Btrfs: Make the resizer work based on shrinking and growing devices
[linux-2.6-block.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h> // for block_sync_page
26 #include <linux/workqueue.h>
27 #include "crc32c.h"
28 #include "ctree.h"
29 #include "disk-io.h"
30 #include "transaction.h"
31 #include "btrfs_inode.h"
32 #include "volumes.h"
33 #include "print-tree.h"
34
35 #if 0
36 static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
37 {
38         if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
39                 printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
40                        (unsigned long long)extent_buffer_blocknr(buf),
41                        (unsigned long long)btrfs_header_blocknr(buf));
42                 return 1;
43         }
44         return 0;
45 }
46 #endif
47
48 static struct extent_io_ops btree_extent_io_ops;
49 static struct workqueue_struct *end_io_workqueue;
50 static struct workqueue_struct *async_submit_workqueue;
51
52 struct end_io_wq {
53         struct bio *bio;
54         bio_end_io_t *end_io;
55         void *private;
56         struct btrfs_fs_info *info;
57         int error;
58         int metadata;
59         struct list_head list;
60 };
61
62 struct async_submit_bio {
63         struct inode *inode;
64         struct bio *bio;
65         struct list_head list;
66         extent_submit_bio_hook_t *submit_bio_hook;
67         int rw;
68         int mirror_num;
69 };
70
71 struct extent_map *btree_get_extent(struct inode *inode, struct page *page,
72                                     size_t page_offset, u64 start, u64 len,
73                                     int create)
74 {
75         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
76         struct extent_map *em;
77         int ret;
78
79         spin_lock(&em_tree->lock);
80         em = lookup_extent_mapping(em_tree, start, len);
81         spin_unlock(&em_tree->lock);
82         if (em)
83                 goto out;
84
85         em = alloc_extent_map(GFP_NOFS);
86         if (!em) {
87                 em = ERR_PTR(-ENOMEM);
88                 goto out;
89         }
90         em->start = 0;
91         em->len = (u64)-1;
92         em->block_start = 0;
93         em->bdev = inode->i_sb->s_bdev;
94
95         spin_lock(&em_tree->lock);
96         ret = add_extent_mapping(em_tree, em);
97         if (ret == -EEXIST) {
98                 u64 failed_start = em->start;
99                 u64 failed_len = em->len;
100
101                 printk("failed to insert %Lu %Lu -> %Lu into tree\n",
102                        em->start, em->len, em->block_start);
103                 free_extent_map(em);
104                 em = lookup_extent_mapping(em_tree, start, len);
105                 if (em) {
106                         printk("after failing, found %Lu %Lu %Lu\n",
107                                em->start, em->len, em->block_start);
108                         ret = 0;
109                 } else {
110                         em = lookup_extent_mapping(em_tree, failed_start,
111                                                    failed_len);
112                         if (em) {
113                                 printk("double failure lookup gives us "
114                                        "%Lu %Lu -> %Lu\n", em->start,
115                                        em->len, em->block_start);
116                                 free_extent_map(em);
117                         }
118                         ret = -EIO;
119                 }
120         } else if (ret) {
121                 free_extent_map(em);
122                 em = NULL;
123         }
124         spin_unlock(&em_tree->lock);
125
126         if (ret)
127                 em = ERR_PTR(ret);
128 out:
129         return em;
130 }
131
132 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
133 {
134         return btrfs_crc32c(seed, data, len);
135 }
136
137 void btrfs_csum_final(u32 crc, char *result)
138 {
139         *(__le32 *)result = ~cpu_to_le32(crc);
140 }
141
142 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
143                            int verify)
144 {
145         char result[BTRFS_CRC32_SIZE];
146         unsigned long len;
147         unsigned long cur_len;
148         unsigned long offset = BTRFS_CSUM_SIZE;
149         char *map_token = NULL;
150         char *kaddr;
151         unsigned long map_start;
152         unsigned long map_len;
153         int err;
154         u32 crc = ~(u32)0;
155
156         len = buf->len - offset;
157         while(len > 0) {
158                 err = map_private_extent_buffer(buf, offset, 32,
159                                         &map_token, &kaddr,
160                                         &map_start, &map_len, KM_USER0);
161                 if (err) {
162                         printk("failed to map extent buffer! %lu\n",
163                                offset);
164                         return 1;
165                 }
166                 cur_len = min(len, map_len - (offset - map_start));
167                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
168                                       crc, cur_len);
169                 len -= cur_len;
170                 offset += cur_len;
171                 unmap_extent_buffer(buf, map_token, KM_USER0);
172         }
173         btrfs_csum_final(crc, result);
174
175         if (verify) {
176                 int from_this_trans = 0;
177
178                 if (root->fs_info->running_transaction &&
179                     btrfs_header_generation(buf) ==
180                     root->fs_info->running_transaction->transid)
181                         from_this_trans = 1;
182
183                 /* FIXME, this is not good */
184                 if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) {
185                         u32 val;
186                         u32 found = 0;
187                         memcpy(&found, result, BTRFS_CRC32_SIZE);
188
189                         read_extent_buffer(buf, &val, 0, BTRFS_CRC32_SIZE);
190                         printk("btrfs: %s checksum verify failed on %llu "
191                                "wanted %X found %X from_this_trans %d "
192                                "level %d\n",
193                                root->fs_info->sb->s_id,
194                                buf->start, val, found, from_this_trans,
195                                btrfs_header_level(buf));
196                         return 1;
197                 }
198         } else {
199                 write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE);
200         }
201         return 0;
202 }
203
204 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
205                                           struct extent_buffer *eb,
206                                           u64 start)
207 {
208         struct extent_io_tree *io_tree;
209         int ret;
210         int num_copies = 0;
211         int mirror_num = 0;
212
213         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
214         while (1) {
215                 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
216                                                btree_get_extent, mirror_num);
217                 if (!ret) {
218                         if (mirror_num)
219 printk("good read %Lu mirror %d total %d\n", eb->start, mirror_num, num_copies);
220                         return ret;
221                 }
222                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
223                                               eb->start, eb->len);
224 printk("failed to read %Lu mirror %d total %d\n", eb->start, mirror_num, num_copies);
225                 if (num_copies == 1) {
226 printk("reading %Lu failed only one copy\n", eb->start);
227                         return ret;
228                 }
229                 mirror_num++;
230                 if (mirror_num > num_copies) {
231 printk("bailing at mirror %d of %d\n", mirror_num, num_copies);
232                         return ret;
233                 }
234         }
235 printk("read extent buffer page last\n");
236         return -EIO;
237 }
238
239 int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
240 {
241         struct extent_io_tree *tree;
242         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
243         u64 found_start;
244         int found_level;
245         unsigned long len;
246         struct extent_buffer *eb;
247         int ret;
248
249         tree = &BTRFS_I(page->mapping->host)->io_tree;
250
251         if (page->private == EXTENT_PAGE_PRIVATE)
252                 goto out;
253         if (!page->private)
254                 goto out;
255         len = page->private >> 2;
256         if (len == 0) {
