Btrfs: Create a work queue for bio writes
[linux-2.6-block.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h> // for block_sync_page
26 #include <linux/workqueue.h>
27 #include "crc32c.h"
28 #include "ctree.h"
29 #include "disk-io.h"
30 #include "transaction.h"
31 #include "btrfs_inode.h"
32 #include "volumes.h"
33 #include "print-tree.h"
34
35 #if 0
36 static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
37 {
38         if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
39                 printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
40                        (unsigned long long)extent_buffer_blocknr(buf),
41                        (unsigned long long)btrfs_header_blocknr(buf));
42                 return 1;
43         }
44         return 0;
45 }
46 #endif
47
48 static struct extent_io_ops btree_extent_io_ops;
49 static struct workqueue_struct *end_io_workqueue;
50 static struct workqueue_struct *async_submit_workqueue;
51
52 struct end_io_wq {
53         struct bio *bio;
54         bio_end_io_t *end_io;
55         void *private;
56         struct btrfs_fs_info *info;
57         int error;
58         int metadata;
59         struct list_head list;
60 };
61
62 struct async_submit_bio {
63         struct inode *inode;
64         struct bio *bio;
65         struct list_head list;
66         extent_submit_bio_hook_t *submit_bio_hook;
67         int rw;
68         int mirror_num;
69 };
70
71 struct extent_map *btree_get_extent(struct inode *inode, struct page *page,
72                                     size_t page_offset, u64 start, u64 len,
73                                     int create)
74 {
75         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
76         struct extent_map *em;
77         int ret;
78
79 again:
80         spin_lock(&em_tree->lock);
81         em = lookup_extent_mapping(em_tree, start, len);
82         spin_unlock(&em_tree->lock);
83         if (em) {
84                 goto out;
85         }
86         em = alloc_extent_map(GFP_NOFS);
87         if (!em) {
88                 em = ERR_PTR(-ENOMEM);
89                 goto out;
90         }
91         em->start = 0;
92         em->len = i_size_read(inode);
93         em->block_start = 0;
94         em->bdev = inode->i_sb->s_bdev;
95
96         spin_lock(&em_tree->lock);
97         ret = add_extent_mapping(em_tree, em);
98         spin_unlock(&em_tree->lock);
99
100         if (ret == -EEXIST) {
101                 free_extent_map(em);
102                 em = NULL;
103                 goto again;
104         } else if (ret) {
105                 em = ERR_PTR(ret);
106         }
107 out:
108         return em;
109 }
110
111 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
112 {
113         return btrfs_crc32c(seed, data, len);
114 }
115
116 void btrfs_csum_final(u32 crc, char *result)
117 {
118         *(__le32 *)result = ~cpu_to_le32(crc);
119 }
120
121 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
122                            int verify)
123 {
124         char result[BTRFS_CRC32_SIZE];
125         unsigned long len;
126         unsigned long cur_len;
127         unsigned long offset = BTRFS_CSUM_SIZE;
128         char *map_token = NULL;
129         char *kaddr;
130         unsigned long map_start;
131         unsigned long map_len;
132         int err;
133         u32 crc = ~(u32)0;
134
135         len = buf->len - offset;
136         while(len > 0) {
137                 err = map_private_extent_buffer(buf, offset, 32,
138                                         &map_token, &kaddr,
139                                         &map_start, &map_len, KM_USER0);
140                 if (err) {
141                         printk("failed to map extent buffer! %lu\n",
142                                offset);
143                         return 1;
144                 }
145                 cur_len = min(len, map_len - (offset - map_start));
146                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
147                                       crc, cur_len);
148                 len -= cur_len;
149                 offset += cur_len;
150                 unmap_extent_buffer(buf, map_token, KM_USER0);
151         }
152         btrfs_csum_final(crc, result);
153
154         if (verify) {
155                 int from_this_trans = 0;
156
157                 if (root->fs_info->running_transaction &&
158                     btrfs_header_generation(buf) ==
159                     root->fs_info->running_transaction->transid)
160                         from_this_trans = 1;
161
162                 /* FIXME, this is not good */
163                 if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) {
164                         u32 val;
165                         u32 found = 0;
166                         memcpy(&found, result, BTRFS_CRC32_SIZE);
167
168                         read_extent_buffer(buf, &val, 0, BTRFS_CRC32_SIZE);
169                         printk("btrfs: %s checksum verify failed on %llu "
170                                "wanted %X found %X from_this_trans %d "
171                                "level %d\n",
172                                root->fs_info->sb->s_id,
173                                buf->start, val, found, from_this_trans,
174                                btrfs_header_level(buf));
175                         return 1;
176                 }
177         } else {
178                 write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE);
179         }
180         return 0;
181 }
182
183 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
184                                           struct extent_buffer *eb,
185                                           u64 start)
186 {
187         struct extent_io_tree *io_tree;
188         int ret;
189         int num_copies = 0;
190         int mirror_num = 0;
191
192         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
193         while (1) {
194                 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
195                                                btree_get_extent, mirror_num);
196                 if (!ret) {
197                         if (mirror_num)
198 printk("good read %Lu mirror %d total %d\n", eb->start, mirror_num, num_copies);
199                         return ret;
200                 }
201                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
202                                               eb->start, eb->len);
203 printk("failed to read %Lu mirror %d total %d\n", eb->start, mirror_num, num_copies);
204                 if (num_copies == 1) {
205 printk("reading %Lu failed only one copy\n", eb->start);
206                         return ret;
207                 }
208                 mirror_num++;
209                 if (mirror_num > num_copies) {
210 printk("bailing at mirror %d of %d\n", mirror_num, num_copies);
211                         return ret;
212                 }
213         }
214 printk("read extent buffer page last\n");
215         return -EIO;
216 }
217
218 int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
219 {
220         struct extent_io_tree *tree;
221         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
222         u64 found_start;
223         int found_level;
224         unsigned long len;
225         struct extent_buffer *eb;
226         int ret;
227
228         tree = &BTRFS_I(page->mapping->host)->io_tree;
229
230         if (page->private == EXTENT_PAGE_PRIVATE)
231                 goto out;
232         if (!page->private)
233                 goto out;
234         len = page->private >> 2;
235         if (len == 0) {
236                 WARN_ON(1);
237         }
238         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
239         ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE);
240         BUG_ON(ret);
241         btrfs_clear_buffer_defrag(eb);
