btrfs: add a leak check for roots
[linux-block.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <linux/sched/mm.h>
21 #include <asm/unaligned.h>
22 #include <crypto/hash.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "btrfs_inode.h"
27 #include "volumes.h"
28 #include "print-tree.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "free-space-cache.h"
32 #include "free-space-tree.h"
33 #include "inode-map.h"
34 #include "check-integrity.h"
35 #include "rcu-string.h"
36 #include "dev-replace.h"
37 #include "raid56.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40 #include "compression.h"
41 #include "tree-checker.h"
42 #include "ref-verify.h"
43 #include "block-group.h"
44 #include "discard.h"
45
46 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
47                                  BTRFS_HEADER_FLAG_RELOC |\
48                                  BTRFS_SUPER_FLAG_ERROR |\
49                                  BTRFS_SUPER_FLAG_SEEDING |\
50                                  BTRFS_SUPER_FLAG_METADUMP |\
51                                  BTRFS_SUPER_FLAG_METADUMP_V2)
52
53 static const struct extent_io_ops btree_extent_io_ops;
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57                                       struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60                                         struct extent_io_tree *dirty_pages,
61                                         int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63                                        struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66
67 /*
68  * btrfs_end_io_wq structs are used to do processing in task context when an IO
69  * is complete.  This is used during reads to verify checksums, and it is used
70  * by writes to insert metadata for new file extents after IO is complete.
71  */
72 struct btrfs_end_io_wq {
73         struct bio *bio;
74         bio_end_io_t *end_io;
75         void *private;
76         struct btrfs_fs_info *info;
77         blk_status_t status;
78         enum btrfs_wq_endio_type metadata;
79         struct btrfs_work work;
80 };
81
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83
84 int __init btrfs_end_io_wq_init(void)
85 {
86         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87                                         sizeof(struct btrfs_end_io_wq),
88                                         0,
89                                         SLAB_MEM_SPREAD,
90                                         NULL);
91         if (!btrfs_end_io_wq_cache)
92                 return -ENOMEM;
93         return 0;
94 }
95
96 void __cold btrfs_end_io_wq_exit(void)
97 {
98         kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100
101 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102 {
103         if (fs_info->csum_shash)
104                 crypto_free_shash(fs_info->csum_shash);
105 }
106
107 /*
108  * async submit bios are used to offload expensive checksumming
109  * onto the worker threads.  They checksum file and metadata bios
110  * just before they are sent down the IO stack.
111  */
112 struct async_submit_bio {
113         void *private_data;
114         struct bio *bio;
115         extent_submit_bio_start_t *submit_bio_start;
116         int mirror_num;
117         /*
118          * bio_offset is optional, can be used if the pages in the bio
119          * can't tell us where in the file the bio should go
120          */
121         u64 bio_offset;
122         struct btrfs_work work;
123         blk_status_t status;
124 };
125
126 /*
127  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
128  * eb, the lockdep key is determined by the btrfs_root it belongs to and
129  * the level the eb occupies in the tree.
130  *
131  * Different roots are used for different purposes and may nest inside each
132  * other and they require separate keysets.  As lockdep keys should be
133  * static, assign keysets according to the purpose of the root as indicated
134  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
135  * roots have separate keysets.
136  *
137  * Lock-nesting across peer nodes is always done with the immediate parent
138  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
139  * subclass to avoid triggering lockdep warning in such cases.
140  *
141  * The key is set by the readpage_end_io_hook after the buffer has passed
142  * csum validation but before the pages are unlocked.  It is also set by
143  * btrfs_init_new_buffer on freshly allocated blocks.
144  *
145  * We also add a check to make sure the highest level of the tree is the
146  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
147  * needs update as well.
148  */
149 #ifdef CONFIG_DEBUG_LOCK_ALLOC
150 # if BTRFS_MAX_LEVEL != 8
151 #  error
152 # endif
153
154 static struct btrfs_lockdep_keyset {
155         u64                     id;             /* root objectid */
156         const char              *name_stem;     /* lock name stem */
157         char                    names[BTRFS_MAX_LEVEL + 1][20];
158         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
159 } btrfs_lockdep_keysets[] = {
160         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
161         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
162         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
163         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
164         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
165         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
166         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
167         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
168         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
169         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
170         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
171         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
172         { .id = 0,                              .name_stem = "tree"     },
173 };
174
175 void __init btrfs_init_lockdep(void)
176 {
177         int i, j;
178
179         /* initialize lockdep class names */
180         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
181                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
182
183                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
184                         snprintf(ks->names[j], sizeof(ks->names[j]),
185                                  "btrfs-%s-%02d", ks->name_stem, j);
186         }
187 }
188
189 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
190                                     int level)
191 {
192         struct btrfs_lockdep_keyset *ks;
193
194         BUG_ON(level >= ARRAY_SIZE(ks->keys));
195
196         /* find the matching keyset, id 0 is the default entry */
197         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
198                 if (ks->id == objectid)
199                         break;
200
201         lockdep_set_class_and_name(&eb->lock,
202                                    &ks->keys[level], ks->names[level]);
203 }
204
205 #endif
206
207 /*
208  * extents on the btree inode are pretty simple, there's one extent
209  * that covers the entire device
210  */
211 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
212                                     struct page *page, size_t pg_offset,
213                                     u64 start, u64 len)
214 {
215         struct extent_map_tree *em_tree = &inode->extent_tree;
216         struct extent_map *em;
217         int ret;
218
219         read_lock(&em_tree->lock);
220         em = lookup_extent_mapping(em_tree, start, len);
221         if (em) {
222                 read_unlock(&em_tree->lock);
223                 goto out;
224         }
225         read_unlock(&em_tree->lock);
226
227         em = alloc_extent_map();
228         if (!em) {
229                 em = ERR_PTR(-ENOMEM);
230                 goto out;
231         }
232         em->start = 0;
233         em->len = (u64)-1;
234         em->block_len = (u64)-1;
235         em->block_start = 0;
236
237         write_lock(&em_tree->lock);
238         ret = add_extent_mapping(em_tree, em, 0);
239         if (ret == -EEXIST) {
240                 free_extent_map(em);
241                 em = lookup_extent_mapping(em_tree, start, len);
242                 if (!em)
243                         em = ERR_PTR(-EIO);
244         } else if (ret) {
245                 free_extent_map(em);
246                 em = ERR_PTR(ret);
247         }
248         write_unlock(&em_tree->lock);
249
250 out:
251         return em;
252 }
253
254 /*
255  * Compute the csum of a btree block and store the result to provided buffer.
256  *
257  * Returns error if the extent buffer cannot be mapped.
258  */
259 static int csum_tree_block(struct extent_buffer *buf, u8 *result)
260 {
261         struct btrfs_fs_info *fs_info = buf->fs_info;
262         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
263         unsigned long len;
264         unsigned long cur_len;
265         unsigned long offset = BTRFS_CSUM_SIZE;
266         char *kaddr;
267         unsigned long map_start;
268         unsigned long map_len;
269         int err;
270
271         shash->tfm = fs_info->csum_shash;
272         crypto_shash_init(shash);
273
274         len = buf->len - offset;
275
276         while (len > 0) {
277                 /*
278                  * Note: we don't need to check for the err == 1 case here, as
279                  * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
280                  * and 'min_len = 32' and the currently implemented mapping
281                  * algorithm we cannot cross a page boundary.
282                  */
283                 err = map_private_extent_buffer(buf, offset, 32,
284                                         &kaddr, &map_start, &map_len);
285                 if (WARN_ON(err))
286                         return err;
287                 cur_len = min(len, map_len - (offset - map_start));
288                 crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
289                 len -= cur_len;
290                 offset += cur_len;
291         }
292         memset(result, 0, BTRFS_CSUM_SIZE);
293
294         crypto_shash_final(shash, result);
295
296         return 0;
297 }
298
299 /*
300  * we can't consider a given block up to date unless the transid of the
301  * block matches the transid in the parent node's pointer.  This is how we
302  * detect blocks that either didn't get written at all or got written
303  * in the wrong place.
304  */
305 static int verify_parent_transid(struct extent_io_tree *io_tree,
306                                  struct extent_buffer *eb, u64 parent_transid,
307                                  int atomic)
308 {
309         struct extent_state *cached_state = NULL;
310         int ret;
311         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
312
313         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
314                 return 0;
315
316         if (atomic)
317                 return -EAGAIN;
318
319         if (need_lock) {
320                 btrfs_tree_read_lock(eb);
321                 btrfs_set_lock_blocking_read(eb);
322         }
323
324         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
325                          &cached_state);
326         if (extent_buffer_uptodate(eb) &&
327             btrfs_header_generation(eb) == parent_transid) {
328                 ret = 0;
329                 goto out;
330         }
331         btrfs_err_rl(eb->fs_info,
332                 "parent transid verify failed on %llu wanted %llu found %llu",
333                         eb->start,
334                         parent_transid, btrfs_header_generation(eb));
335         ret = 1;
336
337         /*
338          * Things reading via commit roots that don't have normal protection,
339          * like send, can have a really old block in cache that may point at a
340          * block that has been freed and re-allocated.  So don't clear uptodate
341          * if we find an eb that is under IO (dirty/writeback) because we could
342          * end up reading in the stale data and then writing it back out and
343          * making everybody very sad.
344          */
345         if (!extent_buffer_under_io(eb))
346                 clear_extent_buffer_uptodate(eb);
347 out:
348         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
349                              &cached_state);
350         if (need_lock)
351                 btrfs_tree_read_unlock_blocking(eb);
352         return ret;
353 }
354
355 static bool btrfs_supported_super_csum(u16 csum_type)
356 {
357         switch (csum_type) {
358         case BTRFS_CSUM_TYPE_CRC32:
359         case BTRFS_CSUM_TYPE_XXHASH:
360         case BTRFS_CSUM_TYPE_SHA256:
361         case BTRFS_CSUM_TYPE_BLAKE2:
362                 return true;
363         default:
364                 return false;
365         }
366 }
367
368 /*
369  * Return 0 if the superblock checksum type matches the checksum value of that
370  * algorithm. Pass the raw disk superblock data.
371  */
372 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
373                                   char *raw_disk_sb)
374 {
375         struct btrfs_super_block *disk_sb =
376                 (struct btrfs_super_block *)raw_disk_sb;
377         char result[BTRFS_CSUM_SIZE];
378         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
379
380         shash->tfm = fs_info->csum_shash;
381         crypto_shash_init(shash);
382
383         /*
384          * The super_block structure does not span the whole
385          * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
386          * filled with zeros and is included in the checksum.
387          */
388         crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
389                             BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
390         crypto_shash_final(shash, result);
391
392         if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
393                 return 1;
394
395         return 0;
396 }
397
398 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
399                            struct btrfs_key *first_key, u64 parent_transid)
400 {
401         struct btrfs_fs_info *fs_info = eb->fs_info;
402         int found_level;
403         struct btrfs_key found_key;
404         int ret;
405
406         found_level = btrfs_header_level(eb);
407         if (found_level != level) {
408                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
409                      KERN_ERR "BTRFS: tree level check failed\n");
410                 btrfs_err(fs_info,
411 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
412                           eb->start, level, found_level);
413                 return -EIO;
414         }
415
416         if (!first_key)
417                 return 0;
418
419         /*
420          * For live tree block (new tree blocks in current transaction),
421          * we need proper lock context to avoid race, which is impossible here.
422          * So we only checks tree blocks which is read from disk, whose
423          * generation <= fs_info->last_trans_committed.
424          */
425         if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
426                 return 0;
427
428         /* We have @first_key, so this @eb must have at least one item */
429         if (btrfs_header_nritems(eb) == 0) {
430                 btrfs_err(fs_info,
431                 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
432                           eb->start);
433                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
434                 return -EUCLEAN;
435         }
436
437         if (found_level)
438                 btrfs_node_key_to_cpu(eb, &found_key, 0);
439         else
440                 btrfs_item_key_to_cpu(eb, &found_key, 0);
441         ret = btrfs_comp_cpu_keys(first_key, &found_key);
442
443         if (ret) {
444                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
445                      KERN_ERR "BTRFS: tree first key check failed\n");
446                 btrfs_err(fs_info,
447 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
448                           eb->start, parent_transid, first_key->objectid,
449                           first_key->type, first_key->offset,
450                           found_key.objectid, found_key.type,
451                           found_key.offset);
452         }
453         return ret;
454 }
455
456 /*
457  * helper to read a given tree block, doing retries as required when
458  * the checksums don't match and we have alternate mirrors to try.
459  *
460  * @parent_transid:     expected transid, skip check if 0
461  * @level:              expected level, mandatory check
462  * @first_key:          expected key of first slot, skip check if NULL
463  */
464 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
465                                           u64 parent_transid, int level,
466                                           struct btrfs_key *first_key)
467 {
468         struct btrfs_fs_info *fs_info = eb->fs_info;
469         struct extent_io_tree *io_tree;
470         int failed = 0;
471         int ret;
472         int num_copies = 0;
473         int mirror_num = 0;
474         int failed_mirror = 0;
475
476         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
477         while (1) {
478                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
479                 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
480                 if (!ret) {
481                         if (verify_parent_transid(io_tree, eb,
482                                                    parent_transid, 0))
483                                 ret = -EIO;
484                         else if (btrfs_verify_level_key(eb, level,
485                                                 first_key, parent_transid))
486                                 ret = -EUCLEAN;
487                         else
488                                 break;
489                 }
490
491                 num_copies = btrfs_num_copies(fs_info,
492                                               eb->start, eb->len);
493                 if (num_copies == 1)
494                         break;
495
496                 if (!failed_mirror) {
497                         failed = 1;
498                         failed_mirror = eb->read_mirror;
499                 }
500
501                 mirror_num++;
502                 if (mirror_num == failed_mirror)
503                         mirror_num++;
504
505                 if (mirror_num > num_copies)
506                         break;
507         }
508
509         if (failed && !ret && failed_mirror)
510                 btrfs_repair_eb_io_failure(eb, failed_mirror);
511
512         return ret;
513 }
514
515 /*
516  * checksum a dirty tree block before IO.  This has extra checks to make sure
517  * we only fill in the checksum field in the first page of a multi-page block
518  */
519
520 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
521 {
522         u64 start = page_offset(page);
523         u64 found_start;
524         u8 result[BTRFS_CSUM_SIZE];
525         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
526         struct extent_buffer *eb;
527         int ret;
528
529         eb = (struct extent_buffer *)page->private;
530         if (page != eb->pages[0])
531                 return 0;
532
533         found_start = btrfs_header_bytenr(eb);
534         /*
535          * Please do not consolidate these warnings into a single if.
536          * It is useful to know what went wrong.
537          */
538         if (WARN_ON(found_start != start))
539                 return -EUCLEAN;
540         if (WARN_ON(!PageUptodate(page)))
541                 return -EUCLEAN;
542
543         ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
544                         btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
545
546         if (csum_tree_block(eb, result))
547                 return -EINVAL;
548
549         if (btrfs_header_level(eb))
550                 ret = btrfs_check_node(eb);
551         else
552                 ret = btrfs_check_leaf_full(eb);
553
554         if (ret < 0) {
555                 btrfs_print_tree(eb, 0);
556                 btrfs_err(fs_info,
557                 "block=%llu write time tree block corruption detected",
558                           eb->start);
559                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
560                 return ret;
561         }
562         write_extent_buffer(eb, result, 0, csum_size);
563
564         return 0;
565 }
566
567 static int check_tree_block_fsid(struct extent_buffer *eb)
568 {
569         struct btrfs_fs_info *fs_info = eb->fs_info;
570         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
571         u8 fsid[BTRFS_FSID_SIZE];
572         int ret = 1;
573
574         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
575         while (fs_devices) {
576                 u8 *metadata_uuid;
577
578                 /*
579                  * Checking the incompat flag is only valid for the current
580                  * fs. For seed devices it's forbidden to have their uuid
581                  * changed so reading ->fsid in this case is fine
582                  */
583                 if (fs_devices == fs_info->fs_devices &&
584                     btrfs_fs_incompat(fs_info, METADATA_UUID))
585                         metadata_uuid = fs_devices->metadata_uuid;
586                 else
587                         metadata_uuid = fs_devices->fsid;
588
589                 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
590                         ret = 0;
591                         break;
592                 }
593                 fs_devices = fs_devices->seed;
594         }
595         return ret;
596 }
597
598 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
599                                       u64 phy_offset, struct page *page,
600                                       u64 start, u64 end, int mirror)
601 {
602         u64 found_start;
603         int found_level;
604         struct extent_buffer *eb;
605         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
606         struct btrfs_fs_info *fs_info = root->fs_info;
607         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
608         int ret = 0;
609         u8 result[BTRFS_CSUM_SIZE];
610         int reads_done;
611
612         if (!page->private)
613                 goto out;
614
615         eb = (struct extent_buffer *)page->private;
616
617         /* the pending IO might have been the only thing that kept this buffer
618          * in memory.  Make sure we have a ref for all this other checks
619          */
620         atomic_inc(&eb->refs);
621
622         reads_done = atomic_dec_and_test(&eb->io_pages);
623         if (!reads_done)
624                 goto err;
625
626         eb->read_mirror = mirror;
627         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
628                 ret = -EIO;
629                 goto err;
630         }
631
632         found_start = btrfs_header_bytenr(eb);
633         if (found_start != eb->start) {
634                 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
635                              eb->start, found_start);
636                 ret = -EIO;
637                 goto err;
638         }
639         if (check_tree_block_fsid(eb)) {
640                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
641                              eb->start);
642                 ret = -EIO;
643                 goto err;
644         }
645         found_level = btrfs_header_level(eb);
646         if (found_level >= BTRFS_MAX_LEVEL) {
647                 btrfs_err(fs_info, "bad tree block level %d on %llu",
648                           (int)btrfs_header_level(eb), eb->start);
649                 ret = -EIO;
650                 goto err;
651         }
652
653         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
654                                        eb, found_level);
655
656         ret = csum_tree_block(eb, result);
657         if (ret)
658                 goto err;
659
660         if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
661                 u32 val;
662                 u32 found = 0;
663
664                 memcpy(&found, result, csum_size);
665
666                 read_extent_buffer(eb, &val, 0, csum_size);
667                 btrfs_warn_rl(fs_info,
668                 "%s checksum verify failed on %llu wanted %x found %x level %d",
669                               fs_info->sb->s_id, eb->start,
670                               val, found, btrfs_header_level(eb));
671                 ret = -EUCLEAN;
672                 goto err;
673         }
674
675         /*
676          * If this is a leaf block and it is corrupt, set the corrupt bit so
677          * that we don't try and read the other copies of this block, just
678          * return -EIO.
