Btrfs: fix possible empty list access when flushing the delalloc inodes
[linux-2.6-block.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 #include "sysfs.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61                                     int read_only);
62 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63                                              struct btrfs_root *root);
64 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
65 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66                                       struct btrfs_root *root);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69                                         struct extent_io_tree *dirty_pages,
70                                         int mark);
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72                                        struct extent_io_tree *pinned_extents);
73 static int btrfs_cleanup_transaction(struct btrfs_root *root);
74 static void btrfs_error_commit_super(struct btrfs_root *root);
75
76 /*
77  * end_io_wq structs are used to do processing in task context when an IO is
78  * complete.  This is used during reads to verify checksums, and it is used
79  * by writes to insert metadata for new file extents after IO is complete.
80  */
81 struct end_io_wq {
82         struct bio *bio;
83         bio_end_io_t *end_io;
84         void *private;
85         struct btrfs_fs_info *info;
86         int error;
87         int metadata;
88         struct list_head list;
89         struct btrfs_work work;
90 };
91
92 /*
93  * async submit bios are used to offload expensive checksumming
94  * onto the worker threads.  They checksum file and metadata bios
95  * just before they are sent down the IO stack.
96  */
97 struct async_submit_bio {
98         struct inode *inode;
99         struct bio *bio;
100         struct list_head list;
101         extent_submit_bio_hook_t *submit_bio_start;
102         extent_submit_bio_hook_t *submit_bio_done;
103         int rw;
104         int mirror_num;
105         unsigned long bio_flags;
106         /*
107          * bio_offset is optional, can be used if the pages in the bio
108          * can't tell us where in the file the bio should go
109          */
110         u64 bio_offset;
111         struct btrfs_work work;
112         int error;
113 };
114
115 /*
116  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
117  * eb, the lockdep key is determined by the btrfs_root it belongs to and
118  * the level the eb occupies in the tree.
119  *
120  * Different roots are used for different purposes and may nest inside each
121  * other and they require separate keysets.  As lockdep keys should be
122  * static, assign keysets according to the purpose of the root as indicated
123  * by btrfs_root->objectid.  This ensures that all special purpose roots
124  * have separate keysets.
125  *
126  * Lock-nesting across peer nodes is always done with the immediate parent
127  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
128  * subclass to avoid triggering lockdep warning in such cases.
129  *
130  * The key is set by the readpage_end_io_hook after the buffer has passed
131  * csum validation but before the pages are unlocked.  It is also set by
132  * btrfs_init_new_buffer on freshly allocated blocks.
133  *
134  * We also add a check to make sure the highest level of the tree is the
135  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
136  * needs update as well.
137  */
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
140 #  error
141 # endif
142
143 static struct btrfs_lockdep_keyset {
144         u64                     id;             /* root objectid */
145         const char              *name_stem;     /* lock name stem */
146         char                    names[BTRFS_MAX_LEVEL + 1][20];
147         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
148 } btrfs_lockdep_keysets[] = {
149         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
150         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
151         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
152         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
153         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
154         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
155         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
156         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
157         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
158         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
159         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
160         { .id = 0,                              .name_stem = "tree"     },
161 };
162
163 void __init btrfs_init_lockdep(void)
164 {
165         int i, j;
166
167         /* initialize lockdep class names */
168         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
169                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
170
171                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
172                         snprintf(ks->names[j], sizeof(ks->names[j]),
173                                  "btrfs-%s-%02d", ks->name_stem, j);
174         }
175 }
176
177 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
178                                     int level)
179 {
180         struct btrfs_lockdep_keyset *ks;
181
182         BUG_ON(level >= ARRAY_SIZE(ks->keys));
183
184         /* find the matching keyset, id 0 is the default entry */
185         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
186                 if (ks->id == objectid)
187                         break;
188
189         lockdep_set_class_and_name(&eb->lock,
190                                    &ks->keys[level], ks->names[level]);
191 }
192
193 #endif
194
195 /*
196  * extents on the btree inode are pretty simple, there's one extent
197  * that covers the entire device
198  */
199 static struct extent_map *btree_get_extent(struct inode *inode,
200                 struct page *page, size_t pg_offset, u64 start, u64 len,
201                 int create)
202 {
203         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
204         struct extent_map *em;
205         int ret;
206
207         read_lock(&em_tree->lock);
208         em = lookup_extent_mapping(em_tree, start, len);
209         if (em) {
210                 em->bdev =
211                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
212                 read_unlock(&em_tree->lock);
213                 goto out;
214         }
215         read_unlock(&em_tree->lock);
216
217         em = alloc_extent_map();
218         if (!em) {
219                 em = ERR_PTR(-ENOMEM);
220                 goto out;
221         }
222         em->start = 0;
223         em->len = (u64)-1;
224         em->block_len = (u64)-1;
225         em->block_start = 0;
226         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
227
228         write_lock(&em_tree->lock);
229         ret = add_extent_mapping(em_tree, em, 0);
230         if (ret == -EEXIST) {
231                 free_extent_map(em);
232                 em = lookup_extent_mapping(em_tree, start, len);
233                 if (!em)
234                         em = ERR_PTR(-EIO);
235         } else if (ret) {
236                 free_extent_map(em);
237                 em = ERR_PTR(ret);
238         }
239         write_unlock(&em_tree->lock);
240
241 out:
242         return em;
243 }
244
245 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
246 {
247         return btrfs_crc32c(seed, data, len);
248 }
249
250 void btrfs_csum_final(u32 crc, char *result)
251 {
252         put_unaligned_le32(~crc, result);
253 }
254
255 /*
256  * compute the csum for a btree block, and either verify it or write it
257  * into the csum field of the block.
258  */
259 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
260                            int verify)
261 {
262         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
263         char *result = NULL;
264         unsigned long len;
265         unsigned long cur_len;
266         unsigned long offset = BTRFS_CSUM_SIZE;
267         char *kaddr;
268         unsigned long map_start;
269         unsigned long map_len;
270         int err;
271         u32 crc = ~(u32)0;
272         unsigned long inline_result;
273
274         len = buf->len - offset;
275         while (len > 0) {
276                 err = map_private_extent_buffer(buf, offset, 32,
277                                         &kaddr, &map_start, &map_len);
278                 if (err)
279                         return 1;
280                 cur_len = min(len, map_len - (offset - map_start));
281                 crc = btrfs_csum_data(kaddr + offset - map_start,
282                                       crc, cur_len);
283                 len -= cur_len;
284                 offset += cur_len;
285         }
286         if (csum_size > sizeof(inline_result)) {
287                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
288                 if (!result)
289                         return 1;
290         } else {
291                 result = (char *)&inline_result;
292         }
293
294         btrfs_csum_final(crc, result);
295
296         if (verify) {
297                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
298                         u32 val;
299                         u32 found = 0;
300                         memcpy(&found, result, csum_size);
301
302                         read_extent_buffer(buf, &val, 0, csum_size);
303                         printk_ratelimited(KERN_INFO
304                                 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
305                                 "level %d\n",
306                                 root->fs_info->sb->s_id, buf->start,
307                                 val, found, btrfs_header_level(buf));
308                         if (result != (char *)&inline_result)
309                                 kfree(result);
310                         return 1;
311                 }
312         } else {
313                 write_extent_buffer(buf, result, 0, csum_size);
314         }
315         if (result != (char *)&inline_result)
316                 kfree(result);
317         return 0;
318 }
319
320 /*
321  * we can't consider a given block up to date unless the transid of the
322  * block matches the transid in the parent node's pointer.  This is how we
323  * detect blocks that either didn't get written at all or got written
324  * in the wrong place.
325  */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327                                  struct extent_buffer *eb, u64 parent_transid,
328                                  int atomic)
329 {
330         struct extent_state *cached_state = NULL;
331         int ret;
332
333         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334                 return 0;
335
336         if (atomic)
337                 return -EAGAIN;
338
339         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340                          0, &cached_state);
341         if (extent_buffer_uptodate(eb) &&
342             btrfs_header_generation(eb) == parent_transid) {
343                 ret = 0;
344                 goto out;
345         }
346         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347                        "found %llu\n",
348                        eb->start, parent_transid, btrfs_header_generation(eb));
349         ret = 1;
350         clear_extent_buffer_uptodate(eb);
351 out:
352         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
353                              &cached_state, GFP_NOFS);
354         return ret;
355 }
356
357 /*
358  * Return 0 if the superblock checksum type matches the checksum value of that
359  * algorithm. Pass the raw disk superblock data.
360  */
361 static int btrfs_check_super_csum(char *raw_disk_sb)
362 {
363         struct btrfs_super_block *disk_sb =
364                 (struct btrfs_super_block *)raw_disk_sb;
365         u16 csum_type = btrfs_super_csum_type(disk_sb);
366         int ret = 0;
367
368         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
369                 u32 crc = ~(u32)0;
370                 const int csum_size = sizeof(crc);
371                 char result[csum_size];
372
373                 /*
374                  * The super_block structure does not span the whole
375                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
376                  * is filled with zeros and is included in the checkum.
377                  */
378                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
379                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
380                 btrfs_csum_final(crc, result);
381
382                 if (memcmp(raw_disk_sb, result, csum_size))
383                         ret = 1;
384
385                 if (ret && btrfs_super_generation(disk_sb) < 10) {
386                         printk(KERN_WARNING
387                                 "BTRFS: super block crcs don't match, older mkfs detected\n");
388                         ret = 0;
389                 }
390         }
391
392         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
393                 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
394                                 csum_type);
395                 ret = 1;
396         }
397
398         return ret;
399 }
400
401 /*
402  * helper to read a given tree block, doing retries as required when
403  * the checksums don't match and we have alternate mirrors to try.
404  */
405 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
406                                           struct extent_buffer *eb,
407                                           u64 start, u64 parent_transid)
408 {
409         struct extent_io_tree *io_tree;
410         int failed = 0;
411         int ret;
412         int num_copies = 0;
413         int mirror_num = 0;
414         int failed_mirror = 0;
415
416         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
417         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
418         while (1) {
419                 ret = read_extent_buffer_pages(io_tree, eb, start,
420                                                WAIT_COMPLETE,
421                                                btree_get_extent, mirror_num);
422                 if (!ret) {
423                         if (!verify_parent_transid(io_tree, eb,
424                                                    parent_transid, 0))
425                                 break;
426                         else
427                                 ret = -EIO;
428                 }
429
430                 /*
431                  * This buffer's crc is fine, but its contents are corrupted, so
432                  * there is no reason to read the other copies, they won't be
433                  * any less wrong.
434                  */
435                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
436                         break;
437
438                 num_copies = btrfs_num_copies(root->fs_info,
439                                               eb->start, eb->len);
440                 if (num_copies == 1)
441                         break;
442
443                 if (!failed_mirror) {
444                         failed = 1;
445                         failed_mirror = eb->read_mirror;
446                 }
447
448                 mirror_num++;
449                 if (mirror_num == failed_mirror)
450                         mirror_num++;
451
452                 if (mirror_num > num_copies)
453                         break;
454         }
455
456         if (failed && !ret && failed_mirror)
457                 repair_eb_io_failure(root, eb, failed_mirror);
458
459         return ret;
460 }
461
462 /*
463  * checksum a dirty tree block before IO.  This has extra checks to make sure
464  * we only fill in the checksum field in the first page of a multi-page block
465  */
466
467 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
468 {
469         u64 start = page_offset(page);
470         u64 found_start;
471         struct extent_buffer *eb;
472
473         eb = (struct extent_buffer *)page->private;
474         if (page != eb->pages[0])
475                 return 0;
476         found_start = btrfs_header_bytenr(eb);
477         if (WARN_ON(found_start != start || !PageUptodate(page)))
478                 return 0;
479         csum_tree_block(root, eb, 0);
480         return 0;
481 }
482
483 static int check_tree_block_fsid(struct btrfs_root *root,
484                                  struct extent_buffer *eb)
485 {
486         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
487         u8 fsid[BTRFS_UUID_SIZE];
488         int ret = 1;
489
490         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
491         while (fs_devices) {
492                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
493                         ret = 0;
494                         break;
495                 }
496                 fs_devices = fs_devices->seed;
497         }
498         return ret;
499 }
500
501 #define CORRUPT(reason, eb, root, slot)                         \
502         btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"       \
503                    "root=%llu, slot=%d", reason,                        \
504                btrfs_header_bytenr(eb), root->objectid, slot)
505
506 static noinline int check_leaf(struct btrfs_root *root,
507                                struct extent_buffer *leaf)
508 {
509         struct btrfs_key key;
510         struct btrfs_key leaf_key;
511         u32 nritems = btrfs_header_nritems(leaf);
512         int slot;
513
514         if (nritems == 0)
515                 return 0;
516
517         /* Check the 0 item */
518         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
519             BTRFS_LEAF_DATA_SIZE(root)) {
520                 CORRUPT("invalid item offset size pair", leaf, root, 0);
521                 return -EIO;
522         }
523
524         /*
525          * Check to make sure each items keys are in the correct order and their
526          * offsets make sense.  We only have to loop through nritems-1 because
527          * we check the current slot against the next slot, which verifies the
528          * next slot's offset+size makes sense and that the current's slot
529          * offset is correct.
530          */
531         for (slot = 0; slot < nritems - 1; slot++) {
532                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
533                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
534
535                 /* Make sure the keys are in the right order */
536                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
537                         CORRUPT("bad key order", leaf, root, slot);
538                         return -EIO;
539                 }
540
541                 /*
542                  * Make sure the offset and ends are right, remember that the
543                  * item data starts at the end of the leaf and grows towards the
544                  * front.
545                  */
546                 if (btrfs_item_offset_nr(leaf, slot) !=
547                         btrfs_item_end_nr(leaf, slot + 1)) {
548                         CORRUPT("slot offset bad", leaf, root, slot);
549                         return -EIO;
550                 }
551
552                 /*
553                  * Check to make sure that we don't point outside of the leaf,
554                  * just incase all the items are consistent to eachother, but
555                  * all point outside of the leaf.
556                  */
557                 if (btrfs_item_end_nr(leaf, slot) >
558                     BTRFS_LEAF_DATA_SIZE(root)) {
559                         CORRUPT("slot end outside of leaf", leaf, root, slot);
560                         return -EIO;
561                 }
562         }
563
564         return 0;
565 }
566
567 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
568                                       u64 phy_offset, struct page *page,
569                                       u64 start, u64 end, int mirror)
570 {
571         u64 found_start;
572         int found_level;
573         struct extent_buffer *eb;
574         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
575         int ret = 0;
576         int reads_done;
577
578         if (!page->private)
579                 goto out;
580
581         eb = (struct extent_buffer *)page->private;
582
583         /* the pending IO might have been the only thing that kept this buffer
584          * in memory.  Make sure we have a ref for all this other checks
585          */
586         extent_buffer_get(eb);
587
588         reads_done = atomic_dec_and_test(&eb->io_pages);
589         if (!reads_done)
590                 goto err;
591
592         eb->read_mirror = mirror;
593         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
594                 ret = -EIO;
595                 goto err;
596         }
597
598         found_start = btrfs_header_bytenr(eb);
599         if (found_start != eb->start) {
600                 printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
601                                "%llu %llu\n",
602                                found_start, eb->start);
603                 ret = -EIO;
604                 goto err;
605         }
606         if (check_tree_block_fsid(root, eb)) {
607                 printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
608                                eb->start);
609                 ret = -EIO;
610                 goto err;
611         }
612         found_level = btrfs_header_level(eb);
613         if (found_level >= BTRFS_MAX_LEVEL) {
614                 btrfs_info(root->fs_info, "bad tree block level %d",
615                            (int)btrfs_header_level(eb));
616                 ret = -EIO;
617                 goto err;
618         }
619
620         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
621                                        eb, found_level);
622
623         ret = csum_tree_block(root, eb, 1);
624         if (ret) {
625                 ret = -EIO;
626                 goto err;
627         }
628
629         /*
630          * If this is a leaf block and it is corrupt, set the corrupt bit so
631          * that we don't try and read the other copies of this block, just
632          * return -EIO.
