de440ebf5648b059ff3a63022b9015b2a99ed0bf
[linux-block.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 #include "block-group.h"
42 #include "discard.h"
43 #include "space-info.h"
44 #include "zoned.h"
45 #include "subpage.h"
46
47 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
48                                  BTRFS_HEADER_FLAG_RELOC |\
49                                  BTRFS_SUPER_FLAG_ERROR |\
50                                  BTRFS_SUPER_FLAG_SEEDING |\
51                                  BTRFS_SUPER_FLAG_METADUMP |\
52                                  BTRFS_SUPER_FLAG_METADUMP_V2)
53
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57                                       struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60                                         struct extent_io_tree *dirty_pages,
61                                         int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63                                        struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66
67 /*
68  * btrfs_end_io_wq structs are used to do processing in task context when an IO
69  * is complete.  This is used during reads to verify checksums, and it is used
70  * by writes to insert metadata for new file extents after IO is complete.
71  */
72 struct btrfs_end_io_wq {
73         struct bio *bio;
74         bio_end_io_t *end_io;
75         void *private;
76         struct btrfs_fs_info *info;
77         blk_status_t status;
78         enum btrfs_wq_endio_type metadata;
79         struct btrfs_work work;
80 };
81
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83
84 int __init btrfs_end_io_wq_init(void)
85 {
86         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87                                         sizeof(struct btrfs_end_io_wq),
88                                         0,
89                                         SLAB_MEM_SPREAD,
90                                         NULL);
91         if (!btrfs_end_io_wq_cache)
92                 return -ENOMEM;
93         return 0;
94 }
95
96 void __cold btrfs_end_io_wq_exit(void)
97 {
98         kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100
101 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102 {
103         if (fs_info->csum_shash)
104                 crypto_free_shash(fs_info->csum_shash);
105 }
106
107 /*
108  * async submit bios are used to offload expensive checksumming
109  * onto the worker threads.  They checksum file and metadata bios
110  * just before they are sent down the IO stack.
111  */
112 struct async_submit_bio {
113         struct inode *inode;
114         struct bio *bio;
115         extent_submit_bio_start_t *submit_bio_start;
116         int mirror_num;
117
118         /* Optional parameter for submit_bio_start used by direct io */
119         u64 dio_file_offset;
120         struct btrfs_work work;
121         blk_status_t status;
122 };
123
124 /*
125  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
126  * eb, the lockdep key is determined by the btrfs_root it belongs to and
127  * the level the eb occupies in the tree.
128  *
129  * Different roots are used for different purposes and may nest inside each
130  * other and they require separate keysets.  As lockdep keys should be
131  * static, assign keysets according to the purpose of the root as indicated
132  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
133  * roots have separate keysets.
134  *
135  * Lock-nesting across peer nodes is always done with the immediate parent
136  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
137  * subclass to avoid triggering lockdep warning in such cases.
138  *
139  * The key is set by the readpage_end_io_hook after the buffer has passed
140  * csum validation but before the pages are unlocked.  It is also set by
141  * btrfs_init_new_buffer on freshly allocated blocks.
142  *
143  * We also add a check to make sure the highest level of the tree is the
144  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
145  * needs update as well.
146  */
147 #ifdef CONFIG_DEBUG_LOCK_ALLOC
148 # if BTRFS_MAX_LEVEL != 8
149 #  error
150 # endif
151
152 #define DEFINE_LEVEL(stem, level)                                       \
153         .names[level] = "btrfs-" stem "-0" #level,
154
155 #define DEFINE_NAME(stem)                                               \
156         DEFINE_LEVEL(stem, 0)                                           \
157         DEFINE_LEVEL(stem, 1)                                           \
158         DEFINE_LEVEL(stem, 2)                                           \
159         DEFINE_LEVEL(stem, 3)                                           \
160         DEFINE_LEVEL(stem, 4)                                           \
161         DEFINE_LEVEL(stem, 5)                                           \
162         DEFINE_LEVEL(stem, 6)                                           \
163         DEFINE_LEVEL(stem, 7)
164
165 static struct btrfs_lockdep_keyset {
166         u64                     id;             /* root objectid */
167         /* Longest entry: btrfs-free-space-00 */
168         char                    names[BTRFS_MAX_LEVEL][20];
169         struct lock_class_key   keys[BTRFS_MAX_LEVEL];
170 } btrfs_lockdep_keysets[] = {
171         { .id = BTRFS_ROOT_TREE_OBJECTID,       DEFINE_NAME("root")     },
172         { .id = BTRFS_EXTENT_TREE_OBJECTID,     DEFINE_NAME("extent")   },
173         { .id = BTRFS_CHUNK_TREE_OBJECTID,      DEFINE_NAME("chunk")    },
174         { .id = BTRFS_DEV_TREE_OBJECTID,        DEFINE_NAME("dev")      },
175         { .id = BTRFS_CSUM_TREE_OBJECTID,       DEFINE_NAME("csum")     },
176         { .id = BTRFS_QUOTA_TREE_OBJECTID,      DEFINE_NAME("quota")    },
177         { .id = BTRFS_TREE_LOG_OBJECTID,        DEFINE_NAME("log")      },
178         { .id = BTRFS_TREE_RELOC_OBJECTID,      DEFINE_NAME("treloc")   },
179         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc")   },
180         { .id = BTRFS_UUID_TREE_OBJECTID,       DEFINE_NAME("uuid")     },
181         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") },
182         { .id = 0,                              DEFINE_NAME("tree")     },
183 };
184
185 #undef DEFINE_LEVEL
186 #undef DEFINE_NAME
187
188 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
189                                     int level)
190 {
191         struct btrfs_lockdep_keyset *ks;
192
193         BUG_ON(level >= ARRAY_SIZE(ks->keys));
194
195         /* find the matching keyset, id 0 is the default entry */
196         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
197                 if (ks->id == objectid)
198                         break;
199
200         lockdep_set_class_and_name(&eb->lock,
201                                    &ks->keys[level], ks->names[level]);
202 }
203
204 #endif
205
206 /*
207  * Compute the csum of a btree block and store the result to provided buffer.
208  */
209 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
210 {
211         struct btrfs_fs_info *fs_info = buf->fs_info;
212         const int num_pages = num_extent_pages(buf);
213         const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
214         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
215         char *kaddr;
216         int i;
217
218         shash->tfm = fs_info->csum_shash;
219         crypto_shash_init(shash);
220         kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
221         crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
222                             first_page_part - BTRFS_CSUM_SIZE);
223
224         for (i = 1; i < num_pages; i++) {
225                 kaddr = page_address(buf->pages[i]);
226                 crypto_shash_update(shash, kaddr, PAGE_SIZE);
227         }
228         memset(result, 0, BTRFS_CSUM_SIZE);
229         crypto_shash_final(shash, result);
230 }
231
232 /*
233  * we can't consider a given block up to date unless the transid of the
234  * block matches the transid in the parent node's pointer.  This is how we
235  * detect blocks that either didn't get written at all or got written
236  * in the wrong place.
237  */
238 static int verify_parent_transid(struct extent_io_tree *io_tree,
239                                  struct extent_buffer *eb, u64 parent_transid,
240                                  int atomic)
241 {
242         struct extent_state *cached_state = NULL;
243         int ret;
244
245         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
246                 return 0;
247
248         if (atomic)
249                 return -EAGAIN;
250
251         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
252                          &cached_state);
253         if (extent_buffer_uptodate(eb) &&
254             btrfs_header_generation(eb) == parent_transid) {
255                 ret = 0;
256                 goto out;
257         }
258         btrfs_err_rl(eb->fs_info,
259                 "parent transid verify failed on %llu wanted %llu found %llu",
260                         eb->start,
261                         parent_transid, btrfs_header_generation(eb));
262         ret = 1;
263         clear_extent_buffer_uptodate(eb);
264 out:
265         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
266                              &cached_state);
267         return ret;
268 }
269
270 static bool btrfs_supported_super_csum(u16 csum_type)
271 {
272         switch (csum_type) {
273         case BTRFS_CSUM_TYPE_CRC32:
274         case BTRFS_CSUM_TYPE_XXHASH:
275         case BTRFS_CSUM_TYPE_SHA256:
276         case BTRFS_CSUM_TYPE_BLAKE2:
277                 return true;
278         default:
279                 return false;
280         }
281 }
282
283 /*
284  * Return 0 if the superblock checksum type matches the checksum value of that
285  * algorithm. Pass the raw disk superblock data.
286  */
287 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
288                                   char *raw_disk_sb)
289 {
290         struct btrfs_super_block *disk_sb =
291                 (struct btrfs_super_block *)raw_disk_sb;
292         char result[BTRFS_CSUM_SIZE];
293         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
294
295         shash->tfm = fs_info->csum_shash;
296
297         /*
298          * The super_block structure does not span the whole
299          * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
300          * filled with zeros and is included in the checksum.
301          */
302         crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
303                             BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
304
305         if (memcmp(disk_sb->csum, result, fs_info->csum_size))
306                 return 1;
307
308         return 0;
309 }
310
311 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
312                            struct btrfs_key *first_key, u64 parent_transid)
313 {
314         struct btrfs_fs_info *fs_info = eb->fs_info;
315         int found_level;
316         struct btrfs_key found_key;
317         int ret;
318
319         found_level = btrfs_header_level(eb);
320         if (found_level != level) {
321                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
322                      KERN_ERR "BTRFS: tree level check failed\n");
323                 btrfs_err(fs_info,
324 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
325                           eb->start, level, found_level);
326                 return -EIO;
327         }
328
329         if (!first_key)
330                 return 0;
331
332         /*
333          * For live tree block (new tree blocks in current transaction),
334          * we need proper lock context to avoid race, which is impossible here.
335          * So we only checks tree blocks which is read from disk, whose
336          * generation <= fs_info->last_trans_committed.
337          */
338         if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
339                 return 0;
340
341         /* We have @first_key, so this @eb must have at least one item */
342         if (btrfs_header_nritems(eb) == 0) {
343                 btrfs_err(fs_info,
344                 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
345                           eb->start);
346                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
347                 return -EUCLEAN;
348         }
349
350         if (found_level)
351                 btrfs_node_key_to_cpu(eb, &found_key, 0);
352         else
353                 btrfs_item_key_to_cpu(eb, &found_key, 0);
354         ret = btrfs_comp_cpu_keys(first_key, &found_key);
355
356         if (ret) {
357                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
358                      KERN_ERR "BTRFS: tree first key check failed\n");
359                 btrfs_err(fs_info,
360 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
361                           eb->start, parent_transid, first_key->objectid,
362                           first_key->type, first_key->offset,
363                           found_key.objectid, found_key.type,
364                           found_key.offset);
365         }
366         return ret;
367 }
368
369 /*
370  * helper to read a given tree block, doing retries as required when
371  * the checksums don't match and we have alternate mirrors to try.
372  *
373  * @parent_transid:     expected transid, skip check if 0
374  * @level:              expected level, mandatory check
375  * @first_key:          expected key of first slot, skip check if NULL
376  */
377 int btrfs_read_extent_buffer(struct extent_buffer *eb,
378                              u64 parent_transid, int level,
379                              struct btrfs_key *first_key)
380 {
381         struct btrfs_fs_info *fs_info = eb->fs_info;
382         struct extent_io_tree *io_tree;
383         int failed = 0;
384         int ret;
385         int num_copies = 0;
386         int mirror_num = 0;
387         int failed_mirror = 0;
388
389         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
390         while (1) {
391                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
392                 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
393                 if (!ret) {
394                         if (verify_parent_transid(io_tree, eb,
395                                                    parent_transid, 0))
396                                 ret = -EIO;
397                         else if (btrfs_verify_level_key(eb, level,
398                                                 first_key, parent_transid))
399                                 ret = -EUCLEAN;
400                         else
401                                 break;
402                 }
403
404                 num_copies = btrfs_num_copies(fs_info,
405                                               eb->start, eb->len);
406                 if (num_copies == 1)
407                         break;
408
409                 if (!failed_mirror) {
410                         failed = 1;
411                         failed_mirror = eb->read_mirror;
412                 }
413
414                 mirror_num++;
415                 if (mirror_num == failed_mirror)
416                         mirror_num++;
417
418                 if (mirror_num > num_copies)
419                         break;
420         }
421
422         if (failed && !ret && failed_mirror)
423                 btrfs_repair_eb_io_failure(eb, failed_mirror);
424
425         return ret;
426 }
427
428 static int csum_one_extent_buffer(struct extent_buffer *eb)
429 {
430         struct btrfs_fs_info *fs_info = eb->fs_info;
431         u8 result[BTRFS_CSUM_SIZE];
432         int ret;
433
434         ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
435                                     offsetof(struct btrfs_header, fsid),
436                                     BTRFS_FSID_SIZE) == 0);
437         csum_tree_block(eb, result);
438
439         if (btrfs_header_level(eb))
440                 ret = btrfs_check_node(eb);
441         else
442                 ret = btrfs_check_leaf_full(eb);
443
444         if (ret < 0)
445                 goto error;
446
447         /*
448          * Also check the generation, the eb reached here must be newer than
449          * last committed. Or something seriously wrong happened.
450          */
451         if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
452                 ret = -EUCLEAN;
453                 btrfs_err(fs_info,
454                         "block=%llu bad generation, have %llu expect > %llu",
455                           eb->start, btrfs_header_generation(eb),
456                           fs_info->last_trans_committed);
457                 goto error;
458         }
459         write_extent_buffer(eb, result, 0, fs_info->csum_size);
460
461         return 0;
462
463 error:
464         btrfs_print_tree(eb, 0);
465         btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
466                   eb->start);
467         WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
468         return ret;
469 }
470
471 /* Checksum all dirty extent buffers in one bio_vec */
472 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
473                                       struct bio_vec *bvec)
474 {
475         struct page *page = bvec->bv_page;
476         u64 bvec_start = page_offset(page) + bvec->bv_offset;
477         u64 cur;
478         int ret = 0;
479
480         for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
481              cur += fs_info->nodesize) {
482                 struct extent_buffer *eb;
483                 bool uptodate;
484
485                 eb = find_extent_buffer(fs_info, cur);
486                 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
487                                                        fs_info->nodesize);
488
489                 /* A dirty eb shouldn't disappear from buffer_radix */
490                 if (WARN_ON(!eb))
491                         return -EUCLEAN;
492
493                 if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
494                         free_extent_buffer(eb);
495                         return -EUCLEAN;
496                 }
497                 if (WARN_ON(!uptodate)) {
498                         free_extent_buffer(eb);
499                         return -EUCLEAN;
500                 }
501
502                 ret = csum_one_extent_buffer(eb);
503                 free_extent_buffer(eb);
504                 if (ret < 0)
505                         return ret;
506         }
507         return ret;
508 }
509
510 /*
511  * Checksum a dirty tree block before IO.  This has extra checks to make sure
512  * we only fill in the checksum field in the first page of a multi-page block.
513  * For subpage extent buffers we need bvec to also read the offset in the page.
514  */
515 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
516 {
517         struct page *page = bvec->bv_page;
518         u64 start = page_offset(page);
519         u64 found_start;
520         struct extent_buffer *eb;
521
522         if (fs_info->nodesize < PAGE_SIZE)
523                 return csum_dirty_subpage_buffers(fs_info, bvec);
524
525         eb = (struct extent_buffer *)page->private;
526         if (page != eb->pages[0])
527                 return 0;
528
529         found_start = btrfs_header_bytenr(eb);
530
531         if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
532                 WARN_ON(found_start != 0);
533                 return 0;
534         }
535
536         /*
537          * Please do not consolidate these warnings into a single if.
538          * It is useful to know what went wrong.
539          */
540         if (WARN_ON(found_start != start))
541                 return -EUCLEAN;
542         if (WARN_ON(!PageUptodate(page)))
543                 return -EUCLEAN;
544
545         return csum_one_extent_buffer(eb);
546 }
547
548 static int check_tree_block_fsid(struct extent_buffer *eb)
549 {
550         struct btrfs_fs_info *fs_info = eb->fs_info;
551         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
552         u8 fsid[BTRFS_FSID_SIZE];
553         u8 *metadata_uuid;
554
555         read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
556                            BTRFS_FSID_SIZE);
557         /*
558          * Checking the incompat flag is only valid for the current fs. For
559          * seed devices it's forbidden to have their uuid changed so reading
560          * ->fsid in this case is fine
561          */
562         if (btrfs_fs_incompat(fs_info, METADATA_UUID))
563                 metadata_uuid = fs_devices->metadata_uuid;
564         else
565                 metadata_uuid = fs_devices->fsid;
566
567         if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
568                 return 0;
569
570         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
571                 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
572                         return 0;
573
574         return 1;
575 }
576
577 /* Do basic extent buffer checks at read time */
578 static int validate_extent_buffer(struct extent_buffer *eb)
579 {
580         struct btrfs_fs_info *fs_info = eb->fs_info;
581         u64 found_start;
582         const u32 csum_size = fs_info->csum_size;
583         u8 found_level;
584         u8 result[BTRFS_CSUM_SIZE];
585         const u8 *header_csum;
586         int ret = 0;
587
588         found_start = btrfs_header_bytenr(eb);
589         if (found_start != eb->start) {
590                 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
591                              eb->start, found_start);
592                 ret = -EIO;
593                 goto out;
594         }
595         if (check_tree_block_fsid(eb)) {
596                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
597                              eb->start);
598                 ret = -EIO;
599                 goto out;
600         }
601         found_level = btrfs_header_level(eb);
602         if (found_level >= BTRFS_MAX_LEVEL) {
603                 btrfs_err(fs_info, "bad tree block level %d on %llu",
604                           (int)btrfs_header_level(eb), eb->start);
605                 ret = -EIO;
606                 goto out;
607         }
608
609         csum_tree_block(eb, result);
610         header_csum = page_address(eb->pages[0]) +
611                 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
612
613         if (memcmp(result, header_csum, csum_size) != 0) {
614                 btrfs_warn_rl(fs_info,
615         "checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
616                               eb->start,
617                               CSUM_FMT_VALUE(csum_size, header_csum),
618                               CSUM_FMT_VALUE(csum_size, result),
619                               btrfs_header_level(eb));
620                 ret = -EUCLEAN;
621                 goto out;
622         }
623
624         /*
625          * If this is a leaf block and it is corrupt, set the corrupt bit so
626          * that we don't try and read the other copies of this block, just
627          * return -EIO.
628          */
629         if (found_level == 0 && btrfs_check_leaf_full(eb)) {
630                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
631                 ret = -EIO;
632         }
633
634         if (found_level > 0 && btrfs_check_node(eb))
635                 ret = -EIO;
636
637         if (!ret)
638                 set_extent_buffer_uptodate(eb);
639         else
640                 btrfs_err(fs_info,
641                           "block=%llu read time tree block corruption detected",
642                           eb->start);
643 out:
644         return ret;
645 }
646
647 static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
648                                    int mirror)
649 {
650         struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
651         struct extent_buffer *eb;
652         bool reads_done;
653         int ret = 0;
654
655         /*
656          * We don't allow bio merge for subpage metadata read, so we should
657          * only get one eb for each endio hook.
658          */
659         ASSERT(end == start + fs_info->nodesize - 1);
660         ASSERT(PagePrivate(page));
661
662         eb = find_extent_buffer(fs_info, start);
663         /*
664          * When we are reading one tree block, eb must have been inserted into
665          * the radix tree. If not, something is wrong.
666          */
667         ASSERT(eb);
668
669         reads_done = atomic_dec_and_test(&eb->io_pages);
670         /* Subpage read must finish in page read */
671         ASSERT(reads_done);
672
673         eb->read_mirror = mirror;
674         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
675                 ret = -EIO;
676                 goto err;
677         }
678         ret = validate_extent_buffer(eb);
679         if (ret < 0)
680                 goto err;
681
682         set_extent_buffer_uptodate(eb);
683
684         free_extent_buffer(eb);
685         return ret;
686 err:
687         /*
688          * end_bio_extent_readpage decrements io_pages in case of error,
689          * make sure it has something to decrement.