679          */
680         if (found_level == 0 && btrfs_check_leaf_full(eb)) {
681                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
682                 ret = -EIO;
683         }
684
685         if (found_level > 0 && btrfs_check_node(eb))
686                 ret = -EIO;
687
688         if (!ret)
689                 set_extent_buffer_uptodate(eb);
690         else
691                 btrfs_err(fs_info,
692                           "block=%llu read time tree block corruption detected",
693                           eb->start);
694 err:
695         if (reads_done &&
696             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
697                 btree_readahead_hook(eb, ret);
698
699         if (ret) {
700                 /*
701                  * our io error hook is going to dec the io pages
702                  * again, we have to make sure it has something
703                  * to decrement
704                  */
705                 atomic_inc(&eb->io_pages);
706                 clear_extent_buffer_uptodate(eb);
707         }
708         free_extent_buffer(eb);
709 out:
710         return ret;
711 }
712
713 static void end_workqueue_bio(struct bio *bio)
714 {
715         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
716         struct btrfs_fs_info *fs_info;
717         struct btrfs_workqueue *wq;
718
719         fs_info = end_io_wq->info;
720         end_io_wq->status = bio->bi_status;
721
722         if (bio_op(bio) == REQ_OP_WRITE) {
723                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
724                         wq = fs_info->endio_meta_write_workers;
725                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
726                         wq = fs_info->endio_freespace_worker;
727                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
728                         wq = fs_info->endio_raid56_workers;
729                 else
730                         wq = fs_info->endio_write_workers;
731         } else {
732                 if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR))
733                         wq = fs_info->endio_repair_workers;
734                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
735                         wq = fs_info->endio_raid56_workers;
736                 else if (end_io_wq->metadata)
737                         wq = fs_info->endio_meta_workers;
738                 else
739                         wq = fs_info->endio_workers;
740         }
741
742         btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
743         btrfs_queue_work(wq, &end_io_wq->work);
744 }
745
746 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
747                         enum btrfs_wq_endio_type metadata)
748 {
749         struct btrfs_end_io_wq *end_io_wq;
750
751         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
752         if (!end_io_wq)
753                 return BLK_STS_RESOURCE;
754
755         end_io_wq->private = bio->bi_private;
756         end_io_wq->end_io = bio->bi_end_io;
757         end_io_wq->info = info;
758         end_io_wq->status = 0;
759         end_io_wq->bio = bio;
760         end_io_wq->metadata = metadata;
761
762         bio->bi_private = end_io_wq;
763         bio->bi_end_io = end_workqueue_bio;
764         return 0;
765 }
766
767 static void run_one_async_start(struct btrfs_work *work)
768 {
769         struct async_submit_bio *async;
770         blk_status_t ret;
771
772         async = container_of(work, struct  async_submit_bio, work);
773         ret = async->submit_bio_start(async->private_data, async->bio,
774                                       async->bio_offset);
775         if (ret)
776                 async->status = ret;
777 }
778
779 /*
780  * In order to insert checksums into the metadata in large chunks, we wait
781  * until bio submission time.   All the pages in the bio are checksummed and
782  * sums are attached onto the ordered extent record.
783  *
784  * At IO completion time the csums attached on the ordered extent record are
785  * inserted into the tree.
786  */
787 static void run_one_async_done(struct btrfs_work *work)
788 {
789         struct async_submit_bio *async;
790         struct inode *inode;
791         blk_status_t ret;
792
793         async = container_of(work, struct  async_submit_bio, work);
794         inode = async->private_data;
795
796         /* If an error occurred we just want to clean up the bio and move on */
797         if (async->status) {
798                 async->bio->bi_status = async->status;
799                 bio_endio(async->bio);
800                 return;
801         }
802
803         /*
804          * All of the bios that pass through here are from async helpers.
805          * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
806          * This changes nothing when cgroups aren't in use.
807          */
808         async->bio->bi_opf |= REQ_CGROUP_PUNT;
809         ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
810         if (ret) {
811                 async->bio->bi_status = ret;
812                 bio_endio(async->bio);
813         }
814 }
815
816 static void run_one_async_free(struct btrfs_work *work)
817 {
818         struct async_submit_bio *async;
819
820         async = container_of(work, struct  async_submit_bio, work);
821         kfree(async);
822 }
823
824 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
825                                  int mirror_num, unsigned long bio_flags,
826                                  u64 bio_offset, void *private_data,
827                                  extent_submit_bio_start_t *submit_bio_start)
828 {
829         struct async_submit_bio *async;
830
831         async = kmalloc(sizeof(*async), GFP_NOFS);
832         if (!async)
833                 return BLK_STS_RESOURCE;
834
835         async->private_data = private_data;
836         async->bio = bio;
837         async->mirror_num = mirror_num;
838         async->submit_bio_start = submit_bio_start;
839
840         btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
841                         run_one_async_free);
842
843         async->bio_offset = bio_offset;
844
845         async->status = 0;
846
847         if (op_is_sync(bio->bi_opf))
848                 btrfs_set_work_high_priority(&async->work);
849
850         btrfs_queue_work(fs_info->workers, &async->work);
851         return 0;
852 }
853
854 static blk_status_t btree_csum_one_bio(struct bio *bio)
855 {
856         struct bio_vec *bvec;
857         struct btrfs_root *root;
858         int ret = 0;
859         struct bvec_iter_all iter_all;
860
861         ASSERT(!bio_flagged(bio, BIO_CLONED));
862         bio_for_each_segment_all(bvec, bio, iter_all) {
863                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
864                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
865                 if (ret)
866                         break;
867         }
868
869         return errno_to_blk_status(ret);
870 }
871
872 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
873                                              u64 bio_offset)
874 {
875         /*
876          * when we're called for a write, we're already in the async
877          * submission context.  Just jump into btrfs_map_bio
878          */
879         return btree_csum_one_bio(bio);
880 }
881
882 static int check_async_write(struct btrfs_fs_info *fs_info,
883                              struct btrfs_inode *bi)
884 {
885         if (atomic_read(&bi->sync_writers))
886                 return 0;
887         if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
888                 return 0;
889         return 1;
890 }
891
892 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
893                                           int mirror_num,
894                                           unsigned long bio_flags)
895 {
896         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
897         int async = check_async_write(fs_info, BTRFS_I(inode));
898         blk_status_t ret;
899
900         if (bio_op(bio) != REQ_OP_WRITE) {
901                 /*
902                  * called for a read, do the setup so that checksum validation
903                  * can happen in the async kernel threads
904                  */
905                 ret = btrfs_bio_wq_end_io(fs_info, bio,
906                                           BTRFS_WQ_ENDIO_METADATA);
907                 if (ret)
908                         goto out_w_error;
909                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
910         } else if (!async) {
911                 ret = btree_csum_one_bio(bio);
912                 if (ret)
913                         goto out_w_error;
914                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
915         } else {
916                 /*
917                  * kthread helpers are used to submit writes so that
918                  * checksumming can happen in parallel across all CPUs
919                  */
920                 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
921                                           0, inode, btree_submit_bio_start);
922         }
923
924         if (ret)
925                 goto out_w_error;
926         return 0;
927
928 out_w_error:
929         bio->bi_status = ret;
930         bio_endio(bio);
931         return ret;
932 }
933
934 #ifdef CONFIG_MIGRATION
935 static int btree_migratepage(struct address_space *mapping,
936                         struct page *newpage, struct page *page,
937                         enum migrate_mode mode)
938 {
939         /*
940          * we can't safely write a btree page from here,
941          * we haven't done the locking hook
942          */
943         if (PageDirty(page))
944                 return -EAGAIN;
945         /*
946          * Buffers may be managed in a filesystem specific way.
947          * We must have no buffers or drop them.
948          */
949         if (page_has_private(page) &&
950             !try_to_release_page(page, GFP_KERNEL))
951                 return -EAGAIN;
952         return migrate_page(mapping, newpage, page, mode);
953 }
954 #endif
955
956
957 static int btree_writepages(struct address_space *mapping,
958                             struct writeback_control *wbc)
959 {
960         struct btrfs_fs_info *fs_info;
961         int ret;
962
963         if (wbc->sync_mode == WB_SYNC_NONE) {
964
965                 if (wbc->for_kupdate)
966                         return 0;
967
968                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
969                 /* this is a bit racy, but that's ok */
970                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
971                                              BTRFS_DIRTY_METADATA_THRESH,
972                                              fs_info->dirty_metadata_batch);
973                 if (ret < 0)
974                         return 0;
975         }
976         return btree_write_cache_pages(mapping, wbc);
977 }
978
979 static int btree_readpage(struct file *file, struct page *page)
980 {
981         struct extent_io_tree *tree;
982         tree = &BTRFS_I(page->mapping->host)->io_tree;
983         return extent_read_full_page(tree, page, btree_get_extent, 0);
984 }
985
986 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
987 {
988         if (PageWriteback(page) || PageDirty(page))
989                 return 0;
990
991         return try_release_extent_buffer(page);
992 }
993
994 static void btree_invalidatepage(struct page *page, unsigned int offset,
995                                  unsigned int length)
996 {
997         struct extent_io_tree *tree;
998         tree = &BTRFS_I(page->mapping->host)->io_tree;
999         extent_invalidatepage(tree, page, offset);
1000         btree_releasepage(page, GFP_NOFS);
1001         if (PagePrivate(page)) {
1002                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1003                            "page private not zero on page %llu",
1004                            (unsigned long long)page_offset(page));
1005                 ClearPagePrivate(page);
1006                 set_page_private(page, 0);
1007                 put_page(page);
1008         }
1009 }
1010
1011 static int btree_set_page_dirty(struct page *page)
1012 {
1013 #ifdef DEBUG
1014         struct extent_buffer *eb;
1015
1016         BUG_ON(!PagePrivate(page));
1017         eb = (struct extent_buffer *)page->private;
1018         BUG_ON(!eb);
1019         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1020         BUG_ON(!atomic_read(&eb->refs));
1021         btrfs_assert_tree_locked(eb);
1022 #endif
1023         return __set_page_dirty_nobuffers(page);
1024 }
1025
1026 static const struct address_space_operations btree_aops = {
1027         .readpage       = btree_readpage,
1028         .writepages     = btree_writepages,
1029         .releasepage    = btree_releasepage,
1030         .invalidatepage = btree_invalidatepage,
1031 #ifdef CONFIG_MIGRATION
1032         .migratepage    = btree_migratepage,
1033 #endif
1034         .set_page_dirty = btree_set_page_dirty,
1035 };
1036
1037 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1038 {
1039         struct extent_buffer *buf = NULL;
1040         int ret;
1041
1042         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1043         if (IS_ERR(buf))
1044                 return;
1045
1046         ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1047         if (ret < 0)
1048                 free_extent_buffer_stale(buf);
1049         else
1050                 free_extent_buffer(buf);
1051 }
1052
1053 struct extent_buffer *btrfs_find_create_tree_block(
1054                                                 struct btrfs_fs_info *fs_info,
1055                                                 u64 bytenr)
1056 {
1057         if (btrfs_is_testing(fs_info))
1058                 return alloc_test_extent_buffer(fs_info, bytenr);
1059         return alloc_extent_buffer(fs_info, bytenr);
1060 }
1061
1062 /*
1063  * Read tree block at logical address @bytenr and do variant basic but critical
1064  * verification.
1065  *
1066  * @parent_transid:     expected transid of this tree block, skip check if 0
1067  * @level:              expected level, mandatory check
1068  * @first_key:          expected key in slot 0, skip check if NULL
1069  */
1070 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1071                                       u64 parent_transid, int level,
1072                                       struct btrfs_key *first_key)
1073 {
1074         struct extent_buffer *buf = NULL;
1075         int ret;
1076
1077         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1078         if (IS_ERR(buf))
1079                 return buf;
1080
1081         ret = btree_read_extent_buffer_pages(buf, parent_transid,
1082                                              level, first_key);
1083         if (ret) {
1084                 free_extent_buffer_stale(buf);
1085                 return ERR_PTR(ret);
1086         }
1087         return buf;
1088
1089 }
1090
1091 void btrfs_clean_tree_block(struct extent_buffer *buf)
1092 {
1093         struct btrfs_fs_info *fs_info = buf->fs_info;
1094         if (btrfs_header_generation(buf) ==
1095             fs_info->running_transaction->transid) {
1096                 btrfs_assert_tree_locked(buf);
1097
1098                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1099                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1100                                                  -buf->len,
1101                                                  fs_info->dirty_metadata_batch);
1102                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1103                         btrfs_set_lock_blocking_write(buf);
1104                         clear_extent_buffer_dirty(buf);
1105                 }
1106         }
1107 }
1108
1109 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1110 {
1111         struct btrfs_subvolume_writers *writers;
1112         int ret;
1113
1114         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1115         if (!writers)
1116                 return ERR_PTR(-ENOMEM);
1117
1118         ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1119         if (ret < 0) {
1120                 kfree(writers);
1121                 return ERR_PTR(ret);
1122         }
1123
1124         init_waitqueue_head(&writers->wait);
1125         return writers;
1126 }
1127
1128 static void
1129 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1130 {
1131         percpu_counter_destroy(&writers->counter);
1132         kfree(writers);
1133 }
1134
1135 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1136                          u64 objectid)
1137 {
1138         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1139         root->fs_info = fs_info;
1140         root->node = NULL;
1141         root->commit_root = NULL;
1142         root->state = 0;
1143         root->orphan_cleanup_state = 0;
1144
1145         root->last_trans = 0;
1146         root->highest_objectid = 0;
1147         root->nr_delalloc_inodes = 0;
1148         root->nr_ordered_extents = 0;
1149         root->inode_tree = RB_ROOT;
1150         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1151         root->block_rsv = NULL;
1152
1153         INIT_LIST_HEAD(&root->dirty_list);
1154         INIT_LIST_HEAD(&root->root_list);
1155         INIT_LIST_HEAD(&root->delalloc_inodes);
1156         INIT_LIST_HEAD(&root->delalloc_root);
1157         INIT_LIST_HEAD(&root->ordered_extents);
1158         INIT_LIST_HEAD(&root->ordered_root);
1159         INIT_LIST_HEAD(&root->reloc_dirty_list);
1160         INIT_LIST_HEAD(&root->logged_list[0]);
1161         INIT_LIST_HEAD(&root->logged_list[1]);
1162         spin_lock_init(&root->inode_lock);
1163         spin_lock_init(&root->delalloc_lock);
1164         spin_lock_init(&root->ordered_extent_lock);
1165         spin_lock_init(&root->accounting_lock);
1166         spin_lock_init(&root->log_extents_lock[0]);
1167         spin_lock_init(&root->log_extents_lock[1]);
1168         spin_lock_init(&root->qgroup_meta_rsv_lock);
1169         mutex_init(&root->objectid_mutex);
1170         mutex_init(&root->log_mutex);
1171         mutex_init(&root->ordered_extent_mutex);
1172         mutex_init(&root->delalloc_mutex);
1173         init_waitqueue_head(&root->log_writer_wait);
1174         init_waitqueue_head(&root->log_commit_wait[0]);
1175         init_waitqueue_head(&root->log_commit_wait[1]);
1176         INIT_LIST_HEAD(&root->log_ctxs[0]);
1177         INIT_LIST_HEAD(&root->log_ctxs[1]);
1178         atomic_set(&root->log_commit[0], 0);
1179         atomic_set(&root->log_commit[1], 0);
1180         atomic_set(&root->log_writers, 0);
1181         atomic_set(&root->log_batch, 0);
1182         refcount_set(&root->refs, 1);
1183         atomic_set(&root->will_be_snapshotted, 0);
1184         atomic_set(&root->snapshot_force_cow, 0);
1185         atomic_set(&root->nr_swapfiles, 0);
1186         root->log_transid = 0;
1187         root->log_transid_committed = -1;
1188         root->last_log_commit = 0;
1189         if (!dummy)
1190                 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1191                                     IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1192
1193         memset(&root->root_key, 0, sizeof(root->root_key));
1194         memset(&root->root_item, 0, sizeof(root->root_item));
1195         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1196         if (!dummy)
1197                 root->defrag_trans_start = fs_info->generation;
1198         else
1199                 root->defrag_trans_start = 0;
1200         root->root_key.objectid = objectid;
1201         root->anon_dev = 0;
1202
1203         spin_lock_init(&root->root_item_lock);
1204         btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1205 #ifdef CONFIG_BTRFS_DEBUG
1206         INIT_LIST_HEAD(&root->leak_list);
1207         spin_lock(&fs_info->fs_roots_radix_lock);
1208         list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1209         spin_unlock(&fs_info->fs_roots_radix_lock);
1210 #endif
1211 }
1212
1213 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1214                                            u64 objectid, gfp_t flags)
1215 {
1216         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1217         if (root)
1218                 __setup_root(root, fs_info, objectid);
1219         return root;
1220 }
1221
1222 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1223 /* Should only be used by the testing infrastructure */
1224 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1225 {
1226         struct btrfs_root *root;
1227
1228         if (!fs_info)
1229                 return ERR_PTR(-EINVAL);
1230
1231         root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1232         if (!root)
1233                 return ERR_PTR(-ENOMEM);
1234
1235         /* We don't use the stripesize in selftest, set it as sectorsize */
1236         root->alloc_bytenr = 0;
1237
1238         return root;
1239 }
1240 #endif
1241
1242 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1243                                      u64 objectid)
1244 {
1245         struct btrfs_fs_info *fs_info = trans->fs_info;
1246         struct extent_buffer *leaf;
1247         struct btrfs_root *tree_root = fs_info->tree_root;
1248         struct btrfs_root *root;
1249         struct btrfs_key key;
1250         unsigned int nofs_flag;
1251         int ret = 0;
1252         uuid_le uuid = NULL_UUID_LE;
1253
1254         /*
1255          * We're holding a transaction handle, so use a NOFS memory allocation
1256          * context to avoid deadlock if reclaim happens.
