Btrfs: fix lockdep deadlock warning due to dev_replace
[linux-2.6-block.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "free-space-tree.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 #include "sysfs.h"
52 #include "qgroup.h"
53
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57
58 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
59                                  BTRFS_HEADER_FLAG_RELOC |\
60                                  BTRFS_SUPER_FLAG_ERROR |\
61                                  BTRFS_SUPER_FLAG_SEEDING |\
62                                  BTRFS_SUPER_FLAG_METADUMP)
63
64 static const struct extent_io_ops btree_extent_io_ops;
65 static void end_workqueue_fn(struct btrfs_work *work);
66 static void free_fs_root(struct btrfs_root *root);
67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
68                                     int read_only);
69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71                                       struct btrfs_root *root);
72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
73 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
74                                         struct extent_io_tree *dirty_pages,
75                                         int mark);
76 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
77                                        struct extent_io_tree *pinned_extents);
78 static int btrfs_cleanup_transaction(struct btrfs_root *root);
79 static void btrfs_error_commit_super(struct btrfs_root *root);
80
81 /*
82  * btrfs_end_io_wq structs are used to do processing in task context when an IO
83  * is complete.  This is used during reads to verify checksums, and it is used
84  * by writes to insert metadata for new file extents after IO is complete.
85  */
86 struct btrfs_end_io_wq {
87         struct bio *bio;
88         bio_end_io_t *end_io;
89         void *private;
90         struct btrfs_fs_info *info;
91         int error;
92         enum btrfs_wq_endio_type metadata;
93         struct list_head list;
94         struct btrfs_work work;
95 };
96
97 static struct kmem_cache *btrfs_end_io_wq_cache;
98
99 int __init btrfs_end_io_wq_init(void)
100 {
101         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102                                         sizeof(struct btrfs_end_io_wq),
103                                         0,
104                                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
105                                         NULL);
106         if (!btrfs_end_io_wq_cache)
107                 return -ENOMEM;
108         return 0;
109 }
110
111 void btrfs_end_io_wq_exit(void)
112 {
113         if (btrfs_end_io_wq_cache)
114                 kmem_cache_destroy(btrfs_end_io_wq_cache);
115 }
116
117 /*
118  * async submit bios are used to offload expensive checksumming
119  * onto the worker threads.  They checksum file and metadata bios
120  * just before they are sent down the IO stack.
121  */
122 struct async_submit_bio {
123         struct inode *inode;
124         struct bio *bio;
125         struct list_head list;
126         extent_submit_bio_hook_t *submit_bio_start;
127         extent_submit_bio_hook_t *submit_bio_done;
128         int rw;
129         int mirror_num;
130         unsigned long bio_flags;
131         /*
132          * bio_offset is optional, can be used if the pages in the bio
133          * can't tell us where in the file the bio should go
134          */
135         u64 bio_offset;
136         struct btrfs_work work;
137         int error;
138 };
139
140 /*
141  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
142  * eb, the lockdep key is determined by the btrfs_root it belongs to and
143  * the level the eb occupies in the tree.
144  *
145  * Different roots are used for different purposes and may nest inside each
146  * other and they require separate keysets.  As lockdep keys should be
147  * static, assign keysets according to the purpose of the root as indicated
148  * by btrfs_root->objectid.  This ensures that all special purpose roots
149  * have separate keysets.
150  *
151  * Lock-nesting across peer nodes is always done with the immediate parent
152  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
153  * subclass to avoid triggering lockdep warning in such cases.
154  *
155  * The key is set by the readpage_end_io_hook after the buffer has passed
156  * csum validation but before the pages are unlocked.  It is also set by
157  * btrfs_init_new_buffer on freshly allocated blocks.
158  *
159  * We also add a check to make sure the highest level of the tree is the
160  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
161  * needs update as well.
162  */
163 #ifdef CONFIG_DEBUG_LOCK_ALLOC
164 # if BTRFS_MAX_LEVEL != 8
165 #  error
166 # endif
167
168 static struct btrfs_lockdep_keyset {
169         u64                     id;             /* root objectid */
170         const char              *name_stem;     /* lock name stem */
171         char                    names[BTRFS_MAX_LEVEL + 1][20];
172         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
173 } btrfs_lockdep_keysets[] = {
174         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
175         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
176         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
177         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
178         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
179         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
180         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
181         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
182         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
183         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
184         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
185         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
186         { .id = 0,                              .name_stem = "tree"     },
187 };
188
189 void __init btrfs_init_lockdep(void)
190 {
191         int i, j;
192
193         /* initialize lockdep class names */
194         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
195                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
196
197                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
198                         snprintf(ks->names[j], sizeof(ks->names[j]),
199                                  "btrfs-%s-%02d", ks->name_stem, j);
200         }
201 }
202
203 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
204                                     int level)
205 {
206         struct btrfs_lockdep_keyset *ks;
207
208         BUG_ON(level >= ARRAY_SIZE(ks->keys));
209
210         /* find the matching keyset, id 0 is the default entry */
211         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
212                 if (ks->id == objectid)
213                         break;
214
215         lockdep_set_class_and_name(&eb->lock,
216                                    &ks->keys[level], ks->names[level]);
217 }
218
219 #endif
220
221 /*
222  * extents on the btree inode are pretty simple, there's one extent
223  * that covers the entire device
224  */
225 static struct extent_map *btree_get_extent(struct inode *inode,
226                 struct page *page, size_t pg_offset, u64 start, u64 len,
227                 int create)
228 {
229         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
230         struct extent_map *em;
231         int ret;
232
233         read_lock(&em_tree->lock);
234         em = lookup_extent_mapping(em_tree, start, len);
235         if (em) {
236                 em->bdev =
237                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
238                 read_unlock(&em_tree->lock);
239                 goto out;
240         }
241         read_unlock(&em_tree->lock);
242
243         em = alloc_extent_map();
244         if (!em) {
245                 em = ERR_PTR(-ENOMEM);
246                 goto out;
247         }
248         em->start = 0;
249         em->len = (u64)-1;
250         em->block_len = (u64)-1;
251         em->block_start = 0;
252         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
253
254         write_lock(&em_tree->lock);
255         ret = add_extent_mapping(em_tree, em, 0);
256         if (ret == -EEXIST) {
257                 free_extent_map(em);
258                 em = lookup_extent_mapping(em_tree, start, len);
259                 if (!em)
260                         em = ERR_PTR(-EIO);
261         } else if (ret) {
262                 free_extent_map(em);
263                 em = ERR_PTR(ret);
264         }
265         write_unlock(&em_tree->lock);
266
267 out:
268         return em;
269 }
270
271 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
272 {
273         return btrfs_crc32c(seed, data, len);
274 }
275
276 void btrfs_csum_final(u32 crc, char *result)
277 {
278         put_unaligned_le32(~crc, result);
279 }
280
281 /*
282  * compute the csum for a btree block, and either verify it or write it
283  * into the csum field of the block.
