btrfs: factor btrfs_init_balance() out of open_ctree()
[linux-2.6-block.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static const struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61                                     int read_only);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64                                       struct btrfs_root *root);
65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
66 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67                                         struct extent_io_tree *dirty_pages,
68                                         int mark);
69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70                                        struct extent_io_tree *pinned_extents);
71 static int btrfs_cleanup_transaction(struct btrfs_root *root);
72 static void btrfs_error_commit_super(struct btrfs_root *root);
73
74 /*
75  * btrfs_end_io_wq structs are used to do processing in task context when an IO
76  * is complete.  This is used during reads to verify checksums, and it is used
77  * by writes to insert metadata for new file extents after IO is complete.
78  */
79 struct btrfs_end_io_wq {
80         struct bio *bio;
81         bio_end_io_t *end_io;
82         void *private;
83         struct btrfs_fs_info *info;
84         int error;
85         enum btrfs_wq_endio_type metadata;
86         struct list_head list;
87         struct btrfs_work work;
88 };
89
90 static struct kmem_cache *btrfs_end_io_wq_cache;
91
92 int __init btrfs_end_io_wq_init(void)
93 {
94         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
95                                         sizeof(struct btrfs_end_io_wq),
96                                         0,
97                                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
98                                         NULL);
99         if (!btrfs_end_io_wq_cache)
100                 return -ENOMEM;
101         return 0;
102 }
103
104 void btrfs_end_io_wq_exit(void)
105 {
106         if (btrfs_end_io_wq_cache)
107                 kmem_cache_destroy(btrfs_end_io_wq_cache);
108 }
109
110 /*
111  * async submit bios are used to offload expensive checksumming
112  * onto the worker threads.  They checksum file and metadata bios
113  * just before they are sent down the IO stack.
114  */
115 struct async_submit_bio {
116         struct inode *inode;
117         struct bio *bio;
118         struct list_head list;
119         extent_submit_bio_hook_t *submit_bio_start;
120         extent_submit_bio_hook_t *submit_bio_done;
121         int rw;
122         int mirror_num;
123         unsigned long bio_flags;
124         /*
125          * bio_offset is optional, can be used if the pages in the bio
126          * can't tell us where in the file the bio should go
127          */
128         u64 bio_offset;
129         struct btrfs_work work;
130         int error;
131 };
132
133 /*
134  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
135  * eb, the lockdep key is determined by the btrfs_root it belongs to and
136  * the level the eb occupies in the tree.
137  *
138  * Different roots are used for different purposes and may nest inside each
139  * other and they require separate keysets.  As lockdep keys should be
140  * static, assign keysets according to the purpose of the root as indicated
141  * by btrfs_root->objectid.  This ensures that all special purpose roots
142  * have separate keysets.
143  *
144  * Lock-nesting across peer nodes is always done with the immediate parent
145  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
146  * subclass to avoid triggering lockdep warning in such cases.
147  *
148  * The key is set by the readpage_end_io_hook after the buffer has passed
149  * csum validation but before the pages are unlocked.  It is also set by
150  * btrfs_init_new_buffer on freshly allocated blocks.
151  *
152  * We also add a check to make sure the highest level of the tree is the
153  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
154  * needs update as well.
155  */
156 #ifdef CONFIG_DEBUG_LOCK_ALLOC
157 # if BTRFS_MAX_LEVEL != 8
158 #  error
159 # endif
160
161 static struct btrfs_lockdep_keyset {
162         u64                     id;             /* root objectid */
163         const char              *name_stem;     /* lock name stem */
164         char                    names[BTRFS_MAX_LEVEL + 1][20];
165         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
166 } btrfs_lockdep_keysets[] = {
167         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
168         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
169         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
170         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
171         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
172         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
173         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
174         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
175         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
176         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
177         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
178         { .id = 0,                              .name_stem = "tree"     },
179 };
180
181 void __init btrfs_init_lockdep(void)
182 {
183         int i, j;
184
185         /* initialize lockdep class names */
186         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
187                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
188
189                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
190                         snprintf(ks->names[j], sizeof(ks->names[j]),
191                                  "btrfs-%s-%02d", ks->name_stem, j);
192         }
193 }
194
195 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
196                                     int level)
197 {
198         struct btrfs_lockdep_keyset *ks;
199
200         BUG_ON(level >= ARRAY_SIZE(ks->keys));
201
202         /* find the matching keyset, id 0 is the default entry */
203         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
204                 if (ks->id == objectid)
205                         break;
206
207         lockdep_set_class_and_name(&eb->lock,
208                                    &ks->keys[level], ks->names[level]);
209 }
210
211 #endif
212
213 /*
214  * extents on the btree inode are pretty simple, there's one extent
215  * that covers the entire device
216  */
217 static struct extent_map *btree_get_extent(struct inode *inode,
218                 struct page *page, size_t pg_offset, u64 start, u64 len,
219                 int create)
220 {
221         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
222         struct extent_map *em;
223         int ret;
224
225         read_lock(&em_tree->lock);
226         em = lookup_extent_mapping(em_tree, start, len);
227         if (em) {
228                 em->bdev =
229                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
230                 read_unlock(&em_tree->lock);
231                 goto out;
232         }
233         read_unlock(&em_tree->lock);
234
235         em = alloc_extent_map();
236         if (!em) {
237                 em = ERR_PTR(-ENOMEM);
238                 goto out;
239         }
240         em->start = 0;
241         em->len = (u64)-1;
242         em->block_len = (u64)-1;
243         em->block_start = 0;
244         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
245
246         write_lock(&em_tree->lock);
247         ret = add_extent_mapping(em_tree, em, 0);
248         if (ret == -EEXIST) {
249                 free_extent_map(em);
250                 em = lookup_extent_mapping(em_tree, start, len);
251                 if (!em)
252                         em = ERR_PTR(-EIO);
253         } else if (ret) {
254                 free_extent_map(em);
255                 em = ERR_PTR(ret);
256         }
257         write_unlock(&em_tree->lock);
258
259 out:
260         return em;
261 }
262
263 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
264 {
265         return btrfs_crc32c(seed, data, len);
266 }
267
268 void btrfs_csum_final(u32 crc, char *result)
269 {
270         put_unaligned_le32(~crc, result);
271 }
272
273 /*
274  * compute the csum for a btree block, and either verify it or write it
275  * into the csum field of the block.
276  */
277 static int csum_tree_block(struct btrfs_fs_info *fs_info,
278                            struct extent_buffer *buf,
279                            int verify)
280 {
281         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
282         char *result = NULL;
283         unsigned long len;
284         unsigned long cur_len;
285         unsigned long offset = BTRFS_CSUM_SIZE;
286         char *kaddr;
287         unsigned long map_start;
288         unsigned long map_len;
289         int err;
290         u32 crc = ~(u32)0;
291         unsigned long inline_result;
292
293         len = buf->len - offset;
294         while (len > 0) {
295                 err = map_private_extent_buffer(buf, offset, 32,
296                                         &kaddr, &map_start, &map_len);
297                 if (err)
298                         return 1;
299                 cur_len = min(len, map_len - (offset - map_start));
300                 crc = btrfs_csum_data(kaddr + offset - map_start,
301                                       crc, cur_len);
302                 len -= cur_len;
303                 offset += cur_len;
304         }
305         if (csum_size > sizeof(inline_result)) {
306                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
307                 if (!result)
308                         return 1;
309         } else {
310                 result = (char *)&inline_result;
311         }
312
313         btrfs_csum_final(crc, result);
314
315         if (verify) {
316                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
317                         u32 val;
318                         u32 found = 0;
319                         memcpy(&found, result, csum_size);
320
321                         read_extent_buffer(buf, &val, 0, csum_size);
322                         printk_ratelimited(KERN_WARNING
323                                 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
324                                 "level %d\n",
325                                 fs_info->sb->s_id, buf->start,
326                                 val, found, btrfs_header_level(buf));
327                         if (result != (char *)&inline_result)
328                                 kfree(result);
329                         return 1;
330                 }
331         } else {
332                 write_extent_buffer(buf, result, 0, csum_size);
333         }
334         if (result != (char *)&inline_result)
335                 kfree(result);
336         return 0;
337 }
338
339 /*
340  * we can't consider a given block up to date unless the transid of the
341  * block matches the transid in the parent node's pointer.  This is how we
342  * detect blocks that either didn't get written at all or got written
343  * in the wrong place.
344  */
345 static int verify_parent_transid(struct extent_io_tree *io_tree,
346                                  struct extent_buffer *eb, u64 parent_transid,
347                                  int atomic)
348 {
349         struct extent_state *cached_state = NULL;
350         int ret;
351         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
352
353         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
354                 return 0;
355
356         if (atomic)
357                 return -EAGAIN;
358
359         if (need_lock) {
360                 btrfs_tree_read_lock(eb);
361                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
362         }
363
364         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
365                          0, &cached_state);
366         if (extent_buffer_uptodate(eb) &&
367             btrfs_header_generation(eb) == parent_transid) {
368                 ret = 0;
369                 goto out;
370         }
371         printk_ratelimited(KERN_ERR
372             "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
373                         eb->fs_info->sb->s_id, eb->start,
374                         parent_transid, btrfs_header_generation(eb));
375         ret = 1;
376
377         /*
378          * Things reading via commit roots that don't have normal protection,
379          * like send, can have a really old block in cache that may point at a
380          * block that has been free'd and re-allocated.  So don't clear uptodate
381          * if we find an eb that is under IO (dirty/writeback) because we could
382          * end up reading in the stale data and then writing it back out and
383          * making everybody very sad.
384          */
385         if (!extent_buffer_under_io(eb))
386                 clear_extent_buffer_uptodate(eb);
387 out:
388         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
389                              &cached_state, GFP_NOFS);
390         if (need_lock)
391                 btrfs_tree_read_unlock_blocking(eb);
392         return ret;
393 }
394
395 /*
396  * Return 0 if the superblock checksum type matches the checksum value of that
397  * algorithm. Pass the raw disk superblock data.
398  */
399 static int btrfs_check_super_csum(char *raw_disk_sb)
400 {
401         struct btrfs_super_block *disk_sb =
402                 (struct btrfs_super_block *)raw_disk_sb;
403         u16 csum_type = btrfs_super_csum_type(disk_sb);
404         int ret = 0;
405
406         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
407                 u32 crc = ~(u32)0;
408                 const int csum_size = sizeof(crc);
409                 char result[csum_size];
410
411                 /*
412                  * The super_block structure does not span the whole
413                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
414                  * is filled with zeros and is included in the checkum.
415                  */
416                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
417                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
418                 btrfs_csum_final(crc, result);
419
420                 if (memcmp(raw_disk_sb, result, csum_size))
421                         ret = 1;
422
423                 if (ret && btrfs_super_generation(disk_sb) < 10) {
424                         printk(KERN_WARNING
425                                 "BTRFS: super block crcs don't match, older mkfs detected\n");
426                         ret = 0;
427                 }
428         }
429
430         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
431                 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
432                                 csum_type);
433                 ret = 1;
434         }
435
436         return ret;
437 }
438
439 /*
440  * helper to read a given tree block, doing retries as required when
441  * the checksums don't match and we have alternate mirrors to try.
442  */
443 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
444                                           struct extent_buffer *eb,
445                                           u64 start, u64 parent_transid)
446 {
447         struct extent_io_tree *io_tree;
448         int failed = 0;
449         int ret;
450         int num_copies = 0;
451         int mirror_num = 0;
452         int failed_mirror = 0;
453
454         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
455         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
456         while (1) {
457                 ret = read_extent_buffer_pages(io_tree, eb, start,
458                                                WAIT_COMPLETE,
459                                                btree_get_extent, mirror_num);
460                 if (!ret) {
461                         if (!verify_parent_transid(io_tree, eb,
462                                                    parent_transid, 0))
463                                 break;
464                         else
465                                 ret = -EIO;
466                 }
467
468                 /*
469                  * This buffer's crc is fine, but its contents are corrupted, so
470                  * there is no reason to read the other copies, they won't be
471                  * any less wrong.
472                  */
473                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
474                         break;
475
476                 num_copies = btrfs_num_copies(root->fs_info,
477                                               eb->start, eb->len);
478                 if (num_copies == 1)
479                         break;
480
481                 if (!failed_mirror) {
482                         failed = 1;
483                         failed_mirror = eb->read_mirror;
484                 }
485
486                 mirror_num++;
487                 if (mirror_num == failed_mirror)
488                         mirror_num++;
489
490                 if (mirror_num > num_copies)
491                         break;
492         }
493
494         if (failed && !ret && failed_mirror)
495                 repair_eb_io_failure(root, eb, failed_mirror);
496
497         return ret;
498 }
499
500 /*
501  * checksum a dirty tree block before IO.  This has extra checks to make sure
502  * we only fill in the checksum field in the first page of a multi-page block
503  */
504
505 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
506 {
507         u64 start = page_offset(page);
508         u64 found_start;
509         struct extent_buffer *eb;
510
511         eb = (struct extent_buffer *)page->private;
512         if (page != eb->pages[0])
513                 return 0;
514         found_start = btrfs_header_bytenr(eb);
515         if (WARN_ON(found_start != start || !PageUptodate(page)))
516                 return 0;
517         csum_tree_block(fs_info, eb, 0);
518         return 0;
519 }
520
521 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
522                                  struct extent_buffer *eb)
523 {
524         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
525         u8 fsid[BTRFS_UUID_SIZE];
526         int ret = 1;
527
528         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
529         while (fs_devices) {
530                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
531                         ret = 0;
532                         break;
533                 }
534                 fs_devices = fs_devices->seed;
535         }
536         return ret;
537 }
538
539 #define CORRUPT(reason, eb, root, slot)                         \
540         btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"       \
541                    "root=%llu, slot=%d", reason,                        \
542                btrfs_header_bytenr(eb), root->objectid, slot)
543
544 static noinline int check_leaf(struct btrfs_root *root,
545                                struct extent_buffer *leaf)
546 {
547         struct btrfs_key key;
548         struct btrfs_key leaf_key;
549         u32 nritems = btrfs_header_nritems(leaf);
550         int slot;
551
552         if (nritems == 0)
553                 return 0;
554
555         /* Check the 0 item */
556         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
557             BTRFS_LEAF_DATA_SIZE(root)) {
558                 CORRUPT("invalid item offset size pair", leaf, root, 0);
559                 return -EIO;
560         }
561
562         /*
563          * Check to make sure each items keys are in the correct order and their
564          * offsets make sense.  We only have to loop through nritems-1 because
565          * we check the current slot against the next slot, which verifies the
566          * next slot's offset+size makes sense and that the current's slot
567          * offset is correct.
568          */
569         for (slot = 0; slot < nritems - 1; slot++) {
570                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
571                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
572
573                 /* Make sure the keys are in the right order */
574                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
575                         CORRUPT("bad key order", leaf, root, slot);
576                         return -EIO;
577                 }
578
579                 /*
580                  * Make sure the offset and ends are right, remember that the
581                  * item data starts at the end of the leaf and grows towards the
582                  * front.
583                  */
584                 if (btrfs_item_offset_nr(leaf, slot) !=
585                         btrfs_item_end_nr(leaf, slot + 1)) {
586                         CORRUPT("slot offset bad", leaf, root, slot);
587                         return -EIO;
588                 }
589
590                 /*
591                  * Check to make sure that we don't point outside of the leaf,
592                  * just incase all the items are consistent to eachother, but
593                  * all point outside of the leaf.
594                  */
595                 if (btrfs_item_end_nr(leaf, slot) >
596                     BTRFS_LEAF_DATA_SIZE(root)) {
597                         CORRUPT("slot end outside of leaf", leaf, root, slot);
598                         return -EIO;
599                 }
600         }
601
602         return 0;
603 }
604
605 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
606                                       u64 phy_offset, struct page *page,
607                                       u64 start, u64 end, int mirror)
608 {
609         u64 found_start;
610         int found_level;
611         struct extent_buffer *eb;
612         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
613         int ret = 0;
614         int reads_done;
615
616         if (!page->private)
617                 goto out;
618
619         eb = (struct extent_buffer *)page->private;
620
621         /* the pending IO might have been the only thing that kept this buffer
622          * in memory.  Make sure we have a ref for all this other checks
623          */
624         extent_buffer_get(eb);
625
626         reads_done = atomic_dec_and_test(&eb->io_pages);
627         if (!reads_done)
628                 goto err;
629
630         eb->read_mirror = mirror;
631         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
632                 ret = -EIO;
633                 goto err;
634         }
635
636         found_start = btrfs_header_bytenr(eb);
637         if (found_start != eb->start) {
638                 printk_ratelimited(KERN_ERR "BTRFS (device %s): bad tree block start "
639                                "%llu %llu\n",
640                                eb->fs_info->sb->s_id, found_start, eb->start);
641                 ret = -EIO;
642                 goto err;
643         }
644         if (check_tree_block_fsid(root->fs_info, eb)) {
645                 printk_ratelimited(KERN_ERR "BTRFS (device %s): bad fsid on block %llu\n",
646                                eb->fs_info->sb->s_id, eb->start);
647                 ret = -EIO;
648                 goto err;
649         }
650         found_level = btrfs_header_level(eb);
651         if (found_level >= BTRFS_MAX_LEVEL) {
652                 btrfs_err(root->fs_info, "bad tree block level %d",
653                            (int)btrfs_header_level(eb));
654                 ret = -EIO;
655                 goto err;
656         }
657
658         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
659                                        eb, found_level);
660
661         ret = csum_tree_block(root->fs_info, eb, 1);
662         if (ret) {
663                 ret = -EIO;
664                 goto err;
665         }
666
667         /*
668          * If this is a leaf block and it is corrupt, set the corrupt bit so
669          * that we don't try and read the other copies of this block, just
670          * return -EIO.
