wait,
3623                    (atomic_read(&fs_info->defrag_running) == 0));
3624
3625         /* clear out the rbtree of defraggable inodes */
3626         btrfs_cleanup_defrag_inodes(fs_info);
3627
3628         cancel_work_sync(&fs_info->async_reclaim_work);
3629
3630         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3631                 ret = btrfs_commit_super(root);
3632                 if (ret)
3633                         btrfs_err(root->fs_info, "commit super ret %d", ret);
3634         }
3635
3636         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3637                 btrfs_error_commit_super(root);
3638
3639         kthread_stop(fs_info->transaction_kthread);
3640         kthread_stop(fs_info->cleaner_kthread);
3641
3642         fs_info->closing = 2;
3643         smp_mb();
3644
3645         btrfs_free_qgroup_config(root->fs_info);
3646
3647         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3648                 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3649                        percpu_counter_sum(&fs_info->delalloc_bytes));
3650         }
3651
3652         btrfs_sysfs_remove_one(fs_info);
3653
3654         del_fs_roots(fs_info);
3655
3656         btrfs_put_block_group_cache(fs_info);
3657
3658         btrfs_free_block_groups(fs_info);
3659
3660         /*
3661          * we must make sure there is not any read request to
3662          * submit after we stopping all workers.
3663          */
3664         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3665         btrfs_stop_all_workers(fs_info);
3666
3667         free_root_pointers(fs_info, 1);
3668
3669         iput(fs_info->btree_inode);
3670
3671 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3672         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3673                 btrfsic_unmount(root, fs_info->fs_devices);
3674 #endif
3675
3676         btrfs_close_devices(fs_info->fs_devices);
3677         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3678
3679         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3680         percpu_counter_destroy(&fs_info->delalloc_bytes);
3681         percpu_counter_destroy(&fs_info->bio_counter);
3682         bdi_destroy(&fs_info->bdi);
3683         cleanup_srcu_struct(&fs_info->subvol_srcu);
3684
3685         btrfs_free_stripe_hash_table(fs_info);
3686
3687         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3688         root->orphan_block_rsv = NULL;
3689
3690         return 0;
3691 }
3692
3693 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3694                           int atomic)
3695 {
3696         int ret;
3697         struct inode *btree_inode = buf->pages[0]->mapping->host;
3698
3699         ret = extent_buffer_uptodate(buf);
3700         if (!ret)
3701                 return ret;
3702
3703         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3704                                     parent_transid, atomic);
3705         if (ret == -EAGAIN)
3706                 return ret;
3707         return !ret;
3708 }
3709
3710 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3711 {
3712         return set_extent_buffer_uptodate(buf);
3713 }
3714
3715 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3716 {
3717         struct btrfs_root *root;
3718         u64 transid = btrfs_header_generation(buf);
3719         int was_dirty;
3720
3721 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3722         /*
3723          * This is a fast path so only do this check if we have sanity tests
3724          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3725          * outside of the sanity tests.
3726          */
3727         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3728                 return;
3729 #endif
3730         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3731         btrfs_assert_tree_locked(buf);
3732         if (transid != root->fs_info->generation)
3733                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3734                        "found %llu running %llu\n",
3735                         buf->start, transid, root->fs_info->generation);
3736         was_dirty = set_extent_buffer_dirty(buf);
3737         if (!was_dirty)
3738                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3739                                      buf->len,
3740                                      root->fs_info->dirty_metadata_batch);
3741 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3742         if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3743                 btrfs_print_leaf(root, buf);
3744                 ASSERT(0);
3745         }
3746 #endif
3747 }
3748
3749 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3750                                         int flush_delayed)
3751 {
3752         /*
3753          * looks as though older kernels can get into trouble with
3754          * this code, they end up stuck in balance_dirty_pages forever
3755          */
3756         int ret;
3757
3758         if (current->flags & PF_MEMALLOC)
3759                 return;
3760
3761         if (flush_delayed)
3762                 btrfs_balance_delayed_items(root);
3763
3764         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3765                                      BTRFS_DIRTY_METADATA_THRESH);