633          */
634         if (found_level == 0 && check_leaf(root, eb)) {
635                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
636                 ret = -EIO;
637         }
638
639         if (!ret)
640                 set_extent_buffer_uptodate(eb);
641 err:
642         if (reads_done &&
643             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
644                 btree_readahead_hook(root, eb, eb->start, ret);
645
646         if (ret) {
647                 /*
648                  * our io error hook is going to dec the io pages
649                  * again, we have to make sure it has something
650                  * to decrement
651                  */
652                 atomic_inc(&eb->io_pages);
653                 clear_extent_buffer_uptodate(eb);
654         }
655         free_extent_buffer(eb);
656 out:
657         return ret;
658 }
659
660 static int btree_io_failed_hook(struct page *page, int failed_mirror)
661 {
662         struct extent_buffer *eb;
663         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
664
665         eb = (struct extent_buffer *)page->private;
666         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
667         eb->read_mirror = failed_mirror;
668         atomic_dec(&eb->io_pages);
669         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
670                 btree_readahead_hook(root, eb, eb->start, -EIO);
671         return -EIO;    /* we fixed nothing */
672 }
673
674 static void end_workqueue_bio(struct bio *bio, int err)
675 {
676         struct end_io_wq *end_io_wq = bio->bi_private;
677         struct btrfs_fs_info *fs_info;
678
679         fs_info = end_io_wq->info;
680         end_io_wq->error = err;
681         btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
682
683         if (bio->bi_rw & REQ_WRITE) {
684                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
685                         btrfs_queue_work(fs_info->endio_meta_write_workers,
686                                          &end_io_wq->work);
687                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
688                         btrfs_queue_work(fs_info->endio_freespace_worker,
689                                          &end_io_wq->work);
690                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
691                         btrfs_queue_work(fs_info->endio_raid56_workers,
692                                          &end_io_wq->work);
693                 else
694                         btrfs_queue_work(fs_info->endio_write_workers,
695                                          &end_io_wq->work);
696         } else {
697                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
698                         btrfs_queue_work(fs_info->endio_raid56_workers,
699                                          &end_io_wq->work);
700                 else if (end_io_wq->metadata)
701                         btrfs_queue_work(fs_info->endio_meta_workers,
702                                          &end_io_wq->work);
703                 else
704                         btrfs_queue_work(fs_info->endio_workers,
705                                          &end_io_wq->work);
706         }
707 }
708
709 /*
710  * For the metadata arg you want
711  *
712  * 0 - if data
713  * 1 - if normal metadta
714  * 2 - if writing to the free space cache area
715  * 3 - raid parity work
716  */
717 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
718                         int metadata)
719 {
720         struct end_io_wq *end_io_wq;
721         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
722         if (!end_io_wq)
723                 return -ENOMEM;
724
725         end_io_wq->private = bio->bi_private;
726         end_io_wq->end_io = bio->bi_end_io;
727         end_io_wq->info = info;
728         end_io_wq->error = 0;
729         end_io_wq->bio = bio;
730         end_io_wq->metadata = metadata;
731
732         bio->bi_private = end_io_wq;
733         bio->bi_end_io = end_workqueue_bio;
734         return 0;
735 }
736
737 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
738 {
739         unsigned long limit = min_t(unsigned long,
740                                     info->thread_pool_size,
741                                     info->fs_devices->open_devices);
742         return 256 * limit;
743 }
744
745 static void run_one_async_start(struct btrfs_work *work)
746 {
747         struct async_submit_bio *async;
748         int ret;
749
750         async = container_of(work, struct  async_submit_bio, work);
751         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
752                                       async->mirror_num, async->bio_flags,
753                                       async->bio_offset);
754         if (ret)
755                 async->error = ret;
756 }
757
758 static void run_one_async_done(struct btrfs_work *work)
759 {
760         struct btrfs_fs_info *fs_info;
761         struct async_submit_bio *async;
762         int limit;
763
764         async = container_of(work, struct  async_submit_bio, work);
765         fs_info = BTRFS_I(async->inode)->root->fs_info;
766
767         limit = btrfs_async_submit_limit(fs_info);
768         limit = limit * 2 / 3;
769
770         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
771             waitqueue_active(&fs_info->async_submit_wait))
772                 wake_up(&fs_info->async_submit_wait);
773
774         /* If an error occured we just want to clean up the bio and move on */
775         if (async->error) {
776                 bio_endio(async->bio, async->error);
777                 return;
778         }
779
780         async->submit_bio_done(async->inode, async->rw, async->bio,
781                                async->mirror_num, async->bio_flags,
782                                async->bio_offset);
783 }
784
785 static void run_one_async_free(struct btrfs_work *work)
786 {
787         struct async_submit_bio *async;
788
789         async = container_of(work, struct  async_submit_bio, work);
790         kfree(async);
791 }
792
793 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
794                         int rw, struct bio *bio, int mirror_num,
795                         unsigned long bio_flags,
796                         u64 bio_offset,
797                         extent_submit_bio_hook_t *submit_bio_start,
798                         extent_submit_bio_hook_t *submit_bio_done)
799 {
800         struct async_submit_bio *async;
801
802         async = kmalloc(sizeof(*async), GFP_NOFS);
803         if (!async)
804                 return -ENOMEM;
805
806         async->inode = inode;
807         async->rw = rw;
808         async->bio = bio;
809         async->mirror_num = mirror_num;
810         async->submit_bio_start = submit_bio_start;
811         async->submit_bio_done = submit_bio_done;
812
813         btrfs_init_work(&async->work, run_one_async_start,
814                         run_one_async_done, run_one_async_free);
815
816         async->bio_flags = bio_flags;
817         async->bio_offset = bio_offset;
818
819         async->error = 0;
820
821         atomic_inc(&fs_info->nr_async_submits);
822
823         if (rw & REQ_SYNC)
824                 btrfs_set_work_high_priority(&async->work);
825
826         btrfs_queue_work(fs_info->workers, &async->work);
827
828         while (atomic_read(&fs_info->async_submit_draining) &&
829               atomic_read(&fs_info->nr_async_submits)) {
830                 wait_event(fs_info->async_submit_wait,
831                            (atomic_read(&fs_info->nr_async_submits) == 0));
832         }
833
834         return 0;
835 }
836
837 static int btree_csum_one_bio(struct bio *bio)
838 {
839         struct bio_vec *bvec = bio->bi_io_vec;
840         int bio_index = 0;
841         struct btrfs_root *root;
842         int ret = 0;
843
844         WARN_ON(bio->bi_vcnt <= 0);
845         while (bio_index < bio->bi_vcnt) {
846                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
847                 ret = csum_dirty_buffer(root, bvec->bv_page);
848                 if (ret)
849                         break;
850                 bio_index++;
851                 bvec++;
852         }
853         return ret;
854 }
855
856 static int __btree_submit_bio_start(struct inode *inode, int rw,
857                                     struct bio *bio, int mirror_num,
858                                     unsigned long bio_flags,
859                                     u64 bio_offset)
860 {
861         /*
862          * when we're called for a write, we're already in the async
863          * submission context.  Just jump into btrfs_map_bio
864          */
865         return btree_csum_one_bio(bio);
866 }
867
868 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
869                                  int mirror_num, unsigned long bio_flags,
870                                  u64 bio_offset)
871 {
872         int ret;
873
874         /*
875          * when we're called for a write, we're already in the async
876          * submission context.  Just jump into btrfs_map_bio
877          */
878         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
879         if (ret)
880                 bio_endio(bio, ret);
881         return ret;
882 }
883
884 static int check_async_write(struct inode *inode, unsigned long bio_flags)
885 {
886         if (bio_flags & EXTENT_BIO_TREE_LOG)
887                 return 0;
888 #ifdef CONFIG_X86
889         if (cpu_has_xmm4_2)
890                 return 0;
891 #endif
892         return 1;
893 }
894
895 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
896                                  int mirror_num, unsigned long bio_flags,
897                                  u64 bio_offset)
898 {
899         int async = check_async_write(inode, bio_flags);
900         int ret;
901
902         if (!(rw & REQ_WRITE)) {
903                 /*
904                  * called for a read, do the setup so that checksum validation
905                  * can happen in the async kernel threads
906                  */
907                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
908                                           bio, 1);
909                 if (ret)
910                         goto out_w_error;
911                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
912                                     mirror_num, 0);
913         } else if (!async) {
914                 ret = btree_csum_one_bio(bio);
915                 if (ret)
916                         goto out_w_error;
917                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
918                                     mirror_num, 0);
919         } else {
920                 /*
921                  * kthread helpers are used to submit writes so that
922                  * checksumming can happen in parallel across all CPUs
923                  */
924                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
925                                           inode, rw, bio, mirror_num, 0,
926                                           bio_offset,
927                                           __btree_submit_bio_start,
928                                           __btree_submit_bio_done);
929         }
930
931         if (ret) {
932 out_w_error:
933                 bio_endio(bio, ret);
934         }
935         return ret;
936 }
937
938 #ifdef CONFIG_MIGRATION
939 static int btree_migratepage(struct address_space *mapping,
940                         struct page *newpage, struct page *page,
941                         enum migrate_mode mode)
942 {
943         /*
944          * we can't safely write a btree page from here,
945          * we haven't done the locking hook
946          */
947         if (PageDirty(page))
948                 return -EAGAIN;
949         /*
950          * Buffers may be managed in a filesystem specific way.
951          * We must have no buffers or drop them.
952          */
953         if (page_has_private(page) &&
954             !try_to_release_page(page, GFP_KERNEL))
955                 return -EAGAIN;
956         return migrate_page(mapping, newpage, page, mode);
957 }
958 #endif
959
960
961 static int btree_writepages(struct address_space *mapping,
962                             struct writeback_control *wbc)
963 {
964         struct btrfs_fs_info *fs_info;
965         int ret;
966
967         if (wbc->sync_mode == WB_SYNC_NONE) {
968
969                 if (wbc->for_kupdate)
970                         return 0;
971
972                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
973                 /* this is a bit racy, but that's ok */
974                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
975                                              BTRFS_DIRTY_METADATA_THRESH);
976                 if (ret < 0)
977                         return 0;
978         }
979         return btree_write_cache_pages(mapping, wbc);
980 }
981
982 static int btree_readpage(struct file *file, struct page *page)
983 {
984         struct extent_io_tree *tree;
985         tree = &BTRFS_I(page->mapping->host)->io_tree;
986         return extent_read_full_page(tree, page, btree_get_extent, 0);
987 }
988
989 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
990 {
991         if (PageWriteback(page) || PageDirty(page))
992                 return 0;
993
994         return try_release_extent_buffer(page);
995 }
996
997 static void btree_invalidatepage(struct page *page, unsigned int offset,
998                                  unsigned int length)
999 {
1000         struct extent_io_tree *tree;
1001         tree = &BTRFS_I(page->mapping->host)->io_tree;
1002         extent_invalidatepage(tree, page, offset);
1003         btree_releasepage(page, GFP_NOFS);
1004         if (PagePrivate(page)) {
1005                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1006                            "page private not zero on page %llu",
1007                            (unsigned long long)page_offset(page));
1008                 ClearPagePrivate(page);
1009                 set_page_private(page, 0);
1010                 page_cache_release(page);
1011         }
1012 }
1013
1014 static int btree_set_page_dirty(struct page *page)
1015 {
1016 #ifdef DEBUG
1017         struct extent_buffer *eb;
1018
1019         BUG_ON(!PagePrivate(page));
1020         eb = (struct extent_buffer *)page->private;
1021         BUG_ON(!eb);
1022         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1023         BUG_ON(!atomic_read(&eb->refs));
1024         btrfs_assert_tree_locked(eb);
1025 #endif
1026         return __set_page_dirty_nobuffers(page);
1027 }
1028
1029 static const struct address_space_operations btree_aops = {
1030         .readpage       = btree_readpage,
1031         .writepages     = btree_writepages,
1032         .releasepage    = btree_releasepage,
1033         .invalidatepage = btree_invalidatepage,
1034 #ifdef CONFIG_MIGRATION
1035         .migratepage    = btree_migratepage,
1036 #endif
1037         .set_page_dirty = btree_set_page_dirty,
1038 };
1039
1040 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1041                          u64 parent_transid)
1042 {
1043         struct extent_buffer *buf = NULL;
1044         struct inode *btree_inode = root->fs_info->btree_inode;
1045         int ret = 0;
1046
1047         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1048         if (!buf)
1049                 return 0;
1050         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1051                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1052         free_extent_buffer(buf);
1053         return ret;
1054 }
1055
1056 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1057                          int mirror_num, struct extent_buffer **eb)
1058 {
1059         struct extent_buffer *buf = NULL;
1060         struct inode *btree_inode = root->fs_info->btree_inode;
1061         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1062         int ret;
1063
1064         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1065         if (!buf)
1066                 return 0;
1067
1068         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1069
1070         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1071                                        btree_get_extent, mirror_num);
1072         if (ret) {
1073                 free_extent_buffer(buf);
1074                 return ret;
1075         }
1076
1077         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1078                 free_extent_buffer(buf);
1079                 return -EIO;
1080         } else if (extent_buffer_uptodate(buf)) {
1081                 *eb = buf;
1082         } else {
1083                 free_extent_buffer(buf);
1084         }
1085         return 0;
1086 }
1087
1088 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1089                                             u64 bytenr, u32 blocksize)
1090 {
1091         return find_extent_buffer(root->fs_info, bytenr);
1092 }
1093
1094 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1095                                                  u64 bytenr, u32 blocksize)
1096 {
1097         return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
1098 }
1099
1100
1101 int btrfs_write_tree_block(struct extent_buffer *buf)
1102 {
1103         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1104                                         buf->start + buf->len - 1);
1105 }
1106
1107 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1108 {
1109         return filemap_fdatawait_range(buf->pages[0]->mapping,
1110                                        buf->start, buf->start + buf->len - 1);
1111 }
1112
1113 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1114                                       u32 blocksize, u64 parent_transid)
1115 {
1116         struct extent_buffer *buf = NULL;
1117         int ret;
1118
1119         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1120         if (!buf)
1121                 return NULL;
1122
1123         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1124         if (ret) {
1125                 free_extent_buffer(buf);
1126                 return NULL;
1127         }
1128         return buf;
1129
1130 }
1131
1132 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1133                       struct extent_buffer *buf)
1134 {
1135         struct btrfs_fs_info *fs_info = root->fs_info;
1136
1137         if (btrfs_header_generation(buf) ==
1138             fs_info->running_transaction->transid) {
1139                 btrfs_assert_tree_locked(buf);
1140
1141                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1142                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1143                                              -buf->len,
1144                                              fs_info->dirty_metadata_batch);
1145                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1146                         btrfs_set_lock_blocking(buf);
1147                         clear_extent_buffer_dirty(buf);
1148                 }
1149         }
1150 }
1151
1152 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1153 {
1154         struct btrfs_subvolume_writers *writers;
1155         int ret;
1156
1157         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1158         if (!writers)
1159                 return ERR_PTR(-ENOMEM);
1160
1161         ret = percpu_counter_init(&writers->counter, 0);
1162         if (ret < 0) {
1163                 kfree(writers);
1164                 return ERR_PTR(ret);
1165         }
1166
1167         init_waitqueue_head(&writers->wait);
1168         return writers;
1169 }
1170
1171 static void