671          */
672         if (found_level == 0 && check_leaf(root, eb)) {
673                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
674                 ret = -EIO;
675         }
676
677         if (!ret)
678                 set_extent_buffer_uptodate(eb);
679 err:
680         if (reads_done &&
681             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
682                 btree_readahead_hook(root, eb, eb->start, ret);
683
684         if (ret) {
685                 /*
686                  * our io error hook is going to dec the io pages
687                  * again, we have to make sure it has something
688                  * to decrement
689                  */
690                 atomic_inc(&eb->io_pages);
691                 clear_extent_buffer_uptodate(eb);
692         }
693         free_extent_buffer(eb);
694 out:
695         return ret;
696 }
697
698 static int btree_io_failed_hook(struct page *page, int failed_mirror)
699 {
700         struct extent_buffer *eb;
701         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
702
703         eb = (struct extent_buffer *)page->private;
704         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
705         eb->read_mirror = failed_mirror;
706         atomic_dec(&eb->io_pages);
707         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
708                 btree_readahead_hook(root, eb, eb->start, -EIO);
709         return -EIO;    /* we fixed nothing */
710 }
711
712 static void end_workqueue_bio(struct bio *bio, int err)
713 {
714         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
715         struct btrfs_fs_info *fs_info;
716         struct btrfs_workqueue *wq;
717         btrfs_work_func_t func;
718
719         fs_info = end_io_wq->info;
720         end_io_wq->error = err;
721
722         if (bio->bi_rw & REQ_WRITE) {
723                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
724                         wq = fs_info->endio_meta_write_workers;
725                         func = btrfs_endio_meta_write_helper;
726                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
727                         wq = fs_info->endio_freespace_worker;
728                         func = btrfs_freespace_write_helper;
729                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
730                         wq = fs_info->endio_raid56_workers;
731                         func = btrfs_endio_raid56_helper;
732                 } else {
733                         wq = fs_info->endio_write_workers;
734                         func = btrfs_endio_write_helper;
735                 }
736         } else {
737                 if (unlikely(end_io_wq->metadata ==
738                              BTRFS_WQ_ENDIO_DIO_REPAIR)) {
739                         wq = fs_info->endio_repair_workers;
740                         func = btrfs_endio_repair_helper;
741                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
742                         wq = fs_info->endio_raid56_workers;
743                         func = btrfs_endio_raid56_helper;
744                 } else if (end_io_wq->metadata) {
745                         wq = fs_info->endio_meta_workers;
746                         func = btrfs_endio_meta_helper;
747                 } else {
748                         wq = fs_info->endio_workers;
749                         func = btrfs_endio_helper;
750                 }
751         }
752
753         btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
754         btrfs_queue_work(wq, &end_io_wq->work);
755 }
756
757 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
758                         enum btrfs_wq_endio_type metadata)
759 {
760         struct btrfs_end_io_wq *end_io_wq;
761
762         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
763         if (!end_io_wq)
764                 return -ENOMEM;
765
766         end_io_wq->private = bio->bi_private;
767         end_io_wq->end_io = bio->bi_end_io;
768         end_io_wq->info = info;
769         end_io_wq->error = 0;
770         end_io_wq->bio = bio;
771         end_io_wq->metadata = metadata;
772
773         bio->bi_private = end_io_wq;
774         bio->bi_end_io = end_workqueue_bio;
775         return 0;
776 }
777
778 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
779 {
780         unsigned long limit = min_t(unsigned long,
781                                     info->thread_pool_size,
782                                     info->fs_devices->open_devices);
783         return 256 * limit;
784 }
785
786 static void run_one_async_start(struct btrfs_work *work)
787 {
788         struct async_submit_bio *async;
789         int ret;
790
791         async = container_of(work, struct  async_submit_bio, work);
792         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
793                                       async->mirror_num, async->bio_flags,
794                                       async->bio_offset);
795         if (ret)
796                 async->error = ret;
797 }
798
799 static void run_one_async_done(struct btrfs_work *work)
800 {
801         struct btrfs_fs_info *fs_info;
802         struct async_submit_bio *async;
803         int limit;
804
805         async = container_of(work, struct  async_submit_bio, work);
806         fs_info = BTRFS_I(async->inode)->root->fs_info;
807
808         limit = btrfs_async_submit_limit(fs_info);
809         limit = limit * 2 / 3;
810
811         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
812             waitqueue_active(&fs_info->async_submit_wait))
813                 wake_up(&fs_info->async_submit_wait);
814
815         /* If an error occured we just want to clean up the bio and move on */
816         if (async->error) {
817                 bio_endio(async->bio, async->error);
818                 return;
819         }
820
821         async->submit_bio_done(async->inode, async->rw, async->bio,
822                                async->mirror_num, async->bio_flags,
823                                async->bio_offset);
824 }
825
826 static void run_one_async_free(struct btrfs_work *work)
827 {
828         struct async_submit_bio *async;
829
830         async = container_of(work, struct  async_submit_bio, work);
831         kfree(async);
832 }
833
834 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
835                         int rw, struct bio *bio, int mirror_num,
836                         unsigned long bio_flags,
837                         u64 bio_offset,
838                         extent_submit_bio_hook_t *submit_bio_start,
839                         extent_submit_bio_hook_t *submit_bio_done)
840 {
841         struct async_submit_bio *async;
842
843         async = kmalloc(sizeof(*async), GFP_NOFS);
844         if (!async)
845                 return -ENOMEM;
846
847         async->inode = inode;
848         async->rw = rw;
849         async->bio = bio;
850         async->mirror_num = mirror_num;
851         async->submit_bio_start = submit_bio_start;
852         async->submit_bio_done = submit_bio_done;
853
854         btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
855                         run_one_async_done, run_one_async_free);
856
857         async->bio_flags = bio_flags;
858         async->bio_offset = bio_offset;
859
860         async->error = 0;
861
862         atomic_inc(&fs_info->nr_async_submits);
863
864         if (rw & REQ_SYNC)
865                 btrfs_set_work_high_priority(&async->work);
866
867         btrfs_queue_work(fs_info->workers, &async->work);
868
869         while (atomic_read(&fs_info->async_submit_draining) &&
870               atomic_read(&fs_info->nr_async_submits)) {
871                 wait_event(fs_info->async_submit_wait,
872                            (atomic_read(&fs_info->nr_async_submits) == 0));
873         }
874
875         return 0;
876 }
877
878 static int btree_csum_one_bio(struct bio *bio)
879 {
880         struct bio_vec *bvec;
881         struct btrfs_root *root;
882         int i, ret = 0;
883
884         bio_for_each_segment_all(bvec, bio, i) {
885                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
886                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
887                 if (ret)
888                         break;
889         }
890
891         return ret;
892 }
893
894 static int __btree_submit_bio_start(struct inode *inode, int rw,
895                                     struct bio *bio, int mirror_num,
896                                     unsigned long bio_flags,
897                                     u64 bio_offset)
898 {
899         /*
900          * when we're called for a write, we're already in the async
901          * submission context.  Just jump into btrfs_map_bio
902          */
903         return btree_csum_one_bio(bio);
904 }
905
906 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
907                                  int mirror_num, unsigned long bio_flags,
908                                  u64 bio_offset)
909 {
910         int ret;
911
912         /*
913          * when we're called for a write, we're already in the async
914          * submission context.  Just jump into btrfs_map_bio
915          */
916         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
917         if (ret)
918                 bio_endio(bio, ret);
919         return ret;
920 }
921
922 static int check_async_write(struct inode *inode, unsigned long bio_flags)
923 {
924         if (bio_flags & EXTENT_BIO_TREE_LOG)
925                 return 0;
926 #ifdef CONFIG_X86
927         if (cpu_has_xmm4_2)
928                 return 0;
929 #endif
930         return 1;
931 }
932
933 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
934                                  int mirror_num, unsigned long bio_flags,
935                                  u64 bio_offset)
936 {
937         int async = check_async_write(inode, bio_flags);
938         int ret;
939
940         if (!(rw & REQ_WRITE)) {
941                 /*
942                  * called for a read, do the setup so that checksum validation
943                  * can happen in the async kernel threads
944                  */
945                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
946                                           bio, BTRFS_WQ_ENDIO_METADATA);
947                 if (ret)
948                         goto out_w_error;
949                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
950                                     mirror_num, 0);
951         } else if (!async) {
952                 ret = btree_csum_one_bio(bio);
953                 if (ret)
954                         goto out_w_error;
955                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
956                                     mirror_num, 0);
957         } else {
958                 /*
959                  * kthread helpers are used to submit writes so that
960                  * checksumming can happen in parallel across all CPUs
961                  */
962                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
963                                           inode, rw, bio, mirror_num, 0,
964                                           bio_offset,
965                                           __btree_submit_bio_start,
966                                           __btree_submit_bio_done);
967         }
968
969         if (ret) {
970 out_w_error:
971                 bio_endio(bio, ret);
972         }
973         return ret;
974 }
975
976 #ifdef CONFIG_MIGRATION
977 static int btree_migratepage(struct address_space *mapping,
978                         struct page *newpage, struct page *page,
979                         enum migrate_mode mode)
980 {
981         /*
982          * we can't safely write a btree page from here,
983          * we haven't done the locking hook
984          */
985         if (PageDirty(page))
986                 return -EAGAIN;
987         /*
988          * Buffers may be managed in a filesystem specific way.
989          * We must have no buffers or drop them.
990          */
991         if (page_has_private(page) &&
992             !try_to_release_page(page, GFP_KERNEL))
993                 return -EAGAIN;
994         return migrate_page(mapping, newpage, page, mode);
995 }
996 #endif
997
998
999 static int btree_writepages(struct address_space *mapping,
1000                             struct writeback_control *wbc)
1001 {
1002         struct btrfs_fs_info *fs_info;
1003         int ret;
1004
1005         if (wbc->sync_mode == WB_SYNC_NONE) {
1006
1007                 if (wbc->for_kupdate)
1008                         return 0;
1009
1010                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1011                 /* this is a bit racy, but that's ok */
1012                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1013                                              BTRFS_DIRTY_METADATA_THRESH);
1014                 if (ret < 0)
1015                         return 0;
1016         }
1017         return btree_write_cache_pages(mapping, wbc);
1018 }
1019
1020 static int btree_readpage(struct file *file, struct page *page)
1021 {
1022         struct extent_io_tree *tree;
1023         tree = &BTRFS_I(page->mapping->host)->io_tree;
1024         return extent_read_full_page(tree, page, btree_get_extent, 0);
1025 }
1026
1027 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1028 {
1029         if (PageWriteback(page) || PageDirty(page))
1030                 return 0;
1031
1032         return try_release_extent_buffer(page);
1033 }
1034
1035 static void btree_invalidatepage(struct page *page, unsigned int offset,
1036                                  unsigned int length)
1037 {
1038         struct extent_io_tree *tree;
1039         tree = &BTRFS_I(page->mapping->host)->io_tree;
1040         extent_invalidatepage(tree, page, offset);
1041         btree_releasepage(page, GFP_NOFS);
1042         if (PagePrivate(page)) {
1043                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1044                            "page private not zero on page %llu",
1045                            (unsigned long long)page_offset(page));
1046                 ClearPagePrivate(page);
1047                 set_page_private(page, 0);
1048                 page_cache_release(page);
1049         }
1050 }
1051
1052 static int btree_set_page_dirty(struct page *page)
1053 {
1054 #ifdef DEBUG
1055         struct extent_buffer *eb;
1056
1057         BUG_ON(!PagePrivate(page));
1058         eb = (struct extent_buffer *)page->private;
1059         BUG_ON(!eb);
1060         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1061         BUG_ON(!atomic_read(&eb->refs));
1062         btrfs_assert_tree_locked(eb);
1063 #endif
1064         return __set_page_dirty_nobuffers(page);
1065 }
1066
1067 static const struct address_space_operations btree_aops = {
1068         .readpage       = btree_readpage,
1069         .writepages     = btree_writepages,
1070         .releasepage    = btree_releasepage,
1071         .invalidatepage = btree_invalidatepage,
1072 #ifdef CONFIG_MIGRATION
1073         .migratepage    = btree_migratepage,
1074 #endif
1075         .set_page_dirty = btree_set_page_dirty,
1076 };
1077
1078 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1079 {
1080         struct extent_buffer *buf = NULL;
1081         struct inode *btree_inode = root->fs_info->btree_inode;
1082
1083         buf = btrfs_find_create_tree_block(root, bytenr);
1084         if (!buf)
1085                 return;
1086         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1087                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1088         free_extent_buffer(buf);
1089 }
1090
1091 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1092                          int mirror_num, struct extent_buffer **eb)
1093 {
1094         struct extent_buffer *buf = NULL;
1095         struct inode *btree_inode = root->fs_info->btree_inode;
1096         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1097         int ret;
1098
1099         buf = btrfs_find_create_tree_block(root, bytenr);
1100         if (!buf)
1101                 return 0;
1102
1103         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1104
1105         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1106                                        btree_get_extent, mirror_num);
1107         if (ret) {
1108                 free_extent_buffer(buf);
1109                 return ret;
1110         }
1111
1112         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1113                 free_extent_buffer(buf);
1114                 return -EIO;
1115         } else if (extent_buffer_uptodate(buf)) {
1116                 *eb = buf;
1117         } else {
1118                 free_extent_buffer(buf);
1119         }
1120         return 0;
1121 }
1122
1123 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1124                                             u64 bytenr)
1125 {
1126         return find_extent_buffer(fs_info, bytenr);
1127 }
1128
1129 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1130                                                  u64 bytenr)
1131 {
1132         if (btrfs_test_is_dummy_root(root))
1133                 return alloc_test_extent_buffer(root->fs_info, bytenr);
1134         return alloc_extent_buffer(root->fs_info, bytenr);
1135 }
1136
1137
1138 int btrfs_write_tree_block(struct extent_buffer *buf)
1139 {
1140         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1141                                         buf->start + buf->len - 1);
1142 }
1143
1144 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1145 {
1146         return filemap_fdatawait_range(buf->pages[0]->mapping,
1147                                        buf->start, buf->start + buf->len - 1);
1148 }
1149
1150 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1151                                       u64 parent_transid)
1152 {
1153         struct extent_buffer *buf = NULL;
1154         int ret;
1155
1156         buf = btrfs_find_create_tree_block(root, bytenr);
1157         if (!buf)
1158                 return NULL;
1159
1160         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1161         if (ret) {
1162                 free_extent_buffer(buf);
1163                 return NULL;
1164         }
1165         return buf;
1166
1167 }
1168
1169 void clean_tree_block(struct btrfs_trans_handle *trans,
1170                       struct btrfs_fs_info *fs_info,
1171                       struct extent_buffer *buf)
1172 {
1173         if (btrfs_header_generation(buf) ==
1174             fs_info->running_transaction->transid) {
1175                 btrfs_assert_tree_locked(buf);
1176
1177                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1178                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1179                                              -buf->len,
1180                                              fs_info->dirty_metadata_batch);
1181                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1182                         btrfs_set_lock_blocking(buf);
1183                         clear_extent_buffer_dirty(buf);
1184                 }
1185         }
1186 }
1187
1188 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1189 {
1190         struct btrfs_subvolume_writers *writers;
1191         int ret;
1192
1193         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1194         if (!writers)
1195                 return ERR_PTR(-ENOMEM);
1196
1197         ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1198         if (ret < 0) {
1199                 kfree(writers);
1200                 return ERR_PTR(ret);
1201         }
1202
1203         init_waitqueue_head(&writers->wait);
1204         return writers;
1205 }
1206
1207 static void
1208 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1209 {
1210         percpu_counter_destroy(&writers->counter);
1211         kfree(writers);
1212 }
1213
1214 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1215                          struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1216                          u64 objectid)
1217 {
1218         root->node = NULL;
1219         root->commit_root = NULL;
1220         root->sectorsize = sectorsize;
1221         root->nodesize = nodesize;
1222         root->stripesize = stripesize;
1223         root->state = 0;
1224         root->orphan_cleanup_state = 0;
1225
1226         root->objectid = objectid;
1227         root->last_trans = 0;
