btrfs: clean_tree_block should panic on observed memory corruption and return void
[linux-2.6-block.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47
48 static struct extent_io_ops btree_extent_io_ops;
49 static void end_workqueue_fn(struct btrfs_work *work);
50 static void free_fs_root(struct btrfs_root *root);
51 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
52                                     int read_only);
53 static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
54 static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56                                       struct btrfs_root *root);
57 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
58 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
60                                         struct extent_io_tree *dirty_pages,
61                                         int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
63                                        struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_root *root);
65
66 /*
67  * end_io_wq structs are used to do processing in task context when an IO is
68  * complete.  This is used during reads to verify checksums, and it is used
69  * by writes to insert metadata for new file extents after IO is complete.
70  */
71 struct end_io_wq {
72         struct bio *bio;
73         bio_end_io_t *end_io;
74         void *private;
75         struct btrfs_fs_info *info;
76         int error;
77         int metadata;
78         struct list_head list;
79         struct btrfs_work work;
80 };
81
82 /*
83  * async submit bios are used to offload expensive checksumming
84  * onto the worker threads.  They checksum file and metadata bios
85  * just before they are sent down the IO stack.
86  */
87 struct async_submit_bio {
88         struct inode *inode;
89         struct bio *bio;
90         struct list_head list;
91         extent_submit_bio_hook_t *submit_bio_start;
92         extent_submit_bio_hook_t *submit_bio_done;
93         int rw;
94         int mirror_num;
95         unsigned long bio_flags;
96         /*
97          * bio_offset is optional, can be used if the pages in the bio
98          * can't tell us where in the file the bio should go
99          */
100         u64 bio_offset;
101         struct btrfs_work work;
102 };
103
104 /*
105  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
106  * eb, the lockdep key is determined by the btrfs_root it belongs to and
107  * the level the eb occupies in the tree.
108  *
109  * Different roots are used for different purposes and may nest inside each
110  * other and they require separate keysets.  As lockdep keys should be
111  * static, assign keysets according to the purpose of the root as indicated
112  * by btrfs_root->objectid.  This ensures that all special purpose roots
113  * have separate keysets.
114  *
115  * Lock-nesting across peer nodes is always done with the immediate parent
116  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
117  * subclass to avoid triggering lockdep warning in such cases.
118  *
119  * The key is set by the readpage_end_io_hook after the buffer has passed
120  * csum validation but before the pages are unlocked.  It is also set by
121  * btrfs_init_new_buffer on freshly allocated blocks.
122  *
123  * We also add a check to make sure the highest level of the tree is the
124  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
125  * needs update as well.
126  */
127 #ifdef CONFIG_DEBUG_LOCK_ALLOC
128 # if BTRFS_MAX_LEVEL != 8
129 #  error
130 # endif
131
132 static struct btrfs_lockdep_keyset {
133         u64                     id;             /* root objectid */
134         const char              *name_stem;     /* lock name stem */
135         char                    names[BTRFS_MAX_LEVEL + 1][20];
136         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
137 } btrfs_lockdep_keysets[] = {
138         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
139         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
140         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
141         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
142         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
143         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
144         { .id = BTRFS_ORPHAN_OBJECTID,          .name_stem = "orphan"   },
145         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
146         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
147         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
148         { .id = 0,                              .name_stem = "tree"     },
149 };
150
151 void __init btrfs_init_lockdep(void)
152 {
153         int i, j;
154
155         /* initialize lockdep class names */
156         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
157                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
158
159                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
160                         snprintf(ks->names[j], sizeof(ks->names[j]),
161                                  "btrfs-%s-%02d", ks->name_stem, j);
162         }
163 }
164
165 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
166                                     int level)
167 {
168         struct btrfs_lockdep_keyset *ks;
169
170         BUG_ON(level >= ARRAY_SIZE(ks->keys));
171
172         /* find the matching keyset, id 0 is the default entry */
173         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
174                 if (ks->id == objectid)
175                         break;
176
177         lockdep_set_class_and_name(&eb->lock,
178                                    &ks->keys[level], ks->names[level]);
179 }
180
181 #endif
182
183 /*
184  * extents on the btree inode are pretty simple, there's one extent
185  * that covers the entire device
186  */
187 static struct extent_map *btree_get_extent(struct inode *inode,
188                 struct page *page, size_t pg_offset, u64 start, u64 len,
189                 int create)
190 {
191         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
192         struct extent_map *em;
193         int ret;
194
195         read_lock(&em_tree->lock);
196         em = lookup_extent_mapping(em_tree, start, len);
197         if (em) {
198                 em->bdev =
199                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
200                 read_unlock(&em_tree->lock);
201                 goto out;
202         }
203         read_unlock(&em_tree->lock);
204
205         em = alloc_extent_map();
206         if (!em) {
207                 em = ERR_PTR(-ENOMEM);
208                 goto out;
209         }
210         em->start = 0;
211         em->len = (u64)-1;
212         em->block_len = (u64)-1;
213         em->block_start = 0;
214         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
215
216         write_lock(&em_tree->lock);
217         ret = add_extent_mapping(em_tree, em);
218         if (ret == -EEXIST) {
219                 u64 failed_start = em->start;
220                 u64 failed_len = em->len;
221
222                 free_extent_map(em);
223                 em = lookup_extent_mapping(em_tree, start, len);
224                 if (em) {
225                         ret = 0;
226                 } else {
227                         em = lookup_extent_mapping(em_tree, failed_start,
228                                                    failed_len);
229                         ret = -EIO;
230                 }
231         } else if (ret) {
232                 free_extent_map(em);
233                 em = NULL;
234         }
235         write_unlock(&em_tree->lock);
236
237         if (ret)
238                 em = ERR_PTR(ret);
239 out:
240         return em;
241 }
242
243 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
244 {
245         return crc32c(seed, data, len);
246 }
247
248 void btrfs_csum_final(u32 crc, char *result)
249 {
250         put_unaligned_le32(~crc, result);
251 }
252
253 /*
254  * compute the csum for a btree block, and either verify it or write it
255  * into the csum field of the block.
256  */
257 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
258                            int verify)
259 {
260         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
261         char *result = NULL;
262         unsigned long len;
263         unsigned long cur_len;
264         unsigned long offset = BTRFS_CSUM_SIZE;
265         char *kaddr;
266         unsigned long map_start;
267         unsigned long map_len;
268         int err;
269         u32 crc = ~(u32)0;
270         unsigned long inline_result;
271
272         len = buf->len - offset;
273         while (len > 0) {
274                 err = map_private_extent_buffer(buf, offset, 32,
275                                         &kaddr, &map_start, &map_len);
276                 if (err)
277                         return 1;
278                 cur_len = min(len, map_len - (offset - map_start));
279                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
280                                       crc, cur_len);
281                 len -= cur_len;
282                 offset += cur_len;
283         }
284         if (csum_size > sizeof(inline_result)) {
285                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
286                 if (!result)
287                         return 1;
288         } else {
289                 result = (char *)&inline_result;
290         }
291
292         btrfs_csum_final(crc, result);
293
294         if (verify) {
295                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
296                         u32 val;
297                         u32 found = 0;
298                         memcpy(&found, result, csum_size);
299
300                         read_extent_buffer(buf, &val, 0, csum_size);
301                         printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
302                                        "failed on %llu wanted %X found %X "
303                                        "level %d\n",
304                                        root->fs_info->sb->s_id,
305                                        (unsigned long long)buf->start, val, found,
306                                        btrfs_header_level(buf));
307                         if (result != (char *)&inline_result)
308                                 kfree(result);
309                         return 1;
310                 }
311         } else {
312                 write_extent_buffer(buf, result, 0, csum_size);
313         }
314         if (result != (char *)&inline_result)
315                 kfree(result);
316         return 0;
317 }
318
319 /*
320  * we can't consider a given block up to date unless the transid of the
321  * block matches the transid in the parent node's pointer.  This is how we
322  * detect blocks that either didn't get written at all or got written
323  * in the wrong place.
324  */
325 static int verify_parent_transid(struct extent_io_tree *io_tree,
326                                  struct extent_buffer *eb, u64 parent_transid)
327 {
328         struct extent_state *cached_state = NULL;
329         int ret;
330
331         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
332                 return 0;
333
334         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
335                          0, &cached_state, GFP_NOFS);
336         if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
337             btrfs_header_generation(eb) == parent_transid) {
338                 ret = 0;
339                 goto out;
340         }
341         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
342                        "found %llu\n",
343                        (unsigned long long)eb->start,
344                        (unsigned long long)parent_transid,
345                        (unsigned long long)btrfs_header_generation(eb));
346         ret = 1;
347         clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
348 out:
349         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
350                              &cached_state, GFP_NOFS);
351         return ret;
352 }
353
354 /*
355  * helper to read a given tree block, doing retries as required when
356  * the checksums don't match and we have alternate mirrors to try.
357  */
358 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
359                                           struct extent_buffer *eb,
360                                           u64 start, u64 parent_transid)
361 {
362         struct extent_io_tree *io_tree;
363         int ret;
364         int num_copies = 0;
365         int mirror_num = 0;
366
367         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
368         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
369         while (1) {
370                 ret = read_extent_buffer_pages(io_tree, eb, start,
371                                                WAIT_COMPLETE,
372                                                btree_get_extent, mirror_num);
373                 if (!ret &&
374                     !verify_parent_transid(io_tree, eb, parent_transid))
375                         return ret;
376
377                 /*
378                  * This buffer's crc is fine, but its contents are corrupted, so
379                  * there is no reason to read the other copies, they won't be
380                  * any less wrong.
381                  */
382                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
383                         return ret;
384
385                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
386                                               eb->start, eb->len);
387                 if (num_copies == 1)
388                         return ret;
389
390                 mirror_num++;
391                 if (mirror_num > num_copies)
392                         return ret;
393         }
394         return -EIO;
395 }
396
397 /*
398  * checksum a dirty tree block before IO.  This has extra checks to make sure
399  * we only fill in the checksum field in the first page of a multi-page block
400  */
401
402 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
403 {
404         struct extent_io_tree *tree;
405         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
406         u64 found_start;
407         unsigned long len;
408         struct extent_buffer *eb;
409         int ret;
410
411         tree = &BTRFS_I(page->mapping->host)->io_tree;
412
413         if (page->private == EXTENT_PAGE_PRIVATE) {
414                 WARN_ON(1);
415                 goto out;
416         }
417         if (!page->private) {
418                 WARN_ON(1);
419                 goto out;
420         }
421         len = page->private >> 2;
422         WARN_ON(len == 0);
423
424         eb = alloc_extent_buffer(tree, start, len, page);
425         if (eb == NULL) {
426                 WARN_ON(1);
427                 goto out;
428         }
429         ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
430                                              btrfs_header_generation(eb));
431         BUG_ON(ret);
432         WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
433
434         found_start = btrfs_header_bytenr(eb);
435         if (found_start != start) {
436                 WARN_ON(1);
437                 goto err;
438         }
439         if (eb->first_page != page) {
440                 WARN_ON(1);
441                 goto err;
442         }
443         if (!PageUptodate(page)) {
444                 WARN_ON(1);
445                 goto err;
446         }
447         csum_tree_block(root, eb, 0);
448 err:
449         free_extent_buffer(eb);
450 out:
451         return 0;
452 }
453
454 static int check_tree_block_fsid(struct btrfs_root *root,
455                                  struct extent_buffer *eb)
456 {
457         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
458         u8 fsid[BTRFS_UUID_SIZE];
459         int ret = 1;
460
461         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
462                            BTRFS_FSID_SIZE);
463         while (fs_devices) {
464                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
465                         ret = 0;
466                         break;
467                 }
468                 fs_devices = fs_devices->seed;
469         }
470         return ret;
471 }
472
473 #define CORRUPT(reason, eb, root, slot)                         \
474         printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
475                "root=%llu, slot=%d\n", reason,                  \
476                (unsigned long long)btrfs_header_bytenr(eb),     \
477                (unsigned long long)root->objectid, slot)
478
479 static noinline int check_leaf(struct btrfs_root *root,
480                                struct extent_buffer *leaf)
481 {
482         struct btrfs_key key;
483         struct btrfs_key leaf_key;
484         u32 nritems = btrfs_header_nritems(leaf);
485         int slot;
486
487         if (nritems == 0)
488                 return 0;
489
490         /* Check the 0 item */
491         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
492             BTRFS_LEAF_DATA_SIZE(root)) {
493                 CORRUPT("invalid item offset size pair", leaf, root, 0);
494                 return -EIO;
495         }
496
497         /*
498          * Check to make sure each items keys are in the correct order and their
499          * offsets make sense.  We only have to loop through nritems-1 because
500          * we check the current slot against the next slot, which verifies the
501          * next slot's offset+size makes sense and that the current's slot
502          * offset is correct.
503          */
504         for (slot = 0; slot < nritems - 1; slot++) {
505                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
506                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
507
508                 /* Make sure the keys are in the right order */
509                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
510                         CORRUPT("bad key order", leaf, root, slot);
511                         return -EIO;
512                 }
513
514                 /*
515                  * Make sure the offset and ends are right, remember that the
516                  * item data starts at the end of the leaf and grows towards the
517                  * front.
518                  */
519                 if (btrfs_item_offset_nr(leaf, slot) !=
520                         btrfs_item_end_nr(leaf, slot + 1)) {
521                         CORRUPT("slot offset bad", leaf, root, slot);
522                         return -EIO;
523                 }
524
525                 /*
526                  * Check to make sure that we don't point outside of the leaf,
527                  * just incase all the items are consistent to eachother, but
528                  * all point outside of the leaf.