242         found_start = btrfs_header_bytenr(eb);
243         if (found_start != start) {
244                 printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
245                        start, found_start, len);
246                 WARN_ON(1);
247                 goto err;
248         }
249         if (eb->first_page != page) {
250                 printk("bad first page %lu %lu\n", eb->first_page->index,
251                        page->index);
252                 WARN_ON(1);
253                 goto err;
254         }
255         if (!PageUptodate(page)) {
256                 printk("csum not up to date page %lu\n", page->index);
257                 WARN_ON(1);
258                 goto err;
259         }
260         found_level = btrfs_header_level(eb);
261         spin_lock(&root->fs_info->hash_lock);
262         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
263         spin_unlock(&root->fs_info->hash_lock);
264         csum_tree_block(root, eb, 0);
265 err:
266         free_extent_buffer(eb);
267 out:
268         return 0;
269 }
270
271 static int btree_writepage_io_hook(struct page *page, u64 start, u64 end)
272 {
273         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
274
275         csum_dirty_buffer(root, page);
276         return 0;
277 }
278
279 int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
280                                struct extent_state *state)
281 {
282         struct extent_io_tree *tree;
283         u64 found_start;
284         int found_level;
285         unsigned long len;
286         struct extent_buffer *eb;
287         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
288         int ret = 0;
289
290         tree = &BTRFS_I(page->mapping->host)->io_tree;
291         if (page->private == EXTENT_PAGE_PRIVATE)
292                 goto out;
293         if (!page->private)
294                 goto out;
295         len = page->private >> 2;
296         if (len == 0) {
297                 WARN_ON(1);
298         }
299         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
300
301         btrfs_clear_buffer_defrag(eb);
302         found_start = btrfs_header_bytenr(eb);
303         if (found_start != start) {
304 printk("bad start on %Lu found %Lu\n", eb->start, found_start);
305                 ret = -EIO;
306                 goto err;
307         }
308         if (eb->first_page != page) {
309                 printk("bad first page %lu %lu\n", eb->first_page->index,
310                        page->index);
311                 WARN_ON(1);
312                 ret = -EIO;
313                 goto err;
314         }
315         found_level = btrfs_header_level(eb);
316
317         ret = csum_tree_block(root, eb, 1);
318         if (ret)
319                 ret = -EIO;
320
321         end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
322         end = eb->start + end - 1;
323         release_extent_buffer_tail_pages(eb);
324 err:
325         free_extent_buffer(eb);
326 out:
327         return ret;
328 }
329
330 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
331 static void end_workqueue_bio(struct bio *bio, int err)
332 #else
333 static int end_workqueue_bio(struct bio *bio,
334                                    unsigned int bytes_done, int err)
335 #endif
336 {
337         struct end_io_wq *end_io_wq = bio->bi_private;
338         struct btrfs_fs_info *fs_info;
339         unsigned long flags;
340
341 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
342         if (bio->bi_size)
343                 return 1;
344 #endif
345
346         fs_info = end_io_wq->info;
347         spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
348         end_io_wq->error = err;
349         list_add_tail(&end_io_wq->list, &fs_info->end_io_work_list);
350         spin_unlock_irqrestore(&fs_info->end_io_work_lock, flags);
351         queue_work(end_io_workqueue, &fs_info->end_io_work);
352
353 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
354         return 0;
355 #endif
356 }
357
358 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
359                         int metadata)
360 {
361         struct end_io_wq *end_io_wq;
362         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
363         if (!end_io_wq)
364                 return -ENOMEM;
365
366         end_io_wq->private = bio->bi_private;
367         end_io_wq->end_io = bio->bi_end_io;
368         end_io_wq->info = info;
369         end_io_wq->error = 0;
370         end_io_wq->bio = bio;
371         end_io_wq->metadata = metadata;
372
373         bio->bi_private = end_io_wq;
374         bio->bi_end_io = end_workqueue_bio;
375         return 0;
376 }
377
378 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
379                         int rw, struct bio *bio, int mirror_num,
380                         extent_submit_bio_hook_t *submit_bio_hook)
381 {
382         struct async_submit_bio *async;
383
384         async = kmalloc(sizeof(*async), GFP_NOFS);
385         if (!async)
386                 return -ENOMEM;
387
388         async->inode = inode;
389         async->rw = rw;
390         async->bio = bio;
391         async->mirror_num = mirror_num;
392         async->submit_bio_hook = submit_bio_hook;
393
394         spin_lock(&fs_info->async_submit_work_lock);
395         list_add_tail(&async->list, &fs_info->async_submit_work_list);
396         spin_unlock(&fs_info->async_submit_work_lock);
397
398         queue_work(async_submit_workqueue, &fs_info->async_submit_work);
399         return 0;
400 }
401
402 static int __btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
403                                  int mirror_num)
404 {
405         struct btrfs_root *root = BTRFS_I(inode)->root;
406         u64 offset;
407         int ret;
408
409         offset = bio->bi_sector << 9;
410
411         if (rw & (1 << BIO_RW)) {
412                 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num);
413         }
414
415         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 1);
416         BUG_ON(ret);
417
418         if (offset == BTRFS_SUPER_INFO_OFFSET) {
419                 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
420                 submit_bio(rw, bio);
421                 return 0;
422         }
423         return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num);
424 }
425
426 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
427                                  int mirror_num)
428 {
429         if (!(rw & (1 << BIO_RW))) {
430                 return __btree_submit_bio_hook(inode, rw, bio, mirror_num);
431         }
432         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
433                                    inode, rw, bio, mirror_num,
434                                    __btree_submit_bio_hook);
435 }
436
437 static int btree_writepage(struct page *page, struct writeback_control *wbc)
438 {
439         struct extent_io_tree *tree;
440         tree = &BTRFS_I(page->mapping->host)->io_tree;
441         return extent_write_full_page(tree, page, btree_get_extent, wbc);
442 }
443
444 static int btree_writepages(struct address_space *mapping,
445                             struct writeback_control *wbc)
446 {
447         struct extent_io_tree *tree;
448         tree = &BTRFS_I(mapping->host)->io_tree;
449         if (wbc->sync_mode == WB_SYNC_NONE) {
450                 u64 num_dirty;
451                 u64 start = 0;
452                 unsigned long thresh = 96 * 1024 * 1024;
453
454                 if (wbc->for_kupdate)
455                         return 0;
456
457                 if (current_is_pdflush()) {
458                         thresh = 96 * 1024 * 1024;
459                 } else {
460                         thresh = 8 * 1024 * 1024;
461                 }
462                 num_dirty = count_range_bits(tree, &start, (u64)-1,