1228         root->highest_objectid = 0;
1229         root->nr_delalloc_inodes = 0;
1230         root->nr_ordered_extents = 0;
1231         root->name = NULL;
1232         root->inode_tree = RB_ROOT;
1233         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1234         root->block_rsv = NULL;
1235         root->orphan_block_rsv = NULL;
1236
1237         INIT_LIST_HEAD(&root->dirty_list);
1238         INIT_LIST_HEAD(&root->root_list);
1239         INIT_LIST_HEAD(&root->delalloc_inodes);
1240         INIT_LIST_HEAD(&root->delalloc_root);
1241         INIT_LIST_HEAD(&root->ordered_extents);
1242         INIT_LIST_HEAD(&root->ordered_root);
1243         INIT_LIST_HEAD(&root->logged_list[0]);
1244         INIT_LIST_HEAD(&root->logged_list[1]);
1245         spin_lock_init(&root->orphan_lock);
1246         spin_lock_init(&root->inode_lock);
1247         spin_lock_init(&root->delalloc_lock);
1248         spin_lock_init(&root->ordered_extent_lock);
1249         spin_lock_init(&root->accounting_lock);
1250         spin_lock_init(&root->log_extents_lock[0]);
1251         spin_lock_init(&root->log_extents_lock[1]);
1252         mutex_init(&root->objectid_mutex);
1253         mutex_init(&root->log_mutex);
1254         mutex_init(&root->ordered_extent_mutex);
1255         mutex_init(&root->delalloc_mutex);
1256         init_waitqueue_head(&root->log_writer_wait);
1257         init_waitqueue_head(&root->log_commit_wait[0]);
1258         init_waitqueue_head(&root->log_commit_wait[1]);
1259         INIT_LIST_HEAD(&root->log_ctxs[0]);
1260         INIT_LIST_HEAD(&root->log_ctxs[1]);
1261         atomic_set(&root->log_commit[0], 0);
1262         atomic_set(&root->log_commit[1], 0);
1263         atomic_set(&root->log_writers, 0);
1264         atomic_set(&root->log_batch, 0);
1265         atomic_set(&root->orphan_inodes, 0);
1266         atomic_set(&root->refs, 1);
1267         atomic_set(&root->will_be_snapshoted, 0);
1268         root->log_transid = 0;
1269         root->log_transid_committed = -1;
1270         root->last_log_commit = 0;
1271         if (fs_info)
1272                 extent_io_tree_init(&root->dirty_log_pages,
1273                                      fs_info->btree_inode->i_mapping);
1274
1275         memset(&root->root_key, 0, sizeof(root->root_key));
1276         memset(&root->root_item, 0, sizeof(root->root_item));
1277         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1278         if (fs_info)
1279                 root->defrag_trans_start = fs_info->generation;
1280         else
1281                 root->defrag_trans_start = 0;
1282         root->root_key.objectid = objectid;
1283         root->anon_dev = 0;
1284
1285         spin_lock_init(&root->root_item_lock);
1286 }
1287
1288 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1289 {
1290         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1291         if (root)
1292                 root->fs_info = fs_info;
1293         return root;
1294 }
1295
1296 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1297 /* Should only be used by the testing infrastructure */
1298 struct btrfs_root *btrfs_alloc_dummy_root(void)
1299 {
1300         struct btrfs_root *root;
1301
1302         root = btrfs_alloc_root(NULL);
1303         if (!root)
1304                 return ERR_PTR(-ENOMEM);
1305         __setup_root(4096, 4096, 4096, root, NULL, 1);
1306         set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1307         root->alloc_bytenr = 0;
1308
1309         return root;
1310 }
1311 #endif
1312
1313 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1314                                      struct btrfs_fs_info *fs_info,
1315                                      u64 objectid)
1316 {
1317         struct extent_buffer *leaf;
1318         struct btrfs_root *tree_root = fs_info->tree_root;
1319         struct btrfs_root *root;
1320         struct btrfs_key key;
1321         int ret = 0;
1322         uuid_le uuid;
1323
1324         root = btrfs_alloc_root(fs_info);
1325         if (!root)
1326                 return ERR_PTR(-ENOMEM);
1327
1328         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1329                 tree_root->stripesize, root, fs_info, objectid);
1330         root->root_key.objectid = objectid;
1331         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1332         root->root_key.offset = 0;
1333
1334         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1335         if (IS_ERR(leaf)) {
1336                 ret = PTR_ERR(leaf);
1337                 leaf = NULL;
1338                 goto fail;
1339         }
1340
1341         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1342         btrfs_set_header_bytenr(leaf, leaf->start);
1343         btrfs_set_header_generation(leaf, trans->transid);
1344         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1345         btrfs_set_header_owner(leaf, objectid);
1346         root->node = leaf;
1347
1348         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1349                             BTRFS_FSID_SIZE);
1350         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1351                             btrfs_header_chunk_tree_uuid(leaf),
1352                             BTRFS_UUID_SIZE);
1353         btrfs_mark_buffer_dirty(leaf);
1354
1355         root->commit_root = btrfs_root_node(root);
1356         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1357
1358         root->root_item.flags = 0;
1359         root->root_item.byte_limit = 0;
1360         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1361         btrfs_set_root_generation(&root->root_item, trans->transid);
1362         btrfs_set_root_level(&root->root_item, 0);
1363         btrfs_set_root_refs(&root->root_item, 1);
1364         btrfs_set_root_used(&root->root_item, leaf->len);
1365         btrfs_set_root_last_snapshot(&root->root_item, 0);
1366         btrfs_set_root_dirid(&root->root_item, 0);
1367         uuid_le_gen(&uuid);
1368         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1369         root->root_item.drop_level = 0;
1370
1371         key.objectid = objectid;
1372         key.type = BTRFS_ROOT_ITEM_KEY;
1373         key.offset = 0;
1374         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1375         if (ret)
1376                 goto fail;
1377
1378         btrfs_tree_unlock(leaf);
1379
1380         return root;
1381
1382 fail:
1383         if (leaf) {
1384                 btrfs_tree_unlock(leaf);
1385                 free_extent_buffer(root->commit_root);
1386                 free_extent_buffer(leaf);
1387         }
1388         kfree(root);
1389
1390         return ERR_PTR(ret);
1391 }
1392
1393 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1394                                          struct btrfs_fs_info *fs_info)
1395 {
1396         struct btrfs_root *root;
1397         struct btrfs_root *tree_root = fs_info->tree_root;
1398         struct extent_buffer *leaf;
1399
1400         root = btrfs_alloc_root(fs_info);
1401         if (!root)
1402                 return ERR_PTR(-ENOMEM);
1403
1404         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1405                      tree_root->stripesize, root, fs_info,
1406                      BTRFS_TREE_LOG_OBJECTID);
1407
1408         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1409         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1410         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1411
1412         /*
1413          * DON'T set REF_COWS for log trees
1414          *
1415          * log trees do not get reference counted because they go away
1416          * before a real commit is actually done.  They do store pointers
1417          * to file data extents, and those reference counts still get
1418          * updated (along with back refs to the log tree).
1419          */
1420
1421         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1422                         NULL, 0, 0, 0);
1423         if (IS_ERR(leaf)) {
1424                 kfree(root);
1425                 return ERR_CAST(leaf);
1426         }
1427
1428         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1429         btrfs_set_header_bytenr(leaf, leaf->start);
1430         btrfs_set_header_generation(leaf, trans->transid);
1431         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1432         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1433         root->node = leaf;
1434
1435         write_extent_buffer(root->node, root->fs_info->fsid,
1436                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1437         btrfs_mark_buffer_dirty(root->node);
1438         btrfs_tree_unlock(root->node);
1439         return root;
1440 }
1441
1442 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1443                              struct btrfs_fs_info *fs_info)
1444 {
1445         struct btrfs_root *log_root;
1446
1447         log_root = alloc_log_tree(trans, fs_info);
1448         if (IS_ERR(log_root))
1449                 return PTR_ERR(log_root);
1450         WARN_ON(fs_info->log_root_tree);
1451         fs_info->log_root_tree = log_root;
1452         return 0;
1453 }
1454
1455 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1456                        struct btrfs_root *root)
1457 {
1458         struct btrfs_root *log_root;
1459         struct btrfs_inode_item *inode_item;
1460
1461         log_root = alloc_log_tree(trans, root->fs_info);
1462         if (IS_ERR(log_root))
1463                 return PTR_ERR(log_root);
1464
1465         log_root->last_trans = trans->transid;
1466         log_root->root_key.offset = root->root_key.objectid;
1467
1468         inode_item = &log_root->root_item.inode;
1469         btrfs_set_stack_inode_generation(inode_item, 1);
1470         btrfs_set_stack_inode_size(inode_item, 3);
1471         btrfs_set_stack_inode_nlink(inode_item, 1);
1472         btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1473         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1474
1475         btrfs_set_root_node(&log_root->root_item, log_root->node);
1476
1477         WARN_ON(root->log_root);
1478         root->log_root = log_root;
1479         root->log_transid = 0;
1480         root->log_transid_committed = -1;
1481         root->last_log_commit = 0;
1482         return 0;
1483 }
1484
1485 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1486                                                struct btrfs_key *key)
1487 {
1488         struct btrfs_root *root;
1489         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1490         struct btrfs_path *path;
1491         u64 generation;
1492         int ret;
1493
1494         path = btrfs_alloc_path();
1495         if (!path)
1496                 return ERR_PTR(-ENOMEM);
1497
1498         root = btrfs_alloc_root(fs_info);
1499         if (!root) {
1500                 ret = -ENOMEM;
1501                 goto alloc_fail;
1502         }
1503
1504         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1505                 tree_root->stripesize, root, fs_info, key->objectid);
1506
1507         ret = btrfs_find_root(tree_root, key, path,
1508                               &root->root_item, &root->root_key);
1509         if (ret) {
1510                 if (ret > 0)
1511                         ret = -ENOENT;
1512                 goto find_fail;
1513         }
1514
1515         generation = btrfs_root_generation(&root->root_item);
1516         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1517                                      generation);
1518         if (!root->node) {
1519                 ret = -ENOMEM;
1520                 goto find_fail;
1521         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1522                 ret = -EIO;
1523                 goto read_fail;
1524         }
1525         root->commit_root = btrfs_root_node(root);
1526 out:
1527         btrfs_free_path(path);
1528         return root;
1529
1530 read_fail:
1531         free_extent_buffer(root->node);
1532 find_fail:
1533         kfree(root);
1534 alloc_fail:
1535         root = ERR_PTR(ret);
1536         goto out;
1537 }
1538
1539 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1540                                       struct btrfs_key *location)
1541 {
1542         struct btrfs_root *root;
1543
1544         root = btrfs_read_tree_root(tree_root, location);
1545         if (IS_ERR(root))
1546                 return root;
1547
1548         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1549                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1550                 btrfs_check_and_init_root_item(&root->root_item);
1551         }
1552
1553         return root;
1554 }
1555
1556 int btrfs_init_fs_root(struct btrfs_root *root)
1557 {
1558         int ret;
1559         struct btrfs_subvolume_writers *writers;
1560
1561         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1562         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1563                                         GFP_NOFS);
1564         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1565                 ret = -ENOMEM;
1566                 goto fail;
1567         }
1568
1569         writers = btrfs_alloc_subvolume_writers();
1570         if (IS_ERR(writers)) {
1571                 ret = PTR_ERR(writers);
1572                 goto fail;
1573         }
1574         root->subv_writers = writers;
1575
1576         btrfs_init_free_ino_ctl(root);
1577         spin_lock_init(&root->ino_cache_lock);
1578         init_waitqueue_head(&root->ino_cache_wait);
1579
1580         ret = get_anon_bdev(&root->anon_dev);
1581         if (ret)
1582                 goto free_writers;
1583         return 0;
1584
1585 free_writers:
1586         btrfs_free_subvolume_writers(root->subv_writers);
1587 fail:
1588         kfree(root->free_ino_ctl);
1589         kfree(root->free_ino_pinned);
1590         return ret;
1591 }
1592
1593 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1594                                                u64 root_id)
1595 {
1596         struct btrfs_root *root;
1597
1598         spin_lock(&fs_info->fs_roots_radix_lock);
1599         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1600                                  (unsigned long)root_id);
1601         spin_unlock(&fs_info->fs_roots_radix_lock);
1602         return root;
1603 }
1604
1605 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1606                          struct btrfs_root *root)
1607 {
1608         int ret;
1609
1610         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1611         if (ret)
1612                 return ret;
1613
1614         spin_lock(&fs_info->fs_roots_radix_lock);
1615         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1616                                 (unsigned long)root->root_key.objectid,
1617                                 root);
1618         if (ret == 0)
1619                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1620         spin_unlock(&fs_info->fs_roots_radix_lock);
1621         radix_tree_preload_end();
1622
1623         return ret;
1624 }
1625
1626 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1627                                      struct btrfs_key *location,
1628                                      bool check_ref)
1629 {
1630         struct btrfs_root *root;
1631         struct btrfs_path *path;
1632         struct btrfs_key key;
1633         int ret;
1634
1635         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1636                 return fs_info->tree_root;
1637         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1638                 return fs_info->extent_root;
1639         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1640                 return fs_info->chunk_root;
1641         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1642                 return fs_info->dev_root;
1643         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1644                 return fs_info->csum_root;
1645         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1646                 return fs_info->quota_root ? fs_info->quota_root :
1647                                              ERR_PTR(-ENOENT);
1648         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1649                 return fs_info->uuid_root ? fs_info->uuid_root :
1650                                             ERR_PTR(-ENOENT);
1651 again:
1652         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1653         if (root) {
1654                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1655                         return ERR_PTR(-ENOENT);
1656                 return root;
1657         }
1658
1659         root = btrfs_read_fs_root(fs_info->tree_root, location);
1660         if (IS_ERR(root))
1661                 return root;
1662
1663         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1664                 ret = -ENOENT;
1665                 goto fail;
1666         }
1667
1668         ret = btrfs_init_fs_root(root);
1669         if (ret)
1670                 goto fail;
1671
1672         path = btrfs_alloc_path();
1673         if (!path) {
1674                 ret = -ENOMEM;
1675                 goto fail;
1676         }
1677         key.objectid = BTRFS_ORPHAN_OBJECTID;
1678         key.type = BTRFS_ORPHAN_ITEM_KEY;
1679         key.offset = location->objectid;
1680
1681         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1682         btrfs_free_path(path);
1683         if (ret < 0)
1684                 goto fail;
1685         if (ret == 0)
1686                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1687
1688         ret = btrfs_insert_fs_root(fs_info, root);
1689         if (ret) {
1690                 if (ret == -EEXIST) {
1691                         free_fs_root(root);
1692                         goto again;
1693                 }
1694                 goto fail;
1695         }
1696         return root;
1697 fail:
1698         free_fs_root(root);
1699         return ERR_PTR(ret);
1700 }
1701
1702 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1703 {
1704         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1705         int ret = 0;
1706         struct btrfs_device *device;
1707         struct backing_dev_info *bdi;
1708
1709         rcu_read_lock();
1710         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1711                 if (!device->bdev)
1712                         continue;
1713                 bdi = blk_get_backing_dev_info(device->bdev);
1714                 if (bdi_congested(bdi, bdi_bits)) {
1715                         ret = 1;
1716                         break;
1717                 }
1718         }
1719         rcu_read_unlock();
1720         return ret;
1721 }
1722
1723 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1724 {
1725         int err;
1726
1727         bdi->capabilities = BDI_CAP_MAP_COPY;
1728         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1729         if (err)
1730                 return err;
1731
1732         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1733         bdi->congested_fn       = btrfs_congested_fn;
1734         bdi->congested_data     = info;
1735         return 0;
1736 }
1737
1738 /*
1739  * called by the kthread helper functions to finally call the bio end_io
1740  * functions.  This is where read checksum verification actually happens
1741  */
1742 static void end_workqueue_fn(struct btrfs_work *work)
1743 {
1744         struct bio *bio;
1745         struct btrfs_end_io_wq *end_io_wq;
1746         int error;
1747
1748         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1749         bio = end_io_wq->bio;
1750
1751         error = end_io_wq->error;
1752         bio->bi_private = end_io_wq->private;
1753         bio->bi_end_io = end_io_wq->end_io;
1754         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1755         bio_endio_nodec(bio, error);
1756 }
1757
1758 static int cleaner_kthread(void *arg)
1759 {
1760         struct btrfs_root *root = arg;
1761         int again;
1762
1763         do {
1764                 again = 0;
1765
1766                 /* Make the cleaner go to sleep early. */
1767                 if (btrfs_need_cleaner_sleep(root))
1768                         goto sleep;
1769
1770                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1771                         goto sleep;
1772
1773                 /*
1774                  * Avoid the problem that we change the status of the fs
1775                  * during the above check and trylock.
