Btrfs: don't cache the csum value into the extent state tree
[linux-2.6-block.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <linux/uuid.h>
34 #include <asm/unaligned.h>
35 #include "compat.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51
52 #ifdef CONFIG_X86
53 #include <asm/cpufeature.h>
54 #endif
55
56 static struct extent_io_ops btree_extent_io_ops;
57 static void end_workqueue_fn(struct btrfs_work *work);
58 static void free_fs_root(struct btrfs_root *root);
59 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
60                                     int read_only);
61 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
62                                              struct btrfs_root *root);
63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
65                                       struct btrfs_root *root);
66 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69                                         struct extent_io_tree *dirty_pages,
70                                         int mark);
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72                                        struct extent_io_tree *pinned_extents);
73 static int btrfs_cleanup_transaction(struct btrfs_root *root);
74 static void btrfs_error_commit_super(struct btrfs_root *root);
75
76 /*
77  * end_io_wq structs are used to do processing in task context when an IO is
78  * complete.  This is used during reads to verify checksums, and it is used
79  * by writes to insert metadata for new file extents after IO is complete.
80  */
81 struct end_io_wq {
82         struct bio *bio;
83         bio_end_io_t *end_io;
84         void *private;
85         struct btrfs_fs_info *info;
86         int error;
87         int metadata;
88         struct list_head list;
89         struct btrfs_work work;
90 };
91
92 /*
93  * async submit bios are used to offload expensive checksumming
94  * onto the worker threads.  They checksum file and metadata bios
95  * just before they are sent down the IO stack.
96  */
97 struct async_submit_bio {
98         struct inode *inode;
99         struct bio *bio;
100         struct list_head list;
101         extent_submit_bio_hook_t *submit_bio_start;
102         extent_submit_bio_hook_t *submit_bio_done;
103         int rw;
104         int mirror_num;
105         unsigned long bio_flags;
106         /*
107          * bio_offset is optional, can be used if the pages in the bio
108          * can't tell us where in the file the bio should go
109          */
110         u64 bio_offset;
111         struct btrfs_work work;
112         int error;
113 };
114
115 /*
116  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
117  * eb, the lockdep key is determined by the btrfs_root it belongs to and
118  * the level the eb occupies in the tree.
119  *
120  * Different roots are used for different purposes and may nest inside each
121  * other and they require separate keysets.  As lockdep keys should be
122  * static, assign keysets according to the purpose of the root as indicated
123  * by btrfs_root->objectid.  This ensures that all special purpose roots
124  * have separate keysets.
125  *
126  * Lock-nesting across peer nodes is always done with the immediate parent
127  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
128  * subclass to avoid triggering lockdep warning in such cases.
129  *
130  * The key is set by the readpage_end_io_hook after the buffer has passed
131  * csum validation but before the pages are unlocked.  It is also set by
132  * btrfs_init_new_buffer on freshly allocated blocks.
133  *
134  * We also add a check to make sure the highest level of the tree is the
135  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
136  * needs update as well.
137  */
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
140 #  error
141 # endif
142
143 static struct btrfs_lockdep_keyset {
144         u64                     id;             /* root objectid */
145         const char              *name_stem;     /* lock name stem */
146         char                    names[BTRFS_MAX_LEVEL + 1][20];
147         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
148 } btrfs_lockdep_keysets[] = {
149         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
150         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
151         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
152         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
153         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
154         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
155         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
156         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
157         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
158         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
159         { .id = 0,                              .name_stem = "tree"     },
160 };
161
162 void __init btrfs_init_lockdep(void)
163 {
164         int i, j;
165
166         /* initialize lockdep class names */
167         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
168                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
169
170                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
171                         snprintf(ks->names[j], sizeof(ks->names[j]),
172                                  "btrfs-%s-%02d", ks->name_stem, j);
173         }
174 }
175
176 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
177                                     int level)
178 {
179         struct btrfs_lockdep_keyset *ks;
180
181         BUG_ON(level >= ARRAY_SIZE(ks->keys));
182
183         /* find the matching keyset, id 0 is the default entry */
184         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
185                 if (ks->id == objectid)
186                         break;
187
188         lockdep_set_class_and_name(&eb->lock,
189                                    &ks->keys[level], ks->names[level]);
190 }
191
192 #endif
193
194 /*
195  * extents on the btree inode are pretty simple, there's one extent
196  * that covers the entire device
197  */
198 static struct extent_map *btree_get_extent(struct inode *inode,
199                 struct page *page, size_t pg_offset, u64 start, u64 len,
200                 int create)
201 {
202         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
203         struct extent_map *em;
204         int ret;
205
206         read_lock(&em_tree->lock);
207         em = lookup_extent_mapping(em_tree, start, len);
208         if (em) {
209                 em->bdev =
210                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
211                 read_unlock(&em_tree->lock);
212                 goto out;
213         }
214         read_unlock(&em_tree->lock);
215
216         em = alloc_extent_map();
217         if (!em) {
218                 em = ERR_PTR(-ENOMEM);
219                 goto out;
220         }
221         em->start = 0;
222         em->len = (u64)-1;
223         em->block_len = (u64)-1;
224         em->block_start = 0;
225         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
226
227         write_lock(&em_tree->lock);
228         ret = add_extent_mapping(em_tree, em, 0);
229         if (ret == -EEXIST) {
230                 free_extent_map(em);
231                 em = lookup_extent_mapping(em_tree, start, len);
232                 if (!em)
233                         em = ERR_PTR(-EIO);
234         } else if (ret) {
235                 free_extent_map(em);
236                 em = ERR_PTR(ret);
237         }
238         write_unlock(&em_tree->lock);
239
240 out:
241         return em;
242 }
243
244 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
245 {
246         return crc32c(seed, data, len);
247 }
248
249 void btrfs_csum_final(u32 crc, char *result)
250 {
251         put_unaligned_le32(~crc, result);
252 }
253
254 /*
255  * compute the csum for a btree block, and either verify it or write it
256  * into the csum field of the block.
257  */
258 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
259                            int verify)
260 {
261         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
262         char *result = NULL;
263         unsigned long len;
264         unsigned long cur_len;
265         unsigned long offset = BTRFS_CSUM_SIZE;
266         char *kaddr;
267         unsigned long map_start;
268         unsigned long map_len;
269         int err;
270         u32 crc = ~(u32)0;
271         unsigned long inline_result;
272
273         len = buf->len - offset;
274         while (len > 0) {
275                 err = map_private_extent_buffer(buf, offset, 32,
276                                         &kaddr, &map_start, &map_len);
277                 if (err)
278                         return 1;
279                 cur_len = min(len, map_len - (offset - map_start));
280                 crc = btrfs_csum_data(kaddr + offset - map_start,
281                                       crc, cur_len);
282                 len -= cur_len;
283                 offset += cur_len;
284         }
285         if (csum_size > sizeof(inline_result)) {
286                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
287                 if (!result)
288                         return 1;
289         } else {
290                 result = (char *)&inline_result;
291         }
292
293         btrfs_csum_final(crc, result);
294
295         if (verify) {
296                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
297                         u32 val;
298                         u32 found = 0;
299                         memcpy(&found, result, csum_size);
300
301                         read_extent_buffer(buf, &val, 0, csum_size);
302                         printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
303                                        "failed on %llu wanted %X found %X "
304                                        "level %d\n",
305                                        root->fs_info->sb->s_id,
306                                        (unsigned long long)buf->start, val, found,
307                                        btrfs_header_level(buf));
308                         if (result != (char *)&inline_result)
309                                 kfree(result);
310                         return 1;
311                 }
312         } else {
313                 write_extent_buffer(buf, result, 0, csum_size);
314         }
315         if (result != (char *)&inline_result)
316                 kfree(result);
317         return 0;
318 }
319
320 /*
321  * we can't consider a given block up to date unless the transid of the
322  * block matches the transid in the parent node's pointer.  This is how we
323  * detect blocks that either didn't get written at all or got written
324  * in the wrong place.
325  */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327                                  struct extent_buffer *eb, u64 parent_transid,
328                                  int atomic)
329 {
330         struct extent_state *cached_state = NULL;
331         int ret;
332
333         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334                 return 0;
335
336         if (atomic)
337                 return -EAGAIN;
338
339         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340                          0, &cached_state);
341         if (extent_buffer_uptodate(eb) &&
342             btrfs_header_generation(eb) == parent_transid) {
343                 ret = 0;
344                 goto out;
345         }
346         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347                        "found %llu\n",
348                        (unsigned long long)eb->start,
349                        (unsigned long long)parent_transid,
350                        (unsigned long long)btrfs_header_generation(eb));
351         ret = 1;
352         clear_extent_buffer_uptodate(eb);
353 out:
354         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
355                              &cached_state, GFP_NOFS);
356         return ret;
357 }
358
359 /*
360  * Return 0 if the superblock checksum type matches the checksum value of that
361  * algorithm. Pass the raw disk superblock data.
362  */
363 static int btrfs_check_super_csum(char *raw_disk_sb)
364 {
365         struct btrfs_super_block *disk_sb =
366                 (struct btrfs_super_block *)raw_disk_sb;
367         u16 csum_type = btrfs_super_csum_type(disk_sb);
368         int ret = 0;
369
370         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
371                 u32 crc = ~(u32)0;
372                 const int csum_size = sizeof(crc);
373                 char result[csum_size];
374
375                 /*
376                  * The super_block structure does not span the whole
377                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
378                  * is filled with zeros and is included in the checkum.
379                  */
380                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
381                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
382                 btrfs_csum_final(crc, result);
383
384                 if (memcmp(raw_disk_sb, result, csum_size))
385                         ret = 1;
386
387                 if (ret && btrfs_super_generation(disk_sb) < 10) {
388                         printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
389                         ret = 0;
390                 }
391         }
392
393         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
394                 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
395                                 csum_type);
396                 ret = 1;
397         }
398
399         return ret;
400 }
401
402 /*
403  * helper to read a given tree block, doing retries as required when
404  * the checksums don't match and we have alternate mirrors to try.
405  */
406 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
407                                           struct extent_buffer *eb,
408                                           u64 start, u64 parent_transid)
409 {
410         struct extent_io_tree *io_tree;
411         int failed = 0;
412         int ret;
413         int num_copies = 0;
414         int mirror_num = 0;
415         int failed_mirror = 0;
416
417         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
418         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
419         while (1) {
420                 ret = read_extent_buffer_pages(io_tree, eb, start,
421                                                WAIT_COMPLETE,
422                                                btree_get_extent, mirror_num);
423                 if (!ret) {
424                         if (!verify_parent_transid(io_tree, eb,
425                                                    parent_transid, 0))
426                                 break;
427                         else
428                                 ret = -EIO;
429                 }
430
431                 /*
432                  * This buffer's crc is fine, but its contents are corrupted, so
433                  * there is no reason to read the other copies, they won't be
434                  * any less wrong.
435                  */
436                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
437                         break;
438
439                 num_copies = btrfs_num_copies(root->fs_info,
440                                               eb->start, eb->len);
441                 if (num_copies == 1)
442                         break;
443
444                 if (!failed_mirror) {
445                         failed = 1;
446                         failed_mirror = eb->read_mirror;
447                 }
448
449                 mirror_num++;
450                 if (mirror_num == failed_mirror)
451                         mirror_num++;
452
453                 if (mirror_num > num_copies)
454                         break;
455         }
456
457         if (failed && !ret && failed_mirror)
458                 repair_eb_io_failure(root, eb, failed_mirror);
459
460         return ret;
461 }
462
463 /*
464  * checksum a dirty tree block before IO.  This has extra checks to make sure
465  * we only fill in the checksum field in the first page of a multi-page block
466  */
467
468 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
469 {
470         struct extent_io_tree *tree;
471         u64 start = page_offset(page);
472         u64 found_start;
473         struct extent_buffer *eb;
474
475         tree = &BTRFS_I(page->mapping->host)->io_tree;
476
477         eb = (struct extent_buffer *)page->private;
478         if (page != eb->pages[0])
479                 return 0;
480         found_start = btrfs_header_bytenr(eb);
481         if (found_start != start) {
482                 WARN_ON(1);
483                 return 0;
484         }
485         if (!PageUptodate(page)) {
486                 WARN_ON(1);
487                 return 0;
488         }
489         csum_tree_block(root, eb, 0);
490         return 0;
491 }
492
493 static int check_tree_block_fsid(struct btrfs_root *root,
494                                  struct extent_buffer *eb)
495 {
496         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
497         u8 fsid[BTRFS_UUID_SIZE];
498         int ret = 1;
499
500         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
501                            BTRFS_FSID_SIZE);
502         while (fs_devices) {
503                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
504                         ret = 0;
505                         break;
506                 }
507                 fs_devices = fs_devices->seed;
508         }
509         return ret;
510 }
511
512 #define CORRUPT(reason, eb, root, slot)                         \
513         printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
514                "root=%llu, slot=%d\n", reason,                  \
515                (unsigned long long)btrfs_header_bytenr(eb),     \
516                (unsigned long long)root->objectid, slot)
517
518 static noinline int check_leaf(struct btrfs_root *root,
519                                struct extent_buffer *leaf)
520 {
521         struct btrfs_key key;
522         struct btrfs_key leaf_key;
523         u32 nritems = btrfs_header_nritems(leaf);
524         int slot;
525
526         if (nritems == 0)
527                 return 0;
528
529         /* Check the 0 item */
530         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
531             BTRFS_LEAF_DATA_SIZE(root)) {
532                 CORRUPT("invalid item offset size pair", leaf, root, 0);
533                 return -EIO;
534         }
535
536         /*
537          * Check to make sure each items keys are in the correct order and their
538          * offsets make sense.  We only have to loop through nritems-1 because
539          * we check the current slot against the next slot, which verifies the
540          * next slot's offset+size makes sense and that the current's slot
541          * offset is correct.
542          */
543         for (slot = 0; slot < nritems - 1; slot++) {
544                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
545                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
546
547                 /* Make sure the keys are in the right order */
548                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
549                         CORRUPT("bad key order", leaf, root, slot);
550                         return -EIO;
551                 }
552
553                 /*
554                  * Make sure the offset and ends are right, remember that the
555                  * item data starts at the end of the leaf and grows towards the
556                  * front.
557                  */
558                 if (btrfs_item_offset_nr(leaf, slot) !=
559                         btrfs_item_end_nr(leaf, slot + 1)) {
560                         CORRUPT("slot offset bad", leaf, root, slot);
561                         return -EIO;
562                 }
563
564                 /*
565                  * Check to make sure that we don't point outside of the leaf,
566                  * just incase all the items are consistent to eachother, but
567                  * all point outside of the leaf.
568                  */
569                 if (btrfs_item_end_nr(leaf, slot) >
570                     BTRFS_LEAF_DATA_SIZE(root)) {
571                         CORRUPT("slot end outside of leaf", leaf, root, slot);
572                         return -EIO;
573                 }
574         }
575
576         return 0;
577 }
578
579 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
580                                       u64 phy_offset, struct page *page,
581                                       u64 start, u64 end, int mirror)
582 {
583         struct extent_io_tree *tree;
584         u64 found_start;
585         int found_level;
586         struct extent_buffer *eb;
587         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
588         int ret = 0;
589         int reads_done;
590
591         if (!page->private)
592                 goto out;
593
594         tree = &BTRFS_I(page->mapping->host)->io_tree;
595         eb = (struct extent_buffer *)page->private;
596
597         /* the pending IO might have been the only thing that kept this buffer
598          * in memory.  Make sure we have a ref for all this other checks
599          */
600         extent_buffer_get(eb);
601
602         reads_done = atomic_dec_and_test(&eb->io_pages);
603         if (!reads_done)
604                 goto err;
605
606         eb->read_mirror = mirror;
607         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
608                 ret = -EIO;
609                 goto err;
610         }
611
612         found_start = btrfs_header_bytenr(eb);
613         if (found_start != eb->start) {
614                 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
615                                "%llu %llu\n",
616                                (unsigned long long)found_start,
617                                (unsigned long long)eb->start);
618                 ret = -EIO;
619                 goto err;
620         }
621         if (check_tree_block_fsid(root, eb)) {
622                 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
623                                (unsigned long long)eb->start);
624                 ret = -EIO;
625                 goto err;
626         }
627         found_level = btrfs_header_level(eb);
628         if (found_level >= BTRFS_MAX_LEVEL) {
629                 btrfs_info(root->fs_info, "bad tree block level %d\n",
630                            (int)btrfs_header_level(eb));
631                 ret = -EIO;
632                 goto err;
633         }
634
635         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
636                                        eb, found_level);
637
638         ret = csum_tree_block(root, eb, 1);
639         if (ret) {
640                 ret = -EIO;
641                 goto err;
642         }
643
644         /*
645          * If this is a leaf block and it is corrupt, set the corrupt bit so
646          * that we don't try and read the other copies of this block, just
647          * return -EIO.