1257          */
1258         nofs_flag = memalloc_nofs_save();
1259         root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1260         memalloc_nofs_restore(nofs_flag);
1261         if (!root)
1262                 return ERR_PTR(-ENOMEM);
1263
1264         root->root_key.objectid = objectid;
1265         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1266         root->root_key.offset = 0;
1267
1268         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1269         if (IS_ERR(leaf)) {
1270                 ret = PTR_ERR(leaf);
1271                 leaf = NULL;
1272                 goto fail;
1273         }
1274
1275         root->node = leaf;
1276         btrfs_mark_buffer_dirty(leaf);
1277
1278         root->commit_root = btrfs_root_node(root);
1279         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1280
1281         root->root_item.flags = 0;
1282         root->root_item.byte_limit = 0;
1283         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1284         btrfs_set_root_generation(&root->root_item, trans->transid);
1285         btrfs_set_root_level(&root->root_item, 0);
1286         btrfs_set_root_refs(&root->root_item, 1);
1287         btrfs_set_root_used(&root->root_item, leaf->len);
1288         btrfs_set_root_last_snapshot(&root->root_item, 0);
1289         btrfs_set_root_dirid(&root->root_item, 0);
1290         if (is_fstree(objectid))
1291                 uuid_le_gen(&uuid);
1292         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1293         root->root_item.drop_level = 0;
1294
1295         key.objectid = objectid;
1296         key.type = BTRFS_ROOT_ITEM_KEY;
1297         key.offset = 0;
1298         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1299         if (ret)
1300                 goto fail;
1301
1302         btrfs_tree_unlock(leaf);
1303
1304         return root;
1305
1306 fail:
1307         if (leaf) {
1308                 btrfs_tree_unlock(leaf);
1309                 free_extent_buffer(root->commit_root);
1310                 free_extent_buffer(leaf);
1311         }
1312         btrfs_put_fs_root(root);
1313
1314         return ERR_PTR(ret);
1315 }
1316
1317 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1318                                          struct btrfs_fs_info *fs_info)
1319 {
1320         struct btrfs_root *root;
1321         struct extent_buffer *leaf;
1322
1323         root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1324         if (!root)
1325                 return ERR_PTR(-ENOMEM);
1326
1327         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1328         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1329         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1330
1331         /*
1332          * DON'T set REF_COWS for log trees
1333          *
1334          * log trees do not get reference counted because they go away
1335          * before a real commit is actually done.  They do store pointers
1336          * to file data extents, and those reference counts still get
1337          * updated (along with back refs to the log tree).
1338          */
1339
1340         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1341                         NULL, 0, 0, 0);
1342         if (IS_ERR(leaf)) {
1343                 btrfs_put_fs_root(root);
1344                 return ERR_CAST(leaf);
1345         }
1346
1347         root->node = leaf;
1348
1349         btrfs_mark_buffer_dirty(root->node);
1350         btrfs_tree_unlock(root->node);
1351         return root;
1352 }
1353
1354 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1355                              struct btrfs_fs_info *fs_info)
1356 {
1357         struct btrfs_root *log_root;
1358
1359         log_root = alloc_log_tree(trans, fs_info);
1360         if (IS_ERR(log_root))
1361                 return PTR_ERR(log_root);
1362         WARN_ON(fs_info->log_root_tree);
1363         fs_info->log_root_tree = log_root;
1364         return 0;
1365 }
1366
1367 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1368                        struct btrfs_root *root)
1369 {
1370         struct btrfs_fs_info *fs_info = root->fs_info;
1371         struct btrfs_root *log_root;
1372         struct btrfs_inode_item *inode_item;
1373
1374         log_root = alloc_log_tree(trans, fs_info);
1375         if (IS_ERR(log_root))
1376                 return PTR_ERR(log_root);
1377
1378         log_root->last_trans = trans->transid;
1379         log_root->root_key.offset = root->root_key.objectid;
1380
1381         inode_item = &log_root->root_item.inode;
1382         btrfs_set_stack_inode_generation(inode_item, 1);
1383         btrfs_set_stack_inode_size(inode_item, 3);
1384         btrfs_set_stack_inode_nlink(inode_item, 1);
1385         btrfs_set_stack_inode_nbytes(inode_item,
1386                                      fs_info->nodesize);
1387         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1388
1389         btrfs_set_root_node(&log_root->root_item, log_root->node);
1390
1391         WARN_ON(root->log_root);
1392         root->log_root = log_root;
1393         root->log_transid = 0;
1394         root->log_transid_committed = -1;
1395         root->last_log_commit = 0;
1396         return 0;
1397 }
1398
1399 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1400                                         struct btrfs_key *key)
1401 {
1402         struct btrfs_root *root;
1403         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1404         struct btrfs_path *path;
1405         u64 generation;
1406         int ret;
1407         int level;
1408
1409         path = btrfs_alloc_path();
1410         if (!path)
1411                 return ERR_PTR(-ENOMEM);
1412
1413         root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1414         if (!root) {
1415                 ret = -ENOMEM;
1416                 goto alloc_fail;
1417         }
1418
1419         ret = btrfs_find_root(tree_root, key, path,
1420                               &root->root_item, &root->root_key);
1421         if (ret) {
1422                 if (ret > 0)
1423                         ret = -ENOENT;
1424                 goto find_fail;
1425         }
1426
1427         generation = btrfs_root_generation(&root->root_item);
1428         level = btrfs_root_level(&root->root_item);
1429         root->node = read_tree_block(fs_info,
1430                                      btrfs_root_bytenr(&root->root_item),
1431                                      generation, level, NULL);
1432         if (IS_ERR(root->node)) {
1433                 ret = PTR_ERR(root->node);
1434                 goto find_fail;
1435         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1436                 ret = -EIO;
1437                 free_extent_buffer(root->node);
1438                 goto find_fail;
1439         }
1440         root->commit_root = btrfs_root_node(root);
1441 out:
1442         btrfs_free_path(path);
1443         return root;
1444
1445 find_fail:
1446         btrfs_put_fs_root(root);
1447 alloc_fail:
1448         root = ERR_PTR(ret);
1449         goto out;
1450 }
1451
1452 static int btrfs_init_fs_root(struct btrfs_root *root)
1453 {
1454         int ret;
1455         struct btrfs_subvolume_writers *writers;
1456
1457         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1458         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1459                                         GFP_NOFS);
1460         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1461                 ret = -ENOMEM;
1462                 goto fail;
1463         }
1464
1465         writers = btrfs_alloc_subvolume_writers();
1466         if (IS_ERR(writers)) {
1467                 ret = PTR_ERR(writers);
1468                 goto fail;
1469         }
1470         root->subv_writers = writers;
1471
1472         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1473                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1474                 btrfs_check_and_init_root_item(&root->root_item);
1475         }
1476
1477         btrfs_init_free_ino_ctl(root);
1478         spin_lock_init(&root->ino_cache_lock);
1479         init_waitqueue_head(&root->ino_cache_wait);
1480
1481         ret = get_anon_bdev(&root->anon_dev);
1482         if (ret)
1483                 goto fail;
1484
1485         mutex_lock(&root->objectid_mutex);
1486         ret = btrfs_find_highest_objectid(root,
1487                                         &root->highest_objectid);
1488         if (ret) {
1489                 mutex_unlock(&root->objectid_mutex);
1490                 goto fail;
1491         }
1492
1493         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1494
1495         mutex_unlock(&root->objectid_mutex);
1496
1497         return 0;
1498 fail:
1499         /* The caller is responsible to call btrfs_free_fs_root */
1500         return ret;
1501 }
1502
1503 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1504                                                u64 root_id)
1505 {
1506         struct btrfs_root *root;
1507
1508         spin_lock(&fs_info->fs_roots_radix_lock);
1509         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1510                                  (unsigned long)root_id);
1511         if (root)
1512                 root = btrfs_grab_fs_root(root);
1513         spin_unlock(&fs_info->fs_roots_radix_lock);
1514         return root;
1515 }
1516
1517 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1518                          struct btrfs_root *root)
1519 {
1520         int ret;
1521
1522         ret = radix_tree_preload(GFP_NOFS);
1523         if (ret)
1524                 return ret;
1525
1526         spin_lock(&fs_info->fs_roots_radix_lock);
1527         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1528                                 (unsigned long)root->root_key.objectid,
1529                                 root);
1530         if (ret == 0) {
1531                 btrfs_grab_fs_root(root);
1532                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1533         }
1534         spin_unlock(&fs_info->fs_roots_radix_lock);
1535         radix_tree_preload_end();
1536
1537         return ret;
1538 }
1539
1540 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1541 {
1542 #ifdef CONFIG_BTRFS_DEBUG
1543         struct btrfs_root *root;
1544
1545         while (!list_empty(&fs_info->allocated_roots)) {
1546                 root = list_first_entry(&fs_info->allocated_roots,
1547                                         struct btrfs_root, leak_list);
1548                 btrfs_err(fs_info, "leaked root %llu-%llu refcount %d",
1549                           root->root_key.objectid, root->root_key.offset,
1550                           refcount_read(&root->refs));
1551                 while (refcount_read(&root->refs) > 1)
1552                         btrfs_put_fs_root(root);
1553                 btrfs_put_fs_root(root);
1554         }
1555 #endif
1556 }
1557
1558 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1559 {
1560         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1561         percpu_counter_destroy(&fs_info->delalloc_bytes);
1562         percpu_counter_destroy(&fs_info->dio_bytes);
1563         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1564         btrfs_free_csum_hash(fs_info);
1565         btrfs_free_stripe_hash_table(fs_info);
1566         btrfs_free_ref_cache(fs_info);
1567         kfree(fs_info->balance_ctl);
1568         kfree(fs_info->delayed_root);
1569         btrfs_put_fs_root(fs_info->extent_root);
1570         btrfs_put_fs_root(fs_info->tree_root);
1571         btrfs_put_fs_root(fs_info->chunk_root);
1572         btrfs_put_fs_root(fs_info->dev_root);
1573         btrfs_put_fs_root(fs_info->csum_root);
1574         btrfs_put_fs_root(fs_info->quota_root);
1575         btrfs_put_fs_root(fs_info->uuid_root);
1576         btrfs_put_fs_root(fs_info->free_space_root);
1577         btrfs_put_fs_root(fs_info->fs_root);
1578         btrfs_check_leaked_roots(fs_info);
1579         kfree(fs_info->super_copy);
1580         kfree(fs_info->super_for_commit);
1581         kvfree(fs_info);
1582 }
1583
1584
1585 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1586                                      struct btrfs_key *location,
1587                                      bool check_ref)
1588 {
1589         struct btrfs_root *root;
1590         struct btrfs_path *path;
1591         struct btrfs_key key;
1592         int ret;
1593
1594         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1595                 return btrfs_grab_fs_root(fs_info->tree_root);
1596         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1597                 return btrfs_grab_fs_root(fs_info->extent_root);
1598         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1599                 return btrfs_grab_fs_root(fs_info->chunk_root);
1600         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1601                 return btrfs_grab_fs_root(fs_info->dev_root);
1602         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1603                 return btrfs_grab_fs_root(fs_info->csum_root);
1604         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1605                 return btrfs_grab_fs_root(fs_info->quota_root) ?
1606                         fs_info->quota_root : ERR_PTR(-ENOENT);
1607         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1608                 return btrfs_grab_fs_root(fs_info->uuid_root) ?
1609                         fs_info->uuid_root : ERR_PTR(-ENOENT);
1610         if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1611                 return btrfs_grab_fs_root(fs_info->free_space_root) ?
1612                         fs_info->free_space_root : ERR_PTR(-ENOENT);
1613 again:
1614         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1615         if (root) {
1616                 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1617                         btrfs_put_fs_root(root);
1618                         return ERR_PTR(-ENOENT);
1619                 }
1620                 return root;
1621         }
1622
1623         root = btrfs_read_tree_root(fs_info->tree_root, location);
1624         if (IS_ERR(root))
1625                 return root;
1626
1627         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1628                 ret = -ENOENT;
1629                 goto fail;
1630         }
1631
1632         ret = btrfs_init_fs_root(root);
1633         if (ret)
1634                 goto fail;
1635
1636         path = btrfs_alloc_path();
1637         if (!path) {
1638                 ret = -ENOMEM;
1639                 goto fail;
1640         }
1641         key.objectid = BTRFS_ORPHAN_OBJECTID;
1642         key.type = BTRFS_ORPHAN_ITEM_KEY;
1643         key.offset = location->objectid;
1644
1645         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1646         btrfs_free_path(path);
1647         if (ret < 0)
1648                 goto fail;
1649         if (ret == 0)
1650                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1651
1652         /*
1653          * All roots have two refs on them at all times, one for the mounted fs,
1654          * and one for being in the radix tree.  This way we only free the root
1655          * when we are unmounting or deleting the subvolume.  We get one ref
1656          * from __setup_root, one for inserting it into the radix tree, and then
1657          * we have the third for returning it, and the caller will put it when
1658          * it's done with the root.
1659          */
1660         btrfs_grab_fs_root(root);
1661         ret = btrfs_insert_fs_root(fs_info, root);
1662         if (ret) {
1663                 btrfs_put_fs_root(root);
1664                 if (ret == -EEXIST) {
1665                         btrfs_free_fs_root(root);
1666                         goto again;
1667                 }
1668                 goto fail;
1669         }
1670         return root;
1671 fail:
1672         btrfs_free_fs_root(root);
1673         return ERR_PTR(ret);
1674 }
1675
1676 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1677 {
1678         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1679         int ret = 0;
1680         struct btrfs_device *device;
1681         struct backing_dev_info *bdi;
1682
1683         rcu_read_lock();
1684         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1685                 if (!device->bdev)
1686                         continue;
1687                 bdi = device->bdev->bd_bdi;
1688                 if (bdi_congested(bdi, bdi_bits)) {
1689                         ret = 1;
1690                         break;
1691                 }
1692         }
1693         rcu_read_unlock();
1694         return ret;
1695 }
1696
1697 /*
1698  * called by the kthread helper functions to finally call the bio end_io
1699  * functions.  This is where read checksum verification actually happens
1700  */
1701 static void end_workqueue_fn(struct btrfs_work *work)
1702 {
1703         struct bio *bio;
1704         struct btrfs_end_io_wq *end_io_wq;
1705
1706         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1707         bio = end_io_wq->bio;
1708
1709         bio->bi_status = end_io_wq->status;
1710         bio->bi_private = end_io_wq->private;
1711         bio->bi_end_io = end_io_wq->end_io;
1712         bio_endio(bio);
1713         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1714 }
1715
1716 static int cleaner_kthread(void *arg)
1717 {
1718         struct btrfs_root *root = arg;
1719         struct btrfs_fs_info *fs_info = root->fs_info;
1720         int again;
1721
1722         while (1) {
1723                 again = 0;
1724
1725                 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1726
1727                 /* Make the cleaner go to sleep early. */
1728                 if (btrfs_need_cleaner_sleep(fs_info))
1729                         goto sleep;
1730
1731                 /*
1732                  * Do not do anything if we might cause open_ctree() to block
1733                  * before we have finished mounting the filesystem.
1734                  */
1735                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1736                         goto sleep;
1737
1738                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1739                         goto sleep;
1740
1741                 /*
1742                  * Avoid the problem that we change the status of the fs
1743                  * during the above check and trylock.
1744                  */
1745                 if (btrfs_need_cleaner_sleep(fs_info)) {
1746                         mutex_unlock(&fs_info->cleaner_mutex);
1747                         goto sleep;
1748                 }
1749
1750                 btrfs_run_delayed_iputs(fs_info);
1751
1752                 again = btrfs_clean_one_deleted_snapshot(root);
1753                 mutex_unlock(&fs_info->cleaner_mutex);
1754
1755                 /*
1756                  * The defragger has dealt with the R/O remount and umount,
1757                  * needn't do anything special here.
1758                  */
1759                 btrfs_run_defrag_inodes(fs_info);
1760
1761                 /*
1762                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1763                  * with relocation (btrfs_relocate_chunk) and relocation
1764                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1765                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1766                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1767                  * unused block groups.