257                 WARN_ON(1);
258         }
259         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
260         ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE);
261         BUG_ON(ret);
262         btrfs_clear_buffer_defrag(eb);
263         found_start = btrfs_header_bytenr(eb);
264         if (found_start != start) {
265                 printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
266                        start, found_start, len);
267                 WARN_ON(1);
268                 goto err;
269         }
270         if (eb->first_page != page) {
271                 printk("bad first page %lu %lu\n", eb->first_page->index,
272                        page->index);
273                 WARN_ON(1);
274                 goto err;
275         }
276         if (!PageUptodate(page)) {
277                 printk("csum not up to date page %lu\n", page->index);
278                 WARN_ON(1);
279                 goto err;
280         }
281         found_level = btrfs_header_level(eb);
282         spin_lock(&root->fs_info->hash_lock);
283         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
284         spin_unlock(&root->fs_info->hash_lock);
285         csum_tree_block(root, eb, 0);
286 err:
287         free_extent_buffer(eb);
288 out:
289         return 0;
290 }
291
292 static int btree_writepage_io_hook(struct page *page, u64 start, u64 end)
293 {
294         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
295
296         csum_dirty_buffer(root, page);
297         return 0;
298 }
299
300 int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
301                                struct extent_state *state)
302 {
303         struct extent_io_tree *tree;
304         u64 found_start;
305         int found_level;
306         unsigned long len;
307         struct extent_buffer *eb;
308         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
309         int ret = 0;
310
311         tree = &BTRFS_I(page->mapping->host)->io_tree;
312         if (page->private == EXTENT_PAGE_PRIVATE)
313                 goto out;
314         if (!page->private)
315                 goto out;
316         len = page->private >> 2;
317         if (len == 0) {
318                 WARN_ON(1);
319         }
320         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
321
322         btrfs_clear_buffer_defrag(eb);
323         found_start = btrfs_header_bytenr(eb);
324         if (found_start != start) {
325 printk("bad start on %Lu found %Lu\n", eb->start, found_start);
326                 ret = -EIO;
327                 goto err;
328         }
329         if (eb->first_page != page) {
330                 printk("bad first page %lu %lu\n", eb->first_page->index,
331                        page->index);
332                 WARN_ON(1);
333                 ret = -EIO;
334                 goto err;
335         }
336         found_level = btrfs_header_level(eb);
337
338         ret = csum_tree_block(root, eb, 1);
339         if (ret)
340                 ret = -EIO;
341
342         end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
343         end = eb->start + end - 1;
344         release_extent_buffer_tail_pages(eb);
345 err:
346         free_extent_buffer(eb);
347 out:
348         return ret;
349 }
350
351 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
352 static void end_workqueue_bio(struct bio *bio, int err)
353 #else
354 static int end_workqueue_bio(struct bio *bio,
355                                    unsigned int bytes_done, int err)
356 #endif
357 {
358         struct end_io_wq *end_io_wq = bio->bi_private;
359         struct btrfs_fs_info *fs_info;
360         unsigned long flags;
361
362 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
363         if (bio->bi_size)
364                 return 1;
365 #endif
366
367         fs_info = end_io_wq->info;
368         spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
369         end_io_wq->error = err;
370         list_add_tail(&end_io_wq->list, &fs_info->end_io_work_list);
371         spin_unlock_irqrestore(&fs_info->end_io_work_lock, flags);
372         queue_work(end_io_workqueue, &fs_info->end_io_work);
373
374 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
375         return 0;
376 #endif
377 }
378
379 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
380                         int metadata)
381 {
382         struct end_io_wq *end_io_wq;
383         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
384         if (!end_io_wq)
385                 return -ENOMEM;
386
387         end_io_wq->private = bio->bi_private;
388         end_io_wq->end_io = bio->bi_end_io;
389         end_io_wq->info = info;
390         end_io_wq->error = 0;
391         end_io_wq->bio = bio;
392         end_io_wq->metadata = metadata;
393
394         bio->bi_private = end_io_wq;
395         bio->bi_end_io = end_workqueue_bio;
396         return 0;
397 }
398
399 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
400                         int rw, struct bio *bio, int mirror_num,
401                         extent_submit_bio_hook_t *submit_bio_hook)
402 {
403         struct async_submit_bio *async;
404
405         /*
406          * inline writerback should stay inline, only hop to the async
407          * queue if we're pdflush
408          */
409         if (!current_is_pdflush())
410                 return submit_bio_hook(inode, rw, bio, mirror_num);
411
412         async = kmalloc(sizeof(*async), GFP_NOFS);
413         if (!async)
414                 return -ENOMEM;
415
416         async->inode = inode;
417         async->rw = rw;
418         async->bio = bio;
419         async->mirror_num = mirror_num;
420         async->submit_bio_hook = submit_bio_hook;
421
422         spin_lock(&fs_info->async_submit_work_lock);
423         list_add_tail(&async->list, &fs_info->async_submit_work_list);
424         spin_unlock(&fs_info->async_submit_work_lock);
425
426         queue_work(async_submit_workqueue, &fs_info->async_submit_work);
427         return 0;
428 }
429
430 static int __btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
431                                  int mirror_num)
432 {
433         struct btrfs_root *root = BTRFS_I(inode)->root;
434         u64 offset;
435         int ret;
436
437         offset = bio->bi_sector << 9;
438
439         if (rw & (1 << BIO_RW)) {
440                 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num);
441         }
442
443         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 1);
444         BUG_ON(ret);
445
446         if (offset == BTRFS_SUPER_INFO_OFFSET) {
447                 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
448                 submit_bio(rw, bio);
449                 return 0;
450         }
451         return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num);
452 }
453
454 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
455                                  int mirror_num)
456 {
457         if (!(rw & (1 << BIO_RW))) {
458                 return __btree_submit_bio_hook(inode, rw, bio, mirror_num);
459         }
460         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
461                                    inode, rw, bio, mirror_num,
462                                    __btree_submit_bio_hook);
463 }
464
465 static int btree_writepage(struct page *page, struct writeback_control *wbc)
466 {
467         struct extent_io_tree *tree;
468         tree = &BTRFS_I(page->mapping->host)->io_tree;
469         return extent_write_full_page(tree, page, btree_get_extent, wbc);
470 }
471
472 static int btree_writepages(struct address_space *mapping,
473                             struct writeback_control *wbc)
474 {
475         struct extent_io_tree *tree;
476         tree = &BTRFS_I(mapping->host)->io_tree;
477         if (wbc->sync_mode == WB_SYNC_NONE) {
478                 u64 num_dirty;
479                 u64 start = 0;
480                 unsigned long thresh = 96 * 1024 * 1024;
481
482                 if (wbc->for_kupdate)
483                         return 0;
484
485                 if (current_is_pdflush()) {
486                         thresh = 96 * 1024 * 1024;
487                 } else {
488                         thresh = 8 * 1024 * 1024;
489                 }
490                 num_dirty = count_range_bits(tree, &start, (u64)-1,
491                                              thresh, EXTENT_DIRTY);
492                 if (num_dirty < thresh) {
493                         return 0;
494                 }
495         }
496         return extent_writepages(tree, mapping, btree_get_extent, wbc);
497 }
498
499 int btree_readpage(struct file *file, struct page *page)
500 {
501         struct extent_io_tree *tree;