1172 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1173 {
1174         percpu_counter_destroy(&writers->counter);
1175         kfree(writers);
1176 }
1177
1178 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1179                          u32 stripesize, struct btrfs_root *root,
1180                          struct btrfs_fs_info *fs_info,
1181                          u64 objectid)
1182 {
1183         root->node = NULL;
1184         root->commit_root = NULL;
1185         root->sectorsize = sectorsize;
1186         root->nodesize = nodesize;
1187         root->leafsize = leafsize;
1188         root->stripesize = stripesize;
1189         root->ref_cows = 0;
1190         root->track_dirty = 0;
1191         root->in_radix = 0;
1192         root->orphan_item_inserted = 0;
1193         root->orphan_cleanup_state = 0;
1194
1195         root->objectid = objectid;
1196         root->last_trans = 0;
1197         root->highest_objectid = 0;
1198         root->nr_delalloc_inodes = 0;
1199         root->nr_ordered_extents = 0;
1200         root->name = NULL;
1201         root->inode_tree = RB_ROOT;
1202         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1203         root->block_rsv = NULL;
1204         root->orphan_block_rsv = NULL;
1205
1206         INIT_LIST_HEAD(&root->dirty_list);
1207         INIT_LIST_HEAD(&root->root_list);
1208         INIT_LIST_HEAD(&root->delalloc_inodes);
1209         INIT_LIST_HEAD(&root->delalloc_root);
1210         INIT_LIST_HEAD(&root->ordered_extents);
1211         INIT_LIST_HEAD(&root->ordered_root);
1212         INIT_LIST_HEAD(&root->logged_list[0]);
1213         INIT_LIST_HEAD(&root->logged_list[1]);
1214         spin_lock_init(&root->orphan_lock);
1215         spin_lock_init(&root->inode_lock);
1216         spin_lock_init(&root->delalloc_lock);
1217         spin_lock_init(&root->ordered_extent_lock);
1218         spin_lock_init(&root->accounting_lock);
1219         spin_lock_init(&root->log_extents_lock[0]);
1220         spin_lock_init(&root->log_extents_lock[1]);
1221         mutex_init(&root->objectid_mutex);
1222         mutex_init(&root->log_mutex);
1223         mutex_init(&root->ordered_extent_mutex);
1224         mutex_init(&root->delalloc_mutex);
1225         init_waitqueue_head(&root->log_writer_wait);
1226         init_waitqueue_head(&root->log_commit_wait[0]);
1227         init_waitqueue_head(&root->log_commit_wait[1]);
1228         INIT_LIST_HEAD(&root->log_ctxs[0]);
1229         INIT_LIST_HEAD(&root->log_ctxs[1]);
1230         atomic_set(&root->log_commit[0], 0);
1231         atomic_set(&root->log_commit[1], 0);
1232         atomic_set(&root->log_writers, 0);
1233         atomic_set(&root->log_batch, 0);
1234         atomic_set(&root->orphan_inodes, 0);
1235         atomic_set(&root->refs, 1);
1236         atomic_set(&root->will_be_snapshoted, 0);
1237         root->log_transid = 0;
1238         root->log_transid_committed = -1;
1239         root->last_log_commit = 0;
1240         if (fs_info)
1241                 extent_io_tree_init(&root->dirty_log_pages,
1242                                      fs_info->btree_inode->i_mapping);
1243
1244         memset(&root->root_key, 0, sizeof(root->root_key));
1245         memset(&root->root_item, 0, sizeof(root->root_item));
1246         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1247         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1248         if (fs_info)
1249                 root->defrag_trans_start = fs_info->generation;
1250         else
1251                 root->defrag_trans_start = 0;
1252         init_completion(&root->kobj_unregister);
1253         root->defrag_running = 0;
1254         root->root_key.objectid = objectid;
1255         root->anon_dev = 0;
1256
1257         spin_lock_init(&root->root_item_lock);
1258 }
1259
1260 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1261 {
1262         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1263         if (root)
1264                 root->fs_info = fs_info;
1265         return root;
1266 }
1267
1268 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1269 /* Should only be used by the testing infrastructure */
1270 struct btrfs_root *btrfs_alloc_dummy_root(void)
1271 {
1272         struct btrfs_root *root;
1273
1274         root = btrfs_alloc_root(NULL);
1275         if (!root)
1276                 return ERR_PTR(-ENOMEM);
1277         __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1278         root->dummy_root = 1;
1279
1280         return root;
1281 }
1282 #endif
1283
1284 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1285                                      struct btrfs_fs_info *fs_info,
1286                                      u64 objectid)
1287 {
1288         struct extent_buffer *leaf;
1289         struct btrfs_root *tree_root = fs_info->tree_root;
1290         struct btrfs_root *root;
1291         struct btrfs_key key;
1292         int ret = 0;
1293         uuid_le uuid;
1294
1295         root = btrfs_alloc_root(fs_info);
1296         if (!root)
1297                 return ERR_PTR(-ENOMEM);
1298
1299         __setup_root(tree_root->nodesize, tree_root->leafsize,
1300                      tree_root->sectorsize, tree_root->stripesize,
1301                      root, fs_info, objectid);
1302         root->root_key.objectid = objectid;
1303         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1304         root->root_key.offset = 0;
1305
1306         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1307                                       0, objectid, NULL, 0, 0, 0);
1308         if (IS_ERR(leaf)) {
1309                 ret = PTR_ERR(leaf);
1310                 leaf = NULL;
1311                 goto fail;
1312         }
1313
1314         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1315         btrfs_set_header_bytenr(leaf, leaf->start);
1316         btrfs_set_header_generation(leaf, trans->transid);
1317         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1318         btrfs_set_header_owner(leaf, objectid);
1319         root->node = leaf;
1320
1321         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1322                             BTRFS_FSID_SIZE);
1323         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1324                             btrfs_header_chunk_tree_uuid(leaf),
1325                             BTRFS_UUID_SIZE);
1326         btrfs_mark_buffer_dirty(leaf);
1327
1328         root->commit_root = btrfs_root_node(root);
1329         root->track_dirty = 1;
1330
1331
1332         root->root_item.flags = 0;
1333         root->root_item.byte_limit = 0;
1334         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1335         btrfs_set_root_generation(&root->root_item, trans->transid);
1336         btrfs_set_root_level(&root->root_item, 0);
1337         btrfs_set_root_refs(&root->root_item, 1);
1338         btrfs_set_root_used(&root->root_item, leaf->len);
1339         btrfs_set_root_last_snapshot(&root->root_item, 0);
1340         btrfs_set_root_dirid(&root->root_item, 0);
1341         uuid_le_gen(&uuid);
1342         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1343         root->root_item.drop_level = 0;
1344
1345         key.objectid = objectid;
1346         key.type = BTRFS_ROOT_ITEM_KEY;
1347         key.offset = 0;
1348         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1349         if (ret)
1350                 goto fail;
1351
1352         btrfs_tree_unlock(leaf);
1353
1354         return root;
1355
1356 fail:
1357         if (leaf) {
1358                 btrfs_tree_unlock(leaf);
1359                 free_extent_buffer(leaf);
1360         }
1361         kfree(root);
1362
1363         return ERR_PTR(ret);
1364 }
1365
1366 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1367                                          struct btrfs_fs_info *fs_info)
1368 {
1369         struct btrfs_root *root;
1370         struct btrfs_root *tree_root = fs_info->tree_root;
1371         struct extent_buffer *leaf;
1372
1373         root = btrfs_alloc_root(fs_info);
1374         if (!root)
1375                 return ERR_PTR(-ENOMEM);
1376
1377         __setup_root(tree_root->nodesize, tree_root->leafsize,
1378                      tree_root->sectorsize, tree_root->stripesize,
1379                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1380
1381         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1382         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1383         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1384         /*
1385          * log trees do not get reference counted because they go away
1386          * before a real commit is actually done.  They do store pointers
1387          * to file data extents, and those reference counts still get
1388          * updated (along with back refs to the log tree).
1389          */
1390         root->ref_cows = 0;
1391
1392         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1393                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1394                                       0, 0, 0);
1395         if (IS_ERR(leaf)) {
1396                 kfree(root);
1397                 return ERR_CAST(leaf);
1398         }
1399
1400         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1401         btrfs_set_header_bytenr(leaf, leaf->start);
1402         btrfs_set_header_generation(leaf, trans->transid);
1403         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1404         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1405         root->node = leaf;
1406
1407         write_extent_buffer(root->node, root->fs_info->fsid,
1408                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1409         btrfs_mark_buffer_dirty(root->node);
1410         btrfs_tree_unlock(root->node);
1411         return root;
1412 }
1413
1414 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1415                              struct btrfs_fs_info *fs_info)
1416 {
1417         struct btrfs_root *log_root;
1418
1419         log_root = alloc_log_tree(trans, fs_info);
1420         if (IS_ERR(log_root))
1421                 return PTR_ERR(log_root);
1422         WARN_ON(fs_info->log_root_tree);
1423         fs_info->log_root_tree = log_root;
1424         return 0;
1425 }
1426
1427 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1428                        struct btrfs_root *root)
1429 {
1430         struct btrfs_root *log_root;
1431         struct btrfs_inode_item *inode_item;
1432
1433         log_root = alloc_log_tree(trans, root->fs_info);
1434         if (IS_ERR(log_root))
1435                 return PTR_ERR(log_root);
1436
1437         log_root->last_trans = trans->transid;
1438         log_root->root_key.offset = root->root_key.objectid;
1439
1440         inode_item = &log_root->root_item.inode;
1441         btrfs_set_stack_inode_generation(inode_item, 1);
1442         btrfs_set_stack_inode_size(inode_item, 3);
1443         btrfs_set_stack_inode_nlink(inode_item, 1);
1444         btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1445         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1446
1447         btrfs_set_root_node(&log_root->root_item, log_root->node);
1448
1449         WARN_ON(root->log_root);
1450         root->log_root = log_root;
1451         root->log_transid = 0;
1452         root->log_transid_committed = -1;
1453         root->last_log_commit = 0;
1454         return 0;
1455 }
1456
1457 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1458                                                struct btrfs_key *key)
1459 {
1460         struct btrfs_root *root;
1461         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1462         struct btrfs_path *path;
1463         u64 generation;
1464         u32 blocksize;
1465         int ret;
1466
1467         path = btrfs_alloc_path();
1468         if (!path)
1469                 return ERR_PTR(-ENOMEM);
1470
1471         root = btrfs_alloc_root(fs_info);
1472         if (!root) {
1473                 ret = -ENOMEM;
1474                 goto alloc_fail;
1475         }
1476
1477         __setup_root(tree_root->nodesize, tree_root->leafsize,
1478                      tree_root->sectorsize, tree_root->stripesize,
1479                      root, fs_info, key->objectid);
1480
1481         ret = btrfs_find_root(tree_root, key, path,
1482                               &root->root_item, &root->root_key);
1483         if (ret) {
1484                 if (ret > 0)
1485                         ret = -ENOENT;
1486                 goto find_fail;
1487         }
1488
1489         generation = btrfs_root_generation(&root->root_item);
1490         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1491         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1492                                      blocksize, generation);
1493         if (!root->node) {
1494                 ret = -ENOMEM;
1495                 goto find_fail;
1496         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1497                 ret = -EIO;
1498                 goto read_fail;
1499         }
1500         root->commit_root = btrfs_root_node(root);
1501 out:
1502         btrfs_free_path(path);
1503         return root;
1504
1505 read_fail:
1506         free_extent_buffer(root->node);
1507 find_fail:
1508         kfree(root);
1509 alloc_fail:
1510         root = ERR_PTR(ret);
1511         goto out;
1512 }
1513
1514 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1515                                       struct btrfs_key *location)
1516 {
1517         struct btrfs_root *root;
1518
1519         root = btrfs_read_tree_root(tree_root, location);
1520         if (IS_ERR(root))
1521                 return root;
1522
1523         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1524                 root->ref_cows = 1;
1525                 btrfs_check_and_init_root_item(&root->root_item);
1526         }
1527
1528         return root;
1529 }
1530
1531 int btrfs_init_fs_root(struct btrfs_root *root)
1532 {
1533         int ret;
1534         struct btrfs_subvolume_writers *writers;
1535
1536         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1537         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1538                                         GFP_NOFS);
1539         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1540                 ret = -ENOMEM;
1541                 goto fail;
1542         }
1543
1544         writers = btrfs_alloc_subvolume_writers();
1545         if (IS_ERR(writers)) {
1546                 ret = PTR_ERR(writers);
1547                 goto fail;
1548         }
1549         root->subv_writers = writers;
1550
1551         btrfs_init_free_ino_ctl(root);
1552         mutex_init(&root->fs_commit_mutex);
1553         spin_lock_init(&root->cache_lock);
1554         init_waitqueue_head(&root->cache_wait);
1555
1556         ret = get_anon_bdev(&root->anon_dev);
1557         if (ret)
1558                 goto free_writers;
1559         return 0;
1560
1561 free_writers:
1562         btrfs_free_subvolume_writers(root->subv_writers);
1563 fail:
1564         kfree(root->free_ino_ctl);
1565         kfree(root->free_ino_pinned);
1566         return ret;
1567 }
1568
1569 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1570                                                u64 root_id)
1571 {
1572         struct btrfs_root *root;
1573
1574         spin_lock(&fs_info->fs_roots_radix_lock);
1575         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1576                                  (unsigned long)root_id);
1577         spin_unlock(&fs_info->fs_roots_radix_lock);
1578         return root;
1579 }
1580
1581 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1582                          struct btrfs_root *root)
1583 {
1584         int ret;
1585
1586         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1587         if (ret)
1588                 return ret;
1589
1590         spin_lock(&fs_info->fs_roots_radix_lock);
1591         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1592                                 (unsigned long)root->root_key.objectid,
1593                                 root);
1594         if (ret == 0)
1595                 root->in_radix = 1;
1596         spin_unlock(&fs_info->fs_roots_radix_lock);
1597         radix_tree_preload_end();
1598
1599         return ret;
1600 }
1601
1602 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1603                                      struct btrfs_key *location,
1604                                      bool check_ref)
1605 {
1606         struct btrfs_root *root;
1607         int ret;
1608
1609         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1610                 return fs_info->tree_root;
1611         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1612                 return fs_info->extent_root;
1613         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1614                 return fs_info->chunk_root;
1615         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1616                 return fs_info->dev_root;
1617         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1618                 return fs_info->csum_root;
1619         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1620                 return fs_info->quota_root ? fs_info->quota_root :
1621                                              ERR_PTR(-ENOENT);
1622         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1623                 return fs_info->uuid_root ? fs_info->uuid_root :
1624                                             ERR_PTR(-ENOENT);
1625 again:
1626         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1627         if (root) {
1628                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1629                         return ERR_PTR(-ENOENT);
1630                 return root;
1631         }
1632
1633         root = btrfs_read_fs_root(fs_info->tree_root, location);
1634         if (IS_ERR(root))
1635                 return root;
1636
1637         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1638                 ret = -ENOENT;
1639                 goto fail;
1640         }
1641
1642         ret = btrfs_init_fs_root(root);
1643         if (ret)
1644                 goto fail;
1645
1646         ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1647                         location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
1648         if (ret < 0)
1649                 goto fail;
1650         if (ret == 0)
1651                 root->orphan_item_inserted = 1;
1652
1653         ret = btrfs_insert_fs_root(fs_info, root);
1654         if (ret) {
1655                 if (ret == -EEXIST) {
1656                         free_fs_root(root);
1657                         goto again;
1658                 }
1659                 goto fail;
1660         }
1661         return root;
1662 fail:
1663         free_fs_root(root);
1664         return ERR_PTR(ret);
1665 }
1666
1667 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1668 {
1669         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1670         int ret = 0;
1671         struct btrfs_device *device;
1672         struct backing_dev_info *bdi;
1673
1674         rcu_read_lock();
1675         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1676                 if (!device->bdev)
1677                         continue;
1678                 bdi = blk_get_backing_dev_info(device->bdev);
1679                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1680                         ret = 1;
1681                         break;
1682                 }
1683         }
1684         rcu_read_unlock();
1685         return ret;
1686 }
1687
1688 /*
1689  * If this fails, caller must call bdi_destroy() to get rid of the
1690  * bdi again.