690          */
691         atomic_inc(&eb->io_pages);
692         clear_extent_buffer_uptodate(eb);
693         free_extent_buffer(eb);
694         return ret;
695 }
696
697 int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
698                                    struct page *page, u64 start, u64 end,
699                                    int mirror)
700 {
701         struct extent_buffer *eb;
702         int ret = 0;
703         int reads_done;
704
705         ASSERT(page->private);
706
707         if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
708                 return validate_subpage_buffer(page, start, end, mirror);
709
710         eb = (struct extent_buffer *)page->private;
711
712         /*
713          * The pending IO might have been the only thing that kept this buffer
714          * in memory.  Make sure we have a ref for all this other checks
715          */
716         atomic_inc(&eb->refs);
717
718         reads_done = atomic_dec_and_test(&eb->io_pages);
719         if (!reads_done)
720                 goto err;
721
722         eb->read_mirror = mirror;
723         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
724                 ret = -EIO;
725                 goto err;
726         }
727         ret = validate_extent_buffer(eb);
728 err:
729         if (ret) {
730                 /*
731                  * our io error hook is going to dec the io pages
732                  * again, we have to make sure it has something
733                  * to decrement
734                  */
735                 atomic_inc(&eb->io_pages);
736                 clear_extent_buffer_uptodate(eb);
737         }
738         free_extent_buffer(eb);
739
740         return ret;
741 }
742
743 static void end_workqueue_bio(struct bio *bio)
744 {
745         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
746         struct btrfs_fs_info *fs_info;
747         struct btrfs_workqueue *wq;
748
749         fs_info = end_io_wq->info;
750         end_io_wq->status = bio->bi_status;
751
752         if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
753                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
754                         wq = fs_info->endio_meta_write_workers;
755                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
756                         wq = fs_info->endio_freespace_worker;
757                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
758                         wq = fs_info->endio_raid56_workers;
759                 else
760                         wq = fs_info->endio_write_workers;
761         } else {
762                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
763                         wq = fs_info->endio_raid56_workers;
764                 else if (end_io_wq->metadata)
765                         wq = fs_info->endio_meta_workers;
766                 else
767                         wq = fs_info->endio_workers;
768         }
769
770         btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
771         btrfs_queue_work(wq, &end_io_wq->work);
772 }
773
774 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
775                         enum btrfs_wq_endio_type metadata)
776 {
777         struct btrfs_end_io_wq *end_io_wq;
778
779         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
780         if (!end_io_wq)
781                 return BLK_STS_RESOURCE;
782
783         end_io_wq->private = bio->bi_private;
784         end_io_wq->end_io = bio->bi_end_io;
785         end_io_wq->info = info;
786         end_io_wq->status = 0;
787         end_io_wq->bio = bio;
788         end_io_wq->metadata = metadata;
789
790         bio->bi_private = end_io_wq;
791         bio->bi_end_io = end_workqueue_bio;
792         return 0;
793 }
794
795 static void run_one_async_start(struct btrfs_work *work)
796 {
797         struct async_submit_bio *async;
798         blk_status_t ret;
799
800         async = container_of(work, struct  async_submit_bio, work);
801         ret = async->submit_bio_start(async->inode, async->bio,
802                                       async->dio_file_offset);
803         if (ret)
804                 async->status = ret;
805 }
806
807 /*
808  * In order to insert checksums into the metadata in large chunks, we wait
809  * until bio submission time.   All the pages in the bio are checksummed and
810  * sums are attached onto the ordered extent record.
811  *
812  * At IO completion time the csums attached on the ordered extent record are
813  * inserted into the tree.
814  */
815 static void run_one_async_done(struct btrfs_work *work)
816 {
817         struct async_submit_bio *async;
818         struct inode *inode;
819         blk_status_t ret;
820
821         async = container_of(work, struct  async_submit_bio, work);
822         inode = async->inode;
823
824         /* If an error occurred we just want to clean up the bio and move on */
825         if (async->status) {
826                 async->bio->bi_status = async->status;
827                 bio_endio(async->bio);
828                 return;
829         }
830
831         /*
832          * All of the bios that pass through here are from async helpers.
833          * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
834          * This changes nothing when cgroups aren't in use.
835          */
836         async->bio->bi_opf |= REQ_CGROUP_PUNT;
837         ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
838         if (ret) {
839                 async->bio->bi_status = ret;
840                 bio_endio(async->bio);
841         }
842 }
843
844 static void run_one_async_free(struct btrfs_work *work)
845 {
846         struct async_submit_bio *async;
847
848         async = container_of(work, struct  async_submit_bio, work);
849         kfree(async);
850 }
851
852 blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
853                                  int mirror_num, u64 dio_file_offset,
854                                  extent_submit_bio_start_t *submit_bio_start)
855 {
856         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
857         struct async_submit_bio *async;
858
859         async = kmalloc(sizeof(*async), GFP_NOFS);
860         if (!async)
861                 return BLK_STS_RESOURCE;
862
863         async->inode = inode;
864         async->bio = bio;
865         async->mirror_num = mirror_num;
866         async->submit_bio_start = submit_bio_start;
867
868         btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
869                         run_one_async_free);
870
871         async->dio_file_offset = dio_file_offset;
872
873         async->status = 0;
874
875         if (op_is_sync(bio->bi_opf))
876                 btrfs_queue_work(fs_info->hipri_workers, &async->work);
877         else
878                 btrfs_queue_work(fs_info->workers, &async->work);
879         return 0;
880 }
881
882 static blk_status_t btree_csum_one_bio(struct bio *bio)
883 {
884         struct bio_vec *bvec;
885         struct btrfs_root *root;
886         int ret = 0;
887         struct bvec_iter_all iter_all;
888
889         ASSERT(!bio_flagged(bio, BIO_CLONED));
890         bio_for_each_segment_all(bvec, bio, iter_all) {
891                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
892                 ret = csum_dirty_buffer(root->fs_info, bvec);
893                 if (ret)
894                         break;
895         }
896
897         return errno_to_blk_status(ret);
898 }
899
900 static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
901                                            u64 dio_file_offset)
902 {
903         /*
904          * when we're called for a write, we're already in the async
905          * submission context.  Just jump into btrfs_map_bio
906          */
907         return btree_csum_one_bio(bio);
908 }
909
910 static bool should_async_write(struct btrfs_fs_info *fs_info,
911                              struct btrfs_inode *bi)
912 {
913         if (btrfs_is_zoned(fs_info))
914                 return false;
915         if (atomic_read(&bi->sync_writers))
916                 return false;
917         if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
918                 return false;
919         return true;
920 }
921
922 void btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, int mirror_num)
923 {
924         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
925         blk_status_t ret;
926
927         if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
928                 /*
929                  * called for a read, do the setup so that checksum validation
930                  * can happen in the async kernel threads
931                  */
932                 ret = btrfs_bio_wq_end_io(fs_info, bio,
933                                           BTRFS_WQ_ENDIO_METADATA);
934                 if (!ret)
935                         ret = btrfs_map_bio(fs_info, bio, mirror_num);
936         } else if (!should_async_write(fs_info, BTRFS_I(inode))) {
937                 ret = btree_csum_one_bio(bio);
938                 if (!ret)
939                         ret = btrfs_map_bio(fs_info, bio, mirror_num);
940         } else {
941                 /*
942                  * kthread helpers are used to submit writes so that
943                  * checksumming can happen in parallel across all CPUs
944                  */
945                 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
946                                           btree_submit_bio_start);
947         }
948
949         if (ret) {
950                 bio->bi_status = ret;
951                 bio_endio(bio);
952         }
953 }
954
955 #ifdef CONFIG_MIGRATION
956 static int btree_migratepage(struct address_space *mapping,
957                         struct page *newpage, struct page *page,
958                         enum migrate_mode mode)
959 {
960         /*
961          * we can't safely write a btree page from here,
962          * we haven't done the locking hook
963          */
964         if (PageDirty(page))
965                 return -EAGAIN;
966         /*
967          * Buffers may be managed in a filesystem specific way.
968          * We must have no buffers or drop them.
969          */
970         if (page_has_private(page) &&
971             !try_to_release_page(page, GFP_KERNEL))
972                 return -EAGAIN;
973         return migrate_page(mapping, newpage, page, mode);
974 }
975 #endif
976
977
978 static int btree_writepages(struct address_space *mapping,
979                             struct writeback_control *wbc)
980 {
981         struct btrfs_fs_info *fs_info;
982         int ret;
983
984         if (wbc->sync_mode == WB_SYNC_NONE) {
985
986                 if (wbc->for_kupdate)
987                         return 0;
988
989                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
990                 /* this is a bit racy, but that's ok */
991                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
992                                              BTRFS_DIRTY_METADATA_THRESH,
993                                              fs_info->dirty_metadata_batch);
994                 if (ret < 0)
995                         return 0;
996         }
997         return btree_write_cache_pages(mapping, wbc);
998 }
999
1000 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
1001 {
1002         if (folio_test_writeback(folio) || folio_test_dirty(folio))
1003                 return false;
1004
1005         return try_release_extent_buffer(&folio->page);
1006 }
1007
1008 static void btree_invalidate_folio(struct folio *folio, size_t offset,
1009                                  size_t length)
1010 {
1011         struct extent_io_tree *tree;
1012         tree = &BTRFS_I(folio->mapping->host)->io_tree;
1013         extent_invalidate_folio(tree, folio, offset);
1014         btree_release_folio(folio, GFP_NOFS);
1015         if (folio_get_private(folio)) {
1016                 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
1017                            "folio private not zero on folio %llu",
1018                            (unsigned long long)folio_pos(folio));
1019                 folio_detach_private(folio);
1020         }
1021 }
1022
1023 #ifdef DEBUG
1024 static bool btree_dirty_folio(struct address_space *mapping,
1025                 struct folio *folio)
1026 {
1027         struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
1028         struct btrfs_subpage *subpage;
1029         struct extent_buffer *eb;
1030         int cur_bit = 0;
1031         u64 page_start = folio_pos(folio);
1032
1033         if (fs_info->sectorsize == PAGE_SIZE) {
1034                 eb = folio_get_private(folio);
1035                 BUG_ON(!eb);
1036                 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1037                 BUG_ON(!atomic_read(&eb->refs));
1038                 btrfs_assert_tree_write_locked(eb);
1039                 return filemap_dirty_folio(mapping, folio);
1040         }
1041         subpage = folio_get_private(folio);
1042
1043         ASSERT(subpage->dirty_bitmap);
1044         while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
1045                 unsigned long flags;
1046                 u64 cur;
1047                 u16 tmp = (1 << cur_bit);
1048
1049                 spin_lock_irqsave(&subpage->lock, flags);
1050                 if (!(tmp & subpage->dirty_bitmap)) {
1051                         spin_unlock_irqrestore(&subpage->lock, flags);
1052                         cur_bit++;
1053                         continue;
1054                 }
1055                 spin_unlock_irqrestore(&subpage->lock, flags);
1056                 cur = page_start + cur_bit * fs_info->sectorsize;
1057
1058                 eb = find_extent_buffer(fs_info, cur);
1059                 ASSERT(eb);
1060                 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1061                 ASSERT(atomic_read(&eb->refs));
1062                 btrfs_assert_tree_write_locked(eb);
1063                 free_extent_buffer(eb);
1064
1065                 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
1066         }
1067         return filemap_dirty_folio(mapping, folio);
1068 }
1069 #else
1070 #define btree_dirty_folio filemap_dirty_folio
1071 #endif
1072
1073 static const struct address_space_operations btree_aops = {
1074         .writepages     = btree_writepages,
1075         .release_folio  = btree_release_folio,
1076         .invalidate_folio = btree_invalidate_folio,
1077 #ifdef CONFIG_MIGRATION
1078         .migratepage    = btree_migratepage,
1079 #endif
1080         .dirty_folio = btree_dirty_folio,
1081 };
1082
1083 struct extent_buffer *btrfs_find_create_tree_block(
1084                                                 struct btrfs_fs_info *fs_info,
1085                                                 u64 bytenr, u64 owner_root,
1086                                                 int level)
1087 {
1088         if (btrfs_is_testing(fs_info))
1089                 return alloc_test_extent_buffer(fs_info, bytenr);
1090         return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
1091 }
1092
1093 /*
1094  * Read tree block at logical address @bytenr and do variant basic but critical
1095  * verification.
1096  *
1097  * @owner_root:         the objectid of the root owner for this block.
1098  * @parent_transid:     expected transid of this tree block, skip check if 0
1099  * @level:              expected level, mandatory check
1100  * @first_key:          expected key in slot 0, skip check if NULL
1101  */
1102 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1103                                       u64 owner_root, u64 parent_transid,
1104                                       int level, struct btrfs_key *first_key)
1105 {
1106         struct extent_buffer *buf = NULL;
1107         int ret;
1108
1109         buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
1110         if (IS_ERR(buf))
1111                 return buf;
1112
1113         ret = btrfs_read_extent_buffer(buf, parent_transid, level, first_key);
1114         if (ret) {
1115                 free_extent_buffer_stale(buf);
1116                 return ERR_PTR(ret);
1117         }
1118         if (btrfs_check_eb_owner(buf, owner_root)) {
1119                 free_extent_buffer_stale(buf);
1120                 return ERR_PTR(-EUCLEAN);
1121         }
1122         return buf;
1123
1124 }
1125
1126 void btrfs_clean_tree_block(struct extent_buffer *buf)
1127 {
1128         struct btrfs_fs_info *fs_info = buf->fs_info;
1129         if (btrfs_header_generation(buf) ==
1130             fs_info->running_transaction->transid) {
1131                 btrfs_assert_tree_write_locked(buf);
1132
1133                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1134                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1135                                                  -buf->len,
1136                                                  fs_info->dirty_metadata_batch);
1137                         clear_extent_buffer_dirty(buf);
1138                 }
1139         }
1140 }
1141
1142 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1143                          u64 objectid)
1144 {
1145         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1146
1147         memset(&root->root_key, 0, sizeof(root->root_key));
1148         memset(&root->root_item, 0, sizeof(root->root_item));
1149         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1150         root->fs_info = fs_info;
1151         root->root_key.objectid = objectid;
1152         root->node = NULL;
1153         root->commit_root = NULL;
1154         root->state = 0;
1155         RB_CLEAR_NODE(&root->rb_node);
1156
1157         root->last_trans = 0;
1158         root->free_objectid = 0;
1159         root->nr_delalloc_inodes = 0;
1160         root->nr_ordered_extents = 0;
1161         root->inode_tree = RB_ROOT;
1162         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1163
1164         btrfs_init_root_block_rsv(root);
1165
1166         INIT_LIST_HEAD(&root->dirty_list);
1167         INIT_LIST_HEAD(&root->root_list);
1168         INIT_LIST_HEAD(&root->delalloc_inodes);
1169         INIT_LIST_HEAD(&root->delalloc_root);
1170         INIT_LIST_HEAD(&root->ordered_extents);
1171         INIT_LIST_HEAD(&root->ordered_root);
1172         INIT_LIST_HEAD(&root->reloc_dirty_list);
1173         INIT_LIST_HEAD(&root->logged_list[0]);
1174         INIT_LIST_HEAD(&root->logged_list[1]);
1175         spin_lock_init(&root->inode_lock);
1176         spin_lock_init(&root->delalloc_lock);
1177         spin_lock_init(&root->ordered_extent_lock);
1178         spin_lock_init(&root->accounting_lock);
1179         spin_lock_init(&root->log_extents_lock[0]);
1180         spin_lock_init(&root->log_extents_lock[1]);
1181         spin_lock_init(&root->qgroup_meta_rsv_lock);
1182         mutex_init(&root->objectid_mutex);
1183         mutex_init(&root->log_mutex);
1184         mutex_init(&root->ordered_extent_mutex);
1185         mutex_init(&root->delalloc_mutex);
1186         init_waitqueue_head(&root->qgroup_flush_wait);
1187         init_waitqueue_head(&root->log_writer_wait);
1188         init_waitqueue_head(&root->log_commit_wait[0]);
1189         init_waitqueue_head(&root->log_commit_wait[1]);
1190         INIT_LIST_HEAD(&root->log_ctxs[0]);
1191         INIT_LIST_HEAD(&root->log_ctxs[1]);
1192         atomic_set(&root->log_commit[0], 0);
1193         atomic_set(&root->log_commit[1], 0);
1194         atomic_set(&root->log_writers, 0);
1195         atomic_set(&root->log_batch, 0);
1196         refcount_set(&root->refs, 1);
1197         atomic_set(&root->snapshot_force_cow, 0);
1198         atomic_set(&root->nr_swapfiles, 0);
1199         root->log_transid = 0;
1200         root->log_transid_committed = -1;
1201         root->last_log_commit = 0;
1202         root->anon_dev = 0;
1203         if (!dummy) {
1204                 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1205                                     IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1206                 extent_io_tree_init(fs_info, &root->log_csum_range,
1207                                     IO_TREE_LOG_CSUM_RANGE, NULL);
1208         }
1209
1210         spin_lock_init(&root->root_item_lock);
1211         btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1212 #ifdef CONFIG_BTRFS_DEBUG
1213         INIT_LIST_HEAD(&root->leak_list);
1214         spin_lock(&fs_info->fs_roots_radix_lock);
1215         list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1216         spin_unlock(&fs_info->fs_roots_radix_lock);
1217 #endif
1218 }
1219
1220 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1221                                            u64 objectid, gfp_t flags)
1222 {
1223         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1224         if (root)
1225                 __setup_root(root, fs_info, objectid);
1226         return root;
1227 }
1228
1229 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1230 /* Should only be used by the testing infrastructure */
1231 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1232 {
1233         struct btrfs_root *root;
1234
1235         if (!fs_info)
1236                 return ERR_PTR(-EINVAL);
1237
1238         root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1239         if (!root)
1240                 return ERR_PTR(-ENOMEM);
1241
1242         /* We don't use the stripesize in selftest, set it as sectorsize */
1243         root->alloc_bytenr = 0;
1244
1245         return root;
1246 }
1247 #endif
1248
1249 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
1250 {
1251         const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
1252         const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
1253
1254         return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
1255 }
1256
1257 static int global_root_key_cmp(const void *k, const struct rb_node *node)
1258 {
1259         const struct btrfs_key *key = k;
1260         const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
1261
1262         return btrfs_comp_cpu_keys(key, &root->root_key);
1263 }
1264
1265 int btrfs_global_root_insert(struct btrfs_root *root)
1266 {
1267         struct btrfs_fs_info *fs_info = root->fs_info;
1268         struct rb_node *tmp;
1269
1270         write_lock(&fs_info->global_root_lock);
1271         tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
1272         write_unlock(&fs_info->global_root_lock);
1273         ASSERT(!tmp);
1274
1275         return tmp ? -EEXIST : 0;
1276 }
1277
1278 void btrfs_global_root_delete(struct btrfs_root *root)
1279 {
1280         struct btrfs_fs_info *fs_info = root->fs_info;
1281
1282         write_lock(&fs_info->global_root_lock);
1283         rb_erase(&root->rb_node, &fs_info->global_root_tree);
1284         write_unlock(&fs_info->global_root_lock);
1285 }
1286
1287 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
1288                                      struct btrfs_key *key)
1289 {
1290         struct rb_node *node;
1291         struct btrfs_root *root = NULL;
1292
1293         read_lock(&fs_info->global_root_lock);
1294         node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
1295         if (node)
1296                 root = container_of(node, struct btrfs_root, rb_node);
1297         read_unlock(&fs_info->global_root_lock);
1298
1299         return root;
1300 }
1301
1302 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
1303 {
1304         struct btrfs_block_group *block_group;
1305         u64 ret;
1306
1307         if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1308                 return 0;
1309
1310         if (bytenr)
1311                 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1312         else
1313                 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
1314         ASSERT(block_group);
1315         if (!block_group)
1316                 return 0;
1317         ret = block_group->global_root_id;
1318         btrfs_put_block_group(block_group);
1319
1320         return ret;
1321 }
1322
1323 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1324 {
1325         struct btrfs_key key = {
1326                 .objectid = BTRFS_CSUM_TREE_OBJECTID,
1327                 .type = BTRFS_ROOT_ITEM_KEY,
1328                 .offset = btrfs_global_root_id(fs_info, bytenr),
1329         };
1330
1331         return btrfs_global_root(fs_info, &key);
1332 }
1333
1334 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1335 {
1336         struct btrfs_key key = {
1337                 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
1338                 .type = BTRFS_ROOT_ITEM_KEY,
1339                 .offset = btrfs_global_root_id(fs_info, bytenr),
1340         };
1341
1342         return btrfs_global_root(fs_info, &key);
1343 }
1344
1345 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1346                                      u64 objectid)
1347 {
1348         struct btrfs_fs_info *fs_info = trans->fs_info;
1349         struct extent_buffer *leaf;
1350         struct btrfs_root *tree_root = fs_info->tree_root;
1351         struct btrfs_root *root;
1352         struct btrfs_key key;
1353         unsigned int nofs_flag;
1354         int ret = 0;
1355
1356         /*
1357          * We're holding a transaction handle, so use a NOFS memory allocation
1358          * context to avoid deadlock if reclaim happens.