1768                  */
1769                 btrfs_delete_unused_bgs(fs_info);
1770 sleep:
1771                 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1772                 if (kthread_should_park())
1773                         kthread_parkme();
1774                 if (kthread_should_stop())
1775                         return 0;
1776                 if (!again) {
1777                         set_current_state(TASK_INTERRUPTIBLE);
1778                         schedule();
1779                         __set_current_state(TASK_RUNNING);
1780                 }
1781         }
1782 }
1783
1784 static int transaction_kthread(void *arg)
1785 {
1786         struct btrfs_root *root = arg;
1787         struct btrfs_fs_info *fs_info = root->fs_info;
1788         struct btrfs_trans_handle *trans;
1789         struct btrfs_transaction *cur;
1790         u64 transid;
1791         time64_t now;
1792         unsigned long delay;
1793         bool cannot_commit;
1794
1795         do {
1796                 cannot_commit = false;
1797                 delay = HZ * fs_info->commit_interval;
1798                 mutex_lock(&fs_info->transaction_kthread_mutex);
1799
1800                 spin_lock(&fs_info->trans_lock);
1801                 cur = fs_info->running_transaction;
1802                 if (!cur) {
1803                         spin_unlock(&fs_info->trans_lock);
1804                         goto sleep;
1805                 }
1806
1807                 now = ktime_get_seconds();
1808                 if (cur->state < TRANS_STATE_COMMIT_START &&
1809                     !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1810                     (now < cur->start_time ||
1811                      now - cur->start_time < fs_info->commit_interval)) {
1812                         spin_unlock(&fs_info->trans_lock);
1813                         delay = HZ * 5;
1814                         goto sleep;
1815                 }
1816                 transid = cur->transid;
1817                 spin_unlock(&fs_info->trans_lock);
1818
1819                 /* If the file system is aborted, this will always fail. */
1820                 trans = btrfs_attach_transaction(root);
1821                 if (IS_ERR(trans)) {
1822                         if (PTR_ERR(trans) != -ENOENT)
1823                                 cannot_commit = true;
1824                         goto sleep;
1825                 }
1826                 if (transid == trans->transid) {
1827                         btrfs_commit_transaction(trans);
1828                 } else {
1829                         btrfs_end_transaction(trans);
1830                 }
1831 sleep:
1832                 wake_up_process(fs_info->cleaner_kthread);
1833                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1834
1835                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1836                                       &fs_info->fs_state)))
1837                         btrfs_cleanup_transaction(fs_info);
1838                 if (!kthread_should_stop() &&
1839                                 (!btrfs_transaction_blocked(fs_info) ||
1840                                  cannot_commit))
1841                         schedule_timeout_interruptible(delay);
1842         } while (!kthread_should_stop());
1843         return 0;
1844 }
1845
1846 /*
1847  * This will find the highest generation in the array of root backups.  The
1848  * index of the highest array is returned, or -EINVAL if we can't find
1849  * anything.
1850  *
1851  * We check to make sure the array is valid by comparing the
1852  * generation of the latest  root in the array with the generation
1853  * in the super block.  If they don't match we pitch it.
1854  */
1855 static int find_newest_super_backup(struct btrfs_fs_info *info)
1856 {
1857         const u64 newest_gen = btrfs_super_generation(info->super_copy);
1858         u64 cur;
1859         struct btrfs_root_backup *root_backup;
1860         int i;
1861
1862         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1863                 root_backup = info->super_copy->super_roots + i;
1864                 cur = btrfs_backup_tree_root_gen(root_backup);
1865                 if (cur == newest_gen)
1866                         return i;
1867         }
1868
1869         return -EINVAL;
1870 }
1871
1872 /*
1873  * copy all the root pointers into the super backup array.
1874  * this will bump the backup pointer by one when it is
1875  * done
1876  */
1877 static void backup_super_roots(struct btrfs_fs_info *info)
1878 {
1879         const int next_backup = info->backup_root_index;
1880         struct btrfs_root_backup *root_backup;
1881
1882         root_backup = info->super_for_commit->super_roots + next_backup;
1883
1884         /*
1885          * make sure all of our padding and empty slots get zero filled
1886          * regardless of which ones we use today
1887          */
1888         memset(root_backup, 0, sizeof(*root_backup));
1889
1890         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1891
1892         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1893         btrfs_set_backup_tree_root_gen(root_backup,
1894                                btrfs_header_generation(info->tree_root->node));
1895
1896         btrfs_set_backup_tree_root_level(root_backup,
1897                                btrfs_header_level(info->tree_root->node));
1898
1899         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1900         btrfs_set_backup_chunk_root_gen(root_backup,
1901                                btrfs_header_generation(info->chunk_root->node));
1902         btrfs_set_backup_chunk_root_level(root_backup,
1903                                btrfs_header_level(info->chunk_root->node));
1904
1905         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1906         btrfs_set_backup_extent_root_gen(root_backup,
1907                                btrfs_header_generation(info->extent_root->node));
1908         btrfs_set_backup_extent_root_level(root_backup,
1909                                btrfs_header_level(info->extent_root->node));
1910
1911         /*
1912          * we might commit during log recovery, which happens before we set
1913          * the fs_root.  Make sure it is valid before we fill it in.
1914          */
1915         if (info->fs_root && info->fs_root->node) {
1916                 btrfs_set_backup_fs_root(root_backup,
1917                                          info->fs_root->node->start);
1918                 btrfs_set_backup_fs_root_gen(root_backup,
1919                                btrfs_header_generation(info->fs_root->node));
1920                 btrfs_set_backup_fs_root_level(root_backup,
1921                                btrfs_header_level(info->fs_root->node));
1922         }
1923
1924         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1925         btrfs_set_backup_dev_root_gen(root_backup,
1926                                btrfs_header_generation(info->dev_root->node));
1927         btrfs_set_backup_dev_root_level(root_backup,
1928                                        btrfs_header_level(info->dev_root->node));
1929
1930         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1931         btrfs_set_backup_csum_root_gen(root_backup,
1932                                btrfs_header_generation(info->csum_root->node));
1933         btrfs_set_backup_csum_root_level(root_backup,
1934                                btrfs_header_level(info->csum_root->node));
1935
1936         btrfs_set_backup_total_bytes(root_backup,
1937                              btrfs_super_total_bytes(info->super_copy));
1938         btrfs_set_backup_bytes_used(root_backup,
1939                              btrfs_super_bytes_used(info->super_copy));
1940         btrfs_set_backup_num_devices(root_backup,
1941                              btrfs_super_num_devices(info->super_copy));
1942
1943         /*
1944          * if we don't copy this out to the super_copy, it won't get remembered
1945          * for the next commit
1946          */
1947         memcpy(&info->super_copy->super_roots,
1948                &info->super_for_commit->super_roots,
1949                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1950 }
1951
1952 /*
1953  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1954  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1955  *
1956  * fs_info - filesystem whose backup roots need to be read
1957  * priority - priority of backup root required
1958  *
1959  * Returns backup root index on success and -EINVAL otherwise.
1960  */
1961 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1962 {
1963         int backup_index = find_newest_super_backup(fs_info);
1964         struct btrfs_super_block *super = fs_info->super_copy;
1965         struct btrfs_root_backup *root_backup;
1966
1967         if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1968                 if (priority == 0)
1969                         return backup_index;
1970
1971                 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1972                 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1973         } else {
1974                 return -EINVAL;
1975         }
1976
1977         root_backup = super->super_roots + backup_index;
1978
1979         btrfs_set_super_generation(super,
1980                                    btrfs_backup_tree_root_gen(root_backup));
1981         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1982         btrfs_set_super_root_level(super,
1983                                    btrfs_backup_tree_root_level(root_backup));
1984         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1985
1986         /*
1987          * Fixme: the total bytes and num_devices need to match or we should
1988          * need a fsck
1989          */
1990         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1991         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1992
1993         return backup_index;
1994 }
1995
1996 /* helper to cleanup workers */
1997 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1998 {
1999         btrfs_destroy_workqueue(fs_info->fixup_workers);
2000         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2001         btrfs_destroy_workqueue(fs_info->workers);
2002         btrfs_destroy_workqueue(fs_info->endio_workers);
2003         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2004         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2005         btrfs_destroy_workqueue(fs_info->rmw_workers);
2006         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2007         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2008         btrfs_destroy_workqueue(fs_info->delayed_workers);
2009         btrfs_destroy_workqueue(fs_info->caching_workers);
2010         btrfs_destroy_workqueue(fs_info->readahead_workers);
2011         btrfs_destroy_workqueue(fs_info->flush_workers);
2012         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2013         if (fs_info->discard_ctl.discard_workers)
2014                 destroy_workqueue(fs_info->discard_ctl.discard_workers);
2015         /*
2016          * Now that all other work queues are destroyed, we can safely destroy
2017          * the queues used for metadata I/O, since tasks from those other work
2018          * queues can do metadata I/O operations.
2019          */
2020         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2021         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2022 }
2023
2024 static void free_root_extent_buffers(struct btrfs_root *root)
2025 {
2026         if (root) {
2027                 free_extent_buffer(root->node);
2028                 free_extent_buffer(root->commit_root);
2029                 root->node = NULL;
2030                 root->commit_root = NULL;
2031         }
2032 }
2033
2034 /* helper to cleanup tree roots */
2035 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2036 {
2037         free_root_extent_buffers(info->tree_root);
2038
2039         free_root_extent_buffers(info->dev_root);
2040         free_root_extent_buffers(info->extent_root);
2041         free_root_extent_buffers(info->csum_root);
2042         free_root_extent_buffers(info->quota_root);
2043         free_root_extent_buffers(info->uuid_root);
2044         if (free_chunk_root)
2045                 free_root_extent_buffers(info->chunk_root);
2046         free_root_extent_buffers(info->free_space_root);
2047 }
2048
2049 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2050 {
2051         int ret;
2052         struct btrfs_root *gang[8];
2053         int i;
2054
2055         while (!list_empty(&fs_info->dead_roots)) {
2056                 gang[0] = list_entry(fs_info->dead_roots.next,
2057                                      struct btrfs_root, root_list);
2058                 list_del(&gang[0]->root_list);
2059
2060                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2061                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2062                 } else {
2063                         free_extent_buffer(gang[0]->node);
2064                         free_extent_buffer(gang[0]->commit_root);
2065                         btrfs_put_fs_root(gang[0]);
2066                 }
2067         }
2068
2069         while (1) {
2070                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2071                                              (void **)gang, 0,
2072                                              ARRAY_SIZE(gang));
2073                 if (!ret)
2074                         break;
2075                 for (i = 0; i < ret; i++)
2076                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2077         }
2078
2079         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2080                 btrfs_free_log_root_tree(NULL, fs_info);
2081                 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2082         }
2083 }
2084
2085 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2086 {
2087         mutex_init(&fs_info->scrub_lock);
2088         atomic_set(&fs_info->scrubs_running, 0);
2089         atomic_set(&fs_info->scrub_pause_req, 0);
2090         atomic_set(&fs_info->scrubs_paused, 0);
2091         atomic_set(&fs_info->scrub_cancel_req, 0);
2092         init_waitqueue_head(&fs_info->scrub_pause_wait);
2093         refcount_set(&fs_info->scrub_workers_refcnt, 0);
2094 }
2095
2096 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2097 {
2098         spin_lock_init(&fs_info->balance_lock);
2099         mutex_init(&fs_info->balance_mutex);
2100         atomic_set(&fs_info->balance_pause_req, 0);
2101         atomic_set(&fs_info->balance_cancel_req, 0);
2102         fs_info->balance_ctl = NULL;
2103         init_waitqueue_head(&fs_info->balance_wait_q);
2104 }
2105
2106 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2107 {
2108         struct inode *inode = fs_info->btree_inode;
2109
2110         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2111         set_nlink(inode, 1);
2112         /*
2113          * we set the i_size on the btree inode to the max possible int.
2114          * the real end of the address space is determined by all of
2115          * the devices in the system
2116          */
2117         inode->i_size = OFFSET_MAX;
2118         inode->i_mapping->a_ops = &btree_aops;
2119
2120         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2121         extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2122                             IO_TREE_INODE_IO, inode);
2123         BTRFS_I(inode)->io_tree.track_uptodate = false;
2124         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2125
2126         BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2127
2128         BTRFS_I(inode)->root = fs_info->tree_root;
2129         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2130         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2131         btrfs_insert_inode_hash(inode);
2132 }
2133
2134 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2135 {
2136         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2137         init_rwsem(&fs_info->dev_replace.rwsem);
2138         init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2139 }
2140
2141 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2142 {
2143         spin_lock_init(&fs_info->qgroup_lock);
2144         mutex_init(&fs_info->qgroup_ioctl_lock);
2145         fs_info->qgroup_tree = RB_ROOT;
2146         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2147         fs_info->qgroup_seq = 1;
2148         fs_info->qgroup_ulist = NULL;
2149         fs_info->qgroup_rescan_running = false;
2150         mutex_init(&fs_info->qgroup_rescan_lock);
2151 }
2152
2153 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2154                 struct btrfs_fs_devices *fs_devices)
2155 {
2156         u32 max_active = fs_info->thread_pool_size;
2157         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2158
2159         fs_info->workers =
2160                 btrfs_alloc_workqueue(fs_info, "worker",
2161                                       flags | WQ_HIGHPRI, max_active, 16);
2162
2163         fs_info->delalloc_workers =
2164                 btrfs_alloc_workqueue(fs_info, "delalloc",
2165                                       flags, max_active, 2);
2166
2167         fs_info->flush_workers =
2168                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2169                                       flags, max_active, 0);
2170
2171         fs_info->caching_workers =
2172                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2173
2174         fs_info->fixup_workers =
2175                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2176
2177         /*
2178          * endios are largely parallel and should have a very
2179          * low idle thresh
2180          */
2181         fs_info->endio_workers =
2182                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2183         fs_info->endio_meta_workers =
2184                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2185                                       max_active, 4);
2186         fs_info->endio_meta_write_workers =
2187                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2188                                       max_active, 2);
2189         fs_info->endio_raid56_workers =
2190                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2191                                       max_active, 4);
2192         fs_info->endio_repair_workers =
2193                 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2194         fs_info->rmw_workers =
2195                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2196         fs_info->endio_write_workers =
2197                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2198                                       max_active, 2);
2199         fs_info->endio_freespace_worker =
2200                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2201                                       max_active, 0);
2202         fs_info->delayed_workers =
2203                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2204                                       max_active, 0);
2205         fs_info->readahead_workers =
2206                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2207                                       max_active, 2);
2208         fs_info->qgroup_rescan_workers =
2209                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2210         fs_info->discard_ctl.discard_workers =
2211                 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2212
2213         if (!(fs_info->workers && fs_info->delalloc_workers &&
2214               fs_info->flush_workers &&
2215               fs_info->endio_workers && fs_info->endio_meta_workers &&
2216               fs_info->endio_meta_write_workers &&
2217               fs_info->endio_repair_workers &&
2218               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2219               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2220               fs_info->caching_workers && fs_info->readahead_workers &&
2221               fs_info->fixup_workers && fs_info->delayed_workers &&
2222               fs_info->qgroup_rescan_workers &&
2223               fs_info->discard_ctl.discard_workers)) {
2224                 return -ENOMEM;
2225         }
2226
2227         return 0;
2228 }
2229
2230 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2231 {
2232         struct crypto_shash *csum_shash;
2233         const char *csum_driver = btrfs_super_csum_driver(csum_type);
2234
2235         csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2236
2237         if (IS_ERR(csum_shash)) {
2238                 btrfs_err(fs_info, "error allocating %s hash for checksum",
2239                           csum_driver);
2240                 return PTR_ERR(csum_shash);
2241         }
2242
2243         fs_info->csum_shash = csum_shash;
2244
2245         return 0;
2246 }
2247
2248 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2249                             struct btrfs_fs_devices *fs_devices)
2250 {
2251         int ret;
2252         struct btrfs_root *log_tree_root;
2253         struct btrfs_super_block *disk_super = fs_info->super_copy;
2254         u64 bytenr = btrfs_super_log_root(disk_super);
2255         int level = btrfs_super_log_root_level(disk_super);
2256
2257         if (fs_devices->rw_devices == 0) {
2258                 btrfs_warn(fs_info, "log replay required on RO media");
2259                 return -EIO;
2260         }
2261
2262         log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2263                                          GFP_KERNEL);
2264         if (!log_tree_root)
2265                 return -ENOMEM;
2266
2267         log_tree_root->node = read_tree_block(fs_info, bytenr,
2268                                               fs_info->generation + 1,
2269                                               level, NULL);
2270         if (IS_ERR(log_tree_root->node)) {
2271                 btrfs_warn(fs_info, "failed to read log tree");
2272                 ret = PTR_ERR(log_tree_root->node);
2273                 btrfs_put_fs_root(log_tree_root);
2274                 return ret;
2275         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2276                 btrfs_err(fs_info, "failed to read log tree");
2277                 free_extent_buffer(log_tree_root->node);
2278                 btrfs_put_fs_root(log_tree_root);
2279                 return -EIO;
2280         }
2281         /* returns with log_tree_root freed on success */
2282         ret = btrfs_recover_log_trees(log_tree_root);
2283         if (ret) {
2284                 btrfs_handle_fs_error(fs_info, ret,
2285                                       "Failed to recover log tree");
2286                 free_extent_buffer(log_tree_root->node);
2287                 btrfs_put_fs_root(log_tree_root);
2288                 return ret;
2289         }
2290
2291         if (sb_rdonly(fs_info->sb)) {
2292                 ret = btrfs_commit_super(fs_info);
2293                 if (ret)
2294                         return ret;
2295         }
2296
2297         return 0;
2298 }
2299
2300 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2301 {
2302         struct btrfs_root *tree_root = fs_info->tree_root;
2303         struct btrfs_root *root;
2304         struct btrfs_key location;
2305         int ret;
2306
2307         BUG_ON(!fs_info->tree_root);
2308
2309         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2310         location.type = BTRFS_ROOT_ITEM_KEY;
2311         location.offset = 0;
2312
2313         root = btrfs_read_tree_root(tree_root, &location);
2314         if (IS_ERR(root)) {
2315                 ret = PTR_ERR(root);
2316                 goto out;
2317         }
2318         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2319         fs_info->extent_root = root;
2320
2321         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2322         root = btrfs_read_tree_root(tree_root, &location);
2323         if (IS_ERR(root)) {
2324                 ret = PTR_ERR(root);
2325                 goto out;
2326         }
2327         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2328         fs_info->dev_root = root;
2329         btrfs_init_devices_late(fs_info);
2330
2331         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2332         root = btrfs_read_tree_root(tree_root, &location);
2333         if (IS_ERR(root)) {
2334                 ret = PTR_ERR(root);
2335                 goto out;
2336         }
2337         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2338         fs_info->csum_root = root;
2339
2340         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2341         root = btrfs_read_tree_root(tree_root, &location);
2342         if (!IS_ERR(root)) {
2343                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2344                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2345                 fs_info->quota_root = root;
2346         }
2347
2348         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2349         root = btrfs_read_tree_root(tree_root, &location);
2350         if (IS_ERR(root)) {
2351                 ret = PTR_ERR(root);
2352                 if (ret != -ENOENT)
2353                         goto out;
2354         } else {
2355                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2356                 fs_info->uuid_root = root;
2357         }
2358
2359         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2360                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2361                 root = btrfs_read_tree_root(tree_root, &location);
2362                 if (IS_ERR(root)) {
2363                         ret = PTR_ERR(root);
2364                         goto out;
2365                 }
2366                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2367                 fs_info->free_space_root = root;
2368         }
2369
2370         return 0;
2371 out:
2372         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2373                    location.objectid, ret);
2374         return ret;
2375 }
2376
2377 /*
2378  * Real super block validation
2379  * NOTE: super csum type and incompat features will not be checked here.