463                                              thresh, EXTENT_DIRTY);
464                 if (num_dirty < thresh) {
465                         return 0;
466                 }
467         }
468         return extent_writepages(tree, mapping, btree_get_extent, wbc);
469 }
470
471 int btree_readpage(struct file *file, struct page *page)
472 {
473         struct extent_io_tree *tree;
474         tree = &BTRFS_I(page->mapping->host)->io_tree;
475         return extent_read_full_page(tree, page, btree_get_extent);
476 }
477
478 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
479 {
480         struct extent_io_tree *tree;
481         struct extent_map_tree *map;
482         int ret;
483
484         if (page_count(page) > 3) {
485                 /* once for page->private, once for the caller, once
486                  * once for the page cache
487                  */
488                 return 0;
489         }
490         tree = &BTRFS_I(page->mapping->host)->io_tree;
491         map = &BTRFS_I(page->mapping->host)->extent_tree;
492         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
493         if (ret == 1) {
494                 invalidate_extent_lru(tree, page_offset(page), PAGE_CACHE_SIZE);
495                 ClearPagePrivate(page);
496                 set_page_private(page, 0);
497                 page_cache_release(page);
498         }
499         return ret;
500 }
501
502 static void btree_invalidatepage(struct page *page, unsigned long offset)
503 {
504         struct extent_io_tree *tree;
505         tree = &BTRFS_I(page->mapping->host)->io_tree;
506         extent_invalidatepage(tree, page, offset);
507         btree_releasepage(page, GFP_NOFS);
508 }
509
510 #if 0
511 static int btree_writepage(struct page *page, struct writeback_control *wbc)
512 {
513         struct buffer_head *bh;
514         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
515         struct buffer_head *head;
516         if (!page_has_buffers(page)) {
517                 create_empty_buffers(page, root->fs_info->sb->s_blocksize,
518                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
519         }
520         head = page_buffers(page);
521         bh = head;
522         do {
523                 if (buffer_dirty(bh))
524                         csum_tree_block(root, bh, 0);
525                 bh = bh->b_this_page;
526         } while (bh != head);
527         return block_write_full_page(page, btree_get_block, wbc);
528 }
529 #endif
530
531 static struct address_space_operations btree_aops = {
532         .readpage       = btree_readpage,
533         .writepage      = btree_writepage,
534         .writepages     = btree_writepages,
535         .releasepage    = btree_releasepage,
536         .invalidatepage = btree_invalidatepage,
537         .sync_page      = block_sync_page,
538 };
539
540 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize)
541 {
542         struct extent_buffer *buf = NULL;
543         struct inode *btree_inode = root->fs_info->btree_inode;
544         int ret = 0;
545
546         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
547         if (!buf)
548                 return 0;
549         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
550                                  buf, 0, 0, btree_get_extent, 0);
551         free_extent_buffer(buf);
552         return ret;
553 }
554
555 static int close_all_devices(struct btrfs_fs_info *fs_info)
556 {
557         struct list_head *list;
558         struct list_head *next;
559         struct btrfs_device *device;
560
561         list = &fs_info->fs_devices->devices;
562         list_for_each(next, list) {
563                 device = list_entry(next, struct btrfs_device, dev_list);
564                 if (device->bdev && device->bdev != fs_info->sb->s_bdev)
565                         close_bdev_excl(device->bdev);
566                 device->bdev = NULL;
567         }
568         return 0;
569 }
570
571 int btrfs_verify_block_csum(struct btrfs_root *root,
572                             struct extent_buffer *buf)
573 {
574         return btrfs_buffer_uptodate(buf);
575 }
576
577 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
578                                             u64 bytenr, u32 blocksize)
579 {
580         struct inode *btree_inode = root->fs_info->btree_inode;
581         struct extent_buffer *eb;
582         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
583                                 bytenr, blocksize, GFP_NOFS);
584         return eb;
585 }
586
587 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
588                                                  u64 bytenr, u32 blocksize)
589 {
590         struct inode *btree_inode = root->fs_info->btree_inode;
591         struct extent_buffer *eb;
592
593         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
594                                  bytenr, blocksize, NULL, GFP_NOFS);
595         return eb;
596 }
597
598
599 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
600                                       u32 blocksize)
601 {
602         struct extent_buffer *buf = NULL;
603         struct inode *btree_inode = root->fs_info->btree_inode;
604         struct extent_io_tree *io_tree;
605         int ret;
606
607         io_tree = &BTRFS_I(btree_inode)->io_tree;
608
609         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
610         if (!buf)
611                 return NULL;
612
613         ret = btree_read_extent_buffer_pages(root, buf, 0);
614
615         if (ret == 0) {
616                 buf->flags |= EXTENT_UPTODATE;
617         }
618         return buf;
619
620 }
621
622 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
623                      struct extent_buffer *buf)
624 {
625         struct inode *btree_inode = root->fs_info->btree_inode;
626         if (btrfs_header_generation(buf) ==
627             root->fs_info->running_transaction->transid)
628                 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
629                                           buf);
630         return 0;
631 }
632
633 int wait_on_tree_block_writeback(struct btrfs_root *root,
634                                  struct extent_buffer *buf)
635 {
636         struct inode *btree_inode = root->fs_info->btree_inode;
637         wait_on_extent_buffer_writeback(&BTRFS_I(btree_inode)->io_tree,
638                                         buf);
639         return 0;
640 }
641
642 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
643                         u32 stripesize, struct btrfs_root *root,
644                         struct btrfs_fs_info *fs_info,
645                         u64 objectid)
646 {
647         root->node = NULL;
648         root->inode = NULL;
649         root->commit_root = NULL;
650         root->sectorsize = sectorsize;
651         root->nodesize = nodesize;
652         root->leafsize = leafsize;
653         root->stripesize = stripesize;
654         root->ref_cows = 0;
655         root->track_dirty = 0;
656
657         root->fs_info = fs_info;
658         root->objectid = objectid;
659         root->last_trans = 0;
660         root->highest_inode = 0;
661         root->last_inode_alloc = 0;
662         root->name = NULL;
663         root->in_sysfs = 0;
664
665         INIT_LIST_HEAD(&root->dirty_list);
666         memset(&root->root_key, 0, sizeof(root->root_key));
667         memset(&root->root_item, 0, sizeof(root->root_item));
668         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
669         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
670         init_completion(&root->kobj_unregister);
671         root->defrag_running = 0;
672         root->defrag_level = 0;
673         root->root_key.objectid = objectid;
674         return 0;
675 }
676
677 static int find_and_setup_root(struct btrfs_root *tree_root,