284  */
285 static int csum_tree_block(struct btrfs_fs_info *fs_info,
286                            struct extent_buffer *buf,
287                            int verify)
288 {
289         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
290         char *result = NULL;
291         unsigned long len;
292         unsigned long cur_len;
293         unsigned long offset = BTRFS_CSUM_SIZE;
294         char *kaddr;
295         unsigned long map_start;
296         unsigned long map_len;
297         int err;
298         u32 crc = ~(u32)0;
299         unsigned long inline_result;
300
301         len = buf->len - offset;
302         while (len > 0) {
303                 err = map_private_extent_buffer(buf, offset, 32,
304                                         &kaddr, &map_start, &map_len);
305                 if (err)
306                         return 1;
307                 cur_len = min(len, map_len - (offset - map_start));
308                 crc = btrfs_csum_data(kaddr + offset - map_start,
309                                       crc, cur_len);
310                 len -= cur_len;
311                 offset += cur_len;
312         }
313         if (csum_size > sizeof(inline_result)) {
314                 result = kzalloc(csum_size, GFP_NOFS);
315                 if (!result)
316                         return 1;
317         } else {
318                 result = (char *)&inline_result;
319         }
320
321         btrfs_csum_final(crc, result);
322
323         if (verify) {
324                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
325                         u32 val;
326                         u32 found = 0;
327                         memcpy(&found, result, csum_size);
328
329                         read_extent_buffer(buf, &val, 0, csum_size);
330                         btrfs_warn_rl(fs_info,
331                                 "%s checksum verify failed on %llu wanted %X found %X "
332                                 "level %d",
333                                 fs_info->sb->s_id, buf->start,
334                                 val, found, btrfs_header_level(buf));
335                         if (result != (char *)&inline_result)
336                                 kfree(result);
337                         return 1;
338                 }
339         } else {
340                 write_extent_buffer(buf, result, 0, csum_size);
341         }
342         if (result != (char *)&inline_result)
343                 kfree(result);
344         return 0;
345 }
346
347 /*
348  * we can't consider a given block up to date unless the transid of the
349  * block matches the transid in the parent node's pointer.  This is how we
350  * detect blocks that either didn't get written at all or got written
351  * in the wrong place.
352  */
353 static int verify_parent_transid(struct extent_io_tree *io_tree,
354                                  struct extent_buffer *eb, u64 parent_transid,
355                                  int atomic)
356 {
357         struct extent_state *cached_state = NULL;
358         int ret;
359         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
360
361         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
362                 return 0;
363
364         if (atomic)
365                 return -EAGAIN;
366
367         if (need_lock) {
368                 btrfs_tree_read_lock(eb);
369                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
370         }
371
372         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
373                          &cached_state);
374         if (extent_buffer_uptodate(eb) &&
375             btrfs_header_generation(eb) == parent_transid) {
376                 ret = 0;
377                 goto out;
378         }
379         btrfs_err_rl(eb->fs_info,
380                 "parent transid verify failed on %llu wanted %llu found %llu",
381                         eb->start,
382                         parent_transid, btrfs_header_generation(eb));
383         ret = 1;
384
385         /*
386          * Things reading via commit roots that don't have normal protection,
387          * like send, can have a really old block in cache that may point at a
388          * block that has been free'd and re-allocated.  So don't clear uptodate
389          * if we find an eb that is under IO (dirty/writeback) because we could
390          * end up reading in the stale data and then writing it back out and
391          * making everybody very sad.
392          */
393         if (!extent_buffer_under_io(eb))
394                 clear_extent_buffer_uptodate(eb);
395 out:
396         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
397                              &cached_state, GFP_NOFS);
398         if (need_lock)
399                 btrfs_tree_read_unlock_blocking(eb);
400         return ret;
401 }
402
403 /*
404  * Return 0 if the superblock checksum type matches the checksum value of that
405  * algorithm. Pass the raw disk superblock data.
406  */
407 static int btrfs_check_super_csum(char *raw_disk_sb)
408 {
409         struct btrfs_super_block *disk_sb =
410                 (struct btrfs_super_block *)raw_disk_sb;
411         u16 csum_type = btrfs_super_csum_type(disk_sb);
412         int ret = 0;
413
414         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
415                 u32 crc = ~(u32)0;
416                 const int csum_size = sizeof(crc);
417                 char result[csum_size];
418
419                 /*
420                  * The super_block structure does not span the whole
421                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
422                  * is filled with zeros and is included in the checkum.
423                  */
424                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
425                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
426                 btrfs_csum_final(crc, result);
427
428                 if (memcmp(raw_disk_sb, result, csum_size))
429                         ret = 1;
430         }
431
432         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
433                 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
434                                 csum_type);
435                 ret = 1;
436         }
437
438         return ret;
439 }
440
441 /*
442  * helper to read a given tree block, doing retries as required when
443  * the checksums don't match and we have alternate mirrors to try.
444  */
445 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
446                                           struct extent_buffer *eb,
447                                           u64 start, u64 parent_transid)
448 {
449         struct extent_io_tree *io_tree;
450         int failed = 0;
451         int ret;
452         int num_copies = 0;
453         int mirror_num = 0;
454         int failed_mirror = 0;
455
456         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
457         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
458         while (1) {
459                 ret = read_extent_buffer_pages(io_tree, eb, start,
460                                                WAIT_COMPLETE,
461                                                btree_get_extent, mirror_num);
462                 if (!ret) {
463                         if (!verify_parent_transid(io_tree, eb,
464                                                    parent_transid, 0))
465                                 break;
466                         else
467                                 ret = -EIO;
468                 }
469
470                 /*
471                  * This buffer's crc is fine, but its contents are corrupted, so
472                  * there is no reason to read the other copies, they won't be
473                  * any less wrong.
474                  */
475                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
476                         break;
477
478                 num_copies = btrfs_num_copies(root->fs_info,
479                                               eb->start, eb->len);
480                 if (num_copies == 1)
481                         break;
482
483                 if (!failed_mirror) {
484                         failed = 1;
485                         failed_mirror = eb->read_mirror;
486                 }
487
488                 mirror_num++;
489                 if (mirror_num == failed_mirror)
490                         mirror_num++;
491
492                 if (mirror_num > num_copies)
493                         break;
494         }
495
496         if (failed && !ret && failed_mirror)
497                 repair_eb_io_failure(root, eb, failed_mirror);
498
499         return ret;
500 }
501
502 /*
503  * checksum a dirty tree block before IO.  This has extra checks to make sure
504  * we only fill in the checksum field in the first page of a multi-page block
505  */
506
507 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
508 {
509         u64 start = page_offset(page);
510         u64 found_start;
511         struct extent_buffer *eb;
512
513         eb = (struct extent_buffer *)page->private;
514         if (page != eb->pages[0])
515                 return 0;
516         found_start = btrfs_header_bytenr(eb);
517         if (WARN_ON(found_start != start || !PageUptodate(page)))
518                 return 0;
519         csum_tree_block(fs_info, eb, 0);
520         return 0;
521 }
522
523 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
524                                  struct extent_buffer *eb)
525 {
526         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
527         u8 fsid[BTRFS_UUID_SIZE];
528         int ret = 1;
529
530         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
531         while (fs_devices) {
532                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
533                         ret = 0;
534                         break;
535                 }
536                 fs_devices = fs_devices->seed;
537         }
538         return ret;
539 }
540
541 #define CORRUPT(reason, eb, root, slot)                         \
542         btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"       \
543                    "root=%llu, slot=%d", reason,                        \
544                btrfs_header_bytenr(eb), root->objectid, slot)
545
546 static noinline int check_leaf(struct btrfs_root *root,
547                                struct extent_buffer *leaf)
548 {
549         struct btrfs_key key;
550         struct btrfs_key leaf_key;
551         u32 nritems = btrfs_header_nritems(leaf);
552         int slot;
553
554         if (nritems == 0)
555                 return 0;
556
557         /* Check the 0 item */
558         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
559             BTRFS_LEAF_DATA_SIZE(root)) {
560                 CORRUPT("invalid item offset size pair", leaf, root, 0);
561                 return -EIO;
562         }
563
564         /*
565          * Check to make sure each items keys are in the correct order and their
566          * offsets make sense.  We only have to loop through nritems-1 because
567          * we check the current slot against the next slot, which verifies the
568          * next slot's offset+size makes sense and that the current's slot
569          * offset is correct.