529                  */
530                 if (btrfs_item_end_nr(leaf, slot) >
531                     BTRFS_LEAF_DATA_SIZE(root)) {
532                         CORRUPT("slot end outside of leaf", leaf, root, slot);
533                         return -EIO;
534                 }
535         }
536
537         return 0;
538 }
539
540 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
541                                struct extent_state *state)
542 {
543         struct extent_io_tree *tree;
544         u64 found_start;
545         int found_level;
546         unsigned long len;
547         struct extent_buffer *eb;
548         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
549         int ret = 0;
550
551         tree = &BTRFS_I(page->mapping->host)->io_tree;
552         if (page->private == EXTENT_PAGE_PRIVATE)
553                 goto out;
554         if (!page->private)
555                 goto out;
556
557         len = page->private >> 2;
558         WARN_ON(len == 0);
559
560         eb = alloc_extent_buffer(tree, start, len, page);
561         if (eb == NULL) {
562                 ret = -EIO;
563                 goto out;
564         }
565
566         found_start = btrfs_header_bytenr(eb);
567         if (found_start != start) {
568                 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
569                                "%llu %llu\n",
570                                (unsigned long long)found_start,
571                                (unsigned long long)eb->start);
572                 ret = -EIO;
573                 goto err;
574         }
575         if (eb->first_page != page) {
576                 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
577                        eb->first_page->index, page->index);
578                 WARN_ON(1);
579                 ret = -EIO;
580                 goto err;
581         }
582         if (check_tree_block_fsid(root, eb)) {
583                 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
584                                (unsigned long long)eb->start);
585                 ret = -EIO;
586                 goto err;
587         }
588         found_level = btrfs_header_level(eb);
589
590         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
591                                        eb, found_level);
592
593         ret = csum_tree_block(root, eb, 1);
594         if (ret) {
595                 ret = -EIO;
596                 goto err;
597         }
598
599         /*
600          * If this is a leaf block and it is corrupt, set the corrupt bit so
601          * that we don't try and read the other copies of this block, just
602          * return -EIO.
603          */
604         if (found_level == 0 && check_leaf(root, eb)) {
605                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
606                 ret = -EIO;
607         }
608
609         end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
610         end = eb->start + end - 1;
611 err:
612         if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
613                 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
614                 btree_readahead_hook(root, eb, eb->start, ret);
615         }
616
617         free_extent_buffer(eb);
618 out:
619         return ret;
620 }
621
622 static int btree_io_failed_hook(struct bio *failed_bio,
623                          struct page *page, u64 start, u64 end,
624                          int mirror_num, struct extent_state *state)
625 {
626         struct extent_io_tree *tree;
627         unsigned long len;
628         struct extent_buffer *eb;
629         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
630
631         tree = &BTRFS_I(page->mapping->host)->io_tree;
632         if (page->private == EXTENT_PAGE_PRIVATE)
633                 goto out;
634         if (!page->private)
635                 goto out;
636
637         len = page->private >> 2;
638         WARN_ON(len == 0);
639
640         eb = alloc_extent_buffer(tree, start, len, page);
641         if (eb == NULL)
642                 goto out;
643
644         if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
645                 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
646                 btree_readahead_hook(root, eb, eb->start, -EIO);
647         }
648         free_extent_buffer(eb);
649
650 out:
651         return -EIO;    /* we fixed nothing */
652 }
653
654 static void end_workqueue_bio(struct bio *bio, int err)
655 {
656         struct end_io_wq *end_io_wq = bio->bi_private;
657         struct btrfs_fs_info *fs_info;
658
659         fs_info = end_io_wq->info;
660         end_io_wq->error = err;
661         end_io_wq->work.func = end_workqueue_fn;
662         end_io_wq->work.flags = 0;
663
664         if (bio->bi_rw & REQ_WRITE) {
665                 if (end_io_wq->metadata == 1)
666                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
667                                            &end_io_wq->work);
668                 else if (end_io_wq->metadata == 2)
669                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
670                                            &end_io_wq->work);
671                 else
672                         btrfs_queue_worker(&fs_info->endio_write_workers,
673                                            &end_io_wq->work);
674         } else {
675                 if (end_io_wq->metadata)
676                         btrfs_queue_worker(&fs_info->endio_meta_workers,
677                                            &end_io_wq->work);
678                 else
679                         btrfs_queue_worker(&fs_info->endio_workers,
680                                            &end_io_wq->work);
681         }
682 }
683
684 /*
685  * For the metadata arg you want
686  *
687  * 0 - if data
688  * 1 - if normal metadta
689  * 2 - if writing to the free space cache area
690  */
691 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
692                         int metadata)
693 {
694         struct end_io_wq *end_io_wq;
695         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
696         if (!end_io_wq)
697                 return -ENOMEM;
698
699         end_io_wq->private = bio->bi_private;
700         end_io_wq->end_io = bio->bi_end_io;
701         end_io_wq->info = info;
702         end_io_wq->error = 0;
703         end_io_wq->bio = bio;
704         end_io_wq->metadata = metadata;
705
706         bio->bi_private = end_io_wq;
707         bio->bi_end_io = end_workqueue_bio;
708         return 0;
709 }
710
711 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
712 {
713         unsigned long limit = min_t(unsigned long,
714                                     info->workers.max_workers,
715                                     info->fs_devices->open_devices);
716         return 256 * limit;
717 }
718
719 static void run_one_async_start(struct btrfs_work *work)
720 {
721         struct async_submit_bio *async;
722
723         async = container_of(work, struct  async_submit_bio, work);
724         async->submit_bio_start(async->inode, async->rw, async->bio,
725                                async->mirror_num, async->bio_flags,
726                                async->bio_offset);
727 }
728
729 static void run_one_async_done(struct btrfs_work *work)
730 {
731         struct btrfs_fs_info *fs_info;
732         struct async_submit_bio *async;
733         int limit;
734
735         async = container_of(work, struct  async_submit_bio, work);
736         fs_info = BTRFS_I(async->inode)->root->fs_info;
737
738         limit = btrfs_async_submit_limit(fs_info);
739         limit = limit * 2 / 3;
740
741         atomic_dec(&fs_info->nr_async_submits);
742
743         if (atomic_read(&fs_info->nr_async_submits) < limit &&
744             waitqueue_active(&fs_info->async_submit_wait))
745                 wake_up(&fs_info->async_submit_wait);
746
747         async->submit_bio_done(async->inode, async->rw, async->bio,
748                                async->mirror_num, async->bio_flags,
749                                async->bio_offset);
750 }
751
752 static void run_one_async_free(struct btrfs_work *work)
753 {
754         struct async_submit_bio *async;
755
756         async = container_of(work, struct  async_submit_bio, work);
757         kfree(async);
758 }
759
760 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
761                         int rw, struct bio *bio, int mirror_num,
762                         unsigned long bio_flags,
763                         u64 bio_offset,
764                         extent_submit_bio_hook_t *submit_bio_start,
765                         extent_submit_bio_hook_t *submit_bio_done)
766 {
767         struct async_submit_bio *async;
768
769         async = kmalloc(sizeof(*async), GFP_NOFS);
770         if (!async)
771                 return -ENOMEM;
772
773         async->inode = inode;
774         async->rw = rw;
775         async->bio = bio;
776         async->mirror_num = mirror_num;
777         async->submit_bio_start = submit_bio_start;
778         async->submit_bio_done = submit_bio_done;
779
780         async->work.func = run_one_async_start;
781         async->work.ordered_func = run_one_async_done;
782         async->work.ordered_free = run_one_async_free;
783
784         async->work.flags = 0;
785         async->bio_flags = bio_flags;
786         async->bio_offset = bio_offset;
787
788         atomic_inc(&fs_info->nr_async_submits);
789
790         if (rw & REQ_SYNC)
791                 btrfs_set_work_high_prio(&async->work);
792
793         btrfs_queue_worker(&fs_info->workers, &async->work);
794
795         while (atomic_read(&fs_info->async_submit_draining) &&
796               atomic_read(&fs_info->nr_async_submits)) {
797                 wait_event(fs_info->async_submit_wait,
798                            (atomic_read(&fs_info->nr_async_submits) == 0));
799         }
800
801         return 0;
802 }
803
804 static int btree_csum_one_bio(struct bio *bio)
805 {
806         struct bio_vec *bvec = bio->bi_io_vec;
807         int bio_index = 0;
808         struct btrfs_root *root;
809
810         WARN_ON(bio->bi_vcnt <= 0);
811         while (bio_index < bio->bi_vcnt) {
812                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
813                 csum_dirty_buffer(root, bvec->bv_page);
814                 bio_index++;
815                 bvec++;
816         }
817         return 0;
818 }
819
820 static int __btree_submit_bio_start(struct inode *inode, int rw,
821                                     struct bio *bio, int mirror_num,
822                                     unsigned long bio_flags,
823                                     u64 bio_offset)
824 {
825         /*
826          * when we're called for a write, we're already in the async
827          * submission context.  Just jump into btrfs_map_bio
828          */
829         btree_csum_one_bio(bio);
830         return 0;
831 }
832
833 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
834                                  int mirror_num, unsigned long bio_flags,
835                                  u64 bio_offset)
836 {
837         /*
838          * when we're called for a write, we're already in the async
839          * submission context.  Just jump into btrfs_map_bio
840          */
841         return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
842 }
843
844 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
845                                  int mirror_num, unsigned long bio_flags,
846                                  u64 bio_offset)
847 {
848         int ret;
849
850         ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
851                                           bio, 1);
852         BUG_ON(ret);
853
854         if (!(rw & REQ_WRITE)) {
855                 /*
856                  * called for a read, do the setup so that checksum validation
857                  * can happen in the async kernel threads
858                  */
859                 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
860                                      mirror_num, 0);
861         }
862
863         /*
864          * kthread helpers are used to submit writes so that checksumming
865          * can happen in parallel across all CPUs
866          */
867         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
868                                    inode, rw, bio, mirror_num, 0,
869                                    bio_offset,
870                                    __btree_submit_bio_start,
871                                    __btree_submit_bio_done);
872 }
873
874 #ifdef CONFIG_MIGRATION
875 static int btree_migratepage(struct address_space *mapping,
876                         struct page *newpage, struct page *page,
877                         enum migrate_mode mode)
878 {
879         /*
880          * we can't safely write a btree page from here,
881          * we haven't done the locking hook
882          */
883         if (PageDirty(page))
884                 return -EAGAIN;
885         /*
886          * Buffers may be managed in a filesystem specific way.
887          * We must have no buffers or drop them.
888          */
889         if (page_has_private(page) &&
890             !try_to_release_page(page, GFP_KERNEL))
891                 return -EAGAIN;
892         return migrate_page(mapping, newpage, page, mode);
893 }
894 #endif
895
896 static int btree_writepage(struct page *page, struct writeback_control *wbc)
897 {
898         struct extent_io_tree *tree;
899         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
900         struct extent_buffer *eb;
901         int was_dirty;
902
903         tree = &BTRFS_I(page->mapping->host)->io_tree;
904         if (!(current->flags & PF_MEMALLOC)) {
905                 return extent_write_full_page(tree, page,
906                                               btree_get_extent, wbc);
907         }
908
909         redirty_page_for_writepage(wbc, page);
910         eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
911         WARN_ON(!eb);
912
913         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
914         if (!was_dirty) {
915                 spin_lock(&root->fs_info->delalloc_lock);
916                 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
917                 spin_unlock(&root->fs_info->delalloc_lock);
918         }
919         free_extent_buffer(eb);
920
921         unlock_page(page);
922         return 0;
923 }
924
925 static int btree_writepages(struct address_space *mapping,
926                             struct writeback_control *wbc)
927 {
928         struct extent_io_tree *tree;
929         tree = &BTRFS_I(mapping->host)->io_tree;
930         if (wbc->sync_mode == WB_SYNC_NONE) {
931                 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
932                 u64 num_dirty;
933                 unsigned long thresh = 32 * 1024 * 1024;
934
935                 if (wbc->for_kupdate)
936                         return 0;
937
938                 /* this is a bit racy, but that's ok */
939                 num_dirty = root->fs_info->dirty_metadata_bytes;
940                 if (num_dirty < thresh)
941                         return 0;
942         }
943         return extent_writepages(tree, mapping, btree_get_extent, wbc);
944 }
945
946 static int btree_readpage(struct file *file, struct page *page)
947 {
948         struct extent_io_tree *tree;
949         tree = &BTRFS_I(page->mapping->host)->io_tree;
950         return extent_read_full_page(tree, page, btree_get_extent, 0);
951 }
952
953 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
954 {
955         struct extent_io_tree *tree;
956         struct extent_map_tree *map;
957         int ret;
958
959         if (PageWriteback(page) || PageDirty(page))
960                 return 0;
961
962         tree = &BTRFS_I(page->mapping->host)->io_tree;
963         map = &BTRFS_I(page->mapping->host)->extent_tree;
964
965         /*
966          * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
967          * slab allocation from alloc_extent_state down the callchain where
968          * it'd hit a BUG_ON as those flags are not allowed.