1359          */
1360         nofs_flag = memalloc_nofs_save();
1361         root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1362         memalloc_nofs_restore(nofs_flag);
1363         if (!root)
1364                 return ERR_PTR(-ENOMEM);
1365
1366         root->root_key.objectid = objectid;
1367         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1368         root->root_key.offset = 0;
1369
1370         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1371                                       BTRFS_NESTING_NORMAL);
1372         if (IS_ERR(leaf)) {
1373                 ret = PTR_ERR(leaf);
1374                 leaf = NULL;
1375                 goto fail_unlock;
1376         }
1377
1378         root->node = leaf;
1379         btrfs_mark_buffer_dirty(leaf);
1380
1381         root->commit_root = btrfs_root_node(root);
1382         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1383
1384         btrfs_set_root_flags(&root->root_item, 0);
1385         btrfs_set_root_limit(&root->root_item, 0);
1386         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1387         btrfs_set_root_generation(&root->root_item, trans->transid);
1388         btrfs_set_root_level(&root->root_item, 0);
1389         btrfs_set_root_refs(&root->root_item, 1);
1390         btrfs_set_root_used(&root->root_item, leaf->len);
1391         btrfs_set_root_last_snapshot(&root->root_item, 0);
1392         btrfs_set_root_dirid(&root->root_item, 0);
1393         if (is_fstree(objectid))
1394                 generate_random_guid(root->root_item.uuid);
1395         else
1396                 export_guid(root->root_item.uuid, &guid_null);
1397         btrfs_set_root_drop_level(&root->root_item, 0);
1398
1399         btrfs_tree_unlock(leaf);
1400
1401         key.objectid = objectid;
1402         key.type = BTRFS_ROOT_ITEM_KEY;
1403         key.offset = 0;
1404         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1405         if (ret)
1406                 goto fail;
1407
1408         return root;
1409
1410 fail_unlock:
1411         if (leaf)
1412                 btrfs_tree_unlock(leaf);
1413 fail:
1414         btrfs_put_root(root);
1415
1416         return ERR_PTR(ret);
1417 }
1418
1419 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1420                                          struct btrfs_fs_info *fs_info)
1421 {
1422         struct btrfs_root *root;
1423
1424         root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1425         if (!root)
1426                 return ERR_PTR(-ENOMEM);
1427
1428         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1429         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1430         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1431
1432         return root;
1433 }
1434
1435 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1436                               struct btrfs_root *root)
1437 {
1438         struct extent_buffer *leaf;
1439
1440         /*
1441          * DON'T set SHAREABLE bit for log trees.
1442          *
1443          * Log trees are not exposed to user space thus can't be snapshotted,
1444          * and they go away before a real commit is actually done.
1445          *
1446          * They do store pointers to file data extents, and those reference
1447          * counts still get updated (along with back refs to the log tree).
1448          */
1449
1450         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1451                         NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1452         if (IS_ERR(leaf))
1453                 return PTR_ERR(leaf);
1454
1455         root->node = leaf;
1456
1457         btrfs_mark_buffer_dirty(root->node);
1458         btrfs_tree_unlock(root->node);
1459
1460         return 0;
1461 }
1462
1463 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1464                              struct btrfs_fs_info *fs_info)
1465 {
1466         struct btrfs_root *log_root;
1467
1468         log_root = alloc_log_tree(trans, fs_info);
1469         if (IS_ERR(log_root))
1470                 return PTR_ERR(log_root);
1471
1472         if (!btrfs_is_zoned(fs_info)) {
1473                 int ret = btrfs_alloc_log_tree_node(trans, log_root);
1474
1475                 if (ret) {
1476                         btrfs_put_root(log_root);
1477                         return ret;
1478                 }
1479         }
1480
1481         WARN_ON(fs_info->log_root_tree);
1482         fs_info->log_root_tree = log_root;
1483         return 0;
1484 }
1485
1486 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1487                        struct btrfs_root *root)
1488 {
1489         struct btrfs_fs_info *fs_info = root->fs_info;
1490         struct btrfs_root *log_root;
1491         struct btrfs_inode_item *inode_item;
1492         int ret;
1493
1494         log_root = alloc_log_tree(trans, fs_info);
1495         if (IS_ERR(log_root))
1496                 return PTR_ERR(log_root);
1497
1498         ret = btrfs_alloc_log_tree_node(trans, log_root);
1499         if (ret) {
1500                 btrfs_put_root(log_root);
1501                 return ret;
1502         }
1503
1504         log_root->last_trans = trans->transid;
1505         log_root->root_key.offset = root->root_key.objectid;
1506
1507         inode_item = &log_root->root_item.inode;
1508         btrfs_set_stack_inode_generation(inode_item, 1);
1509         btrfs_set_stack_inode_size(inode_item, 3);
1510         btrfs_set_stack_inode_nlink(inode_item, 1);
1511         btrfs_set_stack_inode_nbytes(inode_item,
1512                                      fs_info->nodesize);
1513         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1514
1515         btrfs_set_root_node(&log_root->root_item, log_root->node);
1516
1517         WARN_ON(root->log_root);
1518         root->log_root = log_root;
1519         root->log_transid = 0;
1520         root->log_transid_committed = -1;
1521         root->last_log_commit = 0;
1522         return 0;
1523 }
1524
1525 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1526                                               struct btrfs_path *path,
1527                                               struct btrfs_key *key)
1528 {
1529         struct btrfs_root *root;
1530         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1531         u64 generation;
1532         int ret;
1533         int level;
1534
1535         root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1536         if (!root)
1537                 return ERR_PTR(-ENOMEM);
1538
1539         ret = btrfs_find_root(tree_root, key, path,
1540                               &root->root_item, &root->root_key);
1541         if (ret) {
1542                 if (ret > 0)
1543                         ret = -ENOENT;
1544                 goto fail;
1545         }
1546
1547         generation = btrfs_root_generation(&root->root_item);
1548         level = btrfs_root_level(&root->root_item);
1549         root->node = read_tree_block(fs_info,
1550                                      btrfs_root_bytenr(&root->root_item),
1551                                      key->objectid, generation, level, NULL);
1552         if (IS_ERR(root->node)) {
1553                 ret = PTR_ERR(root->node);
1554                 root->node = NULL;
1555                 goto fail;
1556         }
1557         if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1558                 ret = -EIO;
1559                 goto fail;
1560         }
1561
1562         /*
1563          * For real fs, and not log/reloc trees, root owner must
1564          * match its root node owner
1565          */
1566         if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1567             root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1568             root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1569             root->root_key.objectid != btrfs_header_owner(root->node)) {
1570                 btrfs_crit(fs_info,
1571 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1572                            root->root_key.objectid, root->node->start,
1573                            btrfs_header_owner(root->node),
1574                            root->root_key.objectid);
1575                 ret = -EUCLEAN;
1576                 goto fail;
1577         }
1578         root->commit_root = btrfs_root_node(root);
1579         return root;
1580 fail:
1581         btrfs_put_root(root);
1582         return ERR_PTR(ret);
1583 }
1584
1585 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1586                                         struct btrfs_key *key)
1587 {
1588         struct btrfs_root *root;
1589         struct btrfs_path *path;
1590
1591         path = btrfs_alloc_path();
1592         if (!path)
1593                 return ERR_PTR(-ENOMEM);
1594         root = read_tree_root_path(tree_root, path, key);
1595         btrfs_free_path(path);
1596
1597         return root;
1598 }
1599
1600 /*
1601  * Initialize subvolume root in-memory structure
1602  *
1603  * @anon_dev:   anonymous device to attach to the root, if zero, allocate new
1604  */
1605 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1606 {
1607         int ret;
1608         unsigned int nofs_flag;
1609
1610         /*
1611          * We might be called under a transaction (e.g. indirect backref
1612          * resolution) which could deadlock if it triggers memory reclaim
1613          */
1614         nofs_flag = memalloc_nofs_save();
1615         ret = btrfs_drew_lock_init(&root->snapshot_lock);
1616         memalloc_nofs_restore(nofs_flag);
1617         if (ret)
1618                 goto fail;
1619
1620         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1621             !btrfs_is_data_reloc_root(root)) {
1622                 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1623                 btrfs_check_and_init_root_item(&root->root_item);
1624         }
1625
1626         /*
1627          * Don't assign anonymous block device to roots that are not exposed to
1628          * userspace, the id pool is limited to 1M
1629          */
1630         if (is_fstree(root->root_key.objectid) &&
1631             btrfs_root_refs(&root->root_item) > 0) {
1632                 if (!anon_dev) {
1633                         ret = get_anon_bdev(&root->anon_dev);
1634                         if (ret)
1635                                 goto fail;
1636                 } else {
1637                         root->anon_dev = anon_dev;
1638                 }
1639         }
1640
1641         mutex_lock(&root->objectid_mutex);
1642         ret = btrfs_init_root_free_objectid(root);
1643         if (ret) {
1644                 mutex_unlock(&root->objectid_mutex);
1645                 goto fail;
1646         }
1647
1648         ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1649
1650         mutex_unlock(&root->objectid_mutex);
1651
1652         return 0;
1653 fail:
1654         /* The caller is responsible to call btrfs_free_fs_root */
1655         return ret;
1656 }
1657
1658 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1659                                                u64 root_id)
1660 {
1661         struct btrfs_root *root;
1662
1663         spin_lock(&fs_info->fs_roots_radix_lock);
1664         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1665                                  (unsigned long)root_id);
1666         if (root)
1667                 root = btrfs_grab_root(root);
1668         spin_unlock(&fs_info->fs_roots_radix_lock);
1669         return root;
1670 }
1671
1672 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1673                                                 u64 objectid)
1674 {
1675         struct btrfs_key key = {
1676                 .objectid = objectid,
1677                 .type = BTRFS_ROOT_ITEM_KEY,
1678                 .offset = 0,
1679         };
1680
1681         if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1682                 return btrfs_grab_root(fs_info->tree_root);
1683         if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1684                 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1685         if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1686                 return btrfs_grab_root(fs_info->chunk_root);
1687         if (objectid == BTRFS_DEV_TREE_OBJECTID)
1688                 return btrfs_grab_root(fs_info->dev_root);
1689         if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1690                 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1691         if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1692                 return btrfs_grab_root(fs_info->quota_root) ?
1693                         fs_info->quota_root : ERR_PTR(-ENOENT);
1694         if (objectid == BTRFS_UUID_TREE_OBJECTID)
1695                 return btrfs_grab_root(fs_info->uuid_root) ?
1696                         fs_info->uuid_root : ERR_PTR(-ENOENT);
1697         if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
1698                 struct btrfs_root *root = btrfs_global_root(fs_info, &key);
1699
1700                 return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
1701         }
1702         return NULL;
1703 }
1704
1705 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1706                          struct btrfs_root *root)
1707 {
1708         int ret;
1709
1710         ret = radix_tree_preload(GFP_NOFS);
1711         if (ret)
1712                 return ret;
1713
1714         spin_lock(&fs_info->fs_roots_radix_lock);
1715         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1716                                 (unsigned long)root->root_key.objectid,
1717                                 root);
1718         if (ret == 0) {
1719                 btrfs_grab_root(root);
1720                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1721         }
1722         spin_unlock(&fs_info->fs_roots_radix_lock);
1723         radix_tree_preload_end();
1724
1725         return ret;
1726 }
1727
1728 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1729 {
1730 #ifdef CONFIG_BTRFS_DEBUG
1731         struct btrfs_root *root;
1732
1733         while (!list_empty(&fs_info->allocated_roots)) {
1734                 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1735
1736                 root = list_first_entry(&fs_info->allocated_roots,
1737                                         struct btrfs_root, leak_list);
1738                 btrfs_err(fs_info, "leaked root %s refcount %d",
1739                           btrfs_root_name(&root->root_key, buf),
1740                           refcount_read(&root->refs));
1741                 while (refcount_read(&root->refs) > 1)
1742                         btrfs_put_root(root);
1743                 btrfs_put_root(root);
1744         }
1745 #endif
1746 }
1747
1748 static void free_global_roots(struct btrfs_fs_info *fs_info)
1749 {
1750         struct btrfs_root *root;
1751         struct rb_node *node;
1752
1753         while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1754                 root = rb_entry(node, struct btrfs_root, rb_node);
1755                 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1756                 btrfs_put_root(root);
1757         }
1758 }
1759
1760 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1761 {
1762         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1763         percpu_counter_destroy(&fs_info->delalloc_bytes);
1764         percpu_counter_destroy(&fs_info->ordered_bytes);
1765         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1766         btrfs_free_csum_hash(fs_info);
1767         btrfs_free_stripe_hash_table(fs_info);
1768         btrfs_free_ref_cache(fs_info);
1769         kfree(fs_info->balance_ctl);
1770         kfree(fs_info->delayed_root);
1771         free_global_roots(fs_info);
1772         btrfs_put_root(fs_info->tree_root);
1773         btrfs_put_root(fs_info->chunk_root);
1774         btrfs_put_root(fs_info->dev_root);
1775         btrfs_put_root(fs_info->quota_root);
1776         btrfs_put_root(fs_info->uuid_root);
1777         btrfs_put_root(fs_info->fs_root);
1778         btrfs_put_root(fs_info->data_reloc_root);
1779         btrfs_put_root(fs_info->block_group_root);
1780         btrfs_check_leaked_roots(fs_info);
1781         btrfs_extent_buffer_leak_debug_check(fs_info);
1782         kfree(fs_info->super_copy);
1783         kfree(fs_info->super_for_commit);
1784         kfree(fs_info->subpage_info);
1785         kvfree(fs_info);
1786 }
1787
1788
1789 /*
1790  * Get an in-memory reference of a root structure.
1791  *
1792  * For essential trees like root/extent tree, we grab it from fs_info directly.
1793  * For subvolume trees, we check the cached filesystem roots first. If not
1794  * found, then read it from disk and add it to cached fs roots.
1795  *
1796  * Caller should release the root by calling btrfs_put_root() after the usage.
1797  *
1798  * NOTE: Reloc and log trees can't be read by this function as they share the
1799  *       same root objectid.
1800  *
1801  * @objectid:   root id
1802  * @anon_dev:   preallocated anonymous block device number for new roots,
1803  *              pass 0 for new allocation.
1804  * @check_ref:  whether to check root item references, If true, return -ENOENT
1805  *              for orphan roots
1806  */
1807 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1808                                              u64 objectid, dev_t anon_dev,
1809                                              bool check_ref)
1810 {
1811         struct btrfs_root *root;
1812         struct btrfs_path *path;
1813         struct btrfs_key key;
1814         int ret;
1815
1816         root = btrfs_get_global_root(fs_info, objectid);
1817         if (root)
1818                 return root;
1819 again:
1820         root = btrfs_lookup_fs_root(fs_info, objectid);
1821         if (root) {
1822                 /* Shouldn't get preallocated anon_dev for cached roots */
1823                 ASSERT(!anon_dev);
1824                 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1825                         btrfs_put_root(root);
1826                         return ERR_PTR(-ENOENT);
1827                 }
1828                 return root;
1829         }
1830
1831         key.objectid = objectid;
1832         key.type = BTRFS_ROOT_ITEM_KEY;
1833         key.offset = (u64)-1;
1834         root = btrfs_read_tree_root(fs_info->tree_root, &key);
1835         if (IS_ERR(root))
1836                 return root;
1837
1838         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1839                 ret = -ENOENT;
1840                 goto fail;
1841         }
1842
1843         ret = btrfs_init_fs_root(root, anon_dev);
1844         if (ret)
1845                 goto fail;
1846
1847         path = btrfs_alloc_path();
1848         if (!path) {
1849                 ret = -ENOMEM;
1850                 goto fail;
1851         }
1852         key.objectid = BTRFS_ORPHAN_OBJECTID;
1853         key.type = BTRFS_ORPHAN_ITEM_KEY;
1854         key.offset = objectid;
1855
1856         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1857         btrfs_free_path(path);
1858         if (ret < 0)
1859                 goto fail;
1860         if (ret == 0)
1861                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1862
1863         ret = btrfs_insert_fs_root(fs_info, root);
1864         if (ret) {
1865                 if (ret == -EEXIST) {
1866                         btrfs_put_root(root);
1867                         goto again;
1868                 }
1869                 goto fail;
1870         }
1871         return root;
1872 fail:
1873         /*
1874          * If our caller provided us an anonymous device, then it's his
1875          * responsability to free it in case we fail. So we have to set our
1876          * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1877          * and once again by our caller.
1878          */
1879         if (anon_dev)
1880                 root->anon_dev = 0;
1881         btrfs_put_root(root);
1882         return ERR_PTR(ret);
1883 }
1884
1885 /*
1886  * Get in-memory reference of a root structure
1887  *
1888  * @objectid:   tree objectid
1889  * @check_ref:  if set, verify that the tree exists and the item has at least
1890  *              one reference
1891  */
1892 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1893                                      u64 objectid, bool check_ref)
1894 {
1895         return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1896 }
1897
1898 /*
1899  * Get in-memory reference of a root structure, created as new, optionally pass
1900  * the anonymous block device id
1901  *
1902  * @objectid:   tree objectid
1903  * @anon_dev:   if zero, allocate a new anonymous block device or use the
1904  *              parameter value
1905  */
1906 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1907                                          u64 objectid, dev_t anon_dev)
1908 {
1909         return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1910 }
1911
1912 /*
1913  * btrfs_get_fs_root_commit_root - return a root for the given objectid
1914  * @fs_info:    the fs_info
1915  * @objectid:   the objectid we need to lookup
1916  *
1917  * This is exclusively used for backref walking, and exists specifically because
1918  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1919  * creation time, which means we may have to read the tree_root in order to look
1920  * up a fs root that is not in memory.  If the root is not in memory we will
1921  * read the tree root commit root and look up the fs root from there.  This is a
1922  * temporary root, it will not be inserted into the radix tree as it doesn't
1923  * have the most uptodate information, it'll simply be discarded once the
1924  * backref code is finished using the root.
1925  */
1926 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1927                                                  struct btrfs_path *path,
1928                                                  u64 objectid)
1929 {
1930         struct btrfs_root *root;
1931         struct btrfs_key key;
1932
1933         ASSERT(path->search_commit_root && path->skip_locking);
1934
1935         /*
1936          * This can return -ENOENT if we ask for a root that doesn't exist, but
1937          * since this is called via the backref walking code we won't be looking
1938          * up a root that doesn't exist, unless there's corruption.  So if root
1939          * != NULL just return it.
1940          */
1941         root = btrfs_get_global_root(fs_info, objectid);
1942         if (root)
1943                 return root;
1944
1945         root = btrfs_lookup_fs_root(fs_info, objectid);
1946         if (root)
1947                 return root;
1948
1949         key.objectid = objectid;
1950         key.type = BTRFS_ROOT_ITEM_KEY;
1951         key.offset = (u64)-1;
1952         root = read_tree_root_path(fs_info->tree_root, path, &key);
1953         btrfs_release_path(path);
1954
1955         return root;
1956 }
1957
1958 /*
1959  * called by the kthread helper functions to finally call the bio end_io
1960  * functions.  This is where read checksum verification actually happens
1961  */
1962 static void end_workqueue_fn(struct btrfs_work *work)
1963 {
1964         struct bio *bio;
1965         struct btrfs_end_io_wq *end_io_wq;
1966
1967         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1968         bio = end_io_wq->bio;
1969
1970         bio->bi_status = end_io_wq->status;
1971         bio->bi_private = end_io_wq->private;
1972         bio->bi_end_io = end_io_wq->end_io;
1973         bio_endio(bio);
1974         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1975 }
1976
1977 static int cleaner_kthread(void *arg)
1978 {
1979         struct btrfs_fs_info *fs_info = arg;
1980         int again;
1981
1982         while (1) {
1983                 again = 0;
1984
1985                 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1986
1987                 /* Make the cleaner go to sleep early. */
1988                 if (btrfs_need_cleaner_sleep(fs_info))
1989                         goto sleep;
1990
1991                 /*
1992                  * Do not do anything if we might cause open_ctree() to block
1993                  * before we have finished mounting the filesystem.
1994                  */
1995                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1996                         goto sleep;
1997
1998                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1999                         goto sleep;
2000
2001                 /*
2002                  * Avoid the problem that we change the status of the fs
2003                  * during the above check and trylock.
2004                  */
2005                 if (btrfs_need_cleaner_sleep(fs_info)) {
2006                         mutex_unlock(&fs_info->cleaner_mutex);
2007                         goto sleep;
2008                 }
2009
2010                 btrfs_run_delayed_iputs(fs_info);
2011
2012                 again = btrfs_clean_one_deleted_snapshot(fs_info);
2013                 mutex_unlock(&fs_info->cleaner_mutex);
2014
2015                 /*
2016                  * The defragger has dealt with the R/O remount and umount,
2017                  * needn't do anything special here.
2018                  */
2019                 btrfs_run_defrag_inodes(fs_info);
2020
2021                 /*
2022                  * Acquires fs_info->reclaim_bgs_lock to avoid racing
2023                  * with relocation (btrfs_relocate_chunk) and relocation
2024                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
2025                  * after acquiring fs_info->reclaim_bgs_lock. So we
2026                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
2027                  * unused block groups.
2028                  */
2029                 btrfs_delete_unused_bgs(fs_info);
2030
2031                 /*
2032                  * Reclaim block groups in the reclaim_bgs list after we deleted
2033                  * all unused block_groups. This possibly gives us some more free
2034                  * space.