1776                  */
1777                 if (btrfs_need_cleaner_sleep(root)) {
1778                         mutex_unlock(&root->fs_info->cleaner_mutex);
1779                         goto sleep;
1780                 }
1781
1782                 btrfs_run_delayed_iputs(root);
1783                 btrfs_delete_unused_bgs(root->fs_info);
1784                 again = btrfs_clean_one_deleted_snapshot(root);
1785                 mutex_unlock(&root->fs_info->cleaner_mutex);
1786
1787                 /*
1788                  * The defragger has dealt with the R/O remount and umount,
1789                  * needn't do anything special here.
1790                  */
1791                 btrfs_run_defrag_inodes(root->fs_info);
1792 sleep:
1793                 if (!try_to_freeze() && !again) {
1794                         set_current_state(TASK_INTERRUPTIBLE);
1795                         if (!kthread_should_stop())
1796                                 schedule();
1797                         __set_current_state(TASK_RUNNING);
1798                 }
1799         } while (!kthread_should_stop());
1800         return 0;
1801 }
1802
1803 static int transaction_kthread(void *arg)
1804 {
1805         struct btrfs_root *root = arg;
1806         struct btrfs_trans_handle *trans;
1807         struct btrfs_transaction *cur;
1808         u64 transid;
1809         unsigned long now;
1810         unsigned long delay;
1811         bool cannot_commit;
1812
1813         do {
1814                 cannot_commit = false;
1815                 delay = HZ * root->fs_info->commit_interval;
1816                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1817
1818                 spin_lock(&root->fs_info->trans_lock);
1819                 cur = root->fs_info->running_transaction;
1820                 if (!cur) {
1821                         spin_unlock(&root->fs_info->trans_lock);
1822                         goto sleep;
1823                 }
1824
1825                 now = get_seconds();
1826                 if (cur->state < TRANS_STATE_BLOCKED &&
1827                     (now < cur->start_time ||
1828                      now - cur->start_time < root->fs_info->commit_interval)) {
1829                         spin_unlock(&root->fs_info->trans_lock);
1830                         delay = HZ * 5;
1831                         goto sleep;
1832                 }
1833                 transid = cur->transid;
1834                 spin_unlock(&root->fs_info->trans_lock);
1835
1836                 /* If the file system is aborted, this will always fail. */
1837                 trans = btrfs_attach_transaction(root);
1838                 if (IS_ERR(trans)) {
1839                         if (PTR_ERR(trans) != -ENOENT)
1840                                 cannot_commit = true;
1841                         goto sleep;
1842                 }
1843                 if (transid == trans->transid) {
1844                         btrfs_commit_transaction(trans, root);
1845                 } else {
1846                         btrfs_end_transaction(trans, root);
1847                 }
1848 sleep:
1849                 wake_up_process(root->fs_info->cleaner_kthread);
1850                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1851
1852                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1853                                       &root->fs_info->fs_state)))
1854                         btrfs_cleanup_transaction(root);
1855                 if (!try_to_freeze()) {
1856                         set_current_state(TASK_INTERRUPTIBLE);
1857                         if (!kthread_should_stop() &&
1858                             (!btrfs_transaction_blocked(root->fs_info) ||
1859                              cannot_commit))
1860                                 schedule_timeout(delay);
1861                         __set_current_state(TASK_RUNNING);
1862                 }
1863         } while (!kthread_should_stop());
1864         return 0;
1865 }
1866
1867 /*
1868  * this will find the highest generation in the array of
1869  * root backups.  The index of the highest array is returned,
1870  * or -1 if we can't find anything.
1871  *
1872  * We check to make sure the array is valid by comparing the
1873  * generation of the latest  root in the array with the generation
1874  * in the super block.  If they don't match we pitch it.
1875  */
1876 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1877 {
1878         u64 cur;
1879         int newest_index = -1;
1880         struct btrfs_root_backup *root_backup;
1881         int i;
1882
1883         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1884                 root_backup = info->super_copy->super_roots + i;
1885                 cur = btrfs_backup_tree_root_gen(root_backup);
1886                 if (cur == newest_gen)
1887                         newest_index = i;
1888         }
1889
1890         /* check to see if we actually wrapped around */
1891         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1892                 root_backup = info->super_copy->super_roots;
1893                 cur = btrfs_backup_tree_root_gen(root_backup);
1894                 if (cur == newest_gen)
1895                         newest_index = 0;
1896         }
1897         return newest_index;
1898 }
1899
1900
1901 /*
1902  * find the oldest backup so we know where to store new entries
1903  * in the backup array.  This will set the backup_root_index
1904  * field in the fs_info struct
1905  */
1906 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1907                                      u64 newest_gen)
1908 {
1909         int newest_index = -1;
1910
1911         newest_index = find_newest_super_backup(info, newest_gen);
1912         /* if there was garbage in there, just move along */
1913         if (newest_index == -1) {
1914                 info->backup_root_index = 0;
1915         } else {
1916                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1917         }
1918 }
1919
1920 /*
1921  * copy all the root pointers into the super backup array.
1922  * this will bump the backup pointer by one when it is
1923  * done
1924  */
1925 static void backup_super_roots(struct btrfs_fs_info *info)
1926 {
1927         int next_backup;
1928         struct btrfs_root_backup *root_backup;
1929         int last_backup;
1930
1931         next_backup = info->backup_root_index;
1932         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1933                 BTRFS_NUM_BACKUP_ROOTS;
1934
1935         /*
1936          * just overwrite the last backup if we're at the same generation
1937          * this happens only at umount
1938          */
1939         root_backup = info->super_for_commit->super_roots + last_backup;
1940         if (btrfs_backup_tree_root_gen(root_backup) ==
1941             btrfs_header_generation(info->tree_root->node))
1942                 next_backup = last_backup;
1943
1944         root_backup = info->super_for_commit->super_roots + next_backup;
1945
1946         /*
1947          * make sure all of our padding and empty slots get zero filled
1948          * regardless of which ones we use today
1949          */
1950         memset(root_backup, 0, sizeof(*root_backup));
1951
1952         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1953
1954         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1955         btrfs_set_backup_tree_root_gen(root_backup,
1956                                btrfs_header_generation(info->tree_root->node));
1957
1958         btrfs_set_backup_tree_root_level(root_backup,
1959                                btrfs_header_level(info->tree_root->node));
1960
1961         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1962         btrfs_set_backup_chunk_root_gen(root_backup,
1963                                btrfs_header_generation(info->chunk_root->node));
1964         btrfs_set_backup_chunk_root_level(root_backup,
1965                                btrfs_header_level(info->chunk_root->node));
1966
1967         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1968         btrfs_set_backup_extent_root_gen(root_backup,
1969                                btrfs_header_generation(info->extent_root->node));
1970         btrfs_set_backup_extent_root_level(root_backup,
1971                                btrfs_header_level(info->extent_root->node));
1972
1973         /*
1974          * we might commit during log recovery, which happens before we set
1975          * the fs_root.  Make sure it is valid before we fill it in.
1976          */
1977         if (info->fs_root && info->fs_root->node) {
1978                 btrfs_set_backup_fs_root(root_backup,
1979                                          info->fs_root->node->start);
1980                 btrfs_set_backup_fs_root_gen(root_backup,
1981                                btrfs_header_generation(info->fs_root->node));
1982                 btrfs_set_backup_fs_root_level(root_backup,
1983                                btrfs_header_level(info->fs_root->node));
1984         }
1985
1986         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1987         btrfs_set_backup_dev_root_gen(root_backup,
1988                                btrfs_header_generation(info->dev_root->node));
1989         btrfs_set_backup_dev_root_level(root_backup,
1990                                        btrfs_header_level(info->dev_root->node));
1991
1992         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1993         btrfs_set_backup_csum_root_gen(root_backup,
1994                                btrfs_header_generation(info->csum_root->node));
1995         btrfs_set_backup_csum_root_level(root_backup,
1996                                btrfs_header_level(info->csum_root->node));
1997
1998         btrfs_set_backup_total_bytes(root_backup,
1999                              btrfs_super_total_bytes(info->super_copy));
2000         btrfs_set_backup_bytes_used(root_backup,
2001                              btrfs_super_bytes_used(info->super_copy));
2002         btrfs_set_backup_num_devices(root_backup,
2003                              btrfs_super_num_devices(info->super_copy));
2004
2005         /*
2006          * if we don't copy this out to the super_copy, it won't get remembered
2007          * for the next commit
2008          */
2009         memcpy(&info->super_copy->super_roots,
2010                &info->super_for_commit->super_roots,
2011                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2012 }
2013
2014 /*
2015  * this copies info out of the root backup array and back into
2016  * the in-memory super block.  It is meant to help iterate through
2017  * the array, so you send it the number of backups you've already
2018  * tried and the last backup index you used.
2019  *
2020  * this returns -1 when it has tried all the backups
2021  */
2022 static noinline int next_root_backup(struct btrfs_fs_info *info,
2023                                      struct btrfs_super_block *super,
2024                                      int *num_backups_tried, int *backup_index)
2025 {
2026         struct btrfs_root_backup *root_backup;
2027         int newest = *backup_index;
2028
2029         if (*num_backups_tried == 0) {
2030                 u64 gen = btrfs_super_generation(super);
2031
2032                 newest = find_newest_super_backup(info, gen);
2033                 if (newest == -1)
2034                         return -1;
2035
2036                 *backup_index = newest;
2037                 *num_backups_tried = 1;
2038         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2039                 /* we've tried all the backups, all done */
2040                 return -1;
2041         } else {
2042                 /* jump to the next oldest backup */
2043                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2044                         BTRFS_NUM_BACKUP_ROOTS;
2045                 *backup_index = newest;
2046                 *num_backups_tried += 1;
2047         }
2048         root_backup = super->super_roots + newest;
2049
2050         btrfs_set_super_generation(super,
2051                                    btrfs_backup_tree_root_gen(root_backup));
2052         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2053         btrfs_set_super_root_level(super,
2054                                    btrfs_backup_tree_root_level(root_backup));
2055         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2056
2057         /*
2058          * fixme: the total bytes and num_devices need to match or we should
2059          * need a fsck
2060          */
2061         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2062         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2063         return 0;
2064 }
2065
2066 /* helper to cleanup workers */
2067 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2068 {
2069         btrfs_destroy_workqueue(fs_info->fixup_workers);
2070         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2071         btrfs_destroy_workqueue(fs_info->workers);
2072         btrfs_destroy_workqueue(fs_info->endio_workers);
2073         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2074         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2075         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2076         btrfs_destroy_workqueue(fs_info->rmw_workers);
2077         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2078         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2079         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2080         btrfs_destroy_workqueue(fs_info->submit_workers);
2081         btrfs_destroy_workqueue(fs_info->delayed_workers);
2082         btrfs_destroy_workqueue(fs_info->caching_workers);
2083         btrfs_destroy_workqueue(fs_info->readahead_workers);
2084         btrfs_destroy_workqueue(fs_info->flush_workers);
2085         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2086         btrfs_destroy_workqueue(fs_info->extent_workers);
2087 }
2088
2089 static void free_root_extent_buffers(struct btrfs_root *root)
2090 {
2091         if (root) {
2092                 free_extent_buffer(root->node);
2093                 free_extent_buffer(root->commit_root);
2094                 root->node = NULL;
2095                 root->commit_root = NULL;
2096         }
2097 }
2098
2099 /* helper to cleanup tree roots */
2100 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2101 {
2102         free_root_extent_buffers(info->tree_root);
2103
2104         free_root_extent_buffers(info->dev_root);
2105         free_root_extent_buffers(info->extent_root);
2106         free_root_extent_buffers(info->csum_root);
2107         free_root_extent_buffers(info->quota_root);
2108         free_root_extent_buffers(info->uuid_root);
2109         if (chunk_root)
2110                 free_root_extent_buffers(info->chunk_root);
2111 }
2112
2113 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2114 {
2115         int ret;
2116         struct btrfs_root *gang[8];
2117         int i;
2118
2119         while (!list_empty(&fs_info->dead_roots)) {
2120                 gang[0] = list_entry(fs_info->dead_roots.next,
2121                                      struct btrfs_root, root_list);
2122                 list_del(&gang[0]->root_list);
2123
2124                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2125                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2126                 } else {
2127                         free_extent_buffer(gang[0]->node);
2128                         free_extent_buffer(gang[0]->commit_root);
2129                         btrfs_put_fs_root(gang[0]);
2130                 }
2131         }
2132
2133         while (1) {
2134                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2135                                              (void **)gang, 0,
2136                                              ARRAY_SIZE(gang));
2137                 if (!ret)
2138                         break;
2139                 for (i = 0; i < ret; i++)
2140                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2141         }
2142
2143         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2144                 btrfs_free_log_root_tree(NULL, fs_info);
2145                 btrfs_destroy_pinned_extent(fs_info->tree_root,
2146                                             fs_info->pinned_extents);
2147         }
2148 }
2149
2150 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2151 {
2152         mutex_init(&fs_info->scrub_lock);
2153         atomic_set(&fs_info->scrubs_running, 0);
2154         atomic_set(&fs_info->scrub_pause_req, 0);
2155         atomic_set(&fs_info->scrubs_paused, 0);
2156         atomic_set(&fs_info->scrub_cancel_req, 0);
2157         init_waitqueue_head(&fs_info->scrub_pause_wait);
2158         fs_info->scrub_workers_refcnt = 0;
2159 }
2160
2161 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2162 {
2163         spin_lock_init(&fs_info->balance_lock);
2164         mutex_init(&fs_info->balance_mutex);
2165         atomic_set(&fs_info->balance_running, 0);
2166         atomic_set(&fs_info->balance_pause_req, 0);
2167         atomic_set(&fs_info->balance_cancel_req, 0);
2168         fs_info->balance_ctl = NULL;
2169         init_waitqueue_head(&fs_info->balance_wait_q);
2170 }
2171
2172 int open_ctree(struct super_block *sb,
2173                struct btrfs_fs_devices *fs_devices,
2174                char *options)
2175 {
2176         u32 sectorsize;
2177         u32 nodesize;
2178         u32 stripesize;
2179         u64 generation;
2180         u64 features;
2181         struct btrfs_key location;
2182         struct buffer_head *bh;
2183         struct btrfs_super_block *disk_super;
2184         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2185         struct btrfs_root *tree_root;
2186         struct btrfs_root *extent_root;
2187         struct btrfs_root *csum_root;
2188         struct btrfs_root *chunk_root;
2189         struct btrfs_root *dev_root;
2190         struct btrfs_root *quota_root;
2191         struct btrfs_root *uuid_root;
2192         struct btrfs_root *log_tree_root;
2193         int ret;
2194         int err = -EINVAL;
2195         int num_backups_tried = 0;
2196         int backup_index = 0;
2197         int max_active;
2198         int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2199         bool create_uuid_tree;
2200         bool check_uuid_tree;
2201
2202         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2203         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2204         if (!tree_root || !chunk_root) {
2205                 err = -ENOMEM;
2206                 goto fail;
2207         }
2208
2209         ret = init_srcu_struct(&fs_info->subvol_srcu);
2210         if (ret) {
2211                 err = ret;
2212                 goto fail;
2213         }
2214
2215         ret = setup_bdi(fs_info, &fs_info->bdi);
2216         if (ret) {
2217                 err = ret;
2218                 goto fail_srcu;
2219         }
2220
2221         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2222         if (ret) {
2223                 err = ret;
2224                 goto fail_bdi;
2225         }
2226         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2227                                         (1 + ilog2(nr_cpu_ids));
2228
2229         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2230         if (ret) {
2231                 err = ret;
2232                 goto fail_dirty_metadata_bytes;
2233         }
2234
2235         ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2236         if (ret) {
2237                 err = ret;
2238                 goto fail_delalloc_bytes;
2239         }
2240
2241         fs_info->btree_inode = new_inode(sb);
2242         if (!fs_info->btree_inode) {
2243                 err = -ENOMEM;
2244                 goto fail_bio_counter;
2245         }
2246
2247         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2248
2249         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2250         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2251         INIT_LIST_HEAD(&fs_info->trans_list);
2252         INIT_LIST_HEAD(&fs_info->dead_roots);
2253         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2254         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2255         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2256         spin_lock_init(&fs_info->delalloc_root_lock);
2257         spin_lock_init(&fs_info->trans_lock);
2258         spin_lock_init(&fs_info->fs_roots_radix_lock);
2259         spin_lock_init(&fs_info->delayed_iput_lock);
2260         spin_lock_init(&fs_info->defrag_inodes_lock);
2261         spin_lock_init(&fs_info->free_chunk_lock);
2262         spin_lock_init(&fs_info->tree_mod_seq_lock);
2263         spin_lock_init(&fs_info->super_lock);
2264         spin_lock_init(&fs_info->qgroup_op_lock);
2265         spin_lock_init(&fs_info->buffer_lock);
2266         spin_lock_init(&fs_info->unused_bgs_lock);
2267         mutex_init(&fs_info->unused_bg_unpin_mutex);
2268         rwlock_init(&fs_info->tree_mod_log_lock);
2269         mutex_init(&fs_info->reloc_mutex);
2270         mutex_init(&fs_info->delalloc_root_mutex);
2271         seqlock_init(&fs_info->profiles_lock);
2272
2273         init_completion(&fs_info->kobj_unregister);
2274         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2275         INIT_LIST_HEAD(&fs_info->space_info);
2276         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2277         INIT_LIST_HEAD(&fs_info->unused_bgs);
2278         btrfs_mapping_init(&fs_info->mapping_tree);
2279         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2280                              BTRFS_BLOCK_RSV_GLOBAL);
2281         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2282                              BTRFS_BLOCK_RSV_DELALLOC);
2283         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2284         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2285         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2286         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2287                              BTRFS_BLOCK_RSV_DELOPS);
2288         atomic_set(&fs_info->nr_async_submits, 0);
2289         atomic_set(&fs_info->async_delalloc_pages, 0);
2290         atomic_set(&fs_info->async_submit_draining, 0);
2291         atomic_set(&fs_info->nr_async_bios, 0);
2292         atomic_set(&fs_info->defrag_running, 0);
2293         atomic_set(&fs_info->qgroup_op_seq, 0);
2294         atomic64_set(&fs_info->tree_mod_seq, 0);
2295         fs_info->sb = sb;
2296         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2297         fs_info->metadata_ratio = 0;
2298         fs_info->defrag_inodes = RB_ROOT;
2299         fs_info->free_chunk_space = 0;
2300         fs_info->tree_mod_log = RB_ROOT;
2301         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2302         fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
2303         /* readahead state */
2304         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2305         spin_lock_init(&fs_info->reada_lock);
2306
2307         fs_info->thread_pool_size = min_t(unsigned long,
2308                                           num_online_cpus() + 2, 8);
2309
2310         INIT_LIST_HEAD(&fs_info->ordered_roots);
2311         spin_lock_init(&fs_info->ordered_root_lock);
2312         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2313                                         GFP_NOFS);
2314         if (!fs_info->delayed_root) {
2315                 err = -ENOMEM;
2316                 goto fail_iput;
2317         }
2318         btrfs_init_delayed_root(fs_info->delayed_root);
2319
2320         btrfs_init_scrub(fs_info);
2321         init_waitqueue_head(&fs_info->replace_wait);
2322 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2323         fs_info->check_integrity_print_mask = 0;
2324 #endif
2325         btrfs_init_balance(fs_info);
2326         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2327
2328         sb->s_blocksize = 4096;
2329         sb->s_blocksize_bits = blksize_bits(4096);
2330         sb->s_bdi = &fs_info->bdi;
2331
2332         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2333         set_nlink(fs_info->btree_inode, 1);
2334         /*
2335          * we set the i_size on the btree inode to the max possible int.