969          */
970         gfp_flags &= ~GFP_SLAB_BUG_MASK;
971
972         ret = try_release_extent_state(map, tree, page, gfp_flags);
973         if (!ret)
974                 return 0;
975
976         ret = try_release_extent_buffer(tree, page);
977         if (ret == 1) {
978                 ClearPagePrivate(page);
979                 set_page_private(page, 0);
980                 page_cache_release(page);
981         }
982
983         return ret;
984 }
985
986 static void btree_invalidatepage(struct page *page, unsigned long offset)
987 {
988         struct extent_io_tree *tree;
989         tree = &BTRFS_I(page->mapping->host)->io_tree;
990         extent_invalidatepage(tree, page, offset);
991         btree_releasepage(page, GFP_NOFS);
992         if (PagePrivate(page)) {
993                 printk(KERN_WARNING "btrfs warning page private not zero "
994                        "on page %llu\n", (unsigned long long)page_offset(page));
995                 ClearPagePrivate(page);
996                 set_page_private(page, 0);
997                 page_cache_release(page);
998         }
999 }
1000
1001 static const struct address_space_operations btree_aops = {
1002         .readpage       = btree_readpage,
1003         .writepage      = btree_writepage,
1004         .writepages     = btree_writepages,
1005         .releasepage    = btree_releasepage,
1006         .invalidatepage = btree_invalidatepage,
1007 #ifdef CONFIG_MIGRATION
1008         .migratepage    = btree_migratepage,
1009 #endif
1010 };
1011
1012 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1013                          u64 parent_transid)
1014 {
1015         struct extent_buffer *buf = NULL;
1016         struct inode *btree_inode = root->fs_info->btree_inode;
1017         int ret = 0;
1018
1019         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1020         if (!buf)
1021                 return 0;
1022         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1023                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1024         free_extent_buffer(buf);
1025         return ret;
1026 }
1027
1028 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1029                          int mirror_num, struct extent_buffer **eb)
1030 {
1031         struct extent_buffer *buf = NULL;
1032         struct inode *btree_inode = root->fs_info->btree_inode;
1033         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1034         int ret;
1035
1036         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1037         if (!buf)
1038                 return 0;
1039
1040         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1041
1042         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1043                                        btree_get_extent, mirror_num);
1044         if (ret) {
1045                 free_extent_buffer(buf);
1046                 return ret;
1047         }
1048
1049         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1050                 free_extent_buffer(buf);
1051                 return -EIO;
1052         } else if (extent_buffer_uptodate(io_tree, buf, NULL)) {
1053                 *eb = buf;
1054         } else {
1055                 free_extent_buffer(buf);
1056         }
1057         return 0;
1058 }
1059
1060 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1061                                             u64 bytenr, u32 blocksize)
1062 {
1063         struct inode *btree_inode = root->fs_info->btree_inode;
1064         struct extent_buffer *eb;
1065         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1066                                 bytenr, blocksize);
1067         return eb;
1068 }
1069
1070 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1071                                                  u64 bytenr, u32 blocksize)
1072 {
1073         struct inode *btree_inode = root->fs_info->btree_inode;
1074         struct extent_buffer *eb;
1075
1076         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1077                                  bytenr, blocksize, NULL);
1078         return eb;
1079 }
1080
1081
1082 int btrfs_write_tree_block(struct extent_buffer *buf)
1083 {
1084         return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
1085                                         buf->start + buf->len - 1);
1086 }
1087
1088 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1089 {
1090         return filemap_fdatawait_range(buf->first_page->mapping,
1091                                        buf->start, buf->start + buf->len - 1);
1092 }
1093
1094 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1095                                       u32 blocksize, u64 parent_transid)
1096 {
1097         struct extent_buffer *buf = NULL;
1098         int ret;
1099
1100         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1101         if (!buf)
1102                 return NULL;
1103
1104         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1105
1106         if (ret == 0)
1107                 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
1108         return buf;
1109
1110 }
1111
1112 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1113                       struct extent_buffer *buf)
1114 {
1115         struct inode *btree_inode = root->fs_info->btree_inode;
1116         if (btrfs_header_generation(buf) ==
1117             root->fs_info->running_transaction->transid) {
1118                 btrfs_assert_tree_locked(buf);
1119
1120                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1121                         spin_lock(&root->fs_info->delalloc_lock);
1122                         if (root->fs_info->dirty_metadata_bytes >= buf->len)
1123                                 root->fs_info->dirty_metadata_bytes -= buf->len;
1124                         else {
1125                                 spin_unlock(&root->fs_info->delalloc_lock);
1126                                 btrfs_panic(root->fs_info, -EOVERFLOW,
1127                                           "Can't clear %lu bytes from "
1128                                           " dirty_mdatadata_bytes (%lu)",
1129                                           buf->len,
1130                                           root->fs_info->dirty_metadata_bytes);
1131                         }
1132                         spin_unlock(&root->fs_info->delalloc_lock);
1133                 }
1134
1135                 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1136                 btrfs_set_lock_blocking(buf);
1137                 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
1138                                           buf);
1139         }
1140 }
1141
1142 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1143                         u32 stripesize, struct btrfs_root *root,
1144                         struct btrfs_fs_info *fs_info,
1145                         u64 objectid)
1146 {
1147         root->node = NULL;
1148         root->commit_root = NULL;
1149         root->sectorsize = sectorsize;
1150         root->nodesize = nodesize;
1151         root->leafsize = leafsize;
1152         root->stripesize = stripesize;
1153         root->ref_cows = 0;
1154         root->track_dirty = 0;
1155         root->in_radix = 0;
1156         root->orphan_item_inserted = 0;
1157         root->orphan_cleanup_state = 0;
1158
1159         root->objectid = objectid;
1160         root->last_trans = 0;
1161         root->highest_objectid = 0;
1162         root->name = NULL;
1163         root->inode_tree = RB_ROOT;
1164         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1165         root->block_rsv = NULL;
1166         root->orphan_block_rsv = NULL;
1167
1168         INIT_LIST_HEAD(&root->dirty_list);
1169         INIT_LIST_HEAD(&root->orphan_list);
1170         INIT_LIST_HEAD(&root->root_list);
1171         spin_lock_init(&root->orphan_lock);
1172         spin_lock_init(&root->inode_lock);
1173         spin_lock_init(&root->accounting_lock);
1174         mutex_init(&root->objectid_mutex);
1175         mutex_init(&root->log_mutex);
1176         init_waitqueue_head(&root->log_writer_wait);
1177         init_waitqueue_head(&root->log_commit_wait[0]);
1178         init_waitqueue_head(&root->log_commit_wait[1]);
1179         atomic_set(&root->log_commit[0], 0);
1180         atomic_set(&root->log_commit[1], 0);
1181         atomic_set(&root->log_writers, 0);
1182         root->log_batch = 0;
1183         root->log_transid = 0;
1184         root->last_log_commit = 0;
1185         extent_io_tree_init(&root->dirty_log_pages,
1186                              fs_info->btree_inode->i_mapping);
1187
1188         memset(&root->root_key, 0, sizeof(root->root_key));
1189         memset(&root->root_item, 0, sizeof(root->root_item));
1190         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1191         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1192         root->defrag_trans_start = fs_info->generation;
1193         init_completion(&root->kobj_unregister);
1194         root->defrag_running = 0;
1195         root->root_key.objectid = objectid;
1196         root->anon_dev = 0;
1197         return 0;
1198 }
1199
1200 static int find_and_setup_root(struct btrfs_root *tree_root,
1201                                struct btrfs_fs_info *fs_info,
1202                                u64 objectid,
1203                                struct btrfs_root *root)
1204 {
1205         int ret;
1206         u32 blocksize;
1207         u64 generation;
1208
1209         __setup_root(tree_root->nodesize, tree_root->leafsize,
1210                      tree_root->sectorsize, tree_root->stripesize,
1211                      root, fs_info, objectid);
1212         ret = btrfs_find_last_root(tree_root, objectid,
1213                                    &root->root_item, &root->root_key);
1214         if (ret > 0)
1215                 return -ENOENT;
1216         BUG_ON(ret);
1217
1218         generation = btrfs_root_generation(&root->root_item);
1219         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1220         root->commit_root = NULL;
1221         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1222                                      blocksize, generation);
1223         if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1224                 free_extent_buffer(root->node);
1225                 root->node = NULL;
1226                 return -EIO;
1227         }
1228         root->commit_root = btrfs_root_node(root);
1229         return 0;
1230 }
1231
1232 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1233 {
1234         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1235         if (root)
1236                 root->fs_info = fs_info;
1237         return root;
1238 }
1239
1240 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1241                                          struct btrfs_fs_info *fs_info)
1242 {
1243         struct btrfs_root *root;
1244         struct btrfs_root *tree_root = fs_info->tree_root;
1245         struct extent_buffer *leaf;
1246
1247         root = btrfs_alloc_root(fs_info);
1248         if (!root)
1249                 return ERR_PTR(-ENOMEM);
1250
1251         __setup_root(tree_root->nodesize, tree_root->leafsize,
1252                      tree_root->sectorsize, tree_root->stripesize,
1253                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1254
1255         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1256         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1257         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1258         /*
1259          * log trees do not get reference counted because they go away
1260          * before a real commit is actually done.  They do store pointers
1261          * to file data extents, and those reference counts still get
1262          * updated (along with back refs to the log tree).
1263          */
1264         root->ref_cows = 0;
1265
1266         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1267                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1268                                       0, 0, 0, 0);
1269         if (IS_ERR(leaf)) {
1270                 kfree(root);
1271                 return ERR_CAST(leaf);
1272         }
1273
1274         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1275         btrfs_set_header_bytenr(leaf, leaf->start);
1276         btrfs_set_header_generation(leaf, trans->transid);
1277         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1278         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1279         root->node = leaf;
1280
1281         write_extent_buffer(root->node, root->fs_info->fsid,
1282                             (unsigned long)btrfs_header_fsid(root->node),
1283                             BTRFS_FSID_SIZE);
1284         btrfs_mark_buffer_dirty(root->node);
1285         btrfs_tree_unlock(root->node);
1286         return root;
1287 }
1288
1289 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1290                              struct btrfs_fs_info *fs_info)
1291 {
1292         struct btrfs_root *log_root;
1293
1294         log_root = alloc_log_tree(trans, fs_info);
1295         if (IS_ERR(log_root))
1296                 return PTR_ERR(log_root);
1297         WARN_ON(fs_info->log_root_tree);
1298         fs_info->log_root_tree = log_root;
1299         return 0;
1300 }
1301
1302 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1303                        struct btrfs_root *root)
1304 {
1305         struct btrfs_root *log_root;
1306         struct btrfs_inode_item *inode_item;
1307
1308         log_root = alloc_log_tree(trans, root->fs_info);
1309         if (IS_ERR(log_root))
1310                 return PTR_ERR(log_root);
1311
1312         log_root->last_trans = trans->transid;
1313         log_root->root_key.offset = root->root_key.objectid;
1314
1315         inode_item = &log_root->root_item.inode;
1316         inode_item->generation = cpu_to_le64(1);
1317         inode_item->size = cpu_to_le64(3);
1318         inode_item->nlink = cpu_to_le32(1);
1319         inode_item->nbytes = cpu_to_le64(root->leafsize);
1320         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1321
1322         btrfs_set_root_node(&log_root->root_item, log_root->node);
1323
1324         WARN_ON(root->log_root);
1325         root->log_root = log_root;
1326         root->log_transid = 0;
1327         root->last_log_commit = 0;
1328         return 0;
1329 }
1330
1331 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1332                                                struct btrfs_key *location)
1333 {
1334         struct btrfs_root *root;
1335         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1336         struct btrfs_path *path;
1337         struct extent_buffer *l;
1338         u64 generation;
1339         u32 blocksize;
1340         int ret = 0;
1341
1342         root = btrfs_alloc_root(fs_info);
1343         if (!root)
1344                 return ERR_PTR(-ENOMEM);
1345         if (location->offset == (u64)-1) {
1346                 ret = find_and_setup_root(tree_root, fs_info,
1347                                           location->objectid, root);
1348                 if (ret) {
1349                         kfree(root);
1350                         return ERR_PTR(ret);
1351                 }
1352                 goto out;
1353         }
1354
1355         __setup_root(tree_root->nodesize, tree_root->leafsize,
1356                      tree_root->sectorsize, tree_root->stripesize,
1357                      root, fs_info, location->objectid);
1358
1359         path = btrfs_alloc_path();
1360         if (!path) {
1361                 kfree(root);
1362                 return ERR_PTR(-ENOMEM);
1363         }
1364         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1365         if (ret == 0) {
1366                 l = path->nodes[0];
1367                 read_extent_buffer(l, &root->root_item,
1368                                 btrfs_item_ptr_offset(l, path->slots[0]),
1369                                 sizeof(root->root_item));
1370                 memcpy(&root->root_key, location, sizeof(*location));
1371         }
1372         btrfs_free_path(path);
1373         if (ret) {
1374                 kfree(root);
1375                 if (ret > 0)
1376                         ret = -ENOENT;
1377                 return ERR_PTR(ret);
1378         }
1379
1380         generation = btrfs_root_generation(&root->root_item);
1381         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1382         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1383                                      blocksize, generation);
1384         root->commit_root = btrfs_root_node(root);
1385         BUG_ON(!root->node);
1386 out:
1387         if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1388                 root->ref_cows = 1;
1389                 btrfs_check_and_init_root_item(&root->root_item);
1390         }
1391
1392         return root;
1393 }
1394
1395 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1396                                               struct btrfs_key *location)
1397 {
1398         struct btrfs_root *root;
1399         int ret;
1400
1401         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1402                 return fs_info->tree_root;
1403         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1404                 return fs_info->extent_root;
1405         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1406                 return fs_info->chunk_root;
1407         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1408                 return fs_info->dev_root;
1409         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1410                 return fs_info->csum_root;
1411 again:
1412         spin_lock(&fs_info->fs_roots_radix_lock);
1413         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1414                                  (unsigned long)location->objectid);
1415         spin_unlock(&fs_info->fs_roots_radix_lock);
1416         if (root)
1417                 return root;
1418
1419         root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1420         if (IS_ERR(root))
1421                 return root;
1422
1423         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1424         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1425                                         GFP_NOFS);
1426         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1427                 ret = -ENOMEM;
1428                 goto fail;
1429         }
1430
1431         btrfs_init_free_ino_ctl(root);
1432         mutex_init(&root->fs_commit_mutex);
1433         spin_lock_init(&root->cache_lock);
1434         init_waitqueue_head(&root->cache_wait);
1435
1436         ret = get_anon_bdev(&root->anon_dev);
1437         if (ret)
1438                 goto fail;
1439
1440         if (btrfs_root_refs(&root->root_item) == 0) {
1441                 ret = -ENOENT;
1442                 goto fail;
1443         }
1444
1445         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1446         if (ret < 0)
1447                 goto fail;
1448         if (ret == 0)
1449                 root->orphan_item_inserted = 1;
1450
1451         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1452         if (ret)
1453                 goto fail;
1454
1455         spin_lock(&fs_info->fs_roots_radix_lock);
1456         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1457                                 (unsigned long)root->root_key.objectid,
1458                                 root);
1459         if (ret == 0)
1460                 root->in_radix = 1;
1461
1462         spin_unlock(&fs_info->fs_roots_radix_lock);
1463         radix_tree_preload_end();
1464         if (ret) {
1465                 if (ret == -EEXIST) {
1466                         free_fs_root(root);
1467                         goto again;
1468                 }
1469                 goto fail;
1470         }
1471
1472         ret = btrfs_find_dead_roots(fs_info->tree_root,
1473                                     root->root_key.objectid);
1474         WARN_ON(ret);
1475         return root;
1476 fail:
1477         free_fs_root(root);
1478         return ERR_PTR(ret);
1479 }
1480
1481 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1482 {
1483         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1484         int ret = 0;
1485         struct btrfs_device *device;
1486         struct backing_dev_info *bdi;
1487
1488         rcu_read_lock();
1489         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1490                 if (!device->bdev)
1491                         continue;
1492                 bdi = blk_get_backing_dev_info(device->bdev);
1493                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1494                         ret = 1;
1495                         break;
1496                 }
1497         }
1498         rcu_read_unlock();
1499         return ret;
1500 }
1501
1502 /*
1503  * If this fails, caller must call bdi_destroy() to get rid of the
1504  * bdi again.