2035                  */
2036                 btrfs_reclaim_bgs(fs_info);
2037 sleep:
2038                 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
2039                 if (kthread_should_park())
2040                         kthread_parkme();
2041                 if (kthread_should_stop())
2042                         return 0;
2043                 if (!again) {
2044                         set_current_state(TASK_INTERRUPTIBLE);
2045                         schedule();
2046                         __set_current_state(TASK_RUNNING);
2047                 }
2048         }
2049 }
2050
2051 static int transaction_kthread(void *arg)
2052 {
2053         struct btrfs_root *root = arg;
2054         struct btrfs_fs_info *fs_info = root->fs_info;
2055         struct btrfs_trans_handle *trans;
2056         struct btrfs_transaction *cur;
2057         u64 transid;
2058         time64_t delta;
2059         unsigned long delay;
2060         bool cannot_commit;
2061
2062         do {
2063                 cannot_commit = false;
2064                 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
2065                 mutex_lock(&fs_info->transaction_kthread_mutex);
2066
2067                 spin_lock(&fs_info->trans_lock);
2068                 cur = fs_info->running_transaction;
2069                 if (!cur) {
2070                         spin_unlock(&fs_info->trans_lock);
2071                         goto sleep;
2072                 }
2073
2074                 delta = ktime_get_seconds() - cur->start_time;
2075                 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
2076                     cur->state < TRANS_STATE_COMMIT_START &&
2077                     delta < fs_info->commit_interval) {
2078                         spin_unlock(&fs_info->trans_lock);
2079                         delay -= msecs_to_jiffies((delta - 1) * 1000);
2080                         delay = min(delay,
2081                                     msecs_to_jiffies(fs_info->commit_interval * 1000));
2082                         goto sleep;
2083                 }
2084                 transid = cur->transid;
2085                 spin_unlock(&fs_info->trans_lock);
2086
2087                 /* If the file system is aborted, this will always fail. */
2088                 trans = btrfs_attach_transaction(root);
2089                 if (IS_ERR(trans)) {
2090                         if (PTR_ERR(trans) != -ENOENT)
2091                                 cannot_commit = true;
2092                         goto sleep;
2093                 }
2094                 if (transid == trans->transid) {
2095                         btrfs_commit_transaction(trans);
2096                 } else {
2097                         btrfs_end_transaction(trans);
2098                 }
2099 sleep:
2100                 wake_up_process(fs_info->cleaner_kthread);
2101                 mutex_unlock(&fs_info->transaction_kthread_mutex);
2102
2103                 if (BTRFS_FS_ERROR(fs_info))
2104                         btrfs_cleanup_transaction(fs_info);
2105                 if (!kthread_should_stop() &&
2106                                 (!btrfs_transaction_blocked(fs_info) ||
2107                                  cannot_commit))
2108                         schedule_timeout_interruptible(delay);
2109         } while (!kthread_should_stop());
2110         return 0;
2111 }
2112
2113 /*
2114  * This will find the highest generation in the array of root backups.  The
2115  * index of the highest array is returned, or -EINVAL if we can't find
2116  * anything.
2117  *
2118  * We check to make sure the array is valid by comparing the
2119  * generation of the latest  root in the array with the generation
2120  * in the super block.  If they don't match we pitch it.
2121  */
2122 static int find_newest_super_backup(struct btrfs_fs_info *info)
2123 {
2124         const u64 newest_gen = btrfs_super_generation(info->super_copy);
2125         u64 cur;
2126         struct btrfs_root_backup *root_backup;
2127         int i;
2128
2129         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2130                 root_backup = info->super_copy->super_roots + i;
2131                 cur = btrfs_backup_tree_root_gen(root_backup);
2132                 if (cur == newest_gen)
2133                         return i;
2134         }
2135
2136         return -EINVAL;
2137 }
2138
2139 /*
2140  * copy all the root pointers into the super backup array.
2141  * this will bump the backup pointer by one when it is
2142  * done
2143  */
2144 static void backup_super_roots(struct btrfs_fs_info *info)
2145 {
2146         const int next_backup = info->backup_root_index;
2147         struct btrfs_root_backup *root_backup;
2148
2149         root_backup = info->super_for_commit->super_roots + next_backup;
2150
2151         /*
2152          * make sure all of our padding and empty slots get zero filled
2153          * regardless of which ones we use today
2154          */
2155         memset(root_backup, 0, sizeof(*root_backup));
2156
2157         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2158
2159         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2160         btrfs_set_backup_tree_root_gen(root_backup,
2161                                btrfs_header_generation(info->tree_root->node));
2162
2163         btrfs_set_backup_tree_root_level(root_backup,
2164                                btrfs_header_level(info->tree_root->node));
2165
2166         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2167         btrfs_set_backup_chunk_root_gen(root_backup,
2168                                btrfs_header_generation(info->chunk_root->node));
2169         btrfs_set_backup_chunk_root_level(root_backup,
2170                                btrfs_header_level(info->chunk_root->node));
2171
2172         if (btrfs_fs_incompat(info, EXTENT_TREE_V2)) {
2173                 btrfs_set_backup_block_group_root(root_backup,
2174                                         info->block_group_root->node->start);
2175                 btrfs_set_backup_block_group_root_gen(root_backup,
2176                         btrfs_header_generation(info->block_group_root->node));
2177                 btrfs_set_backup_block_group_root_level(root_backup,
2178                         btrfs_header_level(info->block_group_root->node));
2179         } else {
2180                 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
2181                 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
2182
2183                 btrfs_set_backup_extent_root(root_backup,
2184                                              extent_root->node->start);
2185                 btrfs_set_backup_extent_root_gen(root_backup,
2186                                 btrfs_header_generation(extent_root->node));
2187                 btrfs_set_backup_extent_root_level(root_backup,
2188                                         btrfs_header_level(extent_root->node));
2189
2190                 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
2191                 btrfs_set_backup_csum_root_gen(root_backup,
2192                                                btrfs_header_generation(csum_root->node));
2193                 btrfs_set_backup_csum_root_level(root_backup,
2194                                                  btrfs_header_level(csum_root->node));
2195         }
2196
2197         /*
2198          * we might commit during log recovery, which happens before we set
2199          * the fs_root.  Make sure it is valid before we fill it in.
2200          */
2201         if (info->fs_root && info->fs_root->node) {
2202                 btrfs_set_backup_fs_root(root_backup,
2203                                          info->fs_root->node->start);
2204                 btrfs_set_backup_fs_root_gen(root_backup,
2205                                btrfs_header_generation(info->fs_root->node));
2206                 btrfs_set_backup_fs_root_level(root_backup,
2207                                btrfs_header_level(info->fs_root->node));
2208         }
2209
2210         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2211         btrfs_set_backup_dev_root_gen(root_backup,
2212                                btrfs_header_generation(info->dev_root->node));
2213         btrfs_set_backup_dev_root_level(root_backup,
2214                                        btrfs_header_level(info->dev_root->node));
2215
2216         btrfs_set_backup_total_bytes(root_backup,
2217                              btrfs_super_total_bytes(info->super_copy));
2218         btrfs_set_backup_bytes_used(root_backup,
2219                              btrfs_super_bytes_used(info->super_copy));
2220         btrfs_set_backup_num_devices(root_backup,
2221                              btrfs_super_num_devices(info->super_copy));
2222
2223         /*
2224          * if we don't copy this out to the super_copy, it won't get remembered
2225          * for the next commit
2226          */
2227         memcpy(&info->super_copy->super_roots,
2228                &info->super_for_commit->super_roots,
2229                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2230 }
2231
2232 /*
2233  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2234  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2235  *
2236  * fs_info - filesystem whose backup roots need to be read
2237  * priority - priority of backup root required
2238  *
2239  * Returns backup root index on success and -EINVAL otherwise.
2240  */
2241 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2242 {
2243         int backup_index = find_newest_super_backup(fs_info);
2244         struct btrfs_super_block *super = fs_info->super_copy;
2245         struct btrfs_root_backup *root_backup;
2246
2247         if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2248                 if (priority == 0)
2249                         return backup_index;
2250
2251                 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2252                 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2253         } else {
2254                 return -EINVAL;
2255         }
2256
2257         root_backup = super->super_roots + backup_index;
2258
2259         btrfs_set_super_generation(super,
2260                                    btrfs_backup_tree_root_gen(root_backup));
2261         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2262         btrfs_set_super_root_level(super,
2263                                    btrfs_backup_tree_root_level(root_backup));
2264         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2265
2266         /*
2267          * Fixme: the total bytes and num_devices need to match or we should
2268          * need a fsck
2269          */
2270         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2271         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2272
2273         return backup_index;
2274 }
2275
2276 /* helper to cleanup workers */
2277 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2278 {
2279         btrfs_destroy_workqueue(fs_info->fixup_workers);
2280         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2281         btrfs_destroy_workqueue(fs_info->hipri_workers);
2282         btrfs_destroy_workqueue(fs_info->workers);
2283         btrfs_destroy_workqueue(fs_info->endio_workers);
2284         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2285         if (fs_info->rmw_workers)
2286                 destroy_workqueue(fs_info->rmw_workers);
2287         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2288         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2289         btrfs_destroy_workqueue(fs_info->delayed_workers);
2290         btrfs_destroy_workqueue(fs_info->caching_workers);
2291         btrfs_destroy_workqueue(fs_info->flush_workers);
2292         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2293         if (fs_info->discard_ctl.discard_workers)
2294                 destroy_workqueue(fs_info->discard_ctl.discard_workers);
2295         /*
2296          * Now that all other work queues are destroyed, we can safely destroy
2297          * the queues used for metadata I/O, since tasks from those other work
2298          * queues can do metadata I/O operations.
2299          */
2300         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2301         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2302 }
2303
2304 static void free_root_extent_buffers(struct btrfs_root *root)
2305 {
2306         if (root) {
2307                 free_extent_buffer(root->node);
2308                 free_extent_buffer(root->commit_root);
2309                 root->node = NULL;
2310                 root->commit_root = NULL;
2311         }
2312 }
2313
2314 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
2315 {
2316         struct btrfs_root *root, *tmp;
2317
2318         rbtree_postorder_for_each_entry_safe(root, tmp,
2319                                              &fs_info->global_root_tree,
2320                                              rb_node)
2321                 free_root_extent_buffers(root);
2322 }
2323
2324 /* helper to cleanup tree roots */
2325 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2326 {
2327         free_root_extent_buffers(info->tree_root);
2328
2329         free_global_root_pointers(info);
2330         free_root_extent_buffers(info->dev_root);
2331         free_root_extent_buffers(info->quota_root);
2332         free_root_extent_buffers(info->uuid_root);
2333         free_root_extent_buffers(info->fs_root);
2334         free_root_extent_buffers(info->data_reloc_root);
2335         free_root_extent_buffers(info->block_group_root);
2336         if (free_chunk_root)
2337                 free_root_extent_buffers(info->chunk_root);
2338 }
2339
2340 void btrfs_put_root(struct btrfs_root *root)
2341 {
2342         if (!root)
2343                 return;
2344
2345         if (refcount_dec_and_test(&root->refs)) {
2346                 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2347                 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2348                 if (root->anon_dev)
2349                         free_anon_bdev(root->anon_dev);
2350                 btrfs_drew_lock_destroy(&root->snapshot_lock);
2351                 free_root_extent_buffers(root);
2352 #ifdef CONFIG_BTRFS_DEBUG
2353                 spin_lock(&root->fs_info->fs_roots_radix_lock);
2354                 list_del_init(&root->leak_list);
2355                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2356 #endif
2357                 kfree(root);
2358         }
2359 }
2360
2361 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2362 {
2363         int ret;
2364         struct btrfs_root *gang[8];
2365         int i;
2366
2367         while (!list_empty(&fs_info->dead_roots)) {
2368                 gang[0] = list_entry(fs_info->dead_roots.next,
2369                                      struct btrfs_root, root_list);
2370                 list_del(&gang[0]->root_list);
2371
2372                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2373                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2374                 btrfs_put_root(gang[0]);
2375         }
2376
2377         while (1) {
2378                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2379                                              (void **)gang, 0,
2380                                              ARRAY_SIZE(gang));
2381                 if (!ret)
2382                         break;
2383                 for (i = 0; i < ret; i++)
2384                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2385         }
2386 }
2387
2388 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2389 {
2390         mutex_init(&fs_info->scrub_lock);
2391         atomic_set(&fs_info->scrubs_running, 0);
2392         atomic_set(&fs_info->scrub_pause_req, 0);
2393         atomic_set(&fs_info->scrubs_paused, 0);
2394         atomic_set(&fs_info->scrub_cancel_req, 0);
2395         init_waitqueue_head(&fs_info->scrub_pause_wait);
2396         refcount_set(&fs_info->scrub_workers_refcnt, 0);
2397 }
2398
2399 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2400 {
2401         spin_lock_init(&fs_info->balance_lock);
2402         mutex_init(&fs_info->balance_mutex);
2403         atomic_set(&fs_info->balance_pause_req, 0);
2404         atomic_set(&fs_info->balance_cancel_req, 0);
2405         fs_info->balance_ctl = NULL;
2406         init_waitqueue_head(&fs_info->balance_wait_q);
2407         atomic_set(&fs_info->reloc_cancel_req, 0);
2408 }
2409
2410 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2411 {
2412         struct inode *inode = fs_info->btree_inode;
2413
2414         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2415         set_nlink(inode, 1);
2416         /*
2417          * we set the i_size on the btree inode to the max possible int.
2418          * the real end of the address space is determined by all of
2419          * the devices in the system
2420          */
2421         inode->i_size = OFFSET_MAX;
2422         inode->i_mapping->a_ops = &btree_aops;
2423
2424         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2425         extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2426                             IO_TREE_BTREE_INODE_IO, inode);
2427         BTRFS_I(inode)->io_tree.track_uptodate = false;
2428         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2429
2430         BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2431         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2432         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2433         btrfs_insert_inode_hash(inode);
2434 }
2435
2436 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2437 {
2438         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2439         init_rwsem(&fs_info->dev_replace.rwsem);
2440         init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2441 }
2442
2443 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2444 {
2445         spin_lock_init(&fs_info->qgroup_lock);
2446         mutex_init(&fs_info->qgroup_ioctl_lock);
2447         fs_info->qgroup_tree = RB_ROOT;
2448         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2449         fs_info->qgroup_seq = 1;
2450         fs_info->qgroup_ulist = NULL;
2451         fs_info->qgroup_rescan_running = false;
2452         mutex_init(&fs_info->qgroup_rescan_lock);
2453 }
2454
2455 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2456 {
2457         u32 max_active = fs_info->thread_pool_size;
2458         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2459
2460         fs_info->workers =
2461                 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2462         fs_info->hipri_workers =
2463                 btrfs_alloc_workqueue(fs_info, "worker-high",
2464                                       flags | WQ_HIGHPRI, max_active, 16);
2465
2466         fs_info->delalloc_workers =
2467                 btrfs_alloc_workqueue(fs_info, "delalloc",
2468                                       flags, max_active, 2);
2469
2470         fs_info->flush_workers =
2471                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2472                                       flags, max_active, 0);
2473
2474         fs_info->caching_workers =
2475                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2476
2477         fs_info->fixup_workers =
2478                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2479
2480         /*
2481          * endios are largely parallel and should have a very
2482          * low idle thresh
2483          */
2484         fs_info->endio_workers =
2485                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2486         fs_info->endio_meta_workers =
2487                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2488                                       max_active, 4);
2489         fs_info->endio_meta_write_workers =
2490                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2491                                       max_active, 2);
2492         fs_info->endio_raid56_workers =
2493                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2494                                       max_active, 4);
2495         fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2496         fs_info->endio_write_workers =
2497                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2498                                       max_active, 2);
2499         fs_info->endio_freespace_worker =
2500                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2501                                       max_active, 0);
2502         fs_info->delayed_workers =
2503                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2504                                       max_active, 0);
2505         fs_info->qgroup_rescan_workers =
2506                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2507         fs_info->discard_ctl.discard_workers =
2508                 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2509
2510         if (!(fs_info->workers && fs_info->hipri_workers &&
2511               fs_info->delalloc_workers && fs_info->flush_workers &&
2512               fs_info->endio_workers && fs_info->endio_meta_workers &&
2513               fs_info->endio_meta_write_workers &&
2514               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2515               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2516               fs_info->caching_workers && fs_info->fixup_workers &&
2517               fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2518               fs_info->discard_ctl.discard_workers)) {
2519                 return -ENOMEM;
2520         }
2521
2522         return 0;
2523 }
2524
2525 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2526 {
2527         struct crypto_shash *csum_shash;
2528         const char *csum_driver = btrfs_super_csum_driver(csum_type);
2529
2530         csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2531
2532         if (IS_ERR(csum_shash)) {
2533                 btrfs_err(fs_info, "error allocating %s hash for checksum",
2534                           csum_driver);
2535                 return PTR_ERR(csum_shash);
2536         }
2537
2538         fs_info->csum_shash = csum_shash;
2539
2540         return 0;
2541 }
2542
2543 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2544                             struct btrfs_fs_devices *fs_devices)
2545 {
2546         int ret;
2547         struct btrfs_root *log_tree_root;
2548         struct btrfs_super_block *disk_super = fs_info->super_copy;
2549         u64 bytenr = btrfs_super_log_root(disk_super);
2550         int level = btrfs_super_log_root_level(disk_super);
2551
2552         if (fs_devices->rw_devices == 0) {
2553                 btrfs_warn(fs_info, "log replay required on RO media");
2554                 return -EIO;
2555         }
2556
2557         log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2558                                          GFP_KERNEL);
2559         if (!log_tree_root)
2560                 return -ENOMEM;
2561
2562         log_tree_root->node = read_tree_block(fs_info, bytenr,
2563                                               BTRFS_TREE_LOG_OBJECTID,
2564                                               fs_info->generation + 1, level,
2565                                               NULL);
2566         if (IS_ERR(log_tree_root->node)) {
2567                 btrfs_warn(fs_info, "failed to read log tree");
2568                 ret = PTR_ERR(log_tree_root->node);
2569                 log_tree_root->node = NULL;
2570                 btrfs_put_root(log_tree_root);
2571                 return ret;
2572         }
2573         if (!extent_buffer_uptodate(log_tree_root->node)) {
2574                 btrfs_err(fs_info, "failed to read log tree");
2575                 btrfs_put_root(log_tree_root);
2576                 return -EIO;
2577         }
2578
2579         /* returns with log_tree_root freed on success */
2580         ret = btrfs_recover_log_trees(log_tree_root);
2581         if (ret) {
2582                 btrfs_handle_fs_error(fs_info, ret,
2583                                       "Failed to recover log tree");
2584                 btrfs_put_root(log_tree_root);
2585                 return ret;
2586         }
2587
2588         if (sb_rdonly(fs_info->sb)) {
2589                 ret = btrfs_commit_super(fs_info);
2590                 if (ret)
2591                         return ret;
2592         }
2593
2594         return 0;
2595 }
2596
2597 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2598                                       struct btrfs_path *path, u64 objectid,
2599                                       const char *name)
2600 {
2601         struct btrfs_fs_info *fs_info = tree_root->fs_info;
2602         struct btrfs_root *root;
2603         u64 max_global_id = 0;
2604         int ret;
2605         struct btrfs_key key = {
2606                 .objectid = objectid,
2607                 .type = BTRFS_ROOT_ITEM_KEY,
2608                 .offset = 0,
2609         };
2610         bool found = false;
2611
2612         /* If we have IGNOREDATACSUMS skip loading these roots. */
2613         if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2614             btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2615                 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2616                 return 0;
2617         }
2618
2619         while (1) {
2620                 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2621                 if (ret < 0)
2622                         break;
2623
2624                 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2625                         ret = btrfs_next_leaf(tree_root, path);
2626                         if (ret) {
2627                                 if (ret > 0)
2628                                         ret = 0;
2629                                 break;
2630                         }
2631                 }
2632                 ret = 0;
2633
2634                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2635                 if (key.objectid != objectid)
2636                         break;
2637                 btrfs_release_path(path);
2638
2639                 /*
2640                  * Just worry about this for extent tree, it'll be the same for
2641                  * everybody.
2642                  */
2643                 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2644                         max_global_id = max(max_global_id, key.offset);
2645
2646                 found = true;
2647                 root = read_tree_root_path(tree_root, path, &key);
2648                 if (IS_ERR(root)) {
2649                         if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2650                                 ret = PTR_ERR(root);
2651                         break;
2652                 }
2653                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2654                 ret = btrfs_global_root_insert(root);
2655                 if (ret) {
2656                         btrfs_put_root(root);
2657                         break;
2658                 }
2659                 key.offset++;
2660         }
2661         btrfs_release_path(path);
2662
2663         if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2664                 fs_info->nr_global_roots = max_global_id + 1;
2665
2666         if (!found || ret) {
2667                 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2668                         set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2669
2670                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2671                         ret = ret ? ret : -ENOENT;
2672                 else
2673                         ret = 0;
2674                 btrfs_err(fs_info, "failed to load root %s", name);
2675         }
2676         return ret;
2677 }
2678
2679 static int load_global_roots(struct btrfs_root *tree_root)
2680 {
2681         struct btrfs_path *path;
2682         int ret = 0;
2683
2684         path = btrfs_alloc_path();
2685         if (!path)
2686                 return -ENOMEM;
2687
2688         ret = load_global_roots_objectid(tree_root, path,
2689                                          BTRFS_EXTENT_TREE_OBJECTID, "extent");
2690         if (ret)
2691                 goto out;
2692         ret = load_global_roots_objectid(tree_root, path,
2693                                          BTRFS_CSUM_TREE_OBJECTID, "csum");
2694         if (ret)
2695                 goto out;
2696         if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2697                 goto out;
2698         ret = load_global_roots_objectid(tree_root, path,
2699                                          BTRFS_FREE_SPACE_TREE_OBJECTID,
2700                                          "free space");
2701 out:
2702         btrfs_free_path(path);
2703         return ret;
2704 }
2705
2706 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2707 {
2708         struct btrfs_root *tree_root = fs_info->tree_root;
2709         struct btrfs_root *root;
2710         struct btrfs_key location;
2711         int ret;
2712
2713         BUG_ON(!fs_info->tree_root);
2714
2715         ret = load_global_roots(tree_root);
2716         if (ret)
2717                 return ret;
2718
2719         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2720         location.type = BTRFS_ROOT_ITEM_KEY;
2721         location.offset = 0;
2722
2723         root = btrfs_read_tree_root(tree_root, &location);
2724         if (IS_ERR(root)) {
2725                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2726                         ret = PTR_ERR(root);
2727                         goto out;
2728                 }
2729         } else {
2730                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2731                 fs_info->dev_root = root;
2732         }
2733         /* Initialize fs_info for all devices in any case */
2734         btrfs_init_devices_late(fs_info);
2735
2736         /*
2737          * This tree can share blocks with some other fs tree during relocation
2738          * and we need a proper setup by btrfs_get_fs_root
2739          */
2740         root = btrfs_get_fs_root(tree_root->fs_info,
2741                                  BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2742         if (IS_ERR(root)) {
2743                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2744                         ret = PTR_ERR(root);
2745                         goto out;
2746                 }
2747         } else {
2748                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2749                 fs_info->data_reloc_root = root;
2750         }
2751
2752         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2753         root = btrfs_read_tree_root(tree_root, &location);
2754         if (!IS_ERR(root)) {
2755                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2756                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2757                 fs_info->quota_root = root;
2758         }
2759
2760         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2761         root = btrfs_read_tree_root(tree_root, &location);
2762         if (IS_ERR(root)) {
2763                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2764                         ret = PTR_ERR(root);
2765                         if (ret != -ENOENT)
2766                                 goto out;
2767                 }
2768         } else {
2769                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2770                 fs_info->uuid_root = root;
2771         }
2772
2773         return 0;
2774 out:
2775         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2776                    location.objectid, ret);
2777         return ret;
2778 }
2779
2780 /*
2781  * Real super block validation
2782  * NOTE: super csum type and incompat features will not be checked here.