648          */
649         if (found_level == 0 && check_leaf(root, eb)) {
650                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
651                 ret = -EIO;
652         }
653
654         if (!ret)
655                 set_extent_buffer_uptodate(eb);
656 err:
657         if (reads_done &&
658             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
659                 btree_readahead_hook(root, eb, eb->start, ret);
660
661         if (ret) {
662                 /*
663                  * our io error hook is going to dec the io pages
664                  * again, we have to make sure it has something
665                  * to decrement
666                  */
667                 atomic_inc(&eb->io_pages);
668                 clear_extent_buffer_uptodate(eb);
669         }
670         free_extent_buffer(eb);
671 out:
672         return ret;
673 }
674
675 static int btree_io_failed_hook(struct page *page, int failed_mirror)
676 {
677         struct extent_buffer *eb;
678         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
679
680         eb = (struct extent_buffer *)page->private;
681         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
682         eb->read_mirror = failed_mirror;
683         atomic_dec(&eb->io_pages);
684         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
685                 btree_readahead_hook(root, eb, eb->start, -EIO);
686         return -EIO;    /* we fixed nothing */
687 }
688
689 static void end_workqueue_bio(struct bio *bio, int err)
690 {
691         struct end_io_wq *end_io_wq = bio->bi_private;
692         struct btrfs_fs_info *fs_info;
693
694         fs_info = end_io_wq->info;
695         end_io_wq->error = err;
696         end_io_wq->work.func = end_workqueue_fn;
697         end_io_wq->work.flags = 0;
698
699         if (bio->bi_rw & REQ_WRITE) {
700                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
701                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
702                                            &end_io_wq->work);
703                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
704                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
705                                            &end_io_wq->work);
706                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
707                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
708                                            &end_io_wq->work);
709                 else
710                         btrfs_queue_worker(&fs_info->endio_write_workers,
711                                            &end_io_wq->work);
712         } else {
713                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
714                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
715                                            &end_io_wq->work);
716                 else if (end_io_wq->metadata)
717                         btrfs_queue_worker(&fs_info->endio_meta_workers,
718                                            &end_io_wq->work);
719                 else
720                         btrfs_queue_worker(&fs_info->endio_workers,
721                                            &end_io_wq->work);
722         }
723 }
724
725 /*
726  * For the metadata arg you want
727  *
728  * 0 - if data
729  * 1 - if normal metadta
730  * 2 - if writing to the free space cache area
731  * 3 - raid parity work
732  */
733 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
734                         int metadata)
735 {
736         struct end_io_wq *end_io_wq;
737         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
738         if (!end_io_wq)
739                 return -ENOMEM;
740
741         end_io_wq->private = bio->bi_private;
742         end_io_wq->end_io = bio->bi_end_io;
743         end_io_wq->info = info;
744         end_io_wq->error = 0;
745         end_io_wq->bio = bio;
746         end_io_wq->metadata = metadata;
747
748         bio->bi_private = end_io_wq;
749         bio->bi_end_io = end_workqueue_bio;
750         return 0;
751 }
752
753 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
754 {
755         unsigned long limit = min_t(unsigned long,
756                                     info->workers.max_workers,
757                                     info->fs_devices->open_devices);
758         return 256 * limit;
759 }
760
761 static void run_one_async_start(struct btrfs_work *work)
762 {
763         struct async_submit_bio *async;
764         int ret;
765
766         async = container_of(work, struct  async_submit_bio, work);
767         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
768                                       async->mirror_num, async->bio_flags,
769                                       async->bio_offset);
770         if (ret)
771                 async->error = ret;
772 }
773
774 static void run_one_async_done(struct btrfs_work *work)
775 {
776         struct btrfs_fs_info *fs_info;
777         struct async_submit_bio *async;
778         int limit;
779
780         async = container_of(work, struct  async_submit_bio, work);
781         fs_info = BTRFS_I(async->inode)->root->fs_info;
782
783         limit = btrfs_async_submit_limit(fs_info);
784         limit = limit * 2 / 3;
785
786         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
787             waitqueue_active(&fs_info->async_submit_wait))
788                 wake_up(&fs_info->async_submit_wait);
789
790         /* If an error occured we just want to clean up the bio and move on */
791         if (async->error) {
792                 bio_endio(async->bio, async->error);
793                 return;
794         }
795
796         async->submit_bio_done(async->inode, async->rw, async->bio,
797                                async->mirror_num, async->bio_flags,
798                                async->bio_offset);
799 }
800
801 static void run_one_async_free(struct btrfs_work *work)
802 {
803         struct async_submit_bio *async;
804
805         async = container_of(work, struct  async_submit_bio, work);
806         kfree(async);
807 }
808
809 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
810                         int rw, struct bio *bio, int mirror_num,
811                         unsigned long bio_flags,
812                         u64 bio_offset,
813                         extent_submit_bio_hook_t *submit_bio_start,
814                         extent_submit_bio_hook_t *submit_bio_done)
815 {
816         struct async_submit_bio *async;
817
818         async = kmalloc(sizeof(*async), GFP_NOFS);
819         if (!async)
820                 return -ENOMEM;
821
822         async->inode = inode;
823         async->rw = rw;
824         async->bio = bio;
825         async->mirror_num = mirror_num;
826         async->submit_bio_start = submit_bio_start;
827         async->submit_bio_done = submit_bio_done;
828
829         async->work.func = run_one_async_start;
830         async->work.ordered_func = run_one_async_done;
831         async->work.ordered_free = run_one_async_free;
832
833         async->work.flags = 0;
834         async->bio_flags = bio_flags;
835         async->bio_offset = bio_offset;
836
837         async->error = 0;
838
839         atomic_inc(&fs_info->nr_async_submits);
840
841         if (rw & REQ_SYNC)
842                 btrfs_set_work_high_prio(&async->work);
843
844         btrfs_queue_worker(&fs_info->workers, &async->work);
845
846         while (atomic_read(&fs_info->async_submit_draining) &&
847               atomic_read(&fs_info->nr_async_submits)) {
848                 wait_event(fs_info->async_submit_wait,
849                            (atomic_read(&fs_info->nr_async_submits) == 0));
850         }
851
852         return 0;
853 }
854
855 static int btree_csum_one_bio(struct bio *bio)
856 {
857         struct bio_vec *bvec = bio->bi_io_vec;
858         int bio_index = 0;
859         struct btrfs_root *root;
860         int ret = 0;
861
862         WARN_ON(bio->bi_vcnt <= 0);
863         while (bio_index < bio->bi_vcnt) {
864                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
865                 ret = csum_dirty_buffer(root, bvec->bv_page);
866                 if (ret)
867                         break;
868                 bio_index++;
869                 bvec++;
870         }
871         return ret;
872 }
873
874 static int __btree_submit_bio_start(struct inode *inode, int rw,
875                                     struct bio *bio, int mirror_num,
876                                     unsigned long bio_flags,
877                                     u64 bio_offset)
878 {
879         /*
880          * when we're called for a write, we're already in the async
881          * submission context.  Just jump into btrfs_map_bio
882          */
883         return btree_csum_one_bio(bio);
884 }
885
886 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
887                                  int mirror_num, unsigned long bio_flags,
888                                  u64 bio_offset)
889 {
890         int ret;
891
892         /*
893          * when we're called for a write, we're already in the async
894          * submission context.  Just jump into btrfs_map_bio
895          */
896         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
897         if (ret)
898                 bio_endio(bio, ret);
899         return ret;
900 }
901
902 static int check_async_write(struct inode *inode, unsigned long bio_flags)
903 {
904         if (bio_flags & EXTENT_BIO_TREE_LOG)
905                 return 0;
906 #ifdef CONFIG_X86
907         if (cpu_has_xmm4_2)
908                 return 0;
909 #endif
910         return 1;
911 }
912
913 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
914                                  int mirror_num, unsigned long bio_flags,
915                                  u64 bio_offset)
916 {
917         int async = check_async_write(inode, bio_flags);
918         int ret;
919
920         if (!(rw & REQ_WRITE)) {
921                 /*
922                  * called for a read, do the setup so that checksum validation
923                  * can happen in the async kernel threads
924                  */
925                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
926                                           bio, 1);
927                 if (ret)
928                         goto out_w_error;
929                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
930                                     mirror_num, 0);
931         } else if (!async) {
932                 ret = btree_csum_one_bio(bio);
933                 if (ret)
934                         goto out_w_error;
935                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
936                                     mirror_num, 0);
937         } else {
938                 /*
939                  * kthread helpers are used to submit writes so that
940                  * checksumming can happen in parallel across all CPUs
941                  */
942                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
943                                           inode, rw, bio, mirror_num, 0,
944                                           bio_offset,
945                                           __btree_submit_bio_start,
946                                           __btree_submit_bio_done);
947         }
948
949         if (ret) {
950 out_w_error:
951                 bio_endio(bio, ret);
952         }
953         return ret;
954 }
955
956 #ifdef CONFIG_MIGRATION
957 static int btree_migratepage(struct address_space *mapping,
958                         struct page *newpage, struct page *page,
959                         enum migrate_mode mode)
960 {
961         /*
962          * we can't safely write a btree page from here,
963          * we haven't done the locking hook
964          */
965         if (PageDirty(page))
966                 return -EAGAIN;
967         /*
968          * Buffers may be managed in a filesystem specific way.
969          * We must have no buffers or drop them.
970          */
971         if (page_has_private(page) &&
972             !try_to_release_page(page, GFP_KERNEL))
973                 return -EAGAIN;
974         return migrate_page(mapping, newpage, page, mode);
975 }
976 #endif
977
978
979 static int btree_writepages(struct address_space *mapping,
980                             struct writeback_control *wbc)
981 {
982         struct extent_io_tree *tree;
983         struct btrfs_fs_info *fs_info;
984         int ret;
985
986         tree = &BTRFS_I(mapping->host)->io_tree;
987         if (wbc->sync_mode == WB_SYNC_NONE) {
988
989                 if (wbc->for_kupdate)
990                         return 0;
991
992                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
993                 /* this is a bit racy, but that's ok */
994                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
995                                              BTRFS_DIRTY_METADATA_THRESH);
996                 if (ret < 0)
997                         return 0;
998         }
999         return btree_write_cache_pages(mapping, wbc);
1000 }
1001
1002 static int btree_readpage(struct file *file, struct page *page)
1003 {
1004         struct extent_io_tree *tree;
1005         tree = &BTRFS_I(page->mapping->host)->io_tree;
1006         return extent_read_full_page(tree, page, btree_get_extent, 0);
1007 }
1008
1009 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1010 {
1011         if (PageWriteback(page) || PageDirty(page))
1012                 return 0;
1013
1014         return try_release_extent_buffer(page);
1015 }
1016
1017 static void btree_invalidatepage(struct page *page, unsigned int offset,
1018                                  unsigned int length)
1019 {
1020         struct extent_io_tree *tree;
1021         tree = &BTRFS_I(page->mapping->host)->io_tree;
1022         extent_invalidatepage(tree, page, offset);
1023         btree_releasepage(page, GFP_NOFS);
1024         if (PagePrivate(page)) {
1025                 printk(KERN_WARNING "btrfs warning page private not zero "
1026                        "on page %llu\n", (unsigned long long)page_offset(page));
1027                 ClearPagePrivate(page);
1028                 set_page_private(page, 0);
1029                 page_cache_release(page);
1030         }
1031 }
1032
1033 static int btree_set_page_dirty(struct page *page)
1034 {
1035 #ifdef DEBUG
1036         struct extent_buffer *eb;
1037
1038         BUG_ON(!PagePrivate(page));
1039         eb = (struct extent_buffer *)page->private;
1040         BUG_ON(!eb);
1041         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1042         BUG_ON(!atomic_read(&eb->refs));
1043         btrfs_assert_tree_locked(eb);
1044 #endif
1045         return __set_page_dirty_nobuffers(page);
1046 }
1047
1048 static const struct address_space_operations btree_aops = {
1049         .readpage       = btree_readpage,
1050         .writepages     = btree_writepages,
1051         .releasepage    = btree_releasepage,
1052         .invalidatepage = btree_invalidatepage,
1053 #ifdef CONFIG_MIGRATION
1054         .migratepage    = btree_migratepage,
1055 #endif
1056         .set_page_dirty = btree_set_page_dirty,
1057 };
1058
1059 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1060                          u64 parent_transid)
1061 {
1062         struct extent_buffer *buf = NULL;
1063         struct inode *btree_inode = root->fs_info->btree_inode;
1064         int ret = 0;
1065
1066         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1067         if (!buf)
1068                 return 0;
1069         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1070                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1071         free_extent_buffer(buf);
1072         return ret;
1073 }
1074
1075 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1076                          int mirror_num, struct extent_buffer **eb)
1077 {
1078         struct extent_buffer *buf = NULL;
1079         struct inode *btree_inode = root->fs_info->btree_inode;
1080         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1081         int ret;
1082
1083         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1084         if (!buf)
1085                 return 0;
1086
1087         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1088
1089         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1090                                        btree_get_extent, mirror_num);
1091         if (ret) {
1092                 free_extent_buffer(buf);
1093                 return ret;
1094         }
1095
1096         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1097                 free_extent_buffer(buf);
1098                 return -EIO;
1099         } else if (extent_buffer_uptodate(buf)) {
1100                 *eb = buf;
1101         } else {
1102                 free_extent_buffer(buf);
1103         }
1104         return 0;
1105 }
1106
1107 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1108                                             u64 bytenr, u32 blocksize)
1109 {
1110         struct inode *btree_inode = root->fs_info->btree_inode;
1111         struct extent_buffer *eb;
1112         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1113                                 bytenr, blocksize);
1114         return eb;
1115 }
1116
1117 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1118                                                  u64 bytenr, u32 blocksize)
1119 {
1120         struct inode *btree_inode = root->fs_info->btree_inode;
1121         struct extent_buffer *eb;
1122
1123         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1124                                  bytenr, blocksize);
1125         return eb;
1126 }
1127
1128
1129 int btrfs_write_tree_block(struct extent_buffer *buf)
1130 {
1131         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1132                                         buf->start + buf->len - 1);
1133 }
1134
1135 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1136 {
1137         return filemap_fdatawait_range(buf->pages[0]->mapping,
1138                                        buf->start, buf->start + buf->len - 1);
1139 }
1140
1141 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1142                                       u32 blocksize, u64 parent_transid)
1143 {
1144         struct extent_buffer *buf = NULL;
1145         int ret;
1146
1147         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1148         if (!buf)
1149                 return NULL;
1150
1151         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1152         return buf;
1153
1154 }
1155