502         tree = &BTRFS_I(page->mapping->host)->io_tree;
503         return extent_read_full_page(tree, page, btree_get_extent);
504 }
505
506 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
507 {
508         struct extent_io_tree *tree;
509         struct extent_map_tree *map;
510         int ret;
511
512         if (page_count(page) > 3) {
513                 /* once for page->private, once for the caller, once
514                  * once for the page cache
515                  */
516                 return 0;
517         }
518         tree = &BTRFS_I(page->mapping->host)->io_tree;
519         map = &BTRFS_I(page->mapping->host)->extent_tree;
520         ret = try_release_extent_state(map, tree, page, gfp_flags);
521         if (ret == 1) {
522                 invalidate_extent_lru(tree, page_offset(page), PAGE_CACHE_SIZE);
523                 ClearPagePrivate(page);
524                 set_page_private(page, 0);
525                 page_cache_release(page);
526         }
527         return ret;
528 }
529
530 static void btree_invalidatepage(struct page *page, unsigned long offset)
531 {
532         struct extent_io_tree *tree;
533         tree = &BTRFS_I(page->mapping->host)->io_tree;
534         extent_invalidatepage(tree, page, offset);
535         btree_releasepage(page, GFP_NOFS);
536         if (PagePrivate(page)) {
537                 invalidate_extent_lru(tree, page_offset(page), PAGE_CACHE_SIZE);
538                 ClearPagePrivate(page);
539                 set_page_private(page, 0);
540                 page_cache_release(page);
541         }
542 }
543
544 #if 0
545 static int btree_writepage(struct page *page, struct writeback_control *wbc)
546 {
547         struct buffer_head *bh;
548         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
549         struct buffer_head *head;
550         if (!page_has_buffers(page)) {
551                 create_empty_buffers(page, root->fs_info->sb->s_blocksize,
552                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
553         }
554         head = page_buffers(page);
555         bh = head;
556         do {
557                 if (buffer_dirty(bh))
558                         csum_tree_block(root, bh, 0);
559                 bh = bh->b_this_page;
560         } while (bh != head);
561         return block_write_full_page(page, btree_get_block, wbc);
562 }
563 #endif
564
565 static struct address_space_operations btree_aops = {
566         .readpage       = btree_readpage,
567         .writepage      = btree_writepage,
568         .writepages     = btree_writepages,
569         .releasepage    = btree_releasepage,
570         .invalidatepage = btree_invalidatepage,
571         .sync_page      = block_sync_page,
572 };
573
574 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize)
575 {
576         struct extent_buffer *buf = NULL;
577         struct inode *btree_inode = root->fs_info->btree_inode;
578         int ret = 0;
579
580         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
581         if (!buf)
582                 return 0;
583         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
584                                  buf, 0, 0, btree_get_extent, 0);
585         free_extent_buffer(buf);
586         return ret;
587 }
588
589 static int close_all_devices(struct btrfs_fs_info *fs_info)
590 {
591         struct list_head *list;
592         struct list_head *next;
593         struct btrfs_device *device;
594
595         list = &fs_info->fs_devices->devices;
596         list_for_each(next, list) {
597                 device = list_entry(next, struct btrfs_device, dev_list);
598                 if (device->bdev && device->bdev != fs_info->sb->s_bdev)
599                         close_bdev_excl(device->bdev);
600                 device->bdev = NULL;
601         }
602         return 0;
603 }
604
605 int btrfs_verify_block_csum(struct btrfs_root *root,
606                             struct extent_buffer *buf)
607 {
608         return btrfs_buffer_uptodate(buf);
609 }
610
611 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
612                                             u64 bytenr, u32 blocksize)
613 {
614         struct inode *btree_inode = root->fs_info->btree_inode;
615         struct extent_buffer *eb;
616         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
617                                 bytenr, blocksize, GFP_NOFS);
618         return eb;
619 }
620
621 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
622                                                  u64 bytenr, u32 blocksize)
623 {
624         struct inode *btree_inode = root->fs_info->btree_inode;
625         struct extent_buffer *eb;
626
627         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
628                                  bytenr, blocksize, NULL, GFP_NOFS);
629         return eb;
630 }
631
632
633 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
634                                       u32 blocksize)
635 {
636         struct extent_buffer *buf = NULL;
637         struct inode *btree_inode = root->fs_info->btree_inode;
638         struct extent_io_tree *io_tree;
639         int ret;
640
641         io_tree = &BTRFS_I(btree_inode)->io_tree;
642
643         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
644         if (!buf)
645                 return NULL;
646
647         ret = btree_read_extent_buffer_pages(root, buf, 0);
648
649         if (ret == 0) {
650                 buf->flags |= EXTENT_UPTODATE;
651         }
652         return buf;
653
654 }
655
656 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
657                      struct extent_buffer *buf)
658 {
659         struct inode *btree_inode = root->fs_info->btree_inode;
660         if (btrfs_header_generation(buf) ==
661             root->fs_info->running_transaction->transid)
662                 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
663                                           buf);
664         return 0;
665 }
666
667 int wait_on_tree_block_writeback(struct btrfs_root *root,
668                                  struct extent_buffer *buf)
669 {
670         struct inode *btree_inode = root->fs_info->btree_inode;
671         wait_on_extent_buffer_writeback(&BTRFS_I(btree_inode)->io_tree,
672                                         buf);
673         return 0;
674 }
675
676 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
677                         u32 stripesize, struct btrfs_root *root,
678                         struct btrfs_fs_info *fs_info,
679                         u64 objectid)
680 {
681         root->node = NULL;
682         root->inode = NULL;
683         root->commit_root = NULL;
684         root->sectorsize = sectorsize;
685         root->nodesize = nodesize;
686         root->leafsize = leafsize;
687         root->stripesize = stripesize;
688         root->ref_cows = 0;
689         root->track_dirty = 0;
690
691         root->fs_info = fs_info;
692         root->objectid = objectid;
693         root->last_trans = 0;
694         root->highest_inode = 0;
695         root->last_inode_alloc = 0;
696         root->name = NULL;
697         root->in_sysfs = 0;
698
699         INIT_LIST_HEAD(&root->dirty_list);
700         memset(&root->root_key, 0, sizeof(root->root_key));
701         memset(&root->root_item, 0, sizeof(root->root_item));
702         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
703         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
704         init_completion(&root->kobj_unregister);
705         root->defrag_running = 0;
706         root->defrag_level = 0;
707         root->root_key.objectid = objectid;
708         return 0;
709 }
710
711 static int find_and_setup_root(struct btrfs_root *tree_root,
712                                struct btrfs_fs_info *fs_info,
713                                u64 objectid,
714                                struct btrfs_root *root)
715 {
716         int ret;
717         u32 blocksize;
718
719         __setup_root(tree_root->nodesize, tree_root->leafsize,
720                      tree_root->sectorsize, tree_root->stripesize,
721                      root, fs_info, objectid);
722         ret = btrfs_find_last_root(tree_root, objectid,
723                                    &root->root_item, &root->root_key);
724         BUG_ON(ret);
725
726         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
727         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
728                                      blocksize);
729         BUG_ON(!root->node);
730         return 0;
731 }
732
733 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_fs_info *fs_info,
734                                                struct btrfs_key *location)