3766         if (ret > 0) {
3767                 balance_dirty_pages_ratelimited(
3768                                    root->fs_info->btree_inode->i_mapping);
3769         }
3770         return;
3771 }
3772
3773 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3774 {
3775         __btrfs_btree_balance_dirty(root, 1);
3776 }
3777
3778 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3779 {
3780         __btrfs_btree_balance_dirty(root, 0);
3781 }
3782
3783 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3784 {
3785         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3786         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3787 }
3788
3789 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3790                               int read_only)
3791 {
3792         /*
3793          * Placeholder for checks
3794          */
3795         return 0;
3796 }
3797
3798 static void btrfs_error_commit_super(struct btrfs_root *root)
3799 {
3800         mutex_lock(&root->fs_info->cleaner_mutex);
3801         btrfs_run_delayed_iputs(root);
3802         mutex_unlock(&root->fs_info->cleaner_mutex);
3803
3804         down_write(&root->fs_info->cleanup_work_sem);
3805         up_write(&root->fs_info->cleanup_work_sem);
3806
3807         /* cleanup FS via transaction */
3808         btrfs_cleanup_transaction(root);
3809 }
3810
3811 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3812                                              struct btrfs_root *root)
3813 {
3814         struct btrfs_inode *btrfs_inode;
3815         struct list_head splice;
3816
3817         INIT_LIST_HEAD(&splice);
3818
3819         mutex_lock(&root->fs_info->ordered_operations_mutex);
3820         spin_lock(&root->fs_info->ordered_root_lock);
3821
3822         list_splice_init(&t->ordered_operations, &splice);
3823         while (!list_empty(&splice)) {
3824                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3825                                          ordered_operations);
3826
3827                 list_del_init(&btrfs_inode->ordered_operations);
3828                 spin_unlock(&root->fs_info->ordered_root_lock);
3829
3830                 btrfs_invalidate_inodes(btrfs_inode->root);
3831
3832                 spin_lock(&root->fs_info->ordered_root_lock);
3833         }
3834
3835         spin_unlock(&root->fs_info->ordered_root_lock);
3836         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3837 }
3838
3839 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3840 {
3841         struct btrfs_ordered_extent *ordered;
3842
3843         spin_lock(&root->ordered_extent_lock);
3844         /*
3845          * This will just short circuit the ordered completion stuff which will
3846          * make sure the ordered extent gets properly cleaned up.
3847          */
3848         list_for_each_entry(ordered, &root->ordered_extents,
3849                             root_extent_list)
3850                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3851         spin_unlock(&root->ordered_extent_lock);
3852 }
3853
3854 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3855 {
3856         struct btrfs_root *root;
3857         struct list_head splice;
3858
3859         INIT_LIST_HEAD(&splice);
3860
3861         spin_lock(&fs_info->ordered_root_lock);
3862         list_splice_init(&fs_info->ordered_roots, &splice);
3863         while (!list_empty(&splice)) {
3864                 root = list_first_entry(&splice, struct btrfs_root,
3865                                         ordered_root);
3866                 list_move_tail(&root->ordered_root,
3867                                &fs_info->ordered_roots);
3868
3869                 spin_unlock(&fs_info->ordered_root_lock);
3870                 btrfs_destroy_ordered_extents(root);
3871
3872                 cond_resched();
3873                 spin_lock(&fs_info->ordered_root_lock);
3874         }
3875         spin_unlock(&fs_info->ordered_root_lock);
3876 }
3877
3878 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3879                                       struct btrfs_root *root)
3880 {
3881         struct rb_node *node;
3882         struct btrfs_delayed_ref_root *delayed_refs;
3883         struct btrfs_delayed_ref_node *ref;
3884         int ret = 0;
3885
3886         delayed_refs = &trans->delayed_refs;
3887
3888         spin_lock(&delayed_refs->lock);
3889         if (atomic_read(&delayed_refs->num_entries) == 0) {
3890                 spin_unlock(&delayed_refs->lock);
3891                 btrfs_info(root->fs_info, "delayed_refs has NO entry");
3892                 return ret;
3893         }
3894
3895         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3896                 struct btrfs_delayed_ref_head *head;
3897                 bool pin_bytes = false;
3898
3899                 head = rb_entry(node, struct btrfs_delayed_ref_head,
3900                                 href_node);
3901                 if (!mutex_trylock(&head->mutex)) {
3902                         atomic_inc(&head->node.refs);
3903                         spin_unlock(&delayed_refs->lock);
3904
3905                         mutex_lock(&head->mutex);
3906                         mutex_unlock(&head->mutex);
3907                         btrfs_put_delayed_ref(&head->node);