2380  *
2381  * @sb:         super block to check
2382  * @mirror_num: the super block number to check its bytenr:
2383  *              0       the primary (1st) sb
2384  *              1, 2    2nd and 3rd backup copy
2385  *             -1       skip bytenr check
2386  */
2387 static int validate_super(struct btrfs_fs_info *fs_info,
2388                             struct btrfs_super_block *sb, int mirror_num)
2389 {
2390         u64 nodesize = btrfs_super_nodesize(sb);
2391         u64 sectorsize = btrfs_super_sectorsize(sb);
2392         int ret = 0;
2393
2394         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2395                 btrfs_err(fs_info, "no valid FS found");
2396                 ret = -EINVAL;
2397         }
2398         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2399                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2400                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2401                 ret = -EINVAL;
2402         }
2403         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2404                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2405                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2406                 ret = -EINVAL;
2407         }
2408         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2409                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2410                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2411                 ret = -EINVAL;
2412         }
2413         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2414                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2415                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2416                 ret = -EINVAL;
2417         }
2418
2419         /*
2420          * Check sectorsize and nodesize first, other check will need it.
2421          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2422          */
2423         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2424             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2425                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2426                 ret = -EINVAL;
2427         }
2428         /* Only PAGE SIZE is supported yet */
2429         if (sectorsize != PAGE_SIZE) {
2430                 btrfs_err(fs_info,
2431                         "sectorsize %llu not supported yet, only support %lu",
2432                         sectorsize, PAGE_SIZE);
2433                 ret = -EINVAL;
2434         }
2435         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2436             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2437                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2438                 ret = -EINVAL;
2439         }
2440         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2441                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2442                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2443                 ret = -EINVAL;
2444         }
2445
2446         /* Root alignment check */
2447         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2448                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2449                            btrfs_super_root(sb));
2450                 ret = -EINVAL;
2451         }
2452         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2453                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2454                            btrfs_super_chunk_root(sb));
2455                 ret = -EINVAL;
2456         }
2457         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2458                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2459                            btrfs_super_log_root(sb));
2460                 ret = -EINVAL;
2461         }
2462
2463         if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2464                    BTRFS_FSID_SIZE) != 0) {
2465                 btrfs_err(fs_info,
2466                         "dev_item UUID does not match metadata fsid: %pU != %pU",
2467                         fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2468                 ret = -EINVAL;
2469         }
2470
2471         /*
2472          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2473          * done later
2474          */
2475         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2476                 btrfs_err(fs_info, "bytes_used is too small %llu",
2477                           btrfs_super_bytes_used(sb));
2478                 ret = -EINVAL;
2479         }
2480         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2481                 btrfs_err(fs_info, "invalid stripesize %u",
2482                           btrfs_super_stripesize(sb));
2483                 ret = -EINVAL;
2484         }
2485         if (btrfs_super_num_devices(sb) > (1UL << 31))
2486                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2487                            btrfs_super_num_devices(sb));
2488         if (btrfs_super_num_devices(sb) == 0) {
2489                 btrfs_err(fs_info, "number of devices is 0");
2490                 ret = -EINVAL;
2491         }
2492
2493         if (mirror_num >= 0 &&
2494             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2495                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2496                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2497                 ret = -EINVAL;
2498         }
2499
2500         /*
2501          * Obvious sys_chunk_array corruptions, it must hold at least one key
2502          * and one chunk
2503          */
2504         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2505                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2506                           btrfs_super_sys_array_size(sb),
2507                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2508                 ret = -EINVAL;
2509         }
2510         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2511                         + sizeof(struct btrfs_chunk)) {
2512                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2513                           btrfs_super_sys_array_size(sb),
2514                           sizeof(struct btrfs_disk_key)
2515                           + sizeof(struct btrfs_chunk));
2516                 ret = -EINVAL;
2517         }
2518
2519         /*
2520          * The generation is a global counter, we'll trust it more than the others
2521          * but it's still possible that it's the one that's wrong.
2522          */
2523         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2524                 btrfs_warn(fs_info,
2525                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2526                         btrfs_super_generation(sb),
2527                         btrfs_super_chunk_root_generation(sb));
2528         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2529             && btrfs_super_cache_generation(sb) != (u64)-1)
2530                 btrfs_warn(fs_info,
2531                         "suspicious: generation < cache_generation: %llu < %llu",
2532                         btrfs_super_generation(sb),
2533                         btrfs_super_cache_generation(sb));
2534
2535         return ret;
2536 }
2537
2538 /*
2539  * Validation of super block at mount time.
2540  * Some checks already done early at mount time, like csum type and incompat
2541  * flags will be skipped.
2542  */
2543 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2544 {
2545         return validate_super(fs_info, fs_info->super_copy, 0);
2546 }
2547
2548 /*
2549  * Validation of super block at write time.
2550  * Some checks like bytenr check will be skipped as their values will be
2551  * overwritten soon.
2552  * Extra checks like csum type and incompat flags will be done here.
2553  */
2554 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2555                                       struct btrfs_super_block *sb)
2556 {
2557         int ret;
2558
2559         ret = validate_super(fs_info, sb, -1);
2560         if (ret < 0)
2561                 goto out;
2562         if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2563                 ret = -EUCLEAN;
2564                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2565                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2566                 goto out;
2567         }
2568         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2569                 ret = -EUCLEAN;
2570                 btrfs_err(fs_info,
2571                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2572                           btrfs_super_incompat_flags(sb),
2573                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2574                 goto out;
2575         }
2576 out:
2577         if (ret < 0)
2578                 btrfs_err(fs_info,
2579                 "super block corruption detected before writing it to disk");
2580         return ret;
2581 }
2582
2583 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2584 {
2585         int backup_index = find_newest_super_backup(fs_info);
2586         struct btrfs_super_block *sb = fs_info->super_copy;
2587         struct btrfs_root *tree_root = fs_info->tree_root;
2588         bool handle_error = false;
2589         int ret = 0;
2590         int i;
2591
2592         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2593                 u64 generation;
2594                 int level;
2595
2596                 if (handle_error) {
2597                         if (!IS_ERR(tree_root->node))
2598                                 free_extent_buffer(tree_root->node);
2599                         tree_root->node = NULL;
2600
2601                         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2602                                 break;
2603
2604                         free_root_pointers(fs_info, 0);
2605
2606                         /*
2607                          * Don't use the log in recovery mode, it won't be
2608                          * valid
2609                          */
2610                         btrfs_set_super_log_root(sb, 0);
2611
2612                         /* We can't trust the free space cache either */
2613                         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2614
2615                         ret = read_backup_root(fs_info, i);
2616                         backup_index = ret;
2617                         if (ret < 0)
2618                                 return ret;
2619                 }
2620                 generation = btrfs_super_generation(sb);
2621                 level = btrfs_super_root_level(sb);
2622                 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2623                                                   generation, level, NULL);
2624                 if (IS_ERR(tree_root->node) ||
2625                     !extent_buffer_uptodate(tree_root->node)) {
2626                         handle_error = true;
2627
2628                         if (IS_ERR(tree_root->node))
2629                                 ret = PTR_ERR(tree_root->node);
2630                         else if (!extent_buffer_uptodate(tree_root->node))
2631                                 ret = -EUCLEAN;
2632
2633                         btrfs_warn(fs_info, "failed to read tree root");
2634                         continue;
2635                 }
2636
2637                 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2638                 tree_root->commit_root = btrfs_root_node(tree_root);
2639                 btrfs_set_root_refs(&tree_root->root_item, 1);
2640
2641                 /*
2642                  * No need to hold btrfs_root::objectid_mutex since the fs
2643                  * hasn't been fully initialised and we are the only user
2644                  */
2645                 ret = btrfs_find_highest_objectid(tree_root,
2646                                                 &tree_root->highest_objectid);
2647                 if (ret < 0) {
2648                         handle_error = true;
2649                         continue;
2650                 }
2651
2652                 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2653
2654                 ret = btrfs_read_roots(fs_info);
2655                 if (ret < 0) {
2656                         handle_error = true;
2657                         continue;
2658                 }
2659
2660                 /* All successful */
2661                 fs_info->generation = generation;
2662                 fs_info->last_trans_committed = generation;
2663
2664                 /* Always begin writing backup roots after the one being used */
2665                 if (backup_index < 0) {
2666                         fs_info->backup_root_index = 0;
2667                 } else {
2668                         fs_info->backup_root_index = backup_index + 1;
2669                         fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2670                 }
2671                 break;
2672         }
2673
2674         return ret;
2675 }
2676
2677 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2678 {
2679         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2680         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2681         INIT_LIST_HEAD(&fs_info->trans_list);
2682         INIT_LIST_HEAD(&fs_info->dead_roots);
2683         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2684         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2685         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2686         spin_lock_init(&fs_info->delalloc_root_lock);
2687         spin_lock_init(&fs_info->trans_lock);
2688         spin_lock_init(&fs_info->fs_roots_radix_lock);
2689         spin_lock_init(&fs_info->delayed_iput_lock);
2690         spin_lock_init(&fs_info->defrag_inodes_lock);
2691         spin_lock_init(&fs_info->super_lock);
2692         spin_lock_init(&fs_info->buffer_lock);
2693         spin_lock_init(&fs_info->unused_bgs_lock);
2694         rwlock_init(&fs_info->tree_mod_log_lock);
2695         mutex_init(&fs_info->unused_bg_unpin_mutex);
2696         mutex_init(&fs_info->delete_unused_bgs_mutex);
2697         mutex_init(&fs_info->reloc_mutex);
2698         mutex_init(&fs_info->delalloc_root_mutex);
2699         seqlock_init(&fs_info->profiles_lock);
2700
2701         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2702         INIT_LIST_HEAD(&fs_info->space_info);
2703         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2704         INIT_LIST_HEAD(&fs_info->unused_bgs);
2705 #ifdef CONFIG_BTRFS_DEBUG
2706         INIT_LIST_HEAD(&fs_info->allocated_roots);
2707 #endif
2708         extent_map_tree_init(&fs_info->mapping_tree);
2709         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2710                              BTRFS_BLOCK_RSV_GLOBAL);
2711         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2712         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2713         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2714         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2715                              BTRFS_BLOCK_RSV_DELOPS);
2716         btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2717                              BTRFS_BLOCK_RSV_DELREFS);
2718
2719         atomic_set(&fs_info->async_delalloc_pages, 0);
2720         atomic_set(&fs_info->defrag_running, 0);
2721         atomic_set(&fs_info->reada_works_cnt, 0);
2722         atomic_set(&fs_info->nr_delayed_iputs, 0);
2723         atomic64_set(&fs_info->tree_mod_seq, 0);
2724         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2725         fs_info->metadata_ratio = 0;
2726         fs_info->defrag_inodes = RB_ROOT;
2727         atomic64_set(&fs_info->free_chunk_space, 0);
2728         fs_info->tree_mod_log = RB_ROOT;
2729         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2730         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2731         /* readahead state */
2732         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2733         spin_lock_init(&fs_info->reada_lock);
2734         btrfs_init_ref_verify(fs_info);
2735
2736         fs_info->thread_pool_size = min_t(unsigned long,
2737                                           num_online_cpus() + 2, 8);
2738
2739         INIT_LIST_HEAD(&fs_info->ordered_roots);
2740         spin_lock_init(&fs_info->ordered_root_lock);
2741
2742         btrfs_init_scrub(fs_info);
2743 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2744         fs_info->check_integrity_print_mask = 0;
2745 #endif
2746         btrfs_init_balance(fs_info);
2747         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2748
2749         spin_lock_init(&fs_info->block_group_cache_lock);
2750         fs_info->block_group_cache_tree = RB_ROOT;
2751         fs_info->first_logical_byte = (u64)-1;
2752
2753         extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2754                             IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2755         extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2756                             IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
2757         fs_info->pinned_extents = &fs_info->freed_extents[0];
2758         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2759
2760         mutex_init(&fs_info->ordered_operations_mutex);
2761         mutex_init(&fs_info->tree_log_mutex);
2762         mutex_init(&fs_info->chunk_mutex);
2763         mutex_init(&fs_info->transaction_kthread_mutex);
2764         mutex_init(&fs_info->cleaner_mutex);
2765         mutex_init(&fs_info->ro_block_group_mutex);
2766         init_rwsem(&fs_info->commit_root_sem);
2767         init_rwsem(&fs_info->cleanup_work_sem);
2768         init_rwsem(&fs_info->subvol_sem);
2769         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2770
2771         btrfs_init_dev_replace_locks(fs_info);
2772         btrfs_init_qgroup(fs_info);
2773         btrfs_discard_init(fs_info);
2774
2775         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2776         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2777
2778         init_waitqueue_head(&fs_info->transaction_throttle);
2779         init_waitqueue_head(&fs_info->transaction_wait);
2780         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2781         init_waitqueue_head(&fs_info->async_submit_wait);
2782         init_waitqueue_head(&fs_info->delayed_iputs_wait);
2783
2784         /* Usable values until the real ones are cached from the superblock */
2785         fs_info->nodesize = 4096;
2786         fs_info->sectorsize = 4096;
2787         fs_info->stripesize = 4096;
2788
2789         spin_lock_init(&fs_info->swapfile_pins_lock);
2790         fs_info->swapfile_pins = RB_ROOT;
2791
2792         fs_info->send_in_progress = 0;
2793 }
2794
2795 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2796 {
2797         int ret;
2798
2799         fs_info->sb = sb;
2800         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2801         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2802
2803         ret = init_srcu_struct(&fs_info->subvol_srcu);
2804         if (ret)
2805                 return ret;
2806
2807         ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2808         if (ret)
2809                 goto fail;
2810
2811         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2812         if (ret)
2813                 goto fail;
2814
2815         fs_info->dirty_metadata_batch = PAGE_SIZE *
2816                                         (1 + ilog2(nr_cpu_ids));
2817
2818         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2819         if (ret)
2820                 goto fail;
2821
2822         ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2823                         GFP_KERNEL);
2824         if (ret)
2825                 goto fail;
2826
2827         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2828                                         GFP_KERNEL);
2829         if (!fs_info->delayed_root) {
2830                 ret = -ENOMEM;
2831                 goto fail;
2832         }
2833         btrfs_init_delayed_root(fs_info->delayed_root);
2834
2835         ret = btrfs_alloc_stripe_hash_table(fs_info);
2836         if (ret)
2837                 goto fail;
2838
2839         return 0;
2840 fail:
2841         cleanup_srcu_struct(&fs_info->subvol_srcu);
2842         return ret;
2843 }
2844
2845 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2846                       char *options)
2847 {
2848         u32 sectorsize;
2849         u32 nodesize;
2850         u32 stripesize;
2851         u64 generation;
2852         u64 features;
2853         u16 csum_type;
2854         struct btrfs_key location;
2855         struct buffer_head *bh;
2856         struct btrfs_super_block *disk_super;
2857         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2858         struct btrfs_root *tree_root;
2859         struct btrfs_root *chunk_root;
2860         int ret;
2861         int err = -EINVAL;
2862         int clear_free_space_tree = 0;
2863         int level;
2864
2865         ret = init_mount_fs_info(fs_info, sb);
2866         if (ret) {
2867                 err = ret;
2868                 goto fail;
2869         }
2870
2871         /* These need to be init'ed before we start creating inodes and such. */
2872         tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2873                                      GFP_KERNEL);
2874         fs_info->tree_root = tree_root;
2875         chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2876                                       GFP_KERNEL);
2877         fs_info->chunk_root = chunk_root;
2878         if (!tree_root || !chunk_root) {
2879                 err = -ENOMEM;
2880                 goto fail_srcu;
2881         }
2882
2883         fs_info->btree_inode = new_inode(sb);
2884         if (!fs_info->btree_inode) {
2885                 err = -ENOMEM;
2886                 goto fail_srcu;
2887         }
2888         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2889         btrfs_init_btree_inode(fs_info);
2890
2891         invalidate_bdev(fs_devices->latest_bdev);
2892
2893         /*
2894          * Read super block and check the signature bytes only
2895          */
2896         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2897         if (IS_ERR(bh)) {
2898                 err = PTR_ERR(bh);
2899                 goto fail_alloc;
2900         }
2901
2902         /*
2903          * Verify the type first, if that or the the checksum value are
2904          * corrupted, we'll find out
2905          */
2906         csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data);
2907         if (!btrfs_supported_super_csum(csum_type)) {
2908                 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2909                           csum_type);
2910                 err = -EINVAL;
2911                 brelse(bh);
2912                 goto fail_alloc;
2913         }
2914
2915         ret = btrfs_init_csum_hash(fs_info, csum_type);
2916         if (ret) {
2917                 err = ret;
2918                 goto fail_alloc;
2919         }
2920
2921         /*
2922          * We want to check superblock checksum, the type is stored inside.