735 {
736         struct btrfs_root *root;
737         struct btrfs_root *tree_root = fs_info->tree_root;
738         struct btrfs_path *path;
739         struct extent_buffer *l;
740         u64 highest_inode;
741         u32 blocksize;
742         int ret = 0;
743
744         root = kzalloc(sizeof(*root), GFP_NOFS);
745         if (!root)
746                 return ERR_PTR(-ENOMEM);
747         if (location->offset == (u64)-1) {
748                 ret = find_and_setup_root(tree_root, fs_info,
749                                           location->objectid, root);
750                 if (ret) {
751                         kfree(root);
752                         return ERR_PTR(ret);
753                 }
754                 goto insert;
755         }
756
757         __setup_root(tree_root->nodesize, tree_root->leafsize,
758                      tree_root->sectorsize, tree_root->stripesize,
759                      root, fs_info, location->objectid);
760
761         path = btrfs_alloc_path();
762         BUG_ON(!path);
763         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
764         if (ret != 0) {
765                 if (ret > 0)
766                         ret = -ENOENT;
767                 goto out;
768         }
769         l = path->nodes[0];
770         read_extent_buffer(l, &root->root_item,
771                btrfs_item_ptr_offset(l, path->slots[0]),
772                sizeof(root->root_item));
773         memcpy(&root->root_key, location, sizeof(*location));
774         ret = 0;
775 out:
776         btrfs_release_path(root, path);
777         btrfs_free_path(path);
778         if (ret) {
779                 kfree(root);
780                 return ERR_PTR(ret);
781         }
782         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
783         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
784                                      blocksize);
785         BUG_ON(!root->node);
786 insert:
787         root->ref_cows = 1;
788         ret = btrfs_find_highest_inode(root, &highest_inode);
789         if (ret == 0) {
790                 root->highest_inode = highest_inode;
791                 root->last_inode_alloc = highest_inode;
792         }
793         return root;
794 }
795
796 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
797                                         u64 root_objectid)
798 {
799         struct btrfs_root *root;
800
801         if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
802                 return fs_info->tree_root;
803         if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
804                 return fs_info->extent_root;
805
806         root = radix_tree_lookup(&fs_info->fs_roots_radix,
807                                  (unsigned long)root_objectid);
808         return root;
809 }
810
811 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
812                                               struct btrfs_key *location)
813 {
814         struct btrfs_root *root;
815         int ret;
816
817         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
818                 return fs_info->tree_root;
819         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
820                 return fs_info->extent_root;
821         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
822                 return fs_info->chunk_root;
823         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
824                 return fs_info->dev_root;
825
826         root = radix_tree_lookup(&fs_info->fs_roots_radix,
827                                  (unsigned long)location->objectid);
828         if (root)
829                 return root;
830
831         root = btrfs_read_fs_root_no_radix(fs_info, location);
832         if (IS_ERR(root))
833                 return root;
834         ret = radix_tree_insert(&fs_info->fs_roots_radix,
835                                 (unsigned long)root->root_key.objectid,
836                                 root);
837         if (ret) {
838                 free_extent_buffer(root->node);
839                 kfree(root);
840                 return ERR_PTR(ret);
841         }
842         ret = btrfs_find_dead_roots(fs_info->tree_root,
843                                     root->root_key.objectid, root);
844         BUG_ON(ret);
845
846         return root;
847 }
848
849 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
850                                       struct btrfs_key *location,
851                                       const char *name, int namelen)
852 {
853         struct btrfs_root *root;
854         int ret;
855
856         root = btrfs_read_fs_root_no_name(fs_info, location);
857         if (!root)
858                 return NULL;
859
860         if (root->in_sysfs)
861                 return root;
862
863         ret = btrfs_set_root_name(root, name, namelen);
864         if (ret) {
865                 free_extent_buffer(root->node);
866                 kfree(root);
867                 return ERR_PTR(ret);
868         }
869
870         ret = btrfs_sysfs_add_root(root);
871         if (ret) {
872                 free_extent_buffer(root->node);
873                 kfree(root->name);
874                 kfree(root);
875                 return ERR_PTR(ret);
876         }
877         root->in_sysfs = 1;
878         return root;
879 }
880 #if 0
881 static int add_hasher(struct btrfs_fs_info *info, char *type) {
882         struct btrfs_hasher *hasher;
883
884         hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
885         if (!hasher)
886                 return -ENOMEM;
887         hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
888         if (!hasher->hash_tfm) {
889                 kfree(hasher);
890                 return -EINVAL;
891         }
892         spin_lock(&info->hash_lock);
893         list_add(&hasher->list, &info->hashers);
894         spin_unlock(&info->hash_lock);
895         return 0;
896 }
897 #endif
898
899 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
900 {
901         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
902         int ret = 0;
903         struct list_head *cur;
904         struct btrfs_device *device;
905         struct backing_dev_info *bdi;
906
907         list_for_each(cur, &info->fs_devices->devices) {
908                 device = list_entry(cur, struct btrfs_device, dev_list);
909                 bdi = blk_get_backing_dev_info(device->bdev);
910                 if (bdi && bdi_congested(bdi, bdi_bits)) {
911                         ret = 1;
912                         break;
913                 }
914         }
915         return ret;
916 }
917
918 /*
919  * this unplugs every device on the box, and it is only used when page
920  * is null
921  */
922 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
923 {
924         struct list_head *cur;
925         struct btrfs_device *device;
926         struct btrfs_fs_info *info;
927
928         info = (struct btrfs_fs_info *)bdi->unplug_io_data;
929         list_for_each(cur, &info->fs_devices->devices) {
930                 device = list_entry(cur, struct btrfs_device, dev_list);
931                 bdi = blk_get_backing_dev_info(device->bdev);
932                 if (bdi->unplug_io_fn) {
933                         bdi->unplug_io_fn(bdi, page);
934                 }
935         }
936 }
937
938 void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
939 {
940         struct inode *inode;
941         struct extent_map_tree *em_tree;
942         struct extent_map *em;
943         struct address_space *mapping;
944         u64 offset;
945
946         /* the generic O_DIRECT read code does this */
947         if (!page) {
948                 __unplug_io_fn(bdi, page);
949                 return;
950         }
951
952         /*
953          * page->mapping may change at any time.  Get a consistent copy
954          * and use that for everything below
955          */
956         smp_mb();
957         mapping = page->mapping;
958         if (!mapping)
959                 return;
960
961         inode = mapping->host;
962         offset = page_offset(page);
963
964         em_tree = &BTRFS_I(inode)->extent_tree;
965         spin_lock(&em_tree->lock);
966         em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
967         spin_unlock(&em_tree->lock);
968         if (!em)
969                 return;
970
971         offset = offset - em->start;
972         btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
973                           em->block_start + offset, page);
974         free_extent_map(em);
975 }
976
977 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
978 {
979 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
980         bdi_init(bdi);