1505  */
1506 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1507 {
1508         int err;
1509
1510         bdi->capabilities = BDI_CAP_MAP_COPY;
1511         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1512         if (err)
1513                 return err;
1514
1515         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1516         bdi->congested_fn       = btrfs_congested_fn;
1517         bdi->congested_data     = info;
1518         return 0;
1519 }
1520
1521 static int bio_ready_for_csum(struct bio *bio)
1522 {
1523         u64 length = 0;
1524         u64 buf_len = 0;
1525         u64 start = 0;
1526         struct page *page;
1527         struct extent_io_tree *io_tree = NULL;
1528         struct bio_vec *bvec;
1529         int i;
1530         int ret;
1531
1532         bio_for_each_segment(bvec, bio, i) {
1533                 page = bvec->bv_page;
1534                 if (page->private == EXTENT_PAGE_PRIVATE) {
1535                         length += bvec->bv_len;
1536                         continue;
1537                 }
1538                 if (!page->private) {
1539                         length += bvec->bv_len;
1540                         continue;
1541                 }
1542                 length = bvec->bv_len;
1543                 buf_len = page->private >> 2;
1544                 start = page_offset(page) + bvec->bv_offset;
1545                 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1546         }
1547         /* are we fully contained in this bio? */
1548         if (buf_len <= length)
1549                 return 1;
1550
1551         ret = extent_range_uptodate(io_tree, start + length,
1552                                     start + buf_len - 1);
1553         return ret;
1554 }
1555
1556 /*
1557  * called by the kthread helper functions to finally call the bio end_io
1558  * functions.  This is where read checksum verification actually happens
1559  */
1560 static void end_workqueue_fn(struct btrfs_work *work)
1561 {
1562         struct bio *bio;
1563         struct end_io_wq *end_io_wq;
1564         struct btrfs_fs_info *fs_info;
1565         int error;
1566
1567         end_io_wq = container_of(work, struct end_io_wq, work);
1568         bio = end_io_wq->bio;
1569         fs_info = end_io_wq->info;
1570
1571         /* metadata bio reads are special because the whole tree block must
1572          * be checksummed at once.  This makes sure the entire block is in
1573          * ram and up to date before trying to verify things.  For
1574          * blocksize <= pagesize, it is basically a noop
1575          */
1576         if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
1577             !bio_ready_for_csum(bio)) {
1578                 btrfs_queue_worker(&fs_info->endio_meta_workers,
1579                                    &end_io_wq->work);
1580                 return;
1581         }
1582         error = end_io_wq->error;
1583         bio->bi_private = end_io_wq->private;
1584         bio->bi_end_io = end_io_wq->end_io;
1585         kfree(end_io_wq);
1586         bio_endio(bio, error);
1587 }
1588
1589 static int cleaner_kthread(void *arg)
1590 {
1591         struct btrfs_root *root = arg;
1592
1593         do {
1594                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1595
1596                 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1597                     mutex_trylock(&root->fs_info->cleaner_mutex)) {
1598                         btrfs_run_delayed_iputs(root);
1599                         btrfs_clean_old_snapshots(root);
1600                         mutex_unlock(&root->fs_info->cleaner_mutex);
1601                         btrfs_run_defrag_inodes(root->fs_info);
1602                 }
1603
1604                 if (!try_to_freeze()) {
1605                         set_current_state(TASK_INTERRUPTIBLE);
1606                         if (!kthread_should_stop())
1607                                 schedule();
1608                         __set_current_state(TASK_RUNNING);
1609                 }
1610         } while (!kthread_should_stop());
1611         return 0;
1612 }
1613
1614 static int transaction_kthread(void *arg)
1615 {
1616         struct btrfs_root *root = arg;
1617         struct btrfs_trans_handle *trans;
1618         struct btrfs_transaction *cur;
1619         u64 transid;
1620         unsigned long now;
1621         unsigned long delay;
1622         int ret;
1623
1624         do {
1625                 delay = HZ * 30;
1626                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1627                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1628
1629                 spin_lock(&root->fs_info->trans_lock);
1630                 cur = root->fs_info->running_transaction;
1631                 if (!cur) {
1632                         spin_unlock(&root->fs_info->trans_lock);
1633                         goto sleep;
1634                 }
1635
1636                 now = get_seconds();
1637                 if (!cur->blocked &&
1638                     (now < cur->start_time || now - cur->start_time < 30)) {
1639                         spin_unlock(&root->fs_info->trans_lock);
1640                         delay = HZ * 5;
1641                         goto sleep;
1642                 }
1643                 transid = cur->transid;
1644                 spin_unlock(&root->fs_info->trans_lock);
1645
1646                 trans = btrfs_join_transaction(root);
1647                 BUG_ON(IS_ERR(trans));
1648                 if (transid == trans->transid) {
1649                         ret = btrfs_commit_transaction(trans, root);
1650                         BUG_ON(ret);
1651                 } else {
1652                         btrfs_end_transaction(trans, root);
1653                 }
1654 sleep:
1655                 wake_up_process(root->fs_info->cleaner_kthread);
1656                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1657
1658                 if (!try_to_freeze()) {
1659                         set_current_state(TASK_INTERRUPTIBLE);
1660                         if (!kthread_should_stop() &&
1661                             !btrfs_transaction_blocked(root->fs_info))
1662                                 schedule_timeout(delay);
1663                         __set_current_state(TASK_RUNNING);
1664                 }
1665         } while (!kthread_should_stop());
1666         return 0;
1667 }
1668
1669 /*
1670  * this will find the highest generation in the array of
1671  * root backups.  The index of the highest array is returned,
1672  * or -1 if we can't find anything.
1673  *
1674  * We check to make sure the array is valid by comparing the
1675  * generation of the latest  root in the array with the generation
1676  * in the super block.  If they don't match we pitch it.
1677  */
1678 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1679 {
1680         u64 cur;
1681         int newest_index = -1;
1682         struct btrfs_root_backup *root_backup;
1683         int i;
1684
1685         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1686                 root_backup = info->super_copy->super_roots + i;
1687                 cur = btrfs_backup_tree_root_gen(root_backup);
1688                 if (cur == newest_gen)
1689                         newest_index = i;
1690         }
1691
1692         /* check to see if we actually wrapped around */
1693         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1694                 root_backup = info->super_copy->super_roots;
1695                 cur = btrfs_backup_tree_root_gen(root_backup);
1696                 if (cur == newest_gen)
1697                         newest_index = 0;
1698         }
1699         return newest_index;
1700 }
1701
1702
1703 /*
1704  * find the oldest backup so we know where to store new entries
1705  * in the backup array.  This will set the backup_root_index
1706  * field in the fs_info struct
1707  */
1708 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1709                                      u64 newest_gen)
1710 {
1711         int newest_index = -1;
1712
1713         newest_index = find_newest_super_backup(info, newest_gen);
1714         /* if there was garbage in there, just move along */
1715         if (newest_index == -1) {
1716                 info->backup_root_index = 0;
1717         } else {
1718                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1719         }
1720 }
1721
1722 /*
1723  * copy all the root pointers into the super backup array.
1724  * this will bump the backup pointer by one when it is
1725  * done
1726  */
1727 static void backup_super_roots(struct btrfs_fs_info *info)
1728 {
1729         int next_backup;
1730         struct btrfs_root_backup *root_backup;
1731         int last_backup;
1732
1733         next_backup = info->backup_root_index;
1734         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1735                 BTRFS_NUM_BACKUP_ROOTS;
1736
1737         /*
1738          * just overwrite the last backup if we're at the same generation
1739          * this happens only at umount
1740          */
1741         root_backup = info->super_for_commit->super_roots + last_backup;
1742         if (btrfs_backup_tree_root_gen(root_backup) ==
1743             btrfs_header_generation(info->tree_root->node))
1744                 next_backup = last_backup;
1745
1746         root_backup = info->super_for_commit->super_roots + next_backup;
1747
1748         /*
1749          * make sure all of our padding and empty slots get zero filled
1750          * regardless of which ones we use today
1751          */
1752         memset(root_backup, 0, sizeof(*root_backup));
1753
1754         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1755
1756         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1757         btrfs_set_backup_tree_root_gen(root_backup,
1758                                btrfs_header_generation(info->tree_root->node));
1759
1760         btrfs_set_backup_tree_root_level(root_backup,
1761                                btrfs_header_level(info->tree_root->node));
1762
1763         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1764         btrfs_set_backup_chunk_root_gen(root_backup,
1765                                btrfs_header_generation(info->chunk_root->node));
1766         btrfs_set_backup_chunk_root_level(root_backup,
1767                                btrfs_header_level(info->chunk_root->node));
1768
1769         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1770         btrfs_set_backup_extent_root_gen(root_backup,
1771                                btrfs_header_generation(info->extent_root->node));
1772         btrfs_set_backup_extent_root_level(root_backup,
1773                                btrfs_header_level(info->extent_root->node));
1774
1775         /*
1776          * we might commit during log recovery, which happens before we set
1777          * the fs_root.  Make sure it is valid before we fill it in.
1778          */
1779         if (info->fs_root && info->fs_root->node) {
1780                 btrfs_set_backup_fs_root(root_backup,
1781                                          info->fs_root->node->start);
1782                 btrfs_set_backup_fs_root_gen(root_backup,
1783                                btrfs_header_generation(info->fs_root->node));
1784                 btrfs_set_backup_fs_root_level(root_backup,
1785                                btrfs_header_level(info->fs_root->node));
1786         }
1787
1788         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1789         btrfs_set_backup_dev_root_gen(root_backup,
1790                                btrfs_header_generation(info->dev_root->node));
1791         btrfs_set_backup_dev_root_level(root_backup,
1792                                        btrfs_header_level(info->dev_root->node));
1793
1794         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1795         btrfs_set_backup_csum_root_gen(root_backup,
1796                                btrfs_header_generation(info->csum_root->node));
1797         btrfs_set_backup_csum_root_level(root_backup,
1798                                btrfs_header_level(info->csum_root->node));
1799
1800         btrfs_set_backup_total_bytes(root_backup,
1801                              btrfs_super_total_bytes(info->super_copy));
1802         btrfs_set_backup_bytes_used(root_backup,
1803                              btrfs_super_bytes_used(info->super_copy));
1804         btrfs_set_backup_num_devices(root_backup,
1805                              btrfs_super_num_devices(info->super_copy));
1806
1807         /*
1808          * if we don't copy this out to the super_copy, it won't get remembered
1809          * for the next commit
1810          */
1811         memcpy(&info->super_copy->super_roots,
1812                &info->super_for_commit->super_roots,
1813                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1814 }
1815
1816 /*
1817  * this copies info out of the root backup array and back into
1818  * the in-memory super block.  It is meant to help iterate through
1819  * the array, so you send it the number of backups you've already
1820  * tried and the last backup index you used.