1156 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1157                       struct extent_buffer *buf)
1158 {
1159         struct btrfs_fs_info *fs_info = root->fs_info;
1160
1161         if (btrfs_header_generation(buf) ==
1162             fs_info->running_transaction->transid) {
1163                 btrfs_assert_tree_locked(buf);
1164
1165                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1166                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1167                                              -buf->len,
1168                                              fs_info->dirty_metadata_batch);
1169                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1170                         btrfs_set_lock_blocking(buf);
1171                         clear_extent_buffer_dirty(buf);
1172                 }
1173         }
1174 }
1175
1176 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1177                          u32 stripesize, struct btrfs_root *root,
1178                          struct btrfs_fs_info *fs_info,
1179                          u64 objectid)
1180 {
1181         root->node = NULL;
1182         root->commit_root = NULL;
1183         root->sectorsize = sectorsize;
1184         root->nodesize = nodesize;
1185         root->leafsize = leafsize;
1186         root->stripesize = stripesize;
1187         root->ref_cows = 0;
1188         root->track_dirty = 0;
1189         root->in_radix = 0;
1190         root->orphan_item_inserted = 0;
1191         root->orphan_cleanup_state = 0;
1192
1193         root->objectid = objectid;
1194         root->last_trans = 0;
1195         root->highest_objectid = 0;
1196         root->nr_delalloc_inodes = 0;
1197         root->nr_ordered_extents = 0;
1198         root->name = NULL;
1199         root->inode_tree = RB_ROOT;
1200         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1201         root->block_rsv = NULL;
1202         root->orphan_block_rsv = NULL;
1203
1204         INIT_LIST_HEAD(&root->dirty_list);
1205         INIT_LIST_HEAD(&root->root_list);
1206         INIT_LIST_HEAD(&root->delalloc_inodes);
1207         INIT_LIST_HEAD(&root->delalloc_root);
1208         INIT_LIST_HEAD(&root->ordered_extents);
1209         INIT_LIST_HEAD(&root->ordered_root);
1210         INIT_LIST_HEAD(&root->logged_list[0]);
1211         INIT_LIST_HEAD(&root->logged_list[1]);
1212         spin_lock_init(&root->orphan_lock);
1213         spin_lock_init(&root->inode_lock);
1214         spin_lock_init(&root->delalloc_lock);
1215         spin_lock_init(&root->ordered_extent_lock);
1216         spin_lock_init(&root->accounting_lock);
1217         spin_lock_init(&root->log_extents_lock[0]);
1218         spin_lock_init(&root->log_extents_lock[1]);
1219         mutex_init(&root->objectid_mutex);
1220         mutex_init(&root->log_mutex);
1221         init_waitqueue_head(&root->log_writer_wait);
1222         init_waitqueue_head(&root->log_commit_wait[0]);
1223         init_waitqueue_head(&root->log_commit_wait[1]);
1224         atomic_set(&root->log_commit[0], 0);
1225         atomic_set(&root->log_commit[1], 0);
1226         atomic_set(&root->log_writers, 0);
1227         atomic_set(&root->log_batch, 0);
1228         atomic_set(&root->orphan_inodes, 0);
1229         atomic_set(&root->refs, 1);
1230         root->log_transid = 0;
1231         root->last_log_commit = 0;
1232         extent_io_tree_init(&root->dirty_log_pages,
1233                              fs_info->btree_inode->i_mapping);
1234
1235         memset(&root->root_key, 0, sizeof(root->root_key));
1236         memset(&root->root_item, 0, sizeof(root->root_item));
1237         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1238         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1239         root->defrag_trans_start = fs_info->generation;
1240         init_completion(&root->kobj_unregister);
1241         root->defrag_running = 0;
1242         root->root_key.objectid = objectid;
1243         root->anon_dev = 0;
1244
1245         spin_lock_init(&root->root_item_lock);
1246 }
1247
1248 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1249 {
1250         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1251         if (root)
1252                 root->fs_info = fs_info;
1253         return root;
1254 }
1255
1256 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1257                                      struct btrfs_fs_info *fs_info,
1258                                      u64 objectid)
1259 {
1260         struct extent_buffer *leaf;
1261         struct btrfs_root *tree_root = fs_info->tree_root;
1262         struct btrfs_root *root;
1263         struct btrfs_key key;
1264         int ret = 0;
1265         u64 bytenr;
1266         uuid_le uuid;
1267
1268         root = btrfs_alloc_root(fs_info);
1269         if (!root)
1270                 return ERR_PTR(-ENOMEM);
1271
1272         __setup_root(tree_root->nodesize, tree_root->leafsize,
1273                      tree_root->sectorsize, tree_root->stripesize,
1274                      root, fs_info, objectid);
1275         root->root_key.objectid = objectid;
1276         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1277         root->root_key.offset = 0;
1278
1279         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1280                                       0, objectid, NULL, 0, 0, 0);
1281         if (IS_ERR(leaf)) {
1282                 ret = PTR_ERR(leaf);
1283                 leaf = NULL;
1284                 goto fail;
1285         }
1286
1287         bytenr = leaf->start;
1288         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1289         btrfs_set_header_bytenr(leaf, leaf->start);
1290         btrfs_set_header_generation(leaf, trans->transid);
1291         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1292         btrfs_set_header_owner(leaf, objectid);
1293         root->node = leaf;
1294
1295         write_extent_buffer(leaf, fs_info->fsid,
1296                             (unsigned long)btrfs_header_fsid(leaf),
1297                             BTRFS_FSID_SIZE);
1298         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1299                             (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1300                             BTRFS_UUID_SIZE);
1301         btrfs_mark_buffer_dirty(leaf);
1302
1303         root->commit_root = btrfs_root_node(root);
1304         root->track_dirty = 1;
1305
1306
1307         root->root_item.flags = 0;
1308         root->root_item.byte_limit = 0;
1309         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1310         btrfs_set_root_generation(&root->root_item, trans->transid);
1311         btrfs_set_root_level(&root->root_item, 0);
1312         btrfs_set_root_refs(&root->root_item, 1);
1313         btrfs_set_root_used(&root->root_item, leaf->len);
1314         btrfs_set_root_last_snapshot(&root->root_item, 0);
1315         btrfs_set_root_dirid(&root->root_item, 0);
1316         uuid_le_gen(&uuid);
1317         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1318         root->root_item.drop_level = 0;
1319
1320         key.objectid = objectid;
1321         key.type = BTRFS_ROOT_ITEM_KEY;
1322         key.offset = 0;
1323         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1324         if (ret)
1325                 goto fail;
1326
1327         btrfs_tree_unlock(leaf);
1328
1329         return root;
1330
1331 fail:
1332         if (leaf) {
1333                 btrfs_tree_unlock(leaf);
1334                 free_extent_buffer(leaf);
1335         }
1336         kfree(root);
1337
1338         return ERR_PTR(ret);
1339 }
1340
1341 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1342                                          struct btrfs_fs_info *fs_info)
1343 {
1344         struct btrfs_root *root;
1345         struct btrfs_root *tree_root = fs_info->tree_root;
1346         struct extent_buffer *leaf;
1347
1348         root = btrfs_alloc_root(fs_info);
1349         if (!root)
1350                 return ERR_PTR(-ENOMEM);
1351
1352         __setup_root(tree_root->nodesize, tree_root->leafsize,
1353                      tree_root->sectorsize, tree_root->stripesize,
1354                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1355
1356         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1357         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1358         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1359         /*
1360          * log trees do not get reference counted because they go away
1361          * before a real commit is actually done.  They do store pointers
1362          * to file data extents, and those reference counts still get
1363          * updated (along with back refs to the log tree).
1364          */
1365         root->ref_cows = 0;
1366
1367         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1368                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1369                                       0, 0, 0);
1370         if (IS_ERR(leaf)) {
1371                 kfree(root);
1372                 return ERR_CAST(leaf);
1373         }
1374
1375         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1376         btrfs_set_header_bytenr(leaf, leaf->start);
1377         btrfs_set_header_generation(leaf, trans->transid);
1378         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1379         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1380         root->node = leaf;
1381
1382         write_extent_buffer(root->node, root->fs_info->fsid,
1383                             (unsigned long)btrfs_header_fsid(root->node),
1384                             BTRFS_FSID_SIZE);
1385         btrfs_mark_buffer_dirty(root->node);
1386         btrfs_tree_unlock(root->node);
1387         return root;
1388 }
1389
1390 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1391                              struct btrfs_fs_info *fs_info)
1392 {
1393         struct btrfs_root *log_root;
1394
1395         log_root = alloc_log_tree(trans, fs_info);
1396         if (IS_ERR(log_root))
1397                 return PTR_ERR(log_root);
1398         WARN_ON(fs_info->log_root_tree);
1399         fs_info->log_root_tree = log_root;
1400         return 0;
1401 }
1402
1403 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1404                        struct btrfs_root *root)
1405 {
1406         struct btrfs_root *log_root;
1407         struct btrfs_inode_item *inode_item;
1408
1409         log_root = alloc_log_tree(trans, root->fs_info);
1410         if (IS_ERR(log_root))
1411                 return PTR_ERR(log_root);
1412
1413         log_root->last_trans = trans->transid;
1414         log_root->root_key.offset = root->root_key.objectid;
1415
1416         inode_item = &log_root->root_item.inode;
1417         btrfs_set_stack_inode_generation(inode_item, 1);
1418         btrfs_set_stack_inode_size(inode_item, 3);
1419         btrfs_set_stack_inode_nlink(inode_item, 1);
1420         btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1421         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1422
1423         btrfs_set_root_node(&log_root->root_item, log_root->node);
1424
1425         WARN_ON(root->log_root);
1426         root->log_root = log_root;
1427         root->log_transid = 0;
1428         root->last_log_commit = 0;
1429         return 0;
1430 }
1431
1432 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1433                                         struct btrfs_key *key)
1434 {
1435         struct btrfs_root *root;
1436         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1437         struct btrfs_path *path;
1438         u64 generation;
1439         u32 blocksize;
1440         int ret;
1441
1442         path = btrfs_alloc_path();
1443         if (!path)
1444                 return ERR_PTR(-ENOMEM);
1445
1446         root = btrfs_alloc_root(fs_info);
1447         if (!root) {
1448                 ret = -ENOMEM;
1449                 goto alloc_fail;
1450         }
1451
1452         __setup_root(tree_root->nodesize, tree_root->leafsize,
1453                      tree_root->sectorsize, tree_root->stripesize,
1454                      root, fs_info, key->objectid);
1455
1456         ret = btrfs_find_root(tree_root, key, path,
1457                               &root->root_item, &root->root_key);
1458         if (ret) {
1459                 if (ret > 0)
1460                         ret = -ENOENT;
1461                 goto find_fail;
1462         }
1463
1464         generation = btrfs_root_generation(&root->root_item);
1465         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1466         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1467                                      blocksize, generation);
1468         if (!root->node) {
1469                 ret = -ENOMEM;
1470                 goto find_fail;
1471         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1472                 ret = -EIO;
1473                 goto read_fail;
1474         }
1475         root->commit_root = btrfs_root_node(root);
1476 out:
1477         btrfs_free_path(path);
1478         return root;
1479
1480 read_fail:
1481         free_extent_buffer(root->node);
1482 find_fail:
1483         kfree(root);
1484 alloc_fail:
1485         root = ERR_PTR(ret);
1486         goto out;
1487 }
1488
1489 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1490                                       struct btrfs_key *location)
1491 {
1492         struct btrfs_root *root;
1493
1494         root = btrfs_read_tree_root(tree_root, location);
1495         if (IS_ERR(root))
1496                 return root;
1497
1498         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1499                 root->ref_cows = 1;
1500                 btrfs_check_and_init_root_item(&root->root_item);
1501         }
1502
1503         return root;
1504 }
1505
1506 int btrfs_init_fs_root(struct btrfs_root *root)
1507 {
1508         int ret;
1509
1510         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1511         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1512                                         GFP_NOFS);
1513         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1514                 ret = -ENOMEM;
1515                 goto fail;
1516         }
1517
1518         btrfs_init_free_ino_ctl(root);
1519         mutex_init(&root->fs_commit_mutex);
1520         spin_lock_init(&root->cache_lock);
1521         init_waitqueue_head(&root->cache_wait);
1522
1523         ret = get_anon_bdev(&root->anon_dev);
1524         if (ret)
1525                 goto fail;
1526         return 0;
1527 fail:
1528         kfree(root->free_ino_ctl);
1529         kfree(root->free_ino_pinned);
1530         return ret;
1531 }
1532
1533 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1534                                         u64 root_id)
1535 {
1536         struct btrfs_root *root;
1537
1538         spin_lock(&fs_info->fs_roots_radix_lock);
1539         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1540                                  (unsigned long)root_id);
1541         spin_unlock(&fs_info->fs_roots_radix_lock);
1542         return root;
1543 }
1544
1545 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1546                          struct btrfs_root *root)
1547 {
1548         int ret;
1549
1550         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1551         if (ret)
1552                 return ret;
1553
1554         spin_lock(&fs_info->fs_roots_radix_lock);
1555         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1556                                 (unsigned long)root->root_key.objectid,
1557                                 root);
1558         if (ret == 0)
1559                 root->in_radix = 1;
1560         spin_unlock(&fs_info->fs_roots_radix_lock);
1561         radix_tree_preload_end();
1562
1563         return ret;
1564 }
1565
1566 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1567                                               struct btrfs_key *location)
1568 {
1569         struct btrfs_root *root;
1570         int ret;
1571
1572         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1573                 return fs_info->tree_root;
1574         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1575                 return fs_info->extent_root;
1576         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1577                 return fs_info->chunk_root;
1578         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1579                 return fs_info->dev_root;
1580         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1581                 return fs_info->csum_root;
1582         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1583                 return fs_info->quota_root ? fs_info->quota_root :
1584                                              ERR_PTR(-ENOENT);
1585 again:
1586         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1587         if (root)
1588                 return root;
1589
1590         root = btrfs_read_fs_root(fs_info->tree_root, location);
1591         if (IS_ERR(root))
1592                 return root;
1593
1594         if (btrfs_root_refs(&root->root_item) == 0) {
1595                 ret = -ENOENT;
1596                 goto fail;
1597         }
1598
1599         ret = btrfs_init_fs_root(root);
1600         if (ret)
1601                 goto fail;
1602
1603         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1604         if (ret < 0)
1605                 goto fail;
1606         if (ret == 0)
1607                 root->orphan_item_inserted = 1;
1608
1609         ret = btrfs_insert_fs_root(fs_info, root);
1610         if (ret) {
1611                 if (ret == -EEXIST) {
1612                         free_fs_root(root);
1613                         goto again;
1614                 }
1615                 goto fail;
1616         }
1617         return root;
1618 fail:
1619         free_fs_root(root);
1620         return ERR_PTR(ret);
1621 }
1622
1623 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1624 {
1625         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1626         int ret = 0;
1627         struct btrfs_device *device;
1628         struct backing_dev_info *bdi;
1629
1630         rcu_read_lock();
1631         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1632                 if (!device->bdev)
1633                         continue;
1634                 bdi = blk_get_backing_dev_info(device->bdev);
1635                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1636                         ret = 1;
1637                         break;
1638                 }
1639         }
1640         rcu_read_unlock();
1641         return ret;
1642 }
1643
1644 /*
1645  * If this fails, caller must call bdi_destroy() to get rid of the
1646  * bdi again.