2923          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2924          */
2925         if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2926                 btrfs_err(fs_info, "superblock checksum mismatch");
2927                 err = -EINVAL;
2928                 brelse(bh);
2929                 goto fail_alloc;
2930         }
2931
2932         /*
2933          * super_copy is zeroed at allocation time and we never touch the
2934          * following bytes up to INFO_SIZE, the checksum is calculated from
2935          * the whole block of INFO_SIZE
2936          */
2937         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2938         brelse(bh);
2939
2940         disk_super = fs_info->super_copy;
2941
2942         ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2943                        BTRFS_FSID_SIZE));
2944
2945         if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2946                 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2947                                 fs_info->super_copy->metadata_uuid,
2948                                 BTRFS_FSID_SIZE));
2949         }
2950
2951         features = btrfs_super_flags(disk_super);
2952         if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2953                 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2954                 btrfs_set_super_flags(disk_super, features);
2955                 btrfs_info(fs_info,
2956                         "found metadata UUID change in progress flag, clearing");
2957         }
2958
2959         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2960                sizeof(*fs_info->super_for_commit));
2961
2962         ret = btrfs_validate_mount_super(fs_info);
2963         if (ret) {
2964                 btrfs_err(fs_info, "superblock contains fatal errors");
2965                 err = -EINVAL;
2966                 goto fail_alloc;
2967         }
2968
2969         if (!btrfs_super_root(disk_super))
2970                 goto fail_alloc;
2971
2972         /* check FS state, whether FS is broken. */
2973         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2974                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2975
2976         /*
2977          * In the long term, we'll store the compression type in the super
2978          * block, and it'll be used for per file compression control.
2979          */
2980         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2981
2982         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2983         if (ret) {
2984                 err = ret;
2985                 goto fail_alloc;
2986         }
2987
2988         features = btrfs_super_incompat_flags(disk_super) &
2989                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2990         if (features) {
2991                 btrfs_err(fs_info,
2992                     "cannot mount because of unsupported optional features (%llx)",
2993                     features);
2994                 err = -EINVAL;
2995                 goto fail_alloc;
2996         }
2997
2998         features = btrfs_super_incompat_flags(disk_super);
2999         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3000         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3001                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3002         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3003                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3004
3005         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3006                 btrfs_info(fs_info, "has skinny extents");
3007
3008         /*
3009          * flag our filesystem as having big metadata blocks if
3010          * they are bigger than the page size
3011          */
3012         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3013                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3014                         btrfs_info(fs_info,
3015                                 "flagging fs with big metadata feature");
3016                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3017         }
3018
3019         nodesize = btrfs_super_nodesize(disk_super);
3020         sectorsize = btrfs_super_sectorsize(disk_super);
3021         stripesize = sectorsize;
3022         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3023         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3024
3025         /* Cache block sizes */
3026         fs_info->nodesize = nodesize;
3027         fs_info->sectorsize = sectorsize;
3028         fs_info->stripesize = stripesize;
3029
3030         /*
3031          * mixed block groups end up with duplicate but slightly offset
3032          * extent buffers for the same range.  It leads to corruptions
3033          */
3034         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3035             (sectorsize != nodesize)) {
3036                 btrfs_err(fs_info,
3037 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3038                         nodesize, sectorsize);
3039                 goto fail_alloc;
3040         }
3041
3042         /*
3043          * Needn't use the lock because there is no other task which will
3044          * update the flag.
3045          */
3046         btrfs_set_super_incompat_flags(disk_super, features);
3047
3048         features = btrfs_super_compat_ro_flags(disk_super) &
3049                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
3050         if (!sb_rdonly(sb) && features) {
3051                 btrfs_err(fs_info,
3052         "cannot mount read-write because of unsupported optional features (%llx)",
3053                        features);
3054                 err = -EINVAL;
3055                 goto fail_alloc;
3056         }
3057
3058         ret = btrfs_init_workqueues(fs_info, fs_devices);
3059         if (ret) {
3060                 err = ret;
3061                 goto fail_sb_buffer;
3062         }
3063
3064         sb->s_bdi->congested_fn = btrfs_congested_fn;
3065         sb->s_bdi->congested_data = fs_info;
3066         sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
3067         sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
3068         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3069         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3070
3071         sb->s_blocksize = sectorsize;
3072         sb->s_blocksize_bits = blksize_bits(sectorsize);
3073         memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3074
3075         mutex_lock(&fs_info->chunk_mutex);
3076         ret = btrfs_read_sys_array(fs_info);
3077         mutex_unlock(&fs_info->chunk_mutex);
3078         if (ret) {
3079                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3080                 goto fail_sb_buffer;
3081         }
3082
3083         generation = btrfs_super_chunk_root_generation(disk_super);
3084         level = btrfs_super_chunk_root_level(disk_super);
3085
3086         chunk_root->node = read_tree_block(fs_info,
3087                                            btrfs_super_chunk_root(disk_super),
3088                                            generation, level, NULL);
3089         if (IS_ERR(chunk_root->node) ||
3090             !extent_buffer_uptodate(chunk_root->node)) {
3091                 btrfs_err(fs_info, "failed to read chunk root");
3092                 if (!IS_ERR(chunk_root->node))
3093                         free_extent_buffer(chunk_root->node);
3094                 chunk_root->node = NULL;
3095                 goto fail_tree_roots;
3096         }
3097         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3098         chunk_root->commit_root = btrfs_root_node(chunk_root);
3099
3100         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3101            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
3102
3103         ret = btrfs_read_chunk_tree(fs_info);
3104         if (ret) {
3105                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3106                 goto fail_tree_roots;
3107         }
3108
3109         /*
3110          * Keep the devid that is marked to be the target device for the
3111          * device replace procedure
3112          */
3113         btrfs_free_extra_devids(fs_devices, 0);
3114
3115         if (!fs_devices->latest_bdev) {
3116                 btrfs_err(fs_info, "failed to read devices");
3117                 goto fail_tree_roots;
3118         }
3119
3120         ret = init_tree_roots(fs_info);
3121         if (ret)
3122                 goto fail_tree_roots;
3123
3124         ret = btrfs_verify_dev_extents(fs_info);
3125         if (ret) {
3126                 btrfs_err(fs_info,
3127                           "failed to verify dev extents against chunks: %d",
3128                           ret);
3129                 goto fail_block_groups;
3130         }
3131         ret = btrfs_recover_balance(fs_info);
3132         if (ret) {
3133                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3134                 goto fail_block_groups;
3135         }
3136
3137         ret = btrfs_init_dev_stats(fs_info);
3138         if (ret) {
3139                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3140                 goto fail_block_groups;
3141         }
3142
3143         ret = btrfs_init_dev_replace(fs_info);
3144         if (ret) {
3145                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3146                 goto fail_block_groups;
3147         }
3148
3149         btrfs_free_extra_devids(fs_devices, 1);
3150
3151         ret = btrfs_sysfs_add_fsid(fs_devices);
3152         if (ret) {
3153                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3154                                 ret);
3155                 goto fail_block_groups;
3156         }
3157
3158         ret = btrfs_sysfs_add_mounted(fs_info);
3159         if (ret) {
3160                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3161                 goto fail_fsdev_sysfs;
3162         }
3163
3164         ret = btrfs_init_space_info(fs_info);
3165         if (ret) {
3166                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3167                 goto fail_sysfs;
3168         }
3169
3170         ret = btrfs_read_block_groups(fs_info);
3171         if (ret) {
3172                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3173                 goto fail_sysfs;
3174         }
3175
3176         if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3177                 btrfs_warn(fs_info,
3178                 "writable mount is not allowed due to too many missing devices");
3179                 goto fail_sysfs;
3180         }
3181
3182         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3183                                                "btrfs-cleaner");
3184         if (IS_ERR(fs_info->cleaner_kthread))
3185                 goto fail_sysfs;
3186
3187         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3188                                                    tree_root,
3189                                                    "btrfs-transaction");
3190         if (IS_ERR(fs_info->transaction_kthread))
3191                 goto fail_cleaner;
3192
3193         if (!btrfs_test_opt(fs_info, NOSSD) &&
3194             !fs_info->fs_devices->rotating) {
3195                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3196         }
3197
3198         /*
3199          * Mount does not set all options immediately, we can do it now and do
3200          * not have to wait for transaction commit
3201          */
3202         btrfs_apply_pending_changes(fs_info);
3203
3204 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3205         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3206                 ret = btrfsic_mount(fs_info, fs_devices,
3207                                     btrfs_test_opt(fs_info,
3208                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3209                                     1 : 0,
3210                                     fs_info->check_integrity_print_mask);
3211                 if (ret)
3212                         btrfs_warn(fs_info,
3213                                 "failed to initialize integrity check module: %d",
3214                                 ret);
3215         }
3216 #endif
3217         ret = btrfs_read_qgroup_config(fs_info);
3218         if (ret)
3219                 goto fail_trans_kthread;
3220
3221         if (btrfs_build_ref_tree(fs_info))
3222                 btrfs_err(fs_info, "couldn't build ref tree");
3223
3224         /* do not make disk changes in broken FS or nologreplay is given */
3225         if (btrfs_super_log_root(disk_super) != 0 &&
3226             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3227                 btrfs_info(fs_info, "start tree-log replay");
3228                 ret = btrfs_replay_log(fs_info, fs_devices);
3229                 if (ret) {
3230                         err = ret;
3231                         goto fail_qgroup;
3232                 }
3233         }
3234
3235         ret = btrfs_find_orphan_roots(fs_info);
3236         if (ret)
3237                 goto fail_qgroup;
3238
3239         if (!sb_rdonly(sb)) {
3240                 ret = btrfs_cleanup_fs_roots(fs_info);
3241                 if (ret)
3242                         goto fail_qgroup;
3243
3244                 mutex_lock(&fs_info->cleaner_mutex);
3245                 ret = btrfs_recover_relocation(tree_root);
3246                 mutex_unlock(&fs_info->cleaner_mutex);
3247                 if (ret < 0) {
3248                         btrfs_warn(fs_info, "failed to recover relocation: %d",
3249                                         ret);
3250                         err = -EINVAL;
3251                         goto fail_qgroup;
3252                 }
3253         }
3254
3255         location.objectid = BTRFS_FS_TREE_OBJECTID;
3256         location.type = BTRFS_ROOT_ITEM_KEY;
3257         location.offset = 0;
3258
3259         fs_info->fs_root = btrfs_get_fs_root(fs_info, &location, true);
3260         if (IS_ERR(fs_info->fs_root)) {
3261                 err = PTR_ERR(fs_info->fs_root);
3262                 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3263                 fs_info->fs_root = NULL;
3264                 goto fail_qgroup;
3265         }
3266
3267         if (sb_rdonly(sb))
3268                 return 0;
3269
3270         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3271             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3272                 clear_free_space_tree = 1;
3273         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3274                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3275                 btrfs_warn(fs_info, "free space tree is invalid");
3276                 clear_free_space_tree = 1;
3277         }
3278
3279         if (clear_free_space_tree) {
3280                 btrfs_info(fs_info, "clearing free space tree");
3281                 ret = btrfs_clear_free_space_tree(fs_info);
3282                 if (ret) {
3283                         btrfs_warn(fs_info,
3284                                    "failed to clear free space tree: %d", ret);
3285                         close_ctree(fs_info);
3286                         return ret;
3287                 }
3288         }
3289
3290         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3291             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3292                 btrfs_info(fs_info, "creating free space tree");
3293                 ret = btrfs_create_free_space_tree(fs_info);
3294                 if (ret) {
3295                         btrfs_warn(fs_info,
3296                                 "failed to create free space tree: %d", ret);
3297                         close_ctree(fs_info);
3298                         return ret;
3299                 }
3300         }
3301
3302         down_read(&fs_info->cleanup_work_sem);
3303         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3304             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3305                 up_read(&fs_info->cleanup_work_sem);
3306                 close_ctree(fs_info);
3307                 return ret;
3308         }
3309         up_read(&fs_info->cleanup_work_sem);
3310
3311         ret = btrfs_resume_balance_async(fs_info);
3312         if (ret) {
3313                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3314                 close_ctree(fs_info);
3315                 return ret;
3316         }
3317
3318         ret = btrfs_resume_dev_replace_async(fs_info);
3319         if (ret) {
3320                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3321                 close_ctree(fs_info);
3322                 return ret;
3323         }
3324
3325         btrfs_qgroup_rescan_resume(fs_info);
3326         btrfs_discard_resume(fs_info);
3327
3328         if (!fs_info->uuid_root) {
3329                 btrfs_info(fs_info, "creating UUID tree");
3330                 ret = btrfs_create_uuid_tree(fs_info);
3331                 if (ret) {
3332                         btrfs_warn(fs_info,
3333                                 "failed to create the UUID tree: %d", ret);
3334                         close_ctree(fs_info);
3335                         return ret;
3336                 }
3337         } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3338                    fs_info->generation !=
3339                                 btrfs_super_uuid_tree_generation(disk_super)) {
3340                 btrfs_info(fs_info, "checking UUID tree");
3341                 ret = btrfs_check_uuid_tree(fs_info);
3342                 if (ret) {
3343                         btrfs_warn(fs_info,
3344                                 "failed to check the UUID tree: %d", ret);
3345                         close_ctree(fs_info);
3346                         return ret;
3347                 }
3348         } else {
3349                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3350         }
3351         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3352
3353         /*
3354          * backuproot only affect mount behavior, and if open_ctree succeeded,
3355          * no need to keep the flag
3356          */
3357         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3358
3359         return 0;
3360
3361 fail_qgroup:
3362         btrfs_free_qgroup_config(fs_info);
3363 fail_trans_kthread:
3364         kthread_stop(fs_info->transaction_kthread);
3365         btrfs_cleanup_transaction(fs_info);
3366         btrfs_free_fs_roots(fs_info);
3367 fail_cleaner:
3368         kthread_stop(fs_info->cleaner_kthread);
3369
3370         /*
3371          * make sure we're done with the btree inode before we stop our
3372          * kthreads
3373          */
3374         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3375
3376 fail_sysfs:
3377         btrfs_sysfs_remove_mounted(fs_info);
3378
3379 fail_fsdev_sysfs:
3380         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3381
3382 fail_block_groups:
3383         btrfs_put_block_group_cache(fs_info);
3384
3385 fail_tree_roots:
3386         free_root_pointers(fs_info, true);
3387         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3388
3389 fail_sb_buffer:
3390         btrfs_stop_all_workers(fs_info);
3391         btrfs_free_block_groups(fs_info);
3392 fail_alloc:
3393         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3394
3395         iput(fs_info->btree_inode);
3396 fail_srcu:
3397         cleanup_srcu_struct(&fs_info->subvol_srcu);
3398 fail:
3399         btrfs_close_devices(fs_info->fs_devices);
3400         return err;
3401 }
3402 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3403
3404 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3405 {
3406         if (uptodate) {
3407                 set_buffer_uptodate(bh);
3408         } else {
3409                 struct btrfs_device *device = (struct btrfs_device *)
3410                         bh->b_private;
3411
3412                 btrfs_warn_rl_in_rcu(device->fs_info,
3413                                 "lost page write due to IO error on %s",
3414                                           rcu_str_deref(device->name));
3415                 /* note, we don't set_buffer_write_io_error because we have
3416                  * our own ways of dealing with the IO errors
3417                  */
3418                 clear_buffer_uptodate(bh);
3419                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3420         }
3421         unlock_buffer(bh);
3422         put_bh(bh);
3423 }
3424
3425 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3426                         struct buffer_head **bh_ret)
3427 {
3428         struct buffer_head *bh;
3429         struct btrfs_super_block *super;
3430         u64 bytenr;
3431
3432         bytenr = btrfs_sb_offset(copy_num);
3433         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3434                 return -EINVAL;
3435
3436         bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3437         /*
3438          * If we fail to read from the underlying devices, as of now
3439          * the best option we have is to mark it EIO.
3440          */
3441         if (!bh)
3442                 return -EIO;
3443
3444         super = (struct btrfs_super_block *)bh->b_data;
3445         if (btrfs_super_bytenr(super) != bytenr ||
3446                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3447                 brelse(bh);
3448                 return -EINVAL;
3449         }
3450
3451         *bh_ret = bh;
3452         return 0;
3453 }
3454
3455
3456 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3457 {
3458         struct buffer_head *bh;
3459         struct buffer_head *latest = NULL;
3460         struct btrfs_super_block *super;
3461         int i;
3462         u64 transid = 0;
3463         int ret = -EINVAL;
3464
3465         /* we would like to check all the supers, but that would make
3466          * a btrfs mount succeed after a mkfs from a different FS.
3467          * So, we need to add a special mount option to scan for
3468          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3469          */
3470         for (i = 0; i < 1; i++) {
3471                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3472                 if (ret)
3473                         continue;
3474
3475                 super = (struct btrfs_super_block *)bh->b_data;
3476
3477                 if (!latest || btrfs_super_generation(super) > transid) {
3478                         brelse(latest);
3479                         latest = bh;
3480                         transid = btrfs_super_generation(super);
3481                 } else {
3482                         brelse(bh);
3483                 }
3484         }
3485
3486         if (!latest)
3487                 return ERR_PTR(ret);
3488
3489         return latest;
3490 }
3491
3492 /*
3493  * Write superblock @sb to the @device. Do not wait for completion, all the
3494  * buffer heads we write are pinned.