2336          * the real end of the address space is determined by all of
2337          * the devices in the system
2338          */
2339         fs_info->btree_inode->i_size = OFFSET_MAX;
2340         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2341         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2342
2343         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2344         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2345                              fs_info->btree_inode->i_mapping);
2346         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2347         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2348
2349         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2350
2351         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2352         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2353                sizeof(struct btrfs_key));
2354         set_bit(BTRFS_INODE_DUMMY,
2355                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2356         btrfs_insert_inode_hash(fs_info->btree_inode);
2357
2358         spin_lock_init(&fs_info->block_group_cache_lock);
2359         fs_info->block_group_cache_tree = RB_ROOT;
2360         fs_info->first_logical_byte = (u64)-1;
2361
2362         extent_io_tree_init(&fs_info->freed_extents[0],
2363                              fs_info->btree_inode->i_mapping);
2364         extent_io_tree_init(&fs_info->freed_extents[1],
2365                              fs_info->btree_inode->i_mapping);
2366         fs_info->pinned_extents = &fs_info->freed_extents[0];
2367         fs_info->do_barriers = 1;
2368
2369
2370         mutex_init(&fs_info->ordered_operations_mutex);
2371         mutex_init(&fs_info->ordered_extent_flush_mutex);
2372         mutex_init(&fs_info->tree_log_mutex);
2373         mutex_init(&fs_info->chunk_mutex);
2374         mutex_init(&fs_info->transaction_kthread_mutex);
2375         mutex_init(&fs_info->cleaner_mutex);
2376         mutex_init(&fs_info->volume_mutex);
2377         init_rwsem(&fs_info->commit_root_sem);
2378         init_rwsem(&fs_info->cleanup_work_sem);
2379         init_rwsem(&fs_info->subvol_sem);
2380         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2381         fs_info->dev_replace.lock_owner = 0;
2382         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2383         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2384         mutex_init(&fs_info->dev_replace.lock_management_lock);
2385         mutex_init(&fs_info->dev_replace.lock);
2386
2387         spin_lock_init(&fs_info->qgroup_lock);
2388         mutex_init(&fs_info->qgroup_ioctl_lock);
2389         fs_info->qgroup_tree = RB_ROOT;
2390         fs_info->qgroup_op_tree = RB_ROOT;
2391         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2392         fs_info->qgroup_seq = 1;
2393         fs_info->quota_enabled = 0;
2394         fs_info->pending_quota_state = 0;
2395         fs_info->qgroup_ulist = NULL;
2396         mutex_init(&fs_info->qgroup_rescan_lock);
2397
2398         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2399         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2400
2401         init_waitqueue_head(&fs_info->transaction_throttle);
2402         init_waitqueue_head(&fs_info->transaction_wait);
2403         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2404         init_waitqueue_head(&fs_info->async_submit_wait);
2405
2406         INIT_LIST_HEAD(&fs_info->pinned_chunks);
2407
2408         ret = btrfs_alloc_stripe_hash_table(fs_info);
2409         if (ret) {
2410                 err = ret;
2411                 goto fail_alloc;
2412         }
2413
2414         __setup_root(4096, 4096, 4096, tree_root,
2415                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2416
2417         invalidate_bdev(fs_devices->latest_bdev);
2418
2419         /*
2420          * Read super block and check the signature bytes only
2421          */
2422         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2423         if (!bh) {
2424                 err = -EINVAL;
2425                 goto fail_alloc;
2426         }
2427
2428         /*
2429          * We want to check superblock checksum, the type is stored inside.
2430          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2431          */
2432         if (btrfs_check_super_csum(bh->b_data)) {
2433                 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2434                 err = -EINVAL;
2435                 goto fail_alloc;
2436         }
2437
2438         /*
2439          * super_copy is zeroed at allocation time and we never touch the
2440          * following bytes up to INFO_SIZE, the checksum is calculated from
2441          * the whole block of INFO_SIZE
2442          */
2443         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2444         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2445                sizeof(*fs_info->super_for_commit));
2446         brelse(bh);
2447
2448         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2449
2450         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2451         if (ret) {
2452                 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2453                 err = -EINVAL;
2454                 goto fail_alloc;
2455         }
2456
2457         disk_super = fs_info->super_copy;
2458         if (!btrfs_super_root(disk_super))
2459                 goto fail_alloc;
2460
2461         /* check FS state, whether FS is broken. */
2462         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2463                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2464
2465         /*
2466          * run through our array of backup supers and setup
2467          * our ring pointer to the oldest one
2468          */
2469         generation = btrfs_super_generation(disk_super);
2470         find_oldest_super_backup(fs_info, generation);
2471
2472         /*
2473          * In the long term, we'll store the compression type in the super
2474          * block, and it'll be used for per file compression control.
2475          */
2476         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2477
2478         ret = btrfs_parse_options(tree_root, options);
2479         if (ret) {
2480                 err = ret;
2481                 goto fail_alloc;
2482         }
2483
2484         features = btrfs_super_incompat_flags(disk_super) &
2485                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2486         if (features) {
2487                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2488                        "unsupported optional features (%Lx).\n",
2489                        features);
2490                 err = -EINVAL;
2491                 goto fail_alloc;
2492         }
2493
2494         /*
2495          * Leafsize and nodesize were always equal, this is only a sanity check.
2496          */
2497         if (le32_to_cpu(disk_super->__unused_leafsize) !=
2498             btrfs_super_nodesize(disk_super)) {
2499                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2500                        "blocksizes don't match.  node %d leaf %d\n",
2501                        btrfs_super_nodesize(disk_super),
2502                        le32_to_cpu(disk_super->__unused_leafsize));
2503                 err = -EINVAL;
2504                 goto fail_alloc;
2505         }
2506         if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2507                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2508                        "blocksize (%d) was too large\n",
2509                        btrfs_super_nodesize(disk_super));
2510                 err = -EINVAL;
2511                 goto fail_alloc;
2512         }
2513
2514         features = btrfs_super_incompat_flags(disk_super);
2515         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2516         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2517                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2518
2519         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2520                 printk(KERN_INFO "BTRFS: has skinny extents\n");
2521
2522         /*
2523          * flag our filesystem as having big metadata blocks if
2524          * they are bigger than the page size
2525          */
2526         if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2527                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2528                         printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2529                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2530         }
2531
2532         nodesize = btrfs_super_nodesize(disk_super);
2533         sectorsize = btrfs_super_sectorsize(disk_super);
2534         stripesize = btrfs_super_stripesize(disk_super);
2535         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2536         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2537
2538         /*
2539          * mixed block groups end up with duplicate but slightly offset
2540          * extent buffers for the same range.  It leads to corruptions
2541          */
2542         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2543             (sectorsize != nodesize)) {
2544                 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2545                                 "are not allowed for mixed block groups on %s\n",
2546                                 sb->s_id);
2547                 goto fail_alloc;
2548         }
2549
2550         /*
2551          * Needn't use the lock because there is no other task which will
2552          * update the flag.
2553          */
2554         btrfs_set_super_incompat_flags(disk_super, features);
2555
2556         features = btrfs_super_compat_ro_flags(disk_super) &
2557                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2558         if (!(sb->s_flags & MS_RDONLY) && features) {
2559                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2560                        "unsupported option features (%Lx).\n",
2561                        features);
2562                 err = -EINVAL;
2563                 goto fail_alloc;
2564         }
2565
2566         max_active = fs_info->thread_pool_size;
2567
2568         fs_info->workers =
2569                 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2570                                       max_active, 16);
2571
2572         fs_info->delalloc_workers =
2573                 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2574
2575         fs_info->flush_workers =
2576                 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2577
2578         fs_info->caching_workers =
2579                 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2580
2581         /*
2582          * a higher idle thresh on the submit workers makes it much more
2583          * likely that bios will be send down in a sane order to the
2584          * devices
2585          */
2586         fs_info->submit_workers =
2587                 btrfs_alloc_workqueue("submit", flags,
2588                                       min_t(u64, fs_devices->num_devices,
2589                                             max_active), 64);
2590
2591         fs_info->fixup_workers =
2592                 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2593
2594         /*
2595          * endios are largely parallel and should have a very
2596          * low idle thresh
2597          */
2598         fs_info->endio_workers =
2599                 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2600         fs_info->endio_meta_workers =
2601                 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2602         fs_info->endio_meta_write_workers =
2603                 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2604         fs_info->endio_raid56_workers =
2605                 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2606         fs_info->endio_repair_workers =
2607                 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2608         fs_info->rmw_workers =
2609                 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2610         fs_info->endio_write_workers =
2611                 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2612         fs_info->endio_freespace_worker =
2613                 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2614         fs_info->delayed_workers =
2615                 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2616         fs_info->readahead_workers =
2617                 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2618         fs_info->qgroup_rescan_workers =
2619                 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2620         fs_info->extent_workers =
2621                 btrfs_alloc_workqueue("extent-refs", flags,
2622                                       min_t(u64, fs_devices->num_devices,
2623                                             max_active), 8);
2624
2625         if (!(fs_info->workers && fs_info->delalloc_workers &&
2626               fs_info->submit_workers && fs_info->flush_workers &&
2627               fs_info->endio_workers && fs_info->endio_meta_workers &&
2628               fs_info->endio_meta_write_workers &&
2629               fs_info->endio_repair_workers &&
2630               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2631               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2632               fs_info->caching_workers && fs_info->readahead_workers &&
2633               fs_info->fixup_workers && fs_info->delayed_workers &&
2634               fs_info->extent_workers &&
2635               fs_info->qgroup_rescan_workers)) {
2636                 err = -ENOMEM;
2637                 goto fail_sb_buffer;
2638         }
2639
2640         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2641         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2642                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2643
2644         tree_root->nodesize = nodesize;
2645         tree_root->sectorsize = sectorsize;
2646         tree_root->stripesize = stripesize;
2647
2648         sb->s_blocksize = sectorsize;
2649         sb->s_blocksize_bits = blksize_bits(sectorsize);
2650
2651         if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2652                 printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
2653                 goto fail_sb_buffer;
2654         }
2655
2656         if (sectorsize != PAGE_SIZE) {
2657                 printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
2658                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2659                 goto fail_sb_buffer;
2660         }
2661
2662         mutex_lock(&fs_info->chunk_mutex);
2663         ret = btrfs_read_sys_array(tree_root);
2664         mutex_unlock(&fs_info->chunk_mutex);
2665         if (ret) {
2666                 printk(KERN_ERR "BTRFS: failed to read the system "
2667                        "array on %s\n", sb->s_id);
2668                 goto fail_sb_buffer;
2669         }
2670
2671         generation = btrfs_super_chunk_root_generation(disk_super);
2672
2673         __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2674                      fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2675
2676         chunk_root->node = read_tree_block(chunk_root,
2677                                            btrfs_super_chunk_root(disk_super),
2678                                            generation);
2679         if (!chunk_root->node ||
2680             !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2681                 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2682                        sb->s_id);
2683                 goto fail_tree_roots;
2684         }
2685         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2686         chunk_root->commit_root = btrfs_root_node(chunk_root);
2687
2688         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2689            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2690
2691         ret = btrfs_read_chunk_tree(chunk_root);
2692         if (ret) {
2693                 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2694                        sb->s_id);
2695                 goto fail_tree_roots;
2696         }
2697
2698         /*
2699          * keep the device that is marked to be the target device for the
2700          * dev_replace procedure
2701          */
2702         btrfs_close_extra_devices(fs_devices, 0);
2703
2704         if (!fs_devices->latest_bdev) {
2705                 printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2706                        sb->s_id);
2707                 goto fail_tree_roots;
2708         }
2709
2710 retry_root_backup:
2711         generation = btrfs_super_generation(disk_super);
2712
2713         tree_root->node = read_tree_block(tree_root,
2714                                           btrfs_super_root(disk_super),
2715                                           generation);
2716         if (!tree_root->node ||
2717             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2718                 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2719                        sb->s_id);
2720
2721                 goto recovery_tree_root;
2722         }
2723
2724         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2725         tree_root->commit_root = btrfs_root_node(tree_root);
2726         btrfs_set_root_refs(&tree_root->root_item, 1);
2727
2728         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2729         location.type = BTRFS_ROOT_ITEM_KEY;
2730         location.offset = 0;
2731
2732         extent_root = btrfs_read_tree_root(tree_root, &location);
2733         if (IS_ERR(extent_root)) {
2734                 ret = PTR_ERR(extent_root);
2735                 goto recovery_tree_root;
2736         }
2737         set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
2738         fs_info->extent_root = extent_root;
2739
2740         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2741         dev_root = btrfs_read_tree_root(tree_root, &location);
2742         if (IS_ERR(dev_root)) {
2743                 ret = PTR_ERR(dev_root);
2744                 goto recovery_tree_root;
2745         }
2746         set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
2747         fs_info->dev_root = dev_root;
2748         btrfs_init_devices_late(fs_info);
2749
2750         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2751         csum_root = btrfs_read_tree_root(tree_root, &location);
2752         if (IS_ERR(csum_root)) {
2753                 ret = PTR_ERR(csum_root);
2754                 goto recovery_tree_root;
2755         }
2756         set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
2757         fs_info->csum_root = csum_root;
2758
2759         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2760         quota_root = btrfs_read_tree_root(tree_root, &location);
2761         if (!IS_ERR(quota_root)) {
2762                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &quota_root->state);
2763                 fs_info->quota_enabled = 1;
2764                 fs_info->pending_quota_state = 1;
2765                 fs_info->quota_root = quota_root;
2766         }
2767
2768         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2769         uuid_root = btrfs_read_tree_root(tree_root, &location);