678                                struct btrfs_fs_info *fs_info,
679                                u64 objectid,
680                                struct btrfs_root *root)
681 {
682         int ret;
683         u32 blocksize;
684
685         __setup_root(tree_root->nodesize, tree_root->leafsize,
686                      tree_root->sectorsize, tree_root->stripesize,
687                      root, fs_info, objectid);
688         ret = btrfs_find_last_root(tree_root, objectid,
689                                    &root->root_item, &root->root_key);
690         BUG_ON(ret);
691
692         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
693         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
694                                      blocksize);
695         BUG_ON(!root->node);
696         return 0;
697 }
698
699 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_fs_info *fs_info,
700                                                struct btrfs_key *location)
701 {
702         struct btrfs_root *root;
703         struct btrfs_root *tree_root = fs_info->tree_root;
704         struct btrfs_path *path;
705         struct extent_buffer *l;
706         u64 highest_inode;
707         u32 blocksize;
708         int ret = 0;
709
710         root = kzalloc(sizeof(*root), GFP_NOFS);
711         if (!root)
712                 return ERR_PTR(-ENOMEM);
713         if (location->offset == (u64)-1) {
714                 ret = find_and_setup_root(tree_root, fs_info,
715                                           location->objectid, root);
716                 if (ret) {
717                         kfree(root);
718                         return ERR_PTR(ret);
719                 }
720                 goto insert;
721         }
722
723         __setup_root(tree_root->nodesize, tree_root->leafsize,
724                      tree_root->sectorsize, tree_root->stripesize,
725                      root, fs_info, location->objectid);
726
727         path = btrfs_alloc_path();
728         BUG_ON(!path);
729         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
730         if (ret != 0) {
731                 if (ret > 0)
732                         ret = -ENOENT;
733                 goto out;
734         }
735         l = path->nodes[0];
736         read_extent_buffer(l, &root->root_item,
737                btrfs_item_ptr_offset(l, path->slots[0]),
738                sizeof(root->root_item));
739         memcpy(&root->root_key, location, sizeof(*location));
740         ret = 0;
741 out:
742         btrfs_release_path(root, path);
743         btrfs_free_path(path);
744         if (ret) {
745                 kfree(root);
746                 return ERR_PTR(ret);
747         }
748         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
749         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
750                                      blocksize);
751         BUG_ON(!root->node);
752 insert:
753         root->ref_cows = 1;
754         ret = btrfs_find_highest_inode(root, &highest_inode);
755         if (ret == 0) {
756                 root->highest_inode = highest_inode;
757                 root->last_inode_alloc = highest_inode;
758         }
759         return root;
760 }
761
762 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
763                                         u64 root_objectid)
764 {
765         struct btrfs_root *root;
766
767         if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
768                 return fs_info->tree_root;
769         if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
770                 return fs_info->extent_root;
771
772         root = radix_tree_lookup(&fs_info->fs_roots_radix,
773                                  (unsigned long)root_objectid);
774         return root;
775 }
776
777 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
778                                               struct btrfs_key *location)
779 {
780         struct btrfs_root *root;
781         int ret;
782
783         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
784                 return fs_info->tree_root;
785         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
786                 return fs_info->extent_root;
787
788         root = radix_tree_lookup(&fs_info->fs_roots_radix,
789                                  (unsigned long)location->objectid);
790         if (root)
791                 return root;
792
793         root = btrfs_read_fs_root_no_radix(fs_info, location);
794         if (IS_ERR(root))
795                 return root;
796         ret = radix_tree_insert(&fs_info->fs_roots_radix,
797                                 (unsigned long)root->root_key.objectid,
798                                 root);
799         if (ret) {
800                 free_extent_buffer(root->node);
801                 kfree(root);
802                 return ERR_PTR(ret);
803         }
804         ret = btrfs_find_dead_roots(fs_info->tree_root,
805                                     root->root_key.objectid, root);
806         BUG_ON(ret);
807
808         return root;
809 }
810
811 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
812                                       struct btrfs_key *location,
813                                       const char *name, int namelen)
814 {
815         struct btrfs_root *root;
816         int ret;
817
818         root = btrfs_read_fs_root_no_name(fs_info, location);
819         if (!root)
820                 return NULL;
821
822         if (root->in_sysfs)
823                 return root;
824
825         ret = btrfs_set_root_name(root, name, namelen);
826         if (ret) {
827                 free_extent_buffer(root->node);
828                 kfree(root);
829                 return ERR_PTR(ret);
830         }
831
832         ret = btrfs_sysfs_add_root(root);
833         if (ret) {
834                 free_extent_buffer(root->node);
835                 kfree(root->name);
836                 kfree(root);
837                 return ERR_PTR(ret);
838         }
839         root->in_sysfs = 1;
840         return root;
841 }
842 #if 0
843 static int add_hasher(struct btrfs_fs_info *info, char *type) {
844         struct btrfs_hasher *hasher;
845
846         hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
847         if (!hasher)
848                 return -ENOMEM;
849         hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
850         if (!hasher->hash_tfm) {
851                 kfree(hasher);
852                 return -EINVAL;
853         }
854         spin_lock(&info->hash_lock);
855         list_add(&hasher->list, &info->hashers);
856         spin_unlock(&info->hash_lock);
857         return 0;
858 }
859 #endif
860
861 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
862 {
863         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
864         int ret = 0;
865         struct list_head *cur;
866         struct btrfs_device *device;
867         struct backing_dev_info *bdi;
868
869         list_for_each(cur, &info->fs_devices->devices) {
870                 device = list_entry(cur, struct btrfs_device, dev_list);
871                 bdi = blk_get_backing_dev_info(device->bdev);
872                 if (bdi && bdi_congested(bdi, bdi_bits)) {
873                         ret = 1;
874                         break;
875                 }
876         }
877         return ret;
878 }
879
880 void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
881 {
882         struct list_head *cur;
883         struct btrfs_device *device;
884         struct btrfs_fs_info *info;
885
886         info = (struct btrfs_fs_info *)bdi->unplug_io_data;
887         list_for_each(cur, &info->fs_devices->devices) {
888                 device = list_entry(cur, struct btrfs_device, dev_list);
889                 bdi = blk_get_backing_dev_info(device->bdev);