3495  *
3496  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3497  * the expected device size at commit time. Note that max_mirrors must be
3498  * same for write and wait phases.
3499  *
3500  * Return number of errors when buffer head is not found or submission fails.
3501  */
3502 static int write_dev_supers(struct btrfs_device *device,
3503                             struct btrfs_super_block *sb, int max_mirrors)
3504 {
3505         struct btrfs_fs_info *fs_info = device->fs_info;
3506         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3507         struct buffer_head *bh;
3508         int i;
3509         int ret;
3510         int errors = 0;
3511         u64 bytenr;
3512         int op_flags;
3513
3514         if (max_mirrors == 0)
3515                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3516
3517         shash->tfm = fs_info->csum_shash;
3518
3519         for (i = 0; i < max_mirrors; i++) {
3520                 bytenr = btrfs_sb_offset(i);
3521                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3522                     device->commit_total_bytes)
3523                         break;
3524
3525                 btrfs_set_super_bytenr(sb, bytenr);
3526
3527                 crypto_shash_init(shash);
3528                 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3529                                     BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3530                 crypto_shash_final(shash, sb->csum);
3531
3532                 /* One reference for us, and we leave it for the caller */
3533                 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3534                               BTRFS_SUPER_INFO_SIZE);
3535                 if (!bh) {
3536                         btrfs_err(device->fs_info,
3537                             "couldn't get super buffer head for bytenr %llu",
3538                             bytenr);
3539                         errors++;
3540                         continue;
3541                 }
3542
3543                 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3544
3545                 /* one reference for submit_bh */
3546                 get_bh(bh);
3547
3548                 set_buffer_uptodate(bh);
3549                 lock_buffer(bh);
3550                 bh->b_end_io = btrfs_end_buffer_write_sync;
3551                 bh->b_private = device;
3552
3553                 /*
3554                  * we fua the first super.  The others we allow
3555                  * to go down lazy.
3556                  */
3557                 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3558                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3559                         op_flags |= REQ_FUA;
3560                 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3561                 if (ret)
3562                         errors++;
3563         }
3564         return errors < i ? 0 : -1;
3565 }
3566
3567 /*
3568  * Wait for write completion of superblocks done by write_dev_supers,
3569  * @max_mirrors same for write and wait phases.
3570  *
3571  * Return number of errors when buffer head is not found or not marked up to
3572  * date.
3573  */
3574 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3575 {
3576         struct buffer_head *bh;
3577         int i;
3578         int errors = 0;
3579         bool primary_failed = false;
3580         u64 bytenr;
3581
3582         if (max_mirrors == 0)
3583                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3584
3585         for (i = 0; i < max_mirrors; i++) {
3586                 bytenr = btrfs_sb_offset(i);
3587                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3588                     device->commit_total_bytes)
3589                         break;
3590
3591                 bh = __find_get_block(device->bdev,
3592                                       bytenr / BTRFS_BDEV_BLOCKSIZE,
3593                                       BTRFS_SUPER_INFO_SIZE);
3594                 if (!bh) {
3595                         errors++;
3596                         if (i == 0)
3597                                 primary_failed = true;
3598                         continue;
3599                 }
3600                 wait_on_buffer(bh);
3601                 if (!buffer_uptodate(bh)) {
3602                         errors++;
3603                         if (i == 0)
3604                                 primary_failed = true;
3605                 }
3606
3607                 /* drop our reference */
3608                 brelse(bh);
3609
3610                 /* drop the reference from the writing run */
3611                 brelse(bh);
3612         }
3613
3614         /* log error, force error return */
3615         if (primary_failed) {
3616                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3617                           device->devid);
3618                 return -1;
3619         }
3620
3621         return errors < i ? 0 : -1;
3622 }
3623
3624 /*
3625  * endio for the write_dev_flush, this will wake anyone waiting
3626  * for the barrier when it is done
3627  */
3628 static void btrfs_end_empty_barrier(struct bio *bio)
3629 {
3630         complete(bio->bi_private);
3631 }
3632
3633 /*
3634  * Submit a flush request to the device if it supports it. Error handling is
3635  * done in the waiting counterpart.
3636  */
3637 static void write_dev_flush(struct btrfs_device *device)
3638 {
3639         struct request_queue *q = bdev_get_queue(device->bdev);
3640         struct bio *bio = device->flush_bio;
3641
3642         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3643                 return;
3644
3645         bio_reset(bio);
3646         bio->bi_end_io = btrfs_end_empty_barrier;
3647         bio_set_dev(bio, device->bdev);
3648         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3649         init_completion(&device->flush_wait);
3650         bio->bi_private = &device->flush_wait;
3651
3652         btrfsic_submit_bio(bio);
3653         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3654 }
3655
3656 /*
3657  * If the flush bio has been submitted by write_dev_flush, wait for it.
3658  */
3659 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3660 {
3661         struct bio *bio = device->flush_bio;
3662
3663         if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3664                 return BLK_STS_OK;
3665
3666         clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3667         wait_for_completion_io(&device->flush_wait);
3668
3669         return bio->bi_status;
3670 }
3671
3672 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3673 {
3674         if (!btrfs_check_rw_degradable(fs_info, NULL))
3675                 return -EIO;
3676         return 0;
3677 }
3678
3679 /*
3680  * send an empty flush down to each device in parallel,
3681  * then wait for them
3682  */
3683 static int barrier_all_devices(struct btrfs_fs_info *info)
3684 {
3685         struct list_head *head;
3686         struct btrfs_device *dev;
3687         int errors_wait = 0;
3688         blk_status_t ret;
3689
3690         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3691         /* send down all the barriers */
3692         head = &info->fs_devices->devices;
3693         list_for_each_entry(dev, head, dev_list) {
3694                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3695                         continue;
3696                 if (!dev->bdev)
3697                         continue;
3698                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3699                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3700                         continue;
3701
3702                 write_dev_flush(dev);
3703                 dev->last_flush_error = BLK_STS_OK;
3704         }
3705
3706         /* wait for all the barriers */
3707         list_for_each_entry(dev, head, dev_list) {
3708                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3709                         continue;
3710                 if (!dev->bdev) {
3711                         errors_wait++;
3712                         continue;
3713                 }
3714                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3715                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3716                         continue;
3717
3718                 ret = wait_dev_flush(dev);
3719                 if (ret) {
3720                         dev->last_flush_error = ret;
3721                         btrfs_dev_stat_inc_and_print(dev,
3722                                         BTRFS_DEV_STAT_FLUSH_ERRS);
3723                         errors_wait++;
3724                 }
3725         }
3726
3727         if (errors_wait) {
3728                 /*
3729                  * At some point we need the status of all disks
3730                  * to arrive at the volume status. So error checking
3731                  * is being pushed to a separate loop.
3732                  */
3733                 return check_barrier_error(info);
3734         }
3735         return 0;
3736 }
3737
3738 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3739 {
3740         int raid_type;
3741         int min_tolerated = INT_MAX;
3742
3743         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3744             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3745                 min_tolerated = min_t(int, min_tolerated,
3746                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3747                                     tolerated_failures);
3748
3749         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3750                 if (raid_type == BTRFS_RAID_SINGLE)
3751                         continue;
3752                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3753                         continue;
3754                 min_tolerated = min_t(int, min_tolerated,
3755                                     btrfs_raid_array[raid_type].
3756                                     tolerated_failures);
3757         }
3758
3759         if (min_tolerated == INT_MAX) {
3760                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3761                 min_tolerated = 0;
3762         }
3763
3764         return min_tolerated;
3765 }
3766
3767 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3768 {
3769         struct list_head *head;
3770         struct btrfs_device *dev;
3771         struct btrfs_super_block *sb;
3772         struct btrfs_dev_item *dev_item;
3773         int ret;
3774         int do_barriers;
3775         int max_errors;
3776         int total_errors = 0;
3777         u64 flags;
3778
3779         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3780
3781         /*
3782          * max_mirrors == 0 indicates we're from commit_transaction,
3783          * not from fsync where the tree roots in fs_info have not
3784          * been consistent on disk.
3785          */
3786         if (max_mirrors == 0)
3787                 backup_super_roots(fs_info);
3788
3789         sb = fs_info->super_for_commit;
3790         dev_item = &sb->dev_item;
3791
3792         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3793         head = &fs_info->fs_devices->devices;
3794         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3795
3796         if (do_barriers) {
3797                 ret = barrier_all_devices(fs_info);
3798                 if (ret) {
3799                         mutex_unlock(
3800                                 &fs_info->fs_devices->device_list_mutex);
3801                         btrfs_handle_fs_error(fs_info, ret,
3802                                               "errors while submitting device barriers.");
3803                         return ret;
3804                 }
3805         }
3806
3807         list_for_each_entry(dev, head, dev_list) {
3808                 if (!dev->bdev) {
3809                         total_errors++;
3810                         continue;
3811                 }
3812                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3813                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3814                         continue;
3815
3816                 btrfs_set_stack_device_generation(dev_item, 0);
3817                 btrfs_set_stack_device_type(dev_item, dev->type);
3818                 btrfs_set_stack_device_id(dev_item, dev->devid);
3819                 btrfs_set_stack_device_total_bytes(dev_item,
3820                                                    dev->commit_total_bytes);
3821                 btrfs_set_stack_device_bytes_used(dev_item,
3822                                                   dev->commit_bytes_used);
3823                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3824                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3825                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3826                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3827                 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3828                        BTRFS_FSID_SIZE);
3829
3830                 flags = btrfs_super_flags(sb);
3831                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3832
3833                 ret = btrfs_validate_write_super(fs_info, sb);
3834                 if (ret < 0) {
3835                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3836                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
3837                                 "unexpected superblock corruption detected");
3838                         return -EUCLEAN;
3839                 }
3840
3841                 ret = write_dev_supers(dev, sb, max_mirrors);
3842                 if (ret)
3843                         total_errors++;
3844         }
3845         if (total_errors > max_errors) {
3846                 btrfs_err(fs_info, "%d errors while writing supers",
3847                           total_errors);
3848                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3849
3850                 /* FUA is masked off if unsupported and can't be the reason */
3851                 btrfs_handle_fs_error(fs_info, -EIO,
3852                                       "%d errors while writing supers",
3853                                       total_errors);
3854                 return -EIO;
3855         }
3856
3857         total_errors = 0;
3858         list_for_each_entry(dev, head, dev_list) {
3859                 if (!dev->bdev)
3860                         continue;
3861                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3862                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3863                         continue;
3864
3865                 ret = wait_dev_supers(dev, max_mirrors);
3866                 if (ret)
3867                         total_errors++;
3868         }
3869         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3870         if (total_errors > max_errors) {
3871                 btrfs_handle_fs_error(fs_info, -EIO,
3872                                       "%d errors while writing supers",
3873                                       total_errors);
3874                 return -EIO;
3875         }
3876         return 0;
3877 }
3878
3879 /* Drop a fs root from the radix tree and free it. */
3880 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3881                                   struct btrfs_root *root)
3882 {
3883         spin_lock(&fs_info->fs_roots_radix_lock);
3884         radix_tree_delete(&fs_info->fs_roots_radix,
3885                           (unsigned long)root->root_key.objectid);
3886         if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3887                 btrfs_put_fs_root(root);
3888         spin_unlock(&fs_info->fs_roots_radix_lock);
3889
3890         if (btrfs_root_refs(&root->root_item) == 0)
3891                 synchronize_srcu(&fs_info->subvol_srcu);
3892
3893         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3894                 btrfs_free_log(NULL, root);
3895                 if (root->reloc_root) {
3896                         free_extent_buffer(root->reloc_root->node);
3897                         free_extent_buffer(root->reloc_root->commit_root);
3898                         btrfs_put_fs_root(root->reloc_root);
3899                         root->reloc_root = NULL;
3900                 }
3901         }
3902
3903         if (root->free_ino_pinned)
3904                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3905         if (root->free_ino_ctl)
3906                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3907         btrfs_free_fs_root(root);
3908 }
3909
3910 void btrfs_free_fs_root(struct btrfs_root *root)
3911 {
3912         iput(root->ino_cache_inode);
3913         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3914         if (root->anon_dev)
3915                 free_anon_bdev(root->anon_dev);
3916         if (root->subv_writers)
3917                 btrfs_free_subvolume_writers(root->subv_writers);
3918         free_extent_buffer(root->node);
3919         free_extent_buffer(root->commit_root);
3920         kfree(root->free_ino_ctl);
3921         kfree(root->free_ino_pinned);
3922         btrfs_put_fs_root(root);
3923 }
3924
3925 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3926 {
3927         u64 root_objectid = 0;
3928         struct btrfs_root *gang[8];
3929         int i = 0;
3930         int err = 0;
3931         unsigned int ret = 0;
3932         int index;
3933
3934         while (1) {
3935                 index = srcu_read_lock(&fs_info->subvol_srcu);
3936                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3937                                              (void **)gang, root_objectid,
3938                                              ARRAY_SIZE(gang));
3939                 if (!ret) {
3940                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3941                         break;
3942                 }
3943                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3944
3945                 for (i = 0; i < ret; i++) {
3946                         /* Avoid to grab roots in dead_roots */
3947                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3948                                 gang[i] = NULL;
3949                                 continue;
3950                         }
3951                         /* grab all the search result for later use */
3952                         gang[i] = btrfs_grab_fs_root(gang[i]);
3953                 }
3954                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3955
3956                 for (i = 0; i < ret; i++) {
3957                         if (!gang[i])
3958                                 continue;
3959                         root_objectid = gang[i]->root_key.objectid;
3960                         err = btrfs_orphan_cleanup(gang[i]);
3961                         if (err)
3962                                 break;
3963                         btrfs_put_fs_root(gang[i]);
3964                 }
3965                 root_objectid++;
3966         }
3967
3968         /* release the uncleaned roots due to error */
3969         for (; i < ret; i++) {
3970                 if (gang[i])
3971                         btrfs_put_fs_root(gang[i]);
3972         }
3973         return err;
3974 }
3975
3976 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3977 {
3978         struct btrfs_root *root = fs_info->tree_root;
3979         struct btrfs_trans_handle *trans;
3980
3981         mutex_lock(&fs_info->cleaner_mutex);
3982         btrfs_run_delayed_iputs(fs_info);
3983         mutex_unlock(&fs_info->cleaner_mutex);
3984         wake_up_process(fs_info->cleaner_kthread);
3985
3986         /* wait until ongoing cleanup work done */
3987         down_write(&fs_info->cleanup_work_sem);
3988         up_write(&fs_info->cleanup_work_sem);
3989
3990         trans = btrfs_join_transaction(root);
3991         if (IS_ERR(trans))
3992                 return PTR_ERR(trans);
3993         return btrfs_commit_transaction(trans);
3994 }
3995
3996 void __cold close_ctree(struct btrfs_fs_info *fs_info)
3997 {
3998         int ret;
3999
4000         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4001         /*
4002          * We don't want the cleaner to start new transactions, add more delayed
4003          * iputs, etc. while we're closing. We can't use kthread_stop() yet
4004          * because that frees the task_struct, and the transaction kthread might
4005          * still try to wake up the cleaner.
4006          */
4007         kthread_park(fs_info->cleaner_kthread);
4008
4009         /* wait for the qgroup rescan worker to stop */
4010         btrfs_qgroup_wait_for_completion(fs_info, false);
4011
4012         /* wait for the uuid_scan task to finish */
4013         down(&fs_info->uuid_tree_rescan_sem);
4014         /* avoid complains from lockdep et al., set sem back to initial state */
4015         up(&fs_info->uuid_tree_rescan_sem);
4016
4017         /* pause restriper - we want to resume on mount */
4018         btrfs_pause_balance(fs_info);
4019
4020         btrfs_dev_replace_suspend_for_unmount(fs_info);
4021
4022         btrfs_scrub_cancel(fs_info);
4023
4024         /* wait for any defraggers to finish */
4025         wait_event(fs_info->transaction_wait,
4026                    (atomic_read(&fs_info->defrag_running) == 0));
4027
4028         /* clear out the rbtree of defraggable inodes */
4029         btrfs_cleanup_defrag_inodes(fs_info);
4030
4031         cancel_work_sync(&fs_info->async_reclaim_work);
4032
4033         /* Cancel or finish ongoing discard work */
4034         btrfs_discard_cleanup(fs_info);
4035
4036         if (!sb_rdonly(fs_info->sb)) {
4037                 /*
4038                  * The cleaner kthread is stopped, so do one final pass over
4039                  * unused block groups.
4040                  */
4041                 btrfs_delete_unused_bgs(fs_info);
4042
4043                 ret = btrfs_commit_super(fs_info);
4044                 if (ret)
4045                         btrfs_err(fs_info, "commit super ret %d", ret);
4046         }
4047
4048         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4049             test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4050                 btrfs_error_commit_super(fs_info);
4051
4052         kthread_stop(fs_info->transaction_kthread);
4053         kthread_stop(fs_info->cleaner_kthread);
4054
4055         ASSERT(list_empty(&fs_info->delayed_iputs));
4056         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4057
4058         btrfs_free_qgroup_config(fs_info);
4059         ASSERT(list_empty(&fs_info->delalloc_roots));
4060
4061         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4062                 btrfs_info(fs_info, "at unmount delalloc count %lld",
4063                        percpu_counter_sum(&fs_info->delalloc_bytes));
4064         }
4065
4066         if (percpu_counter_sum(&fs_info->dio_bytes))
4067                 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4068                            percpu_counter_sum(&fs_info->dio_bytes));
4069
4070         btrfs_sysfs_remove_mounted(fs_info);
4071         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4072
4073         btrfs_free_fs_roots(fs_info);
4074
4075         btrfs_put_block_group_cache(fs_info);
4076
4077         /*
4078          * we must make sure there is not any read request to
4079          * submit after we stopping all workers.