1647  */
1648 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1649 {
1650         int err;
1651
1652         bdi->capabilities = BDI_CAP_MAP_COPY;
1653         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1654         if (err)
1655                 return err;
1656
1657         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1658         bdi->congested_fn       = btrfs_congested_fn;
1659         bdi->congested_data     = info;
1660         return 0;
1661 }
1662
1663 /*
1664  * called by the kthread helper functions to finally call the bio end_io
1665  * functions.  This is where read checksum verification actually happens
1666  */
1667 static void end_workqueue_fn(struct btrfs_work *work)
1668 {
1669         struct bio *bio;
1670         struct end_io_wq *end_io_wq;
1671         struct btrfs_fs_info *fs_info;
1672         int error;
1673
1674         end_io_wq = container_of(work, struct end_io_wq, work);
1675         bio = end_io_wq->bio;
1676         fs_info = end_io_wq->info;
1677
1678         error = end_io_wq->error;
1679         bio->bi_private = end_io_wq->private;
1680         bio->bi_end_io = end_io_wq->end_io;
1681         kfree(end_io_wq);
1682         bio_endio(bio, error);
1683 }
1684
1685 static int cleaner_kthread(void *arg)
1686 {
1687         struct btrfs_root *root = arg;
1688         int again;
1689
1690         do {
1691                 again = 0;
1692
1693                 /* Make the cleaner go to sleep early. */
1694                 if (btrfs_need_cleaner_sleep(root))
1695                         goto sleep;
1696
1697                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1698                         goto sleep;
1699
1700                 /*
1701                  * Avoid the problem that we change the status of the fs
1702                  * during the above check and trylock.
1703                  */
1704                 if (btrfs_need_cleaner_sleep(root)) {
1705                         mutex_unlock(&root->fs_info->cleaner_mutex);
1706                         goto sleep;
1707                 }
1708
1709                 btrfs_run_delayed_iputs(root);
1710                 again = btrfs_clean_one_deleted_snapshot(root);
1711                 mutex_unlock(&root->fs_info->cleaner_mutex);
1712
1713                 /*
1714                  * The defragger has dealt with the R/O remount and umount,
1715                  * needn't do anything special here.
1716                  */
1717                 btrfs_run_defrag_inodes(root->fs_info);
1718 sleep:
1719                 if (!try_to_freeze() && !again) {
1720                         set_current_state(TASK_INTERRUPTIBLE);
1721                         if (!kthread_should_stop())
1722                                 schedule();
1723                         __set_current_state(TASK_RUNNING);
1724                 }
1725         } while (!kthread_should_stop());
1726         return 0;
1727 }
1728
1729 static int transaction_kthread(void *arg)
1730 {
1731         struct btrfs_root *root = arg;
1732         struct btrfs_trans_handle *trans;
1733         struct btrfs_transaction *cur;
1734         u64 transid;
1735         unsigned long now;
1736         unsigned long delay;
1737         bool cannot_commit;
1738
1739         do {
1740                 cannot_commit = false;
1741                 delay = HZ * 30;
1742                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1743
1744                 spin_lock(&root->fs_info->trans_lock);
1745                 cur = root->fs_info->running_transaction;
1746                 if (!cur) {
1747                         spin_unlock(&root->fs_info->trans_lock);
1748                         goto sleep;
1749                 }
1750
1751                 now = get_seconds();
1752                 if (cur->state < TRANS_STATE_BLOCKED &&
1753                     (now < cur->start_time || now - cur->start_time < 30)) {
1754                         spin_unlock(&root->fs_info->trans_lock);
1755                         delay = HZ * 5;
1756                         goto sleep;
1757                 }
1758                 transid = cur->transid;
1759                 spin_unlock(&root->fs_info->trans_lock);
1760
1761                 /* If the file system is aborted, this will always fail. */
1762                 trans = btrfs_attach_transaction(root);
1763                 if (IS_ERR(trans)) {
1764                         if (PTR_ERR(trans) != -ENOENT)
1765                                 cannot_commit = true;
1766                         goto sleep;
1767                 }
1768                 if (transid == trans->transid) {
1769                         btrfs_commit_transaction(trans, root);
1770                 } else {
1771                         btrfs_end_transaction(trans, root);
1772                 }
1773 sleep:
1774                 wake_up_process(root->fs_info->cleaner_kthread);
1775                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1776
1777                 if (!try_to_freeze()) {
1778                         set_current_state(TASK_INTERRUPTIBLE);
1779                         if (!kthread_should_stop() &&
1780                             (!btrfs_transaction_blocked(root->fs_info) ||
1781                              cannot_commit))
1782                                 schedule_timeout(delay);
1783                         __set_current_state(TASK_RUNNING);
1784                 }
1785         } while (!kthread_should_stop());
1786         return 0;
1787 }
1788
1789 /*
1790  * this will find the highest generation in the array of
1791  * root backups.  The index of the highest array is returned,
1792  * or -1 if we can't find anything.
1793  *
1794  * We check to make sure the array is valid by comparing the
1795  * generation of the latest  root in the array with the generation
1796  * in the super block.  If they don't match we pitch it.
1797  */
1798 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1799 {
1800         u64 cur;
1801         int newest_index = -1;
1802         struct btrfs_root_backup *root_backup;
1803         int i;
1804
1805         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1806                 root_backup = info->super_copy->super_roots + i;
1807                 cur = btrfs_backup_tree_root_gen(root_backup);
1808                 if (cur == newest_gen)
1809                         newest_index = i;
1810         }
1811
1812         /* check to see if we actually wrapped around */
1813         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1814                 root_backup = info->super_copy->super_roots;
1815                 cur = btrfs_backup_tree_root_gen(root_backup);
1816                 if (cur == newest_gen)
1817                         newest_index = 0;
1818         }
1819         return newest_index;
1820 }
1821
1822
1823 /*
1824  * find the oldest backup so we know where to store new entries
1825  * in the backup array.  This will set the backup_root_index
1826  * field in the fs_info struct
1827  */
1828 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1829                                      u64 newest_gen)
1830 {
1831         int newest_index = -1;
1832
1833         newest_index = find_newest_super_backup(info, newest_gen);
1834         /* if there was garbage in there, just move along */
1835         if (newest_index == -1) {
1836                 info->backup_root_index = 0;
1837         } else {
1838                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1839         }
1840 }
1841
1842 /*
1843  * copy all the root pointers into the super backup array.
1844  * this will bump the backup pointer by one when it is
1845  * done
1846  */
1847 static void backup_super_roots(struct btrfs_fs_info *info)
1848 {
1849         int next_backup;
1850         struct btrfs_root_backup *root_backup;
1851         int last_backup;
1852
1853         next_backup = info->backup_root_index;
1854         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1855                 BTRFS_NUM_BACKUP_ROOTS;
1856
1857         /*
1858          * just overwrite the last backup if we're at the same generation
1859          * this happens only at umount
1860          */
1861         root_backup = info->super_for_commit->super_roots + last_backup;
1862         if (btrfs_backup_tree_root_gen(root_backup) ==
1863             btrfs_header_generation(info->tree_root->node))
1864                 next_backup = last_backup;
1865
1866         root_backup = info->super_for_commit->super_roots + next_backup;
1867
1868         /*
1869          * make sure all of our padding and empty slots get zero filled
1870          * regardless of which ones we use today
1871          */
1872         memset(root_backup, 0, sizeof(*root_backup));
1873
1874         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1875
1876         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1877         btrfs_set_backup_tree_root_gen(root_backup,
1878                                btrfs_header_generation(info->tree_root->node));
1879
1880         btrfs_set_backup_tree_root_level(root_backup,
1881                                btrfs_header_level(info->tree_root->node));
1882
1883         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1884         btrfs_set_backup_chunk_root_gen(root_backup,
1885                                btrfs_header_generation(info->chunk_root->node));
1886         btrfs_set_backup_chunk_root_level(root_backup,
1887                                btrfs_header_level(info->chunk_root->node));
1888
1889         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1890         btrfs_set_backup_extent_root_gen(root_backup,
1891                                btrfs_header_generation(info->extent_root->node));
1892         btrfs_set_backup_extent_root_level(root_backup,
1893                                btrfs_header_level(info->extent_root->node));
1894
1895         /*
1896          * we might commit during log recovery, which happens before we set
1897          * the fs_root.  Make sure it is valid before we fill it in.
1898          */
1899         if (info->fs_root && info->fs_root->node) {
1900                 btrfs_set_backup_fs_root(root_backup,
1901                                          info->fs_root->node->start);
1902                 btrfs_set_backup_fs_root_gen(root_backup,
1903                                btrfs_header_generation(info->fs_root->node));
1904                 btrfs_set_backup_fs_root_level(root_backup,
1905                                btrfs_header_level(info->fs_root->node));
1906         }
1907
1908         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1909         btrfs_set_backup_dev_root_gen(root_backup,
1910                                btrfs_header_generation(info->dev_root->node));
1911         btrfs_set_backup_dev_root_level(root_backup,
1912                                        btrfs_header_level(info->dev_root->node));
1913
1914         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1915         btrfs_set_backup_csum_root_gen(root_backup,
1916                                btrfs_header_generation(info->csum_root->node));
1917         btrfs_set_backup_csum_root_level(root_backup,
1918                                btrfs_header_level(info->csum_root->node));
1919
1920         btrfs_set_backup_total_bytes(root_backup,
1921                              btrfs_super_total_bytes(info->super_copy));
1922         btrfs_set_backup_bytes_used(root_backup,
1923                              btrfs_super_bytes_used(info->super_copy));
1924         btrfs_set_backup_num_devices(root_backup,
1925                              btrfs_super_num_devices(info->super_copy));
1926
1927         /*
1928          * if we don't copy this out to the super_copy, it won't get remembered
1929          * for the next commit
1930          */
1931         memcpy(&info->super_copy->super_roots,
1932                &info->super_for_commit->super_roots,
1933                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1934 }
1935
1936 /*
1937  * this copies info out of the root backup array and back into
1938  * the in-memory super block.  It is meant to help iterate through
1939  * the array, so you send it the number of backups you've already
1940  * tried and the last backup index you used.
1941  *
1942  * this returns -1 when it has tried all the backups
1943  */
1944 static noinline int next_root_backup(struct btrfs_fs_info *info,
1945                                      struct btrfs_super_block *super,
1946                                      int *num_backups_tried, int *backup_index)
1947 {
1948         struct btrfs_root_backup *root_backup;
1949         int newest = *backup_index;
1950
1951         if (*num_backups_tried == 0) {
1952                 u64 gen = btrfs_super_generation(super);
1953
1954                 newest = find_newest_super_backup(info, gen);
1955                 if (newest == -1)
1956                         return -1;
1957
1958                 *backup_index = newest;
1959                 *num_backups_tried = 1;
1960         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1961                 /* we've tried all the backups, all done */
1962                 return -1;
1963         } else {
1964                 /* jump to the next oldest backup */
1965                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1966                         BTRFS_NUM_BACKUP_ROOTS;
1967                 *backup_index = newest;
1968                 *num_backups_tried += 1;
1969         }
1970         root_backup = super->super_roots + newest;
1971
1972         btrfs_set_super_generation(super,
1973                                    btrfs_backup_tree_root_gen(root_backup));
1974         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1975         btrfs_set_super_root_level(super,
1976                                    btrfs_backup_tree_root_level(root_backup));
1977         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1978
1979         /*
1980          * fixme: the total bytes and num_devices need to match or we should
1981          * need a fsck
1982          */
1983         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1984         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1985         return 0;
1986 }
1987
1988 /* helper to cleanup workers */
1989 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1990 {
1991         btrfs_stop_workers(&fs_info->generic_worker);
1992         btrfs_stop_workers(&fs_info->fixup_workers);
1993         btrfs_stop_workers(&fs_info->delalloc_workers);
1994         btrfs_stop_workers(&fs_info->workers);
1995         btrfs_stop_workers(&fs_info->endio_workers);
1996         btrfs_stop_workers(&fs_info->endio_meta_workers);
1997         btrfs_stop_workers(&fs_info->endio_raid56_workers);
1998         btrfs_stop_workers(&fs_info->rmw_workers);
1999         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2000         btrfs_stop_workers(&fs_info->endio_write_workers);
2001         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2002         btrfs_stop_workers(&fs_info->submit_workers);
2003         btrfs_stop_workers(&fs_info->delayed_workers);
2004         btrfs_stop_workers(&fs_info->caching_workers);
2005         btrfs_stop_workers(&fs_info->readahead_workers);
2006         btrfs_stop_workers(&fs_info->flush_workers);
2007         btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
2008 }
2009
2010 /* helper to cleanup tree roots */
2011 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2012 {
2013         free_extent_buffer(info->tree_root->node);
2014         free_extent_buffer(info->tree_root->commit_root);
2015         info->tree_root->node = NULL;
2016         info->tree_root->commit_root = NULL;
2017
2018         if (info->dev_root) {
2019                 free_extent_buffer(info->dev_root->node);
2020                 free_extent_buffer(info->dev_root->commit_root);
2021                 info->dev_root->node = NULL;
2022                 info->dev_root->commit_root = NULL;
2023         }
2024         if (info->extent_root) {
2025                 free_extent_buffer(info->extent_root->node);
2026                 free_extent_buffer(info->extent_root->commit_root);
2027                 info->extent_root->node = NULL;
2028                 info->extent_root->commit_root = NULL;
2029         }
2030         if (info->csum_root) {
2031                 free_extent_buffer(info->csum_root->node);
2032                 free_extent_buffer(info->csum_root->commit_root);
2033                 info->csum_root->node = NULL;
2034                 info->csum_root->commit_root = NULL;
2035         }
2036         if (info->quota_root) {
2037                 free_extent_buffer(info->quota_root->node);
2038                 free_extent_buffer(info->quota_root->commit_root);
2039                 info->quota_root->node = NULL;
2040                 info->quota_root->commit_root = NULL;
2041         }
2042         if (chunk_root) {
2043                 free_extent_buffer(info->chunk_root->node);
2044                 free_extent_buffer(info->chunk_root->commit_root);
2045                 info->chunk_root->node = NULL;
2046                 info->chunk_root->commit_root = NULL;
2047         }
2048 }
2049
2050 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2051 {
2052         int ret;
2053         struct btrfs_root *gang[8];
2054         int i;
2055
2056         while (!list_empty(&fs_info->dead_roots)) {
2057                 gang[0] = list_entry(fs_info->dead_roots.next,
2058                                      struct btrfs_root, root_list);
2059                 list_del(&gang[0]->root_list);
2060
2061                 if (gang[0]->in_radix) {
2062                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2063                 } else {
2064                         free_extent_buffer(gang[0]->node);
2065                         free_extent_buffer(gang[0]->commit_root);
2066                         btrfs_put_fs_root(gang[0]);
2067                 }
2068         }
2069
2070         while (1) {
2071                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2072                                              (void **)gang, 0,
2073                                              ARRAY_SIZE(gang));
2074                 if (!ret)
2075                         break;
2076                 for (i = 0; i < ret; i++)
2077                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2078         }
2079 }
2080
2081 int open_ctree(struct super_block *sb,
2082                struct btrfs_fs_devices *fs_devices,
2083                char *options)
2084 {
2085         u32 sectorsize;
2086         u32 nodesize;
2087         u32 leafsize;
2088         u32 blocksize;
2089         u32 stripesize;
2090         u64 generation;
2091         u64 features;
2092         struct btrfs_key location;
2093         struct buffer_head *bh;
2094         struct btrfs_super_block *disk_super;
2095         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2096         struct btrfs_root *tree_root;
2097         struct btrfs_root *extent_root;
2098         struct btrfs_root *csum_root;
2099         struct btrfs_root *chunk_root;
2100         struct btrfs_root *dev_root;
2101         struct btrfs_root *quota_root;
2102         struct btrfs_root *log_tree_root;
2103         int ret;
2104         int err = -EINVAL;
2105         int num_backups_tried = 0;
2106         int backup_index = 0;
2107
2108         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2109         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2110         if (!tree_root || !chunk_root) {
2111                 err = -ENOMEM;