1821  *
1822  * this returns -1 when it has tried all the backups
1823  */
1824 static noinline int next_root_backup(struct btrfs_fs_info *info,
1825                                      struct btrfs_super_block *super,
1826                                      int *num_backups_tried, int *backup_index)
1827 {
1828         struct btrfs_root_backup *root_backup;
1829         int newest = *backup_index;
1830
1831         if (*num_backups_tried == 0) {
1832                 u64 gen = btrfs_super_generation(super);
1833
1834                 newest = find_newest_super_backup(info, gen);
1835                 if (newest == -1)
1836                         return -1;
1837
1838                 *backup_index = newest;
1839                 *num_backups_tried = 1;
1840         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1841                 /* we've tried all the backups, all done */
1842                 return -1;
1843         } else {
1844                 /* jump to the next oldest backup */
1845                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1846                         BTRFS_NUM_BACKUP_ROOTS;
1847                 *backup_index = newest;
1848                 *num_backups_tried += 1;
1849         }
1850         root_backup = super->super_roots + newest;
1851
1852         btrfs_set_super_generation(super,
1853                                    btrfs_backup_tree_root_gen(root_backup));
1854         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1855         btrfs_set_super_root_level(super,
1856                                    btrfs_backup_tree_root_level(root_backup));
1857         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1858
1859         /*
1860          * fixme: the total bytes and num_devices need to match or we should
1861          * need a fsck
1862          */
1863         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1864         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1865         return 0;
1866 }
1867
1868 /* helper to cleanup tree roots */
1869 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1870 {
1871         free_extent_buffer(info->tree_root->node);
1872         free_extent_buffer(info->tree_root->commit_root);
1873         free_extent_buffer(info->dev_root->node);
1874         free_extent_buffer(info->dev_root->commit_root);
1875         free_extent_buffer(info->extent_root->node);
1876         free_extent_buffer(info->extent_root->commit_root);
1877         free_extent_buffer(info->csum_root->node);
1878         free_extent_buffer(info->csum_root->commit_root);
1879
1880         info->tree_root->node = NULL;
1881         info->tree_root->commit_root = NULL;
1882         info->dev_root->node = NULL;
1883         info->dev_root->commit_root = NULL;
1884         info->extent_root->node = NULL;
1885         info->extent_root->commit_root = NULL;
1886         info->csum_root->node = NULL;
1887         info->csum_root->commit_root = NULL;
1888
1889         if (chunk_root) {
1890                 free_extent_buffer(info->chunk_root->node);
1891                 free_extent_buffer(info->chunk_root->commit_root);
1892                 info->chunk_root->node = NULL;
1893                 info->chunk_root->commit_root = NULL;
1894         }
1895 }
1896
1897
1898 int open_ctree(struct super_block *sb,
1899                struct btrfs_fs_devices *fs_devices,
1900                char *options)
1901 {
1902         u32 sectorsize;
1903         u32 nodesize;
1904         u32 leafsize;
1905         u32 blocksize;
1906         u32 stripesize;
1907         u64 generation;
1908         u64 features;
1909         struct btrfs_key location;
1910         struct buffer_head *bh;
1911         struct btrfs_super_block *disk_super;
1912         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1913         struct btrfs_root *tree_root;
1914         struct btrfs_root *extent_root;
1915         struct btrfs_root *csum_root;
1916         struct btrfs_root *chunk_root;
1917         struct btrfs_root *dev_root;
1918         struct btrfs_root *log_tree_root;
1919         int ret;
1920         int err = -EINVAL;
1921         int num_backups_tried = 0;
1922         int backup_index = 0;
1923
1924         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1925         extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1926         csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1927         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1928         dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1929
1930         if (!tree_root || !extent_root || !csum_root ||
1931             !chunk_root || !dev_root) {
1932                 err = -ENOMEM;
1933                 goto fail;
1934         }
1935
1936         ret = init_srcu_struct(&fs_info->subvol_srcu);
1937         if (ret) {
1938                 err = ret;
1939                 goto fail;
1940         }
1941
1942         ret = setup_bdi(fs_info, &fs_info->bdi);
1943         if (ret) {
1944                 err = ret;
1945                 goto fail_srcu;
1946         }
1947
1948         fs_info->btree_inode = new_inode(sb);
1949         if (!fs_info->btree_inode) {
1950                 err = -ENOMEM;
1951                 goto fail_bdi;
1952         }
1953
1954         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1955
1956         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1957         INIT_LIST_HEAD(&fs_info->trans_list);
1958         INIT_LIST_HEAD(&fs_info->dead_roots);
1959         INIT_LIST_HEAD(&fs_info->delayed_iputs);
1960         INIT_LIST_HEAD(&fs_info->hashers);
1961         INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1962         INIT_LIST_HEAD(&fs_info->ordered_operations);
1963         INIT_LIST_HEAD(&fs_info->caching_block_groups);
1964         spin_lock_init(&fs_info->delalloc_lock);
1965         spin_lock_init(&fs_info->trans_lock);
1966         spin_lock_init(&fs_info->ref_cache_lock);
1967         spin_lock_init(&fs_info->fs_roots_radix_lock);
1968         spin_lock_init(&fs_info->delayed_iput_lock);
1969         spin_lock_init(&fs_info->defrag_inodes_lock);
1970         spin_lock_init(&fs_info->free_chunk_lock);
1971         mutex_init(&fs_info->reloc_mutex);
1972
1973         init_completion(&fs_info->kobj_unregister);
1974         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1975         INIT_LIST_HEAD(&fs_info->space_info);
1976         btrfs_mapping_init(&fs_info->mapping_tree);
1977         btrfs_init_block_rsv(&fs_info->global_block_rsv);
1978         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1979         btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1980         btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1981         btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1982         btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
1983         atomic_set(&fs_info->nr_async_submits, 0);
1984         atomic_set(&fs_info->async_delalloc_pages, 0);
1985         atomic_set(&fs_info->async_submit_draining, 0);
1986         atomic_set(&fs_info->nr_async_bios, 0);
1987         atomic_set(&fs_info->defrag_running, 0);
1988         fs_info->sb = sb;
1989         fs_info->max_inline = 8192 * 1024;
1990         fs_info->metadata_ratio = 0;
1991         fs_info->defrag_inodes = RB_ROOT;
1992         fs_info->trans_no_join = 0;
1993         fs_info->free_chunk_space = 0;
1994
1995         /* readahead state */
1996         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1997         spin_lock_init(&fs_info->reada_lock);
1998
1999         fs_info->thread_pool_size = min_t(unsigned long,
2000                                           num_online_cpus() + 2, 8);
2001
2002         INIT_LIST_HEAD(&fs_info->ordered_extents);
2003         spin_lock_init(&fs_info->ordered_extent_lock);
2004         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2005                                         GFP_NOFS);
2006         if (!fs_info->delayed_root) {
2007                 err = -ENOMEM;
2008                 goto fail_iput;
2009         }
2010         btrfs_init_delayed_root(fs_info->delayed_root);
2011
2012         mutex_init(&fs_info->scrub_lock);
2013         atomic_set(&fs_info->scrubs_running, 0);
2014         atomic_set(&fs_info->scrub_pause_req, 0);
2015         atomic_set(&fs_info->scrubs_paused, 0);
2016         atomic_set(&fs_info->scrub_cancel_req, 0);
2017         init_waitqueue_head(&fs_info->scrub_pause_wait);
2018         init_rwsem(&fs_info->scrub_super_lock);
2019         fs_info->scrub_workers_refcnt = 0;
2020 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2021         fs_info->check_integrity_print_mask = 0;
2022 #endif
2023
2024         spin_lock_init(&fs_info->balance_lock);
2025         mutex_init(&fs_info->balance_mutex);
2026         atomic_set(&fs_info->balance_running, 0);
2027         atomic_set(&fs_info->balance_pause_req, 0);
2028         atomic_set(&fs_info->balance_cancel_req, 0);
2029         fs_info->balance_ctl = NULL;
2030         init_waitqueue_head(&fs_info->balance_wait_q);
2031
2032         sb->s_blocksize = 4096;
2033         sb->s_blocksize_bits = blksize_bits(4096);
2034         sb->s_bdi = &fs_info->bdi;
2035
2036         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2037         set_nlink(fs_info->btree_inode, 1);
2038         /*
2039          * we set the i_size on the btree inode to the max possible int.
2040          * the real end of the address space is determined by all of
2041          * the devices in the system
2042          */
2043         fs_info->btree_inode->i_size = OFFSET_MAX;
2044         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2045         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2046
2047         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2048         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2049                              fs_info->btree_inode->i_mapping);
2050         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2051
2052         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2053
2054         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2055         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2056                sizeof(struct btrfs_key));
2057         BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
2058         insert_inode_hash(fs_info->btree_inode);
2059
2060         spin_lock_init(&fs_info->block_group_cache_lock);
2061         fs_info->block_group_cache_tree = RB_ROOT;
2062
2063         extent_io_tree_init(&fs_info->freed_extents[0],
2064                              fs_info->btree_inode->i_mapping);
2065         extent_io_tree_init(&fs_info->freed_extents[1],
2066                              fs_info->btree_inode->i_mapping);
2067         fs_info->pinned_extents = &fs_info->freed_extents[0];
2068         fs_info->do_barriers = 1;
2069
2070
2071         mutex_init(&fs_info->ordered_operations_mutex);
2072         mutex_init(&fs_info->tree_log_mutex);
2073         mutex_init(&fs_info->chunk_mutex);
2074         mutex_init(&fs_info->transaction_kthread_mutex);
2075         mutex_init(&fs_info->cleaner_mutex);
2076         mutex_init(&fs_info->volume_mutex);
2077         init_rwsem(&fs_info->extent_commit_sem);
2078         init_rwsem(&fs_info->cleanup_work_sem);
2079         init_rwsem(&fs_info->subvol_sem);
2080
2081         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2082         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2083
2084         init_waitqueue_head(&fs_info->transaction_throttle);
2085         init_waitqueue_head(&fs_info->transaction_wait);
2086         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2087         init_waitqueue_head(&fs_info->async_submit_wait);
2088
2089         __setup_root(4096, 4096, 4096, 4096, tree_root,
2090                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2091
2092         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2093         if (!bh) {
2094                 err = -EINVAL;
2095                 goto fail_alloc;
2096         }
2097
2098         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2099         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2100                sizeof(*fs_info->super_for_commit));
2101         brelse(bh);
2102
2103         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2104
2105         disk_super = fs_info->super_copy;
2106         if (!btrfs_super_root(disk_super))
2107                 goto fail_alloc;
2108
2109         /* check FS state, whether FS is broken. */
2110         fs_info->fs_state |= btrfs_super_flags(disk_super);
2111
2112         btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2113
2114         /*
2115          * run through our array of backup supers and setup
2116          * our ring pointer to the oldest one
2117          */
2118         generation = btrfs_super_generation(disk_super);
2119         find_oldest_super_backup(fs_info, generation);
2120
2121         /*
2122          * In the long term, we'll store the compression type in the super
2123          * block, and it'll be used for per file compression control.
2124          */
2125         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2126
2127         ret = btrfs_parse_options(tree_root, options);
2128         if (ret) {
2129                 err = ret;
2130                 goto fail_alloc;
2131         }
2132
2133         features = btrfs_super_incompat_flags(disk_super) &
2134                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2135         if (features) {
2136                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2137                        "unsupported optional features (%Lx).\n",
2138                        (unsigned long long)features);
2139                 err = -EINVAL;
2140                 goto fail_alloc;
2141         }
2142
2143         features = btrfs_super_incompat_flags(disk_super);
2144         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2145         if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
2146                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2147         btrfs_set_super_incompat_flags(disk_super, features);
2148
2149         features = btrfs_super_compat_ro_flags(disk_super) &
2150                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2151         if (!(sb->s_flags & MS_RDONLY) && features) {
2152                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2153                        "unsupported option features (%Lx).\n",
2154                        (unsigned long long)features);
2155                 err = -EINVAL;
2156                 goto fail_alloc;
2157         }
2158
2159         btrfs_init_workers(&fs_info->generic_worker,
2160                            "genwork", 1, NULL);
2161
2162         btrfs_init_workers(&fs_info->workers, "worker",
2163                            fs_info->thread_pool_size,
2164                            &fs_info->generic_worker);
2165
2166         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2167                            fs_info->thread_pool_size,
2168                            &fs_info->generic_worker);
2169
2170         btrfs_init_workers(&fs_info->submit_workers, "submit",
2171                            min_t(u64, fs_devices->num_devices,
2172                            fs_info->thread_pool_size),
2173                            &fs_info->generic_worker);
2174
2175         btrfs_init_workers(&fs_info->caching_workers, "cache",
2176                            2, &fs_info->generic_worker);
2177
2178         /* a higher idle thresh on the submit workers makes it much more
2179          * likely that bios will be send down in a sane order to the
2180          * devices
2181          */
2182         fs_info->submit_workers.idle_thresh = 64;
2183
2184         fs_info->workers.idle_thresh = 16;
2185         fs_info->workers.ordered = 1;
2186
2187         fs_info->delalloc_workers.idle_thresh = 2;
2188         fs_info->delalloc_workers.ordered = 1;
2189
2190         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2191                            &fs_info->generic_worker);
2192         btrfs_init_workers(&fs_info->endio_workers, "endio",
2193                            fs_info->thread_pool_size,
2194                            &fs_info->generic_worker);
2195         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2196                            fs_info->thread_pool_size,
2197                            &fs_info->generic_worker);
2198         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2199                            "endio-meta-write", fs_info->thread_pool_size,
2200                            &fs_info->generic_worker);
2201         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2202                            fs_info->thread_pool_size,
2203                            &fs_info->generic_worker);
2204         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2205                            1, &fs_info->generic_worker);
2206         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2207                            fs_info->thread_pool_size,
2208                            &fs_info->generic_worker);
2209         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2210                            fs_info->thread_pool_size,
2211                            &fs_info->generic_worker);
2212
2213         /*
2214          * endios are largely parallel and should have a very
2215          * low idle thresh
2216          */
2217         fs_info->endio_workers.idle_thresh = 4;
2218         fs_info->endio_meta_workers.idle_thresh = 4;
2219
2220         fs_info->endio_write_workers.idle_thresh = 2;
2221         fs_info->endio_meta_write_workers.idle_thresh = 2;
2222         fs_info->readahead_workers.idle_thresh = 2;
2223
2224         /*
2225          * btrfs_start_workers can really only fail because of ENOMEM so just
2226          * return -ENOMEM if any of these fail.