570          */
571         for (slot = 0; slot < nritems - 1; slot++) {
572                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
573                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
574
575                 /* Make sure the keys are in the right order */
576                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
577                         CORRUPT("bad key order", leaf, root, slot);
578                         return -EIO;
579                 }
580
581                 /*
582                  * Make sure the offset and ends are right, remember that the
583                  * item data starts at the end of the leaf and grows towards the
584                  * front.
585                  */
586                 if (btrfs_item_offset_nr(leaf, slot) !=
587                         btrfs_item_end_nr(leaf, slot + 1)) {
588                         CORRUPT("slot offset bad", leaf, root, slot);
589                         return -EIO;
590                 }
591
592                 /*
593                  * Check to make sure that we don't point outside of the leaf,
594                  * just incase all the items are consistent to eachother, but
595                  * all point outside of the leaf.
596                  */
597                 if (btrfs_item_end_nr(leaf, slot) >
598                     BTRFS_LEAF_DATA_SIZE(root)) {
599                         CORRUPT("slot end outside of leaf", leaf, root, slot);
600                         return -EIO;
601                 }
602         }
603
604         return 0;
605 }
606
607 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
608                                       u64 phy_offset, struct page *page,
609                                       u64 start, u64 end, int mirror)
610 {
611         u64 found_start;
612         int found_level;
613         struct extent_buffer *eb;
614         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
615         int ret = 0;
616         int reads_done;
617
618         if (!page->private)
619                 goto out;
620
621         eb = (struct extent_buffer *)page->private;
622
623         /* the pending IO might have been the only thing that kept this buffer
624          * in memory.  Make sure we have a ref for all this other checks
625          */
626         extent_buffer_get(eb);
627
628         reads_done = atomic_dec_and_test(&eb->io_pages);
629         if (!reads_done)
630                 goto err;
631
632         eb->read_mirror = mirror;
633         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
634                 ret = -EIO;
635                 goto err;
636         }
637
638         found_start = btrfs_header_bytenr(eb);
639         if (found_start != eb->start) {
640                 btrfs_err_rl(eb->fs_info, "bad tree block start %llu %llu",
641                                found_start, eb->start);
642                 ret = -EIO;
643                 goto err;
644         }
645         if (check_tree_block_fsid(root->fs_info, eb)) {
646                 btrfs_err_rl(eb->fs_info, "bad fsid on block %llu",
647                                eb->start);
648                 ret = -EIO;
649                 goto err;
650         }
651         found_level = btrfs_header_level(eb);
652         if (found_level >= BTRFS_MAX_LEVEL) {
653                 btrfs_err(root->fs_info, "bad tree block level %d",
654                            (int)btrfs_header_level(eb));
655                 ret = -EIO;
656                 goto err;
657         }
658
659         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
660                                        eb, found_level);
661
662         ret = csum_tree_block(root->fs_info, eb, 1);
663         if (ret) {
664                 ret = -EIO;
665                 goto err;
666         }
667
668         /*
669          * If this is a leaf block and it is corrupt, set the corrupt bit so
670          * that we don't try and read the other copies of this block, just
671          * return -EIO.
672          */
673         if (found_level == 0 && check_leaf(root, eb)) {
674                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
675                 ret = -EIO;
676         }
677
678         if (!ret)
679                 set_extent_buffer_uptodate(eb);
680 err:
681         if (reads_done &&
682             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
683                 btree_readahead_hook(root, eb, eb->start, ret);
684
685         if (ret) {
686                 /*
687                  * our io error hook is going to dec the io pages
688                  * again, we have to make sure it has something
689                  * to decrement
690                  */
691                 atomic_inc(&eb->io_pages);
692                 clear_extent_buffer_uptodate(eb);
693         }
694         free_extent_buffer(eb);
695 out:
696         return ret;
697 }
698
699 static int btree_io_failed_hook(struct page *page, int failed_mirror)
700 {
701         struct extent_buffer *eb;
702         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
703
704         eb = (struct extent_buffer *)page->private;
705         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
706         eb->read_mirror = failed_mirror;
707         atomic_dec(&eb->io_pages);
708         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
709                 btree_readahead_hook(root, eb, eb->start, -EIO);
710         return -EIO;    /* we fixed nothing */
711 }
712
713 static void end_workqueue_bio(struct bio *bio)
714 {
715         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
716         struct btrfs_fs_info *fs_info;
717         struct btrfs_workqueue *wq;
718         btrfs_work_func_t func;
719
720         fs_info = end_io_wq->info;
721         end_io_wq->error = bio->bi_error;
722
723         if (bio->bi_rw & REQ_WRITE) {
724                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
725                         wq = fs_info->endio_meta_write_workers;
726                         func = btrfs_endio_meta_write_helper;
727                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
728                         wq = fs_info->endio_freespace_worker;
729                         func = btrfs_freespace_write_helper;
730                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
731                         wq = fs_info->endio_raid56_workers;
732                         func = btrfs_endio_raid56_helper;
733                 } else {
734                         wq = fs_info->endio_write_workers;
735                         func = btrfs_endio_write_helper;
736                 }
737         } else {
738                 if (unlikely(end_io_wq->metadata ==
739                              BTRFS_WQ_ENDIO_DIO_REPAIR)) {
740                         wq = fs_info->endio_repair_workers;
741                         func = btrfs_endio_repair_helper;
742                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
743                         wq = fs_info->endio_raid56_workers;
744                         func = btrfs_endio_raid56_helper;
745                 } else if (end_io_wq->metadata) {
746                         wq = fs_info->endio_meta_workers;
747                         func = btrfs_endio_meta_helper;
748                 } else {
749                         wq = fs_info->endio_workers;
750                         func = btrfs_endio_helper;
751                 }
752         }
753
754         btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
755         btrfs_queue_work(wq, &end_io_wq->work);
756 }
757
758 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
759                         enum btrfs_wq_endio_type metadata)
760 {
761         struct btrfs_end_io_wq *end_io_wq;
762
763         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
764         if (!end_io_wq)
765                 return -ENOMEM;
766
767         end_io_wq->private = bio->bi_private;
768         end_io_wq->end_io = bio->bi_end_io;
769         end_io_wq->info = info;
770         end_io_wq->error = 0;
771         end_io_wq->bio = bio;
772         end_io_wq->metadata = metadata;
773
774         bio->bi_private = end_io_wq;
775         bio->bi_end_io = end_workqueue_bio;
776         return 0;
777 }
778
779 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
780 {
781         unsigned long limit = min_t(unsigned long,
782                                     info->thread_pool_size,
783                                     info->fs_devices->open_devices);
784         return 256 * limit;
785 }
786
787 static void run_one_async_start(struct btrfs_work *work)
788 {
789         struct async_submit_bio *async;
790         int ret;
791
792         async = container_of(work, struct  async_submit_bio, work);
793         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
794                                       async->mirror_num, async->bio_flags,
795                                       async->bio_offset);
796         if (ret)
797                 async->error = ret;
798 }
799
800 static void run_one_async_done(struct btrfs_work *work)
801 {
802         struct btrfs_fs_info *fs_info;
803         struct async_submit_bio *async;
804         int limit;
805
806         async = container_of(work, struct  async_submit_bio, work);
807         fs_info = BTRFS_I(async->inode)->root->fs_info;
808
809         limit = btrfs_async_submit_limit(fs_info);
810         limit = limit * 2 / 3;
811
812         /*
813          * atomic_dec_return implies a barrier for waitqueue_active