890                 if (bdi->unplug_io_fn) {
891                         bdi->unplug_io_fn(bdi, page);
892                 }
893         }
894 }
895
896 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
897 {
898 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
899         bdi_init(bdi);
900 #endif
901         bdi->ra_pages   = default_backing_dev_info.ra_pages * 4;
902         bdi->state              = 0;
903         bdi->capabilities       = default_backing_dev_info.capabilities;
904         bdi->unplug_io_fn       = btrfs_unplug_io_fn;
905         bdi->unplug_io_data     = info;
906         bdi->congested_fn       = btrfs_congested_fn;
907         bdi->congested_data     = info;
908         return 0;
909 }
910
911 static int bio_ready_for_csum(struct bio *bio)
912 {
913         u64 length = 0;
914         u64 buf_len = 0;
915         u64 start = 0;
916         struct page *page;
917         struct extent_io_tree *io_tree = NULL;
918         struct btrfs_fs_info *info = NULL;
919         struct bio_vec *bvec;
920         int i;
921         int ret;
922
923         bio_for_each_segment(bvec, bio, i) {
924                 page = bvec->bv_page;
925                 if (page->private == EXTENT_PAGE_PRIVATE) {
926                         length += bvec->bv_len;
927                         continue;
928                 }
929                 if (!page->private) {
930                         length += bvec->bv_len;
931                         continue;
932                 }
933                 length = bvec->bv_len;
934                 buf_len = page->private >> 2;
935                 start = page_offset(page) + bvec->bv_offset;
936                 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
937                 info = BTRFS_I(page->mapping->host)->root->fs_info;
938         }
939         /* are we fully contained in this bio? */
940         if (buf_len <= length)
941                 return 1;
942
943         ret = extent_range_uptodate(io_tree, start + length,
944                                     start + buf_len - 1);
945         if (ret == 1)
946                 return ret;
947         return ret;
948 }
949
950 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
951 static void btrfs_end_io_csum(void *p)
952 #else
953 static void btrfs_end_io_csum(struct work_struct *work)
954 #endif
955 {
956 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
957         struct btrfs_fs_info *fs_info = p;
958 #else
959         struct btrfs_fs_info *fs_info = container_of(work,
960                                                      struct btrfs_fs_info,
961                                                      end_io_work);
962 #endif
963         unsigned long flags;
964         struct end_io_wq *end_io_wq;
965         struct bio *bio;
966         struct list_head *next;
967         int error;
968         int was_empty;
969
970         while(1) {
971                 spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
972                 if (list_empty(&fs_info->end_io_work_list)) {
973                         spin_unlock_irqrestore(&fs_info->end_io_work_lock,
974                                                flags);
975                         return;
976                 }
977                 next = fs_info->end_io_work_list.next;
978                 list_del(next);
979                 spin_unlock_irqrestore(&fs_info->end_io_work_lock, flags);
980
981                 end_io_wq = list_entry(next, struct end_io_wq, list);
982
983                 bio = end_io_wq->bio;
984                 if (end_io_wq->metadata && !bio_ready_for_csum(bio)) {
985                         spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
986                         was_empty = list_empty(&fs_info->end_io_work_list);
987                         list_add_tail(&end_io_wq->list,
988                                       &fs_info->end_io_work_list);
989                         spin_unlock_irqrestore(&fs_info->end_io_work_lock,
990                                                flags);
991                         if (was_empty)
992                                 return;
993                         continue;
994                 }
995                 error = end_io_wq->error;
996                 bio->bi_private = end_io_wq->private;
997                 bio->bi_end_io = end_io_wq->end_io;
998                 kfree(end_io_wq);
999 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1000                 bio_endio(bio, bio->bi_size, error);
1001 #else
1002                 bio_endio(bio, error);
1003 #endif
1004         }
1005 }
1006
1007 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1008 static void btrfs_async_submit_work(void *p)
1009 #else
1010 static void btrfs_async_submit_work(struct work_struct *work)
1011 #endif
1012 {
1013 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1014         struct btrfs_fs_info *fs_info = p;
1015 #else
1016         struct btrfs_fs_info *fs_info = container_of(work,
1017                                                      struct btrfs_fs_info,
1018                                                      async_submit_work);
1019 #endif
1020         struct async_submit_bio *async;
1021         struct list_head *next;
1022
1023         while(1) {
1024                 spin_lock(&fs_info->async_submit_work_lock);
1025                 if (list_empty(&fs_info->async_submit_work_list)) {
1026                         spin_unlock(&fs_info->async_submit_work_lock);
1027                         return;
1028                 }
1029                 next = fs_info->async_submit_work_list.next;
1030                 list_del(next);
1031                 spin_unlock(&fs_info->async_submit_work_lock);
1032
1033                 async = list_entry(next, struct async_submit_bio, list);
1034                 async->submit_bio_hook(async->inode, async->rw, async->bio,
1035                                        async->mirror_num);
1036                 kfree(async);
1037         }
1038 }
1039
1040 struct btrfs_root *open_ctree(struct super_block *sb,
1041                               struct btrfs_fs_devices *fs_devices)
1042 {
1043         u32 sectorsize;
1044         u32 nodesize;
1045         u32 leafsize;
1046         u32 blocksize;
1047         u32 stripesize;
1048         struct btrfs_root *extent_root = kmalloc(sizeof(struct btrfs_root),
1049                                                  GFP_NOFS);
1050         struct btrfs_root *tree_root = kmalloc(sizeof(struct btrfs_root),
1051                                                GFP_NOFS);
1052         struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1053                                                 GFP_NOFS);
1054         struct btrfs_root *chunk_root = kmalloc(sizeof(struct btrfs_root),
1055                                                 GFP_NOFS);
1056         struct btrfs_root *dev_root = kmalloc(sizeof(struct btrfs_root),
1057                                               GFP_NOFS);
1058         int ret;
1059         int err = -EINVAL;
1060         struct btrfs_super_block *disk_super;
1061
1062         if (!extent_root || !tree_root || !fs_info) {
1063                 err = -ENOMEM;
1064                 goto fail;
1065         }
1066         end_io_workqueue = create_workqueue("btrfs-end-io");
1067         BUG_ON(!end_io_workqueue);
1068         async_submit_workqueue = create_workqueue("btrfs-async-submit");
1069
1070         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1071         INIT_LIST_HEAD(&fs_info->trans_list);
1072         INIT_LIST_HEAD(&fs_info->dead_roots);
1073         INIT_LIST_HEAD(&fs_info->hashers);
1074         INIT_LIST_HEAD(&fs_info->end_io_work_list);
1075         INIT_LIST_HEAD(&fs_info->async_submit_work_list);
1076         spin_lock_init(&fs_info->hash_lock);
1077         spin_lock_init(&fs_info->end_io_work_lock);
1078         spin_lock_init(&fs_info->async_submit_work_lock);