2227          */
2228         ret = btrfs_start_workers(&fs_info->workers);
2229         ret |= btrfs_start_workers(&fs_info->generic_worker);
2230         ret |= btrfs_start_workers(&fs_info->submit_workers);
2231         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2232         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2233         ret |= btrfs_start_workers(&fs_info->endio_workers);
2234         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2235         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2236         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2237         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2238         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2239         ret |= btrfs_start_workers(&fs_info->caching_workers);
2240         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2241         if (ret) {
2242                 ret = -ENOMEM;
2243                 goto fail_sb_buffer;
2244         }
2245
2246         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2247         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2248                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2249
2250         nodesize = btrfs_super_nodesize(disk_super);
2251         leafsize = btrfs_super_leafsize(disk_super);
2252         sectorsize = btrfs_super_sectorsize(disk_super);
2253         stripesize = btrfs_super_stripesize(disk_super);
2254         tree_root->nodesize = nodesize;
2255         tree_root->leafsize = leafsize;
2256         tree_root->sectorsize = sectorsize;
2257         tree_root->stripesize = stripesize;
2258
2259         sb->s_blocksize = sectorsize;
2260         sb->s_blocksize_bits = blksize_bits(sectorsize);
2261
2262         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2263                     sizeof(disk_super->magic))) {
2264                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2265                 goto fail_sb_buffer;
2266         }
2267
2268         if (sectorsize < PAGE_SIZE) {
2269                 printk(KERN_WARNING "btrfs: Incompatible sector size "
2270                        "found on %s\n", sb->s_id);
2271                 goto fail_sb_buffer;
2272         }
2273
2274         mutex_lock(&fs_info->chunk_mutex);
2275         ret = btrfs_read_sys_array(tree_root);
2276         mutex_unlock(&fs_info->chunk_mutex);
2277         if (ret) {
2278                 printk(KERN_WARNING "btrfs: failed to read the system "
2279                        "array on %s\n", sb->s_id);
2280                 goto fail_sb_buffer;
2281         }
2282
2283         blocksize = btrfs_level_size(tree_root,
2284                                      btrfs_super_chunk_root_level(disk_super));
2285         generation = btrfs_super_chunk_root_generation(disk_super);
2286
2287         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2288                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2289
2290         chunk_root->node = read_tree_block(chunk_root,
2291                                            btrfs_super_chunk_root(disk_super),
2292                                            blocksize, generation);
2293         BUG_ON(!chunk_root->node);
2294         if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2295                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2296                        sb->s_id);
2297                 goto fail_tree_roots;
2298         }
2299         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2300         chunk_root->commit_root = btrfs_root_node(chunk_root);
2301
2302         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2303            (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2304            BTRFS_UUID_SIZE);
2305
2306         ret = btrfs_read_chunk_tree(chunk_root);
2307         if (ret) {
2308                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2309                        sb->s_id);
2310                 goto fail_tree_roots;
2311         }
2312
2313         btrfs_close_extra_devices(fs_devices);
2314
2315         if (!fs_devices->latest_bdev) {
2316                 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2317                        sb->s_id);
2318                 goto fail_tree_roots;
2319         }
2320
2321 retry_root_backup:
2322         blocksize = btrfs_level_size(tree_root,
2323                                      btrfs_super_root_level(disk_super));
2324         generation = btrfs_super_generation(disk_super);
2325
2326         tree_root->node = read_tree_block(tree_root,
2327                                           btrfs_super_root(disk_super),
2328                                           blocksize, generation);
2329         if (!tree_root->node ||
2330             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2331                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2332                        sb->s_id);
2333
2334                 goto recovery_tree_root;
2335         }
2336
2337         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2338         tree_root->commit_root = btrfs_root_node(tree_root);
2339
2340         ret = find_and_setup_root(tree_root, fs_info,
2341                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2342         if (ret)
2343                 goto recovery_tree_root;
2344         extent_root->track_dirty = 1;
2345
2346         ret = find_and_setup_root(tree_root, fs_info,
2347                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
2348         if (ret)
2349                 goto recovery_tree_root;
2350         dev_root->track_dirty = 1;
2351
2352         ret = find_and_setup_root(tree_root, fs_info,
2353                                   BTRFS_CSUM_TREE_OBJECTID, csum_root);
2354         if (ret)
2355                 goto recovery_tree_root;
2356
2357         csum_root->track_dirty = 1;
2358
2359         fs_info->generation = generation;
2360         fs_info->last_trans_committed = generation;
2361
2362         ret = btrfs_init_space_info(fs_info);
2363         if (ret) {
2364                 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2365                 goto fail_block_groups;
2366         }
2367
2368         ret = btrfs_read_block_groups(extent_root);
2369         if (ret) {
2370                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2371                 goto fail_block_groups;
2372         }
2373
2374         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2375                                                "btrfs-cleaner");
2376         if (IS_ERR(fs_info->cleaner_kthread))
2377                 goto fail_block_groups;
2378
2379         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2380                                                    tree_root,
2381                                                    "btrfs-transaction");
2382         if (IS_ERR(fs_info->transaction_kthread))
2383                 goto fail_cleaner;
2384
2385         if (!btrfs_test_opt(tree_root, SSD) &&
2386             !btrfs_test_opt(tree_root, NOSSD) &&
2387             !fs_info->fs_devices->rotating) {
2388                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2389                        "mode\n");
2390                 btrfs_set_opt(fs_info->mount_opt, SSD);
2391         }
2392
2393 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2394         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2395                 ret = btrfsic_mount(tree_root, fs_devices,
2396                                     btrfs_test_opt(tree_root,
2397                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2398                                     1 : 0,
2399                                     fs_info->check_integrity_print_mask);
2400                 if (ret)
2401                         printk(KERN_WARNING "btrfs: failed to initialize"
2402                                " integrity check module %s\n", sb->s_id);
2403         }
2404 #endif
2405
2406         /* do not make disk changes in broken FS */
2407         if (btrfs_super_log_root(disk_super) != 0 &&
2408             !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2409                 u64 bytenr = btrfs_super_log_root(disk_super);
2410
2411                 if (fs_devices->rw_devices == 0) {
2412                         printk(KERN_WARNING "Btrfs log replay required "
2413                                "on RO media\n");
2414                         err = -EIO;
2415                         goto fail_trans_kthread;
2416                 }
2417                 blocksize =
2418                      btrfs_level_size(tree_root,
2419                                       btrfs_super_log_root_level(disk_super));
2420
2421                 log_tree_root = btrfs_alloc_root(fs_info);
2422                 if (!log_tree_root) {
2423                         err = -ENOMEM;
2424                         goto fail_trans_kthread;
2425                 }
2426
2427                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2428                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2429
2430                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2431                                                       blocksize,
2432                                                       generation + 1);
2433                 ret = btrfs_recover_log_trees(log_tree_root);
2434                 BUG_ON(ret);
2435
2436                 if (sb->s_flags & MS_RDONLY) {
2437                         ret =  btrfs_commit_super(tree_root);
2438                         BUG_ON(ret);
2439                 }
2440         }
2441
2442         ret = btrfs_find_orphan_roots(tree_root);
2443         BUG_ON(ret);
2444
2445         if (!(sb->s_flags & MS_RDONLY)) {
2446                 ret = btrfs_cleanup_fs_roots(fs_info);
2447                 BUG_ON(ret);
2448
2449                 ret = btrfs_recover_relocation(tree_root);
2450                 if (ret < 0) {
2451                         printk(KERN_WARNING
2452                                "btrfs: failed to recover relocation\n");
2453                         err = -EINVAL;
2454                         goto fail_trans_kthread;
2455                 }
2456         }
2457
2458         location.objectid = BTRFS_FS_TREE_OBJECTID;
2459         location.type = BTRFS_ROOT_ITEM_KEY;
2460         location.offset = (u64)-1;
2461
2462         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2463         if (!fs_info->fs_root)
2464                 goto fail_trans_kthread;
2465         if (IS_ERR(fs_info->fs_root)) {
2466                 err = PTR_ERR(fs_info->fs_root);
2467                 goto fail_trans_kthread;
2468         }
2469
2470         if (!(sb->s_flags & MS_RDONLY)) {
2471                 down_read(&fs_info->cleanup_work_sem);
2472                 err = btrfs_orphan_cleanup(fs_info->fs_root);
2473                 if (!err)
2474                         err = btrfs_orphan_cleanup(fs_info->tree_root);
2475                 up_read(&fs_info->cleanup_work_sem);
2476
2477                 if (!err)
2478                         err = btrfs_recover_balance(fs_info->tree_root);
2479
2480                 if (err) {
2481                         close_ctree(tree_root);
2482                         return err;
2483                 }
2484         }
2485
2486         return 0;
2487
2488 fail_trans_kthread:
2489         kthread_stop(fs_info->transaction_kthread);
2490 fail_cleaner:
2491         kthread_stop(fs_info->cleaner_kthread);
2492
2493         /*
2494          * make sure we're done with the btree inode before we stop our
2495          * kthreads
2496          */
2497         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2498         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2499
2500 fail_block_groups:
2501         btrfs_free_block_groups(fs_info);
2502
2503 fail_tree_roots:
2504         free_root_pointers(fs_info, 1);
2505
2506 fail_sb_buffer:
2507         btrfs_stop_workers(&fs_info->generic_worker);
2508         btrfs_stop_workers(&fs_info->readahead_workers);
2509         btrfs_stop_workers(&fs_info->fixup_workers);
2510         btrfs_stop_workers(&fs_info->delalloc_workers);
2511         btrfs_stop_workers(&fs_info->workers);
2512         btrfs_stop_workers(&fs_info->endio_workers);
2513         btrfs_stop_workers(&fs_info->endio_meta_workers);
2514         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2515         btrfs_stop_workers(&fs_info->endio_write_workers);
2516         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2517         btrfs_stop_workers(&fs_info->submit_workers);
2518         btrfs_stop_workers(&fs_info->delayed_workers);
2519         btrfs_stop_workers(&fs_info->caching_workers);
2520 fail_alloc:
2521 fail_iput:
2522         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2523
2524         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2525         iput(fs_info->btree_inode);
2526 fail_bdi:
2527         bdi_destroy(&fs_info->bdi);
2528 fail_srcu:
2529         cleanup_srcu_struct(&fs_info->subvol_srcu);
2530 fail:
2531         btrfs_close_devices(fs_info->fs_devices);
2532         return err;
2533
2534 recovery_tree_root:
2535         if (!btrfs_test_opt(tree_root, RECOVERY))
2536                 goto fail_tree_roots;
2537
2538         free_root_pointers(fs_info, 0);
2539
2540         /* don't use the log in recovery mode, it won't be valid */
2541         btrfs_set_super_log_root(disk_super, 0);
2542
2543         /* we can't trust the free space cache either */
2544         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2545
2546         ret = next_root_backup(fs_info, fs_info->super_copy,
2547                                &num_backups_tried, &backup_index);
2548         if (ret == -1)
2549                 goto fail_block_groups;
2550         goto retry_root_backup;
2551 }
2552
2553 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2554 {
2555         char b[BDEVNAME_SIZE];
2556
2557         if (uptodate) {
2558                 set_buffer_uptodate(bh);
2559         } else {
2560                 printk_ratelimited(KERN_WARNING "lost page write due to "
2561                                         "I/O error on %s\n",
2562                                        bdevname(bh->b_bdev, b));
2563                 /* note, we dont' set_buffer_write_io_error because we have
2564                  * our own ways of dealing with the IO errors
2565                  */
2566                 clear_buffer_uptodate(bh);
2567         }
2568         unlock_buffer(bh);
2569         put_bh(bh);
2570 }
2571
2572 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2573 {
2574         struct buffer_head *bh;
2575         struct buffer_head *latest = NULL;
2576         struct btrfs_super_block *super;
2577         int i;
2578         u64 transid = 0;
2579         u64 bytenr;
2580
2581         /* we would like to check all the supers, but that would make
2582          * a btrfs mount succeed after a mkfs from a different FS.
2583          * So, we need to add a special mount option to scan for
2584          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2585          */
2586         for (i = 0; i < 1; i++) {
2587                 bytenr = btrfs_sb_offset(i);
2588                 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2589                         break;
2590                 bh = __bread(bdev, bytenr / 4096, 4096);
2591                 if (!bh)
2592                         continue;
2593
2594                 super = (struct btrfs_super_block *)bh->b_data;
2595                 if (btrfs_super_bytenr(super) != bytenr ||
2596                     strncmp((char *)(&super->magic), BTRFS_MAGIC,
2597                             sizeof(super->magic))) {
2598                         brelse(bh);
2599                         continue;
2600                 }
2601
2602                 if (!latest || btrfs_super_generation(super) > transid) {
2603                         brelse(latest);
2604                         latest = bh;
2605                         transid = btrfs_super_generation(super);
2606                 } else {
2607                         brelse(bh);
2608                 }
2609         }
2610         return latest;
2611 }
2612
2613 /*
2614  * this should be called twice, once with wait == 0 and
2615  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2616  * we write are pinned.
2617  *
2618  * They are released when wait == 1 is done.
2619  * max_mirrors must be the same for both runs, and it indicates how
2620  * many supers on this one device should be written.
2621  *
2622  * max_mirrors == 0 means to write them all.
2623  */
2624 static int write_dev_supers(struct btrfs_device *device,
2625                             struct btrfs_super_block *sb,
2626                             int do_barriers, int wait, int max_mirrors)
2627 {
2628         struct buffer_head *bh;
2629         int i;
2630         int ret;
2631         int errors = 0;
2632         u32 crc;
2633         u64 bytenr;
2634
2635         if (max_mirrors == 0)
2636                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2637
2638         for (i = 0; i < max_mirrors; i++) {
2639                 bytenr = btrfs_sb_offset(i);
2640                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2641                         break;
2642
2643                 if (wait) {
2644                         bh = __find_get_block(device->bdev, bytenr / 4096,
2645                                               BTRFS_SUPER_INFO_SIZE);
2646                         BUG_ON(!bh);
2647                         wait_on_buffer(bh);
2648                         if (!buffer_uptodate(bh))
2649                                 errors++;
2650
2651                         /* drop our reference */
2652                         brelse(bh);
2653
2654                         /* drop the reference from the wait == 0 run */
2655                         brelse(bh);
2656                         continue;
2657                 } else {
2658                         btrfs_set_super_bytenr(sb, bytenr);
2659
2660                         crc = ~(u32)0;
2661                         crc = btrfs_csum_data(NULL, (char *)sb +
2662                                               BTRFS_CSUM_SIZE, crc,
2663                                               BTRFS_SUPER_INFO_SIZE -
2664                                               BTRFS_CSUM_SIZE);
2665                         btrfs_csum_final(crc, sb->csum);
2666
2667                         /*
2668                          * one reference for us, and we leave it for the
2669                          * caller
2670                          */
2671                         bh = __getblk(device->bdev, bytenr / 4096,
2672                                       BTRFS_SUPER_INFO_SIZE);
2673                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2674
2675                         /* one reference for submit_bh */
2676                         get_bh(bh);
2677
2678                         set_buffer_uptodate(bh);
2679                         lock_buffer(bh);
2680                         bh->b_end_io = btrfs_end_buffer_write_sync;
2681                 }
2682
2683                 /*
2684                  * we fua the first super.  The others we allow
2685                  * to go down lazy.
2686                  */
2687                 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2688                 if (ret)
2689                         errors++;
2690         }
2691         return errors < i ? 0 : -1;
2692 }
2693
2694 /*
2695  * endio for the write_dev_flush, this will wake anyone waiting
2696  * for the barrier when it is done
2697  */
2698 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2699 {
2700         if (err) {
2701                 if (err == -EOPNOTSUPP)
2702                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2703                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2704         }
2705         if (bio->bi_private)
2706                 complete(bio->bi_private);
2707         bio_put(bio);
2708 }
2709
2710 /*
2711  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
2712  * sent down.  With wait == 1, it waits for the previous flush.