814          */
815         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
816             waitqueue_active(&fs_info->async_submit_wait))
817                 wake_up(&fs_info->async_submit_wait);
818
819         /* If an error occured we just want to clean up the bio and move on */
820         if (async->error) {
821                 async->bio->bi_error = async->error;
822                 bio_endio(async->bio);
823                 return;
824         }
825
826         async->submit_bio_done(async->inode, async->rw, async->bio,
827                                async->mirror_num, async->bio_flags,
828                                async->bio_offset);
829 }
830
831 static void run_one_async_free(struct btrfs_work *work)
832 {
833         struct async_submit_bio *async;
834
835         async = container_of(work, struct  async_submit_bio, work);
836         kfree(async);
837 }
838
839 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
840                         int rw, struct bio *bio, int mirror_num,
841                         unsigned long bio_flags,
842                         u64 bio_offset,
843                         extent_submit_bio_hook_t *submit_bio_start,
844                         extent_submit_bio_hook_t *submit_bio_done)
845 {
846         struct async_submit_bio *async;
847
848         async = kmalloc(sizeof(*async), GFP_NOFS);
849         if (!async)
850                 return -ENOMEM;
851
852         async->inode = inode;
853         async->rw = rw;
854         async->bio = bio;
855         async->mirror_num = mirror_num;
856         async->submit_bio_start = submit_bio_start;
857         async->submit_bio_done = submit_bio_done;
858
859         btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
860                         run_one_async_done, run_one_async_free);
861
862         async->bio_flags = bio_flags;
863         async->bio_offset = bio_offset;
864
865         async->error = 0;
866
867         atomic_inc(&fs_info->nr_async_submits);
868
869         if (rw & REQ_SYNC)
870                 btrfs_set_work_high_priority(&async->work);
871
872         btrfs_queue_work(fs_info->workers, &async->work);
873
874         while (atomic_read(&fs_info->async_submit_draining) &&
875               atomic_read(&fs_info->nr_async_submits)) {
876                 wait_event(fs_info->async_submit_wait,
877                            (atomic_read(&fs_info->nr_async_submits) == 0));
878         }
879
880         return 0;
881 }
882
883 static int btree_csum_one_bio(struct bio *bio)
884 {
885         struct bio_vec *bvec;
886         struct btrfs_root *root;
887         int i, ret = 0;
888
889         bio_for_each_segment_all(bvec, bio, i) {
890                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
891                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
892                 if (ret)
893                         break;
894         }
895
896         return ret;
897 }
898
899 static int __btree_submit_bio_start(struct inode *inode, int rw,
900                                     struct bio *bio, int mirror_num,
901                                     unsigned long bio_flags,
902                                     u64 bio_offset)
903 {
904         /*
905          * when we're called for a write, we're already in the async
906          * submission context.  Just jump into btrfs_map_bio
907          */
908         return btree_csum_one_bio(bio);
909 }
910
911 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
912                                  int mirror_num, unsigned long bio_flags,
913                                  u64 bio_offset)
914 {
915         int ret;
916
917         /*
918          * when we're called for a write, we're already in the async
919          * submission context.  Just jump into btrfs_map_bio
920          */
921         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
922         if (ret) {
923                 bio->bi_error = ret;
924                 bio_endio(bio);
925         }
926         return ret;
927 }
928
929 static int check_async_write(struct inode *inode, unsigned long bio_flags)
930 {
931         if (bio_flags & EXTENT_BIO_TREE_LOG)
932                 return 0;
933 #ifdef CONFIG_X86
934         if (static_cpu_has_safe(X86_FEATURE_XMM4_2))
935                 return 0;
936 #endif
937         return 1;
938 }
939
940 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
941                                  int mirror_num, unsigned long bio_flags,
942                                  u64 bio_offset)
943 {
944         int async = check_async_write(inode, bio_flags);
945         int ret;
946
947         if (!(rw & REQ_WRITE)) {
948                 /*
949                  * called for a read, do the setup so that checksum validation
950                  * can happen in the async kernel threads
951                  */
952                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
953                                           bio, BTRFS_WQ_ENDIO_METADATA);
954                 if (ret)
955                         goto out_w_error;
956                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
957                                     mirror_num, 0);
958         } else if (!async) {
959                 ret = btree_csum_one_bio(bio);
960                 if (ret)
961                         goto out_w_error;
962                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
963                                     mirror_num, 0);
964         } else {
965                 /*
966                  * kthread helpers are used to submit writes so that
967                  * checksumming can happen in parallel across all CPUs
968                  */
969                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
970                                           inode, rw, bio, mirror_num, 0,
971                                           bio_offset,
972                                           __btree_submit_bio_start,
973                                           __btree_submit_bio_done);
974         }
975
976         if (ret)
977                 goto out_w_error;
978         return 0;
979
980 out_w_error:
981         bio->bi_error = ret;
982         bio_endio(bio);
983         return ret;
984 }
985
986 #ifdef CONFIG_MIGRATION
987 static int btree_migratepage(struct address_space *mapping,
988                         struct page *newpage, struct page *page,
989                         enum migrate_mode mode)
990 {
991         /*
992          * we can't safely write a btree page from here,
993          * we haven't done the locking hook
994          */
995         if (PageDirty(page))
996                 return -EAGAIN;
997         /*
998          * Buffers may be managed in a filesystem specific way.
999          * We must have no buffers or drop them.
1000          */
1001         if (page_has_private(page) &&
1002             !try_to_release_page(page, GFP_KERNEL))
1003                 return -EAGAIN;
1004         return migrate_page(mapping, newpage, page, mode);
1005 }
1006 #endif
1007
1008
1009 static int btree_writepages(struct address_space *mapping,
1010                             struct writeback_control *wbc)
1011 {
1012         struct btrfs_fs_info *fs_info;
1013         int ret;
1014
1015         if (wbc->sync_mode == WB_SYNC_NONE) {
1016
1017                 if (wbc->for_kupdate)
1018                         return 0;
1019
1020                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1021                 /* this is a bit racy, but that's ok */
1022                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1023                                              BTRFS_DIRTY_METADATA_THRESH);
1024                 if (ret < 0)
1025                         return 0;
1026         }
1027         return btree_write_cache_pages(mapping, wbc);
1028 }
1029
1030 static int btree_readpage(struct file *file, struct page *page)
1031 {
1032         struct extent_io_tree *tree;
1033         tree = &BTRFS_I(page->mapping->host)->io_tree;
1034         return extent_read_full_page(tree, page, btree_get_extent, 0);
1035 }
1036
1037 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1038 {
1039         if (PageWriteback(page) || PageDirty(page))
1040                 return 0;
1041
1042         return try_release_extent_buffer(page);
1043 }
1044
1045 static void btree_invalidatepage(struct page *page, unsigned int offset,
1046                                  unsigned int length)
1047 {
1048         struct extent_io_tree *tree;
1049         tree = &BTRFS_I(page->mapping->host)->io_tree;
1050         extent_invalidatepage(tree, page, offset);
1051         btree_releasepage(page, GFP_NOFS);
1052         if (PagePrivate(page)) {
1053                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1054                            "page private not zero on page %llu",
1055                            (unsigned long long)page_offset(page));
1056                 ClearPagePrivate(page);
1057                 set_page_private(page, 0);
1058                 page_cache_release(page);
1059         }
1060 }
1061
1062 static int btree_set_page_dirty(struct page *page)
1063 {
1064 #ifdef DEBUG
1065         struct extent_buffer *eb;
1066
1067         BUG_ON(!PagePrivate(page));
1068         eb = (struct extent_buffer *)page->private;
1069         BUG_ON(!eb);
1070         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1071         BUG_ON(!atomic_read(&eb->refs));