1691  */
1692 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1693 {
1694         int err;
1695
1696         bdi->capabilities = BDI_CAP_MAP_COPY;
1697         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1698         if (err)
1699                 return err;
1700
1701         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1702         bdi->congested_fn       = btrfs_congested_fn;
1703         bdi->congested_data     = info;
1704         return 0;
1705 }
1706
1707 /*
1708  * called by the kthread helper functions to finally call the bio end_io
1709  * functions.  This is where read checksum verification actually happens
1710  */
1711 static void end_workqueue_fn(struct btrfs_work *work)
1712 {
1713         struct bio *bio;
1714         struct end_io_wq *end_io_wq;
1715         int error;
1716
1717         end_io_wq = container_of(work, struct end_io_wq, work);
1718         bio = end_io_wq->bio;
1719
1720         error = end_io_wq->error;
1721         bio->bi_private = end_io_wq->private;
1722         bio->bi_end_io = end_io_wq->end_io;
1723         kfree(end_io_wq);
1724         bio_endio(bio, error);
1725 }
1726
1727 static int cleaner_kthread(void *arg)
1728 {
1729         struct btrfs_root *root = arg;
1730         int again;
1731
1732         do {
1733                 again = 0;
1734
1735                 /* Make the cleaner go to sleep early. */
1736                 if (btrfs_need_cleaner_sleep(root))
1737                         goto sleep;
1738
1739                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1740                         goto sleep;
1741
1742                 /*
1743                  * Avoid the problem that we change the status of the fs
1744                  * during the above check and trylock.
1745                  */
1746                 if (btrfs_need_cleaner_sleep(root)) {
1747                         mutex_unlock(&root->fs_info->cleaner_mutex);
1748                         goto sleep;
1749                 }
1750
1751                 btrfs_run_delayed_iputs(root);
1752                 again = btrfs_clean_one_deleted_snapshot(root);
1753                 mutex_unlock(&root->fs_info->cleaner_mutex);
1754
1755                 /*
1756                  * The defragger has dealt with the R/O remount and umount,
1757                  * needn't do anything special here.
1758                  */
1759                 btrfs_run_defrag_inodes(root->fs_info);
1760 sleep:
1761                 if (!try_to_freeze() && !again) {
1762                         set_current_state(TASK_INTERRUPTIBLE);
1763                         if (!kthread_should_stop())
1764                                 schedule();
1765                         __set_current_state(TASK_RUNNING);
1766                 }
1767         } while (!kthread_should_stop());
1768         return 0;
1769 }
1770
1771 static int transaction_kthread(void *arg)
1772 {
1773         struct btrfs_root *root = arg;
1774         struct btrfs_trans_handle *trans;
1775         struct btrfs_transaction *cur;
1776         u64 transid;
1777         unsigned long now;
1778         unsigned long delay;
1779         bool cannot_commit;
1780
1781         do {
1782                 cannot_commit = false;
1783                 delay = HZ * root->fs_info->commit_interval;
1784                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1785
1786                 spin_lock(&root->fs_info->trans_lock);
1787                 cur = root->fs_info->running_transaction;
1788                 if (!cur) {
1789                         spin_unlock(&root->fs_info->trans_lock);
1790                         goto sleep;
1791                 }
1792
1793                 now = get_seconds();
1794                 if (cur->state < TRANS_STATE_BLOCKED &&
1795                     (now < cur->start_time ||
1796                      now - cur->start_time < root->fs_info->commit_interval)) {
1797                         spin_unlock(&root->fs_info->trans_lock);
1798                         delay = HZ * 5;
1799                         goto sleep;
1800                 }
1801                 transid = cur->transid;
1802                 spin_unlock(&root->fs_info->trans_lock);
1803
1804                 /* If the file system is aborted, this will always fail. */
1805                 trans = btrfs_attach_transaction(root);
1806                 if (IS_ERR(trans)) {
1807                         if (PTR_ERR(trans) != -ENOENT)
1808                                 cannot_commit = true;
1809                         goto sleep;
1810                 }
1811                 if (transid == trans->transid) {
1812                         btrfs_commit_transaction(trans, root);
1813                 } else {
1814                         btrfs_end_transaction(trans, root);
1815                 }
1816 sleep:
1817                 wake_up_process(root->fs_info->cleaner_kthread);
1818                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1819
1820                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1821                                       &root->fs_info->fs_state)))
1822                         btrfs_cleanup_transaction(root);
1823                 if (!try_to_freeze()) {
1824                         set_current_state(TASK_INTERRUPTIBLE);
1825                         if (!kthread_should_stop() &&
1826                             (!btrfs_transaction_blocked(root->fs_info) ||
1827                              cannot_commit))
1828                                 schedule_timeout(delay);
1829                         __set_current_state(TASK_RUNNING);
1830                 }
1831         } while (!kthread_should_stop());
1832         return 0;
1833 }
1834
1835 /*
1836  * this will find the highest generation in the array of
1837  * root backups.  The index of the highest array is returned,
1838  * or -1 if we can't find anything.
1839  *
1840  * We check to make sure the array is valid by comparing the
1841  * generation of the latest  root in the array with the generation
1842  * in the super block.  If they don't match we pitch it.
1843  */
1844 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1845 {
1846         u64 cur;
1847         int newest_index = -1;
1848         struct btrfs_root_backup *root_backup;
1849         int i;
1850
1851         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1852                 root_backup = info->super_copy->super_roots + i;
1853                 cur = btrfs_backup_tree_root_gen(root_backup);
1854                 if (cur == newest_gen)
1855                         newest_index = i;
1856         }
1857
1858         /* check to see if we actually wrapped around */
1859         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1860                 root_backup = info->super_copy->super_roots;
1861                 cur = btrfs_backup_tree_root_gen(root_backup);
1862                 if (cur == newest_gen)
1863                         newest_index = 0;
1864         }
1865         return newest_index;
1866 }
1867
1868
1869 /*
1870  * find the oldest backup so we know where to store new entries
1871  * in the backup array.  This will set the backup_root_index
1872  * field in the fs_info struct
1873  */
1874 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1875                                      u64 newest_gen)
1876 {
1877         int newest_index = -1;
1878
1879         newest_index = find_newest_super_backup(info, newest_gen);
1880         /* if there was garbage in there, just move along */
1881         if (newest_index == -1) {
1882                 info->backup_root_index = 0;
1883         } else {
1884                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1885         }
1886 }
1887
1888 /*
1889  * copy all the root pointers into the super backup array.
1890  * this will bump the backup pointer by one when it is
1891  * done
1892  */
1893 static void backup_super_roots(struct btrfs_fs_info *info)
1894 {
1895         int next_backup;
1896         struct btrfs_root_backup *root_backup;
1897         int last_backup;
1898
1899         next_backup = info->backup_root_index;
1900         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1901                 BTRFS_NUM_BACKUP_ROOTS;
1902
1903         /*
1904          * just overwrite the last backup if we're at the same generation
1905          * this happens only at umount
1906          */
1907         root_backup = info->super_for_commit->super_roots + last_backup;
1908         if (btrfs_backup_tree_root_gen(root_backup) ==
1909             btrfs_header_generation(info->tree_root->node))
1910                 next_backup = last_backup;
1911
1912         root_backup = info->super_for_commit->super_roots + next_backup;
1913
1914         /*
1915          * make sure all of our padding and empty slots get zero filled
1916          * regardless of which ones we use today
1917          */
1918         memset(root_backup, 0, sizeof(*root_backup));
1919
1920         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1921
1922         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1923         btrfs_set_backup_tree_root_gen(root_backup,
1924                                btrfs_header_generation(info->tree_root->node));
1925
1926         btrfs_set_backup_tree_root_level(root_backup,
1927                                btrfs_header_level(info->tree_root->node));
1928
1929         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1930         btrfs_set_backup_chunk_root_gen(root_backup,
1931                                btrfs_header_generation(info->chunk_root->node));
1932         btrfs_set_backup_chunk_root_level(root_backup,
1933                                btrfs_header_level(info->chunk_root->node));
1934
1935         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1936         btrfs_set_backup_extent_root_gen(root_backup,
1937                                btrfs_header_generation(info->extent_root->node));
1938         btrfs_set_backup_extent_root_level(root_backup,
1939                                btrfs_header_level(info->extent_root->node));
1940
1941         /*
1942          * we might commit during log recovery, which happens before we set
1943          * the fs_root.  Make sure it is valid before we fill it in.
1944          */
1945         if (info->fs_root && info->fs_root->node) {
1946                 btrfs_set_backup_fs_root(root_backup,
1947                                          info->fs_root->node->start);
1948                 btrfs_set_backup_fs_root_gen(root_backup,
1949                                btrfs_header_generation(info->fs_root->node));
1950                 btrfs_set_backup_fs_root_level(root_backup,
1951                                btrfs_header_level(info->fs_root->node));
1952         }
1953
1954         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1955         btrfs_set_backup_dev_root_gen(root_backup,
1956                                btrfs_header_generation(info->dev_root->node));
1957         btrfs_set_backup_dev_root_level(root_backup,
1958                                        btrfs_header_level(info->dev_root->node));
1959
1960         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1961         btrfs_set_backup_csum_root_gen(root_backup,
1962                                btrfs_header_generation(info->csum_root->node));
1963         btrfs_set_backup_csum_root_level(root_backup,
1964                                btrfs_header_level(info->csum_root->node));
1965
1966         btrfs_set_backup_total_bytes(root_backup,
1967                              btrfs_super_total_bytes(info->super_copy));
1968         btrfs_set_backup_bytes_used(root_backup,
1969                              btrfs_super_bytes_used(info->super_copy));
1970         btrfs_set_backup_num_devices(root_backup,
1971                              btrfs_super_num_devices(info->super_copy));
1972
1973         /*
1974          * if we don't copy this out to the super_copy, it won't get remembered
1975          * for the next commit
1976          */
1977         memcpy(&info->super_copy->super_roots,
1978                &info->super_for_commit->super_roots,
1979                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1980 }
1981
1982 /*
1983  * this copies info out of the root backup array and back into
1984  * the in-memory super block.  It is meant to help iterate through
1985  * the array, so you send it the number of backups you've already
1986  * tried and the last backup index you used.
1987  *
1988  * this returns -1 when it has tried all the backups
1989  */
1990 static noinline int next_root_backup(struct btrfs_fs_info *info,
1991                                      struct btrfs_super_block *super,
1992                                      int *num_backups_tried, int *backup_index)
1993 {
1994         struct btrfs_root_backup *root_backup;
1995         int newest = *backup_index;
1996
1997         if (*num_backups_tried == 0) {
1998                 u64 gen = btrfs_super_generation(super);
1999
2000                 newest = find_newest_super_backup(info, gen);
2001                 if (newest == -1)
2002                         return -1;
2003
2004                 *backup_index = newest;
2005                 *num_backups_tried = 1;
2006         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2007                 /* we've tried all the backups, all done */
2008                 return -1;
2009         } else {
2010                 /* jump to the next oldest backup */
2011                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2012                         BTRFS_NUM_BACKUP_ROOTS;
2013                 *backup_index = newest;
2014                 *num_backups_tried += 1;
2015         }
2016         root_backup = super->super_roots + newest;
2017
2018         btrfs_set_super_generation(super,
2019                                    btrfs_backup_tree_root_gen(root_backup));
2020         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2021         btrfs_set_super_root_level(super,
2022                                    btrfs_backup_tree_root_level(root_backup));
2023         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2024
2025         /*
2026          * fixme: the total bytes and num_devices need to match or we should
2027          * need a fsck
2028          */
2029         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2030         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2031         return 0;
2032 }
2033
2034 /* helper to cleanup workers */
2035 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2036 {
2037         btrfs_destroy_workqueue(fs_info->fixup_workers);
2038         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2039         btrfs_destroy_workqueue(fs_info->workers);
2040         btrfs_destroy_workqueue(fs_info->endio_workers);
2041         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2042         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2043         btrfs_destroy_workqueue(fs_info->rmw_workers);
2044         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2045         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2046         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2047         btrfs_destroy_workqueue(fs_info->submit_workers);
2048         btrfs_destroy_workqueue(fs_info->delayed_workers);
2049         btrfs_destroy_workqueue(fs_info->caching_workers);
2050         btrfs_destroy_workqueue(fs_info->readahead_workers);
2051         btrfs_destroy_workqueue(fs_info->flush_workers);
2052         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2053 }
2054
2055 static void free_root_extent_buffers(struct btrfs_root *root)
2056 {
2057         if (root) {
2058                 free_extent_buffer(root->node);
2059                 free_extent_buffer(root->commit_root);
2060                 root->node = NULL;
2061                 root->commit_root = NULL;
2062         }
2063 }
2064
2065 /* helper to cleanup tree roots */
2066 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2067 {
2068         free_root_extent_buffers(info->tree_root);
2069
2070         free_root_extent_buffers(info->dev_root);
2071         free_root_extent_buffers(info->extent_root);
2072         free_root_extent_buffers(info->csum_root);
2073         free_root_extent_buffers(info->quota_root);
2074         free_root_extent_buffers(info->uuid_root);
2075         if (chunk_root)
2076                 free_root_extent_buffers(info->chunk_root);
2077 }
2078
2079 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2080 {
2081         int ret;
2082         struct btrfs_root *gang[8];
2083         int i;
2084
2085         while (!list_empty(&fs_info->dead_roots)) {
2086                 gang[0] = list_entry(fs_info->dead_roots.next,
2087                                      struct btrfs_root, root_list);
2088                 list_del(&gang[0]->root_list);
2089
2090                 if (gang[0]->in_radix) {
2091                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2092                 } else {
2093                         free_extent_buffer(gang[0]->node);
2094                         free_extent_buffer(gang[0]->commit_root);
2095                         btrfs_put_fs_root(gang[0]);
2096                 }
2097         }
2098
2099         while (1) {
2100                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2101                                              (void **)gang, 0,
2102                                              ARRAY_SIZE(gang));