2112                 goto fail;
2113         }
2114
2115         ret = init_srcu_struct(&fs_info->subvol_srcu);
2116         if (ret) {
2117                 err = ret;
2118                 goto fail;
2119         }
2120
2121         ret = setup_bdi(fs_info, &fs_info->bdi);
2122         if (ret) {
2123                 err = ret;
2124                 goto fail_srcu;
2125         }
2126
2127         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2128         if (ret) {
2129                 err = ret;
2130                 goto fail_bdi;
2131         }
2132         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2133                                         (1 + ilog2(nr_cpu_ids));
2134
2135         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2136         if (ret) {
2137                 err = ret;
2138                 goto fail_dirty_metadata_bytes;
2139         }
2140
2141         fs_info->btree_inode = new_inode(sb);
2142         if (!fs_info->btree_inode) {
2143                 err = -ENOMEM;
2144                 goto fail_delalloc_bytes;
2145         }
2146
2147         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2148
2149         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2150         INIT_LIST_HEAD(&fs_info->trans_list);
2151         INIT_LIST_HEAD(&fs_info->dead_roots);
2152         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2153         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2154         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2155         spin_lock_init(&fs_info->delalloc_root_lock);
2156         spin_lock_init(&fs_info->trans_lock);
2157         spin_lock_init(&fs_info->fs_roots_radix_lock);
2158         spin_lock_init(&fs_info->delayed_iput_lock);
2159         spin_lock_init(&fs_info->defrag_inodes_lock);
2160         spin_lock_init(&fs_info->free_chunk_lock);
2161         spin_lock_init(&fs_info->tree_mod_seq_lock);
2162         spin_lock_init(&fs_info->super_lock);
2163         rwlock_init(&fs_info->tree_mod_log_lock);
2164         mutex_init(&fs_info->reloc_mutex);
2165         seqlock_init(&fs_info->profiles_lock);
2166
2167         init_completion(&fs_info->kobj_unregister);
2168         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2169         INIT_LIST_HEAD(&fs_info->space_info);
2170         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2171         btrfs_mapping_init(&fs_info->mapping_tree);
2172         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2173                              BTRFS_BLOCK_RSV_GLOBAL);
2174         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2175                              BTRFS_BLOCK_RSV_DELALLOC);
2176         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2177         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2178         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2179         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2180                              BTRFS_BLOCK_RSV_DELOPS);
2181         atomic_set(&fs_info->nr_async_submits, 0);
2182         atomic_set(&fs_info->async_delalloc_pages, 0);
2183         atomic_set(&fs_info->async_submit_draining, 0);
2184         atomic_set(&fs_info->nr_async_bios, 0);
2185         atomic_set(&fs_info->defrag_running, 0);
2186         atomic64_set(&fs_info->tree_mod_seq, 0);
2187         fs_info->sb = sb;
2188         fs_info->max_inline = 8192 * 1024;
2189         fs_info->metadata_ratio = 0;
2190         fs_info->defrag_inodes = RB_ROOT;
2191         fs_info->free_chunk_space = 0;
2192         fs_info->tree_mod_log = RB_ROOT;
2193
2194         /* readahead state */
2195         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2196         spin_lock_init(&fs_info->reada_lock);
2197
2198         fs_info->thread_pool_size = min_t(unsigned long,
2199                                           num_online_cpus() + 2, 8);
2200
2201         INIT_LIST_HEAD(&fs_info->ordered_roots);
2202         spin_lock_init(&fs_info->ordered_root_lock);
2203         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2204                                         GFP_NOFS);
2205         if (!fs_info->delayed_root) {
2206                 err = -ENOMEM;
2207                 goto fail_iput;
2208         }
2209         btrfs_init_delayed_root(fs_info->delayed_root);
2210
2211         mutex_init(&fs_info->scrub_lock);
2212         atomic_set(&fs_info->scrubs_running, 0);
2213         atomic_set(&fs_info->scrub_pause_req, 0);
2214         atomic_set(&fs_info->scrubs_paused, 0);
2215         atomic_set(&fs_info->scrub_cancel_req, 0);
2216         init_waitqueue_head(&fs_info->scrub_pause_wait);
2217         init_rwsem(&fs_info->scrub_super_lock);
2218         fs_info->scrub_workers_refcnt = 0;
2219 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2220         fs_info->check_integrity_print_mask = 0;
2221 #endif
2222
2223         spin_lock_init(&fs_info->balance_lock);
2224         mutex_init(&fs_info->balance_mutex);
2225         atomic_set(&fs_info->balance_running, 0);
2226         atomic_set(&fs_info->balance_pause_req, 0);
2227         atomic_set(&fs_info->balance_cancel_req, 0);
2228         fs_info->balance_ctl = NULL;
2229         init_waitqueue_head(&fs_info->balance_wait_q);
2230
2231         sb->s_blocksize = 4096;
2232         sb->s_blocksize_bits = blksize_bits(4096);
2233         sb->s_bdi = &fs_info->bdi;
2234
2235         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2236         set_nlink(fs_info->btree_inode, 1);
2237         /*
2238          * we set the i_size on the btree inode to the max possible int.
2239          * the real end of the address space is determined by all of
2240          * the devices in the system
2241          */
2242         fs_info->btree_inode->i_size = OFFSET_MAX;
2243         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2244         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2245
2246         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2247         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2248                              fs_info->btree_inode->i_mapping);
2249         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2250         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2251
2252         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2253
2254         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2255         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2256                sizeof(struct btrfs_key));
2257         set_bit(BTRFS_INODE_DUMMY,
2258                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2259         insert_inode_hash(fs_info->btree_inode);
2260
2261         spin_lock_init(&fs_info->block_group_cache_lock);
2262         fs_info->block_group_cache_tree = RB_ROOT;
2263         fs_info->first_logical_byte = (u64)-1;
2264
2265         extent_io_tree_init(&fs_info->freed_extents[0],
2266                              fs_info->btree_inode->i_mapping);
2267         extent_io_tree_init(&fs_info->freed_extents[1],
2268                              fs_info->btree_inode->i_mapping);
2269         fs_info->pinned_extents = &fs_info->freed_extents[0];
2270         fs_info->do_barriers = 1;
2271
2272
2273         mutex_init(&fs_info->ordered_operations_mutex);
2274         mutex_init(&fs_info->tree_log_mutex);
2275         mutex_init(&fs_info->chunk_mutex);
2276         mutex_init(&fs_info->transaction_kthread_mutex);
2277         mutex_init(&fs_info->cleaner_mutex);
2278         mutex_init(&fs_info->volume_mutex);
2279         init_rwsem(&fs_info->extent_commit_sem);
2280         init_rwsem(&fs_info->cleanup_work_sem);
2281         init_rwsem(&fs_info->subvol_sem);
2282         fs_info->dev_replace.lock_owner = 0;
2283         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2284         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2285         mutex_init(&fs_info->dev_replace.lock_management_lock);
2286         mutex_init(&fs_info->dev_replace.lock);
2287
2288         spin_lock_init(&fs_info->qgroup_lock);
2289         mutex_init(&fs_info->qgroup_ioctl_lock);
2290         fs_info->qgroup_tree = RB_ROOT;
2291         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2292         fs_info->qgroup_seq = 1;
2293         fs_info->quota_enabled = 0;
2294         fs_info->pending_quota_state = 0;
2295         fs_info->qgroup_ulist = NULL;
2296         mutex_init(&fs_info->qgroup_rescan_lock);
2297
2298         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2299         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2300
2301         init_waitqueue_head(&fs_info->transaction_throttle);
2302         init_waitqueue_head(&fs_info->transaction_wait);
2303         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2304         init_waitqueue_head(&fs_info->async_submit_wait);
2305
2306         ret = btrfs_alloc_stripe_hash_table(fs_info);
2307         if (ret) {
2308                 err = ret;
2309                 goto fail_alloc;
2310         }
2311
2312         __setup_root(4096, 4096, 4096, 4096, tree_root,
2313                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2314
2315         invalidate_bdev(fs_devices->latest_bdev);
2316
2317         /*
2318          * Read super block and check the signature bytes only
2319          */
2320         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2321         if (!bh) {
2322                 err = -EINVAL;
2323                 goto fail_alloc;
2324         }
2325
2326         /*
2327          * We want to check superblock checksum, the type is stored inside.
2328          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2329          */
2330         if (btrfs_check_super_csum(bh->b_data)) {
2331                 printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
2332                 err = -EINVAL;
2333                 goto fail_alloc;
2334         }
2335
2336         /*
2337          * super_copy is zeroed at allocation time and we never touch the
2338          * following bytes up to INFO_SIZE, the checksum is calculated from
2339          * the whole block of INFO_SIZE
2340          */
2341         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2342         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2343                sizeof(*fs_info->super_for_commit));
2344         brelse(bh);
2345
2346         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2347
2348         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2349         if (ret) {
2350                 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2351                 err = -EINVAL;
2352                 goto fail_alloc;
2353         }
2354
2355         disk_super = fs_info->super_copy;
2356         if (!btrfs_super_root(disk_super))
2357                 goto fail_alloc;
2358
2359         /* check FS state, whether FS is broken. */
2360         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2361                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2362
2363         /*
2364          * run through our array of backup supers and setup
2365          * our ring pointer to the oldest one
2366          */
2367         generation = btrfs_super_generation(disk_super);
2368         find_oldest_super_backup(fs_info, generation);
2369
2370         /*
2371          * In the long term, we'll store the compression type in the super
2372          * block, and it'll be used for per file compression control.
2373          */
2374         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2375
2376         ret = btrfs_parse_options(tree_root, options);
2377         if (ret) {
2378                 err = ret;
2379                 goto fail_alloc;
2380         }
2381
2382         features = btrfs_super_incompat_flags(disk_super) &
2383                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2384         if (features) {
2385                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2386                        "unsupported optional features (%Lx).\n",
2387                        (unsigned long long)features);
2388                 err = -EINVAL;
2389                 goto fail_alloc;
2390         }
2391
2392         if (btrfs_super_leafsize(disk_super) !=
2393             btrfs_super_nodesize(disk_super)) {
2394                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2395                        "blocksizes don't match.  node %d leaf %d\n",
2396                        btrfs_super_nodesize(disk_super),
2397                        btrfs_super_leafsize(disk_super));
2398                 err = -EINVAL;
2399                 goto fail_alloc;
2400         }
2401         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2402                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2403                        "blocksize (%d) was too large\n",
2404                        btrfs_super_leafsize(disk_super));
2405                 err = -EINVAL;
2406                 goto fail_alloc;
2407         }
2408
2409         features = btrfs_super_incompat_flags(disk_super);
2410         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2411         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2412                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2413
2414         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2415                 printk(KERN_ERR "btrfs: has skinny extents\n");
2416
2417         /*
2418          * flag our filesystem as having big metadata blocks if
2419          * they are bigger than the page size
2420          */
2421         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2422                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2423                         printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2424                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2425         }
2426
2427         nodesize = btrfs_super_nodesize(disk_super);
2428         leafsize = btrfs_super_leafsize(disk_super);
2429         sectorsize = btrfs_super_sectorsize(disk_super);
2430         stripesize = btrfs_super_stripesize(disk_super);
2431         fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2432         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2433
2434         /*
2435          * mixed block groups end up with duplicate but slightly offset
2436          * extent buffers for the same range.  It leads to corruptions
2437          */
2438         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2439             (sectorsize != leafsize)) {
2440                 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2441                                 "are not allowed for mixed block groups on %s\n",
2442                                 sb->s_id);
2443                 goto fail_alloc;
2444         }
2445
2446         /*
2447          * Needn't use the lock because there is no other task which will
2448          * update the flag.
2449          */
2450         btrfs_set_super_incompat_flags(disk_super, features);
2451
2452         features = btrfs_super_compat_ro_flags(disk_super) &
2453                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2454         if (!(sb->s_flags & MS_RDONLY) && features) {
2455                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2456                        "unsupported option features (%Lx).\n",
2457                        (unsigned long long)features);
2458                 err = -EINVAL;
2459                 goto fail_alloc;
2460         }
2461
2462         btrfs_init_workers(&fs_info->generic_worker,
2463                            "genwork", 1, NULL);
2464
2465         btrfs_init_workers(&fs_info->workers, "worker",
2466                            fs_info->thread_pool_size,
2467                            &fs_info->generic_worker);
2468
2469         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2470                            fs_info->thread_pool_size,
2471                            &fs_info->generic_worker);
2472
2473         btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2474                            fs_info->thread_pool_size,
2475                            &fs_info->generic_worker);
2476
2477         btrfs_init_workers(&fs_info->submit_workers, "submit",
2478                            min_t(u64, fs_devices->num_devices,
2479                            fs_info->thread_pool_size),
2480                            &fs_info->generic_worker);
2481
2482         btrfs_init_workers(&fs_info->caching_workers, "cache",
2483                            2, &fs_info->generic_worker);
2484
2485         /* a higher idle thresh on the submit workers makes it much more
2486          * likely that bios will be send down in a sane order to the
2487          * devices
2488          */
2489         fs_info->submit_workers.idle_thresh = 64;
2490
2491         fs_info->workers.idle_thresh = 16;
2492         fs_info->workers.ordered = 1;
2493
2494         fs_info->delalloc_workers.idle_thresh = 2;
2495         fs_info->delalloc_workers.ordered = 1;
2496
2497         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2498                            &fs_info->generic_worker);
2499         btrfs_init_workers(&fs_info->endio_workers, "endio",
2500                            fs_info->thread_pool_size,
2501                            &fs_info->generic_worker);
2502         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2503                            fs_info->thread_pool_size,
2504                            &fs_info->generic_worker);
2505         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2506                            "endio-meta-write", fs_info->thread_pool_size,
2507                            &fs_info->generic_worker);
2508         btrfs_init_workers(&fs_info->endio_raid56_workers,
2509                            "endio-raid56", fs_info->thread_pool_size,
2510                            &fs_info->generic_worker);
2511         btrfs_init_workers(&fs_info->rmw_workers,
2512                            "rmw", fs_info->thread_pool_size,
2513                            &fs_info->generic_worker);
2514         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2515                            fs_info->thread_pool_size,
2516                            &fs_info->generic_worker);
2517         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2518                            1, &fs_info->generic_worker);
2519         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2520                            fs_info->thread_pool_size,
2521                            &fs_info->generic_worker);
2522         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2523                            fs_info->thread_pool_size,
2524                            &fs_info->generic_worker);
2525         btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2526                            &fs_info->generic_worker);
2527
2528         /*
2529          * endios are largely parallel and should have a very
2530          * low idle thresh
2531          */
2532         fs_info->endio_workers.idle_thresh = 4;
2533         fs_info->endio_meta_workers.idle_thresh = 4;
2534         fs_info->endio_raid56_workers.idle_thresh = 4;
2535         fs_info->rmw_workers.idle_thresh = 2;
2536
2537         fs_info->endio_write_workers.idle_thresh = 2;
2538         fs_info->endio_meta_write_workers.idle_thresh = 2;
2539         fs_info->readahead_workers.idle_thresh = 2;
2540
2541         /*
2542          * btrfs_start_workers can really only fail because of ENOMEM so just
2543          * return -ENOMEM if any of these fail.