1072         btrfs_assert_tree_locked(eb);
1073 #endif
1074         return __set_page_dirty_nobuffers(page);
1075 }
1076
1077 static const struct address_space_operations btree_aops = {
1078         .readpage       = btree_readpage,
1079         .writepages     = btree_writepages,
1080         .releasepage    = btree_releasepage,
1081         .invalidatepage = btree_invalidatepage,
1082 #ifdef CONFIG_MIGRATION
1083         .migratepage    = btree_migratepage,
1084 #endif
1085         .set_page_dirty = btree_set_page_dirty,
1086 };
1087
1088 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1089 {
1090         struct extent_buffer *buf = NULL;
1091         struct inode *btree_inode = root->fs_info->btree_inode;
1092
1093         buf = btrfs_find_create_tree_block(root, bytenr);
1094         if (!buf)
1095                 return;
1096         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1097                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1098         free_extent_buffer(buf);
1099 }
1100
1101 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1102                          int mirror_num, struct extent_buffer **eb)
1103 {
1104         struct extent_buffer *buf = NULL;
1105         struct inode *btree_inode = root->fs_info->btree_inode;
1106         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1107         int ret;
1108
1109         buf = btrfs_find_create_tree_block(root, bytenr);
1110         if (!buf)
1111                 return 0;
1112
1113         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1114
1115         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1116                                        btree_get_extent, mirror_num);
1117         if (ret) {
1118                 free_extent_buffer(buf);
1119                 return ret;
1120         }
1121
1122         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1123                 free_extent_buffer(buf);
1124                 return -EIO;
1125         } else if (extent_buffer_uptodate(buf)) {
1126                 *eb = buf;
1127         } else {
1128                 free_extent_buffer(buf);
1129         }
1130         return 0;
1131 }
1132
1133 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1134                                             u64 bytenr)
1135 {
1136         return find_extent_buffer(fs_info, bytenr);
1137 }
1138
1139 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1140                                                  u64 bytenr)
1141 {
1142         if (btrfs_test_is_dummy_root(root))
1143                 return alloc_test_extent_buffer(root->fs_info, bytenr);
1144         return alloc_extent_buffer(root->fs_info, bytenr);
1145 }
1146
1147
1148 int btrfs_write_tree_block(struct extent_buffer *buf)
1149 {
1150         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1151                                         buf->start + buf->len - 1);
1152 }
1153
1154 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1155 {
1156         return filemap_fdatawait_range(buf->pages[0]->mapping,
1157                                        buf->start, buf->start + buf->len - 1);
1158 }
1159
1160 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1161                                       u64 parent_transid)
1162 {
1163         struct extent_buffer *buf = NULL;
1164         int ret;
1165
1166         buf = btrfs_find_create_tree_block(root, bytenr);
1167         if (!buf)
1168                 return ERR_PTR(-ENOMEM);
1169
1170         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1171         if (ret) {
1172                 free_extent_buffer(buf);
1173                 return ERR_PTR(ret);
1174         }
1175         return buf;
1176
1177 }
1178
1179 void clean_tree_block(struct btrfs_trans_handle *trans,
1180                       struct btrfs_fs_info *fs_info,
1181                       struct extent_buffer *buf)
1182 {
1183         if (btrfs_header_generation(buf) ==
1184             fs_info->running_transaction->transid) {
1185                 btrfs_assert_tree_locked(buf);
1186
1187                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1188                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1189                                              -buf->len,
1190                                              fs_info->dirty_metadata_batch);
1191                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1192                         btrfs_set_lock_blocking(buf);
1193                         clear_extent_buffer_dirty(buf);
1194                 }
1195         }
1196 }
1197
1198 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1199 {
1200         struct btrfs_subvolume_writers *writers;
1201         int ret;
1202
1203         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1204         if (!writers)
1205                 return ERR_PTR(-ENOMEM);
1206
1207         ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1208         if (ret < 0) {
1209                 kfree(writers);
1210                 return ERR_PTR(ret);
1211         }
1212
1213         init_waitqueue_head(&writers->wait);
1214         return writers;
1215 }
1216
1217 static void
1218 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1219 {
1220         percpu_counter_destroy(&writers->counter);
1221         kfree(writers);
1222 }
1223
1224 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1225                          struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1226                          u64 objectid)
1227 {
1228         root->node = NULL;
1229         root->commit_root = NULL;
1230         root->sectorsize = sectorsize;
1231         root->nodesize = nodesize;
1232         root->stripesize = stripesize;
1233         root->state = 0;
1234         root->orphan_cleanup_state = 0;
1235
1236         root->objectid = objectid;
1237         root->last_trans = 0;
1238         root->highest_objectid = 0;
1239         root->nr_delalloc_inodes = 0;
1240         root->nr_ordered_extents = 0;
1241         root->name = NULL;
1242         root->inode_tree = RB_ROOT;
1243         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1244         root->block_rsv = NULL;
1245         root->orphan_block_rsv = NULL;
1246
1247         INIT_LIST_HEAD(&root->dirty_list);
1248         INIT_LIST_HEAD(&root->root_list);
1249         INIT_LIST_HEAD(&root->delalloc_inodes);
1250         INIT_LIST_HEAD(&root->delalloc_root);
1251         INIT_LIST_HEAD(&root->ordered_extents);
1252         INIT_LIST_HEAD(&root->ordered_root);
1253         INIT_LIST_HEAD(&root->logged_list[0]);
1254         INIT_LIST_HEAD(&root->logged_list[1]);
1255         spin_lock_init(&root->orphan_lock);
1256         spin_lock_init(&root->inode_lock);
1257         spin_lock_init(&root->delalloc_lock);
1258         spin_lock_init(&root->ordered_extent_lock);
1259         spin_lock_init(&root->accounting_lock);
1260         spin_lock_init(&root->log_extents_lock[0]);
1261         spin_lock_init(&root->log_extents_lock[1]);
1262         mutex_init(&root->objectid_mutex);
1263         mutex_init(&root->log_mutex);
1264         mutex_init(&root->ordered_extent_mutex);
1265         mutex_init(&root->delalloc_mutex);
1266         init_waitqueue_head(&root->log_writer_wait);
1267         init_waitqueue_head(&root->log_commit_wait[0]);
1268         init_waitqueue_head(&root->log_commit_wait[1]);
1269         INIT_LIST_HEAD(&root->log_ctxs[0]);
1270         INIT_LIST_HEAD(&root->log_ctxs[1]);
1271         atomic_set(&root->log_commit[0], 0);
1272         atomic_set(&root->log_commit[1], 0);
1273         atomic_set(&root->log_writers, 0);
1274         atomic_set(&root->log_batch, 0);
1275         atomic_set(&root->orphan_inodes, 0);
1276         atomic_set(&root->refs, 1);
1277         atomic_set(&root->will_be_snapshoted, 0);
1278         atomic_set(&root->qgroup_meta_rsv, 0);
1279         root->log_transid = 0;
1280         root->log_transid_committed = -1;
1281         root->last_log_commit = 0;
1282         if (fs_info)
1283                 extent_io_tree_init(&root->dirty_log_pages,
1284                                      fs_info->btree_inode->i_mapping);
1285
1286         memset(&root->root_key, 0, sizeof(root->root_key));
1287         memset(&root->root_item, 0, sizeof(root->root_item));
1288         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1289         if (fs_info)
1290                 root->defrag_trans_start = fs_info->generation;
1291         else
1292                 root->defrag_trans_start = 0;
1293         root->root_key.objectid = objectid;
1294         root->anon_dev = 0;
1295
1296         spin_lock_init(&root->root_item_lock);
1297 }
1298
1299 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1300 {
1301         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1302         if (root)
1303                 root->fs_info = fs_info;
1304         return root;
1305 }
1306
1307 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1308 /* Should only be used by the testing infrastructure */
1309 struct btrfs_root *btrfs_alloc_dummy_root(void)
1310 {
1311         struct btrfs_root *root;
1312
1313         root = btrfs_alloc_root(NULL);
1314         if (!root)
1315                 return ERR_PTR(-ENOMEM);
1316         __setup_root(4096, 4096, 4096, root, NULL, 1);
1317         set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1318         root->alloc_bytenr = 0;
1319
1320         return root;
1321 }
1322 #endif
1323