1079         spin_lock_init(&fs_info->delalloc_lock);
1080         spin_lock_init(&fs_info->new_trans_lock);
1081
1082         init_completion(&fs_info->kobj_unregister);
1083         sb_set_blocksize(sb, BTRFS_SUPER_INFO_SIZE);
1084         fs_info->tree_root = tree_root;
1085         fs_info->extent_root = extent_root;
1086         fs_info->chunk_root = chunk_root;
1087         fs_info->dev_root = dev_root;
1088         fs_info->fs_devices = fs_devices;
1089         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1090         INIT_LIST_HEAD(&fs_info->space_info);
1091         btrfs_mapping_init(&fs_info->mapping_tree);
1092         fs_info->sb = sb;
1093         fs_info->max_extent = (u64)-1;
1094         fs_info->max_inline = 8192 * 1024;
1095         setup_bdi(fs_info, &fs_info->bdi);
1096         fs_info->btree_inode = new_inode(sb);
1097         fs_info->btree_inode->i_ino = 1;
1098         fs_info->btree_inode->i_nlink = 1;
1099         fs_info->btree_inode->i_size = sb->s_bdev->bd_inode->i_size;
1100         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1101         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1102
1103         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1104                              fs_info->btree_inode->i_mapping,
1105                              GFP_NOFS);
1106         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1107                              GFP_NOFS);
1108
1109         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1110
1111         extent_io_tree_init(&fs_info->free_space_cache,
1112                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1113         extent_io_tree_init(&fs_info->block_group_cache,
1114                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1115         extent_io_tree_init(&fs_info->pinned_extents,
1116                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1117         extent_io_tree_init(&fs_info->pending_del,
1118                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1119         extent_io_tree_init(&fs_info->extent_ins,
1120                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1121         fs_info->do_barriers = 1;
1122
1123 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1124         INIT_WORK(&fs_info->end_io_work, btrfs_end_io_csum, fs_info);
1125         INIT_WORK(&fs_info->async_submit_work, btrfs_async_submit_work,
1126                   fs_info);
1127         INIT_WORK(&fs_info->trans_work, btrfs_transaction_cleaner, fs_info);
1128 #else
1129         INIT_WORK(&fs_info->end_io_work, btrfs_end_io_csum);
1130         INIT_WORK(&fs_info->async_submit_work, btrfs_async_submit_work);
1131         INIT_DELAYED_WORK(&fs_info->trans_work, btrfs_transaction_cleaner);
1132 #endif
1133         BTRFS_I(fs_info->btree_inode)->root = tree_root;
1134         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1135                sizeof(struct btrfs_key));
1136         insert_inode_hash(fs_info->btree_inode);
1137         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1138
1139         mutex_init(&fs_info->trans_mutex);
1140         mutex_init(&fs_info->fs_mutex);
1141
1142 #if 0
1143         ret = add_hasher(fs_info, "crc32c");
1144         if (ret) {
1145                 printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
1146                 err = -ENOMEM;
1147                 goto fail_iput;
1148         }
1149 #endif
1150         __setup_root(4096, 4096, 4096, 4096, tree_root,
1151                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
1152
1153         fs_info->sb_buffer = read_tree_block(tree_root,
1154                                              BTRFS_SUPER_INFO_OFFSET,
1155                                              4096);
1156
1157         if (!fs_info->sb_buffer)
1158                 goto fail_iput;
1159
1160         read_extent_buffer(fs_info->sb_buffer, &fs_info->super_copy, 0,
1161                            sizeof(fs_info->super_copy));
1162
1163         read_extent_buffer(fs_info->sb_buffer, fs_info->fsid,
1164                            (unsigned long)btrfs_super_fsid(fs_info->sb_buffer),
1165                            BTRFS_FSID_SIZE);
1166
1167         disk_super = &fs_info->super_copy;
1168         if (!btrfs_super_root(disk_super))
1169                 goto fail_sb_buffer;
1170
1171         if (btrfs_super_num_devices(disk_super) != fs_devices->num_devices) {
1172                 printk("Btrfs: wanted %llu devices, but found %llu\n",
1173                        (unsigned long long)btrfs_super_num_devices(disk_super),
1174                        (unsigned long long)fs_devices->num_devices);
1175                 goto fail_sb_buffer;
1176         }
1177         nodesize = btrfs_super_nodesize(disk_super);
1178         leafsize = btrfs_super_leafsize(disk_super);
1179         sectorsize = btrfs_super_sectorsize(disk_super);
1180         stripesize = btrfs_super_stripesize(disk_super);
1181         tree_root->nodesize = nodesize;
1182         tree_root->leafsize = leafsize;
1183         tree_root->sectorsize = sectorsize;
1184         tree_root->stripesize = stripesize;
1185         sb_set_blocksize(sb, sectorsize);
1186
1187         i_size_write(fs_info->btree_inode,
1188                      btrfs_super_total_bytes(disk_super));
1189
1190         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1191                     sizeof(disk_super->magic))) {
1192                 printk("btrfs: valid FS not found on %s\n", sb->s_id);
1193                 goto fail_sb_buffer;
1194         }
1195
1196         mutex_lock(&fs_info->fs_mutex);
1197
1198         ret = btrfs_read_sys_array(tree_root);
1199         BUG_ON(ret);
1200
1201         blocksize = btrfs_level_size(tree_root,
1202                                      btrfs_super_chunk_root_level(disk_super));
1203
1204         __setup_root(nodesize, leafsize, sectorsize, stripesize,
1205                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1206
1207         chunk_root->node = read_tree_block(chunk_root,
1208                                            btrfs_super_chunk_root(disk_super),
1209                                            blocksize);
1210         BUG_ON(!chunk_root->node);
1211
1212         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1213                  (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1214                  BTRFS_UUID_SIZE);
1215
1216         ret = btrfs_read_chunk_tree(chunk_root);
1217         BUG_ON(ret);
1218
1219         blocksize = btrfs_level_size(tree_root,
1220                                      btrfs_super_root_level(disk_super));
1221
1222
1223         tree_root->node = read_tree_block(tree_root,
1224                                           btrfs_super_root(disk_super),
1225                                           blocksize);
1226         if (!tree_root->node)
1227                 goto fail_sb_buffer;
1228
1229
1230         ret = find_and_setup_root(tree_root, fs_info,
1231                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1232         if (ret)
1233                 goto fail_tree_root;
1234         extent_root->track_dirty = 1;
1235
1236         ret = find_and_setup_root(tree_root, fs_info,
1237                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
1238         dev_root->track_dirty = 1;
1239
1240         if (ret)
1241                 goto fail_extent_root;
1242
1243         btrfs_read_block_groups(extent_root);
1244
1245         fs_info->generation = btrfs_super_generation(disk_super) + 1;
1246         fs_info->data_alloc_profile = (u64)-1;
1247         fs_info->metadata_alloc_profile = (u64)-1;
1248         fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1249
1250         mutex_unlock(&fs_info->fs_mutex);
1251         return tree_root;
1252