2544          */
2545         ret = btrfs_start_workers(&fs_info->workers);
2546         ret |= btrfs_start_workers(&fs_info->generic_worker);
2547         ret |= btrfs_start_workers(&fs_info->submit_workers);
2548         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2549         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2550         ret |= btrfs_start_workers(&fs_info->endio_workers);
2551         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2552         ret |= btrfs_start_workers(&fs_info->rmw_workers);
2553         ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2554         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2555         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2556         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2557         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2558         ret |= btrfs_start_workers(&fs_info->caching_workers);
2559         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2560         ret |= btrfs_start_workers(&fs_info->flush_workers);
2561         ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2562         if (ret) {
2563                 err = -ENOMEM;
2564                 goto fail_sb_buffer;
2565         }
2566
2567         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2568         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2569                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2570
2571         tree_root->nodesize = nodesize;
2572         tree_root->leafsize = leafsize;
2573         tree_root->sectorsize = sectorsize;
2574         tree_root->stripesize = stripesize;
2575
2576         sb->s_blocksize = sectorsize;
2577         sb->s_blocksize_bits = blksize_bits(sectorsize);
2578
2579         if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2580                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2581                 goto fail_sb_buffer;
2582         }
2583
2584         if (sectorsize != PAGE_SIZE) {
2585                 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2586                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2587                 goto fail_sb_buffer;
2588         }
2589
2590         mutex_lock(&fs_info->chunk_mutex);
2591         ret = btrfs_read_sys_array(tree_root);
2592         mutex_unlock(&fs_info->chunk_mutex);
2593         if (ret) {
2594                 printk(KERN_WARNING "btrfs: failed to read the system "
2595                        "array on %s\n", sb->s_id);
2596                 goto fail_sb_buffer;
2597         }
2598
2599         blocksize = btrfs_level_size(tree_root,
2600                                      btrfs_super_chunk_root_level(disk_super));
2601         generation = btrfs_super_chunk_root_generation(disk_super);
2602
2603         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2604                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2605
2606         chunk_root->node = read_tree_block(chunk_root,
2607                                            btrfs_super_chunk_root(disk_super),
2608                                            blocksize, generation);
2609         if (!chunk_root->node ||
2610             !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2611                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2612                        sb->s_id);
2613                 goto fail_tree_roots;
2614         }
2615         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2616         chunk_root->commit_root = btrfs_root_node(chunk_root);
2617
2618         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2619            (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2620            BTRFS_UUID_SIZE);
2621
2622         ret = btrfs_read_chunk_tree(chunk_root);
2623         if (ret) {
2624                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2625                        sb->s_id);
2626                 goto fail_tree_roots;
2627         }
2628
2629         /*
2630          * keep the device that is marked to be the target device for the
2631          * dev_replace procedure
2632          */
2633         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2634
2635         if (!fs_devices->latest_bdev) {
2636                 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2637                        sb->s_id);
2638                 goto fail_tree_roots;
2639         }
2640
2641 retry_root_backup:
2642         blocksize = btrfs_level_size(tree_root,
2643                                      btrfs_super_root_level(disk_super));
2644         generation = btrfs_super_generation(disk_super);
2645
2646         tree_root->node = read_tree_block(tree_root,
2647                                           btrfs_super_root(disk_super),
2648                                           blocksize, generation);
2649         if (!tree_root->node ||
2650             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2651                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2652                        sb->s_id);
2653
2654                 goto recovery_tree_root;
2655         }
2656
2657         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2658         tree_root->commit_root = btrfs_root_node(tree_root);
2659
2660         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2661         location.type = BTRFS_ROOT_ITEM_KEY;
2662         location.offset = 0;
2663
2664         extent_root = btrfs_read_tree_root(tree_root, &location);
2665         if (IS_ERR(extent_root)) {
2666                 ret = PTR_ERR(extent_root);
2667                 goto recovery_tree_root;
2668         }
2669         extent_root->track_dirty = 1;
2670         fs_info->extent_root = extent_root;
2671
2672         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2673         dev_root = btrfs_read_tree_root(tree_root, &location);
2674         if (IS_ERR(dev_root)) {
2675                 ret = PTR_ERR(dev_root);
2676                 goto recovery_tree_root;
2677         }
2678         dev_root->track_dirty = 1;
2679         fs_info->dev_root = dev_root;
2680         btrfs_init_devices_late(fs_info);
2681
2682         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2683         csum_root = btrfs_read_tree_root(tree_root, &location);
2684         if (IS_ERR(csum_root)) {
2685                 ret = PTR_ERR(csum_root);
2686                 goto recovery_tree_root;
2687         }
2688         csum_root->track_dirty = 1;
2689         fs_info->csum_root = csum_root;
2690
2691         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2692         quota_root = btrfs_read_tree_root(tree_root, &location);
2693         if (!IS_ERR(quota_root)) {
2694                 quota_root->track_dirty = 1;
2695                 fs_info->quota_enabled = 1;
2696                 fs_info->pending_quota_state = 1;
2697                 fs_info->quota_root = quota_root;
2698         }
2699
2700         fs_info->generation = generation;
2701         fs_info->last_trans_committed = generation;
2702
2703         ret = btrfs_recover_balance(fs_info);
2704         if (ret) {
2705                 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2706                 goto fail_block_groups;
2707         }
2708
2709         ret = btrfs_init_dev_stats(fs_info);
2710         if (ret) {
2711                 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2712                        ret);
2713                 goto fail_block_groups;
2714         }
2715
2716         ret = btrfs_init_dev_replace(fs_info);
2717         if (ret) {
2718                 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2719                 goto fail_block_groups;
2720         }
2721
2722         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2723
2724         ret = btrfs_init_space_info(fs_info);
2725         if (ret) {
2726                 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2727                 goto fail_block_groups;
2728         }
2729
2730         ret = btrfs_read_block_groups(extent_root);
2731         if (ret) {
2732                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2733                 goto fail_block_groups;
2734         }
2735         fs_info->num_tolerated_disk_barrier_failures =
2736                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2737         if (fs_info->fs_devices->missing_devices >
2738              fs_info->num_tolerated_disk_barrier_failures &&
2739             !(sb->s_flags & MS_RDONLY)) {
2740                 printk(KERN_WARNING
2741                        "Btrfs: too many missing devices, writeable mount is not allowed\n");
2742                 goto fail_block_groups;
2743         }
2744
2745         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2746                                                "btrfs-cleaner");
2747         if (IS_ERR(fs_info->cleaner_kthread))
2748                 goto fail_block_groups;
2749
2750         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2751                                                    tree_root,
2752                                                    "btrfs-transaction");
2753         if (IS_ERR(fs_info->transaction_kthread))
2754                 goto fail_cleaner;
2755
2756         if (!btrfs_test_opt(tree_root, SSD) &&
2757             !btrfs_test_opt(tree_root, NOSSD) &&
2758             !fs_info->fs_devices->rotating) {
2759                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2760                        "mode\n");
2761                 btrfs_set_opt(fs_info->mount_opt, SSD);
2762         }
2763
2764 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2765         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2766                 ret = btrfsic_mount(tree_root, fs_devices,
2767                                     btrfs_test_opt(tree_root,
2768                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2769                                     1 : 0,
2770                                     fs_info->check_integrity_print_mask);
2771                 if (ret)
2772                         printk(KERN_WARNING "btrfs: failed to initialize"
2773                                " integrity check module %s\n", sb->s_id);
2774         }
2775 #endif
2776         ret = btrfs_read_qgroup_config(fs_info);
2777         if (ret)
2778                 goto fail_trans_kthread;
2779
2780         /* do not make disk changes in broken FS */
2781         if (btrfs_super_log_root(disk_super) != 0) {
2782                 u64 bytenr = btrfs_super_log_root(disk_super);
2783
2784                 if (fs_devices->rw_devices == 0) {
2785                         printk(KERN_WARNING "Btrfs log replay required "
2786                                "on RO media\n");
2787                         err = -EIO;
2788                         goto fail_qgroup;
2789                 }
2790                 blocksize =
2791                      btrfs_level_size(tree_root,
2792                                       btrfs_super_log_root_level(disk_super));
2793
2794                 log_tree_root = btrfs_alloc_root(fs_info);
2795                 if (!log_tree_root) {
2796                         err = -ENOMEM;
2797                         goto fail_qgroup;
2798                 }
2799
2800                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2801                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2802
2803                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2804                                                       blocksize,
2805                                                       generation + 1);
2806                 if (!log_tree_root->node ||
2807                     !extent_buffer_uptodate(log_tree_root->node)) {
2808                         printk(KERN_ERR "btrfs: failed to read log tree\n");
2809                         free_extent_buffer(log_tree_root->node);
2810                         kfree(log_tree_root);
2811                         goto fail_trans_kthread;
2812                 }
2813                 /* returns with log_tree_root freed on success */
2814                 ret = btrfs_recover_log_trees(log_tree_root);
2815                 if (ret) {
2816                         btrfs_error(tree_root->fs_info, ret,
2817                                     "Failed to recover log tree");
2818                         free_extent_buffer(log_tree_root->node);
2819                         kfree(log_tree_root);
2820                         goto fail_trans_kthread;
2821                 }
2822
2823                 if (sb->s_flags & MS_RDONLY) {
2824                         ret = btrfs_commit_super(tree_root);
2825                         if (ret)
2826                                 goto fail_trans_kthread;
2827                 }
2828         }
2829
2830         ret = btrfs_find_orphan_roots(tree_root);
2831         if (ret)
2832                 goto fail_trans_kthread;
2833
2834         if (!(sb->s_flags & MS_RDONLY)) {
2835                 ret = btrfs_cleanup_fs_roots(fs_info);
2836                 if (ret)
2837                         goto fail_trans_kthread;
2838
2839                 ret = btrfs_recover_relocation(tree_root);
2840                 if (ret < 0) {
2841                         printk(KERN_WARNING
2842                                "btrfs: failed to recover relocation\n");
2843                         err = -EINVAL;
2844                         goto fail_qgroup;
2845                 }
2846         }
2847
2848         location.objectid = BTRFS_FS_TREE_OBJECTID;
2849         location.type = BTRFS_ROOT_ITEM_KEY;
2850         location.offset = 0;
2851
2852         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2853         if (IS_ERR(fs_info->fs_root)) {
2854                 err = PTR_ERR(fs_info->fs_root);
2855                 goto fail_qgroup;
2856         }
2857
2858         if (sb->s_flags & MS_RDONLY)
2859                 return 0;
2860
2861         down_read(&fs_info->cleanup_work_sem);
2862         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2863             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2864                 up_read(&fs_info->cleanup_work_sem);
2865                 close_ctree(tree_root);
2866                 return ret;
2867         }
2868         up_read(&fs_info->cleanup_work_sem);
2869
2870         ret = btrfs_resume_balance_async(fs_info);
2871         if (ret) {
2872                 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2873                 close_ctree(tree_root);
2874                 return ret;
2875         }
2876
2877         ret = btrfs_resume_dev_replace_async(fs_info);
2878         if (ret) {
2879                 pr_warn("btrfs: failed to resume dev_replace\n");
2880                 close_ctree(tree_root);
2881                 return ret;
2882         }
2883
2884         btrfs_qgroup_rescan_resume(fs_info);
2885
2886         return 0;
2887
2888 fail_qgroup:
2889         btrfs_free_qgroup_config(fs_info);
2890 fail_trans_kthread:
2891         kthread_stop(fs_info->transaction_kthread);
2892         btrfs_cleanup_transaction(fs_info->tree_root);
2893         del_fs_roots(fs_info);
2894 fail_cleaner:
2895         kthread_stop(fs_info->cleaner_kthread);
2896
2897         /*
2898          * make sure we're done with the btree inode before we stop our
2899          * kthreads
2900          */
2901         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2902
2903 fail_block_groups:
2904         btrfs_put_block_group_cache(fs_info);
2905         btrfs_free_block_groups(fs_info);
2906
2907 fail_tree_roots:
2908         free_root_pointers(fs_info, 1);
2909         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2910
2911 fail_sb_buffer:
2912         btrfs_stop_all_workers(fs_info);
2913 fail_alloc:
2914 fail_iput:
2915         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2916
2917         iput(fs_info->btree_inode);
2918 fail_delalloc_bytes:
2919         percpu_counter_destroy(&fs_info->delalloc_bytes);
2920 fail_dirty_metadata_bytes:
2921         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2922 fail_bdi:
2923         bdi_destroy(&fs_info->bdi);
2924 fail_srcu:
2925         cleanup_srcu_struct(&fs_info->subvol_srcu);
2926 fail:
2927         btrfs_free_stripe_hash_table(fs_info);
2928         btrfs_close_devices(fs_info->fs_devices);
2929         return err;
2930
2931 recovery_tree_root:
2932         if (!btrfs_test_opt(tree_root, RECOVERY))
2933                 goto fail_tree_roots;
2934
2935         free_root_pointers(fs_info, 0);
2936
2937         /* don't use the log in recovery mode, it won't be valid */
2938         btrfs_set_super_log_root(disk_super, 0);
2939
2940         /* we can't trust the free space cache either */
2941         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2942
2943         ret = next_root_backup(fs_info, fs_info->super_copy,
2944                                &num_backups_tried, &backup_index);
2945         if (ret == -1)
2946                 goto fail_block_groups;
2947         goto retry_root_backup;
2948 }
2949
2950 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2951 {
2952         if (uptodate) {
2953                 set_buffer_uptodate(bh);
2954         } else {
2955                 struct btrfs_device *device = (struct btrfs_device *)
2956                         bh->b_private;
2957
2958                 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2959                                           "I/O error on %s\n",
2960                                           rcu_str_deref(device->name));
2961                 /* note, we dont' set_buffer_write_io_error because we have
2962                  * our own ways of dealing with the IO errors
2963                  */
2964                 clear_buffer_uptodate(bh);
2965                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2966         }
2967         unlock_buffer(bh);
2968         put_bh(bh);
2969 }
2970
2971 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2972 {
2973         struct buffer_head *bh;
2974         struct buffer_head *latest = NULL;
2975         struct btrfs_super_block *super;
2976         int i;
2977         u64 transid = 0;
2978         u64 bytenr;
2979
2980         /* we would like to check all the supers, but that would make
2981          * a btrfs mount succeed after a mkfs from a different FS.
2982          * So, we need to add a special mount option to scan for
2983          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2984          */
2985         for (i = 0; i < 1; i++) {
2986                 bytenr = btrfs_sb_offset(i);
2987                 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2988                         break;
2989                 bh = __bread(bdev, bytenr / 4096, 4096);
2990                 if (!bh)
2991                         continue;
2992
2993                 super = (struct btrfs_super_block *)bh->b_data;
2994                 if (btrfs_super_bytenr(super) != bytenr ||
2995                     btrfs_super_magic(super) != BTRFS_MAGIC) {
2996                         brelse(bh);
2997                         continue;
2998                 }
2999
3000                 if (!latest || btrfs_super_generation(super) > transid) {
3001                         brelse(latest);
3002                         latest = bh;
3003                         transid = btrfs_super_generation(super);
3004                 } else {
3005                         brelse(bh);
3006                 }
3007         }
3008         return latest;
3009 }
3010
3011 /*
3012  * this should be called twice, once with wait == 0 and
3013  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3014  * we write are pinned.
3015  *
3016  * They are released when wait == 1 is done.
3017  * max_mirrors must be the same for both runs, and it indicates how
3018  * many supers on this one device should be written.
3019  *
3020  * max_mirrors == 0 means to write them all.