1324 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1325                                      struct btrfs_fs_info *fs_info,
1326                                      u64 objectid)
1327 {
1328         struct extent_buffer *leaf;
1329         struct btrfs_root *tree_root = fs_info->tree_root;
1330         struct btrfs_root *root;
1331         struct btrfs_key key;
1332         int ret = 0;
1333         uuid_le uuid;
1334
1335         root = btrfs_alloc_root(fs_info);
1336         if (!root)
1337                 return ERR_PTR(-ENOMEM);
1338
1339         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1340                 tree_root->stripesize, root, fs_info, objectid);
1341         root->root_key.objectid = objectid;
1342         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1343         root->root_key.offset = 0;
1344
1345         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1346         if (IS_ERR(leaf)) {
1347                 ret = PTR_ERR(leaf);
1348                 leaf = NULL;
1349                 goto fail;
1350         }
1351
1352         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1353         btrfs_set_header_bytenr(leaf, leaf->start);
1354         btrfs_set_header_generation(leaf, trans->transid);
1355         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1356         btrfs_set_header_owner(leaf, objectid);
1357         root->node = leaf;
1358
1359         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1360                             BTRFS_FSID_SIZE);
1361         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1362                             btrfs_header_chunk_tree_uuid(leaf),
1363                             BTRFS_UUID_SIZE);
1364         btrfs_mark_buffer_dirty(leaf);
1365
1366         root->commit_root = btrfs_root_node(root);
1367         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1368
1369         root->root_item.flags = 0;
1370         root->root_item.byte_limit = 0;
1371         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1372         btrfs_set_root_generation(&root->root_item, trans->transid);
1373         btrfs_set_root_level(&root->root_item, 0);
1374         btrfs_set_root_refs(&root->root_item, 1);
1375         btrfs_set_root_used(&root->root_item, leaf->len);
1376         btrfs_set_root_last_snapshot(&root->root_item, 0);
1377         btrfs_set_root_dirid(&root->root_item, 0);
1378         uuid_le_gen(&uuid);
1379         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1380         root->root_item.drop_level = 0;
1381
1382         key.objectid = objectid;
1383         key.type = BTRFS_ROOT_ITEM_KEY;
1384         key.offset = 0;
1385         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1386         if (ret)
1387                 goto fail;
1388
1389         btrfs_tree_unlock(leaf);
1390
1391         return root;
1392
1393 fail:
1394         if (leaf) {
1395                 btrfs_tree_unlock(leaf);
1396                 free_extent_buffer(root->commit_root);
1397                 free_extent_buffer(leaf);
1398         }
1399         kfree(root);
1400
1401         return ERR_PTR(ret);
1402 }
1403
1404 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1405                                          struct btrfs_fs_info *fs_info)
1406 {
1407         struct btrfs_root *root;
1408         struct btrfs_root *tree_root = fs_info->tree_root;
1409         struct extent_buffer *leaf;
1410
1411         root = btrfs_alloc_root(fs_info);
1412         if (!root)
1413                 return ERR_PTR(-ENOMEM);
1414
1415         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1416                      tree_root->stripesize, root, fs_info,
1417                      BTRFS_TREE_LOG_OBJECTID);
1418
1419         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1420         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1421         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1422
1423         /*
1424          * DON'T set REF_COWS for log trees
1425          *
1426          * log trees do not get reference counted because they go away
1427          * before a real commit is actually done.  They do store pointers
1428          * to file data extents, and those reference counts still get
1429          * updated (along with back refs to the log tree).
1430          */
1431
1432         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1433                         NULL, 0, 0, 0);
1434         if (IS_ERR(leaf)) {
1435                 kfree(root);
1436                 return ERR_CAST(leaf);
1437         }
1438
1439         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1440         btrfs_set_header_bytenr(leaf, leaf->start);
1441         btrfs_set_header_generation(leaf, trans->transid);
1442         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1443         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1444         root->node = leaf;
1445
1446         write_extent_buffer(root->node, root->fs_info->fsid,
1447                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1448         btrfs_mark_buffer_dirty(root->node);
1449         btrfs_tree_unlock(root->node);
1450         return root;
1451 }
1452
1453 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1454                              struct btrfs_fs_info *fs_info)
1455 {
1456         struct btrfs_root *log_root;
1457
1458         log_root = alloc_log_tree(trans, fs_info);
1459         if (IS_ERR(log_root))
1460                 return PTR_ERR(log_root);
1461         WARN_ON(fs_info->log_root_tree);
1462         fs_info->log_root_tree = log_root;
1463         return 0;
1464 }
1465
1466 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1467                        struct btrfs_root *root)
1468 {
1469         struct btrfs_root *log_root;
1470         struct btrfs_inode_item *inode_item;
1471
1472         log_root = alloc_log_tree(trans, root->fs_info);
1473         if (IS_ERR(log_root))
1474                 return PTR_ERR(log_root);
1475
1476         log_root->last_trans = trans->transid;
1477         log_root->root_key.offset = root->root_key.objectid;
1478
1479         inode_item = &log_root->root_item.inode;
1480         btrfs_set_stack_inode_generation(inode_item, 1);
1481         btrfs_set_stack_inode_size(inode_item, 3);
1482         btrfs_set_stack_inode_nlink(inode_item, 1);
1483         btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1484         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1485
1486         btrfs_set_root_node(&log_root->root_item, log_root->node);
1487
1488         WARN_ON(root->log_root);
1489         root->log_root = log_root;
1490         root->log_transid = 0;
1491         root->log_transid_committed = -1;
1492         root->last_log_commit = 0;
1493         return 0;
1494 }
1495
1496 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1497                                                struct btrfs_key *key)
1498 {
1499         struct btrfs_root *root;
1500         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1501         struct btrfs_path *path;
1502         u64 generation;
1503         int ret;
1504
1505         path = btrfs_alloc_path();
1506         if (!path)
1507                 return ERR_PTR(-ENOMEM);
1508
1509         root = btrfs_alloc_root(fs_info);
1510         if (!root) {
1511                 ret = -ENOMEM;
1512                 goto alloc_fail;
1513         }
1514
1515         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1516                 tree_root->stripesize, root, fs_info, key->objectid);
1517
1518         ret = btrfs_find_root(tree_root, key, path,
1519                               &root->root_item, &root->root_key);
1520         if (ret) {
1521                 if (ret > 0)
1522                         ret = -ENOENT;
1523                 goto find_fail;
1524         }
1525
1526         generation = btrfs_root_generation(&root->root_item);
1527         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1528                                      generation);
1529         if (IS_ERR(root->node)) {
1530                 ret = PTR_ERR(root->node);
1531                 goto find_fail;
1532         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1533                 ret = -EIO;
1534                 free_extent_buffer(root->node);
1535                 goto find_fail;
1536         }
1537         root->commit_root = btrfs_root_node(root);
1538 out:
1539         btrfs_free_path(path);
1540         return root;
1541
1542 find_fail:
1543         kfree(root);
1544 alloc_fail:
1545         root = ERR_PTR(ret);
1546         goto out;
1547 }
1548
1549 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1550                                       struct btrfs_key *location)
1551 {
1552         struct btrfs_root *root;
1553
1554         root = btrfs_read_tree_root(tree_root, location);
1555         if (IS_ERR(root))
1556                 return root;
1557
1558         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1559                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1560                 btrfs_check_and_init_root_item(&root->root_item);
1561         }
1562
1563         return root;
1564 }
1565
1566 int btrfs_init_fs_root(struct btrfs_root *root)
1567 {
1568         int ret;
1569         struct btrfs_subvolume_writers *writers;
1570
1571         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1572         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1573                                         GFP_NOFS);
1574         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1575                 ret = -ENOMEM;