981 #endif
982         bdi->ra_pages   = default_backing_dev_info.ra_pages;
983         bdi->state              = 0;
984         bdi->capabilities       = default_backing_dev_info.capabilities;
985         bdi->unplug_io_fn       = btrfs_unplug_io_fn;
986         bdi->unplug_io_data     = info;
987         bdi->congested_fn       = btrfs_congested_fn;
988         bdi->congested_data     = info;
989         return 0;
990 }
991
992 static int bio_ready_for_csum(struct bio *bio)
993 {
994         u64 length = 0;
995         u64 buf_len = 0;
996         u64 start = 0;
997         struct page *page;
998         struct extent_io_tree *io_tree = NULL;
999         struct btrfs_fs_info *info = NULL;
1000         struct bio_vec *bvec;
1001         int i;
1002         int ret;
1003
1004         bio_for_each_segment(bvec, bio, i) {
1005                 page = bvec->bv_page;
1006                 if (page->private == EXTENT_PAGE_PRIVATE) {
1007                         length += bvec->bv_len;
1008                         continue;
1009                 }
1010                 if (!page->private) {
1011                         length += bvec->bv_len;
1012                         continue;
1013                 }
1014                 length = bvec->bv_len;
1015                 buf_len = page->private >> 2;
1016                 start = page_offset(page) + bvec->bv_offset;
1017                 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1018                 info = BTRFS_I(page->mapping->host)->root->fs_info;
1019         }
1020         /* are we fully contained in this bio? */
1021         if (buf_len <= length)
1022                 return 1;
1023
1024         ret = extent_range_uptodate(io_tree, start + length,
1025                                     start + buf_len - 1);
1026         if (ret == 1)
1027                 return ret;
1028         return ret;
1029 }
1030
1031 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1032 static void btrfs_end_io_csum(void *p)
1033 #else
1034 static void btrfs_end_io_csum(struct work_struct *work)
1035 #endif
1036 {
1037 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1038         struct btrfs_fs_info *fs_info = p;
1039 #else
1040         struct btrfs_fs_info *fs_info = container_of(work,
1041                                                      struct btrfs_fs_info,
1042                                                      end_io_work);
1043 #endif
1044         unsigned long flags;
1045         struct end_io_wq *end_io_wq;
1046         struct bio *bio;
1047         struct list_head *next;
1048         int error;
1049         int was_empty;
1050
1051         while(1) {
1052                 spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
1053                 if (list_empty(&fs_info->end_io_work_list)) {
1054                         spin_unlock_irqrestore(&fs_info->end_io_work_lock,
1055                                                flags);
1056                         return;
1057                 }
1058                 next = fs_info->end_io_work_list.next;
1059                 list_del(next);
1060                 spin_unlock_irqrestore(&fs_info->end_io_work_lock, flags);
1061
1062                 end_io_wq = list_entry(next, struct end_io_wq, list);
1063
1064                 bio = end_io_wq->bio;
1065                 if (end_io_wq->metadata && !bio_ready_for_csum(bio)) {
1066                         spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
1067                         was_empty = list_empty(&fs_info->end_io_work_list);
1068                         list_add_tail(&end_io_wq->list,
1069                                       &fs_info->end_io_work_list);
1070                         spin_unlock_irqrestore(&fs_info->end_io_work_lock,
1071                                                flags);
1072                         if (was_empty)
1073                                 return;
1074                         continue;
1075                 }
1076                 error = end_io_wq->error;
1077                 bio->bi_private = end_io_wq->private;
1078                 bio->bi_end_io = end_io_wq->end_io;
1079                 kfree(end_io_wq);
1080 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1081                 bio_endio(bio, bio->bi_size, error);
1082 #else
1083                 bio_endio(bio, error);
1084 #endif
1085         }
1086 }
1087
1088 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1089 static void btrfs_async_submit_work(void *p)
1090 #else
1091 static void btrfs_async_submit_work(struct work_struct *work)
1092 #endif
1093 {
1094 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1095         struct btrfs_fs_info *fs_info = p;
1096 #else
1097         struct btrfs_fs_info *fs_info = container_of(work,
1098                                                      struct btrfs_fs_info,
1099                                                      async_submit_work);
1100 #endif
1101         struct async_submit_bio *async;
1102         struct list_head *next;
1103
1104         while(1) {
1105                 spin_lock(&fs_info->async_submit_work_lock);
1106                 if (list_empty(&fs_info->async_submit_work_list)) {
1107                         spin_unlock(&fs_info->async_submit_work_lock);
1108                         return;
1109                 }
1110                 next = fs_info->async_submit_work_list.next;
1111                 list_del(next);
1112                 spin_unlock(&fs_info->async_submit_work_lock);
1113
1114                 async = list_entry(next, struct async_submit_bio, list);
1115                 async->submit_bio_hook(async->inode, async->rw, async->bio,
1116                                        async->mirror_num);
1117                 kfree(async);
1118         }
1119 }
1120
1121 struct btrfs_root *open_ctree(struct super_block *sb,
1122                               struct btrfs_fs_devices *fs_devices)
1123 {
1124         u32 sectorsize;
1125         u32 nodesize;
1126         u32 leafsize;
1127         u32 blocksize;
1128         u32 stripesize;
1129         struct btrfs_root *extent_root = kmalloc(sizeof(struct btrfs_root),
1130                                                  GFP_NOFS);
1131         struct btrfs_root *tree_root = kmalloc(sizeof(struct btrfs_root),
1132                                                GFP_NOFS);
1133         struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1134                                                 GFP_NOFS);
1135         struct btrfs_root *chunk_root = kmalloc(sizeof(struct btrfs_root),
1136                                                 GFP_NOFS);
1137         struct btrfs_root *dev_root = kmalloc(sizeof(struct btrfs_root),
1138                                               GFP_NOFS);
1139         int ret;
1140         int err = -EINVAL;
1141         struct btrfs_super_block *disk_super;
1142
1143         if (!extent_root || !tree_root || !fs_info) {
1144                 err = -ENOMEM;
1145                 goto fail;
1146         }
1147         end_io_workqueue = create_workqueue("btrfs-end-io");
1148         BUG_ON(!end_io_workqueue);
1149         async_submit_workqueue = create_workqueue("btrfs-async-submit");
1150
1151         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1152         INIT_LIST_HEAD(&fs_info->trans_list);
1153         INIT_LIST_HEAD(&fs_info->dead_roots);
1154         INIT_LIST_HEAD(&fs_info->hashers);
1155         INIT_LIST_HEAD(&fs_info->end_io_work_list);
1156         INIT_LIST_HEAD(&fs_info->async_submit_work_list);
1157         spin_lock_init(&fs_info->hash_lock);
1158         spin_lock_init(&fs_info->end_io_work_lock);
1159         spin_lock_init(&fs_info->async_submit_work_lock);
1160         spin_lock_init(&fs_info->delalloc_lock);
1161         spin_lock_init(&fs_info->new_trans_lock);
1162
1163         init_completion(&fs_info->kobj_unregister);
1164         sb_set_blocksize(sb, BTRFS_SUPER_INFO_SIZE);
1165         fs_info->tree_root = tree_root;
1166         fs_info->extent_root = extent_root;
1167         fs_info->chunk_root = chunk_root;
1168         fs_info->dev_root = dev_root;
1169         fs_info->fs_devices = fs_devices;
1170         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1171         INIT_LIST_HEAD(&fs_info->space_info);
1172         btrfs_mapping_init(&fs_info->mapping_tree);
1173         fs_info->sb = sb;
1174         fs_info->max_extent = (u64)-1;
1175         fs_info->max_inline = 8192 * 1024;
1176         setup_bdi(fs_info, &fs_info->bdi);
1177         fs_info->btree_inode = new_inode(sb);
1178         fs_info->btree_inode->i_ino = 1;
1179         fs_info->btree_inode->i_nlink = 1;
1180
1181         /*
1182          * we set the i_size on the btree inode to the max possible int.