4080          */
4081         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4082         btrfs_stop_all_workers(fs_info);
4083
4084         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4085         free_root_pointers(fs_info, true);
4086
4087         /*
4088          * We must free the block groups after dropping the fs_roots as we could
4089          * have had an IO error and have left over tree log blocks that aren't
4090          * cleaned up until the fs roots are freed.  This makes the block group
4091          * accounting appear to be wrong because there's pending reserved bytes,
4092          * so make sure we do the block group cleanup afterwards.
4093          */
4094         btrfs_free_block_groups(fs_info);
4095
4096         iput(fs_info->btree_inode);
4097
4098 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4099         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4100                 btrfsic_unmount(fs_info->fs_devices);
4101 #endif
4102
4103         btrfs_mapping_tree_free(&fs_info->mapping_tree);
4104         btrfs_close_devices(fs_info->fs_devices);
4105         cleanup_srcu_struct(&fs_info->subvol_srcu);
4106 }
4107
4108 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4109                           int atomic)
4110 {
4111         int ret;
4112         struct inode *btree_inode = buf->pages[0]->mapping->host;
4113
4114         ret = extent_buffer_uptodate(buf);
4115         if (!ret)
4116                 return ret;
4117
4118         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4119                                     parent_transid, atomic);
4120         if (ret == -EAGAIN)
4121                 return ret;
4122         return !ret;
4123 }
4124
4125 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4126 {
4127         struct btrfs_fs_info *fs_info;
4128         struct btrfs_root *root;
4129         u64 transid = btrfs_header_generation(buf);
4130         int was_dirty;
4131
4132 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4133         /*
4134          * This is a fast path so only do this check if we have sanity tests
4135          * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4136          * outside of the sanity tests.
4137          */
4138         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4139                 return;
4140 #endif
4141         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4142         fs_info = root->fs_info;
4143         btrfs_assert_tree_locked(buf);
4144         if (transid != fs_info->generation)
4145                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4146                         buf->start, transid, fs_info->generation);
4147         was_dirty = set_extent_buffer_dirty(buf);
4148         if (!was_dirty)
4149                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4150                                          buf->len,
4151                                          fs_info->dirty_metadata_batch);
4152 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4153         /*
4154          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4155          * but item data not updated.
4156          * So here we should only check item pointers, not item data.
4157          */
4158         if (btrfs_header_level(buf) == 0 &&
4159             btrfs_check_leaf_relaxed(buf)) {
4160                 btrfs_print_leaf(buf);
4161                 ASSERT(0);
4162         }
4163 #endif
4164 }
4165
4166 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4167                                         int flush_delayed)
4168 {
4169         /*
4170          * looks as though older kernels can get into trouble with
4171          * this code, they end up stuck in balance_dirty_pages forever
4172          */
4173         int ret;
4174
4175         if (current->flags & PF_MEMALLOC)
4176                 return;
4177
4178         if (flush_delayed)
4179                 btrfs_balance_delayed_items(fs_info);
4180
4181         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4182                                      BTRFS_DIRTY_METADATA_THRESH,
4183                                      fs_info->dirty_metadata_batch);
4184         if (ret > 0) {
4185                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4186         }
4187 }
4188
4189 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4190 {
4191         __btrfs_btree_balance_dirty(fs_info, 1);
4192 }
4193
4194 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4195 {
4196         __btrfs_btree_balance_dirty(fs_info, 0);
4197 }
4198
4199 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4200                       struct btrfs_key *first_key)
4201 {
4202         return btree_read_extent_buffer_pages(buf, parent_transid,
4203                                               level, first_key);
4204 }
4205
4206 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4207 {
4208         /* cleanup FS via transaction */
4209         btrfs_cleanup_transaction(fs_info);
4210
4211         mutex_lock(&fs_info->cleaner_mutex);
4212         btrfs_run_delayed_iputs(fs_info);
4213         mutex_unlock(&fs_info->cleaner_mutex);
4214
4215         down_write(&fs_info->cleanup_work_sem);
4216         up_write(&fs_info->cleanup_work_sem);
4217 }
4218
4219 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4220 {
4221         struct btrfs_ordered_extent *ordered;
4222
4223         spin_lock(&root->ordered_extent_lock);
4224         /*
4225          * This will just short circuit the ordered completion stuff which will
4226          * make sure the ordered extent gets properly cleaned up.
4227          */
4228         list_for_each_entry(ordered, &root->ordered_extents,
4229                             root_extent_list)
4230                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4231         spin_unlock(&root->ordered_extent_lock);
4232 }
4233
4234 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4235 {
4236         struct btrfs_root *root;
4237         struct list_head splice;
4238
4239         INIT_LIST_HEAD(&splice);
4240
4241         spin_lock(&fs_info->ordered_root_lock);
4242         list_splice_init(&fs_info->ordered_roots, &splice);
4243         while (!list_empty(&splice)) {
4244                 root = list_first_entry(&splice, struct btrfs_root,
4245                                         ordered_root);
4246                 list_move_tail(&root->ordered_root,
4247                                &fs_info->ordered_roots);
4248
4249                 spin_unlock(&fs_info->ordered_root_lock);
4250                 btrfs_destroy_ordered_extents(root);
4251
4252                 cond_resched();
4253                 spin_lock(&fs_info->ordered_root_lock);
4254         }
4255         spin_unlock(&fs_info->ordered_root_lock);
4256
4257         /*
4258          * We need this here because if we've been flipped read-only we won't
4259          * get sync() from the umount, so we need to make sure any ordered
4260          * extents that haven't had their dirty pages IO start writeout yet
4261          * actually get run and error out properly.
4262          */
4263         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4264 }
4265
4266 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4267                                       struct btrfs_fs_info *fs_info)
4268 {
4269         struct rb_node *node;
4270         struct btrfs_delayed_ref_root *delayed_refs;
4271         struct btrfs_delayed_ref_node *ref;
4272         int ret = 0;
4273
4274         delayed_refs = &trans->delayed_refs;
4275
4276         spin_lock(&delayed_refs->lock);
4277         if (atomic_read(&delayed_refs->num_entries) == 0) {
4278                 spin_unlock(&delayed_refs->lock);
4279                 btrfs_info(fs_info, "delayed_refs has NO entry");
4280                 return ret;
4281         }
4282
4283         while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4284                 struct btrfs_delayed_ref_head *head;
4285                 struct rb_node *n;
4286                 bool pin_bytes = false;
4287
4288                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4289                                 href_node);
4290                 if (btrfs_delayed_ref_lock(delayed_refs, head))
4291                         continue;
4292
4293                 spin_lock(&head->lock);
4294                 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4295                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4296                                        ref_node);
4297                         ref->in_tree = 0;
4298                         rb_erase_cached(&ref->ref_node, &head->ref_tree);
4299                         RB_CLEAR_NODE(&ref->ref_node);
4300                         if (!list_empty(&ref->add_list))
4301                                 list_del(&ref->add_list);
4302                         atomic_dec(&delayed_refs->num_entries);
4303                         btrfs_put_delayed_ref(ref);
4304                 }
4305                 if (head->must_insert_reserved)
4306                         pin_bytes = true;
4307                 btrfs_free_delayed_extent_op(head->extent_op);
4308                 btrfs_delete_ref_head(delayed_refs, head);
4309                 spin_unlock(&head->lock);
4310                 spin_unlock(&delayed_refs->lock);
4311                 mutex_unlock(&head->mutex);
4312
4313                 if (pin_bytes)
4314                         btrfs_pin_extent(fs_info, head->bytenr,
4315                                          head->num_bytes, 1);
4316                 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4317                 btrfs_put_delayed_ref_head(head);
4318                 cond_resched();
4319                 spin_lock(&delayed_refs->lock);
4320         }
4321         btrfs_qgroup_destroy_extent_records(trans);
4322
4323         spin_unlock(&delayed_refs->lock);
4324
4325         return ret;
4326 }
4327
4328 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4329 {
4330         struct btrfs_inode *btrfs_inode;
4331         struct list_head splice;
4332
4333         INIT_LIST_HEAD(&splice);
4334
4335         spin_lock(&root->delalloc_lock);
4336         list_splice_init(&root->delalloc_inodes, &splice);
4337
4338         while (!list_empty(&splice)) {
4339                 struct inode *inode = NULL;
4340                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4341                                                delalloc_inodes);
4342                 __btrfs_del_delalloc_inode(root, btrfs_inode);
4343                 spin_unlock(&root->delalloc_lock);
4344
4345                 /*
4346                  * Make sure we get a live inode and that it'll not disappear
4347                  * meanwhile.
4348                  */
4349                 inode = igrab(&btrfs_inode->vfs_inode);
4350                 if (inode) {
4351                         invalidate_inode_pages2(inode->i_mapping);
4352                         iput(inode);
4353                 }
4354                 spin_lock(&root->delalloc_lock);
4355         }
4356         spin_unlock(&root->delalloc_lock);
4357 }
4358
4359 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4360 {
4361         struct btrfs_root *root;
4362         struct list_head splice;
4363
4364         INIT_LIST_HEAD(&splice);
4365
4366         spin_lock(&fs_info->delalloc_root_lock);
4367         list_splice_init(&fs_info->delalloc_roots, &splice);
4368         while (!list_empty(&splice)) {
4369                 root = list_first_entry(&splice, struct btrfs_root,
4370                                          delalloc_root);
4371                 root = btrfs_grab_fs_root(root);
4372                 BUG_ON(!root);
4373                 spin_unlock(&fs_info->delalloc_root_lock);
4374
4375                 btrfs_destroy_delalloc_inodes(root);
4376                 btrfs_put_fs_root(root);
4377
4378                 spin_lock(&fs_info->delalloc_root_lock);
4379         }
4380         spin_unlock(&fs_info->delalloc_root_lock);
4381 }
4382
4383 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4384                                         struct extent_io_tree *dirty_pages,
4385                                         int mark)
4386 {
4387         int ret;
4388         struct extent_buffer *eb;
4389         u64 start = 0;
4390         u64 end;
4391
4392         while (1) {
4393                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4394                                             mark, NULL);
4395                 if (ret)
4396                         break;
4397
4398                 clear_extent_bits(dirty_pages, start, end, mark);
4399                 while (start <= end) {
4400                         eb = find_extent_buffer(fs_info, start);
4401                         start += fs_info->nodesize;
4402                         if (!eb)
4403                                 continue;
4404                         wait_on_extent_buffer_writeback(eb);
4405
4406                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4407                                                &eb->bflags))
4408                                 clear_extent_buffer_dirty(eb);
4409                         free_extent_buffer_stale(eb);
4410                 }
4411         }
4412
4413         return ret;
4414 }
4415
4416 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4417                                        struct extent_io_tree *pinned_extents)
4418 {
4419         struct extent_io_tree *unpin;
4420         u64 start;
4421         u64 end;
4422         int ret;
4423         bool loop = true;
4424
4425         unpin = pinned_extents;
4426 again:
4427         while (1) {
4428                 struct extent_state *cached_state = NULL;
4429
4430                 /*
4431                  * The btrfs_finish_extent_commit() may get the same range as
4432                  * ours between find_first_extent_bit and clear_extent_dirty.
4433                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4434                  * the same extent range.
4435                  */
4436                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4437                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4438                                             EXTENT_DIRTY, &cached_state);
4439                 if (ret) {
4440                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4441                         break;
4442                 }
4443
4444                 clear_extent_dirty(unpin, start, end, &cached_state);
4445                 free_extent_state(cached_state);
4446                 btrfs_error_unpin_extent_range(fs_info, start, end);
4447                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4448                 cond_resched();
4449         }
4450
4451         if (loop) {
4452                 if (unpin == &fs_info->freed_extents[0])
4453                         unpin = &fs_info->freed_extents[1];
4454                 else
4455                         unpin = &fs_info->freed_extents[0];
4456                 loop = false;
4457                 goto again;
4458         }
4459
4460         return 0;
4461 }
4462
4463 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4464 {
4465         struct inode *inode;
4466
4467         inode = cache->io_ctl.inode;
4468         if (inode) {
4469                 invalidate_inode_pages2(inode->i_mapping);
4470                 BTRFS_I(inode)->generation = 0;
4471                 cache->io_ctl.inode = NULL;
4472                 iput(inode);
4473         }
4474         btrfs_put_block_group(cache);
4475 }
4476
4477 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4478                              struct btrfs_fs_info *fs_info)
4479 {
4480         struct btrfs_block_group *cache;
4481
4482         spin_lock(&cur_trans->dirty_bgs_lock);
4483         while (!list_empty(&cur_trans->dirty_bgs)) {
4484                 cache = list_first_entry(&cur_trans->dirty_bgs,
4485                                          struct btrfs_block_group,
4486                                          dirty_list);
4487
4488                 if (!list_empty(&cache->io_list)) {
4489                         spin_unlock(&cur_trans->dirty_bgs_lock);
4490                         list_del_init(&cache->io_list);
4491                         btrfs_cleanup_bg_io(cache);
4492                         spin_lock(&cur_trans->dirty_bgs_lock);
4493                 }
4494
4495                 list_del_init(&cache->dirty_list);
4496                 spin_lock(&cache->lock);
4497                 cache->disk_cache_state = BTRFS_DC_ERROR;
4498                 spin_unlock(&cache->lock);
4499
4500                 spin_unlock(&cur_trans->dirty_bgs_lock);
4501                 btrfs_put_block_group(cache);
4502                 btrfs_delayed_refs_rsv_release(fs_info, 1);
4503                 spin_lock(&cur_trans->dirty_bgs_lock);
4504         }
4505         spin_unlock(&cur_trans->dirty_bgs_lock);
4506
4507         /*
4508          * Refer to the definition of io_bgs member for details why it's safe
4509          * to use it without any locking
4510          */
4511         while (!list_empty(&cur_trans->io_bgs)) {
4512                 cache = list_first_entry(&cur_trans->io_bgs,
4513                                          struct btrfs_block_group,
4514                                          io_list);
4515
4516                 list_del_init(&cache->io_list);
4517                 spin_lock(&cache->lock);
4518                 cache->disk_cache_state = BTRFS_DC_ERROR;
4519                 spin_unlock(&cache->lock);
4520                 btrfs_cleanup_bg_io(cache);
4521         }
4522 }
4523
4524 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4525                                    struct btrfs_fs_info *fs_info)
4526 {
4527         struct btrfs_device *dev, *tmp;
4528
4529         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4530         ASSERT(list_empty(&cur_trans->dirty_bgs));
4531         ASSERT(list_empty(&cur_trans->io_bgs));
4532
4533         list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4534                                  post_commit_list) {
4535                 list_del_init(&dev->post_commit_list);
4536         }
4537
4538         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4539
4540         cur_trans->state = TRANS_STATE_COMMIT_START;
4541         wake_up(&fs_info->transaction_blocked_wait);
4542
4543         cur_trans->state = TRANS_STATE_UNBLOCKED;
4544         wake_up(&fs_info->transaction_wait);
4545
4546         btrfs_destroy_delayed_inodes(fs_info);
4547
4548         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4549                                      EXTENT_DIRTY);
4550         btrfs_destroy_pinned_extent(fs_info,
4551                                     fs_info->pinned_extents);
4552
4553         cur_trans->state =TRANS_STATE_COMPLETED;
4554         wake_up(&cur_trans->commit_wait);
4555 }
4556
4557 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4558 {
4559         struct btrfs_transaction *t;
4560
4561         mutex_lock(&fs_info->transaction_kthread_mutex);
4562
4563         spin_lock(&fs_info->trans_lock);
4564         while (!list_empty(&fs_info->trans_list)) {
4565                 t = list_first_entry(&fs_info->trans_list,
4566                                      struct btrfs_transaction, list);
4567                 if (t->state >= TRANS_STATE_COMMIT_START) {
4568                         refcount_inc(&t->use_count);
4569                         spin_unlock(&fs_info->trans_lock);
4570                         btrfs_wait_for_commit(fs_info, t->transid);
4571                         btrfs_put_transaction(t);
4572                         spin_lock(&fs_info->trans_lock);
4573                         continue;
4574                 }
4575                 if (t == fs_info->running_transaction) {
4576                         t->state = TRANS_STATE_COMMIT_DOING;
4577                         spin_unlock(&fs_info->trans_lock);
4578                         /*
4579                          * We wait for 0 num_writers since we don't hold a trans
4580                          * handle open currently for this transaction.
4581                          */
4582                         wait_event(t->writer_wait,
4583                                    atomic_read(&t->num_writers) == 0);
4584                 } else {
4585                         spin_unlock(&fs_info->trans_lock);
4586                 }
4587                 btrfs_cleanup_one_transaction(t, fs_info);
4588
4589                 spin_lock(&fs_info->trans_lock);
4590                 if (t == fs_info->running_transaction)
4591                         fs_info->running_transaction = NULL;
4592                 list_del_init(&t->list);
4593                 spin_unlock(&fs_info->trans_lock);
4594
4595                 btrfs_put_transaction(t);
4596                 trace_btrfs_transaction_commit(fs_info->tree_root);
4597                 spin_lock(&fs_info->trans_lock);
4598         }
4599         spin_unlock(&fs_info->trans_lock);
4600         btrfs_destroy_all_ordered_extents(fs_info);
4601         btrfs_destroy_delayed_inodes(fs_info);
4602         btrfs_assert_delayed_root_empty(fs_info);
4603         btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4604         btrfs_destroy_all_delalloc_inodes(fs_info);
4605         mutex_unlock(&fs_info->transaction_kthread_mutex);
4606
4607         return 0;
4608 }
4609
4610 static const struct extent_io_ops btree_extent_io_ops = {
4611         /* mandatory callbacks */
4612         .submit_bio_hook = btree_submit_bio_hook,
4613         .readpage_end_io_hook = btree_readpage_end_io_hook,
4614 };