2713  *
2714  * any device where the flush fails with eopnotsupp are flagged as not-barrier
2715  * capable
2716  */
2717 static int write_dev_flush(struct btrfs_device *device, int wait)
2718 {
2719         struct bio *bio;
2720         int ret = 0;
2721
2722         if (device->nobarriers)
2723                 return 0;
2724
2725         if (wait) {
2726                 bio = device->flush_bio;
2727                 if (!bio)
2728                         return 0;
2729
2730                 wait_for_completion(&device->flush_wait);
2731
2732                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2733                         printk("btrfs: disabling barriers on dev %s\n",
2734                                device->name);
2735                         device->nobarriers = 1;
2736                 }
2737                 if (!bio_flagged(bio, BIO_UPTODATE)) {
2738                         ret = -EIO;
2739                 }
2740
2741                 /* drop the reference from the wait == 0 run */
2742                 bio_put(bio);
2743                 device->flush_bio = NULL;
2744
2745                 return ret;
2746         }
2747
2748         /*
2749          * one reference for us, and we leave it for the
2750          * caller
2751          */
2752         device->flush_bio = NULL;;
2753         bio = bio_alloc(GFP_NOFS, 0);
2754         if (!bio)
2755                 return -ENOMEM;
2756
2757         bio->bi_end_io = btrfs_end_empty_barrier;
2758         bio->bi_bdev = device->bdev;
2759         init_completion(&device->flush_wait);
2760         bio->bi_private = &device->flush_wait;
2761         device->flush_bio = bio;
2762
2763         bio_get(bio);
2764         btrfsic_submit_bio(WRITE_FLUSH, bio);
2765
2766         return 0;
2767 }
2768
2769 /*
2770  * send an empty flush down to each device in parallel,
2771  * then wait for them
2772  */
2773 static int barrier_all_devices(struct btrfs_fs_info *info)
2774 {
2775         struct list_head *head;
2776         struct btrfs_device *dev;
2777         int errors = 0;
2778         int ret;
2779
2780         /* send down all the barriers */
2781         head = &info->fs_devices->devices;
2782         list_for_each_entry_rcu(dev, head, dev_list) {
2783                 if (!dev->bdev) {
2784                         errors++;
2785                         continue;
2786                 }
2787                 if (!dev->in_fs_metadata || !dev->writeable)
2788                         continue;
2789
2790                 ret = write_dev_flush(dev, 0);
2791                 if (ret)
2792                         errors++;
2793         }
2794
2795         /* wait for all the barriers */
2796         list_for_each_entry_rcu(dev, head, dev_list) {
2797                 if (!dev->bdev) {
2798                         errors++;
2799                         continue;
2800                 }
2801                 if (!dev->in_fs_metadata || !dev->writeable)
2802                         continue;
2803
2804                 ret = write_dev_flush(dev, 1);
2805                 if (ret)
2806                         errors++;
2807         }
2808         if (errors)
2809                 return -EIO;
2810         return 0;
2811 }
2812
2813 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2814 {
2815         struct list_head *head;
2816         struct btrfs_device *dev;
2817         struct btrfs_super_block *sb;
2818         struct btrfs_dev_item *dev_item;
2819         int ret;
2820         int do_barriers;
2821         int max_errors;
2822         int total_errors = 0;
2823         u64 flags;
2824
2825         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2826         do_barriers = !btrfs_test_opt(root, NOBARRIER);
2827         backup_super_roots(root->fs_info);
2828
2829         sb = root->fs_info->super_for_commit;
2830         dev_item = &sb->dev_item;
2831
2832         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2833         head = &root->fs_info->fs_devices->devices;
2834
2835         if (do_barriers)
2836                 barrier_all_devices(root->fs_info);
2837
2838         list_for_each_entry_rcu(dev, head, dev_list) {
2839                 if (!dev->bdev) {
2840                         total_errors++;
2841                         continue;
2842                 }
2843                 if (!dev->in_fs_metadata || !dev->writeable)
2844                         continue;
2845
2846                 btrfs_set_stack_device_generation(dev_item, 0);
2847                 btrfs_set_stack_device_type(dev_item, dev->type);
2848                 btrfs_set_stack_device_id(dev_item, dev->devid);
2849                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2850                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2851                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2852                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2853                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2854                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2855                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2856
2857                 flags = btrfs_super_flags(sb);
2858                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2859
2860                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2861                 if (ret)
2862                         total_errors++;
2863         }
2864         if (total_errors > max_errors) {
2865                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2866                        total_errors);
2867                 BUG();
2868         }
2869
2870         total_errors = 0;
2871         list_for_each_entry_rcu(dev, head, dev_list) {
2872                 if (!dev->bdev)
2873                         continue;
2874                 if (!dev->in_fs_metadata || !dev->writeable)
2875                         continue;
2876
2877                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2878                 if (ret)
2879                         total_errors++;
2880         }
2881         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2882         if (total_errors > max_errors) {
2883                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2884                        total_errors);
2885                 BUG();
2886         }
2887         return 0;
2888 }
2889
2890 int write_ctree_super(struct btrfs_trans_handle *trans,
2891                       struct btrfs_root *root, int max_mirrors)
2892 {
2893         int ret;
2894
2895         ret = write_all_supers(root, max_mirrors);
2896         return ret;
2897 }
2898
2899 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2900 {
2901         spin_lock(&fs_info->fs_roots_radix_lock);
2902         radix_tree_delete(&fs_info->fs_roots_radix,
2903                           (unsigned long)root->root_key.objectid);
2904         spin_unlock(&fs_info->fs_roots_radix_lock);
2905
2906         if (btrfs_root_refs(&root->root_item) == 0)
2907                 synchronize_srcu(&fs_info->subvol_srcu);
2908
2909         __btrfs_remove_free_space_cache(root->free_ino_pinned);
2910         __btrfs_remove_free_space_cache(root->free_ino_ctl);
2911         free_fs_root(root);
2912         return 0;
2913 }
2914
2915 static void free_fs_root(struct btrfs_root *root)
2916 {
2917         iput(root->cache_inode);
2918         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2919         if (root->anon_dev)
2920                 free_anon_bdev(root->anon_dev);
2921         free_extent_buffer(root->node);
2922         free_extent_buffer(root->commit_root);
2923         kfree(root->free_ino_ctl);
2924         kfree(root->free_ino_pinned);
2925         kfree(root->name);
2926         kfree(root);
2927 }
2928
2929 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2930 {
2931         int ret;
2932         struct btrfs_root *gang[8];
2933         int i;
2934
2935         while (!list_empty(&fs_info->dead_roots)) {
2936                 gang[0] = list_entry(fs_info->dead_roots.next,
2937                                      struct btrfs_root, root_list);
2938                 list_del(&gang[0]->root_list);
2939
2940                 if (gang[0]->in_radix) {
2941                         btrfs_free_fs_root(fs_info, gang[0]);
2942                 } else {
2943                         free_extent_buffer(gang[0]->node);
2944                         free_extent_buffer(gang[0]->commit_root);
2945                         kfree(gang[0]);
2946                 }
2947         }
2948
2949         while (1) {
2950                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2951                                              (void **)gang, 0,
2952                                              ARRAY_SIZE(gang));
2953                 if (!ret)
2954                         break;
2955                 for (i = 0; i < ret; i++)
2956                         btrfs_free_fs_root(fs_info, gang[i]);
2957         }
2958         return 0;
2959 }
2960
2961 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2962 {
2963         u64 root_objectid = 0;
2964         struct btrfs_root *gang[8];
2965         int i;
2966         int ret;
2967
2968         while (1) {
2969                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2970                                              (void **)gang, root_objectid,
2971                                              ARRAY_SIZE(gang));
2972                 if (!ret)
2973                         break;
2974
2975                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2976                 for (i = 0; i < ret; i++) {
2977                         int err;
2978
2979                         root_objectid = gang[i]->root_key.objectid;
2980                         err = btrfs_orphan_cleanup(gang[i]);
2981                         if (err)
2982                                 return err;
2983                 }
2984                 root_objectid++;
2985         }
2986         return 0;
2987 }
2988
2989 int btrfs_commit_super(struct btrfs_root *root)
2990 {
2991         struct btrfs_trans_handle *trans;
2992         int ret;
2993
2994         mutex_lock(&root->fs_info->cleaner_mutex);
2995         btrfs_run_delayed_iputs(root);
2996         btrfs_clean_old_snapshots(root);
2997         mutex_unlock(&root->fs_info->cleaner_mutex);
2998
2999         /* wait until ongoing cleanup work done */
3000         down_write(&root->fs_info->cleanup_work_sem);
3001         up_write(&root->fs_info->cleanup_work_sem);
3002
3003         trans = btrfs_join_transaction(root);
3004         if (IS_ERR(trans))
3005                 return PTR_ERR(trans);
3006         ret = btrfs_commit_transaction(trans, root);
3007         BUG_ON(ret);
3008         /* run commit again to drop the original snapshot */
3009         trans = btrfs_join_transaction(root);
3010         if (IS_ERR(trans))
3011                 return PTR_ERR(trans);
3012         btrfs_commit_transaction(trans, root);
3013         ret = btrfs_write_and_wait_transaction(NULL, root);
3014         BUG_ON(ret);
3015
3016         ret = write_ctree_super(NULL, root, 0);
3017         return ret;
3018 }
3019
3020 int close_ctree(struct btrfs_root *root)
3021 {
3022         struct btrfs_fs_info *fs_info = root->fs_info;
3023         int ret;
3024
3025         fs_info->closing = 1;
3026         smp_mb();
3027
3028         /* pause restriper - we want to resume on mount */
3029         btrfs_pause_balance(root->fs_info);
3030
3031         btrfs_scrub_cancel(root);
3032
3033         /* wait for any defraggers to finish */
3034         wait_event(fs_info->transaction_wait,
3035                    (atomic_read(&fs_info->defrag_running) == 0));
3036
3037         /* clear out the rbtree of defraggable inodes */
3038         btrfs_run_defrag_inodes(fs_info);
3039
3040         /*
3041          * Here come 2 situations when btrfs is broken to flip readonly:
3042          *
3043          * 1. when btrfs flips readonly somewhere else before
3044          * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3045          * and btrfs will skip to write sb directly to keep
3046          * ERROR state on disk.
3047          *
3048          * 2. when btrfs flips readonly just in btrfs_commit_super,
3049          * and in such case, btrfs cannot write sb via btrfs_commit_super,
3050          * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3051          * btrfs will cleanup all FS resources first and write sb then.
3052          */
3053         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3054                 ret = btrfs_commit_super(root);
3055                 if (ret)
3056                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3057         }
3058
3059         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3060                 ret = btrfs_error_commit_super(root);
3061                 if (ret)
3062                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3063         }
3064
3065         btrfs_put_block_group_cache(fs_info);
3066
3067         kthread_stop(fs_info->transaction_kthread);
3068         kthread_stop(fs_info->cleaner_kthread);
3069
3070         fs_info->closing = 2;
3071         smp_mb();
3072
3073         if (fs_info->delalloc_bytes) {
3074                 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3075                        (unsigned long long)fs_info->delalloc_bytes);
3076         }
3077         if (fs_info->total_ref_cache_size) {
3078                 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3079                        (unsigned long long)fs_info->total_ref_cache_size);
3080         }
3081
3082         free_extent_buffer(fs_info->extent_root->node);
3083         free_extent_buffer(fs_info->extent_root->commit_root);
3084         free_extent_buffer(fs_info->tree_root->node);
3085         free_extent_buffer(fs_info->tree_root->commit_root);
3086         free_extent_buffer(fs_info->chunk_root->node);
3087         free_extent_buffer(fs_info->chunk_root->commit_root);
3088         free_extent_buffer(fs_info->dev_root->node);
3089         free_extent_buffer(fs_info->dev_root->commit_root);
3090         free_extent_buffer(fs_info->csum_root->node);
3091         free_extent_buffer(fs_info->csum_root->commit_root);
3092
3093         btrfs_free_block_groups(fs_info);
3094
3095         del_fs_roots(fs_info);
3096
3097         iput(fs_info->btree_inode);
3098
3099         btrfs_stop_workers(&fs_info->generic_worker);
3100         btrfs_stop_workers(&fs_info->fixup_workers);
3101         btrfs_stop_workers(&fs_info->delalloc_workers);
3102         btrfs_stop_workers(&fs_info->workers);
3103         btrfs_stop_workers(&fs_info->endio_workers);
3104         btrfs_stop_workers(&fs_info->endio_meta_workers);
3105         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3106         btrfs_stop_workers(&fs_info->endio_write_workers);
3107         btrfs_stop_workers(&fs_info->endio_freespace_worker);
3108         btrfs_stop_workers(&fs_info->submit_workers);
3109         btrfs_stop_workers(&fs_info->delayed_workers);
3110         btrfs_stop_workers(&fs_info->caching_workers);
3111         btrfs_stop_workers(&fs_info->readahead_workers);
3112
3113 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3114         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3115                 btrfsic_unmount(root, fs_info->fs_devices);
3116 #endif
3117
3118         btrfs_close_devices(fs_info->fs_devices);
3119         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3120
3121         bdi_destroy(&fs_info->bdi);
3122         cleanup_srcu_struct(&fs_info->subvol_srcu);
3123
3124         return 0;
3125 }
3126
3127 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
3128 {
3129         int ret;
3130         struct inode *btree_inode = buf->first_page->mapping->host;
3131
3132         ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
3133                                      NULL);
3134         if (!ret)
3135                 return ret;
3136
3137         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3138                                     parent_transid);
3139         return !ret;
3140 }
3141
3142 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3143 {
3144         struct inode *btree_inode = buf->first_page->mapping->host;
3145         return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
3146                                           buf);
3147 }
3148
3149 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3150 {
3151         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
3152         u64 transid = btrfs_header_generation(buf);
3153         struct inode *btree_inode = root->fs_info->btree_inode;
3154         int was_dirty;
3155
3156         btrfs_assert_tree_locked(buf);
3157         if (transid != root->fs_info->generation) {
3158                 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3159                        "found %llu running %llu\n",
3160                         (unsigned long long)buf->start,
3161                         (unsigned long long)transid,
3162                         (unsigned long long)root->fs_info->generation);
3163                 WARN_ON(1);
3164         }
3165         was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
3166                                             buf);