1253 fail_extent_root:
1254         free_extent_buffer(extent_root->node);
1255 fail_tree_root:
1256         mutex_unlock(&fs_info->fs_mutex);
1257         free_extent_buffer(tree_root->node);
1258 fail_sb_buffer:
1259         free_extent_buffer(fs_info->sb_buffer);
1260         extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
1261 fail_iput:
1262         iput(fs_info->btree_inode);
1263 fail:
1264         close_all_devices(fs_info);
1265         kfree(extent_root);
1266         kfree(tree_root);
1267 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
1268         bdi_destroy(&fs_info->bdi);
1269 #endif
1270         kfree(fs_info);
1271         return ERR_PTR(err);
1272 }
1273
1274 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1275 {
1276         char b[BDEVNAME_SIZE];
1277
1278         if (uptodate) {
1279                 set_buffer_uptodate(bh);
1280         } else {
1281                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1282                         printk(KERN_WARNING "lost page write due to "
1283                                         "I/O error on %s\n",
1284                                        bdevname(bh->b_bdev, b));
1285                 }
1286                 set_buffer_write_io_error(bh);
1287                 clear_buffer_uptodate(bh);
1288         }
1289         unlock_buffer(bh);
1290         put_bh(bh);
1291 }
1292
1293 int write_all_supers(struct btrfs_root *root)
1294 {
1295         struct list_head *cur;
1296         struct list_head *head = &root->fs_info->fs_devices->devices;
1297         struct btrfs_device *dev;
1298         struct extent_buffer *sb;
1299         struct btrfs_dev_item *dev_item;
1300         struct buffer_head *bh;
1301         int ret;
1302         int do_barriers;
1303
1304         do_barriers = !btrfs_test_opt(root, NOBARRIER);
1305
1306         sb = root->fs_info->sb_buffer;
1307         dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
1308                                                       dev_item);
1309         list_for_each(cur, head) {
1310                 dev = list_entry(cur, struct btrfs_device, dev_list);
1311                 btrfs_set_device_type(sb, dev_item, dev->type);
1312                 btrfs_set_device_id(sb, dev_item, dev->devid);
1313                 btrfs_set_device_total_bytes(sb, dev_item, dev->total_bytes);
1314                 btrfs_set_device_bytes_used(sb, dev_item, dev->bytes_used);
1315                 btrfs_set_device_io_align(sb, dev_item, dev->io_align);
1316                 btrfs_set_device_io_width(sb, dev_item, dev->io_width);
1317                 btrfs_set_device_sector_size(sb, dev_item, dev->sector_size);
1318                 write_extent_buffer(sb, dev->uuid,
1319                                     (unsigned long)btrfs_device_uuid(dev_item),
1320                                     BTRFS_UUID_SIZE);
1321
1322                 btrfs_set_header_flag(sb, BTRFS_HEADER_FLAG_WRITTEN);
1323                 csum_tree_block(root, sb, 0);
1324
1325                 bh = __getblk(dev->bdev, BTRFS_SUPER_INFO_OFFSET /
1326                               root->fs_info->sb->s_blocksize,
1327                               BTRFS_SUPER_INFO_SIZE);
1328
1329                 read_extent_buffer(sb, bh->b_data, 0, BTRFS_SUPER_INFO_SIZE);
1330                 dev->pending_io = bh;
1331
1332                 get_bh(bh);
1333                 set_buffer_uptodate(bh);
1334                 lock_buffer(bh);
1335                 bh->b_end_io = btrfs_end_buffer_write_sync;
1336
1337                 if (do_barriers && dev->barriers) {
1338                         ret = submit_bh(WRITE_BARRIER, bh);
1339                         if (ret == -EOPNOTSUPP) {
1340                                 printk("btrfs: disabling barriers on dev %s\n",
1341                                        dev->name);
1342                                 set_buffer_uptodate(bh);
1343                                 dev->barriers = 0;
1344                                 get_bh(bh);
1345                                 lock_buffer(bh);
1346                                 ret = submit_bh(WRITE, bh);
1347                         }
1348                 } else {
1349                         ret = submit_bh(WRITE, bh);
1350                 }
1351                 BUG_ON(ret);
1352         }
1353
1354         list_for_each(cur, head) {
1355                 dev = list_entry(cur, struct btrfs_device, dev_list);
1356                 BUG_ON(!dev->pending_io);
1357                 bh = dev->pending_io;
1358                 wait_on_buffer(bh);
1359                 if (!buffer_uptodate(dev->pending_io)) {
1360                         if (do_barriers && dev->barriers) {
1361                                 printk("btrfs: disabling barriers on dev %s\n",
1362                                        dev->name);
1363                                 set_buffer_uptodate(bh);
1364                                 get_bh(bh);
1365                                 lock_buffer(bh);
1366                                 dev->barriers = 0;
1367                                 ret = submit_bh(WRITE, bh);
1368                                 BUG_ON(ret);
1369                                 wait_on_buffer(bh);
1370                                 BUG_ON(!buffer_uptodate(bh));
1371                         } else {
1372                                 BUG();
1373                         }
1374
1375                 }
1376                 dev->pending_io = NULL;
1377                 brelse(bh);
1378         }
1379         return 0;
1380 }
1381
1382 int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
1383                       *root)
1384 {
1385         int ret;
1386
1387         ret = write_all_supers(root);
1388 #if 0
1389         if (!btrfs_test_opt(root, NOBARRIER))
1390                 blkdev_issue_flush(sb->s_bdev, NULL);
1391         set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, super);
1392         ret = sync_page_range_nolock(btree_inode, btree_inode->i_mapping,
1393                                      super->start, super->len);
1394         if (!btrfs_test_opt(root, NOBARRIER))
1395                 blkdev_issue_flush(sb->s_bdev, NULL);
1396 #endif
1397         return ret;
1398 }
1399
1400 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
1401 {
1402         radix_tree_delete(&fs_info->fs_roots_radix,
1403                           (unsigned long)root->root_key.objectid);
1404         if (root->in_sysfs)
1405                 btrfs_sysfs_del_root(root);
1406         if (root->inode)
1407                 iput(root->inode);
1408         if (root->node)
1409                 free_extent_buffer(root->node);
1410         if (root->commit_root)
1411                 free_extent_buffer(root->commit_root);
1412         if (root->name)
1413                 kfree(root->name);
1414         kfree(root);
1415         return 0;
1416 }
1417
1418 static int del_fs_roots(struct btrfs_fs_info *fs_info)
1419 {
1420         int ret;
1421         struct btrfs_root *gang[8];
1422         int i;
1423
1424         while(1) {
1425                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1426                                              (void **)gang, 0,
1427                                              ARRAY_SIZE(gang));
1428                 if (!ret)
1429                         break;
1430                 for (i = 0; i < ret; i++)
1431                         btrfs_free_fs_root(fs_info, gang[i]);
1432         }
1433         return 0;
1434 }
1435
1436 int close_ctree(struct btrfs_root *root)
1437 {
1438         int ret;
1439         struct btrfs_trans_handle *trans;
1440         struct btrfs_fs_info *fs_info = root->fs_info;
1441
1442         fs_info->closing = 1;
1443         btrfs_transaction_flush_work(root);
1444         mutex_lock(&fs_info->fs_mutex);
1445         btrfs_defrag_dirty_roots(root->fs_info);