2770         if (IS_ERR(uuid_root)) {
2771                 ret = PTR_ERR(uuid_root);
2772                 if (ret != -ENOENT)
2773                         goto recovery_tree_root;
2774                 create_uuid_tree = true;
2775                 check_uuid_tree = false;
2776         } else {
2777                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
2778                 fs_info->uuid_root = uuid_root;
2779                 create_uuid_tree = false;
2780                 check_uuid_tree =
2781                     generation != btrfs_super_uuid_tree_generation(disk_super);
2782         }
2783
2784         fs_info->generation = generation;
2785         fs_info->last_trans_committed = generation;
2786
2787         ret = btrfs_recover_balance(fs_info);
2788         if (ret) {
2789                 printk(KERN_ERR "BTRFS: failed to recover balance\n");
2790                 goto fail_block_groups;
2791         }
2792
2793         ret = btrfs_init_dev_stats(fs_info);
2794         if (ret) {
2795                 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2796                        ret);
2797                 goto fail_block_groups;
2798         }
2799
2800         ret = btrfs_init_dev_replace(fs_info);
2801         if (ret) {
2802                 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2803                 goto fail_block_groups;
2804         }
2805
2806         btrfs_close_extra_devices(fs_devices, 1);
2807
2808         ret = btrfs_sysfs_add_one(fs_info);
2809         if (ret) {
2810                 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2811                 goto fail_block_groups;
2812         }
2813
2814         ret = btrfs_init_space_info(fs_info);
2815         if (ret) {
2816                 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2817                 goto fail_sysfs;
2818         }
2819
2820         ret = btrfs_read_block_groups(extent_root);
2821         if (ret) {
2822                 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2823                 goto fail_sysfs;
2824         }
2825         fs_info->num_tolerated_disk_barrier_failures =
2826                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2827         if (fs_info->fs_devices->missing_devices >
2828              fs_info->num_tolerated_disk_barrier_failures &&
2829             !(sb->s_flags & MS_RDONLY)) {
2830                 printk(KERN_WARNING "BTRFS: "
2831                         "too many missing devices, writeable mount is not allowed\n");
2832                 goto fail_sysfs;
2833         }
2834
2835         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2836                                                "btrfs-cleaner");
2837         if (IS_ERR(fs_info->cleaner_kthread))
2838                 goto fail_sysfs;
2839
2840         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2841                                                    tree_root,
2842                                                    "btrfs-transaction");
2843         if (IS_ERR(fs_info->transaction_kthread))
2844                 goto fail_cleaner;
2845
2846         if (!btrfs_test_opt(tree_root, SSD) &&
2847             !btrfs_test_opt(tree_root, NOSSD) &&
2848             !fs_info->fs_devices->rotating) {
2849                 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2850                        "mode\n");
2851                 btrfs_set_opt(fs_info->mount_opt, SSD);
2852         }
2853
2854         /*
2855          * Mount does not set all options immediatelly, we can do it now and do
2856          * not have to wait for transaction commit
2857          */
2858         btrfs_apply_pending_changes(fs_info);
2859
2860 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2861         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2862                 ret = btrfsic_mount(tree_root, fs_devices,
2863                                     btrfs_test_opt(tree_root,
2864                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2865                                     1 : 0,
2866                                     fs_info->check_integrity_print_mask);
2867                 if (ret)
2868                         printk(KERN_WARNING "BTRFS: failed to initialize"
2869                                " integrity check module %s\n", sb->s_id);
2870         }
2871 #endif
2872         ret = btrfs_read_qgroup_config(fs_info);
2873         if (ret)
2874                 goto fail_trans_kthread;
2875
2876         /* do not make disk changes in broken FS */
2877         if (btrfs_super_log_root(disk_super) != 0) {
2878                 u64 bytenr = btrfs_super_log_root(disk_super);
2879
2880                 if (fs_devices->rw_devices == 0) {
2881                         printk(KERN_WARNING "BTRFS: log replay required "
2882                                "on RO media\n");
2883                         err = -EIO;
2884                         goto fail_qgroup;
2885                 }
2886
2887                 log_tree_root = btrfs_alloc_root(fs_info);
2888                 if (!log_tree_root) {
2889                         err = -ENOMEM;
2890                         goto fail_qgroup;
2891                 }
2892
2893                 __setup_root(nodesize, sectorsize, stripesize,
2894                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2895
2896                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2897                                                       generation + 1);
2898                 if (!log_tree_root->node ||
2899                     !extent_buffer_uptodate(log_tree_root->node)) {
2900                         printk(KERN_ERR "BTRFS: failed to read log tree\n");
2901                         free_extent_buffer(log_tree_root->node);
2902                         kfree(log_tree_root);
2903                         goto fail_qgroup;
2904                 }
2905                 /* returns with log_tree_root freed on success */
2906                 ret = btrfs_recover_log_trees(log_tree_root);
2907                 if (ret) {
2908                         btrfs_error(tree_root->fs_info, ret,
2909                                     "Failed to recover log tree");
2910                         free_extent_buffer(log_tree_root->node);
2911                         kfree(log_tree_root);
2912                         goto fail_qgroup;
2913                 }
2914
2915                 if (sb->s_flags & MS_RDONLY) {
2916                         ret = btrfs_commit_super(tree_root);
2917                         if (ret)
2918                                 goto fail_qgroup;
2919                 }
2920         }
2921
2922         ret = btrfs_find_orphan_roots(tree_root);
2923         if (ret)
2924                 goto fail_qgroup;
2925
2926         if (!(sb->s_flags & MS_RDONLY)) {
2927                 ret = btrfs_cleanup_fs_roots(fs_info);
2928                 if (ret)
2929                         goto fail_qgroup;
2930
2931                 mutex_lock(&fs_info->cleaner_mutex);
2932                 ret = btrfs_recover_relocation(tree_root);
2933                 mutex_unlock(&fs_info->cleaner_mutex);
2934                 if (ret < 0) {
2935                         printk(KERN_WARNING
2936                                "BTRFS: failed to recover relocation\n");
2937                         err = -EINVAL;
2938                         goto fail_qgroup;
2939                 }
2940         }
2941
2942         location.objectid = BTRFS_FS_TREE_OBJECTID;
2943         location.type = BTRFS_ROOT_ITEM_KEY;
2944         location.offset = 0;
2945
2946         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2947         if (IS_ERR(fs_info->fs_root)) {
2948                 err = PTR_ERR(fs_info->fs_root);
2949                 goto fail_qgroup;
2950         }
2951
2952         if (sb->s_flags & MS_RDONLY)
2953                 return 0;
2954
2955         down_read(&fs_info->cleanup_work_sem);
2956         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2957             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2958                 up_read(&fs_info->cleanup_work_sem);
2959                 close_ctree(tree_root);
2960                 return ret;
2961         }
2962         up_read(&fs_info->cleanup_work_sem);
2963
2964         ret = btrfs_resume_balance_async(fs_info);
2965         if (ret) {
2966                 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2967                 close_ctree(tree_root);
2968                 return ret;
2969         }
2970
2971         ret = btrfs_resume_dev_replace_async(fs_info);
2972         if (ret) {
2973                 pr_warn("BTRFS: failed to resume dev_replace\n");
2974                 close_ctree(tree_root);
2975                 return ret;
2976         }
2977
2978         btrfs_qgroup_rescan_resume(fs_info);
2979
2980         if (create_uuid_tree) {
2981                 pr_info("BTRFS: creating UUID tree\n");
2982                 ret = btrfs_create_uuid_tree(fs_info);
2983                 if (ret) {
2984                         pr_warn("BTRFS: failed to create the UUID tree %d\n",
2985                                 ret);
2986                         close_ctree(tree_root);
2987                         return ret;
2988                 }
2989         } else if (check_uuid_tree ||
2990                    btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2991                 pr_info("BTRFS: checking UUID tree\n");
2992                 ret = btrfs_check_uuid_tree(fs_info);
2993                 if (ret) {
2994                         pr_warn("BTRFS: failed to check the UUID tree %d\n",
2995                                 ret);
2996                         close_ctree(tree_root);
2997                         return ret;
2998                 }
2999         } else {
3000                 fs_info->update_uuid_tree_gen = 1;
3001         }
3002
3003         fs_info->open = 1;
3004
3005         return 0;
3006
3007 fail_qgroup:
3008         btrfs_free_qgroup_config(fs_info);
3009 fail_trans_kthread:
3010         kthread_stop(fs_info->transaction_kthread);
3011         btrfs_cleanup_transaction(fs_info->tree_root);
3012         btrfs_free_fs_roots(fs_info);
3013 fail_cleaner:
3014         kthread_stop(fs_info->cleaner_kthread);
3015
3016         /*
3017          * make sure we're done with the btree inode before we stop our
3018          * kthreads
3019          */
3020         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3021
3022 fail_sysfs:
3023         btrfs_sysfs_remove_one(fs_info);
3024
3025 fail_block_groups:
3026         btrfs_put_block_group_cache(fs_info);
3027         btrfs_free_block_groups(fs_info);
3028
3029 fail_tree_roots:
3030         free_root_pointers(fs_info, 1);
3031         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3032
3033 fail_sb_buffer:
3034         btrfs_stop_all_workers(fs_info);
3035 fail_alloc:
3036 fail_iput:
3037         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3038
3039         iput(fs_info->btree_inode);
3040 fail_bio_counter:
3041         percpu_counter_destroy(&fs_info->bio_counter);
3042 fail_delalloc_bytes:
3043         percpu_counter_destroy(&fs_info->delalloc_bytes);
3044 fail_dirty_metadata_bytes:
3045         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3046 fail_bdi:
3047         bdi_destroy(&fs_info->bdi);
3048 fail_srcu:
3049         cleanup_srcu_struct(&fs_info->subvol_srcu);
3050 fail:
3051         btrfs_free_stripe_hash_table(fs_info);
3052         btrfs_close_devices(fs_info->fs_devices);
3053         return err;
3054
3055 recovery_tree_root:
3056         if (!btrfs_test_opt(tree_root, RECOVERY))
3057                 goto fail_tree_roots;
3058
3059         free_root_pointers(fs_info, 0);
3060
3061         /* don't use the log in recovery mode, it won't be valid */
3062         btrfs_set_super_log_root(disk_super, 0);
3063
3064         /* we can't trust the free space cache either */
3065         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3066
3067         ret = next_root_backup(fs_info, fs_info->super_copy,
3068                                &num_backups_tried, &backup_index);
3069         if (ret == -1)
3070                 goto fail_block_groups;
3071         goto retry_root_backup;
3072 }
3073
3074 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3075 {
3076         if (uptodate) {
3077                 set_buffer_uptodate(bh);
3078         } else {
3079                 struct btrfs_device *device = (struct btrfs_device *)
3080                         bh->b_private;
3081
3082                 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3083                                           "I/O error on %s\n",
3084                                           rcu_str_deref(device->name));
3085                 /* note, we dont' set_buffer_write_io_error because we have
3086                  * our own ways of dealing with the IO errors
3087                  */
3088                 clear_buffer_uptodate(bh);
3089                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3090         }
3091         unlock_buffer(bh);
3092         put_bh(bh);
3093 }
3094
3095 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3096 {
3097         struct buffer_head *bh;
3098         struct buffer_head *latest = NULL;
3099         struct btrfs_super_block *super;
3100         int i;
3101         u64 transid = 0;
3102         u64 bytenr;
3103
3104         /* we would like to check all the supers, but that would make
3105          * a btrfs mount succeed after a mkfs from a different FS.
3106          * So, we need to add a special mount option to scan for
3107          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3108          */
3109         for (i = 0; i < 1; i++) {
3110                 bytenr = btrfs_sb_offset(i);
3111                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3112                                         i_size_read(bdev->bd_inode))
3113                         break;
3114                 bh = __bread(bdev, bytenr / 4096,
3115                                         BTRFS_SUPER_INFO_SIZE);
3116                 if (!bh)
3117                         continue;
3118
3119                 super = (struct btrfs_super_block *)bh->b_data;
3120                 if (btrfs_super_bytenr(super) != bytenr ||
3121                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3122                         brelse(bh);
3123                         continue;
3124                 }
3125
3126                 if (!latest || btrfs_super_generation(super) > transid) {
3127                         brelse(latest);
3128                         latest = bh;
3129                         transid = btrfs_super_generation(super);
3130                 } else {
3131                         brelse(bh);
3132                 }
3133         }
3134         return latest;
3135 }
3136
3137 /*
3138  * this should be called twice, once with wait == 0 and
3139  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3140  * we write are pinned.
3141  *
3142  * They are released when wait == 1 is done.
3143  * max_mirrors must be the same for both runs, and it indicates how
3144  * many supers on this one device should be written.
3145  *
3146  * max_mirrors == 0 means to write them all.
3147  */
3148 static int write_dev_supers(struct btrfs_device *device,
3149                             struct btrfs_super_block *sb,
3150                             int do_barriers, int wait, int max_mirrors)
3151 {
3152         struct buffer_head *bh;
3153         int i;
3154         int ret;
3155         int errors = 0;
3156         u32 crc;
3157         u64 bytenr;
3158
3159         if (max_mirrors == 0)
3160                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3161
3162         for (i = 0; i < max_mirrors; i++) {
3163                 bytenr = btrfs_sb_offset(i);
3164                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3165                     device->commit_total_bytes)
3166                         break;
3167
3168                 if (wait) {
3169                         bh = __find_get_block(device->bdev, bytenr / 4096,
3170                                               BTRFS_SUPER_INFO_SIZE);
3171                         if (!bh) {
3172                                 errors++;
3173                                 continue;
3174                         }
3175                         wait_on_buffer(bh);
3176                         if (!buffer_uptodate(bh))
3177                                 errors++;
3178
3179                         /* drop our reference */
3180                         brelse(bh);
3181
3182                         /* drop the reference from the wait == 0 run */
3183                         brelse(bh);
3184                         continue;
3185                 } else {
3186                         btrfs_set_super_bytenr(sb, bytenr);
3187
3188                         crc = ~(u32)0;
3189                         crc = btrfs_csum_data((char *)sb +
3190                                               BTRFS_CSUM_SIZE, crc,
3191                                               BTRFS_SUPER_INFO_SIZE -
3192                                               BTRFS_CSUM_SIZE);
3193                         btrfs_csum_final(crc, sb->csum);
3194
3195                         /*
3196                          * one reference for us, and we leave it for the
3197                          * caller
3198                          */
3199                         bh = __getblk(device->bdev, bytenr / 4096,
3200                                       BTRFS_SUPER_INFO_SIZE);
3201                         if (!bh) {
3202                                 printk(KERN_ERR "BTRFS: couldn't get super "
3203                                        "buffer head for bytenr %Lu\n", bytenr);
3204                                 errors++;
3205                                 continue;
3206                         }
3207
3208                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3209
3210                         /* one reference for submit_bh */
3211                         get_bh(bh);
3212
3213                         set_buffer_uptodate(bh);
3214                         lock_buffer(bh);
3215                         bh->b_end_io = btrfs_end_buffer_write_sync;
3216                         bh->b_private = device;
3217                 }
3218
3219                 /*
3220                  * we fua the first super.  The others we allow
3221                  * to go down lazy.
3222                  */
3223                 if (i == 0)
3224                         ret = btrfsic_submit_bh(WRITE_FUA, bh);
3225                 else
3226                         ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3227                 if (ret)
3228                         errors++;
3229         }
3230         return errors < i ? 0 : -1;
3231 }
3232
3233 /*
3234  * endio for the write_dev_flush, this will wake anyone waiting
3235  * for the barrier when it is done
3236  */
3237 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3238 {
3239         if (err) {
3240                 if (err == -EOPNOTSUPP)
3241                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3242                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3243         }
3244         if (bio->bi_private)
3245                 complete(bio->bi_private);
3246         bio_put(bio);
3247 }
3248
3249 /*
3250  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3251  * sent down.  With wait == 1, it waits for the previous flush.