2783  *
2784  * @sb:         super block to check
2785  * @mirror_num: the super block number to check its bytenr:
2786  *              0       the primary (1st) sb
2787  *              1, 2    2nd and 3rd backup copy
2788  *             -1       skip bytenr check
2789  */
2790 static int validate_super(struct btrfs_fs_info *fs_info,
2791                             struct btrfs_super_block *sb, int mirror_num)
2792 {
2793         u64 nodesize = btrfs_super_nodesize(sb);
2794         u64 sectorsize = btrfs_super_sectorsize(sb);
2795         int ret = 0;
2796
2797         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2798                 btrfs_err(fs_info, "no valid FS found");
2799                 ret = -EINVAL;
2800         }
2801         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2802                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2803                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2804                 ret = -EINVAL;
2805         }
2806         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2807                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2808                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2809                 ret = -EINVAL;
2810         }
2811         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2812                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2813                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2814                 ret = -EINVAL;
2815         }
2816         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2817                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2818                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2819                 ret = -EINVAL;
2820         }
2821
2822         /*
2823          * Check sectorsize and nodesize first, other check will need it.
2824          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2825          */
2826         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2827             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2828                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2829                 ret = -EINVAL;
2830         }
2831
2832         /*
2833          * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2834          *
2835          * We can support 16K sectorsize with 64K page size without problem,
2836          * but such sectorsize/pagesize combination doesn't make much sense.
2837          * 4K will be our future standard, PAGE_SIZE is supported from the very
2838          * beginning.
2839          */
2840         if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2841                 btrfs_err(fs_info,
2842                         "sectorsize %llu not yet supported for page size %lu",
2843                         sectorsize, PAGE_SIZE);
2844                 ret = -EINVAL;
2845         }
2846
2847         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2848             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2849                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2850                 ret = -EINVAL;
2851         }
2852         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2853                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2854                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2855                 ret = -EINVAL;
2856         }
2857
2858         /* Root alignment check */
2859         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2860                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2861                            btrfs_super_root(sb));
2862                 ret = -EINVAL;
2863         }
2864         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2865                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2866                            btrfs_super_chunk_root(sb));
2867                 ret = -EINVAL;
2868         }
2869         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2870                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2871                            btrfs_super_log_root(sb));
2872                 ret = -EINVAL;
2873         }
2874
2875         if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2876                    BTRFS_FSID_SIZE)) {
2877                 btrfs_err(fs_info,
2878                 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2879                         fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2880                 ret = -EINVAL;
2881         }
2882
2883         if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2884             memcmp(fs_info->fs_devices->metadata_uuid,
2885                    fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2886                 btrfs_err(fs_info,
2887 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2888                         fs_info->super_copy->metadata_uuid,
2889                         fs_info->fs_devices->metadata_uuid);
2890                 ret = -EINVAL;
2891         }
2892
2893         if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2894                    BTRFS_FSID_SIZE) != 0) {
2895                 btrfs_err(fs_info,
2896                         "dev_item UUID does not match metadata fsid: %pU != %pU",
2897                         fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2898                 ret = -EINVAL;
2899         }
2900
2901         /*
2902          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2903          * done later
2904          */
2905         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2906                 btrfs_err(fs_info, "bytes_used is too small %llu",
2907                           btrfs_super_bytes_used(sb));
2908                 ret = -EINVAL;
2909         }
2910         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2911                 btrfs_err(fs_info, "invalid stripesize %u",
2912                           btrfs_super_stripesize(sb));
2913                 ret = -EINVAL;
2914         }
2915         if (btrfs_super_num_devices(sb) > (1UL << 31))
2916                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2917                            btrfs_super_num_devices(sb));
2918         if (btrfs_super_num_devices(sb) == 0) {
2919                 btrfs_err(fs_info, "number of devices is 0");
2920                 ret = -EINVAL;
2921         }
2922
2923         if (mirror_num >= 0 &&
2924             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2925                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2926                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2927                 ret = -EINVAL;
2928         }
2929
2930         /*
2931          * Obvious sys_chunk_array corruptions, it must hold at least one key
2932          * and one chunk
2933          */
2934         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2935                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2936                           btrfs_super_sys_array_size(sb),
2937                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2938                 ret = -EINVAL;
2939         }
2940         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2941                         + sizeof(struct btrfs_chunk)) {
2942                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2943                           btrfs_super_sys_array_size(sb),
2944                           sizeof(struct btrfs_disk_key)
2945                           + sizeof(struct btrfs_chunk));
2946                 ret = -EINVAL;
2947         }
2948
2949         /*
2950          * The generation is a global counter, we'll trust it more than the others
2951          * but it's still possible that it's the one that's wrong.
2952          */
2953         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2954                 btrfs_warn(fs_info,
2955                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2956                         btrfs_super_generation(sb),
2957                         btrfs_super_chunk_root_generation(sb));
2958         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2959             && btrfs_super_cache_generation(sb) != (u64)-1)
2960                 btrfs_warn(fs_info,
2961                         "suspicious: generation < cache_generation: %llu < %llu",
2962                         btrfs_super_generation(sb),
2963                         btrfs_super_cache_generation(sb));
2964
2965         return ret;
2966 }
2967
2968 /*
2969  * Validation of super block at mount time.
2970  * Some checks already done early at mount time, like csum type and incompat
2971  * flags will be skipped.
2972  */
2973 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2974 {
2975         return validate_super(fs_info, fs_info->super_copy, 0);
2976 }
2977
2978 /*
2979  * Validation of super block at write time.
2980  * Some checks like bytenr check will be skipped as their values will be
2981  * overwritten soon.
2982  * Extra checks like csum type and incompat flags will be done here.
2983  */
2984 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2985                                       struct btrfs_super_block *sb)
2986 {
2987         int ret;
2988
2989         ret = validate_super(fs_info, sb, -1);
2990         if (ret < 0)
2991                 goto out;
2992         if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2993                 ret = -EUCLEAN;
2994                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2995                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2996                 goto out;
2997         }
2998         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2999                 ret = -EUCLEAN;
3000                 btrfs_err(fs_info,
3001                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
3002                           btrfs_super_incompat_flags(sb),
3003                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
3004                 goto out;
3005         }
3006 out:
3007         if (ret < 0)
3008                 btrfs_err(fs_info,
3009                 "super block corruption detected before writing it to disk");
3010         return ret;
3011 }
3012
3013 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
3014 {
3015         int ret = 0;
3016
3017         root->node = read_tree_block(root->fs_info, bytenr,
3018                                      root->root_key.objectid, gen, level, NULL);
3019         if (IS_ERR(root->node)) {
3020                 ret = PTR_ERR(root->node);
3021                 root->node = NULL;
3022                 return ret;
3023         }
3024         if (!extent_buffer_uptodate(root->node)) {
3025                 free_extent_buffer(root->node);
3026                 root->node = NULL;
3027                 return -EIO;
3028         }
3029
3030         btrfs_set_root_node(&root->root_item, root->node);
3031         root->commit_root = btrfs_root_node(root);
3032         btrfs_set_root_refs(&root->root_item, 1);
3033         return ret;
3034 }
3035
3036 static int load_important_roots(struct btrfs_fs_info *fs_info)
3037 {
3038         struct btrfs_super_block *sb = fs_info->super_copy;
3039         u64 gen, bytenr;
3040         int level, ret;
3041
3042         bytenr = btrfs_super_root(sb);
3043         gen = btrfs_super_generation(sb);
3044         level = btrfs_super_root_level(sb);
3045         ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
3046         if (ret) {
3047                 btrfs_warn(fs_info, "couldn't read tree root");
3048                 return ret;
3049         }
3050
3051         if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
3052                 return 0;
3053
3054         bytenr = btrfs_super_block_group_root(sb);
3055         gen = btrfs_super_block_group_root_generation(sb);
3056         level = btrfs_super_block_group_root_level(sb);
3057         ret = load_super_root(fs_info->block_group_root, bytenr, gen, level);
3058         if (ret)
3059                 btrfs_warn(fs_info, "couldn't read block group root");
3060         return ret;
3061 }
3062
3063 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
3064 {
3065         int backup_index = find_newest_super_backup(fs_info);
3066         struct btrfs_super_block *sb = fs_info->super_copy;
3067         struct btrfs_root *tree_root = fs_info->tree_root;
3068         bool handle_error = false;
3069         int ret = 0;
3070         int i;
3071
3072         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3073                 struct btrfs_root *root;
3074
3075                 root = btrfs_alloc_root(fs_info, BTRFS_BLOCK_GROUP_TREE_OBJECTID,
3076                                         GFP_KERNEL);
3077                 if (!root)
3078                         return -ENOMEM;
3079                 fs_info->block_group_root = root;
3080         }
3081
3082         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
3083                 if (handle_error) {
3084                         if (!IS_ERR(tree_root->node))
3085                                 free_extent_buffer(tree_root->node);
3086                         tree_root->node = NULL;
3087
3088                         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3089                                 break;
3090
3091                         free_root_pointers(fs_info, 0);
3092
3093                         /*
3094                          * Don't use the log in recovery mode, it won't be
3095                          * valid
3096                          */
3097                         btrfs_set_super_log_root(sb, 0);
3098
3099                         /* We can't trust the free space cache either */
3100                         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3101
3102                         ret = read_backup_root(fs_info, i);
3103                         backup_index = ret;
3104                         if (ret < 0)
3105                                 return ret;
3106                 }
3107
3108                 ret = load_important_roots(fs_info);
3109                 if (ret) {
3110                         handle_error = true;
3111                         continue;
3112                 }
3113
3114                 /*
3115                  * No need to hold btrfs_root::objectid_mutex since the fs
3116                  * hasn't been fully initialised and we are the only user
3117                  */
3118                 ret = btrfs_init_root_free_objectid(tree_root);
3119                 if (ret < 0) {
3120                         handle_error = true;
3121                         continue;
3122                 }
3123
3124                 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
3125
3126                 ret = btrfs_read_roots(fs_info);
3127                 if (ret < 0) {
3128                         handle_error = true;
3129                         continue;
3130                 }
3131
3132                 /* All successful */
3133                 fs_info->generation = btrfs_header_generation(tree_root->node);
3134                 fs_info->last_trans_committed = fs_info->generation;
3135                 fs_info->last_reloc_trans = 0;
3136
3137                 /* Always begin writing backup roots after the one being used */
3138                 if (backup_index < 0) {
3139                         fs_info->backup_root_index = 0;
3140                 } else {
3141                         fs_info->backup_root_index = backup_index + 1;
3142                         fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
3143                 }
3144                 break;
3145         }
3146
3147         return ret;
3148 }
3149
3150 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
3151 {
3152         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
3153         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
3154         INIT_LIST_HEAD(&fs_info->trans_list);
3155         INIT_LIST_HEAD(&fs_info->dead_roots);
3156         INIT_LIST_HEAD(&fs_info->delayed_iputs);
3157         INIT_LIST_HEAD(&fs_info->delalloc_roots);
3158         INIT_LIST_HEAD(&fs_info->caching_block_groups);
3159         spin_lock_init(&fs_info->delalloc_root_lock);
3160         spin_lock_init(&fs_info->trans_lock);
3161         spin_lock_init(&fs_info->fs_roots_radix_lock);
3162         spin_lock_init(&fs_info->delayed_iput_lock);
3163         spin_lock_init(&fs_info->defrag_inodes_lock);
3164         spin_lock_init(&fs_info->super_lock);
3165         spin_lock_init(&fs_info->buffer_lock);
3166         spin_lock_init(&fs_info->unused_bgs_lock);
3167         spin_lock_init(&fs_info->treelog_bg_lock);
3168         spin_lock_init(&fs_info->zone_active_bgs_lock);
3169         spin_lock_init(&fs_info->relocation_bg_lock);
3170         rwlock_init(&fs_info->tree_mod_log_lock);
3171         rwlock_init(&fs_info->global_root_lock);
3172         mutex_init(&fs_info->unused_bg_unpin_mutex);
3173         mutex_init(&fs_info->reclaim_bgs_lock);
3174         mutex_init(&fs_info->reloc_mutex);
3175         mutex_init(&fs_info->delalloc_root_mutex);
3176         mutex_init(&fs_info->zoned_meta_io_lock);
3177         mutex_init(&fs_info->zoned_data_reloc_io_lock);
3178         seqlock_init(&fs_info->profiles_lock);
3179
3180         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
3181         INIT_LIST_HEAD(&fs_info->space_info);
3182         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
3183         INIT_LIST_HEAD(&fs_info->unused_bgs);
3184         INIT_LIST_HEAD(&fs_info->reclaim_bgs);
3185         INIT_LIST_HEAD(&fs_info->zone_active_bgs);
3186 #ifdef CONFIG_BTRFS_DEBUG
3187         INIT_LIST_HEAD(&fs_info->allocated_roots);
3188         INIT_LIST_HEAD(&fs_info->allocated_ebs);
3189         spin_lock_init(&fs_info->eb_leak_lock);
3190 #endif
3191         extent_map_tree_init(&fs_info->mapping_tree);
3192         btrfs_init_block_rsv(&fs_info->global_block_rsv,
3193                              BTRFS_BLOCK_RSV_GLOBAL);
3194         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
3195         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
3196         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
3197         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
3198                              BTRFS_BLOCK_RSV_DELOPS);
3199         btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
3200                              BTRFS_BLOCK_RSV_DELREFS);
3201
3202         atomic_set(&fs_info->async_delalloc_pages, 0);
3203         atomic_set(&fs_info->defrag_running, 0);
3204         atomic_set(&fs_info->nr_delayed_iputs, 0);
3205         atomic64_set(&fs_info->tree_mod_seq, 0);
3206         fs_info->global_root_tree = RB_ROOT;
3207         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
3208         fs_info->metadata_ratio = 0;
3209         fs_info->defrag_inodes = RB_ROOT;
3210         atomic64_set(&fs_info->free_chunk_space, 0);
3211         fs_info->tree_mod_log = RB_ROOT;
3212         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
3213         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
3214         btrfs_init_ref_verify(fs_info);
3215
3216         fs_info->thread_pool_size = min_t(unsigned long,
3217                                           num_online_cpus() + 2, 8);
3218
3219         INIT_LIST_HEAD(&fs_info->ordered_roots);
3220         spin_lock_init(&fs_info->ordered_root_lock);
3221
3222         btrfs_init_scrub(fs_info);
3223 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3224         fs_info->check_integrity_print_mask = 0;
3225 #endif
3226         btrfs_init_balance(fs_info);
3227         btrfs_init_async_reclaim_work(fs_info);
3228
3229         rwlock_init(&fs_info->block_group_cache_lock);
3230         fs_info->block_group_cache_tree = RB_ROOT_CACHED;
3231
3232         extent_io_tree_init(fs_info, &fs_info->excluded_extents,
3233                             IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
3234
3235         mutex_init(&fs_info->ordered_operations_mutex);
3236         mutex_init(&fs_info->tree_log_mutex);
3237         mutex_init(&fs_info->chunk_mutex);
3238         mutex_init(&fs_info->transaction_kthread_mutex);
3239         mutex_init(&fs_info->cleaner_mutex);
3240         mutex_init(&fs_info->ro_block_group_mutex);
3241         init_rwsem(&fs_info->commit_root_sem);
3242         init_rwsem(&fs_info->cleanup_work_sem);
3243         init_rwsem(&fs_info->subvol_sem);
3244         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
3245
3246         btrfs_init_dev_replace_locks(fs_info);
3247         btrfs_init_qgroup(fs_info);
3248         btrfs_discard_init(fs_info);
3249
3250         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
3251         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
3252
3253         init_waitqueue_head(&fs_info->transaction_throttle);
3254         init_waitqueue_head(&fs_info->transaction_wait);
3255         init_waitqueue_head(&fs_info->transaction_blocked_wait);
3256         init_waitqueue_head(&fs_info->async_submit_wait);
3257         init_waitqueue_head(&fs_info->delayed_iputs_wait);
3258
3259         /* Usable values until the real ones are cached from the superblock */
3260         fs_info->nodesize = 4096;
3261         fs_info->sectorsize = 4096;
3262         fs_info->sectorsize_bits = ilog2(4096);
3263         fs_info->stripesize = 4096;
3264
3265         spin_lock_init(&fs_info->swapfile_pins_lock);
3266         fs_info->swapfile_pins = RB_ROOT;
3267
3268         fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3269         INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
3270 }
3271
3272 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3273 {
3274         int ret;
3275
3276         fs_info->sb = sb;
3277         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3278         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
3279
3280         ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
3281         if (ret)
3282                 return ret;
3283
3284         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3285         if (ret)
3286                 return ret;
3287
3288         fs_info->dirty_metadata_batch = PAGE_SIZE *
3289                                         (1 + ilog2(nr_cpu_ids));
3290
3291         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3292         if (ret)
3293                 return ret;
3294
3295         ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3296                         GFP_KERNEL);
3297         if (ret)
3298                 return ret;
3299
3300         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3301                                         GFP_KERNEL);
3302         if (!fs_info->delayed_root)
3303                 return -ENOMEM;
3304         btrfs_init_delayed_root(fs_info->delayed_root);
3305
3306         if (sb_rdonly(sb))
3307                 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3308
3309         return btrfs_alloc_stripe_hash_table(fs_info);
3310 }
3311
3312 static int btrfs_uuid_rescan_kthread(void *data)
3313 {
3314         struct btrfs_fs_info *fs_info = data;
3315         int ret;
3316
3317         /*
3318          * 1st step is to iterate through the existing UUID tree and
3319          * to delete all entries that contain outdated data.
3320          * 2nd step is to add all missing entries to the UUID tree.
3321          */
3322         ret = btrfs_uuid_tree_iterate(fs_info);
3323         if (ret < 0) {
3324                 if (ret != -EINTR)
3325                         btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3326                                    ret);
3327                 up(&fs_info->uuid_tree_rescan_sem);
3328                 return ret;
3329         }
3330         return btrfs_uuid_scan_kthread(data);
3331 }
3332
3333 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3334 {
3335         struct task_struct *task;
3336
3337         down(&fs_info->uuid_tree_rescan_sem);
3338         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3339         if (IS_ERR(task)) {
3340                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3341                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3342                 up(&fs_info->uuid_tree_rescan_sem);
3343                 return PTR_ERR(task);
3344         }
3345
3346         return 0;
3347 }
3348
3349 /*
3350  * Some options only have meaning at mount time and shouldn't persist across
3351  * remounts, or be displayed. Clear these at the end of mount and remount
3352  * code paths.
3353  */
3354 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3355 {
3356         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3357         btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
3358 }
3359
3360 /*
3361  * Mounting logic specific to read-write file systems. Shared by open_ctree
3362  * and btrfs_remount when remounting from read-only to read-write.
3363  */
3364 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3365 {
3366         int ret;
3367         const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3368         bool clear_free_space_tree = false;
3369
3370         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3371             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3372                 clear_free_space_tree = true;
3373         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3374                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3375                 btrfs_warn(fs_info, "free space tree is invalid");
3376                 clear_free_space_tree = true;
3377         }
3378
3379         if (clear_free_space_tree) {
3380                 btrfs_info(fs_info, "clearing free space tree");
3381                 ret = btrfs_clear_free_space_tree(fs_info);
3382                 if (ret) {
3383                         btrfs_warn(fs_info,
3384                                    "failed to clear free space tree: %d", ret);
3385                         goto out;
3386                 }
3387         }
3388
3389         /*
3390          * btrfs_find_orphan_roots() is responsible for finding all the dead
3391          * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3392          * them into the fs_info->fs_roots_radix tree. This must be done before
3393          * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3394          * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3395          * item before the root's tree is deleted - this means that if we unmount
3396          * or crash before the deletion completes, on the next mount we will not
3397          * delete what remains of the tree because the orphan item does not
3398          * exists anymore, which is what tells us we have a pending deletion.