1576                 goto fail;
1577         }
1578
1579         writers = btrfs_alloc_subvolume_writers();
1580         if (IS_ERR(writers)) {
1581                 ret = PTR_ERR(writers);
1582                 goto fail;
1583         }
1584         root->subv_writers = writers;
1585
1586         btrfs_init_free_ino_ctl(root);
1587         spin_lock_init(&root->ino_cache_lock);
1588         init_waitqueue_head(&root->ino_cache_wait);
1589
1590         ret = get_anon_bdev(&root->anon_dev);
1591         if (ret)
1592                 goto free_writers;
1593
1594         mutex_lock(&root->objectid_mutex);
1595         ret = btrfs_find_highest_objectid(root,
1596                                         &root->highest_objectid);
1597         if (ret) {
1598                 mutex_unlock(&root->objectid_mutex);
1599                 goto free_root_dev;
1600         }
1601
1602         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1603
1604         mutex_unlock(&root->objectid_mutex);
1605
1606         return 0;
1607
1608 free_root_dev:
1609         free_anon_bdev(root->anon_dev);
1610 free_writers:
1611         btrfs_free_subvolume_writers(root->subv_writers);
1612 fail:
1613         kfree(root->free_ino_ctl);
1614         kfree(root->free_ino_pinned);
1615         return ret;
1616 }
1617
1618 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1619                                                u64 root_id)
1620 {
1621         struct btrfs_root *root;
1622
1623         spin_lock(&fs_info->fs_roots_radix_lock);
1624         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1625                                  (unsigned long)root_id);
1626         spin_unlock(&fs_info->fs_roots_radix_lock);
1627         return root;
1628 }
1629
1630 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1631                          struct btrfs_root *root)
1632 {
1633         int ret;
1634
1635         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1636         if (ret)
1637                 return ret;
1638
1639         spin_lock(&fs_info->fs_roots_radix_lock);
1640         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1641                                 (unsigned long)root->root_key.objectid,
1642                                 root);
1643         if (ret == 0)
1644                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1645         spin_unlock(&fs_info->fs_roots_radix_lock);
1646         radix_tree_preload_end();
1647
1648         return ret;
1649 }
1650
1651 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1652                                      struct btrfs_key *location,
1653                                      bool check_ref)
1654 {
1655         struct btrfs_root *root;
1656         struct btrfs_path *path;
1657         struct btrfs_key key;
1658         int ret;
1659
1660         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1661                 return fs_info->tree_root;
1662         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1663                 return fs_info->extent_root;
1664         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1665                 return fs_info->chunk_root;
1666         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1667                 return fs_info->dev_root;
1668         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1669                 return fs_info->csum_root;
1670         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1671                 return fs_info->quota_root ? fs_info->quota_root :
1672                                              ERR_PTR(-ENOENT);
1673         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1674                 return fs_info->uuid_root ? fs_info->uuid_root :
1675                                             ERR_PTR(-ENOENT);
1676         if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1677                 return fs_info->free_space_root ? fs_info->free_space_root :
1678                                                   ERR_PTR(-ENOENT);
1679 again:
1680         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1681         if (root) {
1682                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1683                         return ERR_PTR(-ENOENT);
1684                 return root;
1685         }
1686
1687         root = btrfs_read_fs_root(fs_info->tree_root, location);
1688         if (IS_ERR(root))
1689                 return root;
1690
1691         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1692                 ret = -ENOENT;
1693                 goto fail;
1694         }
1695
1696         ret = btrfs_init_fs_root(root);
1697         if (ret)
1698                 goto fail;
1699
1700         path = btrfs_alloc_path();
1701         if (!path) {
1702                 ret = -ENOMEM;
1703                 goto fail;
1704         }
1705         key.objectid = BTRFS_ORPHAN_OBJECTID;
1706         key.type = BTRFS_ORPHAN_ITEM_KEY;
1707         key.offset = location->objectid;
1708
1709         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1710         btrfs_free_path(path);
1711         if (ret < 0)
1712                 goto fail;
1713         if (ret == 0)
1714                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1715
1716         ret = btrfs_insert_fs_root(fs_info, root);
1717         if (ret) {
1718                 if (ret == -EEXIST) {
1719                         free_fs_root(root);
1720                         goto again;
1721                 }
1722                 goto fail;
1723         }
1724         return root;
1725 fail:
1726         free_fs_root(root);
1727         return ERR_PTR(ret);
1728 }
1729
1730 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1731 {
1732         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1733         int ret = 0;
1734         struct btrfs_device *device;
1735         struct backing_dev_info *bdi;
1736
1737         rcu_read_lock();
1738         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1739                 if (!device->bdev)
1740                         continue;
1741                 bdi = blk_get_backing_dev_info(device->bdev);
1742                 if (bdi_congested(bdi, bdi_bits)) {
1743                         ret = 1;
1744                         break;
1745                 }
1746         }
1747         rcu_read_unlock();
1748         return ret;
1749 }
1750
1751 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1752 {
1753         int err;
1754
1755         err = bdi_setup_and_register(bdi, "btrfs");
1756         if (err)
1757                 return err;
1758
1759         bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
1760         bdi->congested_fn       = btrfs_congested_fn;
1761         bdi->congested_data     = info;
1762         bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1763         return 0;
1764 }
1765
1766 /*
1767  * called by the kthread helper functions to finally call the bio end_io
1768  * functions.  This is where read checksum verification actually happens
1769  */
1770 static void end_workqueue_fn(struct btrfs_work *work)
1771 {
1772         struct bio *bio;
1773         struct btrfs_end_io_wq *end_io_wq;
1774
1775         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1776         bio = end_io_wq->bio;
1777
1778         bio->bi_error = end_io_wq->error;
1779         bio->bi_private = end_io_wq->private;
1780         bio->bi_end_io = end_io_wq->end_io;
1781         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1782         bio_endio(bio);
1783 }
1784
1785 static int cleaner_kthread(void *arg)
1786 {
1787         struct btrfs_root *root = arg;
1788         int again;
1789         struct btrfs_trans_handle *trans;
1790
1791         do {
1792                 again = 0;
1793
1794                 /* Make the cleaner go to sleep early. */
1795                 if (btrfs_need_cleaner_sleep(root))
1796                         goto sleep;
1797
1798                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1799                         goto sleep;
1800
1801                 /*
1802                  * Avoid the problem that we change the status of the fs
1803                  * during the above check and trylock.
1804                  */
1805                 if (btrfs_need_cleaner_sleep(root)) {
1806                         mutex_unlock(&root->fs_info->cleaner_mutex);
1807                         goto sleep;
1808                 }
1809
1810                 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1811                 btrfs_run_delayed_iputs(root);
1812                 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1813
1814                 again = btrfs_clean_one_deleted_snapshot(root);
1815                 mutex_unlock(&root->fs_info->cleaner_mutex);
1816
1817                 /*
1818                  * The defragger has dealt with the R/O remount and umount,
1819                  * needn't do anything special here.
1820                  */
1821                 btrfs_run_defrag_inodes(root->fs_info);
1822
1823                 /*
1824                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1825                  * with relocation (btrfs_relocate_chunk) and relocation
1826                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1827                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1828                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1829                  * unused block groups.