3252  *
3253  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3254  * capable
3255  */
3256 static int write_dev_flush(struct btrfs_device *device, int wait)
3257 {
3258         struct bio *bio;
3259         int ret = 0;
3260
3261         if (device->nobarriers)
3262                 return 0;
3263
3264         if (wait) {
3265                 bio = device->flush_bio;
3266                 if (!bio)
3267                         return 0;
3268
3269                 wait_for_completion(&device->flush_wait);
3270
3271                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3272                         printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3273                                       rcu_str_deref(device->name));
3274                         device->nobarriers = 1;
3275                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3276                         ret = -EIO;
3277                         btrfs_dev_stat_inc_and_print(device,
3278                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3279                 }
3280
3281                 /* drop the reference from the wait == 0 run */
3282                 bio_put(bio);
3283                 device->flush_bio = NULL;
3284
3285                 return ret;
3286         }
3287
3288         /*
3289          * one reference for us, and we leave it for the
3290          * caller
3291          */
3292         device->flush_bio = NULL;
3293         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3294         if (!bio)
3295                 return -ENOMEM;
3296
3297         bio->bi_end_io = btrfs_end_empty_barrier;
3298         bio->bi_bdev = device->bdev;
3299         init_completion(&device->flush_wait);
3300         bio->bi_private = &device->flush_wait;
3301         device->flush_bio = bio;
3302
3303         bio_get(bio);
3304         btrfsic_submit_bio(WRITE_FLUSH, bio);
3305
3306         return 0;
3307 }
3308
3309 /*
3310  * send an empty flush down to each device in parallel,
3311  * then wait for them
3312  */
3313 static int barrier_all_devices(struct btrfs_fs_info *info)
3314 {
3315         struct list_head *head;
3316         struct btrfs_device *dev;
3317         int errors_send = 0;
3318         int errors_wait = 0;
3319         int ret;
3320
3321         /* send down all the barriers */
3322         head = &info->fs_devices->devices;
3323         list_for_each_entry_rcu(dev, head, dev_list) {
3324                 if (dev->missing)
3325                         continue;
3326                 if (!dev->bdev) {
3327                         errors_send++;
3328                         continue;
3329                 }
3330                 if (!dev->in_fs_metadata || !dev->writeable)
3331                         continue;
3332
3333                 ret = write_dev_flush(dev, 0);
3334                 if (ret)
3335                         errors_send++;
3336         }
3337
3338         /* wait for all the barriers */
3339         list_for_each_entry_rcu(dev, head, dev_list) {
3340                 if (dev->missing)
3341                         continue;
3342                 if (!dev->bdev) {
3343                         errors_wait++;
3344                         continue;
3345                 }
3346                 if (!dev->in_fs_metadata || !dev->writeable)
3347                         continue;
3348
3349                 ret = write_dev_flush(dev, 1);
3350                 if (ret)
3351                         errors_wait++;
3352         }
3353         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3354             errors_wait > info->num_tolerated_disk_barrier_failures)
3355                 return -EIO;
3356         return 0;
3357 }
3358
3359 int btrfs_calc_num_tolerated_disk_barrier_failures(
3360         struct btrfs_fs_info *fs_info)
3361 {
3362         struct btrfs_ioctl_space_info space;
3363         struct btrfs_space_info *sinfo;
3364         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3365                        BTRFS_BLOCK_GROUP_SYSTEM,
3366                        BTRFS_BLOCK_GROUP_METADATA,
3367                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3368         int num_types = 4;
3369         int i;
3370         int c;
3371         int num_tolerated_disk_barrier_failures =
3372                 (int)fs_info->fs_devices->num_devices;
3373
3374         for (i = 0; i < num_types; i++) {
3375                 struct btrfs_space_info *tmp;
3376
3377                 sinfo = NULL;
3378                 rcu_read_lock();
3379                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3380                         if (tmp->flags == types[i]) {
3381                                 sinfo = tmp;
3382                                 break;
3383                         }
3384                 }
3385                 rcu_read_unlock();
3386
3387                 if (!sinfo)
3388                         continue;
3389
3390                 down_read(&sinfo->groups_sem);
3391                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3392                         if (!list_empty(&sinfo->block_groups[c])) {
3393                                 u64 flags;
3394
3395                                 btrfs_get_block_group_info(
3396                                         &sinfo->block_groups[c], &space);
3397                                 if (space.total_bytes == 0 ||
3398                                     space.used_bytes == 0)
3399                                         continue;
3400                                 flags = space.flags;
3401                                 /*
3402                                  * return
3403                                  * 0: if dup, single or RAID0 is configured for
3404                                  *    any of metadata, system or data, else
3405                                  * 1: if RAID5 is configured, or if RAID1 or
3406                                  *    RAID10 is configured and only two mirrors
3407                                  *    are used, else
3408                                  * 2: if RAID6 is configured, else
3409                                  * num_mirrors - 1: if RAID1 or RAID10 is
3410                                  *                  configured and more than
3411                                  *                  2 mirrors are used.
3412                                  */
3413                                 if (num_tolerated_disk_barrier_failures > 0 &&
3414                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3415                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3416                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3417                                       == 0)))
3418                                         num_tolerated_disk_barrier_failures = 0;
3419                                 else if (num_tolerated_disk_barrier_failures > 1) {
3420                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3421                                             BTRFS_BLOCK_GROUP_RAID5 |
3422                                             BTRFS_BLOCK_GROUP_RAID10)) {
3423                                                 num_tolerated_disk_barrier_failures = 1;
3424                                         } else if (flags &
3425                                                    BTRFS_BLOCK_GROUP_RAID6) {
3426                                                 num_tolerated_disk_barrier_failures = 2;
3427                                         }
3428                                 }
3429                         }
3430                 }
3431                 up_read(&sinfo->groups_sem);
3432         }
3433
3434         return num_tolerated_disk_barrier_failures;
3435 }
3436
3437 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3438 {
3439         struct list_head *head;
3440         struct btrfs_device *dev;
3441         struct btrfs_super_block *sb;
3442         struct btrfs_dev_item *dev_item;
3443         int ret;
3444         int do_barriers;
3445         int max_errors;
3446         int total_errors = 0;
3447         u64 flags;
3448
3449         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3450         backup_super_roots(root->fs_info);
3451
3452         sb = root->fs_info->super_for_commit;
3453         dev_item = &sb->dev_item;
3454
3455         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3456         head = &root->fs_info->fs_devices->devices;
3457         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3458
3459         if (do_barriers) {
3460                 ret = barrier_all_devices(root->fs_info);
3461                 if (ret) {
3462                         mutex_unlock(
3463                                 &root->fs_info->fs_devices->device_list_mutex);
3464                         btrfs_error(root->fs_info, ret,
3465                                     "errors while submitting device barriers.");
3466                         return ret;
3467                 }
3468         }
3469
3470         list_for_each_entry_rcu(dev, head, dev_list) {
3471                 if (!dev->bdev) {
3472                         total_errors++;
3473                         continue;
3474                 }
3475                 if (!dev->in_fs_metadata || !dev->writeable)
3476                         continue;
3477
3478                 btrfs_set_stack_device_generation(dev_item, 0);
3479                 btrfs_set_stack_device_type(dev_item, dev->type);
3480                 btrfs_set_stack_device_id(dev_item, dev->devid);
3481                 btrfs_set_stack_device_total_bytes(dev_item,
3482                                                    dev->commit_total_bytes);
3483                 btrfs_set_stack_device_bytes_used(dev_item,
3484                                                   dev->commit_bytes_used);
3485                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3486                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3487                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3488                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3489                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3490
3491                 flags = btrfs_super_flags(sb);
3492                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3493
3494                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3495                 if (ret)
3496                         total_errors++;
3497         }
3498         if (total_errors > max_errors) {
3499                 btrfs_err(root->fs_info, "%d errors while writing supers",
3500                        total_errors);
3501                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3502
3503                 /* FUA is masked off if unsupported and can't be the reason */
3504                 btrfs_error(root->fs_info, -EIO,
3505                             "%d errors while writing supers", total_errors);
3506                 return -EIO;
3507         }
3508
3509         total_errors = 0;
3510         list_for_each_entry_rcu(dev, head, dev_list) {
3511                 if (!dev->bdev)
3512                         continue;
3513                 if (!dev->in_fs_metadata || !dev->writeable)
3514                         continue;
3515
3516                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3517                 if (ret)
3518                         total_errors++;
3519         }
3520         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3521         if (total_errors > max_errors) {
3522                 btrfs_error(root->fs_info, -EIO,
3523                             "%d errors while writing supers", total_errors);
3524                 return -EIO;
3525         }
3526         return 0;
3527 }
3528
3529 int write_ctree_super(struct btrfs_trans_handle *trans,
3530                       struct btrfs_root *root, int max_mirrors)
3531 {
3532         return write_all_supers(root, max_mirrors);
3533 }
3534
3535 /* Drop a fs root from the radix tree and free it. */
3536 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3537                                   struct btrfs_root *root)
3538 {
3539         spin_lock(&fs_info->fs_roots_radix_lock);
3540         radix_tree_delete(&fs_info->fs_roots_radix,
3541                           (unsigned long)root->root_key.objectid);
3542         spin_unlock(&fs_info->fs_roots_radix_lock);
3543
3544         if (btrfs_root_refs(&root->root_item) == 0)
3545                 synchronize_srcu(&fs_info->subvol_srcu);
3546
3547         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3548                 btrfs_free_log(NULL, root);
3549
3550         if (root->free_ino_pinned)
3551                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3552         if (root->free_ino_ctl)
3553                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3554         free_fs_root(root);
3555 }
3556
3557 static void free_fs_root(struct btrfs_root *root)
3558 {
3559         iput(root->ino_cache_inode);
3560         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3561         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3562         root->orphan_block_rsv = NULL;
3563         if (root->anon_dev)
3564                 free_anon_bdev(root->anon_dev);
3565         if (root->subv_writers)
3566                 btrfs_free_subvolume_writers(root->subv_writers);
3567         free_extent_buffer(root->node);
3568         free_extent_buffer(root->commit_root);
3569         kfree(root->free_ino_ctl);
3570         kfree(root->free_ino_pinned);
3571         kfree(root->name);
3572         btrfs_put_fs_root(root);
3573 }
3574
3575 void btrfs_free_fs_root(struct btrfs_root *root)
3576 {
3577         free_fs_root(root);
3578 }
3579
3580 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3581 {
3582         u64 root_objectid = 0;
3583         struct btrfs_root *gang[8];
3584         int i = 0;
3585         int err = 0;
3586         unsigned int ret = 0;
3587         int index;
3588
3589         while (1) {
3590                 index = srcu_read_lock(&fs_info->subvol_srcu);
3591                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3592                                              (void **)gang, root_objectid,
3593                                              ARRAY_SIZE(gang));
3594                 if (!ret) {
3595                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3596                         break;
3597                 }
3598                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3599
3600                 for (i = 0; i < ret; i++) {
3601                         /* Avoid to grab roots in dead_roots */
3602                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3603                                 gang[i] = NULL;
3604                                 continue;
3605                         }
3606                         /* grab all the search result for later use */
3607                         gang[i] = btrfs_grab_fs_root(gang[i]);
3608                 }
3609                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3610
3611                 for (i = 0; i < ret; i++) {
3612                         if (!gang[i])
3613                                 continue;
3614                         root_objectid = gang[i]->root_key.objectid;
3615                         err = btrfs_orphan_cleanup(gang[i]);
3616                         if (err)
3617                                 break;
3618                         btrfs_put_fs_root(gang[i]);
3619                 }
3620                 root_objectid++;
3621         }
3622
3623         /* release the uncleaned roots due to error */
3624         for (; i < ret; i++) {
3625                 if (gang[i])
3626                         btrfs_put_fs_root(gang[i]);
3627         }
3628         return err;
3629 }
3630
3631 int btrfs_commit_super(struct btrfs_root *root)
3632 {
3633         struct btrfs_trans_handle *trans;
3634
3635         mutex_lock(&root->fs_info->cleaner_mutex);
3636         btrfs_run_delayed_iputs(root);
3637         mutex_unlock(&root->fs_info->cleaner_mutex);
3638         wake_up_process(root->fs_info->cleaner_kthread);
3639
3640         /* wait until ongoing cleanup work done */
3641         down_write(&root->fs_info->cleanup_work_sem);
3642         up_write(&root->fs_info->cleanup_work_sem);
3643
3644         trans = btrfs_join_transaction(root);
3645         if (IS_ERR(trans))
3646                 return PTR_ERR(trans);
3647         return btrfs_commit_transaction(trans, root);
3648 }
3649
3650 void close_ctree(struct btrfs_root *root)
3651 {
3652         struct btrfs_fs_info *fs_info = root->fs_info;
3653         int ret;
3654
3655         fs_info->closing = 1;
3656         smp_mb();
3657
3658         /* wait for the uuid_scan task to finish */
3659         down(&fs_info->uuid_tree_rescan_sem);
3660         /* avoid complains from lockdep et al., set sem back to initial state */
3661         up(&fs_info->uuid_tree_rescan_sem);
3662
3663         /* pause restriper - we want to resume on mount */
3664         btrfs_pause_balance(fs_info);
3665
3666         btrfs_dev_replace_suspend_for_unmount(fs_info);
3667
3668         btrfs_scrub_cancel(fs_info);
3669
3670         /* wait for any defraggers to finish */
3671         wait_event(fs_info->transaction_wait,
3672                    (atomic_read(&fs_info->defrag_running) == 0));
3673
3674         /* clear out the rbtree of defraggable inodes */
3675         btrfs_cleanup_defrag_inodes(fs_info);
3676
3677         cancel_work_sync(&fs_info->async_reclaim_work);
3678
3679         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3680                 ret = btrfs_commit_super(root);
3681                 if (ret)
3682                         btrfs_err(fs_info, "commit super ret %d", ret);
3683         }
3684
3685         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3686                 btrfs_error_commit_super(root);
3687
3688         kthread_stop(fs_info->transaction_kthread);
3689         kthread_stop(fs_info->cleaner_kthread);
3690
3691         fs_info->closing = 2;
3692         smp_mb();
3693
3694         btrfs_free_qgroup_config(fs_info);
3695
3696         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3697                 btrfs_info(fs_info, "at unmount delalloc count %lld",
3698                        percpu_counter_sum(&fs_info->delalloc_bytes));
3699         }
3700
3701         btrfs_sysfs_remove_one(fs_info);
3702
3703         btrfs_free_fs_roots(fs_info);
3704
3705         btrfs_put_block_group_cache(fs_info);
3706
3707         btrfs_free_block_groups(fs_info);
3708
3709         /*
3710          * we must make sure there is not any read request to
3711          * submit after we stopping all workers.
3712          */
3713         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3714         btrfs_stop_all_workers(fs_info);
3715
3716         fs_info->open = 0;
3717         free_root_pointers(fs_info, 1);
3718
3719         iput(fs_info->btree_inode);
3720
3721 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3722         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3723                 btrfsic_unmount(root, fs_info->fs_devices);
3724 #endif
3725
3726         btrfs_close_devices(fs_info->fs_devices);
3727         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3728
3729         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3730         percpu_counter_destroy(&fs_info->delalloc_bytes);
3731         percpu_counter_destroy(&fs_info->bio_counter);
3732         bdi_destroy(&fs_info->bdi);
3733         cleanup_srcu_struct(&fs_info->subvol_srcu);
3734
3735         btrfs_free_stripe_hash_table(fs_info);
3736
3737         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3738         root->orphan_block_rsv = NULL;
3739
3740         lock_chunks(root);
3741         while (!list_empty(&fs_info->pinned_chunks)) {
3742                 struct extent_map *em;
3743
3744                 em = list_first_entry(&fs_info->pinned_chunks,
3745                                       struct extent_map, list);
3746                 list_del_init(&em->list);
3747                 free_extent_map(em);
3748         }
3749         unlock_chunks(root);
3750 }
3751
3752 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3753                           int atomic)
3754 {
3755         int ret;
3756         struct inode *btree_inode = buf->pages[0]->mapping->host;
3757
3758         ret = extent_buffer_uptodate(buf);
3759         if (!ret)
3760                 return ret;
3761
3762         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3763                                     parent_transid, atomic);
3764         if (ret == -EAGAIN)
3765                 return ret;
3766         return !ret;
3767 }
3768
3769 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3770 {
3771         return set_extent_buffer_uptodate(buf);
3772 }
3773
3774 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3775 {
3776         struct btrfs_root *root;
3777         u64 transid = btrfs_header_generation(buf);
3778         int was_dirty;
3779
3780 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3781         /*
3782          * This is a fast path so only do this check if we have sanity tests
3783          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3784          * outside of the sanity tests.