2103                 if (!ret)
2104                         break;
2105                 for (i = 0; i < ret; i++)
2106                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2107         }
2108
2109         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2110                 btrfs_free_log_root_tree(NULL, fs_info);
2111                 btrfs_destroy_pinned_extent(fs_info->tree_root,
2112                                             fs_info->pinned_extents);
2113         }
2114 }
2115
2116 int open_ctree(struct super_block *sb,
2117                struct btrfs_fs_devices *fs_devices,
2118                char *options)
2119 {
2120         u32 sectorsize;
2121         u32 nodesize;
2122         u32 leafsize;
2123         u32 blocksize;
2124         u32 stripesize;
2125         u64 generation;
2126         u64 features;
2127         struct btrfs_key location;
2128         struct buffer_head *bh;
2129         struct btrfs_super_block *disk_super;
2130         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2131         struct btrfs_root *tree_root;
2132         struct btrfs_root *extent_root;
2133         struct btrfs_root *csum_root;
2134         struct btrfs_root *chunk_root;
2135         struct btrfs_root *dev_root;
2136         struct btrfs_root *quota_root;
2137         struct btrfs_root *uuid_root;
2138         struct btrfs_root *log_tree_root;
2139         int ret;
2140         int err = -EINVAL;
2141         int num_backups_tried = 0;
2142         int backup_index = 0;
2143         int max_active;
2144         int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2145         bool create_uuid_tree;
2146         bool check_uuid_tree;
2147
2148         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2149         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2150         if (!tree_root || !chunk_root) {
2151                 err = -ENOMEM;
2152                 goto fail;
2153         }
2154
2155         ret = init_srcu_struct(&fs_info->subvol_srcu);
2156         if (ret) {
2157                 err = ret;
2158                 goto fail;
2159         }
2160
2161         ret = setup_bdi(fs_info, &fs_info->bdi);
2162         if (ret) {
2163                 err = ret;
2164                 goto fail_srcu;
2165         }
2166
2167         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2168         if (ret) {
2169                 err = ret;
2170                 goto fail_bdi;
2171         }
2172         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2173                                         (1 + ilog2(nr_cpu_ids));
2174
2175         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2176         if (ret) {
2177                 err = ret;
2178                 goto fail_dirty_metadata_bytes;
2179         }
2180
2181         ret = percpu_counter_init(&fs_info->bio_counter, 0);
2182         if (ret) {
2183                 err = ret;
2184                 goto fail_delalloc_bytes;
2185         }
2186
2187         fs_info->btree_inode = new_inode(sb);
2188         if (!fs_info->btree_inode) {
2189                 err = -ENOMEM;
2190                 goto fail_bio_counter;
2191         }
2192
2193         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2194
2195         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2196         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2197         INIT_LIST_HEAD(&fs_info->trans_list);
2198         INIT_LIST_HEAD(&fs_info->dead_roots);
2199         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2200         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2201         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2202         spin_lock_init(&fs_info->delalloc_root_lock);
2203         spin_lock_init(&fs_info->trans_lock);
2204         spin_lock_init(&fs_info->fs_roots_radix_lock);
2205         spin_lock_init(&fs_info->delayed_iput_lock);
2206         spin_lock_init(&fs_info->defrag_inodes_lock);
2207         spin_lock_init(&fs_info->free_chunk_lock);
2208         spin_lock_init(&fs_info->tree_mod_seq_lock);
2209         spin_lock_init(&fs_info->super_lock);
2210         spin_lock_init(&fs_info->buffer_lock);
2211         rwlock_init(&fs_info->tree_mod_log_lock);
2212         mutex_init(&fs_info->reloc_mutex);
2213         mutex_init(&fs_info->delalloc_root_mutex);
2214         seqlock_init(&fs_info->profiles_lock);
2215
2216         init_completion(&fs_info->kobj_unregister);
2217         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2218         INIT_LIST_HEAD(&fs_info->space_info);
2219         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2220         btrfs_mapping_init(&fs_info->mapping_tree);
2221         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2222                              BTRFS_BLOCK_RSV_GLOBAL);
2223         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2224                              BTRFS_BLOCK_RSV_DELALLOC);
2225         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2226         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2227         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2228         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2229                              BTRFS_BLOCK_RSV_DELOPS);
2230         atomic_set(&fs_info->nr_async_submits, 0);
2231         atomic_set(&fs_info->async_delalloc_pages, 0);
2232         atomic_set(&fs_info->async_submit_draining, 0);
2233         atomic_set(&fs_info->nr_async_bios, 0);
2234         atomic_set(&fs_info->defrag_running, 0);
2235         atomic64_set(&fs_info->tree_mod_seq, 0);
2236         fs_info->sb = sb;
2237         fs_info->max_inline = 8192 * 1024;
2238         fs_info->metadata_ratio = 0;
2239         fs_info->defrag_inodes = RB_ROOT;
2240         fs_info->free_chunk_space = 0;
2241         fs_info->tree_mod_log = RB_ROOT;
2242         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2243         fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
2244         /* readahead state */
2245         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2246         spin_lock_init(&fs_info->reada_lock);
2247
2248         fs_info->thread_pool_size = min_t(unsigned long,
2249                                           num_online_cpus() + 2, 8);
2250
2251         INIT_LIST_HEAD(&fs_info->ordered_roots);
2252         spin_lock_init(&fs_info->ordered_root_lock);
2253         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2254                                         GFP_NOFS);
2255         if (!fs_info->delayed_root) {
2256                 err = -ENOMEM;
2257                 goto fail_iput;
2258         }
2259         btrfs_init_delayed_root(fs_info->delayed_root);
2260
2261         mutex_init(&fs_info->scrub_lock);
2262         atomic_set(&fs_info->scrubs_running, 0);
2263         atomic_set(&fs_info->scrub_pause_req, 0);
2264         atomic_set(&fs_info->scrubs_paused, 0);
2265         atomic_set(&fs_info->scrub_cancel_req, 0);
2266         init_waitqueue_head(&fs_info->replace_wait);
2267         init_waitqueue_head(&fs_info->scrub_pause_wait);
2268         fs_info->scrub_workers_refcnt = 0;
2269 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2270         fs_info->check_integrity_print_mask = 0;
2271 #endif
2272
2273         spin_lock_init(&fs_info->balance_lock);
2274         mutex_init(&fs_info->balance_mutex);
2275         atomic_set(&fs_info->balance_running, 0);
2276         atomic_set(&fs_info->balance_pause_req, 0);
2277         atomic_set(&fs_info->balance_cancel_req, 0);
2278         fs_info->balance_ctl = NULL;
2279         init_waitqueue_head(&fs_info->balance_wait_q);
2280
2281         sb->s_blocksize = 4096;
2282         sb->s_blocksize_bits = blksize_bits(4096);
2283         sb->s_bdi = &fs_info->bdi;
2284
2285         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2286         set_nlink(fs_info->btree_inode, 1);
2287         /*
2288          * we set the i_size on the btree inode to the max possible int.
2289          * the real end of the address space is determined by all of
2290          * the devices in the system
2291          */
2292         fs_info->btree_inode->i_size = OFFSET_MAX;
2293         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2294         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2295
2296         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2297         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2298                              fs_info->btree_inode->i_mapping);
2299         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2300         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2301
2302         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2303
2304         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2305         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2306                sizeof(struct btrfs_key));
2307         set_bit(BTRFS_INODE_DUMMY,
2308                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2309         btrfs_insert_inode_hash(fs_info->btree_inode);
2310
2311         spin_lock_init(&fs_info->block_group_cache_lock);
2312         fs_info->block_group_cache_tree = RB_ROOT;
2313         fs_info->first_logical_byte = (u64)-1;
2314
2315         extent_io_tree_init(&fs_info->freed_extents[0],
2316                              fs_info->btree_inode->i_mapping);
2317         extent_io_tree_init(&fs_info->freed_extents[1],
2318                              fs_info->btree_inode->i_mapping);
2319         fs_info->pinned_extents = &fs_info->freed_extents[0];
2320         fs_info->do_barriers = 1;
2321
2322
2323         mutex_init(&fs_info->ordered_operations_mutex);
2324         mutex_init(&fs_info->ordered_extent_flush_mutex);
2325         mutex_init(&fs_info->tree_log_mutex);
2326         mutex_init(&fs_info->chunk_mutex);
2327         mutex_init(&fs_info->transaction_kthread_mutex);
2328         mutex_init(&fs_info->cleaner_mutex);
2329         mutex_init(&fs_info->volume_mutex);
2330         init_rwsem(&fs_info->extent_commit_sem);
2331         init_rwsem(&fs_info->cleanup_work_sem);
2332         init_rwsem(&fs_info->subvol_sem);
2333         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2334         fs_info->dev_replace.lock_owner = 0;
2335         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2336         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2337         mutex_init(&fs_info->dev_replace.lock_management_lock);
2338         mutex_init(&fs_info->dev_replace.lock);
2339
2340         spin_lock_init(&fs_info->qgroup_lock);
2341         mutex_init(&fs_info->qgroup_ioctl_lock);
2342         fs_info->qgroup_tree = RB_ROOT;
2343         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2344         fs_info->qgroup_seq = 1;
2345         fs_info->quota_enabled = 0;
2346         fs_info->pending_quota_state = 0;
2347         fs_info->qgroup_ulist = NULL;
2348         mutex_init(&fs_info->qgroup_rescan_lock);
2349
2350         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2351         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2352
2353         init_waitqueue_head(&fs_info->transaction_throttle);
2354         init_waitqueue_head(&fs_info->transaction_wait);
2355         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2356         init_waitqueue_head(&fs_info->async_submit_wait);
2357
2358         ret = btrfs_alloc_stripe_hash_table(fs_info);
2359         if (ret) {
2360                 err = ret;
2361                 goto fail_alloc;
2362         }
2363
2364         __setup_root(4096, 4096, 4096, 4096, tree_root,
2365                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2366
2367         invalidate_bdev(fs_devices->latest_bdev);
2368
2369         /*
2370          * Read super block and check the signature bytes only
2371          */
2372         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2373         if (!bh) {
2374                 err = -EINVAL;
2375                 goto fail_alloc;
2376         }
2377
2378         /*
2379          * We want to check superblock checksum, the type is stored inside.
2380          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2381          */
2382         if (btrfs_check_super_csum(bh->b_data)) {
2383                 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2384                 err = -EINVAL;
2385                 goto fail_alloc;
2386         }
2387
2388         /*
2389          * super_copy is zeroed at allocation time and we never touch the
2390          * following bytes up to INFO_SIZE, the checksum is calculated from
2391          * the whole block of INFO_SIZE
2392          */
2393         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2394         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2395                sizeof(*fs_info->super_for_commit));
2396         brelse(bh);
2397
2398         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2399
2400         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2401         if (ret) {
2402                 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2403                 err = -EINVAL;
2404                 goto fail_alloc;
2405         }
2406
2407         disk_super = fs_info->super_copy;
2408         if (!btrfs_super_root(disk_super))
2409                 goto fail_alloc;
2410
2411         /* check FS state, whether FS is broken. */
2412         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2413                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2414
2415         /*
2416          * run through our array of backup supers and setup
2417          * our ring pointer to the oldest one
2418          */
2419         generation = btrfs_super_generation(disk_super);
2420         find_oldest_super_backup(fs_info, generation);
2421
2422         /*
2423          * In the long term, we'll store the compression type in the super
2424          * block, and it'll be used for per file compression control.
2425          */
2426         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2427
2428         ret = btrfs_parse_options(tree_root, options);
2429         if (ret) {
2430                 err = ret;
2431                 goto fail_alloc;
2432         }
2433
2434         features = btrfs_super_incompat_flags(disk_super) &
2435                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2436         if (features) {
2437                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2438                        "unsupported optional features (%Lx).\n",
2439                        features);
2440                 err = -EINVAL;
2441                 goto fail_alloc;
2442         }
2443
2444         if (btrfs_super_leafsize(disk_super) !=
2445             btrfs_super_nodesize(disk_super)) {
2446                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2447                        "blocksizes don't match.  node %d leaf %d\n",
2448                        btrfs_super_nodesize(disk_super),
2449                        btrfs_super_leafsize(disk_super));
2450                 err = -EINVAL;
2451                 goto fail_alloc;
2452         }
2453         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2454                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2455                        "blocksize (%d) was too large\n",
2456                        btrfs_super_leafsize(disk_super));
2457                 err = -EINVAL;
2458                 goto fail_alloc;
2459         }
2460
2461         features = btrfs_super_incompat_flags(disk_super);
2462         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2463         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2464                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2465
2466         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2467                 printk(KERN_ERR "BTRFS: has skinny extents\n");
2468
2469         /*
2470          * flag our filesystem as having big metadata blocks if
2471          * they are bigger than the page size
2472          */
2473         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2474                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2475                         printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2476                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2477         }
2478
2479         nodesize = btrfs_super_nodesize(disk_super);
2480         leafsize = btrfs_super_leafsize(disk_super);
2481         sectorsize = btrfs_super_sectorsize(disk_super);
2482         stripesize = btrfs_super_stripesize(disk_super);
2483         fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2484         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2485
2486         /*
2487          * mixed block groups end up with duplicate but slightly offset
2488          * extent buffers for the same range.  It leads to corruptions
2489          */
2490         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2491             (sectorsize != leafsize)) {
2492                 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
2493                                 "are not allowed for mixed block groups on %s\n",
2494                                 sb->s_id);
2495                 goto fail_alloc;
2496         }
2497
2498         /*
2499          * Needn't use the lock because there is no other task which will
2500          * update the flag.