1183          * the real end of the address space is determined by all of
1184          * the devices in the system
1185          */
1186         fs_info->btree_inode->i_size = OFFSET_MAX;
1187         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1188         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1189
1190         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1191                              fs_info->btree_inode->i_mapping,
1192                              GFP_NOFS);
1193         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1194                              GFP_NOFS);
1195
1196         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1197
1198         extent_io_tree_init(&fs_info->free_space_cache,
1199                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1200         extent_io_tree_init(&fs_info->block_group_cache,
1201                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1202         extent_io_tree_init(&fs_info->pinned_extents,
1203                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1204         extent_io_tree_init(&fs_info->pending_del,
1205                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1206         extent_io_tree_init(&fs_info->extent_ins,
1207                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1208         fs_info->do_barriers = 1;
1209
1210 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1211         INIT_WORK(&fs_info->end_io_work, btrfs_end_io_csum, fs_info);
1212         INIT_WORK(&fs_info->async_submit_work, btrfs_async_submit_work,
1213                   fs_info);
1214         INIT_WORK(&fs_info->trans_work, btrfs_transaction_cleaner, fs_info);
1215 #else
1216         INIT_WORK(&fs_info->end_io_work, btrfs_end_io_csum);
1217         INIT_WORK(&fs_info->async_submit_work, btrfs_async_submit_work);
1218         INIT_DELAYED_WORK(&fs_info->trans_work, btrfs_transaction_cleaner);
1219 #endif
1220         BTRFS_I(fs_info->btree_inode)->root = tree_root;
1221         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1222                sizeof(struct btrfs_key));
1223         insert_inode_hash(fs_info->btree_inode);
1224         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1225
1226         mutex_init(&fs_info->trans_mutex);
1227         mutex_init(&fs_info->fs_mutex);
1228
1229 #if 0
1230         ret = add_hasher(fs_info, "crc32c");
1231         if (ret) {
1232                 printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
1233                 err = -ENOMEM;
1234                 goto fail_iput;
1235         }
1236 #endif
1237         __setup_root(4096, 4096, 4096, 4096, tree_root,
1238                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
1239
1240         fs_info->sb_buffer = read_tree_block(tree_root,
1241                                              BTRFS_SUPER_INFO_OFFSET,
1242                                              4096);
1243
1244         if (!fs_info->sb_buffer)
1245                 goto fail_iput;
1246
1247         read_extent_buffer(fs_info->sb_buffer, &fs_info->super_copy, 0,
1248                            sizeof(fs_info->super_copy));
1249
1250         read_extent_buffer(fs_info->sb_buffer, fs_info->fsid,
1251                            (unsigned long)btrfs_super_fsid(fs_info->sb_buffer),
1252                            BTRFS_FSID_SIZE);
1253
1254         disk_super = &fs_info->super_copy;
1255         if (!btrfs_super_root(disk_super))
1256                 goto fail_sb_buffer;
1257
1258         if (btrfs_super_num_devices(disk_super) != fs_devices->num_devices) {
1259                 printk("Btrfs: wanted %llu devices, but found %llu\n",
1260                        (unsigned long long)btrfs_super_num_devices(disk_super),
1261                        (unsigned long long)fs_devices->num_devices);
1262                 goto fail_sb_buffer;
1263         }
1264         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1265
1266         nodesize = btrfs_super_nodesize(disk_super);
1267         leafsize = btrfs_super_leafsize(disk_super);
1268         sectorsize = btrfs_super_sectorsize(disk_super);
1269         stripesize = btrfs_super_stripesize(disk_super);
1270         tree_root->nodesize = nodesize;
1271         tree_root->leafsize = leafsize;
1272         tree_root->sectorsize = sectorsize;
1273         tree_root->stripesize = stripesize;
1274         sb_set_blocksize(sb, sectorsize);
1275
1276         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1277                     sizeof(disk_super->magic))) {
1278                 printk("btrfs: valid FS not found on %s\n", sb->s_id);
1279                 goto fail_sb_buffer;
1280         }
1281
1282         mutex_lock(&fs_info->fs_mutex);
1283
1284         ret = btrfs_read_sys_array(tree_root);
1285         if (ret) {
1286                 printk("btrfs: failed to read the system array on %s\n",
1287                        sb->s_id);
1288                 goto fail_sys_array;
1289         }
1290
1291         blocksize = btrfs_level_size(tree_root,
1292                                      btrfs_super_chunk_root_level(disk_super));
1293
1294         __setup_root(nodesize, leafsize, sectorsize, stripesize,
1295                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1296
1297         chunk_root->node = read_tree_block(chunk_root,
1298                                            btrfs_super_chunk_root(disk_super),
1299                                            blocksize);
1300         BUG_ON(!chunk_root->node);
1301
1302         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1303                  (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1304                  BTRFS_UUID_SIZE);
1305
1306         ret = btrfs_read_chunk_tree(chunk_root);
1307         BUG_ON(ret);
1308
1309         blocksize = btrfs_level_size(tree_root,
1310                                      btrfs_super_root_level(disk_super));
1311
1312
1313         tree_root->node = read_tree_block(tree_root,
1314                                           btrfs_super_root(disk_super),
1315                                           blocksize);
1316         if (!tree_root->node)
1317                 goto fail_sb_buffer;
1318
1319
1320         ret = find_and_setup_root(tree_root, fs_info,
1321                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1322         if (ret)
1323                 goto fail_tree_root;
1324         extent_root->track_dirty = 1;
1325
1326         ret = find_and_setup_root(tree_root, fs_info,
1327                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
1328         dev_root->track_dirty = 1;
1329
1330         if (ret)
1331                 goto fail_extent_root;
1332
1333         btrfs_read_block_groups(extent_root);
1334
1335         fs_info->generation = btrfs_super_generation(disk_super) + 1;
1336         fs_info->data_alloc_profile = (u64)-1;
1337         fs_info->metadata_alloc_profile = (u64)-1;
1338         fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1339
1340         mutex_unlock(&fs_info->fs_mutex);
1341         return tree_root;
1342
1343 fail_extent_root:
1344         free_extent_buffer(extent_root->node);
1345 fail_tree_root:
1346         free_extent_buffer(tree_root->node);
1347 fail_sys_array:
1348         mutex_unlock(&fs_info->fs_mutex);
1349 fail_sb_buffer:
1350         free_extent_buffer(fs_info->sb_buffer);
1351         extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
1352 fail_iput:
1353         iput(fs_info->btree_inode);
1354 fail:
1355         close_all_devices(fs_info);
1356         btrfs_mapping_tree_free(&fs_info->mapping_tree);
1357
1358         kfree(extent_root);