3021  */
3022 static int write_dev_supers(struct btrfs_device *device,
3023                             struct btrfs_super_block *sb,
3024                             int do_barriers, int wait, int max_mirrors)
3025 {
3026         struct buffer_head *bh;
3027         int i;
3028         int ret;
3029         int errors = 0;
3030         u32 crc;
3031         u64 bytenr;
3032
3033         if (max_mirrors == 0)
3034                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3035
3036         for (i = 0; i < max_mirrors; i++) {
3037                 bytenr = btrfs_sb_offset(i);
3038                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3039                         break;
3040
3041                 if (wait) {
3042                         bh = __find_get_block(device->bdev, bytenr / 4096,
3043                                               BTRFS_SUPER_INFO_SIZE);
3044                         if (!bh) {
3045                                 errors++;
3046                                 continue;
3047                         }
3048                         wait_on_buffer(bh);
3049                         if (!buffer_uptodate(bh))
3050                                 errors++;
3051
3052                         /* drop our reference */
3053                         brelse(bh);
3054
3055                         /* drop the reference from the wait == 0 run */
3056                         brelse(bh);
3057                         continue;
3058                 } else {
3059                         btrfs_set_super_bytenr(sb, bytenr);
3060
3061                         crc = ~(u32)0;
3062                         crc = btrfs_csum_data((char *)sb +
3063                                               BTRFS_CSUM_SIZE, crc,
3064                                               BTRFS_SUPER_INFO_SIZE -
3065                                               BTRFS_CSUM_SIZE);
3066                         btrfs_csum_final(crc, sb->csum);
3067
3068                         /*
3069                          * one reference for us, and we leave it for the
3070                          * caller
3071                          */
3072                         bh = __getblk(device->bdev, bytenr / 4096,
3073                                       BTRFS_SUPER_INFO_SIZE);
3074                         if (!bh) {
3075                                 printk(KERN_ERR "btrfs: couldn't get super "
3076                                        "buffer head for bytenr %Lu\n", bytenr);
3077                                 errors++;
3078                                 continue;
3079                         }
3080
3081                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3082
3083                         /* one reference for submit_bh */
3084                         get_bh(bh);
3085
3086                         set_buffer_uptodate(bh);
3087                         lock_buffer(bh);
3088                         bh->b_end_io = btrfs_end_buffer_write_sync;
3089                         bh->b_private = device;
3090                 }
3091
3092                 /*
3093                  * we fua the first super.  The others we allow
3094                  * to go down lazy.
3095                  */
3096                 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3097                 if (ret)
3098                         errors++;
3099         }
3100         return errors < i ? 0 : -1;
3101 }
3102
3103 /*
3104  * endio for the write_dev_flush, this will wake anyone waiting
3105  * for the barrier when it is done
3106  */
3107 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3108 {
3109         if (err) {
3110                 if (err == -EOPNOTSUPP)
3111                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3112                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3113         }
3114         if (bio->bi_private)
3115                 complete(bio->bi_private);
3116         bio_put(bio);
3117 }
3118
3119 /*
3120  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3121  * sent down.  With wait == 1, it waits for the previous flush.
3122  *
3123  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3124  * capable
3125  */
3126 static int write_dev_flush(struct btrfs_device *device, int wait)
3127 {
3128         struct bio *bio;
3129         int ret = 0;
3130
3131         if (device->nobarriers)
3132                 return 0;
3133
3134         if (wait) {
3135                 bio = device->flush_bio;
3136                 if (!bio)
3137                         return 0;
3138
3139                 wait_for_completion(&device->flush_wait);
3140
3141                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3142                         printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3143                                       rcu_str_deref(device->name));
3144                         device->nobarriers = 1;
3145                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3146                         ret = -EIO;
3147                         btrfs_dev_stat_inc_and_print(device,
3148                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3149                 }
3150
3151                 /* drop the reference from the wait == 0 run */
3152                 bio_put(bio);
3153                 device->flush_bio = NULL;
3154
3155                 return ret;
3156         }
3157
3158         /*
3159          * one reference for us, and we leave it for the
3160          * caller
3161          */
3162         device->flush_bio = NULL;
3163         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3164         if (!bio)
3165                 return -ENOMEM;
3166
3167         bio->bi_end_io = btrfs_end_empty_barrier;
3168         bio->bi_bdev = device->bdev;
3169         init_completion(&device->flush_wait);
3170         bio->bi_private = &device->flush_wait;
3171         device->flush_bio = bio;
3172
3173         bio_get(bio);
3174         btrfsic_submit_bio(WRITE_FLUSH, bio);
3175
3176         return 0;
3177 }
3178
3179 /*
3180  * send an empty flush down to each device in parallel,
3181  * then wait for them
3182  */
3183 static int barrier_all_devices(struct btrfs_fs_info *info)
3184 {
3185         struct list_head *head;
3186         struct btrfs_device *dev;
3187         int errors_send = 0;
3188         int errors_wait = 0;
3189         int ret;
3190
3191         /* send down all the barriers */
3192         head = &info->fs_devices->devices;
3193         list_for_each_entry_rcu(dev, head, dev_list) {
3194                 if (!dev->bdev) {
3195                         errors_send++;
3196                         continue;
3197                 }
3198                 if (!dev->in_fs_metadata || !dev->writeable)
3199                         continue;
3200
3201                 ret = write_dev_flush(dev, 0);
3202                 if (ret)
3203                         errors_send++;
3204         }
3205
3206         /* wait for all the barriers */
3207         list_for_each_entry_rcu(dev, head, dev_list) {
3208                 if (!dev->bdev) {
3209                         errors_wait++;
3210                         continue;
3211                 }
3212                 if (!dev->in_fs_metadata || !dev->writeable)
3213                         continue;
3214
3215                 ret = write_dev_flush(dev, 1);
3216                 if (ret)
3217                         errors_wait++;
3218         }
3219         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3220             errors_wait > info->num_tolerated_disk_barrier_failures)
3221                 return -EIO;
3222         return 0;
3223 }
3224
3225 int btrfs_calc_num_tolerated_disk_barrier_failures(
3226         struct btrfs_fs_info *fs_info)
3227 {
3228         struct btrfs_ioctl_space_info space;
3229         struct btrfs_space_info *sinfo;
3230         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3231                        BTRFS_BLOCK_GROUP_SYSTEM,
3232                        BTRFS_BLOCK_GROUP_METADATA,
3233                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3234         int num_types = 4;
3235         int i;
3236         int c;
3237         int num_tolerated_disk_barrier_failures =
3238                 (int)fs_info->fs_devices->num_devices;
3239
3240         for (i = 0; i < num_types; i++) {
3241                 struct btrfs_space_info *tmp;
3242
3243                 sinfo = NULL;
3244                 rcu_read_lock();
3245                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3246                         if (tmp->flags == types[i]) {
3247                                 sinfo = tmp;
3248                                 break;
3249                         }
3250                 }
3251                 rcu_read_unlock();
3252
3253                 if (!sinfo)
3254                         continue;
3255
3256                 down_read(&sinfo->groups_sem);
3257                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3258                         if (!list_empty(&sinfo->block_groups[c])) {
3259                                 u64 flags;
3260
3261                                 btrfs_get_block_group_info(
3262                                         &sinfo->block_groups[c], &space);
3263                                 if (space.total_bytes == 0 ||
3264                                     space.used_bytes == 0)
3265                                         continue;
3266                                 flags = space.flags;
3267                                 /*
3268                                  * return
3269                                  * 0: if dup, single or RAID0 is configured for
3270                                  *    any of metadata, system or data, else
3271                                  * 1: if RAID5 is configured, or if RAID1 or
3272                                  *    RAID10 is configured and only two mirrors
3273                                  *    are used, else
3274                                  * 2: if RAID6 is configured, else
3275                                  * num_mirrors - 1: if RAID1 or RAID10 is
3276                                  *                  configured and more than
3277                                  *                  2 mirrors are used.
3278                                  */
3279                                 if (num_tolerated_disk_barrier_failures > 0 &&
3280                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3281                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3282                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3283                                       == 0)))
3284                                         num_tolerated_disk_barrier_failures = 0;
3285                                 else if (num_tolerated_disk_barrier_failures > 1) {
3286                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3287                                             BTRFS_BLOCK_GROUP_RAID5 |
3288                                             BTRFS_BLOCK_GROUP_RAID10)) {
3289                                                 num_tolerated_disk_barrier_failures = 1;
3290                                         } else if (flags &
3291                                                    BTRFS_BLOCK_GROUP_RAID6) {
3292                                                 num_tolerated_disk_barrier_failures = 2;
3293                                         }
3294                                 }
3295                         }
3296                 }
3297                 up_read(&sinfo->groups_sem);
3298         }
3299
3300         return num_tolerated_disk_barrier_failures;
3301 }
3302
3303 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3304 {
3305         struct list_head *head;
3306         struct btrfs_device *dev;
3307         struct btrfs_super_block *sb;
3308         struct btrfs_dev_item *dev_item;
3309         int ret;
3310         int do_barriers;
3311         int max_errors;
3312         int total_errors = 0;
3313         u64 flags;
3314
3315         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3316         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3317         backup_super_roots(root->fs_info);
3318
3319         sb = root->fs_info->super_for_commit;
3320         dev_item = &sb->dev_item;
3321
3322         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3323         head = &root->fs_info->fs_devices->devices;
3324
3325         if (do_barriers) {
3326                 ret = barrier_all_devices(root->fs_info);
3327                 if (ret) {
3328                         mutex_unlock(
3329                                 &root->fs_info->fs_devices->device_list_mutex);
3330                         btrfs_error(root->fs_info, ret,
3331                                     "errors while submitting device barriers.");
3332                         return ret;
3333                 }
3334         }
3335
3336         list_for_each_entry_rcu(dev, head, dev_list) {
3337                 if (!dev->bdev) {
3338                         total_errors++;
3339                         continue;
3340                 }
3341                 if (!dev->in_fs_metadata || !dev->writeable)
3342                         continue;
3343
3344                 btrfs_set_stack_device_generation(dev_item, 0);
3345                 btrfs_set_stack_device_type(dev_item, dev->type);
3346                 btrfs_set_stack_device_id(dev_item, dev->devid);
3347                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3348                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3349                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3350                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3351                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3352                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3353                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3354
3355                 flags = btrfs_super_flags(sb);
3356                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3357
3358                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3359                 if (ret)
3360                         total_errors++;
3361         }
3362         if (total_errors > max_errors) {
3363                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3364                        total_errors);
3365
3366                 /* This shouldn't happen. FUA is masked off if unsupported */
3367                 BUG();
3368         }
3369
3370         total_errors = 0;
3371         list_for_each_entry_rcu(dev, head, dev_list) {
3372                 if (!dev->bdev)
3373                         continue;
3374                 if (!dev->in_fs_metadata || !dev->writeable)
3375                         continue;
3376
3377                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3378                 if (ret)
3379                         total_errors++;
3380         }
3381         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3382         if (total_errors > max_errors) {
3383                 btrfs_error(root->fs_info, -EIO,
3384                             "%d errors while writing supers", total_errors);
3385                 return -EIO;
3386         }
3387         return 0;
3388 }
3389
3390 int write_ctree_super(struct btrfs_trans_handle *trans,
3391                       struct btrfs_root *root, int max_mirrors)
3392 {
3393         int ret;
3394
3395         ret = write_all_supers(root, max_mirrors);
3396         return ret;
3397 }
3398
3399 /* Drop a fs root from the radix tree and free it. */
3400 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3401                                   struct btrfs_root *root)
3402 {
3403         spin_lock(&fs_info->fs_roots_radix_lock);
3404         radix_tree_delete(&fs_info->fs_roots_radix,
3405                           (unsigned long)root->root_key.objectid);
3406         spin_unlock(&fs_info->fs_roots_radix_lock);
3407
3408         if (btrfs_root_refs(&root->root_item) == 0)
3409                 synchronize_srcu(&fs_info->subvol_srcu);
3410
3411         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3412                 btrfs_free_log(NULL, root);
3413                 btrfs_free_log_root_tree(NULL, fs_info);
3414         }
3415
3416         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3417         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3418         free_fs_root(root);
3419 }
3420
3421 static void free_fs_root(struct btrfs_root *root)
3422 {
3423         iput(root->cache_inode);
3424         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3425         if (root->anon_dev)
3426                 free_anon_bdev(root->anon_dev);
3427         free_extent_buffer(root->node);
3428         free_extent_buffer(root->commit_root);
3429         kfree(root->free_ino_ctl);
3430         kfree(root->free_ino_pinned);
3431         kfree(root->name);
3432         btrfs_put_fs_root(root);
3433 }
3434
3435 void btrfs_free_fs_root(struct btrfs_root *root)
3436 {
3437         free_fs_root(root);
3438 }
3439
3440 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3441 {
3442         u64 root_objectid = 0;
3443         struct btrfs_root *gang[8];
3444         int i;
3445         int ret;
3446
3447         while (1) {
3448                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3449                                              (void **)gang, root_objectid,
3450                                              ARRAY_SIZE(gang));
3451                 if (!ret)
3452                         break;
3453
3454                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3455                 for (i = 0; i < ret; i++) {
3456                         int err;
3457
3458                         root_objectid = gang[i]->root_key.objectid;
3459                         err = btrfs_orphan_cleanup(gang[i]);
3460                         if (err)
3461                                 return err;
3462                 }
3463                 root_objectid++;
3464         }
3465         return 0;
3466 }
3467
3468 int btrfs_commit_super(struct btrfs_root *root)
3469 {
3470         struct btrfs_trans_handle *trans;
3471         int ret;
3472
3473         mutex_lock(&root->fs_info->cleaner_mutex);
3474         btrfs_run_delayed_iputs(root);
3475         mutex_unlock(&root->fs_info->cleaner_mutex);
3476         wake_up_process(root->fs_info->cleaner_kthread);
3477
3478         /* wait until ongoing cleanup work done */
3479         down_write(&root->fs_info->cleanup_work_sem);
3480         up_write(&root->fs_info->cleanup_work_sem);
3481
3482         trans = btrfs_join_transaction(root);
3483         if (IS_ERR(trans))
3484                 return PTR_ERR(trans);
3485         ret = btrfs_commit_transaction(trans, root);
3486         if (ret)
3487                 return ret;
3488         /* run commit again to drop the original snapshot */
3489         trans = btrfs_join_transaction(root);
3490         if (IS_ERR(trans))
3491                 return PTR_ERR(trans);
3492         ret = btrfs_commit_transaction(trans, root);
3493         if (ret)
3494                 return ret;
3495         ret = btrfs_write_and_wait_transaction(NULL, root);
3496         if (ret) {
3497                 btrfs_error(root->fs_info, ret,
3498                             "Failed to sync btree inode to disk.");
3499                 return ret;
3500         }
3501
3502         ret = write_ctree_super(NULL, root, 0);
3503         return ret;
3504 }
3505
3506 int close_ctree(struct btrfs_root *root)
3507 {
3508         struct btrfs_fs_info *fs_info = root->fs_info;
3509         int ret;
3510
3511         fs_info->closing = 1;
3512         smp_mb();
3513
3514         /* pause restriper - we want to resume on mount */
3515         btrfs_pause_balance(fs_info);
3516
3517         btrfs_dev_replace_suspend_for_unmount(fs_info);
3518
3519         btrfs_scrub_cancel(fs_info);
3520
3521         /* wait for any defraggers to finish */
3522         wait_event(fs_info->transaction_wait,
3523                    (atomic_read(&fs_info->defrag_running) == 0));
3524
3525         /* clear out the rbtree of defraggable inodes */
3526         btrfs_cleanup_defrag_inodes(fs_info);
3527
3528         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3529                 ret = btrfs_commit_super(root);
3530                 if (ret)
3531                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3532         }
3533
3534         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3535                 btrfs_error_commit_super(root);
3536
3537         btrfs_put_block_group_cache(fs_info);
3538
3539         kthread_stop(fs_info->transaction_kthread);
3540         kthread_stop(fs_info->cleaner_kthread);
3541
3542         fs_info->closing = 2;
3543         smp_mb();
3544
3545         btrfs_free_qgroup_config(root->fs_info);
3546
3547         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3548                 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3549                        percpu_counter_sum(&fs_info->delalloc_bytes));
3550         }
3551
3552         btrfs_free_block_groups(fs_info);
3553
3554         btrfs_stop_all_workers(fs_info);
3555
3556         del_fs_roots(fs_info);
3557
3558         free_root_pointers(fs_info, 1);
3559
3560         iput(fs_info->btree_inode);
3561
3562 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3563         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3564                 btrfsic_unmount(root, fs_info->fs_devices);
3565 #endif
3566
3567         btrfs_close_devices(fs_info->fs_devices);
3568         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3569
3570         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3571         percpu_counter_destroy(&fs_info->delalloc_bytes);
3572         bdi_destroy(&fs_info->bdi);
3573         cleanup_srcu_struct(&fs_info->subvol_srcu);
3574
3575         btrfs_free_stripe_hash_table(fs_info);
3576
3577         return 0;
3578 }
3579
3580 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3581                           int atomic)
3582 {
3583         int ret;
3584         struct inode *btree_inode = buf->pages[0]->mapping->host;
3585
3586         ret = extent_buffer_uptodate(buf);
3587         if (!ret)
3588                 return ret;
3589
3590         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3591                                     parent_transid, atomic);
3592         if (ret == -EAGAIN)
3593                 return ret;
3594         return !ret;
3595 }
3596
3597 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3598 {
3599         return set_extent_buffer_uptodate(buf);
3600 }
3601
3602 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3603 {
3604         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3605         u64 transid = btrfs_header_generation(buf);
3606         int was_dirty;
3607
3608         btrfs_assert_tree_locked(buf);
3609         if (transid != root->fs_info->generation)
3610                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3611                        "found %llu running %llu\n",
3612                         (unsigned long long)buf->start,
3613                         (unsigned long long)transid,
3614                         (unsigned long long)root->fs_info->generation);
3615         was_dirty = set_extent_buffer_dirty(buf);
3616         if (!was_dirty)
3617                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3618                                      buf->len,
3619                                      root->fs_info->dirty_metadata_batch);
3620 }
3621
3622 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3623                                         int flush_delayed)
3624 {
3625         /*
3626          * looks as though older kernels can get into trouble with
3627          * this code, they end up stuck in balance_dirty_pages forever
3628          */
3629         int ret;
3630
3631         if (current->flags & PF_MEMALLOC)
3632                 return;
3633
3634         if (flush_delayed)
3635                 btrfs_balance_delayed_items(root);
3636
3637         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3638                                      BTRFS_DIRTY_METADATA_THRESH);
3639         if (ret > 0) {
3640                 balance_dirty_pages_ratelimited(
3641                                    root->fs_info->btree_inode->i_mapping);
3642         }
3643         return;
3644 }
3645
3646 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3647 {
3648         __btrfs_btree_balance_dirty(root, 1);
3649 }
3650
3651 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3652 {
3653         __btrfs_btree_balance_dirty(root, 0);
3654 }
3655
3656 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3657 {
3658         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3659         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3660 }
3661
3662 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3663                               int read_only)
3664 {
3665         /*
3666          * Placeholder for checks
3667          */
3668         return 0;
3669 }
3670
3671 static void btrfs_error_commit_super(struct btrfs_root *root)
3672 {
3673         mutex_lock(&root->fs_info->cleaner_mutex);
3674         btrfs_run_delayed_iputs(root);
3675         mutex_unlock(&root->fs_info->cleaner_mutex);
3676
3677         down_write(&root->fs_info->cleanup_work_sem);
3678         up_write(&root->fs_info->cleanup_work_sem);
3679
3680         /* cleanup FS via transaction */
3681         btrfs_cleanup_transaction(root);
3682 }
3683
3684 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3685                                              struct btrfs_root *root)
3686 {
3687         struct btrfs_inode *btrfs_inode;
3688         struct list_head splice;
3689
3690         INIT_LIST_HEAD(&splice);
3691
3692         mutex_lock(&root->fs_info->ordered_operations_mutex);
3693         spin_lock(&root->fs_info->ordered_root_lock);
3694
3695         list_splice_init(&t->ordered_operations, &splice);
3696         while (!list_empty(&splice)) {
3697                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3698                                          ordered_operations);
3699
3700                 list_del_init(&btrfs_inode->ordered_operations);
3701                 spin_unlock(&root->fs_info->ordered_root_lock);
3702
3703                 btrfs_invalidate_inodes(btrfs_inode->root);
3704
3705                 spin_lock(&root->fs_info->ordered_root_lock);
3706         }
3707
3708         spin_unlock(&root->fs_info->ordered_root_lock);
3709         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3710 }
3711
3712 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3713 {
3714         struct btrfs_ordered_extent *ordered;
3715
3716         spin_lock(&root->ordered_extent_lock);
3717         /*
3718          * This will just short circuit the ordered completion stuff which will
3719          * make sure the ordered extent gets properly cleaned up.