3785          */
3786         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3787                 return;
3788 #endif
3789         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3790         btrfs_assert_tree_locked(buf);
3791         if (transid != root->fs_info->generation)
3792                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3793                        "found %llu running %llu\n",
3794                         buf->start, transid, root->fs_info->generation);
3795         was_dirty = set_extent_buffer_dirty(buf);
3796         if (!was_dirty)
3797                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3798                                      buf->len,
3799                                      root->fs_info->dirty_metadata_batch);
3800 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3801         if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3802                 btrfs_print_leaf(root, buf);
3803                 ASSERT(0);
3804         }
3805 #endif
3806 }
3807
3808 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3809                                         int flush_delayed)
3810 {
3811         /*
3812          * looks as though older kernels can get into trouble with
3813          * this code, they end up stuck in balance_dirty_pages forever
3814          */
3815         int ret;
3816
3817         if (current->flags & PF_MEMALLOC)
3818                 return;
3819
3820         if (flush_delayed)
3821                 btrfs_balance_delayed_items(root);
3822
3823         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3824                                      BTRFS_DIRTY_METADATA_THRESH);
3825         if (ret > 0) {
3826                 balance_dirty_pages_ratelimited(
3827                                    root->fs_info->btree_inode->i_mapping);
3828         }
3829         return;
3830 }
3831
3832 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3833 {
3834         __btrfs_btree_balance_dirty(root, 1);
3835 }
3836
3837 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3838 {
3839         __btrfs_btree_balance_dirty(root, 0);
3840 }
3841
3842 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3843 {
3844         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3845         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3846 }
3847
3848 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3849                               int read_only)
3850 {
3851         struct btrfs_super_block *sb = fs_info->super_copy;
3852         int ret = 0;
3853
3854         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3855                 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
3856                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3857                 ret = -EINVAL;
3858         }
3859         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3860                 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
3861                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
3862                 ret = -EINVAL;
3863         }
3864         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3865                 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
3866                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
3867                 ret = -EINVAL;
3868         }
3869
3870         /*
3871          * The common minimum, we don't know if we can trust the nodesize/sectorsize
3872          * items yet, they'll be verified later. Issue just a warning.
3873          */
3874         if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
3875                 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
3876                                 btrfs_super_root(sb));
3877         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
3878                 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
3879                                 btrfs_super_chunk_root(sb));
3880         if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
3881                 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
3882                                 btrfs_super_log_root(sb));
3883
3884         /*
3885          * Check the lower bound, the alignment and other constraints are
3886          * checked later.
3887          */
3888         if (btrfs_super_nodesize(sb) < 4096) {
3889                 printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
3890                                 btrfs_super_nodesize(sb));
3891                 ret = -EINVAL;
3892         }
3893         if (btrfs_super_sectorsize(sb) < 4096) {
3894                 printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
3895                                 btrfs_super_sectorsize(sb));
3896                 ret = -EINVAL;
3897         }
3898
3899         if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
3900                 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
3901                                 fs_info->fsid, sb->dev_item.fsid);
3902                 ret = -EINVAL;
3903         }
3904
3905         /*
3906          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
3907          * done later
3908          */
3909         if (btrfs_super_num_devices(sb) > (1UL << 31))
3910                 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
3911                                 btrfs_super_num_devices(sb));
3912         if (btrfs_super_num_devices(sb) == 0) {
3913                 printk(KERN_ERR "BTRFS: number of devices is 0\n");
3914                 ret = -EINVAL;
3915         }
3916
3917         if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
3918                 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
3919                                 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
3920                 ret = -EINVAL;
3921         }
3922
3923         /*
3924          * Obvious sys_chunk_array corruptions, it must hold at least one key
3925          * and one chunk
3926          */
3927         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
3928                 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
3929                                 btrfs_super_sys_array_size(sb),
3930                                 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
3931                 ret = -EINVAL;
3932         }
3933         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
3934                         + sizeof(struct btrfs_chunk)) {
3935                 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
3936                                 btrfs_super_sys_array_size(sb),
3937                                 sizeof(struct btrfs_disk_key)
3938                                 + sizeof(struct btrfs_chunk));
3939                 ret = -EINVAL;
3940         }
3941
3942         /*
3943          * The generation is a global counter, we'll trust it more than the others
3944          * but it's still possible that it's the one that's wrong.
3945          */
3946         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
3947                 printk(KERN_WARNING
3948                         "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
3949                         btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
3950         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
3951             && btrfs_super_cache_generation(sb) != (u64)-1)
3952                 printk(KERN_WARNING
3953                         "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
3954                         btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
3955
3956         return ret;
3957 }
3958
3959 static void btrfs_error_commit_super(struct btrfs_root *root)
3960 {
3961         mutex_lock(&root->fs_info->cleaner_mutex);
3962         btrfs_run_delayed_iputs(root);
3963         mutex_unlock(&root->fs_info->cleaner_mutex);
3964
3965         down_write(&root->fs_info->cleanup_work_sem);
3966         up_write(&root->fs_info->cleanup_work_sem);
3967
3968         /* cleanup FS via transaction */
3969         btrfs_cleanup_transaction(root);
3970 }
3971
3972 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3973 {
3974         struct btrfs_ordered_extent *ordered;
3975
3976         spin_lock(&root->ordered_extent_lock);
3977         /*
3978          * This will just short circuit the ordered completion stuff which will
3979          * make sure the ordered extent gets properly cleaned up.
3980          */
3981         list_for_each_entry(ordered, &root->ordered_extents,
3982                             root_extent_list)
3983                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3984         spin_unlock(&root->ordered_extent_lock);
3985 }
3986
3987 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3988 {
3989         struct btrfs_root *root;
3990         struct list_head splice;
3991
3992         INIT_LIST_HEAD(&splice);
3993
3994         spin_lock(&fs_info->ordered_root_lock);
3995         list_splice_init(&fs_info->ordered_roots, &splice);
3996         while (!list_empty(&splice)) {
3997                 root = list_first_entry(&splice, struct btrfs_root,
3998                                         ordered_root);
3999                 list_move_tail(&root->ordered_root,
4000                                &fs_info->ordered_roots);
4001
4002                 spin_unlock(&fs_info->ordered_root_lock);
4003                 btrfs_destroy_ordered_extents(root);
4004
4005                 cond_resched();
4006                 spin_lock(&fs_info->ordered_root_lock);
4007         }
4008         spin_unlock(&fs_info->ordered_root_lock);
4009 }
4010
4011 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4012                                       struct btrfs_root *root)
4013 {
4014         struct rb_node *node;
4015         struct btrfs_delayed_ref_root *delayed_refs;
4016         struct btrfs_delayed_ref_node *ref;
4017         int ret = 0;
4018
4019         delayed_refs = &trans->delayed_refs;
4020
4021         spin_lock(&delayed_refs->lock);
4022         if (atomic_read(&delayed_refs->num_entries) == 0) {
4023                 spin_unlock(&delayed_refs->lock);
4024                 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4025                 return ret;
4026         }
4027
4028         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4029                 struct btrfs_delayed_ref_head *head;
4030                 bool pin_bytes = false;
4031
4032                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4033                                 href_node);
4034                 if (!mutex_trylock(&head->mutex)) {
4035                         atomic_inc(&head->node.refs);
4036                         spin_unlock(&delayed_refs->lock);
4037
4038                         mutex_lock(&head->mutex);
4039                         mutex_unlock(&head->mutex);
4040                         btrfs_put_delayed_ref(&head->node);
4041                         spin_lock(&delayed_refs->lock);
4042                         continue;
4043                 }
4044                 spin_lock(&head->lock);
4045                 while ((node = rb_first(&head->ref_root)) != NULL) {
4046                         ref = rb_entry(node, struct btrfs_delayed_ref_node,
4047                                        rb_node);
4048                         ref->in_tree = 0;
4049                         rb_erase(&ref->rb_node, &head->ref_root);
4050                         atomic_dec(&delayed_refs->num_entries);
4051                         btrfs_put_delayed_ref(ref);
4052                 }
4053                 if (head->must_insert_reserved)
4054                         pin_bytes = true;
4055                 btrfs_free_delayed_extent_op(head->extent_op);
4056                 delayed_refs->num_heads--;
4057                 if (head->processing == 0)
4058                         delayed_refs->num_heads_ready--;
4059                 atomic_dec(&delayed_refs->num_entries);
4060                 head->node.in_tree = 0;
4061                 rb_erase(&head->href_node, &delayed_refs->href_root);
4062                 spin_unlock(&head->lock);
4063                 spin_unlock(&delayed_refs->lock);
4064                 mutex_unlock(&head->mutex);
4065
4066                 if (pin_bytes)
4067                         btrfs_pin_extent(root, head->node.bytenr,
4068                                          head->node.num_bytes, 1);
4069                 btrfs_put_delayed_ref(&head->node);
4070                 cond_resched();
4071                 spin_lock(&delayed_refs->lock);
4072         }
4073
4074         spin_unlock(&delayed_refs->lock);
4075
4076         return ret;
4077 }
4078
4079 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4080 {
4081         struct btrfs_inode *btrfs_inode;
4082         struct list_head splice;
4083
4084         INIT_LIST_HEAD(&splice);
4085
4086         spin_lock(&root->delalloc_lock);
4087         list_splice_init(&root->delalloc_inodes, &splice);
4088
4089         while (!list_empty(&splice)) {
4090                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4091                                                delalloc_inodes);
4092
4093                 list_del_init(&btrfs_inode->delalloc_inodes);
4094                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4095                           &btrfs_inode->runtime_flags);
4096                 spin_unlock(&root->delalloc_lock);
4097
4098                 btrfs_invalidate_inodes(btrfs_inode->root);
4099
4100                 spin_lock(&root->delalloc_lock);
4101         }
4102
4103         spin_unlock(&root->delalloc_lock);
4104 }
4105
4106 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4107 {
4108         struct btrfs_root *root;
4109         struct list_head splice;
4110
4111         INIT_LIST_HEAD(&splice);
4112
4113         spin_lock(&fs_info->delalloc_root_lock);
4114         list_splice_init(&fs_info->delalloc_roots, &splice);
4115         while (!list_empty(&splice)) {
4116                 root = list_first_entry(&splice, struct btrfs_root,
4117                                          delalloc_root);
4118                 list_del_init(&root->delalloc_root);
4119                 root = btrfs_grab_fs_root(root);
4120                 BUG_ON(!root);
4121                 spin_unlock(&fs_info->delalloc_root_lock);
4122
4123                 btrfs_destroy_delalloc_inodes(root);
4124                 btrfs_put_fs_root(root);
4125
4126                 spin_lock(&fs_info->delalloc_root_lock);
4127         }
4128         spin_unlock(&fs_info->delalloc_root_lock);
4129 }
4130
4131 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4132                                         struct extent_io_tree *dirty_pages,
4133                                         int mark)
4134 {
4135         int ret;
4136         struct extent_buffer *eb;
4137         u64 start = 0;
4138         u64 end;
4139
4140         while (1) {
4141                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4142                                             mark, NULL);
4143                 if (ret)
4144                         break;
4145
4146                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4147                 while (start <= end) {
4148                         eb = btrfs_find_tree_block(root->fs_info, start);
4149                         start += root->nodesize;
4150                         if (!eb)
4151                                 continue;
4152                         wait_on_extent_buffer_writeback(eb);
4153
4154                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4155                                                &eb->bflags))
4156                                 clear_extent_buffer_dirty(eb);
4157                         free_extent_buffer_stale(eb);
4158                 }
4159         }
4160
4161         return ret;
4162 }
4163
4164 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4165                                        struct extent_io_tree *pinned_extents)
4166 {
4167         struct extent_io_tree *unpin;
4168         u64 start;
4169         u64 end;
4170         int ret;
4171         bool loop = true;
4172
4173         unpin = pinned_extents;
4174 again:
4175         while (1) {
4176                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4177                                             EXTENT_DIRTY, NULL);
4178                 if (ret)
4179                         break;
4180
4181                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4182                 btrfs_error_unpin_extent_range(root, start, end);
4183                 cond_resched();
4184         }
4185
4186         if (loop) {
4187                 if (unpin == &root->fs_info->freed_extents[0])
4188                         unpin = &root->fs_info->freed_extents[1];
4189                 else
4190                         unpin = &root->fs_info->freed_extents[0];
4191                 loop = false;
4192                 goto again;
4193         }
4194
4195         return 0;
4196 }
4197
4198 static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans,
4199                                        struct btrfs_fs_info *fs_info)
4200 {
4201         struct btrfs_ordered_extent *ordered;
4202
4203         spin_lock(&fs_info->trans_lock);
4204         while (!list_empty(&cur_trans->pending_ordered)) {
4205                 ordered = list_first_entry(&cur_trans->pending_ordered,
4206                                            struct btrfs_ordered_extent,
4207                                            trans_list);
4208                 list_del_init(&ordered->trans_list);
4209                 spin_unlock(&fs_info->trans_lock);
4210
4211                 btrfs_put_ordered_extent(ordered);
4212                 spin_lock(&fs_info->trans_lock);
4213         }
4214         spin_unlock(&fs_info->trans_lock);
4215 }
4216
4217 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4218                                    struct btrfs_root *root)
4219 {
4220         btrfs_destroy_delayed_refs(cur_trans, root);
4221
4222         cur_trans->state = TRANS_STATE_COMMIT_START;
4223         wake_up(&root->fs_info->transaction_blocked_wait);
4224
4225         cur_trans->state = TRANS_STATE_UNBLOCKED;
4226         wake_up(&root->fs_info->transaction_wait);
4227
4228         btrfs_free_pending_ordered(cur_trans, root->fs_info);
4229         btrfs_destroy_delayed_inodes(root);
4230         btrfs_assert_delayed_root_empty(root);
4231
4232         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4233                                      EXTENT_DIRTY);
4234         btrfs_destroy_pinned_extent(root,
4235                                     root->fs_info->pinned_extents);
4236
4237         cur_trans->state =TRANS_STATE_COMPLETED;
4238         wake_up(&cur_trans->commit_wait);
4239
4240         /*
4241         memset(cur_trans, 0, sizeof(*cur_trans));
4242         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4243         */
4244 }
4245
4246 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4247 {
4248         struct btrfs_transaction *t;
4249
4250         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4251
4252         spin_lock(&root->fs_info->trans_lock);
4253         while (!list_empty(&root->fs_info->trans_list)) {
4254                 t = list_first_entry(&root->fs_info->trans_list,
4255                                      struct btrfs_transaction, list);
4256                 if (t->state >= TRANS_STATE_COMMIT_START) {
4257                         atomic_inc(&t->use_count);
4258                         spin_unlock(&root->fs_info->trans_lock);
4259                         btrfs_wait_for_commit(root, t->transid);
4260                         btrfs_put_transaction(t);
4261                         spin_lock(&root->fs_info->trans_lock);
4262                         continue;
4263                 }
4264                 if (t == root->fs_info->running_transaction) {
4265                         t->state = TRANS_STATE_COMMIT_DOING;
4266                         spin_unlock(&root->fs_info->trans_lock);
4267                         /*
4268                          * We wait for 0 num_writers since we don't hold a trans
4269                          * handle open currently for this transaction.
4270                          */
4271                         wait_event(t->writer_wait,
4272                                    atomic_read(&t->num_writers) == 0);
4273                 } else {
4274                         spin_unlock(&root->fs_info->trans_lock);
4275                 }
4276                 btrfs_cleanup_one_transaction(t, root);
4277
4278                 spin_lock(&root->fs_info->trans_lock);
4279                 if (t == root->fs_info->running_transaction)
4280                         root->fs_info->running_transaction = NULL;
4281                 list_del_init(&t->list);
4282                 spin_unlock(&root->fs_info->trans_lock);
4283
4284                 btrfs_put_transaction(t);
4285                 trace_btrfs_transaction_commit(root);
4286                 spin_lock(&root->fs_info->trans_lock);
4287         }
4288         spin_unlock(&root->fs_info->trans_lock);
4289         btrfs_destroy_all_ordered_extents(root->fs_info);
4290         btrfs_destroy_delayed_inodes(root);
4291         btrfs_assert_delayed_root_empty(root);
4292         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4293         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4294         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4295
4296         return 0;
4297 }
4298
4299 static const struct extent_io_ops btree_extent_io_ops = {
4300         .readpage_end_io_hook = btree_readpage_end_io_hook,
4301         .readpage_io_failed_hook = btree_io_failed_hook,
4302         .submit_bio_hook = btree_submit_bio_hook,
4303         /* note we're sharing with inode.c for the merge bio hook */
4304         .merge_bio_hook = btrfs_merge_bio_hook,
4305 };