2501          */
2502         btrfs_set_super_incompat_flags(disk_super, features);
2503
2504         features = btrfs_super_compat_ro_flags(disk_super) &
2505                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2506         if (!(sb->s_flags & MS_RDONLY) && features) {
2507                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2508                        "unsupported option features (%Lx).\n",
2509                        features);
2510                 err = -EINVAL;
2511                 goto fail_alloc;
2512         }
2513
2514         max_active = fs_info->thread_pool_size;
2515
2516         fs_info->workers =
2517                 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2518                                       max_active, 16);
2519
2520         fs_info->delalloc_workers =
2521                 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2522
2523         fs_info->flush_workers =
2524                 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2525
2526         fs_info->caching_workers =
2527                 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2528
2529         /*
2530          * a higher idle thresh on the submit workers makes it much more
2531          * likely that bios will be send down in a sane order to the
2532          * devices
2533          */
2534         fs_info->submit_workers =
2535                 btrfs_alloc_workqueue("submit", flags,
2536                                       min_t(u64, fs_devices->num_devices,
2537                                             max_active), 64);
2538
2539         fs_info->fixup_workers =
2540                 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2541
2542         /*
2543          * endios are largely parallel and should have a very
2544          * low idle thresh
2545          */
2546         fs_info->endio_workers =
2547                 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2548         fs_info->endio_meta_workers =
2549                 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2550         fs_info->endio_meta_write_workers =
2551                 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2552         fs_info->endio_raid56_workers =
2553                 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2554         fs_info->rmw_workers =
2555                 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2556         fs_info->endio_write_workers =
2557                 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2558         fs_info->endio_freespace_worker =
2559                 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2560         fs_info->delayed_workers =
2561                 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2562         fs_info->readahead_workers =
2563                 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2564         fs_info->qgroup_rescan_workers =
2565                 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2566
2567         if (!(fs_info->workers && fs_info->delalloc_workers &&
2568               fs_info->submit_workers && fs_info->flush_workers &&
2569               fs_info->endio_workers && fs_info->endio_meta_workers &&
2570               fs_info->endio_meta_write_workers &&
2571               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2572               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2573               fs_info->caching_workers && fs_info->readahead_workers &&
2574               fs_info->fixup_workers && fs_info->delayed_workers &&
2575               fs_info->qgroup_rescan_workers)) {
2576                 err = -ENOMEM;
2577                 goto fail_sb_buffer;
2578         }
2579
2580         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2581         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2582                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2583
2584         tree_root->nodesize = nodesize;
2585         tree_root->leafsize = leafsize;
2586         tree_root->sectorsize = sectorsize;
2587         tree_root->stripesize = stripesize;
2588
2589         sb->s_blocksize = sectorsize;
2590         sb->s_blocksize_bits = blksize_bits(sectorsize);
2591
2592         if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2593                 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
2594                 goto fail_sb_buffer;
2595         }
2596
2597         if (sectorsize != PAGE_SIZE) {
2598                 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
2599                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2600                 goto fail_sb_buffer;
2601         }
2602
2603         mutex_lock(&fs_info->chunk_mutex);
2604         ret = btrfs_read_sys_array(tree_root);
2605         mutex_unlock(&fs_info->chunk_mutex);
2606         if (ret) {
2607                 printk(KERN_WARNING "BTRFS: failed to read the system "
2608                        "array on %s\n", sb->s_id);
2609                 goto fail_sb_buffer;
2610         }
2611
2612         blocksize = btrfs_level_size(tree_root,
2613                                      btrfs_super_chunk_root_level(disk_super));
2614         generation = btrfs_super_chunk_root_generation(disk_super);
2615
2616         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2617                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2618
2619         chunk_root->node = read_tree_block(chunk_root,
2620                                            btrfs_super_chunk_root(disk_super),
2621                                            blocksize, generation);
2622         if (!chunk_root->node ||
2623             !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2624                 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
2625                        sb->s_id);
2626                 goto fail_tree_roots;
2627         }
2628         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2629         chunk_root->commit_root = btrfs_root_node(chunk_root);
2630
2631         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2632            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2633
2634         ret = btrfs_read_chunk_tree(chunk_root);
2635         if (ret) {
2636                 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
2637                        sb->s_id);
2638                 goto fail_tree_roots;
2639         }
2640
2641         /*
2642          * keep the device that is marked to be the target device for the
2643          * dev_replace procedure
2644          */
2645         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2646
2647         if (!fs_devices->latest_bdev) {
2648                 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
2649                        sb->s_id);
2650                 goto fail_tree_roots;
2651         }
2652
2653 retry_root_backup:
2654         blocksize = btrfs_level_size(tree_root,
2655                                      btrfs_super_root_level(disk_super));
2656         generation = btrfs_super_generation(disk_super);
2657
2658         tree_root->node = read_tree_block(tree_root,
2659                                           btrfs_super_root(disk_super),
2660                                           blocksize, generation);
2661         if (!tree_root->node ||
2662             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2663                 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2664                        sb->s_id);
2665
2666                 goto recovery_tree_root;
2667         }
2668
2669         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2670         tree_root->commit_root = btrfs_root_node(tree_root);
2671         btrfs_set_root_refs(&tree_root->root_item, 1);
2672
2673         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2674         location.type = BTRFS_ROOT_ITEM_KEY;
2675         location.offset = 0;
2676
2677         extent_root = btrfs_read_tree_root(tree_root, &location);
2678         if (IS_ERR(extent_root)) {
2679                 ret = PTR_ERR(extent_root);
2680                 goto recovery_tree_root;
2681         }
2682         extent_root->track_dirty = 1;
2683         fs_info->extent_root = extent_root;
2684
2685         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2686         dev_root = btrfs_read_tree_root(tree_root, &location);
2687         if (IS_ERR(dev_root)) {
2688                 ret = PTR_ERR(dev_root);
2689                 goto recovery_tree_root;
2690         }
2691         dev_root->track_dirty = 1;
2692         fs_info->dev_root = dev_root;
2693         btrfs_init_devices_late(fs_info);
2694
2695         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2696         csum_root = btrfs_read_tree_root(tree_root, &location);
2697         if (IS_ERR(csum_root)) {
2698                 ret = PTR_ERR(csum_root);
2699                 goto recovery_tree_root;
2700         }
2701         csum_root->track_dirty = 1;
2702         fs_info->csum_root = csum_root;
2703
2704         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2705         quota_root = btrfs_read_tree_root(tree_root, &location);
2706         if (!IS_ERR(quota_root)) {
2707                 quota_root->track_dirty = 1;
2708                 fs_info->quota_enabled = 1;
2709                 fs_info->pending_quota_state = 1;
2710                 fs_info->quota_root = quota_root;
2711         }
2712
2713         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2714         uuid_root = btrfs_read_tree_root(tree_root, &location);
2715         if (IS_ERR(uuid_root)) {
2716                 ret = PTR_ERR(uuid_root);
2717                 if (ret != -ENOENT)
2718                         goto recovery_tree_root;
2719                 create_uuid_tree = true;
2720                 check_uuid_tree = false;
2721         } else {
2722                 uuid_root->track_dirty = 1;
2723                 fs_info->uuid_root = uuid_root;
2724                 create_uuid_tree = false;
2725                 check_uuid_tree =
2726                     generation != btrfs_super_uuid_tree_generation(disk_super);
2727         }
2728
2729         fs_info->generation = generation;
2730         fs_info->last_trans_committed = generation;
2731
2732         ret = btrfs_recover_balance(fs_info);
2733         if (ret) {
2734                 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
2735                 goto fail_block_groups;
2736         }
2737
2738         ret = btrfs_init_dev_stats(fs_info);
2739         if (ret) {
2740                 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2741                        ret);
2742                 goto fail_block_groups;
2743         }
2744
2745         ret = btrfs_init_dev_replace(fs_info);
2746         if (ret) {
2747                 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2748                 goto fail_block_groups;
2749         }
2750
2751         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2752
2753         ret = btrfs_sysfs_add_one(fs_info);
2754         if (ret) {
2755                 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2756                 goto fail_block_groups;
2757         }
2758
2759         ret = btrfs_init_space_info(fs_info);
2760         if (ret) {
2761                 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2762                 goto fail_sysfs;
2763         }
2764
2765         ret = btrfs_read_block_groups(extent_root);
2766         if (ret) {
2767                 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2768                 goto fail_sysfs;
2769         }
2770         fs_info->num_tolerated_disk_barrier_failures =
2771                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2772         if (fs_info->fs_devices->missing_devices >
2773              fs_info->num_tolerated_disk_barrier_failures &&
2774             !(sb->s_flags & MS_RDONLY)) {
2775                 printk(KERN_WARNING "BTRFS: "
2776                         "too many missing devices, writeable mount is not allowed\n");
2777                 goto fail_sysfs;
2778         }
2779
2780         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2781                                                "btrfs-cleaner");
2782         if (IS_ERR(fs_info->cleaner_kthread))
2783                 goto fail_sysfs;
2784
2785         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2786                                                    tree_root,
2787                                                    "btrfs-transaction");
2788         if (IS_ERR(fs_info->transaction_kthread))
2789                 goto fail_cleaner;
2790
2791         if (!btrfs_test_opt(tree_root, SSD) &&
2792             !btrfs_test_opt(tree_root, NOSSD) &&
2793             !fs_info->fs_devices->rotating) {
2794                 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2795                        "mode\n");
2796                 btrfs_set_opt(fs_info->mount_opt, SSD);
2797         }
2798
2799         /* Set the real inode map cache flag */
2800         if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2801                 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2802
2803 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2804         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2805                 ret = btrfsic_mount(tree_root, fs_devices,
2806                                     btrfs_test_opt(tree_root,
2807                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2808                                     1 : 0,
2809                                     fs_info->check_integrity_print_mask);
2810                 if (ret)
2811                         printk(KERN_WARNING "BTRFS: failed to initialize"
2812                                " integrity check module %s\n", sb->s_id);
2813         }
2814 #endif
2815         ret = btrfs_read_qgroup_config(fs_info);
2816         if (ret)
2817                 goto fail_trans_kthread;
2818
2819         /* do not make disk changes in broken FS */
2820         if (btrfs_super_log_root(disk_super) != 0) {
2821                 u64 bytenr = btrfs_super_log_root(disk_super);
2822
2823                 if (fs_devices->rw_devices == 0) {
2824                         printk(KERN_WARNING "BTRFS: log replay required "
2825                                "on RO media\n");
2826                         err = -EIO;
2827                         goto fail_qgroup;
2828                 }
2829                 blocksize =
2830                      btrfs_level_size(tree_root,
2831                                       btrfs_super_log_root_level(disk_super));
2832
2833                 log_tree_root = btrfs_alloc_root(fs_info);
2834                 if (!log_tree_root) {
2835                         err = -ENOMEM;
2836                         goto fail_qgroup;
2837                 }
2838
2839                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2840                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2841
2842                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2843                                                       blocksize,
2844                                                       generation + 1);
2845                 if (!log_tree_root->node ||
2846                     !extent_buffer_uptodate(log_tree_root->node)) {
2847                         printk(KERN_ERR "BTRFS: failed to read log tree\n");
2848                         free_extent_buffer(log_tree_root->node);
2849                         kfree(log_tree_root);
2850                         goto fail_trans_kthread;
2851                 }
2852                 /* returns with log_tree_root freed on success */
2853                 ret = btrfs_recover_log_trees(log_tree_root);
2854                 if (ret) {
2855                         btrfs_error(tree_root->fs_info, ret,
2856                                     "Failed to recover log tree");
2857                         free_extent_buffer(log_tree_root->node);
2858                         kfree(log_tree_root);
2859                         goto fail_trans_kthread;
2860                 }
2861
2862                 if (sb->s_flags & MS_RDONLY) {
2863                         ret = btrfs_commit_super(tree_root);
2864                         if (ret)
2865                                 goto fail_trans_kthread;
2866                 }
2867         }
2868
2869         ret = btrfs_find_orphan_roots(tree_root);
2870         if (ret)
2871                 goto fail_trans_kthread;
2872
2873         if (!(sb->s_flags & MS_RDONLY)) {
2874                 ret = btrfs_cleanup_fs_roots(fs_info);
2875                 if (ret)
2876                         goto fail_trans_kthread;
2877
2878                 ret = btrfs_recover_relocation(tree_root);
2879                 if (ret < 0) {
2880                         printk(KERN_WARNING
2881                                "BTRFS: failed to recover relocation\n");
2882                         err = -EINVAL;
2883                         goto fail_qgroup;
2884                 }
2885         }
2886
2887         location.objectid = BTRFS_FS_TREE_OBJECTID;
2888         location.type = BTRFS_ROOT_ITEM_KEY;
2889         location.offset = 0;
2890
2891         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2892         if (IS_ERR(fs_info->fs_root)) {
2893                 err = PTR_ERR(fs_info->fs_root);
2894                 goto fail_qgroup;
2895         }
2896
2897         if (sb->s_flags & MS_RDONLY)
2898                 return 0;
2899
2900         down_read(&fs_info->cleanup_work_sem);
2901         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2902             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2903                 up_read(&fs_info->cleanup_work_sem);
2904                 close_ctree(tree_root);
2905                 return ret;
2906         }
2907         up_read(&fs_info->cleanup_work_sem);
2908
2909         ret = btrfs_resume_balance_async(fs_info);
2910         if (ret) {
2911                 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2912                 close_ctree(tree_root);
2913                 return ret;
2914         }
2915
2916         ret = btrfs_resume_dev_replace_async(fs_info);
2917         if (ret) {
2918                 pr_warn("BTRFS: failed to resume dev_replace\n");
2919                 close_ctree(tree_root);
2920                 return ret;
2921         }
2922
2923         btrfs_qgroup_rescan_resume(fs_info);
2924
2925         if (create_uuid_tree) {
2926                 pr_info("BTRFS: creating UUID tree\n");
2927                 ret = btrfs_create_uuid_tree(fs_info);
2928                 if (ret) {
2929                         pr_warn("BTRFS: failed to create the UUID tree %d\n",
2930                                 ret);
2931                         close_ctree(tree_root);
2932                         return ret;
2933                 }
2934         } else if (check_uuid_tree ||
2935                    btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2936                 pr_info("BTRFS: checking UUID tree\n");
2937                 ret = btrfs_check_uuid_tree(fs_info);
2938                 if (ret) {
2939                         pr_warn("BTRFS: failed to check the UUID tree %d\n",
2940                                 ret);
2941                         close_ctree(tree_root);
2942                         return ret;
2943                 }
2944         } else {
2945                 fs_info->update_uuid_tree_gen = 1;
2946         }
2947
2948         return 0;
2949
2950 fail_qgroup:
2951         btrfs_free_qgroup_config(fs_info);
2952 fail_trans_kthread:
2953         kthread_stop(fs_info->transaction_kthread);
2954         btrfs_cleanup_transaction(fs_info->tree_root);
2955         del_fs_roots(fs_info);
2956 fail_cleaner:
2957         kthread_stop(fs_info->cleaner_kthread);
2958
2959         /*
2960          * make sure we're done with the btree inode before we stop our
2961          * kthreads
2962          */
2963         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2964
2965 fail_sysfs:
2966         btrfs_sysfs_remove_one(fs_info);
2967
2968 fail_block_groups:
2969         btrfs_put_block_group_cache(fs_info);
2970         btrfs_free_block_groups(fs_info);
2971
2972 fail_tree_roots:
2973         free_root_pointers(fs_info, 1);
2974         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2975
2976 fail_sb_buffer:
2977         btrfs_stop_all_workers(fs_info);
2978 fail_alloc:
2979 fail_iput:
2980         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2981
2982         iput(fs_info->btree_inode);
2983 fail_bio_counter:
2984         percpu_counter_destroy(&fs_info->bio_counter);
2985 fail_delalloc_bytes:
2986         percpu_counter_destroy(&fs_info->delalloc_bytes);
2987 fail_dirty_metadata_bytes:
2988         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2989 fail_bdi:
2990         bdi_destroy(&fs_info->bdi);
2991 fail_srcu:
2992         cleanup_srcu_struct(&fs_info->subvol_srcu);
2993 fail:
2994         btrfs_free_stripe_hash_table(fs_info);
2995         btrfs_close_devices(fs_info->fs_devices);
2996         return err;
2997
2998 recovery_tree_root:
2999         if (!btrfs_test_opt(tree_root, RECOVERY))
3000                 goto fail_tree_roots;
3001
3002         free_root_pointers(fs_info, 0);
3003
3004         /* don't use the log in recovery mode, it won't be valid */
3005         btrfs_set_super_log_root(disk_super, 0);
3006
3007         /* we can't trust the free space cache either */
3008         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3009
3010         ret = next_root_backup(fs_info, fs_info->super_copy,
3011                                &num_backups_tried, &backup_index);
3012         if (ret == -1)
3013                 goto fail_block_groups;
3014         goto retry_root_backup;
3015 }
3016
3017 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3018 {
3019         if (uptodate) {
3020                 set_buffer_uptodate(bh);
3021         } else {
3022                 struct btrfs_device *device = (struct btrfs_device *)
3023                         bh->b_private;
3024
3025                 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3026                                           "I/O error on %s\n",
3027                                           rcu_str_deref(device->name));
3028                 /* note, we dont' set_buffer_write_io_error because we have
3029                  * our own ways of dealing with the IO errors
3030                  */
3031                 clear_buffer_uptodate(bh);
3032                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3033         }
3034         unlock_buffer(bh);
3035         put_bh(bh);
3036 }
3037
3038 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3039 {
3040         struct buffer_head *bh;
3041         struct buffer_head *latest = NULL;
3042         struct btrfs_super_block *super;
3043         int i;
3044         u64 transid = 0;
3045         u64 bytenr;
3046
3047         /* we would like to check all the supers, but that would make
3048          * a btrfs mount succeed after a mkfs from a different FS.
3049          * So, we need to add a special mount option to scan for
3050          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3051          */
3052         for (i = 0; i < 1; i++) {
3053                 bytenr = btrfs_sb_offset(i);
3054                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3055                                         i_size_read(bdev->bd_inode))
3056                         break;
3057                 bh = __bread(bdev, bytenr / 4096,
3058                                         BTRFS_SUPER_INFO_SIZE);
3059                 if (!bh)
3060                         continue;
3061
3062                 super = (struct btrfs_super_block *)bh->b_data;
3063                 if (btrfs_super_bytenr(super) != bytenr ||
3064                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3065                         brelse(bh);
3066                         continue;
3067                 }
3068
3069                 if (!latest || btrfs_super_generation(super) > transid) {
3070                         brelse(latest);
3071                         latest = bh;
3072                         transid = btrfs_super_generation(super);
3073                 } else {
3074                         brelse(bh);
3075                 }
3076         }
3077         return latest;
3078 }
3079
3080 /*
3081  * this should be called twice, once with wait == 0 and
3082  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3083  * we write are pinned.
3084  *
3085  * They are released when wait == 1 is done.
3086  * max_mirrors must be the same for both runs, and it indicates how
3087  * many supers on this one device should be written.
3088  *
3089  * max_mirrors == 0 means to write them all.