1359         kfree(tree_root);
1360 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
1361         bdi_destroy(&fs_info->bdi);
1362 #endif
1363         kfree(fs_info);
1364         return ERR_PTR(err);
1365 }
1366
1367 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1368 {
1369         char b[BDEVNAME_SIZE];
1370
1371         if (uptodate) {
1372                 set_buffer_uptodate(bh);
1373         } else {
1374                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1375                         printk(KERN_WARNING "lost page write due to "
1376                                         "I/O error on %s\n",
1377                                        bdevname(bh->b_bdev, b));
1378                 }
1379                 set_buffer_write_io_error(bh);
1380                 clear_buffer_uptodate(bh);
1381         }
1382         unlock_buffer(bh);
1383         put_bh(bh);
1384 }
1385
1386 int write_all_supers(struct btrfs_root *root)
1387 {
1388         struct list_head *cur;
1389         struct list_head *head = &root->fs_info->fs_devices->devices;
1390         struct btrfs_device *dev;
1391         struct extent_buffer *sb;
1392         struct btrfs_dev_item *dev_item;
1393         struct buffer_head *bh;
1394         int ret;
1395         int do_barriers;
1396
1397         do_barriers = !btrfs_test_opt(root, NOBARRIER);
1398
1399         sb = root->fs_info->sb_buffer;
1400         dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
1401                                                       dev_item);
1402         list_for_each(cur, head) {
1403                 dev = list_entry(cur, struct btrfs_device, dev_list);
1404                 btrfs_set_device_type(sb, dev_item, dev->type);
1405                 btrfs_set_device_id(sb, dev_item, dev->devid);
1406                 btrfs_set_device_total_bytes(sb, dev_item, dev->total_bytes);
1407                 btrfs_set_device_bytes_used(sb, dev_item, dev->bytes_used);
1408                 btrfs_set_device_io_align(sb, dev_item, dev->io_align);
1409                 btrfs_set_device_io_width(sb, dev_item, dev->io_width);
1410                 btrfs_set_device_sector_size(sb, dev_item, dev->sector_size);
1411                 write_extent_buffer(sb, dev->uuid,
1412                                     (unsigned long)btrfs_device_uuid(dev_item),
1413                                     BTRFS_UUID_SIZE);
1414
1415                 btrfs_set_header_flag(sb, BTRFS_HEADER_FLAG_WRITTEN);
1416                 csum_tree_block(root, sb, 0);
1417
1418                 bh = __getblk(dev->bdev, BTRFS_SUPER_INFO_OFFSET /
1419                               root->fs_info->sb->s_blocksize,
1420                               BTRFS_SUPER_INFO_SIZE);
1421
1422                 read_extent_buffer(sb, bh->b_data, 0, BTRFS_SUPER_INFO_SIZE);
1423                 dev->pending_io = bh;
1424
1425                 get_bh(bh);
1426                 set_buffer_uptodate(bh);
1427                 lock_buffer(bh);
1428                 bh->b_end_io = btrfs_end_buffer_write_sync;
1429
1430                 if (do_barriers && dev->barriers) {
1431                         ret = submit_bh(WRITE_BARRIER, bh);
1432                         if (ret == -EOPNOTSUPP) {
1433                                 printk("btrfs: disabling barriers on dev %s\n",
1434                                        dev->name);
1435                                 set_buffer_uptodate(bh);
1436                                 dev->barriers = 0;
1437                                 get_bh(bh);
1438                                 lock_buffer(bh);
1439                                 ret = submit_bh(WRITE, bh);
1440                         }
1441                 } else {
1442                         ret = submit_bh(WRITE, bh);
1443                 }
1444                 BUG_ON(ret);
1445         }
1446
1447         list_for_each(cur, head) {
1448                 dev = list_entry(cur, struct btrfs_device, dev_list);
1449                 BUG_ON(!dev->pending_io);
1450                 bh = dev->pending_io;
1451                 wait_on_buffer(bh);
1452                 if (!buffer_uptodate(dev->pending_io)) {
1453                         if (do_barriers && dev->barriers) {
1454                                 printk("btrfs: disabling barriers on dev %s\n",
1455                                        dev->name);
1456                                 set_buffer_uptodate(bh);
1457                                 get_bh(bh);
1458                                 lock_buffer(bh);
1459                                 dev->barriers = 0;
1460                                 ret = submit_bh(WRITE, bh);
1461                                 BUG_ON(ret);
1462                                 wait_on_buffer(bh);
1463                                 BUG_ON(!buffer_uptodate(bh));
1464                         } else {
1465                                 BUG();
1466                         }
1467
1468                 }
1469                 dev->pending_io = NULL;
1470                 brelse(bh);
1471         }
1472         return 0;
1473 }
1474
1475 int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
1476                       *root)
1477 {
1478         int ret;
1479
1480         ret = write_all_supers(root);
1481 #if 0
1482         if (!btrfs_test_opt(root, NOBARRIER))
1483                 blkdev_issue_flush(sb->s_bdev, NULL);
1484         set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, super);
1485         ret = sync_page_range_nolock(btree_inode, btree_inode->i_mapping,
1486                                      super->start, super->len);
1487         if (!btrfs_test_opt(root, NOBARRIER))
1488                 blkdev_issue_flush(sb->s_bdev, NULL);
1489 #endif
1490         return ret;
1491 }
1492
1493 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
1494 {
1495         radix_tree_delete(&fs_info->fs_roots_radix,
1496                           (unsigned long)root->root_key.objectid);
1497         if (root->in_sysfs)
1498                 btrfs_sysfs_del_root(root);
1499         if (root->inode)
1500                 iput(root->inode);
1501         if (root->node)
1502                 free_extent_buffer(root->node);
1503         if (root->commit_root)
1504                 free_extent_buffer(root->commit_root);
1505         if (root->name)
1506                 kfree(root->name);
1507         kfree(root);
1508         return 0;
1509 }
1510
1511 static int del_fs_roots(struct btrfs_fs_info *fs_info)
1512 {
1513         int ret;
1514         struct btrfs_root *gang[8];
1515         int i;
1516
1517         while(1) {
1518                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1519                                              (void **)gang, 0,
1520                                              ARRAY_SIZE(gang));
1521                 if (!ret)
1522                         break;
1523                 for (i = 0; i < ret; i++)
1524                         btrfs_free_fs_root(fs_info, gang[i]);
1525         }
1526         return 0;
1527 }
1528
1529 int close_ctree(struct btrfs_root *root)
1530 {
1531         int ret;
1532         struct btrfs_trans_handle *trans;
1533         struct btrfs_fs_info *fs_info = root->fs_info;
1534
1535         fs_info->closing = 1;
1536         btrfs_transaction_flush_work(root);
1537         mutex_lock(&fs_info->fs_mutex);
1538         btrfs_defrag_dirty_roots(root->fs_info);
1539         trans = btrfs_start_transaction(root, 1);
1540         ret = btrfs_commit_transaction(trans, root);
1541         /* run commit again to  drop the original snapshot */
1542         trans = btrfs_start_transaction(root, 1);
1543         btrfs_commit_transaction(trans, root);