3399          */
3400         ret = btrfs_find_orphan_roots(fs_info);
3401         if (ret)
3402                 goto out;
3403
3404         ret = btrfs_cleanup_fs_roots(fs_info);
3405         if (ret)
3406                 goto out;
3407
3408         down_read(&fs_info->cleanup_work_sem);
3409         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3410             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3411                 up_read(&fs_info->cleanup_work_sem);
3412                 goto out;
3413         }
3414         up_read(&fs_info->cleanup_work_sem);
3415
3416         mutex_lock(&fs_info->cleaner_mutex);
3417         ret = btrfs_recover_relocation(fs_info);
3418         mutex_unlock(&fs_info->cleaner_mutex);
3419         if (ret < 0) {
3420                 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3421                 goto out;
3422         }
3423
3424         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3425             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3426                 btrfs_info(fs_info, "creating free space tree");
3427                 ret = btrfs_create_free_space_tree(fs_info);
3428                 if (ret) {
3429                         btrfs_warn(fs_info,
3430                                 "failed to create free space tree: %d", ret);
3431                         goto out;
3432                 }
3433         }
3434
3435         if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3436                 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3437                 if (ret)
3438                         goto out;
3439         }
3440
3441         ret = btrfs_resume_balance_async(fs_info);
3442         if (ret)
3443                 goto out;
3444
3445         ret = btrfs_resume_dev_replace_async(fs_info);
3446         if (ret) {
3447                 btrfs_warn(fs_info, "failed to resume dev_replace");
3448                 goto out;
3449         }
3450
3451         btrfs_qgroup_rescan_resume(fs_info);
3452
3453         if (!fs_info->uuid_root) {
3454                 btrfs_info(fs_info, "creating UUID tree");
3455                 ret = btrfs_create_uuid_tree(fs_info);
3456                 if (ret) {
3457                         btrfs_warn(fs_info,
3458                                    "failed to create the UUID tree %d", ret);
3459                         goto out;
3460                 }
3461         }
3462
3463 out:
3464         return ret;
3465 }
3466
3467 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3468                       char *options)
3469 {
3470         u32 sectorsize;
3471         u32 nodesize;
3472         u32 stripesize;
3473         u64 generation;
3474         u64 features;
3475         u16 csum_type;
3476         struct btrfs_super_block *disk_super;
3477         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3478         struct btrfs_root *tree_root;
3479         struct btrfs_root *chunk_root;
3480         int ret;
3481         int err = -EINVAL;
3482         int level;
3483
3484         ret = init_mount_fs_info(fs_info, sb);
3485         if (ret) {
3486                 err = ret;
3487                 goto fail;
3488         }
3489
3490         /* These need to be init'ed before we start creating inodes and such. */
3491         tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3492                                      GFP_KERNEL);
3493         fs_info->tree_root = tree_root;
3494         chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3495                                       GFP_KERNEL);
3496         fs_info->chunk_root = chunk_root;
3497         if (!tree_root || !chunk_root) {
3498                 err = -ENOMEM;
3499                 goto fail;
3500         }
3501
3502         fs_info->btree_inode = new_inode(sb);
3503         if (!fs_info->btree_inode) {
3504                 err = -ENOMEM;
3505                 goto fail;
3506         }
3507         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3508         btrfs_init_btree_inode(fs_info);
3509
3510         invalidate_bdev(fs_devices->latest_dev->bdev);
3511
3512         /*
3513          * Read super block and check the signature bytes only
3514          */
3515         disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3516         if (IS_ERR(disk_super)) {
3517                 err = PTR_ERR(disk_super);
3518                 goto fail_alloc;
3519         }
3520
3521         /*
3522          * Verify the type first, if that or the checksum value are
3523          * corrupted, we'll find out
3524          */
3525         csum_type = btrfs_super_csum_type(disk_super);
3526         if (!btrfs_supported_super_csum(csum_type)) {
3527                 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3528                           csum_type);
3529                 err = -EINVAL;
3530                 btrfs_release_disk_super(disk_super);
3531                 goto fail_alloc;
3532         }
3533
3534         fs_info->csum_size = btrfs_super_csum_size(disk_super);
3535
3536         ret = btrfs_init_csum_hash(fs_info, csum_type);
3537         if (ret) {
3538                 err = ret;
3539                 btrfs_release_disk_super(disk_super);
3540                 goto fail_alloc;
3541         }
3542
3543         /*
3544          * We want to check superblock checksum, the type is stored inside.
3545          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3546          */
3547         if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
3548                 btrfs_err(fs_info, "superblock checksum mismatch");
3549                 err = -EINVAL;
3550                 btrfs_release_disk_super(disk_super);
3551                 goto fail_alloc;
3552         }
3553
3554         /*
3555          * super_copy is zeroed at allocation time and we never touch the
3556          * following bytes up to INFO_SIZE, the checksum is calculated from
3557          * the whole block of INFO_SIZE
3558          */
3559         memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3560         btrfs_release_disk_super(disk_super);
3561
3562         disk_super = fs_info->super_copy;
3563
3564
3565         features = btrfs_super_flags(disk_super);
3566         if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3567                 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3568                 btrfs_set_super_flags(disk_super, features);
3569                 btrfs_info(fs_info,
3570                         "found metadata UUID change in progress flag, clearing");
3571         }
3572
3573         memcpy(fs_info->super_for_commit, fs_info->super_copy,
3574                sizeof(*fs_info->super_for_commit));
3575
3576         ret = btrfs_validate_mount_super(fs_info);
3577         if (ret) {
3578                 btrfs_err(fs_info, "superblock contains fatal errors");
3579                 err = -EINVAL;
3580                 goto fail_alloc;
3581         }
3582
3583         if (!btrfs_super_root(disk_super))
3584                 goto fail_alloc;
3585
3586         /* check FS state, whether FS is broken. */
3587         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3588                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3589
3590         /*
3591          * In the long term, we'll store the compression type in the super
3592          * block, and it'll be used for per file compression control.
3593          */
3594         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3595
3596         /*
3597          * Flag our filesystem as having big metadata blocks if they are bigger
3598          * than the page size.
3599          */
3600         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3601                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3602                         btrfs_info(fs_info,
3603                                 "flagging fs with big metadata feature");
3604                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3605         }
3606
3607         /* Set up fs_info before parsing mount options */
3608         nodesize = btrfs_super_nodesize(disk_super);
3609         sectorsize = btrfs_super_sectorsize(disk_super);
3610         stripesize = sectorsize;
3611         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3612         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3613
3614         fs_info->nodesize = nodesize;
3615         fs_info->sectorsize = sectorsize;
3616         fs_info->sectorsize_bits = ilog2(sectorsize);
3617         fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3618         fs_info->stripesize = stripesize;
3619
3620         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3621         if (ret) {
3622                 err = ret;
3623                 goto fail_alloc;
3624         }
3625
3626         features = btrfs_super_incompat_flags(disk_super) &
3627                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3628         if (features) {
3629                 btrfs_err(fs_info,
3630                     "cannot mount because of unsupported optional features (0x%llx)",
3631                     features);
3632                 err = -EINVAL;
3633                 goto fail_alloc;
3634         }
3635
3636         features = btrfs_super_incompat_flags(disk_super);
3637         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3638         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3639                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3640         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3641                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3642
3643         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3644                 btrfs_info(fs_info, "has skinny extents");
3645
3646         /*
3647          * mixed block groups end up with duplicate but slightly offset
3648          * extent buffers for the same range.  It leads to corruptions
3649          */
3650         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3651             (sectorsize != nodesize)) {
3652                 btrfs_err(fs_info,
3653 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3654                         nodesize, sectorsize);
3655                 goto fail_alloc;
3656         }
3657
3658         /*
3659          * Needn't use the lock because there is no other task which will
3660          * update the flag.
3661          */
3662         btrfs_set_super_incompat_flags(disk_super, features);
3663
3664         features = btrfs_super_compat_ro_flags(disk_super) &
3665                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
3666         if (!sb_rdonly(sb) && features) {
3667                 btrfs_err(fs_info,
3668         "cannot mount read-write because of unsupported optional features (0x%llx)",
3669                        features);
3670                 err = -EINVAL;
3671                 goto fail_alloc;
3672         }
3673
3674         if (sectorsize < PAGE_SIZE) {
3675                 struct btrfs_subpage_info *subpage_info;
3676
3677                 /*
3678                  * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3679                  * going to be deprecated.
3680                  *
3681                  * Force to use v2 cache for subpage case.
3682                  */
3683                 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3684                 btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3685                         "forcing free space tree for sector size %u with page size %lu",
3686                         sectorsize, PAGE_SIZE);
3687
3688                 btrfs_warn(fs_info,
3689                 "read-write for sector size %u with page size %lu is experimental",
3690                            sectorsize, PAGE_SIZE);
3691                 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3692                 if (!subpage_info)
3693                         goto fail_alloc;
3694                 btrfs_init_subpage_info(subpage_info, sectorsize);
3695                 fs_info->subpage_info = subpage_info;
3696         }
3697
3698         ret = btrfs_init_workqueues(fs_info);
3699         if (ret) {
3700                 err = ret;
3701                 goto fail_sb_buffer;
3702         }
3703
3704         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3705         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3706
3707         sb->s_blocksize = sectorsize;
3708         sb->s_blocksize_bits = blksize_bits(sectorsize);
3709         memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3710
3711         mutex_lock(&fs_info->chunk_mutex);
3712         ret = btrfs_read_sys_array(fs_info);
3713         mutex_unlock(&fs_info->chunk_mutex);
3714         if (ret) {
3715                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3716                 goto fail_sb_buffer;
3717         }
3718
3719         generation = btrfs_super_chunk_root_generation(disk_super);
3720         level = btrfs_super_chunk_root_level(disk_super);
3721         ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3722                               generation, level);
3723         if (ret) {
3724                 btrfs_err(fs_info, "failed to read chunk root");
3725                 goto fail_tree_roots;
3726         }
3727
3728         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3729                            offsetof(struct btrfs_header, chunk_tree_uuid),
3730                            BTRFS_UUID_SIZE);
3731
3732         ret = btrfs_read_chunk_tree(fs_info);
3733         if (ret) {
3734                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3735                 goto fail_tree_roots;
3736         }
3737
3738         /*
3739          * At this point we know all the devices that make this filesystem,
3740          * including the seed devices but we don't know yet if the replace
3741          * target is required. So free devices that are not part of this
3742          * filesystem but skip the replace target device which is checked
3743          * below in btrfs_init_dev_replace().
3744          */
3745         btrfs_free_extra_devids(fs_devices);
3746         if (!fs_devices->latest_dev->bdev) {
3747                 btrfs_err(fs_info, "failed to read devices");
3748                 goto fail_tree_roots;
3749         }
3750
3751         ret = init_tree_roots(fs_info);
3752         if (ret)
3753                 goto fail_tree_roots;
3754
3755         /*
3756          * Get zone type information of zoned block devices. This will also
3757          * handle emulation of a zoned filesystem if a regular device has the
3758          * zoned incompat feature flag set.
3759          */
3760         ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3761         if (ret) {
3762                 btrfs_err(fs_info,
3763                           "zoned: failed to read device zone info: %d",
3764                           ret);
3765                 goto fail_block_groups;
3766         }
3767
3768         /*
3769          * If we have a uuid root and we're not being told to rescan we need to
3770          * check the generation here so we can set the
3771          * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3772          * transaction during a balance or the log replay without updating the
3773          * uuid generation, and then if we crash we would rescan the uuid tree,
3774          * even though it was perfectly fine.
3775          */
3776         if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3777             fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3778                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3779
3780         ret = btrfs_verify_dev_extents(fs_info);
3781         if (ret) {
3782                 btrfs_err(fs_info,
3783                           "failed to verify dev extents against chunks: %d",
3784                           ret);
3785                 goto fail_block_groups;
3786         }
3787         ret = btrfs_recover_balance(fs_info);
3788         if (ret) {
3789                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3790                 goto fail_block_groups;
3791         }
3792
3793         ret = btrfs_init_dev_stats(fs_info);
3794         if (ret) {
3795                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3796                 goto fail_block_groups;
3797         }
3798
3799         ret = btrfs_init_dev_replace(fs_info);
3800         if (ret) {
3801                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3802                 goto fail_block_groups;
3803         }
3804
3805         ret = btrfs_check_zoned_mode(fs_info);
3806         if (ret) {
3807                 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3808                           ret);
3809                 goto fail_block_groups;
3810         }
3811
3812         ret = btrfs_sysfs_add_fsid(fs_devices);
3813         if (ret) {
3814                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3815                                 ret);
3816                 goto fail_block_groups;
3817         }
3818
3819         ret = btrfs_sysfs_add_mounted(fs_info);
3820         if (ret) {
3821                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3822                 goto fail_fsdev_sysfs;
3823         }
3824
3825         ret = btrfs_init_space_info(fs_info);
3826         if (ret) {
3827                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3828                 goto fail_sysfs;
3829         }
3830
3831         ret = btrfs_read_block_groups(fs_info);
3832         if (ret) {
3833                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3834                 goto fail_sysfs;
3835         }
3836
3837         btrfs_free_zone_cache(fs_info);
3838
3839         if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3840             !btrfs_check_rw_degradable(fs_info, NULL)) {
3841                 btrfs_warn(fs_info,
3842                 "writable mount is not allowed due to too many missing devices");
3843                 goto fail_sysfs;
3844         }
3845
3846         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3847                                                "btrfs-cleaner");
3848         if (IS_ERR(fs_info->cleaner_kthread))
3849                 goto fail_sysfs;
3850
3851         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3852                                                    tree_root,
3853                                                    "btrfs-transaction");
3854         if (IS_ERR(fs_info->transaction_kthread))
3855                 goto fail_cleaner;
3856
3857         if (!btrfs_test_opt(fs_info, NOSSD) &&
3858             !fs_info->fs_devices->rotating) {
3859                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3860         }
3861
3862         /*
3863          * Mount does not set all options immediately, we can do it now and do
3864          * not have to wait for transaction commit
3865          */
3866         btrfs_apply_pending_changes(fs_info);
3867
3868 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3869         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3870                 ret = btrfsic_mount(fs_info, fs_devices,
3871                                     btrfs_test_opt(fs_info,
3872                                         CHECK_INTEGRITY_DATA) ? 1 : 0,
3873                                     fs_info->check_integrity_print_mask);
3874                 if (ret)
3875                         btrfs_warn(fs_info,
3876                                 "failed to initialize integrity check module: %d",
3877                                 ret);
3878         }
3879 #endif
3880         ret = btrfs_read_qgroup_config(fs_info);
3881         if (ret)
3882                 goto fail_trans_kthread;
3883
3884         if (btrfs_build_ref_tree(fs_info))
3885                 btrfs_err(fs_info, "couldn't build ref tree");
3886
3887         /* do not make disk changes in broken FS or nologreplay is given */
3888         if (btrfs_super_log_root(disk_super) != 0 &&
3889             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3890                 btrfs_info(fs_info, "start tree-log replay");
3891                 ret = btrfs_replay_log(fs_info, fs_devices);
3892                 if (ret) {
3893                         err = ret;
3894                         goto fail_qgroup;
3895                 }
3896         }
3897
3898         fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3899         if (IS_ERR(fs_info->fs_root)) {
3900                 err = PTR_ERR(fs_info->fs_root);
3901                 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3902                 fs_info->fs_root = NULL;
3903                 goto fail_qgroup;
3904         }
3905
3906         if (sb_rdonly(sb))
3907                 goto clear_oneshot;
3908
3909         ret = btrfs_start_pre_rw_mount(fs_info);
3910         if (ret) {
3911                 close_ctree(fs_info);
3912                 return ret;
3913         }
3914         btrfs_discard_resume(fs_info);
3915
3916         if (fs_info->uuid_root &&
3917             (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3918              fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3919                 btrfs_info(fs_info, "checking UUID tree");
3920                 ret = btrfs_check_uuid_tree(fs_info);
3921                 if (ret) {
3922                         btrfs_warn(fs_info,
3923                                 "failed to check the UUID tree: %d", ret);
3924                         close_ctree(fs_info);
3925                         return ret;
3926                 }
3927         }
3928
3929         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3930
3931         /* Kick the cleaner thread so it'll start deleting snapshots. */
3932         if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3933                 wake_up_process(fs_info->cleaner_kthread);
3934
3935 clear_oneshot:
3936         btrfs_clear_oneshot_options(fs_info);
3937         return 0;
3938
3939 fail_qgroup:
3940         btrfs_free_qgroup_config(fs_info);
3941 fail_trans_kthread:
3942         kthread_stop(fs_info->transaction_kthread);
3943         btrfs_cleanup_transaction(fs_info);
3944         btrfs_free_fs_roots(fs_info);
3945 fail_cleaner:
3946         kthread_stop(fs_info->cleaner_kthread);
3947
3948         /*
3949          * make sure we're done with the btree inode before we stop our
3950          * kthreads
3951          */
3952         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3953
3954 fail_sysfs:
3955         btrfs_sysfs_remove_mounted(fs_info);
3956
3957 fail_fsdev_sysfs:
3958         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3959
3960 fail_block_groups:
3961         btrfs_put_block_group_cache(fs_info);
3962
3963 fail_tree_roots:
3964         if (fs_info->data_reloc_root)
3965                 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3966         free_root_pointers(fs_info, true);
3967         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3968
3969 fail_sb_buffer:
3970         btrfs_stop_all_workers(fs_info);
3971         btrfs_free_block_groups(fs_info);
3972 fail_alloc:
3973         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3974
3975         iput(fs_info->btree_inode);
3976 fail:
3977         btrfs_close_devices(fs_info->fs_devices);
3978         return err;
3979 }
3980 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3981
3982 static void btrfs_end_super_write(struct bio *bio)
3983 {
3984         struct btrfs_device *device = bio->bi_private;
3985         struct bio_vec *bvec;
3986         struct bvec_iter_all iter_all;
3987         struct page *page;
3988
3989         bio_for_each_segment_all(bvec, bio, iter_all) {
3990                 page = bvec->bv_page;
3991
3992                 if (bio->bi_status) {
3993                         btrfs_warn_rl_in_rcu(device->fs_info,
3994                                 "lost page write due to IO error on %s (%d)",
3995                                 rcu_str_deref(device->name),
3996                                 blk_status_to_errno(bio->bi_status));
3997                         ClearPageUptodate(page);
3998                         SetPageError(page);
3999                         btrfs_dev_stat_inc_and_print(device,
4000                                                      BTRFS_DEV_STAT_WRITE_ERRS);
4001                 } else {
4002                         SetPageUptodate(page);
4003                 }
4004
4005                 put_page(page);
4006                 unlock_page(page);
4007         }
4008
4009         bio_put(bio);
4010 }
4011
4012 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
4013                                                    int copy_num)
4014 {
4015         struct btrfs_super_block *super;
4016         struct page *page;
4017         u64 bytenr, bytenr_orig;
4018         struct address_space *mapping = bdev->bd_inode->i_mapping;
4019         int ret;
4020
4021         bytenr_orig = btrfs_sb_offset(copy_num);
4022         ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
4023         if (ret == -ENOENT)
4024                 return ERR_PTR(-EINVAL);
4025         else if (ret)
4026                 return ERR_PTR(ret);
4027
4028         if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
4029                 return ERR_PTR(-EINVAL);
4030
4031         page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
4032         if (IS_ERR(page))
4033                 return ERR_CAST(page);
4034
4035         super = page_address(page);
4036         if (btrfs_super_magic(super) != BTRFS_MAGIC) {
4037                 btrfs_release_disk_super(super);
4038                 return ERR_PTR(-ENODATA);
4039         }
4040
4041         if (btrfs_super_bytenr(super) != bytenr_orig) {
4042                 btrfs_release_disk_super(super);
4043                 return ERR_PTR(-EINVAL);
4044         }
4045
4046         return super;
4047 }
4048
4049
4050 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
4051 {
4052         struct btrfs_super_block *super, *latest = NULL;
4053         int i;
4054         u64 transid = 0;
4055
4056         /* we would like to check all the supers, but that would make
4057          * a btrfs mount succeed after a mkfs from a different FS.
4058          * So, we need to add a special mount option to scan for
4059          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
4060          */
4061         for (i = 0; i < 1; i++) {
4062                 super = btrfs_read_dev_one_super(bdev, i);
4063                 if (IS_ERR(super))
4064                         continue;
4065
4066                 if (!latest || btrfs_super_generation(super) > transid) {
4067                         if (latest)
4068                                 btrfs_release_disk_super(super);
4069
4070                         latest = super;
4071                         transid = btrfs_super_generation(super);
4072                 }
4073         }
4074
4075         return super;
4076 }
4077
4078 /*
4079  * Write superblock @sb to the @device. Do not wait for completion, all the
4080  * pages we use for writing are locked.