3090  */
3091 static int write_dev_supers(struct btrfs_device *device,
3092                             struct btrfs_super_block *sb,
3093                             int do_barriers, int wait, int max_mirrors)
3094 {
3095         struct buffer_head *bh;
3096         int i;
3097         int ret;
3098         int errors = 0;
3099         u32 crc;
3100         u64 bytenr;
3101
3102         if (max_mirrors == 0)
3103                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3104
3105         for (i = 0; i < max_mirrors; i++) {
3106                 bytenr = btrfs_sb_offset(i);
3107                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3108                         break;
3109
3110                 if (wait) {
3111                         bh = __find_get_block(device->bdev, bytenr / 4096,
3112                                               BTRFS_SUPER_INFO_SIZE);
3113                         if (!bh) {
3114                                 errors++;
3115                                 continue;
3116                         }
3117                         wait_on_buffer(bh);
3118                         if (!buffer_uptodate(bh))
3119                                 errors++;
3120
3121                         /* drop our reference */
3122                         brelse(bh);
3123
3124                         /* drop the reference from the wait == 0 run */
3125                         brelse(bh);
3126                         continue;
3127                 } else {
3128                         btrfs_set_super_bytenr(sb, bytenr);
3129
3130                         crc = ~(u32)0;
3131                         crc = btrfs_csum_data((char *)sb +
3132                                               BTRFS_CSUM_SIZE, crc,
3133                                               BTRFS_SUPER_INFO_SIZE -
3134                                               BTRFS_CSUM_SIZE);
3135                         btrfs_csum_final(crc, sb->csum);
3136
3137                         /*
3138                          * one reference for us, and we leave it for the
3139                          * caller
3140                          */
3141                         bh = __getblk(device->bdev, bytenr / 4096,
3142                                       BTRFS_SUPER_INFO_SIZE);
3143                         if (!bh) {
3144                                 printk(KERN_ERR "BTRFS: couldn't get super "
3145                                        "buffer head for bytenr %Lu\n", bytenr);
3146                                 errors++;
3147                                 continue;
3148                         }
3149
3150                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3151
3152                         /* one reference for submit_bh */
3153                         get_bh(bh);
3154
3155                         set_buffer_uptodate(bh);
3156                         lock_buffer(bh);
3157                         bh->b_end_io = btrfs_end_buffer_write_sync;
3158                         bh->b_private = device;
3159                 }
3160
3161                 /*
3162                  * we fua the first super.  The others we allow
3163                  * to go down lazy.
3164                  */
3165                 if (i == 0)
3166                         ret = btrfsic_submit_bh(WRITE_FUA, bh);
3167                 else
3168                         ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3169                 if (ret)
3170                         errors++;
3171         }
3172         return errors < i ? 0 : -1;
3173 }
3174
3175 /*
3176  * endio for the write_dev_flush, this will wake anyone waiting
3177  * for the barrier when it is done
3178  */
3179 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3180 {
3181         if (err) {
3182                 if (err == -EOPNOTSUPP)
3183                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3184                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3185         }
3186         if (bio->bi_private)
3187                 complete(bio->bi_private);
3188         bio_put(bio);
3189 }
3190
3191 /*
3192  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3193  * sent down.  With wait == 1, it waits for the previous flush.
3194  *
3195  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3196  * capable
3197  */
3198 static int write_dev_flush(struct btrfs_device *device, int wait)
3199 {
3200         struct bio *bio;
3201         int ret = 0;
3202
3203         if (device->nobarriers)
3204                 return 0;
3205
3206         if (wait) {
3207                 bio = device->flush_bio;
3208                 if (!bio)
3209                         return 0;
3210
3211                 wait_for_completion(&device->flush_wait);
3212
3213                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3214                         printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3215                                       rcu_str_deref(device->name));
3216                         device->nobarriers = 1;
3217                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3218                         ret = -EIO;
3219                         btrfs_dev_stat_inc_and_print(device,
3220                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3221                 }
3222
3223                 /* drop the reference from the wait == 0 run */
3224                 bio_put(bio);
3225                 device->flush_bio = NULL;
3226
3227                 return ret;
3228         }
3229
3230         /*
3231          * one reference for us, and we leave it for the
3232          * caller
3233          */
3234         device->flush_bio = NULL;
3235         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3236         if (!bio)
3237                 return -ENOMEM;
3238
3239         bio->bi_end_io = btrfs_end_empty_barrier;
3240         bio->bi_bdev = device->bdev;
3241         init_completion(&device->flush_wait);
3242         bio->bi_private = &device->flush_wait;
3243         device->flush_bio = bio;
3244
3245         bio_get(bio);
3246         btrfsic_submit_bio(WRITE_FLUSH, bio);
3247
3248         return 0;
3249 }
3250
3251 /*
3252  * send an empty flush down to each device in parallel,
3253  * then wait for them
3254  */
3255 static int barrier_all_devices(struct btrfs_fs_info *info)
3256 {
3257         struct list_head *head;
3258         struct btrfs_device *dev;
3259         int errors_send = 0;
3260         int errors_wait = 0;
3261         int ret;
3262
3263         /* send down all the barriers */
3264         head = &info->fs_devices->devices;
3265         list_for_each_entry_rcu(dev, head, dev_list) {
3266                 if (dev->missing)
3267                         continue;
3268                 if (!dev->bdev) {
3269                         errors_send++;
3270                         continue;
3271                 }
3272                 if (!dev->in_fs_metadata || !dev->writeable)
3273                         continue;
3274
3275                 ret = write_dev_flush(dev, 0);
3276                 if (ret)
3277                         errors_send++;
3278         }
3279
3280         /* wait for all the barriers */
3281         list_for_each_entry_rcu(dev, head, dev_list) {
3282                 if (dev->missing)
3283                         continue;
3284                 if (!dev->bdev) {
3285                         errors_wait++;
3286                         continue;
3287                 }
3288                 if (!dev->in_fs_metadata || !dev->writeable)
3289                         continue;
3290
3291                 ret = write_dev_flush(dev, 1);
3292                 if (ret)
3293                         errors_wait++;
3294         }
3295         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3296             errors_wait > info->num_tolerated_disk_barrier_failures)
3297                 return -EIO;
3298         return 0;
3299 }
3300
3301 int btrfs_calc_num_tolerated_disk_barrier_failures(
3302         struct btrfs_fs_info *fs_info)
3303 {
3304         struct btrfs_ioctl_space_info space;
3305         struct btrfs_space_info *sinfo;
3306         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3307                        BTRFS_BLOCK_GROUP_SYSTEM,
3308                        BTRFS_BLOCK_GROUP_METADATA,
3309                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3310         int num_types = 4;
3311         int i;
3312         int c;
3313         int num_tolerated_disk_barrier_failures =
3314                 (int)fs_info->fs_devices->num_devices;
3315
3316         for (i = 0; i < num_types; i++) {
3317                 struct btrfs_space_info *tmp;
3318
3319                 sinfo = NULL;
3320                 rcu_read_lock();
3321                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3322                         if (tmp->flags == types[i]) {
3323                                 sinfo = tmp;
3324                                 break;
3325                         }
3326                 }
3327                 rcu_read_unlock();
3328
3329                 if (!sinfo)
3330                         continue;
3331
3332                 down_read(&sinfo->groups_sem);
3333                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3334                         if (!list_empty(&sinfo->block_groups[c])) {
3335                                 u64 flags;
3336
3337                                 btrfs_get_block_group_info(
3338                                         &sinfo->block_groups[c], &space);
3339                                 if (space.total_bytes == 0 ||
3340                                     space.used_bytes == 0)
3341                                         continue;
3342                                 flags = space.flags;
3343                                 /*
3344                                  * return
3345                                  * 0: if dup, single or RAID0 is configured for
3346                                  *    any of metadata, system or data, else
3347                                  * 1: if RAID5 is configured, or if RAID1 or
3348                                  *    RAID10 is configured and only two mirrors
3349                                  *    are used, else
3350                                  * 2: if RAID6 is configured, else
3351                                  * num_mirrors - 1: if RAID1 or RAID10 is
3352                                  *                  configured and more than
3353                                  *                  2 mirrors are used.
3354                                  */
3355                                 if (num_tolerated_disk_barrier_failures > 0 &&
3356                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3357                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3358                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3359                                       == 0)))
3360                                         num_tolerated_disk_barrier_failures = 0;
3361                                 else if (num_tolerated_disk_barrier_failures > 1) {
3362                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3363                                             BTRFS_BLOCK_GROUP_RAID5 |
3364                                             BTRFS_BLOCK_GROUP_RAID10)) {
3365                                                 num_tolerated_disk_barrier_failures = 1;
3366                                         } else if (flags &
3367                                                    BTRFS_BLOCK_GROUP_RAID6) {
3368                                                 num_tolerated_disk_barrier_failures = 2;
3369                                         }
3370                                 }
3371                         }
3372                 }
3373                 up_read(&sinfo->groups_sem);
3374         }
3375
3376         return num_tolerated_disk_barrier_failures;
3377 }
3378
3379 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3380 {
3381         struct list_head *head;
3382         struct btrfs_device *dev;
3383         struct btrfs_super_block *sb;
3384         struct btrfs_dev_item *dev_item;
3385         int ret;
3386         int do_barriers;
3387         int max_errors;
3388         int total_errors = 0;
3389         u64 flags;
3390
3391         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3392         backup_super_roots(root->fs_info);
3393
3394         sb = root->fs_info->super_for_commit;
3395         dev_item = &sb->dev_item;
3396
3397         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3398         head = &root->fs_info->fs_devices->devices;
3399         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3400
3401         if (do_barriers) {
3402                 ret = barrier_all_devices(root->fs_info);
3403                 if (ret) {
3404                         mutex_unlock(
3405                                 &root->fs_info->fs_devices->device_list_mutex);
3406                         btrfs_error(root->fs_info, ret,
3407                                     "errors while submitting device barriers.");
3408                         return ret;
3409                 }
3410         }
3411
3412         list_for_each_entry_rcu(dev, head, dev_list) {
3413                 if (!dev->bdev) {
3414                         total_errors++;
3415                         continue;
3416                 }
3417                 if (!dev->in_fs_metadata || !dev->writeable)
3418                         continue;
3419
3420                 btrfs_set_stack_device_generation(dev_item, 0);
3421                 btrfs_set_stack_device_type(dev_item, dev->type);
3422                 btrfs_set_stack_device_id(dev_item, dev->devid);
3423                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3424                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3425                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3426                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3427                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3428                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3429                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3430
3431                 flags = btrfs_super_flags(sb);
3432                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3433
3434                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3435                 if (ret)
3436                         total_errors++;
3437         }
3438         if (total_errors > max_errors) {
3439                 btrfs_err(root->fs_info, "%d errors while writing supers",
3440                        total_errors);
3441                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3442
3443                 /* FUA is masked off if unsupported and can't be the reason */
3444                 btrfs_error(root->fs_info, -EIO,
3445                             "%d errors while writing supers", total_errors);
3446                 return -EIO;
3447         }
3448
3449         total_errors = 0;
3450         list_for_each_entry_rcu(dev, head, dev_list) {
3451                 if (!dev->bdev)
3452                         continue;
3453                 if (!dev->in_fs_metadata || !dev->writeable)
3454                         continue;
3455
3456                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3457                 if (ret)
3458                         total_errors++;
3459         }
3460         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3461         if (total_errors > max_errors) {
3462                 btrfs_error(root->fs_info, -EIO,
3463                             "%d errors while writing supers", total_errors);
3464                 return -EIO;
3465         }
3466         return 0;
3467 }
3468
3469 int write_ctree_super(struct btrfs_trans_handle *trans,
3470                       struct btrfs_root *root, int max_mirrors)
3471 {
3472         return write_all_supers(root, max_mirrors);
3473 }
3474
3475 /* Drop a fs root from the radix tree and free it. */
3476 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3477                                   struct btrfs_root *root)
3478 {
3479         spin_lock(&fs_info->fs_roots_radix_lock);
3480         radix_tree_delete(&fs_info->fs_roots_radix,
3481                           (unsigned long)root->root_key.objectid);
3482         spin_unlock(&fs_info->fs_roots_radix_lock);
3483
3484         if (btrfs_root_refs(&root->root_item) == 0)
3485                 synchronize_srcu(&fs_info->subvol_srcu);
3486
3487         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3488                 btrfs_free_log(NULL, root);
3489
3490         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3491         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3492         free_fs_root(root);
3493 }
3494
3495 static void free_fs_root(struct btrfs_root *root)
3496 {
3497         iput(root->cache_inode);
3498         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3499         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3500         root->orphan_block_rsv = NULL;
3501         if (root->anon_dev)
3502                 free_anon_bdev(root->anon_dev);
3503         if (root->subv_writers)
3504                 btrfs_free_subvolume_writers(root->subv_writers);
3505         free_extent_buffer(root->node);
3506         free_extent_buffer(root->commit_root);
3507         kfree(root->free_ino_ctl);
3508         kfree(root->free_ino_pinned);
3509         kfree(root->name);
3510         btrfs_put_fs_root(root);
3511 }
3512
3513 void btrfs_free_fs_root(struct btrfs_root *root)
3514 {
3515         free_fs_root(root);
3516 }
3517
3518 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3519 {
3520         u64 root_objectid = 0;
3521         struct btrfs_root *gang[8];
3522         int i;
3523         int ret;
3524
3525         while (1) {
3526                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3527                                              (void **)gang, root_objectid,
3528                                              ARRAY_SIZE(gang));
3529                 if (!ret)
3530                         break;
3531
3532                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3533                 for (i = 0; i < ret; i++) {
3534                         int err;
3535
3536                         root_objectid = gang[i]->root_key.objectid;
3537                         err = btrfs_orphan_cleanup(gang[i]);
3538                         if (err)
3539                                 return err;
3540                 }
3541                 root_objectid++;
3542         }
3543         return 0;
3544 }
3545
3546 int btrfs_commit_super(struct btrfs_root *root)
3547 {
3548         struct btrfs_trans_handle *trans;
3549
3550         mutex_lock(&root->fs_info->cleaner_mutex);
3551         btrfs_run_delayed_iputs(root);
3552         mutex_unlock(&root->fs_info->cleaner_mutex);
3553         wake_up_process(root->fs_info->cleaner_kthread);
3554
3555         /* wait until ongoing cleanup work done */
3556         down_write(&root->fs_info->cleanup_work_sem);
3557         up_write(&root->fs_info->cleanup_work_sem);
3558
3559         trans = btrfs_join_transaction(root);
3560         if (IS_ERR(trans))
3561                 return PTR_ERR(trans);
3562         return btrfs_commit_transaction(trans, root);
3563 }
3564
3565 int close_ctree(struct btrfs_root *root)
3566 {
3567         struct btrfs_fs_info *fs_info = root->fs_info;
3568         int ret;
3569
3570         fs_info->closing = 1;
3571         smp_mb();
3572
3573         /* wait for the uuid_scan task to finish */
3574         down(&fs_info->uuid_tree_rescan_sem);
3575         /* avoid complains from lockdep et al., set sem back to initial state */
3576         up(&fs_info->uuid_tree_rescan_sem);
3577
3578         /* pause restriper - we want to resume on mount */
3579         btrfs_pause_balance(fs_info);
3580
3581         btrfs_dev_replace_suspend_for_unmount(fs_info);
3582
3583         btrfs_scrub_cancel(fs_info);
3584
3585         /* wait for any defraggers to finish */
3586         wait_event(fs_info->transaction_wait,
3587                    (atomic_read(&fs_info->defrag_running) == 0));
3588
3589         /* clear out the rbtree of defraggable inodes */
3590         btrfs_cleanup_defrag_inodes(fs_info);
3591
3592         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3593                 ret = btrfs_commit_super(root);
3594                 if (ret)
3595                         btrfs_err(root->fs_info, "commit super ret %d", ret);
3596         }
3597
3598         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3599                 btrfs_error_commit_super(root);
3600
3601         kthread_stop(fs_info->transaction_kthread);
3602         kthread_stop(fs_info->cleaner_kthread);
3603
3604         fs_info->closing = 2;
3605         smp_mb();
3606
3607         btrfs_free_qgroup_config(root->fs_info);
3608
3609         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3610                 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3611                        percpu_counter_sum(&fs_info->delalloc_bytes));
3612         }
3613
3614         btrfs_sysfs_remove_one(fs_info);
3615
3616         del_fs_roots(fs_info);
3617
3618         btrfs_put_block_group_cache(fs_info);
3619
3620         btrfs_free_block_groups(fs_info);
3621
3622         btrfs_stop_all_workers(fs_info);
3623
3624         free_root_pointers(fs_info, 1);
3625
3626         iput(fs_info->btree_inode);
3627
3628 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3629         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3630                 btrfsic_unmount(root, fs_info->fs_devices);
3631 #endif
3632
3633         btrfs_close_devices(fs_info->fs_devices);
3634         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3635
3636         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3637         percpu_counter_destroy(&fs_info->delalloc_bytes);
3638         percpu_counter_destroy(&fs_info->bio_counter);
3639         bdi_destroy(&fs_info->bdi);
3640         cleanup_srcu_struct(&fs_info->subvol_srcu);
3641
3642         btrfs_free_stripe_hash_table(fs_info);
3643
3644         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3645         root->orphan_block_rsv = NULL;
3646
3647         return 0;
3648 }
3649
3650 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3651                           int atomic)
3652 {
3653         int ret;
3654         struct inode *btree_inode = buf->pages[0]->mapping->host;
3655
3656         ret = extent_buffer_uptodate(buf);
3657         if (!ret)
3658                 return ret;
3659
3660         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3661                                     parent_transid, atomic);
3662         if (ret == -EAGAIN)
3663                 return ret;
3664         return !ret;
3665 }
3666
3667 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3668 {
3669         return set_extent_buffer_uptodate(buf);
3670 }
3671
3672 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3673 {
3674         struct btrfs_root *root;
3675         u64 transid = btrfs_header_generation(buf);
3676         int was_dirty;
3677
3678 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3679         /*
3680          * This is a fast path so only do this check if we have sanity tests
3681          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3682          * outside of the sanity tests.