3908                         spin_lock(&delayed_refs->lock);
3909                         continue;
3910                 }
3911                 spin_lock(&head->lock);
3912                 while ((node = rb_first(&head->ref_root)) != NULL) {
3913                         ref = rb_entry(node, struct btrfs_delayed_ref_node,
3914                                        rb_node);
3915                         ref->in_tree = 0;
3916                         rb_erase(&ref->rb_node, &head->ref_root);
3917                         atomic_dec(&delayed_refs->num_entries);
3918                         btrfs_put_delayed_ref(ref);
3919                 }
3920                 if (head->must_insert_reserved)
3921                         pin_bytes = true;
3922                 btrfs_free_delayed_extent_op(head->extent_op);
3923                 delayed_refs->num_heads--;
3924                 if (head->processing == 0)
3925                         delayed_refs->num_heads_ready--;
3926                 atomic_dec(&delayed_refs->num_entries);
3927                 head->node.in_tree = 0;
3928                 rb_erase(&head->href_node, &delayed_refs->href_root);
3929                 spin_unlock(&head->lock);
3930                 spin_unlock(&delayed_refs->lock);
3931                 mutex_unlock(&head->mutex);
3932
3933                 if (pin_bytes)
3934                         btrfs_pin_extent(root, head->node.bytenr,
3935                                          head->node.num_bytes, 1);
3936                 btrfs_put_delayed_ref(&head->node);
3937                 cond_resched();
3938                 spin_lock(&delayed_refs->lock);
3939         }
3940
3941         spin_unlock(&delayed_refs->lock);
3942
3943         return ret;
3944 }
3945
3946 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3947 {
3948         struct btrfs_inode *btrfs_inode;
3949         struct list_head splice;
3950
3951         INIT_LIST_HEAD(&splice);
3952
3953         spin_lock(&root->delalloc_lock);
3954         list_splice_init(&root->delalloc_inodes, &splice);
3955
3956         while (!list_empty(&splice)) {
3957                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3958                                                delalloc_inodes);
3959
3960                 list_del_init(&btrfs_inode->delalloc_inodes);
3961                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3962                           &btrfs_inode->runtime_flags);
3963                 spin_unlock(&root->delalloc_lock);
3964
3965                 btrfs_invalidate_inodes(btrfs_inode->root);
3966
3967                 spin_lock(&root->delalloc_lock);
3968         }
3969
3970         spin_unlock(&root->delalloc_lock);
3971 }
3972
3973 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3974 {
3975         struct btrfs_root *root;
3976         struct list_head splice;
3977
3978         INIT_LIST_HEAD(&splice);
3979
3980         spin_lock(&fs_info->delalloc_root_lock);
3981         list_splice_init(&fs_info->delalloc_roots, &splice);
3982         while (!list_empty(&splice)) {
3983                 root = list_first_entry(&splice, struct btrfs_root,
3984                                          delalloc_root);
3985                 list_del_init(&root->delalloc_root);
3986                 root = btrfs_grab_fs_root(root);
3987                 BUG_ON(!root);
3988                 spin_unlock(&fs_info->delalloc_root_lock);
3989
3990                 btrfs_destroy_delalloc_inodes(root);
3991                 btrfs_put_fs_root(root);
3992
3993                 spin_lock(&fs_info->delalloc_root_lock);
3994         }
3995         spin_unlock(&fs_info->delalloc_root_lock);
3996 }
3997
3998 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3999                                         struct extent_io_tree *dirty_pages,
4000                                         int mark)
4001 {
4002         int ret;
4003         struct extent_buffer *eb;
4004         u64 start = 0;
4005         u64 end;
4006
4007         while (1) {
4008                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4009                                             mark, NULL);
4010                 if (ret)
4011                         break;
4012
4013                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4014                 while (start <= end) {
4015                         eb = btrfs_find_tree_block(root, start,
4016                                                    root->leafsize);
4017                         start += root->leafsize;
4018                         if (!eb)
4019                                 continue;
4020                         wait_on_extent_buffer_writeback(eb);
4021
4022                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4023                                                &eb->bflags))
4024                                 clear_extent_buffer_dirty(eb);
4025                         free_extent_buffer_stale(eb);
4026                 }
4027         }
4028
4029         return ret;
4030 }
4031
4032 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4033                                        struct extent_io_tree *pinned_extents)
4034 {
4035         struct extent_io_tree *unpin;
4036         u64 start;
4037         u64 end;
4038         int ret;