4081  *
4082  * Write @max_mirrors copies of the superblock, where 0 means default that fit
4083  * the expected device size at commit time. Note that max_mirrors must be
4084  * same for write and wait phases.
4085  *
4086  * Return number of errors when page is not found or submission fails.
4087  */
4088 static int write_dev_supers(struct btrfs_device *device,
4089                             struct btrfs_super_block *sb, int max_mirrors)
4090 {
4091         struct btrfs_fs_info *fs_info = device->fs_info;
4092         struct address_space *mapping = device->bdev->bd_inode->i_mapping;
4093         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
4094         int i;
4095         int errors = 0;
4096         int ret;
4097         u64 bytenr, bytenr_orig;
4098
4099         if (max_mirrors == 0)
4100                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4101
4102         shash->tfm = fs_info->csum_shash;
4103
4104         for (i = 0; i < max_mirrors; i++) {
4105                 struct page *page;
4106                 struct bio *bio;
4107                 struct btrfs_super_block *disk_super;
4108
4109                 bytenr_orig = btrfs_sb_offset(i);
4110                 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
4111                 if (ret == -ENOENT) {
4112                         continue;
4113                 } else if (ret < 0) {
4114                         btrfs_err(device->fs_info,
4115                                 "couldn't get super block location for mirror %d",
4116                                 i);
4117                         errors++;
4118                         continue;
4119                 }
4120                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4121                     device->commit_total_bytes)
4122                         break;
4123
4124                 btrfs_set_super_bytenr(sb, bytenr_orig);
4125
4126                 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
4127                                     BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
4128                                     sb->csum);
4129
4130                 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
4131                                            GFP_NOFS);
4132                 if (!page) {
4133                         btrfs_err(device->fs_info,
4134                             "couldn't get super block page for bytenr %llu",
4135                             bytenr);
4136                         errors++;
4137                         continue;
4138                 }
4139
4140                 /* Bump the refcount for wait_dev_supers() */
4141                 get_page(page);
4142
4143                 disk_super = page_address(page);
4144                 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4145
4146                 /*
4147                  * Directly use bios here instead of relying on the page cache
4148                  * to do I/O, so we don't lose the ability to do integrity
4149                  * checking.
4150                  */
4151                 bio = bio_alloc(device->bdev, 1,
4152                                 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
4153                                 GFP_NOFS);
4154                 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
4155                 bio->bi_private = device;
4156                 bio->bi_end_io = btrfs_end_super_write;
4157                 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
4158                                offset_in_page(bytenr));
4159
4160                 /*
4161                  * We FUA only the first super block.  The others we allow to
4162                  * go down lazy and there's a short window where the on-disk
4163                  * copies might still contain the older version.
4164                  */
4165                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
4166                         bio->bi_opf |= REQ_FUA;
4167
4168                 btrfsic_check_bio(bio);
4169                 submit_bio(bio);
4170
4171                 if (btrfs_advance_sb_log(device, i))
4172                         errors++;
4173         }
4174         return errors < i ? 0 : -1;
4175 }
4176
4177 /*
4178  * Wait for write completion of superblocks done by write_dev_supers,
4179  * @max_mirrors same for write and wait phases.
4180  *
4181  * Return number of errors when page is not found or not marked up to
4182  * date.
4183  */
4184 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
4185 {
4186         int i;
4187         int errors = 0;
4188         bool primary_failed = false;
4189         int ret;
4190         u64 bytenr;
4191
4192         if (max_mirrors == 0)
4193                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4194
4195         for (i = 0; i < max_mirrors; i++) {
4196                 struct page *page;
4197
4198                 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
4199                 if (ret == -ENOENT) {
4200                         break;
4201                 } else if (ret < 0) {
4202                         errors++;
4203                         if (i == 0)
4204                                 primary_failed = true;
4205                         continue;
4206                 }
4207                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4208                     device->commit_total_bytes)
4209                         break;
4210
4211                 page = find_get_page(device->bdev->bd_inode->i_mapping,
4212                                      bytenr >> PAGE_SHIFT);
4213                 if (!page) {
4214                         errors++;
4215                         if (i == 0)
4216                                 primary_failed = true;
4217                         continue;
4218                 }
4219                 /* Page is submitted locked and unlocked once the IO completes */
4220                 wait_on_page_locked(page);
4221                 if (PageError(page)) {
4222                         errors++;
4223                         if (i == 0)
4224                                 primary_failed = true;
4225                 }
4226
4227                 /* Drop our reference */
4228                 put_page(page);
4229
4230                 /* Drop the reference from the writing run */
4231                 put_page(page);
4232         }
4233
4234         /* log error, force error return */
4235         if (primary_failed) {
4236                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
4237                           device->devid);
4238                 return -1;
4239         }
4240
4241         return errors < i ? 0 : -1;
4242 }
4243
4244 /*
4245  * endio for the write_dev_flush, this will wake anyone waiting
4246  * for the barrier when it is done
4247  */
4248 static void btrfs_end_empty_barrier(struct bio *bio)
4249 {
4250         bio_uninit(bio);
4251         complete(bio->bi_private);
4252 }
4253
4254 /*
4255  * Submit a flush request to the device if it supports it. Error handling is
4256  * done in the waiting counterpart.
4257  */
4258 static void write_dev_flush(struct btrfs_device *device)
4259 {
4260         struct bio *bio = &device->flush_bio;
4261
4262 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4263         /*
4264          * When a disk has write caching disabled, we skip submission of a bio
4265          * with flush and sync requests before writing the superblock, since
4266          * it's not needed. However when the integrity checker is enabled, this
4267          * results in reports that there are metadata blocks referred by a
4268          * superblock that were not properly flushed. So don't skip the bio
4269          * submission only when the integrity checker is enabled for the sake
4270          * of simplicity, since this is a debug tool and not meant for use in
4271          * non-debug builds.
4272          */
4273         if (!bdev_write_cache(device->bdev))
4274                 return;
4275 #endif
4276
4277         bio_init(bio, device->bdev, NULL, 0,
4278                  REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
4279         bio->bi_end_io = btrfs_end_empty_barrier;
4280         init_completion(&device->flush_wait);
4281         bio->bi_private = &device->flush_wait;
4282
4283         btrfsic_check_bio(bio);
4284         submit_bio(bio);
4285         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4286 }
4287
4288 /*
4289  * If the flush bio has been submitted by write_dev_flush, wait for it.
4290  */
4291 static blk_status_t wait_dev_flush(struct btrfs_device *device)
4292 {
4293         struct bio *bio = &device->flush_bio;
4294
4295         if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
4296                 return BLK_STS_OK;
4297
4298         clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4299         wait_for_completion_io(&device->flush_wait);
4300
4301         return bio->bi_status;
4302 }
4303
4304 static int check_barrier_error(struct btrfs_fs_info *fs_info)
4305 {
4306         if (!btrfs_check_rw_degradable(fs_info, NULL))
4307                 return -EIO;
4308         return 0;
4309 }
4310
4311 /*
4312  * send an empty flush down to each device in parallel,
4313  * then wait for them
4314  */
4315 static int barrier_all_devices(struct btrfs_fs_info *info)
4316 {
4317         struct list_head *head;
4318         struct btrfs_device *dev;
4319         int errors_wait = 0;
4320         blk_status_t ret;
4321
4322         lockdep_assert_held(&info->fs_devices->device_list_mutex);
4323         /* send down all the barriers */
4324         head = &info->fs_devices->devices;
4325         list_for_each_entry(dev, head, dev_list) {
4326                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4327                         continue;
4328                 if (!dev->bdev)
4329                         continue;
4330                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4331                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4332                         continue;
4333
4334                 write_dev_flush(dev);
4335                 dev->last_flush_error = BLK_STS_OK;
4336         }
4337
4338         /* wait for all the barriers */
4339         list_for_each_entry(dev, head, dev_list) {
4340                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4341                         continue;
4342                 if (!dev->bdev) {
4343                         errors_wait++;
4344                         continue;
4345                 }
4346                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4347                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4348                         continue;
4349
4350                 ret = wait_dev_flush(dev);
4351                 if (ret) {
4352                         dev->last_flush_error = ret;
4353                         btrfs_dev_stat_inc_and_print(dev,
4354                                         BTRFS_DEV_STAT_FLUSH_ERRS);
4355                         errors_wait++;
4356                 }
4357         }
4358
4359         if (errors_wait) {
4360                 /*
4361                  * At some point we need the status of all disks
4362                  * to arrive at the volume status. So error checking
4363                  * is being pushed to a separate loop.
4364                  */
4365                 return check_barrier_error(info);
4366         }
4367         return 0;
4368 }
4369
4370 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4371 {
4372         int raid_type;
4373         int min_tolerated = INT_MAX;
4374
4375         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4376             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4377                 min_tolerated = min_t(int, min_tolerated,
4378                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
4379                                     tolerated_failures);
4380
4381         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4382                 if (raid_type == BTRFS_RAID_SINGLE)
4383                         continue;
4384                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4385                         continue;
4386                 min_tolerated = min_t(int, min_tolerated,
4387                                     btrfs_raid_array[raid_type].
4388                                     tolerated_failures);
4389         }
4390
4391         if (min_tolerated == INT_MAX) {
4392                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
4393                 min_tolerated = 0;
4394         }
4395
4396         return min_tolerated;
4397 }
4398
4399 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4400 {
4401         struct list_head *head;
4402         struct btrfs_device *dev;
4403         struct btrfs_super_block *sb;
4404         struct btrfs_dev_item *dev_item;
4405         int ret;
4406         int do_barriers;
4407         int max_errors;
4408         int total_errors = 0;
4409         u64 flags;
4410
4411         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4412
4413         /*
4414          * max_mirrors == 0 indicates we're from commit_transaction,
4415          * not from fsync where the tree roots in fs_info have not
4416          * been consistent on disk.
4417          */
4418         if (max_mirrors == 0)
4419                 backup_super_roots(fs_info);
4420
4421         sb = fs_info->super_for_commit;
4422         dev_item = &sb->dev_item;
4423
4424         mutex_lock(&fs_info->fs_devices->device_list_mutex);
4425         head = &fs_info->fs_devices->devices;
4426         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4427
4428         if (do_barriers) {
4429                 ret = barrier_all_devices(fs_info);
4430                 if (ret) {
4431                         mutex_unlock(
4432                                 &fs_info->fs_devices->device_list_mutex);
4433                         btrfs_handle_fs_error(fs_info, ret,
4434                                               "errors while submitting device barriers.");
4435                         return ret;
4436                 }
4437         }
4438
4439         list_for_each_entry(dev, head, dev_list) {
4440                 if (!dev->bdev) {
4441                         total_errors++;
4442                         continue;
4443                 }
4444                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4445                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4446                         continue;
4447
4448                 btrfs_set_stack_device_generation(dev_item, 0);
4449                 btrfs_set_stack_device_type(dev_item, dev->type);
4450                 btrfs_set_stack_device_id(dev_item, dev->devid);
4451                 btrfs_set_stack_device_total_bytes(dev_item,
4452                                                    dev->commit_total_bytes);
4453                 btrfs_set_stack_device_bytes_used(dev_item,
4454                                                   dev->commit_bytes_used);
4455                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4456                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4457                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4458                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4459                 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4460                        BTRFS_FSID_SIZE);
4461
4462                 flags = btrfs_super_flags(sb);
4463                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4464
4465                 ret = btrfs_validate_write_super(fs_info, sb);
4466                 if (ret < 0) {
4467                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4468                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
4469                                 "unexpected superblock corruption detected");
4470                         return -EUCLEAN;
4471                 }
4472
4473                 ret = write_dev_supers(dev, sb, max_mirrors);
4474                 if (ret)
4475                         total_errors++;
4476         }
4477         if (total_errors > max_errors) {
4478                 btrfs_err(fs_info, "%d errors while writing supers",
4479                           total_errors);
4480                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4481
4482                 /* FUA is masked off if unsupported and can't be the reason */
4483                 btrfs_handle_fs_error(fs_info, -EIO,
4484                                       "%d errors while writing supers",
4485                                       total_errors);
4486                 return -EIO;
4487         }
4488
4489         total_errors = 0;
4490         list_for_each_entry(dev, head, dev_list) {
4491                 if (!dev->bdev)
4492                         continue;
4493                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4494                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4495                         continue;
4496
4497                 ret = wait_dev_supers(dev, max_mirrors);
4498                 if (ret)
4499                         total_errors++;
4500         }
4501         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4502         if (total_errors > max_errors) {
4503                 btrfs_handle_fs_error(fs_info, -EIO,
4504                                       "%d errors while writing supers",
4505                                       total_errors);
4506                 return -EIO;
4507         }
4508         return 0;
4509 }
4510
4511 /* Drop a fs root from the radix tree and free it. */
4512 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4513                                   struct btrfs_root *root)
4514 {
4515         bool drop_ref = false;
4516
4517         spin_lock(&fs_info->fs_roots_radix_lock);
4518         radix_tree_delete(&fs_info->fs_roots_radix,
4519                           (unsigned long)root->root_key.objectid);
4520         if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4521                 drop_ref = true;
4522         spin_unlock(&fs_info->fs_roots_radix_lock);
4523
4524         if (BTRFS_FS_ERROR(fs_info)) {
4525                 ASSERT(root->log_root == NULL);
4526                 if (root->reloc_root) {
4527                         btrfs_put_root(root->reloc_root);
4528                         root->reloc_root = NULL;
4529                 }
4530         }
4531
4532         if (drop_ref)
4533                 btrfs_put_root(root);
4534 }
4535
4536 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4537 {
4538         u64 root_objectid = 0;
4539         struct btrfs_root *gang[8];
4540         int i = 0;
4541         int err = 0;
4542         unsigned int ret = 0;
4543
4544         while (1) {
4545                 spin_lock(&fs_info->fs_roots_radix_lock);
4546                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4547                                              (void **)gang, root_objectid,
4548                                              ARRAY_SIZE(gang));
4549                 if (!ret) {
4550                         spin_unlock(&fs_info->fs_roots_radix_lock);
4551                         break;
4552                 }
4553                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
4554
4555                 for (i = 0; i < ret; i++) {
4556                         /* Avoid to grab roots in dead_roots */
4557                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4558                                 gang[i] = NULL;
4559                                 continue;
4560                         }
4561                         /* grab all the search result for later use */
4562                         gang[i] = btrfs_grab_root(gang[i]);
4563                 }
4564                 spin_unlock(&fs_info->fs_roots_radix_lock);
4565
4566                 for (i = 0; i < ret; i++) {
4567                         if (!gang[i])
4568                                 continue;
4569                         root_objectid = gang[i]->root_key.objectid;
4570                         err = btrfs_orphan_cleanup(gang[i]);
4571                         if (err)
4572                                 break;
4573                         btrfs_put_root(gang[i]);
4574                 }
4575                 root_objectid++;
4576         }
4577
4578         /* release the uncleaned roots due to error */
4579         for (; i < ret; i++) {
4580                 if (gang[i])
4581                         btrfs_put_root(gang[i]);
4582         }
4583         return err;
4584 }
4585
4586 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4587 {
4588         struct btrfs_root *root = fs_info->tree_root;
4589         struct btrfs_trans_handle *trans;
4590
4591         mutex_lock(&fs_info->cleaner_mutex);
4592         btrfs_run_delayed_iputs(fs_info);
4593         mutex_unlock(&fs_info->cleaner_mutex);
4594         wake_up_process(fs_info->cleaner_kthread);
4595
4596         /* wait until ongoing cleanup work done */
4597         down_write(&fs_info->cleanup_work_sem);
4598         up_write(&fs_info->cleanup_work_sem);
4599
4600         trans = btrfs_join_transaction(root);
4601         if (IS_ERR(trans))
4602                 return PTR_ERR(trans);
4603         return btrfs_commit_transaction(trans);
4604 }
4605
4606 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4607 {
4608         struct btrfs_transaction *trans;
4609         struct btrfs_transaction *tmp;
4610         bool found = false;
4611
4612         if (list_empty(&fs_info->trans_list))
4613                 return;
4614
4615         /*
4616          * This function is only called at the very end of close_ctree(),
4617          * thus no other running transaction, no need to take trans_lock.
4618          */
4619         ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4620         list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4621                 struct extent_state *cached = NULL;
4622                 u64 dirty_bytes = 0;
4623                 u64 cur = 0;
4624                 u64 found_start;
4625                 u64 found_end;
4626
4627                 found = true;
4628                 while (!find_first_extent_bit(&trans->dirty_pages, cur,
4629                         &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4630                         dirty_bytes += found_end + 1 - found_start;
4631                         cur = found_end + 1;
4632                 }
4633                 btrfs_warn(fs_info,
4634         "transaction %llu (with %llu dirty metadata bytes) is not committed",
4635                            trans->transid, dirty_bytes);
4636                 btrfs_cleanup_one_transaction(trans, fs_info);
4637
4638                 if (trans == fs_info->running_transaction)
4639                         fs_info->running_transaction = NULL;
4640                 list_del_init(&trans->list);
4641
4642                 btrfs_put_transaction(trans);
4643                 trace_btrfs_transaction_commit(fs_info);
4644         }
4645         ASSERT(!found);
4646 }
4647
4648 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4649 {
4650         int ret;
4651
4652         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4653
4654         /*
4655          * We may have the reclaim task running and relocating a data block group,
4656          * in which case it may create delayed iputs. So stop it before we park
4657          * the cleaner kthread otherwise we can get new delayed iputs after
4658          * parking the cleaner, and that can make the async reclaim task to hang
4659          * if it's waiting for delayed iputs to complete, since the cleaner is
4660          * parked and can not run delayed iputs - this will make us hang when
4661          * trying to stop the async reclaim task.
4662          */
4663         cancel_work_sync(&fs_info->reclaim_bgs_work);
4664         /*
4665          * We don't want the cleaner to start new transactions, add more delayed
4666          * iputs, etc. while we're closing. We can't use kthread_stop() yet
4667          * because that frees the task_struct, and the transaction kthread might
4668          * still try to wake up the cleaner.
4669          */
4670         kthread_park(fs_info->cleaner_kthread);
4671
4672         /*
4673          * If we had UNFINISHED_DROPS we could still be processing them, so
4674          * clear that bit and wake up relocation so it can stop.
4675          */
4676         btrfs_wake_unfinished_drop(fs_info);
4677
4678         /* wait for the qgroup rescan worker to stop */
4679         btrfs_qgroup_wait_for_completion(fs_info, false);
4680
4681         /* wait for the uuid_scan task to finish */
4682         down(&fs_info->uuid_tree_rescan_sem);
4683         /* avoid complains from lockdep et al., set sem back to initial state */
4684         up(&fs_info->uuid_tree_rescan_sem);
4685
4686         /* pause restriper - we want to resume on mount */
4687         btrfs_pause_balance(fs_info);
4688
4689         btrfs_dev_replace_suspend_for_unmount(fs_info);
4690
4691         btrfs_scrub_cancel(fs_info);
4692
4693         /* wait for any defraggers to finish */
4694         wait_event(fs_info->transaction_wait,
4695                    (atomic_read(&fs_info->defrag_running) == 0));
4696
4697         /* clear out the rbtree of defraggable inodes */
4698         btrfs_cleanup_defrag_inodes(fs_info);
4699
4700         cancel_work_sync(&fs_info->async_reclaim_work);
4701         cancel_work_sync(&fs_info->async_data_reclaim_work);
4702         cancel_work_sync(&fs_info->preempt_reclaim_work);
4703
4704         /* Cancel or finish ongoing discard work */
4705         btrfs_discard_cleanup(fs_info);
4706
4707         if (!sb_rdonly(fs_info->sb)) {
4708                 /*
4709                  * The cleaner kthread is stopped, so do one final pass over
4710                  * unused block groups.
4711                  */
4712                 btrfs_delete_unused_bgs(fs_info);
4713
4714                 /*
4715                  * There might be existing delayed inode workers still running
4716                  * and holding an empty delayed inode item. We must wait for
4717                  * them to complete first because they can create a transaction.
4718                  * This happens when someone calls btrfs_balance_delayed_items()
4719                  * and then a transaction commit runs the same delayed nodes
4720                  * before any delayed worker has done something with the nodes.
4721                  * We must wait for any worker here and not at transaction
4722                  * commit time since that could cause a deadlock.
4723                  * This is a very rare case.
4724                  */
4725                 btrfs_flush_workqueue(fs_info->delayed_workers);
4726
4727                 ret = btrfs_commit_super(fs_info);
4728                 if (ret)
4729                         btrfs_err(fs_info, "commit super ret %d", ret);
4730         }
4731
4732         if (BTRFS_FS_ERROR(fs_info))
4733                 btrfs_error_commit_super(fs_info);
4734
4735         kthread_stop(fs_info->transaction_kthread);
4736         kthread_stop(fs_info->cleaner_kthread);
4737
4738         ASSERT(list_empty(&fs_info->delayed_iputs));
4739         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4740
4741         if (btrfs_check_quota_leak(fs_info)) {
4742                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4743                 btrfs_err(fs_info, "qgroup reserved space leaked");
4744         }
4745
4746         btrfs_free_qgroup_config(fs_info);
4747         ASSERT(list_empty(&fs_info->delalloc_roots));
4748
4749         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4750                 btrfs_info(fs_info, "at unmount delalloc count %lld",
4751                        percpu_counter_sum(&fs_info->delalloc_bytes));
4752         }
4753
4754         if (percpu_counter_sum(&fs_info->ordered_bytes))
4755                 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4756                            percpu_counter_sum(&fs_info->ordered_bytes));
4757
4758         btrfs_sysfs_remove_mounted(fs_info);
4759         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4760
4761         btrfs_put_block_group_cache(fs_info);
4762
4763         /*
4764          * we must make sure there is not any read request to
4765          * submit after we stopping all workers.