3720          */
3721         list_for_each_entry(ordered, &root->ordered_extents,
3722                             root_extent_list)
3723                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3724         spin_unlock(&root->ordered_extent_lock);
3725 }
3726
3727 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3728 {
3729         struct btrfs_root *root;
3730         struct list_head splice;
3731
3732         INIT_LIST_HEAD(&splice);
3733
3734         spin_lock(&fs_info->ordered_root_lock);
3735         list_splice_init(&fs_info->ordered_roots, &splice);
3736         while (!list_empty(&splice)) {
3737                 root = list_first_entry(&splice, struct btrfs_root,
3738                                         ordered_root);
3739                 list_del_init(&root->ordered_root);
3740
3741                 btrfs_destroy_ordered_extents(root);
3742
3743                 cond_resched_lock(&fs_info->ordered_root_lock);
3744         }
3745         spin_unlock(&fs_info->ordered_root_lock);
3746 }
3747
3748 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3749                                struct btrfs_root *root)
3750 {
3751         struct rb_node *node;
3752         struct btrfs_delayed_ref_root *delayed_refs;
3753         struct btrfs_delayed_ref_node *ref;
3754         int ret = 0;
3755
3756         delayed_refs = &trans->delayed_refs;
3757
3758         spin_lock(&delayed_refs->lock);
3759         if (delayed_refs->num_entries == 0) {
3760                 spin_unlock(&delayed_refs->lock);
3761                 printk(KERN_INFO "delayed_refs has NO entry\n");
3762                 return ret;
3763         }
3764
3765         while ((node = rb_first(&delayed_refs->root)) != NULL) {
3766                 struct btrfs_delayed_ref_head *head = NULL;
3767                 bool pin_bytes = false;
3768
3769                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3770                 atomic_set(&ref->refs, 1);
3771                 if (btrfs_delayed_ref_is_head(ref)) {
3772
3773                         head = btrfs_delayed_node_to_head(ref);
3774                         if (!mutex_trylock(&head->mutex)) {
3775                                 atomic_inc(&ref->refs);
3776                                 spin_unlock(&delayed_refs->lock);
3777
3778                                 /* Need to wait for the delayed ref to run */
3779                                 mutex_lock(&head->mutex);
3780                                 mutex_unlock(&head->mutex);
3781                                 btrfs_put_delayed_ref(ref);
3782
3783                                 spin_lock(&delayed_refs->lock);
3784                                 continue;
3785                         }
3786
3787                         if (head->must_insert_reserved)
3788                                 pin_bytes = true;
3789                         btrfs_free_delayed_extent_op(head->extent_op);
3790                         delayed_refs->num_heads--;
3791                         if (list_empty(&head->cluster))
3792                                 delayed_refs->num_heads_ready--;
3793                         list_del_init(&head->cluster);
3794                 }
3795
3796                 ref->in_tree = 0;
3797                 rb_erase(&ref->rb_node, &delayed_refs->root);
3798                 delayed_refs->num_entries--;
3799                 spin_unlock(&delayed_refs->lock);
3800                 if (head) {
3801                         if (pin_bytes)
3802                                 btrfs_pin_extent(root, ref->bytenr,
3803                                                  ref->num_bytes, 1);
3804                         mutex_unlock(&head->mutex);
3805                 }
3806                 btrfs_put_delayed_ref(ref);
3807
3808                 cond_resched();
3809                 spin_lock(&delayed_refs->lock);
3810         }
3811
3812         spin_unlock(&delayed_refs->lock);
3813
3814         return ret;
3815 }
3816
3817 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
3818 {
3819         struct btrfs_pending_snapshot *snapshot;
3820         struct list_head splice;
3821
3822         INIT_LIST_HEAD(&splice);
3823
3824         list_splice_init(&t->pending_snapshots, &splice);
3825
3826         while (!list_empty(&splice)) {
3827                 snapshot = list_entry(splice.next,
3828                                       struct btrfs_pending_snapshot,
3829                                       list);
3830                 snapshot->error = -ECANCELED;
3831                 list_del_init(&snapshot->list);
3832         }
3833 }
3834
3835 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3836 {
3837         struct btrfs_inode *btrfs_inode;
3838         struct list_head splice;
3839
3840         INIT_LIST_HEAD(&splice);
3841
3842         spin_lock(&root->delalloc_lock);
3843         list_splice_init(&root->delalloc_inodes, &splice);
3844
3845         while (!list_empty(&splice)) {
3846                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3847                                                delalloc_inodes);
3848
3849                 list_del_init(&btrfs_inode->delalloc_inodes);
3850                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3851                           &btrfs_inode->runtime_flags);
3852                 spin_unlock(&root->delalloc_lock);
3853
3854                 btrfs_invalidate_inodes(btrfs_inode->root);
3855
3856                 spin_lock(&root->delalloc_lock);
3857         }
3858
3859         spin_unlock(&root->delalloc_lock);
3860 }
3861
3862 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3863 {
3864         struct btrfs_root *root;
3865         struct list_head splice;
3866
3867         INIT_LIST_HEAD(&splice);
3868
3869         spin_lock(&fs_info->delalloc_root_lock);
3870         list_splice_init(&fs_info->delalloc_roots, &splice);
3871         while (!list_empty(&splice)) {
3872                 root = list_first_entry(&splice, struct btrfs_root,
3873                                          delalloc_root);
3874                 list_del_init(&root->delalloc_root);
3875                 root = btrfs_grab_fs_root(root);
3876                 BUG_ON(!root);
3877                 spin_unlock(&fs_info->delalloc_root_lock);
3878
3879                 btrfs_destroy_delalloc_inodes(root);
3880                 btrfs_put_fs_root(root);
3881
3882                 spin_lock(&fs_info->delalloc_root_lock);
3883         }
3884         spin_unlock(&fs_info->delalloc_root_lock);
3885 }
3886
3887 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3888                                         struct extent_io_tree *dirty_pages,
3889                                         int mark)
3890 {
3891         int ret;
3892         struct extent_buffer *eb;
3893         u64 start = 0;
3894         u64 end;
3895
3896         while (1) {
3897                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3898                                             mark, NULL);
3899                 if (ret)
3900                         break;
3901
3902                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3903                 while (start <= end) {
3904                         eb = btrfs_find_tree_block(root, start,
3905                                                    root->leafsize);
3906                         start += root->leafsize;
3907                         if (!eb)
3908                                 continue;
3909                         wait_on_extent_buffer_writeback(eb);
3910
3911                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3912                                                &eb->bflags))
3913                                 clear_extent_buffer_dirty(eb);
3914                         free_extent_buffer_stale(eb);
3915                 }
3916         }
3917
3918         return ret;
3919 }
3920
3921 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3922                                        struct extent_io_tree *pinned_extents)
3923 {
3924         struct extent_io_tree *unpin;
3925         u64 start;
3926         u64 end;
3927         int ret;
3928         bool loop = true;
3929
3930         unpin = pinned_extents;
3931 again:
3932         while (1) {
3933                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3934                                             EXTENT_DIRTY, NULL);
3935                 if (ret)
3936                         break;
3937
3938                 /* opt_discard */
3939                 if (btrfs_test_opt(root, DISCARD))
3940                         ret = btrfs_error_discard_extent(root, start,
3941                                                          end + 1 - start,
3942                                                          NULL);
3943
3944                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3945                 btrfs_error_unpin_extent_range(root, start, end);
3946                 cond_resched();
3947         }
3948
3949         if (loop) {
3950                 if (unpin == &root->fs_info->freed_extents[0])
3951                         unpin = &root->fs_info->freed_extents[1];
3952                 else
3953                         unpin = &root->fs_info->freed_extents[0];
3954                 loop = false;
3955                 goto again;
3956         }
3957
3958         return 0;
3959 }
3960
3961 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3962                                    struct btrfs_root *root)
3963 {
3964         btrfs_destroy_delayed_refs(cur_trans, root);
3965         btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3966                                 cur_trans->dirty_pages.dirty_bytes);
3967
3968         cur_trans->state = TRANS_STATE_COMMIT_START;
3969         wake_up(&root->fs_info->transaction_blocked_wait);
3970
3971         btrfs_evict_pending_snapshots(cur_trans);
3972
3973         cur_trans->state = TRANS_STATE_UNBLOCKED;
3974         wake_up(&root->fs_info->transaction_wait);
3975
3976         btrfs_destroy_delayed_inodes(root);
3977         btrfs_assert_delayed_root_empty(root);
3978
3979         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3980                                      EXTENT_DIRTY);
3981         btrfs_destroy_pinned_extent(root,
3982                                     root->fs_info->pinned_extents);
3983
3984         cur_trans->state =TRANS_STATE_COMPLETED;
3985         wake_up(&cur_trans->commit_wait);
3986
3987         /*
3988         memset(cur_trans, 0, sizeof(*cur_trans));
3989         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3990         */
3991 }
3992
3993 static int btrfs_cleanup_transaction(struct btrfs_root *root)
3994 {
3995         struct btrfs_transaction *t;
3996         LIST_HEAD(list);
3997
3998         mutex_lock(&root->fs_info->transaction_kthread_mutex);
3999
4000         spin_lock(&root->fs_info->trans_lock);
4001         list_splice_init(&root->fs_info->trans_list, &list);
4002         root->fs_info->running_transaction = NULL;
4003         spin_unlock(&root->fs_info->trans_lock);
4004
4005         while (!list_empty(&list)) {
4006                 t = list_entry(list.next, struct btrfs_transaction, list);
4007
4008                 btrfs_destroy_ordered_operations(t, root);
4009
4010                 btrfs_destroy_all_ordered_extents(root->fs_info);
4011
4012                 btrfs_destroy_delayed_refs(t, root);
4013
4014                 /*
4015                  *  FIXME: cleanup wait for commit
4016                  *  We needn't acquire the lock here, because we are during
4017                  *  the umount, there is no other task which will change it.
4018                  */
4019                 t->state = TRANS_STATE_COMMIT_START;
4020                 smp_mb();
4021                 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
4022                         wake_up(&root->fs_info->transaction_blocked_wait);
4023
4024                 btrfs_evict_pending_snapshots(t);
4025
4026                 t->state = TRANS_STATE_UNBLOCKED;
4027                 smp_mb();
4028                 if (waitqueue_active(&root->fs_info->transaction_wait))
4029                         wake_up(&root->fs_info->transaction_wait);
4030
4031                 btrfs_destroy_delayed_inodes(root);
4032                 btrfs_assert_delayed_root_empty(root);
4033
4034                 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4035
4036                 btrfs_destroy_marked_extents(root, &t->dirty_pages,
4037                                              EXTENT_DIRTY);
4038
4039                 btrfs_destroy_pinned_extent(root,
4040                                             root->fs_info->pinned_extents);
4041
4042                 t->state = TRANS_STATE_COMPLETED;
4043                 smp_mb();
4044                 if (waitqueue_active(&t->commit_wait))
4045                         wake_up(&t->commit_wait);
4046
4047                 atomic_set(&t->use_count, 0);
4048                 list_del_init(&t->list);
4049                 memset(t, 0, sizeof(*t));
4050                 kmem_cache_free(btrfs_transaction_cachep, t);
4051         }
4052
4053         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4054
4055         return 0;
4056 }
4057
4058 static struct extent_io_ops btree_extent_io_ops = {
4059         .readpage_end_io_hook = btree_readpage_end_io_hook,
4060         .readpage_io_failed_hook = btree_io_failed_hook,
4061         .submit_bio_hook = btree_submit_bio_hook,
4062         /* note we're sharing with inode.c for the merge bio hook */
4063         .merge_bio_hook = btrfs_merge_bio_hook,
4064 };