3683          */
3684         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3685                 return;
3686 #endif
3687         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3688         btrfs_assert_tree_locked(buf);
3689         if (transid != root->fs_info->generation)
3690                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3691                        "found %llu running %llu\n",
3692                         buf->start, transid, root->fs_info->generation);
3693         was_dirty = set_extent_buffer_dirty(buf);
3694         if (!was_dirty)
3695                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3696                                      buf->len,
3697                                      root->fs_info->dirty_metadata_batch);
3698 }
3699
3700 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3701                                         int flush_delayed)
3702 {
3703         /*
3704          * looks as though older kernels can get into trouble with
3705          * this code, they end up stuck in balance_dirty_pages forever
3706          */
3707         int ret;
3708
3709         if (current->flags & PF_MEMALLOC)
3710                 return;
3711
3712         if (flush_delayed)
3713                 btrfs_balance_delayed_items(root);
3714
3715         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3716                                      BTRFS_DIRTY_METADATA_THRESH);
3717         if (ret > 0) {
3718                 balance_dirty_pages_ratelimited(
3719                                    root->fs_info->btree_inode->i_mapping);
3720         }
3721         return;
3722 }
3723
3724 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3725 {
3726         __btrfs_btree_balance_dirty(root, 1);
3727 }
3728
3729 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3730 {
3731         __btrfs_btree_balance_dirty(root, 0);
3732 }
3733
3734 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3735 {
3736         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3737         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3738 }
3739
3740 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3741                               int read_only)
3742 {
3743         /*
3744          * Placeholder for checks
3745          */
3746         return 0;
3747 }
3748
3749 static void btrfs_error_commit_super(struct btrfs_root *root)
3750 {
3751         mutex_lock(&root->fs_info->cleaner_mutex);
3752         btrfs_run_delayed_iputs(root);
3753         mutex_unlock(&root->fs_info->cleaner_mutex);
3754
3755         down_write(&root->fs_info->cleanup_work_sem);
3756         up_write(&root->fs_info->cleanup_work_sem);
3757
3758         /* cleanup FS via transaction */
3759         btrfs_cleanup_transaction(root);
3760 }
3761
3762 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3763                                              struct btrfs_root *root)
3764 {
3765         struct btrfs_inode *btrfs_inode;
3766         struct list_head splice;
3767
3768         INIT_LIST_HEAD(&splice);
3769
3770         mutex_lock(&root->fs_info->ordered_operations_mutex);
3771         spin_lock(&root->fs_info->ordered_root_lock);
3772
3773         list_splice_init(&t->ordered_operations, &splice);
3774         while (!list_empty(&splice)) {
3775                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3776                                          ordered_operations);
3777
3778                 list_del_init(&btrfs_inode->ordered_operations);
3779                 spin_unlock(&root->fs_info->ordered_root_lock);
3780
3781                 btrfs_invalidate_inodes(btrfs_inode->root);
3782
3783                 spin_lock(&root->fs_info->ordered_root_lock);
3784         }
3785
3786         spin_unlock(&root->fs_info->ordered_root_lock);
3787         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3788 }
3789
3790 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3791 {
3792         struct btrfs_ordered_extent *ordered;
3793
3794         spin_lock(&root->ordered_extent_lock);
3795         /*
3796          * This will just short circuit the ordered completion stuff which will
3797          * make sure the ordered extent gets properly cleaned up.
3798          */
3799         list_for_each_entry(ordered, &root->ordered_extents,
3800                             root_extent_list)
3801                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3802         spin_unlock(&root->ordered_extent_lock);
3803 }
3804
3805 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3806 {
3807         struct btrfs_root *root;
3808         struct list_head splice;
3809
3810         INIT_LIST_HEAD(&splice);
3811
3812         spin_lock(&fs_info->ordered_root_lock);
3813         list_splice_init(&fs_info->ordered_roots, &splice);
3814         while (!list_empty(&splice)) {
3815                 root = list_first_entry(&splice, struct btrfs_root,
3816                                         ordered_root);
3817                 list_move_tail(&root->ordered_root,
3818                                &fs_info->ordered_roots);
3819
3820                 spin_unlock(&fs_info->ordered_root_lock);
3821                 btrfs_destroy_ordered_extents(root);
3822
3823                 cond_resched();
3824                 spin_lock(&fs_info->ordered_root_lock);
3825         }
3826         spin_unlock(&fs_info->ordered_root_lock);
3827 }
3828
3829 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3830                                       struct btrfs_root *root)
3831 {
3832         struct rb_node *node;
3833         struct btrfs_delayed_ref_root *delayed_refs;
3834         struct btrfs_delayed_ref_node *ref;
3835         int ret = 0;
3836
3837         delayed_refs = &trans->delayed_refs;
3838
3839         spin_lock(&delayed_refs->lock);
3840         if (atomic_read(&delayed_refs->num_entries) == 0) {
3841                 spin_unlock(&delayed_refs->lock);
3842                 btrfs_info(root->fs_info, "delayed_refs has NO entry");
3843                 return ret;
3844         }
3845
3846         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3847                 struct btrfs_delayed_ref_head *head;
3848                 bool pin_bytes = false;
3849
3850                 head = rb_entry(node, struct btrfs_delayed_ref_head,
3851                                 href_node);
3852                 if (!mutex_trylock(&head->mutex)) {
3853                         atomic_inc(&head->node.refs);
3854                         spin_unlock(&delayed_refs->lock);
3855
3856                         mutex_lock(&head->mutex);
3857                         mutex_unlock(&head->mutex);
3858                         btrfs_put_delayed_ref(&head->node);
3859                         spin_lock(&delayed_refs->lock);
3860                         continue;
3861                 }
3862                 spin_lock(&head->lock);
3863                 while ((node = rb_first(&head->ref_root)) != NULL) {
3864                         ref = rb_entry(node, struct btrfs_delayed_ref_node,
3865                                        rb_node);
3866                         ref->in_tree = 0;
3867                         rb_erase(&ref->rb_node, &head->ref_root);
3868                         atomic_dec(&delayed_refs->num_entries);
3869                         btrfs_put_delayed_ref(ref);
3870                 }
3871                 if (head->must_insert_reserved)
3872                         pin_bytes = true;
3873                 btrfs_free_delayed_extent_op(head->extent_op);
3874                 delayed_refs->num_heads--;
3875                 if (head->processing == 0)
3876                         delayed_refs->num_heads_ready--;
3877                 atomic_dec(&delayed_refs->num_entries);
3878                 head->node.in_tree = 0;
3879                 rb_erase(&head->href_node, &delayed_refs->href_root);
3880                 spin_unlock(&head->lock);
3881                 spin_unlock(&delayed_refs->lock);
3882                 mutex_unlock(&head->mutex);
3883
3884                 if (pin_bytes)
3885                         btrfs_pin_extent(root, head->node.bytenr,
3886                                          head->node.num_bytes, 1);
3887                 btrfs_put_delayed_ref(&head->node);
3888                 cond_resched();
3889                 spin_lock(&delayed_refs->lock);
3890         }
3891
3892         spin_unlock(&delayed_refs->lock);
3893
3894         return ret;
3895 }
3896
3897 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3898 {
3899         struct btrfs_inode *btrfs_inode;
3900         struct list_head splice;
3901
3902         INIT_LIST_HEAD(&splice);
3903
3904         spin_lock(&root->delalloc_lock);
3905         list_splice_init(&root->delalloc_inodes, &splice);
3906
3907         while (!list_empty(&splice)) {
3908                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3909                                                delalloc_inodes);
3910
3911                 list_del_init(&btrfs_inode->delalloc_inodes);
3912                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3913                           &btrfs_inode->runtime_flags);
3914                 spin_unlock(&root->delalloc_lock);
3915
3916                 btrfs_invalidate_inodes(btrfs_inode->root);
3917
3918                 spin_lock(&root->delalloc_lock);
3919         }
3920
3921         spin_unlock(&root->delalloc_lock);
3922 }
3923
3924 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3925 {
3926         struct btrfs_root *root;
3927         struct list_head splice;
3928
3929         INIT_LIST_HEAD(&splice);
3930
3931         spin_lock(&fs_info->delalloc_root_lock);
3932         list_splice_init(&fs_info->delalloc_roots, &splice);
3933         while (!list_empty(&splice)) {
3934                 root = list_first_entry(&splice, struct btrfs_root,
3935                                          delalloc_root);
3936                 list_del_init(&root->delalloc_root);
3937                 root = btrfs_grab_fs_root(root);
3938                 BUG_ON(!root);
3939                 spin_unlock(&fs_info->delalloc_root_lock);
3940
3941                 btrfs_destroy_delalloc_inodes(root);
3942                 btrfs_put_fs_root(root);
3943
3944                 spin_lock(&fs_info->delalloc_root_lock);
3945         }
3946         spin_unlock(&fs_info->delalloc_root_lock);
3947 }
3948
3949 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3950                                         struct extent_io_tree *dirty_pages,
3951                                         int mark)
3952 {
3953         int ret;
3954         struct extent_buffer *eb;
3955         u64 start = 0;
3956         u64 end;
3957
3958         while (1) {
3959                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3960                                             mark, NULL);
3961                 if (ret)
3962                         break;
3963
3964                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3965                 while (start <= end) {
3966                         eb = btrfs_find_tree_block(root, start,
3967                                                    root->leafsize);
3968                         start += root->leafsize;
3969                         if (!eb)
3970                                 continue;
3971                         wait_on_extent_buffer_writeback(eb);
3972
3973                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3974                                                &eb->bflags))
3975                                 clear_extent_buffer_dirty(eb);
3976                         free_extent_buffer_stale(eb);
3977                 }
3978         }
3979
3980         return ret;
3981 }
3982
3983 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3984                                        struct extent_io_tree *pinned_extents)
3985 {
3986         struct extent_io_tree *unpin;
3987         u64 start;
3988         u64 end;
3989         int ret;
3990         bool loop = true;
3991
3992         unpin = pinned_extents;
3993 again:
3994         while (1) {
3995                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3996                                             EXTENT_DIRTY, NULL);
3997                 if (ret)
3998                         break;
3999
4000                 /* opt_discard */
4001                 if (btrfs_test_opt(root, DISCARD))
4002                         ret = btrfs_error_discard_extent(root, start,
4003                                                          end + 1 - start,
4004                                                          NULL);
4005
4006                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4007                 btrfs_error_unpin_extent_range(root, start, end);
4008                 cond_resched();
4009         }
4010
4011         if (loop) {
4012                 if (unpin == &root->fs_info->freed_extents[0])
4013                         unpin = &root->fs_info->freed_extents[1];
4014                 else
4015                         unpin = &root->fs_info->freed_extents[0];
4016                 loop = false;
4017                 goto again;
4018         }
4019
4020         return 0;
4021 }
4022
4023 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4024                                    struct btrfs_root *root)
4025 {
4026         btrfs_destroy_ordered_operations(cur_trans, root);
4027
4028         btrfs_destroy_delayed_refs(cur_trans, root);
4029
4030         cur_trans->state = TRANS_STATE_COMMIT_START;
4031         wake_up(&root->fs_info->transaction_blocked_wait);
4032
4033         cur_trans->state = TRANS_STATE_UNBLOCKED;
4034         wake_up(&root->fs_info->transaction_wait);
4035
4036         btrfs_destroy_delayed_inodes(root);
4037         btrfs_assert_delayed_root_empty(root);
4038
4039         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4040                                      EXTENT_DIRTY);
4041         btrfs_destroy_pinned_extent(root,
4042                                     root->fs_info->pinned_extents);
4043
4044         cur_trans->state =TRANS_STATE_COMPLETED;
4045         wake_up(&cur_trans->commit_wait);
4046
4047         /*
4048         memset(cur_trans, 0, sizeof(*cur_trans));
4049         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4050         */
4051 }
4052
4053 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4054 {
4055         struct btrfs_transaction *t;
4056
4057         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4058
4059         spin_lock(&root->fs_info->trans_lock);
4060         while (!list_empty(&root->fs_info->trans_list)) {
4061                 t = list_first_entry(&root->fs_info->trans_list,
4062                                      struct btrfs_transaction, list);
4063                 if (t->state >= TRANS_STATE_COMMIT_START) {
4064                         atomic_inc(&t->use_count);
4065                         spin_unlock(&root->fs_info->trans_lock);
4066                         btrfs_wait_for_commit(root, t->transid);
4067                         btrfs_put_transaction(t);
4068                         spin_lock(&root->fs_info->trans_lock);
4069                         continue;
4070                 }
4071                 if (t == root->fs_info->running_transaction) {
4072                         t->state = TRANS_STATE_COMMIT_DOING;
4073                         spin_unlock(&root->fs_info->trans_lock);
4074                         /*
4075                          * We wait for 0 num_writers since we don't hold a trans
4076                          * handle open currently for this transaction.
4077                          */
4078                         wait_event(t->writer_wait,
4079                                    atomic_read(&t->num_writers) == 0);
4080                 } else {
4081                         spin_unlock(&root->fs_info->trans_lock);
4082                 }
4083                 btrfs_cleanup_one_transaction(t, root);
4084
4085                 spin_lock(&root->fs_info->trans_lock);
4086                 if (t == root->fs_info->running_transaction)
4087                         root->fs_info->running_transaction = NULL;
4088                 list_del_init(&t->list);
4089                 spin_unlock(&root->fs_info->trans_lock);
4090
4091                 btrfs_put_transaction(t);
4092                 trace_btrfs_transaction_commit(root);
4093                 spin_lock(&root->fs_info->trans_lock);
4094         }
4095         spin_unlock(&root->fs_info->trans_lock);
4096         btrfs_destroy_all_ordered_extents(root->fs_info);
4097         btrfs_destroy_delayed_inodes(root);
4098         btrfs_assert_delayed_root_empty(root);
4099         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4100         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4101         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4102
4103         return 0;
4104 }
4105
4106 static struct extent_io_ops btree_extent_io_ops = {
4107         .readpage_end_io_hook = btree_readpage_end_io_hook,
4108         .readpage_io_failed_hook = btree_io_failed_hook,
4109         .submit_bio_hook = btree_submit_bio_hook,
4110         /* note we're sharing with inode.c for the merge bio hook */
4111         .merge_bio_hook = btrfs_merge_bio_hook,
4112 };