4039         bool loop = true;
4040
4041         unpin = pinned_extents;
4042 again:
4043         while (1) {
4044                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4045                                             EXTENT_DIRTY, NULL);
4046                 if (ret)
4047                         break;
4048
4049                 /* opt_discard */
4050                 if (btrfs_test_opt(root, DISCARD))
4051                         ret = btrfs_error_discard_extent(root, start,
4052                                                          end + 1 - start,
4053                                                          NULL);
4054
4055                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4056                 btrfs_error_unpin_extent_range(root, start, end);
4057                 cond_resched();
4058         }
4059
4060         if (loop) {
4061                 if (unpin == &root->fs_info->freed_extents[0])
4062                         unpin = &root->fs_info->freed_extents[1];
4063                 else
4064                         unpin = &root->fs_info->freed_extents[0];
4065                 loop = false;
4066                 goto again;
4067         }
4068
4069         return 0;
4070 }
4071
4072 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4073                                    struct btrfs_root *root)
4074 {
4075         btrfs_destroy_ordered_operations(cur_trans, root);
4076
4077         btrfs_destroy_delayed_refs(cur_trans, root);
4078
4079         cur_trans->state = TRANS_STATE_COMMIT_START;
4080         wake_up(&root->fs_info->transaction_blocked_wait);
4081
4082         cur_trans->state = TRANS_STATE_UNBLOCKED;
4083         wake_up(&root->fs_info->transaction_wait);
4084
4085         btrfs_destroy_delayed_inodes(root);
4086         btrfs_assert_delayed_root_empty(root);
4087
4088         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4089                                      EXTENT_DIRTY);
4090         btrfs_destroy_pinned_extent(root,
4091                                     root->fs_info->pinned_extents);
4092
4093         cur_trans->state =TRANS_STATE_COMPLETED;
4094         wake_up(&cur_trans->commit_wait);
4095
4096         /*
4097         memset(cur_trans, 0, sizeof(*cur_trans));
4098         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4099         */
4100 }
4101
4102 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4103 {
4104         struct btrfs_transaction *t;
4105
4106         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4107
4108         spin_lock(&root->fs_info->trans_lock);
4109         while (!list_empty(&root->fs_info->trans_list)) {
4110                 t = list_first_entry(&root->fs_info->trans_list,
4111                                      struct btrfs_transaction, list);
4112                 if (t->state >= TRANS_STATE_COMMIT_START) {
4113                         atomic_inc(&t->use_count);
4114                         spin_unlock(&root->fs_info->trans_lock);
4115                         btrfs_wait_for_commit(root, t->transid);
4116                         btrfs_put_transaction(t);
4117                         spin_lock(&root->fs_info->trans_lock);
4118                         continue;
4119                 }
4120                 if (t == root->fs_info->running_transaction) {
4121                         t->state = TRANS_STATE_COMMIT_DOING;
4122                         spin_unlock(&root->fs_info->trans_lock);
4123                         /*
4124                          * We wait for 0 num_writers since we don't hold a trans
4125                          * handle open currently for this transaction.
4126                          */
4127                         wait_event(t->writer_wait,
4128                                    atomic_read(&t->num_writers) == 0);
4129                 } else {
4130                         spin_unlock(&root->fs_info->trans_lock);
4131                 }
4132                 btrfs_cleanup_one_transaction(t, root);
4133
4134                 spin_lock(&root->fs_info->trans_lock);
4135                 if (t == root->fs_info->running_transaction)
4136                         root->fs_info->running_transaction = NULL;
4137                 list_del_init(&t->list);
4138                 spin_unlock(&root->fs_info->trans_lock);
4139
4140                 btrfs_put_transaction(t);
4141                 trace_btrfs_transaction_commit(root);
4142                 spin_lock(&root->fs_info->trans_lock);
4143         }
4144         spin_unlock(&root->fs_info->trans_lock);
4145         btrfs_destroy_all_ordered_extents(root->fs_info);
4146         btrfs_destroy_delayed_inodes(root);
4147         btrfs_assert_delayed_root_empty(root);
4148         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4149         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4150         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4151
4152         return 0;
4153 }
4154
4155 static struct extent_io_ops btree_extent_io_ops = {
4156         .readpage_end_io_hook = btree_readpage_end_io_hook,
4157         .readpage_io_failed_hook = btree_io_failed_hook,
4158         .submit_bio_hook = btree_submit_bio_hook,
4159         /* note we're sharing with inode.c for the merge bio hook */
4160         .merge_bio_hook = btrfs_merge_bio_hook,
4161 };