1446         trans = btrfs_start_transaction(root, 1);
1447         ret = btrfs_commit_transaction(trans, root);
1448         /* run commit again to  drop the original snapshot */
1449         trans = btrfs_start_transaction(root, 1);
1450         btrfs_commit_transaction(trans, root);
1451         ret = btrfs_write_and_wait_transaction(NULL, root);
1452         BUG_ON(ret);
1453         write_ctree_super(NULL, root);
1454         mutex_unlock(&fs_info->fs_mutex);
1455
1456         if (fs_info->delalloc_bytes) {
1457                 printk("btrfs: at unmount delalloc count %Lu\n",
1458                        fs_info->delalloc_bytes);
1459         }
1460         if (fs_info->extent_root->node)
1461                 free_extent_buffer(fs_info->extent_root->node);
1462
1463         if (fs_info->tree_root->node)
1464                 free_extent_buffer(fs_info->tree_root->node);
1465
1466         if (root->fs_info->chunk_root->node);
1467                 free_extent_buffer(root->fs_info->chunk_root->node);
1468
1469         if (root->fs_info->dev_root->node);
1470                 free_extent_buffer(root->fs_info->dev_root->node);
1471
1472         free_extent_buffer(fs_info->sb_buffer);
1473
1474         btrfs_free_block_groups(root->fs_info);
1475         del_fs_roots(fs_info);
1476
1477         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1478
1479         extent_io_tree_empty_lru(&fs_info->free_space_cache);
1480         extent_io_tree_empty_lru(&fs_info->block_group_cache);
1481         extent_io_tree_empty_lru(&fs_info->pinned_extents);
1482         extent_io_tree_empty_lru(&fs_info->pending_del);
1483         extent_io_tree_empty_lru(&fs_info->extent_ins);
1484         extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
1485
1486         truncate_inode_pages(fs_info->btree_inode->i_mapping, 0);
1487         flush_workqueue(end_io_workqueue);
1488         destroy_workqueue(end_io_workqueue);
1489
1490         flush_workqueue(async_submit_workqueue);
1491         destroy_workqueue(async_submit_workqueue);
1492
1493         iput(fs_info->btree_inode);
1494 #if 0
1495         while(!list_empty(&fs_info->hashers)) {
1496                 struct btrfs_hasher *hasher;
1497                 hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
1498                                     hashers);
1499                 list_del(&hasher->hashers);
1500                 crypto_free_hash(&fs_info->hash_tfm);
1501                 kfree(hasher);
1502         }
1503 #endif
1504         close_all_devices(fs_info);
1505         btrfs_mapping_tree_free(&fs_info->mapping_tree);
1506
1507 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
1508         bdi_destroy(&fs_info->bdi);
1509 #endif
1510
1511         kfree(fs_info->extent_root);
1512         kfree(fs_info->tree_root);
1513         kfree(fs_info->chunk_root);
1514         kfree(fs_info->dev_root);
1515         return 0;
1516 }
1517
1518 int btrfs_buffer_uptodate(struct extent_buffer *buf)
1519 {
1520         struct inode *btree_inode = buf->first_page->mapping->host;
1521         return extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
1522 }
1523
1524 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
1525 {
1526         struct inode *btree_inode = buf->first_page->mapping->host;
1527         return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
1528                                           buf);
1529 }
1530
1531 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
1532 {
1533         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1534         u64 transid = btrfs_header_generation(buf);
1535         struct inode *btree_inode = root->fs_info->btree_inode;
1536
1537         if (transid != root->fs_info->generation) {
1538                 printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
1539                         (unsigned long long)buf->start,
1540                         transid, root->fs_info->generation);
1541                 WARN_ON(1);
1542         }
1543         set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
1544 }
1545
1546 void btrfs_throttle(struct btrfs_root *root)
1547 {
1548         struct backing_dev_info *bdi;
1549
1550         bdi = root->fs_info->sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
1551         if (root->fs_info->throttles && bdi_write_congested(bdi)) {
1552 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,18)
1553                 congestion_wait(WRITE, HZ/20);
1554 #else
1555                 blk_congestion_wait(WRITE, HZ/20);
1556 #endif
1557         }
1558 }
1559
1560 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
1561 {
1562         balance_dirty_pages_ratelimited_nr(
1563                                    root->fs_info->btree_inode->i_mapping, 1);
1564 }
1565
1566 void btrfs_set_buffer_defrag(struct extent_buffer *buf)
1567 {
1568         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1569         struct inode *btree_inode = root->fs_info->btree_inode;
1570         set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start,
1571                         buf->start + buf->len - 1, EXTENT_DEFRAG, GFP_NOFS);
1572 }
1573
1574 void btrfs_set_buffer_defrag_done(struct extent_buffer *buf)
1575 {
1576         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1577         struct inode *btree_inode = root->fs_info->btree_inode;
1578         set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start,
1579                         buf->start + buf->len - 1, EXTENT_DEFRAG_DONE,
1580                         GFP_NOFS);
1581 }
1582
1583 int btrfs_buffer_defrag(struct extent_buffer *buf)
1584 {
1585         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1586         struct inode *btree_inode = root->fs_info->btree_inode;
1587         return test_range_bit(&BTRFS_I(btree_inode)->io_tree,
1588                      buf->start, buf->start + buf->len - 1, EXTENT_DEFRAG, 0);
1589 }
1590
1591 int btrfs_buffer_defrag_done(struct extent_buffer *buf)
1592 {
1593         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1594         struct inode *btree_inode = root->fs_info->btree_inode;
1595         return test_range_bit(&BTRFS_I(btree_inode)->io_tree,
1596                      buf->start, buf->start + buf->len - 1,
1597                      EXTENT_DEFRAG_DONE, 0);
1598 }
1599
1600 int btrfs_clear_buffer_defrag_done(struct extent_buffer *buf)
1601 {
1602         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1603         struct inode *btree_inode = root->fs_info->btree_inode;
1604         return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree,
1605                      buf->start, buf->start + buf->len - 1,
1606                      EXTENT_DEFRAG_DONE, GFP_NOFS);
1607 }
1608
1609 int btrfs_clear_buffer_defrag(struct extent_buffer *buf)
1610 {
1611         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1612         struct inode *btree_inode = root->fs_info->btree_inode;
1613         return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree,
1614                      buf->start, buf->start + buf->len - 1,
1615                      EXTENT_DEFRAG, GFP_NOFS);
1616 }
1617
1618 int btrfs_read_buffer(struct extent_buffer *buf)
1619 {
1620         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1621         int ret;
1622         ret = btree_read_extent_buffer_pages(root, buf, 0);
1623         if (ret == 0) {
1624                 buf->flags |= EXTENT_UPTODATE;
1625         }
1626         return ret;
1627 }
1628
1629 static struct extent_io_ops btree_extent_io_ops = {
1630         .writepage_io_hook = btree_writepage_io_hook,
1631         .readpage_end_io_hook = btree_readpage_end_io_hook,
1632         .submit_bio_hook = btree_submit_bio_hook,
1633         /* note we're sharing with inode.c for the merge bio hook */
1634         .merge_bio_hook = btrfs_merge_bio_hook,
1635 };