3167         if (!was_dirty) {
3168                 spin_lock(&root->fs_info->delalloc_lock);
3169                 root->fs_info->dirty_metadata_bytes += buf->len;
3170                 spin_unlock(&root->fs_info->delalloc_lock);
3171         }
3172 }
3173
3174 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3175 {
3176         /*
3177          * looks as though older kernels can get into trouble with
3178          * this code, they end up stuck in balance_dirty_pages forever
3179          */
3180         u64 num_dirty;
3181         unsigned long thresh = 32 * 1024 * 1024;
3182
3183         if (current->flags & PF_MEMALLOC)
3184                 return;
3185
3186         btrfs_balance_delayed_items(root);
3187
3188         num_dirty = root->fs_info->dirty_metadata_bytes;
3189
3190         if (num_dirty > thresh) {
3191                 balance_dirty_pages_ratelimited_nr(
3192                                    root->fs_info->btree_inode->i_mapping, 1);
3193         }
3194         return;
3195 }
3196
3197 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3198 {
3199         /*
3200          * looks as though older kernels can get into trouble with
3201          * this code, they end up stuck in balance_dirty_pages forever
3202          */
3203         u64 num_dirty;
3204         unsigned long thresh = 32 * 1024 * 1024;
3205
3206         if (current->flags & PF_MEMALLOC)
3207                 return;
3208
3209         num_dirty = root->fs_info->dirty_metadata_bytes;
3210
3211         if (num_dirty > thresh) {
3212                 balance_dirty_pages_ratelimited_nr(
3213                                    root->fs_info->btree_inode->i_mapping, 1);
3214         }
3215         return;
3216 }
3217
3218 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3219 {
3220         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
3221         int ret;
3222         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3223         if (ret == 0)
3224                 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
3225         return ret;
3226 }
3227
3228 static int btree_lock_page_hook(struct page *page, void *data,
3229                                 void (*flush_fn)(void *))
3230 {
3231         struct inode *inode = page->mapping->host;
3232         struct btrfs_root *root = BTRFS_I(inode)->root;
3233         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3234         struct extent_buffer *eb;
3235         unsigned long len;
3236         u64 bytenr = page_offset(page);
3237
3238         if (page->private == EXTENT_PAGE_PRIVATE)
3239                 goto out;
3240
3241         len = page->private >> 2;
3242         eb = find_extent_buffer(io_tree, bytenr, len);
3243         if (!eb)
3244                 goto out;
3245
3246         if (!btrfs_try_tree_write_lock(eb)) {
3247                 flush_fn(data);
3248                 btrfs_tree_lock(eb);
3249         }
3250         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3251
3252         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3253                 spin_lock(&root->fs_info->delalloc_lock);
3254                 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3255                         root->fs_info->dirty_metadata_bytes -= eb->len;
3256                 else
3257                         WARN_ON(1);
3258                 spin_unlock(&root->fs_info->delalloc_lock);
3259         }
3260
3261         btrfs_tree_unlock(eb);
3262         free_extent_buffer(eb);
3263 out:
3264         if (!trylock_page(page)) {
3265                 flush_fn(data);
3266                 lock_page(page);
3267         }
3268         return 0;
3269 }
3270
3271 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3272                               int read_only)
3273 {
3274         if (read_only)
3275                 return;
3276
3277         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3278                 printk(KERN_WARNING "warning: mount fs with errors, "
3279                        "running btrfsck is recommended\n");
3280 }
3281
3282 int btrfs_error_commit_super(struct btrfs_root *root)
3283 {
3284         int ret;
3285
3286         mutex_lock(&root->fs_info->cleaner_mutex);
3287         btrfs_run_delayed_iputs(root);
3288         mutex_unlock(&root->fs_info->cleaner_mutex);
3289
3290         down_write(&root->fs_info->cleanup_work_sem);
3291         up_write(&root->fs_info->cleanup_work_sem);
3292
3293         /* cleanup FS via transaction */
3294         btrfs_cleanup_transaction(root);
3295
3296         ret = write_ctree_super(NULL, root, 0);
3297
3298         return ret;
3299 }
3300
3301 static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
3302 {
3303         struct btrfs_inode *btrfs_inode;
3304         struct list_head splice;
3305
3306         INIT_LIST_HEAD(&splice);
3307
3308         mutex_lock(&root->fs_info->ordered_operations_mutex);
3309         spin_lock(&root->fs_info->ordered_extent_lock);
3310
3311         list_splice_init(&root->fs_info->ordered_operations, &splice);
3312         while (!list_empty(&splice)) {
3313                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3314                                          ordered_operations);
3315
3316                 list_del_init(&btrfs_inode->ordered_operations);
3317
3318                 btrfs_invalidate_inodes(btrfs_inode->root);
3319         }
3320
3321         spin_unlock(&root->fs_info->ordered_extent_lock);
3322         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3323
3324         return 0;
3325 }
3326
3327 static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
3328 {
3329         struct list_head splice;
3330         struct btrfs_ordered_extent *ordered;
3331         struct inode *inode;
3332
3333         INIT_LIST_HEAD(&splice);
3334
3335         spin_lock(&root->fs_info->ordered_extent_lock);
3336
3337         list_splice_init(&root->fs_info->ordered_extents, &splice);
3338         while (!list_empty(&splice)) {
3339                 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3340                                      root_extent_list);
3341
3342                 list_del_init(&ordered->root_extent_list);
3343                 atomic_inc(&ordered->refs);
3344
3345                 /* the inode may be getting freed (in sys_unlink path). */
3346                 inode = igrab(ordered->inode);
3347
3348                 spin_unlock(&root->fs_info->ordered_extent_lock);
3349                 if (inode)
3350                         iput(inode);
3351
3352                 atomic_set(&ordered->refs, 1);
3353                 btrfs_put_ordered_extent(ordered);
3354
3355                 spin_lock(&root->fs_info->ordered_extent_lock);
3356         }
3357
3358         spin_unlock(&root->fs_info->ordered_extent_lock);
3359
3360         return 0;
3361 }
3362
3363 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3364                                       struct btrfs_root *root)
3365 {
3366         struct rb_node *node;
3367         struct btrfs_delayed_ref_root *delayed_refs;
3368         struct btrfs_delayed_ref_node *ref;
3369         int ret = 0;
3370
3371         delayed_refs = &trans->delayed_refs;
3372
3373         spin_lock(&delayed_refs->lock);
3374         if (delayed_refs->num_entries == 0) {
3375                 spin_unlock(&delayed_refs->lock);
3376                 printk(KERN_INFO "delayed_refs has NO entry\n");
3377                 return ret;
3378         }
3379
3380         node = rb_first(&delayed_refs->root);
3381         while (node) {
3382                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3383                 node = rb_next(node);
3384
3385                 ref->in_tree = 0;
3386                 rb_erase(&ref->rb_node, &delayed_refs->root);
3387                 delayed_refs->num_entries--;
3388
3389                 atomic_set(&ref->refs, 1);
3390                 if (btrfs_delayed_ref_is_head(ref)) {
3391                         struct btrfs_delayed_ref_head *head;
3392
3393                         head = btrfs_delayed_node_to_head(ref);
3394                         mutex_lock(&head->mutex);
3395                         kfree(head->extent_op);
3396                         delayed_refs->num_heads--;
3397                         if (list_empty(&head->cluster))
3398                                 delayed_refs->num_heads_ready--;
3399                         list_del_init(&head->cluster);
3400                         mutex_unlock(&head->mutex);
3401                 }
3402
3403                 spin_unlock(&delayed_refs->lock);
3404                 btrfs_put_delayed_ref(ref);
3405
3406                 cond_resched();
3407                 spin_lock(&delayed_refs->lock);
3408         }
3409
3410         spin_unlock(&delayed_refs->lock);
3411
3412         return ret;
3413 }
3414
3415 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3416 {
3417         struct btrfs_pending_snapshot *snapshot;
3418         struct list_head splice;
3419
3420         INIT_LIST_HEAD(&splice);
3421
3422         list_splice_init(&t->pending_snapshots, &splice);
3423
3424         while (!list_empty(&splice)) {
3425                 snapshot = list_entry(splice.next,
3426                                       struct btrfs_pending_snapshot,
3427                                       list);
3428
3429                 list_del_init(&snapshot->list);
3430
3431                 kfree(snapshot);
3432         }
3433
3434         return 0;
3435 }
3436
3437 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3438 {
3439         struct btrfs_inode *btrfs_inode;
3440         struct list_head splice;
3441
3442         INIT_LIST_HEAD(&splice);
3443
3444         spin_lock(&root->fs_info->delalloc_lock);
3445         list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3446
3447         while (!list_empty(&splice)) {
3448                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3449                                     delalloc_inodes);
3450
3451                 list_del_init(&btrfs_inode->delalloc_inodes);
3452
3453                 btrfs_invalidate_inodes(btrfs_inode->root);
3454         }
3455
3456         spin_unlock(&root->fs_info->delalloc_lock);
3457
3458         return 0;
3459 }
3460
3461 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3462                                         struct extent_io_tree *dirty_pages,
3463                                         int mark)
3464 {
3465         int ret;
3466         struct page *page;
3467         struct inode *btree_inode = root->fs_info->btree_inode;
3468         struct extent_buffer *eb;
3469         u64 start = 0;
3470         u64 end;
3471         u64 offset;
3472         unsigned long index;
3473
3474         while (1) {
3475                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3476                                             mark);
3477                 if (ret)
3478                         break;
3479
3480                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3481                 while (start <= end) {
3482                         index = start >> PAGE_CACHE_SHIFT;
3483                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3484                         page = find_get_page(btree_inode->i_mapping, index);
3485                         if (!page)
3486                                 continue;
3487                         offset = page_offset(page);
3488
3489                         spin_lock(&dirty_pages->buffer_lock);
3490                         eb = radix_tree_lookup(
3491                              &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3492                                                offset >> PAGE_CACHE_SHIFT);
3493                         spin_unlock(&dirty_pages->buffer_lock);
3494                         if (eb) {
3495                                 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3496                                                          &eb->bflags);
3497                                 atomic_set(&eb->refs, 1);
3498                         }
3499                         if (PageWriteback(page))
3500                                 end_page_writeback(page);
3501
3502                         lock_page(page);
3503                         if (PageDirty(page)) {
3504                                 clear_page_dirty_for_io(page);
3505                                 spin_lock_irq(&page->mapping->tree_lock);
3506                                 radix_tree_tag_clear(&page->mapping->page_tree,
3507                                                         page_index(page),
3508                                                         PAGECACHE_TAG_DIRTY);
3509                                 spin_unlock_irq(&page->mapping->tree_lock);
3510                         }
3511
3512                         page->mapping->a_ops->invalidatepage(page, 0);
3513                         unlock_page(page);
3514                 }
3515         }
3516
3517         return ret;
3518 }
3519
3520 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3521                                        struct extent_io_tree *pinned_extents)
3522 {
3523         struct extent_io_tree *unpin;
3524         u64 start;
3525         u64 end;
3526         int ret;
3527
3528         unpin = pinned_extents;
3529         while (1) {
3530                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3531                                             EXTENT_DIRTY);
3532                 if (ret)
3533                         break;
3534
3535                 /* opt_discard */
3536                 if (btrfs_test_opt(root, DISCARD))
3537                         ret = btrfs_error_discard_extent(root, start,
3538                                                          end + 1 - start,
3539                                                          NULL);
3540
3541                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3542                 btrfs_error_unpin_extent_range(root, start, end);
3543                 cond_resched();
3544         }
3545
3546         return 0;
3547 }
3548
3549 static int btrfs_cleanup_transaction(struct btrfs_root *root)
3550 {
3551         struct btrfs_transaction *t;
3552         LIST_HEAD(list);
3553
3554         WARN_ON(1);
3555
3556         mutex_lock(&root->fs_info->transaction_kthread_mutex);
3557
3558         spin_lock(&root->fs_info->trans_lock);
3559         list_splice_init(&root->fs_info->trans_list, &list);
3560         root->fs_info->trans_no_join = 1;
3561         spin_unlock(&root->fs_info->trans_lock);
3562
3563         while (!list_empty(&list)) {
3564                 t = list_entry(list.next, struct btrfs_transaction, list);
3565                 if (!t)
3566                         break;
3567
3568                 btrfs_destroy_ordered_operations(root);
3569
3570                 btrfs_destroy_ordered_extents(root);
3571
3572                 btrfs_destroy_delayed_refs(t, root);
3573
3574                 btrfs_block_rsv_release(root,
3575                                         &root->fs_info->trans_block_rsv,
3576                                         t->dirty_pages.dirty_bytes);
3577
3578                 /* FIXME: cleanup wait for commit */
3579                 t->in_commit = 1;
3580                 t->blocked = 1;
3581                 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3582                         wake_up(&root->fs_info->transaction_blocked_wait);
3583
3584                 t->blocked = 0;
3585                 if (waitqueue_active(&root->fs_info->transaction_wait))
3586                         wake_up(&root->fs_info->transaction_wait);
3587
3588                 t->commit_done = 1;
3589                 if (waitqueue_active(&t->commit_wait))
3590                         wake_up(&t->commit_wait);
3591
3592                 btrfs_destroy_pending_snapshots(t);
3593
3594                 btrfs_destroy_delalloc_inodes(root);
3595
3596                 spin_lock(&root->fs_info->trans_lock);
3597                 root->fs_info->running_transaction = NULL;
3598                 spin_unlock(&root->fs_info->trans_lock);
3599
3600                 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3601                                              EXTENT_DIRTY);
3602
3603                 btrfs_destroy_pinned_extent(root,
3604                                             root->fs_info->pinned_extents);
3605
3606                 atomic_set(&t->use_count, 0);
3607                 list_del_init(&t->list);
3608                 memset(t, 0, sizeof(*t));
3609                 kmem_cache_free(btrfs_transaction_cachep, t);
3610         }
3611
3612         spin_lock(&root->fs_info->trans_lock);
3613         root->fs_info->trans_no_join = 0;
3614         spin_unlock(&root->fs_info->trans_lock);
3615         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3616
3617         return 0;
3618 }
3619
3620 static struct extent_io_ops btree_extent_io_ops = {
3621         .write_cache_pages_lock_hook = btree_lock_page_hook,
3622         .readpage_end_io_hook = btree_readpage_end_io_hook,
3623         .readpage_io_failed_hook = btree_io_failed_hook,
3624         .submit_bio_hook = btree_submit_bio_hook,
3625         /* note we're sharing with inode.c for the merge bio hook */
3626         .merge_bio_hook = btrfs_merge_bio_hook,
3627 };