1544         ret = btrfs_write_and_wait_transaction(NULL, root);
1545         BUG_ON(ret);
1546         write_ctree_super(NULL, root);
1547         mutex_unlock(&fs_info->fs_mutex);
1548
1549         btrfs_transaction_flush_work(root);
1550
1551         if (fs_info->delalloc_bytes) {
1552                 printk("btrfs: at unmount delalloc count %Lu\n",
1553                        fs_info->delalloc_bytes);
1554         }
1555         if (fs_info->extent_root->node)
1556                 free_extent_buffer(fs_info->extent_root->node);
1557
1558         if (fs_info->tree_root->node)
1559                 free_extent_buffer(fs_info->tree_root->node);
1560
1561         if (root->fs_info->chunk_root->node);
1562                 free_extent_buffer(root->fs_info->chunk_root->node);
1563
1564         if (root->fs_info->dev_root->node);
1565                 free_extent_buffer(root->fs_info->dev_root->node);
1566
1567         free_extent_buffer(fs_info->sb_buffer);
1568
1569         btrfs_free_block_groups(root->fs_info);
1570         del_fs_roots(fs_info);
1571
1572         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1573
1574         extent_io_tree_empty_lru(&fs_info->free_space_cache);
1575         extent_io_tree_empty_lru(&fs_info->block_group_cache);
1576         extent_io_tree_empty_lru(&fs_info->pinned_extents);
1577         extent_io_tree_empty_lru(&fs_info->pending_del);
1578         extent_io_tree_empty_lru(&fs_info->extent_ins);
1579         extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
1580
1581         flush_workqueue(end_io_workqueue);
1582         flush_workqueue(async_submit_workqueue);
1583
1584         truncate_inode_pages(fs_info->btree_inode->i_mapping, 0);
1585
1586         flush_workqueue(end_io_workqueue);
1587         destroy_workqueue(end_io_workqueue);
1588
1589         flush_workqueue(async_submit_workqueue);
1590         destroy_workqueue(async_submit_workqueue);
1591
1592         iput(fs_info->btree_inode);
1593 #if 0
1594         while(!list_empty(&fs_info->hashers)) {
1595                 struct btrfs_hasher *hasher;
1596                 hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
1597                                     hashers);
1598                 list_del(&hasher->hashers);
1599                 crypto_free_hash(&fs_info->hash_tfm);
1600                 kfree(hasher);
1601         }
1602 #endif
1603         close_all_devices(fs_info);
1604         btrfs_mapping_tree_free(&fs_info->mapping_tree);
1605
1606 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
1607         bdi_destroy(&fs_info->bdi);
1608 #endif
1609
1610         kfree(fs_info->extent_root);
1611         kfree(fs_info->tree_root);
1612         kfree(fs_info->chunk_root);
1613         kfree(fs_info->dev_root);
1614         return 0;
1615 }
1616
1617 int btrfs_buffer_uptodate(struct extent_buffer *buf)
1618 {
1619         struct inode *btree_inode = buf->first_page->mapping->host;
1620         return extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
1621 }
1622
1623 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
1624 {
1625         struct inode *btree_inode = buf->first_page->mapping->host;
1626         return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
1627                                           buf);
1628 }
1629
1630 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
1631 {
1632         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1633         u64 transid = btrfs_header_generation(buf);
1634         struct inode *btree_inode = root->fs_info->btree_inode;
1635
1636         if (transid != root->fs_info->generation) {
1637                 printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
1638                         (unsigned long long)buf->start,
1639                         transid, root->fs_info->generation);
1640                 WARN_ON(1);
1641         }
1642         set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
1643 }
1644
1645 void btrfs_throttle(struct btrfs_root *root)
1646 {
1647         struct backing_dev_info *bdi;
1648
1649         bdi = root->fs_info->sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
1650         if (root->fs_info->throttles && bdi_write_congested(bdi)) {
1651 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,18)
1652                 congestion_wait(WRITE, HZ/20);
1653 #else
1654                 blk_congestion_wait(WRITE, HZ/20);
1655 #endif
1656         }
1657 }
1658
1659 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
1660 {
1661         balance_dirty_pages_ratelimited_nr(
1662                                    root->fs_info->btree_inode->i_mapping, 1);
1663 }
1664
1665 void btrfs_set_buffer_defrag(struct extent_buffer *buf)
1666 {
1667         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1668         struct inode *btree_inode = root->fs_info->btree_inode;
1669         set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start,
1670                         buf->start + buf->len - 1, EXTENT_DEFRAG, GFP_NOFS);
1671 }
1672
1673 void btrfs_set_buffer_defrag_done(struct extent_buffer *buf)
1674 {
1675         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1676         struct inode *btree_inode = root->fs_info->btree_inode;
1677         set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start,
1678                         buf->start + buf->len - 1, EXTENT_DEFRAG_DONE,
1679                         GFP_NOFS);
1680 }
1681
1682 int btrfs_buffer_defrag(struct extent_buffer *buf)
1683 {
1684         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1685         struct inode *btree_inode = root->fs_info->btree_inode;
1686         return test_range_bit(&BTRFS_I(btree_inode)->io_tree,
1687                      buf->start, buf->start + buf->len - 1, EXTENT_DEFRAG, 0);
1688 }
1689
1690 int btrfs_buffer_defrag_done(struct extent_buffer *buf)
1691 {
1692         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1693         struct inode *btree_inode = root->fs_info->btree_inode;
1694         return test_range_bit(&BTRFS_I(btree_inode)->io_tree,
1695                      buf->start, buf->start + buf->len - 1,
1696                      EXTENT_DEFRAG_DONE, 0);
1697 }
1698
1699 int btrfs_clear_buffer_defrag_done(struct extent_buffer *buf)
1700 {
1701         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1702         struct inode *btree_inode = root->fs_info->btree_inode;
1703         return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree,
1704                      buf->start, buf->start + buf->len - 1,
1705                      EXTENT_DEFRAG_DONE, GFP_NOFS);
1706 }
1707
1708 int btrfs_clear_buffer_defrag(struct extent_buffer *buf)
1709 {
1710         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1711         struct inode *btree_inode = root->fs_info->btree_inode;
1712         return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree,
1713                      buf->start, buf->start + buf->len - 1,
1714                      EXTENT_DEFRAG, GFP_NOFS);
1715 }
1716
1717 int btrfs_read_buffer(struct extent_buffer *buf)
1718 {
1719         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1720         int ret;
1721         ret = btree_read_extent_buffer_pages(root, buf, 0);
1722         if (ret == 0) {
1723                 buf->flags |= EXTENT_UPTODATE;
1724         }
1725         return ret;
1726 }
1727
1728 static struct extent_io_ops btree_extent_io_ops = {
1729         .writepage_io_hook = btree_writepage_io_hook,
1730         .readpage_end_io_hook = btree_readpage_end_io_hook,
1731         .submit_bio_hook = btree_submit_bio_hook,
1732         /* note we're sharing with inode.c for the merge bio hook */
1733         .merge_bio_hook = btrfs_merge_bio_hook,
1734 };