4766          */
4767         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4768         btrfs_stop_all_workers(fs_info);
4769
4770         /* We shouldn't have any transaction open at this point */
4771         warn_about_uncommitted_trans(fs_info);
4772
4773         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4774         free_root_pointers(fs_info, true);
4775         btrfs_free_fs_roots(fs_info);
4776
4777         /*
4778          * We must free the block groups after dropping the fs_roots as we could
4779          * have had an IO error and have left over tree log blocks that aren't
4780          * cleaned up until the fs roots are freed.  This makes the block group
4781          * accounting appear to be wrong because there's pending reserved bytes,
4782          * so make sure we do the block group cleanup afterwards.
4783          */
4784         btrfs_free_block_groups(fs_info);
4785
4786         iput(fs_info->btree_inode);
4787
4788 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4789         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4790                 btrfsic_unmount(fs_info->fs_devices);
4791 #endif
4792
4793         btrfs_mapping_tree_free(&fs_info->mapping_tree);
4794         btrfs_close_devices(fs_info->fs_devices);
4795 }
4796
4797 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4798                           int atomic)
4799 {
4800         int ret;
4801         struct inode *btree_inode = buf->pages[0]->mapping->host;
4802
4803         ret = extent_buffer_uptodate(buf);
4804         if (!ret)
4805                 return ret;
4806
4807         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4808                                     parent_transid, atomic);
4809         if (ret == -EAGAIN)
4810                 return ret;
4811         return !ret;
4812 }
4813
4814 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4815 {
4816         struct btrfs_fs_info *fs_info = buf->fs_info;
4817         u64 transid = btrfs_header_generation(buf);
4818         int was_dirty;
4819
4820 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4821         /*
4822          * This is a fast path so only do this check if we have sanity tests
4823          * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4824          * outside of the sanity tests.
4825          */
4826         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4827                 return;
4828 #endif
4829         btrfs_assert_tree_write_locked(buf);
4830         if (transid != fs_info->generation)
4831                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4832                         buf->start, transid, fs_info->generation);
4833         was_dirty = set_extent_buffer_dirty(buf);
4834         if (!was_dirty)
4835                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4836                                          buf->len,
4837                                          fs_info->dirty_metadata_batch);
4838 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4839         /*
4840          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4841          * but item data not updated.
4842          * So here we should only check item pointers, not item data.
4843          */
4844         if (btrfs_header_level(buf) == 0 &&
4845             btrfs_check_leaf_relaxed(buf)) {
4846                 btrfs_print_leaf(buf);
4847                 ASSERT(0);
4848         }
4849 #endif
4850 }
4851
4852 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4853                                         int flush_delayed)
4854 {
4855         /*
4856          * looks as though older kernels can get into trouble with
4857          * this code, they end up stuck in balance_dirty_pages forever
4858          */
4859         int ret;
4860
4861         if (current->flags & PF_MEMALLOC)
4862                 return;
4863
4864         if (flush_delayed)
4865                 btrfs_balance_delayed_items(fs_info);
4866
4867         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4868                                      BTRFS_DIRTY_METADATA_THRESH,
4869                                      fs_info->dirty_metadata_batch);
4870         if (ret > 0) {
4871                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4872         }
4873 }
4874
4875 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4876 {
4877         __btrfs_btree_balance_dirty(fs_info, 1);
4878 }
4879
4880 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4881 {
4882         __btrfs_btree_balance_dirty(fs_info, 0);
4883 }
4884
4885 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4886 {
4887         /* cleanup FS via transaction */
4888         btrfs_cleanup_transaction(fs_info);
4889
4890         mutex_lock(&fs_info->cleaner_mutex);
4891         btrfs_run_delayed_iputs(fs_info);
4892         mutex_unlock(&fs_info->cleaner_mutex);
4893
4894         down_write(&fs_info->cleanup_work_sem);
4895         up_write(&fs_info->cleanup_work_sem);
4896 }
4897
4898 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4899 {
4900         struct btrfs_root *gang[8];
4901         u64 root_objectid = 0;
4902         int ret;
4903
4904         spin_lock(&fs_info->fs_roots_radix_lock);
4905         while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4906                                              (void **)gang, root_objectid,
4907                                              ARRAY_SIZE(gang))) != 0) {
4908                 int i;
4909
4910                 for (i = 0; i < ret; i++)
4911                         gang[i] = btrfs_grab_root(gang[i]);
4912                 spin_unlock(&fs_info->fs_roots_radix_lock);
4913
4914                 for (i = 0; i < ret; i++) {
4915                         if (!gang[i])
4916                                 continue;
4917                         root_objectid = gang[i]->root_key.objectid;
4918                         btrfs_free_log(NULL, gang[i]);
4919                         btrfs_put_root(gang[i]);
4920                 }
4921                 root_objectid++;
4922                 spin_lock(&fs_info->fs_roots_radix_lock);
4923         }
4924         spin_unlock(&fs_info->fs_roots_radix_lock);
4925         btrfs_free_log_root_tree(NULL, fs_info);
4926 }
4927
4928 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4929 {
4930         struct btrfs_ordered_extent *ordered;
4931
4932         spin_lock(&root->ordered_extent_lock);
4933         /*
4934          * This will just short circuit the ordered completion stuff which will
4935          * make sure the ordered extent gets properly cleaned up.
4936          */
4937         list_for_each_entry(ordered, &root->ordered_extents,
4938                             root_extent_list)
4939                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4940         spin_unlock(&root->ordered_extent_lock);
4941 }
4942
4943 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4944 {
4945         struct btrfs_root *root;
4946         struct list_head splice;
4947
4948         INIT_LIST_HEAD(&splice);
4949
4950         spin_lock(&fs_info->ordered_root_lock);
4951         list_splice_init(&fs_info->ordered_roots, &splice);
4952         while (!list_empty(&splice)) {
4953                 root = list_first_entry(&splice, struct btrfs_root,
4954                                         ordered_root);
4955                 list_move_tail(&root->ordered_root,
4956                                &fs_info->ordered_roots);
4957
4958                 spin_unlock(&fs_info->ordered_root_lock);
4959                 btrfs_destroy_ordered_extents(root);
4960
4961                 cond_resched();
4962                 spin_lock(&fs_info->ordered_root_lock);
4963         }
4964         spin_unlock(&fs_info->ordered_root_lock);
4965
4966         /*
4967          * We need this here because if we've been flipped read-only we won't
4968          * get sync() from the umount, so we need to make sure any ordered
4969          * extents that haven't had their dirty pages IO start writeout yet
4970          * actually get run and error out properly.
4971          */
4972         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4973 }
4974
4975 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4976                                       struct btrfs_fs_info *fs_info)
4977 {
4978         struct rb_node *node;
4979         struct btrfs_delayed_ref_root *delayed_refs;
4980         struct btrfs_delayed_ref_node *ref;
4981         int ret = 0;
4982
4983         delayed_refs = &trans->delayed_refs;
4984
4985         spin_lock(&delayed_refs->lock);
4986         if (atomic_read(&delayed_refs->num_entries) == 0) {
4987                 spin_unlock(&delayed_refs->lock);
4988                 btrfs_debug(fs_info, "delayed_refs has NO entry");
4989                 return ret;
4990         }
4991
4992         while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4993                 struct btrfs_delayed_ref_head *head;
4994                 struct rb_node *n;
4995                 bool pin_bytes = false;
4996
4997                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4998                                 href_node);
4999                 if (btrfs_delayed_ref_lock(delayed_refs, head))
5000                         continue;
5001
5002                 spin_lock(&head->lock);
5003                 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
5004                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
5005                                        ref_node);
5006                         ref->in_tree = 0;
5007                         rb_erase_cached(&ref->ref_node, &head->ref_tree);
5008                         RB_CLEAR_NODE(&ref->ref_node);
5009                         if (!list_empty(&ref->add_list))
5010                                 list_del(&ref->add_list);
5011                         atomic_dec(&delayed_refs->num_entries);
5012                         btrfs_put_delayed_ref(ref);
5013                 }
5014                 if (head->must_insert_reserved)
5015                         pin_bytes = true;
5016                 btrfs_free_delayed_extent_op(head->extent_op);
5017                 btrfs_delete_ref_head(delayed_refs, head);
5018                 spin_unlock(&head->lock);
5019                 spin_unlock(&delayed_refs->lock);
5020                 mutex_unlock(&head->mutex);
5021
5022                 if (pin_bytes) {
5023                         struct btrfs_block_group *cache;
5024
5025                         cache = btrfs_lookup_block_group(fs_info, head->bytenr);
5026                         BUG_ON(!cache);
5027
5028                         spin_lock(&cache->space_info->lock);
5029                         spin_lock(&cache->lock);
5030                         cache->pinned += head->num_bytes;
5031                         btrfs_space_info_update_bytes_pinned(fs_info,
5032                                 cache->space_info, head->num_bytes);
5033                         cache->reserved -= head->num_bytes;
5034                         cache->space_info->bytes_reserved -= head->num_bytes;
5035                         spin_unlock(&cache->lock);
5036                         spin_unlock(&cache->space_info->lock);
5037
5038                         btrfs_put_block_group(cache);
5039
5040                         btrfs_error_unpin_extent_range(fs_info, head->bytenr,
5041                                 head->bytenr + head->num_bytes - 1);
5042                 }
5043                 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
5044                 btrfs_put_delayed_ref_head(head);
5045                 cond_resched();
5046                 spin_lock(&delayed_refs->lock);
5047         }
5048         btrfs_qgroup_destroy_extent_records(trans);
5049
5050         spin_unlock(&delayed_refs->lock);
5051
5052         return ret;
5053 }
5054
5055 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
5056 {
5057         struct btrfs_inode *btrfs_inode;
5058         struct list_head splice;
5059
5060         INIT_LIST_HEAD(&splice);
5061
5062         spin_lock(&root->delalloc_lock);
5063         list_splice_init(&root->delalloc_inodes, &splice);
5064
5065         while (!list_empty(&splice)) {
5066                 struct inode *inode = NULL;
5067                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
5068                                                delalloc_inodes);
5069                 __btrfs_del_delalloc_inode(root, btrfs_inode);
5070                 spin_unlock(&root->delalloc_lock);
5071
5072                 /*
5073                  * Make sure we get a live inode and that it'll not disappear
5074                  * meanwhile.
5075                  */
5076                 inode = igrab(&btrfs_inode->vfs_inode);
5077                 if (inode) {
5078                         invalidate_inode_pages2(inode->i_mapping);
5079                         iput(inode);
5080                 }
5081                 spin_lock(&root->delalloc_lock);
5082         }
5083         spin_unlock(&root->delalloc_lock);
5084 }
5085
5086 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
5087 {
5088         struct btrfs_root *root;
5089         struct list_head splice;
5090
5091         INIT_LIST_HEAD(&splice);
5092
5093         spin_lock(&fs_info->delalloc_root_lock);
5094         list_splice_init(&fs_info->delalloc_roots, &splice);
5095         while (!list_empty(&splice)) {
5096                 root = list_first_entry(&splice, struct btrfs_root,
5097                                          delalloc_root);
5098                 root = btrfs_grab_root(root);
5099                 BUG_ON(!root);
5100                 spin_unlock(&fs_info->delalloc_root_lock);
5101
5102                 btrfs_destroy_delalloc_inodes(root);
5103                 btrfs_put_root(root);
5104
5105                 spin_lock(&fs_info->delalloc_root_lock);
5106         }
5107         spin_unlock(&fs_info->delalloc_root_lock);
5108 }
5109
5110 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
5111                                         struct extent_io_tree *dirty_pages,
5112                                         int mark)
5113 {
5114         int ret;
5115         struct extent_buffer *eb;
5116         u64 start = 0;
5117         u64 end;
5118
5119         while (1) {
5120                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
5121                                             mark, NULL);
5122                 if (ret)
5123                         break;
5124
5125                 clear_extent_bits(dirty_pages, start, end, mark);
5126                 while (start <= end) {
5127                         eb = find_extent_buffer(fs_info, start);
5128                         start += fs_info->nodesize;
5129                         if (!eb)
5130                                 continue;
5131                         wait_on_extent_buffer_writeback(eb);
5132
5133                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
5134                                                &eb->bflags))
5135                                 clear_extent_buffer_dirty(eb);
5136                         free_extent_buffer_stale(eb);
5137                 }
5138         }
5139
5140         return ret;
5141 }
5142
5143 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
5144                                        struct extent_io_tree *unpin)
5145 {
5146         u64 start;
5147         u64 end;
5148         int ret;
5149
5150         while (1) {
5151                 struct extent_state *cached_state = NULL;
5152
5153                 /*
5154                  * The btrfs_finish_extent_commit() may get the same range as
5155                  * ours between find_first_extent_bit and clear_extent_dirty.
5156                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
5157                  * the same extent range.
5158                  */
5159                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
5160                 ret = find_first_extent_bit(unpin, 0, &start, &end,
5161                                             EXTENT_DIRTY, &cached_state);
5162                 if (ret) {
5163                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5164                         break;
5165                 }
5166
5167                 clear_extent_dirty(unpin, start, end, &cached_state);
5168                 free_extent_state(cached_state);
5169                 btrfs_error_unpin_extent_range(fs_info, start, end);
5170                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5171                 cond_resched();
5172         }
5173
5174         return 0;
5175 }
5176
5177 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
5178 {
5179         struct inode *inode;
5180
5181         inode = cache->io_ctl.inode;
5182         if (inode) {
5183                 invalidate_inode_pages2(inode->i_mapping);
5184                 BTRFS_I(inode)->generation = 0;
5185                 cache->io_ctl.inode = NULL;
5186                 iput(inode);
5187         }
5188         ASSERT(cache->io_ctl.pages == NULL);
5189         btrfs_put_block_group(cache);
5190 }
5191
5192 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
5193                              struct btrfs_fs_info *fs_info)
5194 {
5195         struct btrfs_block_group *cache;
5196
5197         spin_lock(&cur_trans->dirty_bgs_lock);
5198         while (!list_empty(&cur_trans->dirty_bgs)) {
5199                 cache = list_first_entry(&cur_trans->dirty_bgs,
5200                                          struct btrfs_block_group,
5201                                          dirty_list);
5202
5203                 if (!list_empty(&cache->io_list)) {
5204                         spin_unlock(&cur_trans->dirty_bgs_lock);
5205                         list_del_init(&cache->io_list);
5206                         btrfs_cleanup_bg_io(cache);
5207                         spin_lock(&cur_trans->dirty_bgs_lock);
5208                 }
5209
5210                 list_del_init(&cache->dirty_list);
5211                 spin_lock(&cache->lock);
5212                 cache->disk_cache_state = BTRFS_DC_ERROR;
5213                 spin_unlock(&cache->lock);
5214
5215                 spin_unlock(&cur_trans->dirty_bgs_lock);
5216                 btrfs_put_block_group(cache);
5217                 btrfs_delayed_refs_rsv_release(fs_info, 1);
5218                 spin_lock(&cur_trans->dirty_bgs_lock);
5219         }
5220         spin_unlock(&cur_trans->dirty_bgs_lock);
5221
5222         /*
5223          * Refer to the definition of io_bgs member for details why it's safe
5224          * to use it without any locking
5225          */
5226         while (!list_empty(&cur_trans->io_bgs)) {
5227                 cache = list_first_entry(&cur_trans->io_bgs,
5228                                          struct btrfs_block_group,
5229                                          io_list);
5230
5231                 list_del_init(&cache->io_list);
5232                 spin_lock(&cache->lock);
5233                 cache->disk_cache_state = BTRFS_DC_ERROR;
5234                 spin_unlock(&cache->lock);
5235                 btrfs_cleanup_bg_io(cache);
5236         }
5237 }
5238
5239 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
5240                                    struct btrfs_fs_info *fs_info)
5241 {
5242         struct btrfs_device *dev, *tmp;
5243
5244         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
5245         ASSERT(list_empty(&cur_trans->dirty_bgs));
5246         ASSERT(list_empty(&cur_trans->io_bgs));
5247
5248         list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
5249                                  post_commit_list) {
5250                 list_del_init(&dev->post_commit_list);
5251         }
5252
5253         btrfs_destroy_delayed_refs(cur_trans, fs_info);
5254
5255         cur_trans->state = TRANS_STATE_COMMIT_START;
5256         wake_up(&fs_info->transaction_blocked_wait);
5257
5258         cur_trans->state = TRANS_STATE_UNBLOCKED;
5259         wake_up(&fs_info->transaction_wait);
5260
5261         btrfs_destroy_delayed_inodes(fs_info);
5262
5263         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
5264                                      EXTENT_DIRTY);
5265         btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
5266
5267         btrfs_free_redirty_list(cur_trans);
5268
5269         cur_trans->state =TRANS_STATE_COMPLETED;
5270         wake_up(&cur_trans->commit_wait);
5271 }
5272
5273 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
5274 {
5275         struct btrfs_transaction *t;
5276
5277         mutex_lock(&fs_info->transaction_kthread_mutex);
5278
5279         spin_lock(&fs_info->trans_lock);
5280         while (!list_empty(&fs_info->trans_list)) {
5281                 t = list_first_entry(&fs_info->trans_list,
5282                                      struct btrfs_transaction, list);
5283                 if (t->state >= TRANS_STATE_COMMIT_START) {
5284                         refcount_inc(&t->use_count);
5285                         spin_unlock(&fs_info->trans_lock);
5286                         btrfs_wait_for_commit(fs_info, t->transid);
5287                         btrfs_put_transaction(t);
5288                         spin_lock(&fs_info->trans_lock);
5289                         continue;
5290                 }
5291                 if (t == fs_info->running_transaction) {
5292                         t->state = TRANS_STATE_COMMIT_DOING;
5293                         spin_unlock(&fs_info->trans_lock);
5294                         /*
5295                          * We wait for 0 num_writers since we don't hold a trans
5296                          * handle open currently for this transaction.
5297                          */
5298                         wait_event(t->writer_wait,
5299                                    atomic_read(&t->num_writers) == 0);
5300                 } else {
5301                         spin_unlock(&fs_info->trans_lock);
5302                 }
5303                 btrfs_cleanup_one_transaction(t, fs_info);
5304
5305                 spin_lock(&fs_info->trans_lock);
5306                 if (t == fs_info->running_transaction)
5307                         fs_info->running_transaction = NULL;
5308                 list_del_init(&t->list);
5309                 spin_unlock(&fs_info->trans_lock);
5310
5311                 btrfs_put_transaction(t);
5312                 trace_btrfs_transaction_commit(fs_info);
5313                 spin_lock(&fs_info->trans_lock);
5314         }
5315         spin_unlock(&fs_info->trans_lock);
5316         btrfs_destroy_all_ordered_extents(fs_info);
5317         btrfs_destroy_delayed_inodes(fs_info);
5318         btrfs_assert_delayed_root_empty(fs_info);
5319         btrfs_destroy_all_delalloc_inodes(fs_info);
5320         btrfs_drop_all_logs(fs_info);
5321         mutex_unlock(&fs_info->transaction_kthread_mutex);
5322
5323         return 0;
5324 }
5325
5326 int btrfs_init_root_free_objectid(struct btrfs_root *root)
5327 {
5328         struct btrfs_path *path;
5329         int ret;
5330         struct extent_buffer *l;
5331         struct btrfs_key search_key;
5332         struct btrfs_key found_key;
5333         int slot;
5334
5335         path = btrfs_alloc_path();
5336         if (!path)
5337                 return -ENOMEM;
5338
5339         search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5340         search_key.type = -1;
5341         search_key.offset = (u64)-1;
5342         ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5343         if (ret < 0)
5344                 goto error;
5345         BUG_ON(ret == 0); /* Corruption */
5346         if (path->slots[0] > 0) {
5347                 slot = path->slots[0] - 1;
5348                 l = path->nodes[0];
5349                 btrfs_item_key_to_cpu(l, &found_key, slot);
5350                 root->free_objectid = max_t(u64, found_key.objectid + 1,
5351                                             BTRFS_FIRST_FREE_OBJECTID);
5352         } else {
5353                 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
5354         }
5355         ret = 0;
5356 error:
5357         btrfs_free_path(path);
5358         return ret;
5359 }
5360
5361 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
5362 {
5363         int ret;
5364         mutex_lock(&root->objectid_mutex);
5365
5366         if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
5367                 btrfs_warn(root->fs_info,
5368                            "the objectid of root %llu reaches its highest value",
5369                            root->root_key.objectid);
5370                 ret = -ENOSPC;
5371                 goto out;
5372         }
5373
5374         *objectid = root->free_objectid++;
5375         ret = 0;
5376 out:
5377         mutex_unlock(&root->objectid_mutex);
5378         return ret;
5379 }