1830                  */
1831                 btrfs_delete_unused_bgs(root->fs_info);
1832 sleep:
1833                 if (!try_to_freeze() && !again) {
1834                         set_current_state(TASK_INTERRUPTIBLE);
1835                         if (!kthread_should_stop())
1836                                 schedule();
1837                         __set_current_state(TASK_RUNNING);
1838                 }
1839         } while (!kthread_should_stop());
1840
1841         /*
1842          * Transaction kthread is stopped before us and wakes us up.
1843          * However we might have started a new transaction and COWed some
1844          * tree blocks when deleting unused block groups for example. So
1845          * make sure we commit the transaction we started to have a clean
1846          * shutdown when evicting the btree inode - if it has dirty pages
1847          * when we do the final iput() on it, eviction will trigger a
1848          * writeback for it which will fail with null pointer dereferences
1849          * since work queues and other resources were already released and
1850          * destroyed by the time the iput/eviction/writeback is made.
1851          */
1852         trans = btrfs_attach_transaction(root);
1853         if (IS_ERR(trans)) {
1854                 if (PTR_ERR(trans) != -ENOENT)
1855                         btrfs_err(root->fs_info,
1856                                   "cleaner transaction attach returned %ld",
1857                                   PTR_ERR(trans));
1858         } else {
1859                 int ret;
1860
1861                 ret = btrfs_commit_transaction(trans, root);
1862                 if (ret)
1863                         btrfs_err(root->fs_info,
1864                                   "cleaner open transaction commit returned %d",
1865                                   ret);
1866         }
1867
1868         return 0;
1869 }
1870
1871 static int transaction_kthread(void *arg)
1872 {
1873         struct btrfs_root *root = arg;
1874         struct btrfs_trans_handle *trans;
1875         struct btrfs_transaction *cur;
1876         u64 transid;
1877         unsigned long now;
1878         unsigned long delay;
1879         bool cannot_commit;
1880
1881         do {
1882                 cannot_commit = false;
1883                 delay = HZ * root->fs_info->commit_interval;
1884                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1885
1886                 spin_lock(&root->fs_info->trans_lock);
1887                 cur = root->fs_info->running_transaction;
1888                 if (!cur) {
1889                         spin_unlock(&root->fs_info->trans_lock);
1890                         goto sleep;
1891                 }
1892
1893                 now = get_seconds();
1894                 if (cur->state < TRANS_STATE_BLOCKED &&
1895                     (now < cur->start_time ||
1896                      now - cur->start_time < root->fs_info->commit_interval)) {
1897                         spin_unlock(&root->fs_info->trans_lock);
1898                         delay = HZ * 5;
1899                         goto sleep;
1900                 }
1901                 transid = cur->transid;
1902                 spin_unlock(&root->fs_info->trans_lock);
1903
1904                 /* If the file system is aborted, this will always fail. */
1905                 trans = btrfs_attach_transaction(root);
1906                 if (IS_ERR(trans)) {
1907                         if (PTR_ERR(trans) != -ENOENT)
1908                                 cannot_commit = true;
1909                         goto sleep;
1910                 }
1911                 if (transid == trans->transid) {
1912                         btrfs_commit_transaction(trans, root);
1913                 } else {
1914                         btrfs_end_transaction(trans, root);
1915                 }
1916 sleep:
1917                 wake_up_process(root->fs_info->cleaner_kthread);
1918                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1919
1920                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1921                                       &root->fs_info->fs_state)))
1922                         btrfs_cleanup_transaction(root);
1923                 if (!try_to_freeze()) {
1924                         set_current_state(TASK_INTERRUPTIBLE);
1925                         if (!kthread_should_stop() &&
1926                             (!btrfs_transaction_blocked(root->fs_info) ||
1927                              cannot_commit))
1928                                 schedule_timeout(delay);
1929                         __set_current_state(TASK_RUNNING);
1930                 }
1931         } while (!kthread_should_stop());
1932         return 0;
1933 }
1934
1935 /*
1936  * this will find the highest generation in the array of
1937  * root backups.  The index of the highest array is returned,
1938  * or -1 if we can't find anything.
1939  *
1940  * We check to make sure the array is valid by comparing the
1941  * generation of the latest  root in the array with the generation
1942  * in the super block.  If they don't match we pitch it.
1943  */
1944 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1945 {
1946         u64 cur;
1947         int newest_index = -1;
1948         struct btrfs_root_backup *root_backup;
1949         int i;
1950
1951         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1952                 root_backup = info->super_copy->super_roots + i;
1953                 cur = btrfs_backup_tree_root_gen(root_backup);
1954                 if (cur == newest_gen)
1955                         newest_index = i;
1956         }
1957
1958         /* check to see if we actually wrapped around */
1959         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1960                 root_backup = info->super_copy->super_roots;
1961                 cur = btrfs_backup_tree_root_gen(root_backup);
1962                 if (cur == newest_gen)
1963                         newest_index = 0;
1964         }
1965         return newest_index;
1966 }
1967
1968
1969 /*
1970  * find the oldest backup so we know where to store new entries
1971  * in the backup array.  This will set the backup_root_index
1972  * field in the fs_info struct
1973  */
1974 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1975                                      u64 newest_gen)
1976 {
1977         int newest_index = -1;
1978
1979         newest_index = find_newest_super_backup(info, newest_gen);
1980         /* if there was garbage in there, just move along */
1981         if (newest_index == -1) {
1982                 info->backup_root_index = 0;
1983         } else {
1984                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1985         }
1986 }
1987
1988 /*
1989  * copy all the root pointers into the super backup array.
1990  * this will bump the backup pointer by one when it is
1991  * done
1992  */
1993 static void backup_super_roots(struct btrfs_fs_info *info)
1994 {
1995         int next_backup;
1996         struct btrfs_root_backup *root_backup;
1997         int last_backup;
1998
1999         next_backup = info->backup_root_index;
2000         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2001                 BTRFS_NUM_BACKUP_ROOTS;
2002
2003         /*
2004          * just overwrite the last backup if we're at the same generation
2005          * this happens only at umount
2006          */
2007         root_backup = info->super_for_commit->super_roots + last_backup;
2008         if (btrfs_backup_tree_root_gen(root_backup) ==
2009             btrfs_header_generation(info->tree_root->node))
2010                 next_backup = last_backup;
2011
2012         root_backup = info->super_for_commit->super_roots + next_backup;
2013
2014         /*
2015          * make sure all of our padding and empty slots get zero filled
2016          * regardless of which ones we use today
2017          */
2018         memset(root_backup, 0, sizeof(*root_backup));
2019
2020         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2021
2022         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2023         btrfs_set_backup_tree_root_gen(root_backup,
2024                                btrfs_header_generation(info->tree_root->node));
2025
2026         btrfs_set_backup_tree_root_level(root_backup,
2027                                btrfs_header_level(info->tree_root->node));
2028
2029         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2030         btrfs_set_backup_chunk_root_gen(root_backup,
2031                                btrfs_header_generation(info->chunk_root->node));
2032         btrfs_set_backup_chunk_root_level(root_backup,
2033                                btrfs_header_level(info->chunk_root->node));
2034
2035         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2036         btrfs_set_backup_extent_root_gen(root_backup,
2037                                btrfs_header_generation(info->extent_root->node));
2038         btrfs_set_backup_extent_root_level(root_backup,
2039                                btrfs_header_level(info->extent_root->node));
2040
2041         /*
2042          * we might commit during log recovery, which happens before we set
2043          * the fs_root.  Make sure it is valid before we fill it in.
2044          */
2045         if (info->fs_root && info->fs_root->node) {
2046                 btrfs_set_backup_fs_root(root_backup,
2047                                          info->fs_root->node->start);
2048                 btrfs_set_backup_fs_root_gen(root_backup,
2049                                btrfs_header_generation(info->fs_root->node));
2050                 btrfs_set_backup_fs_root_level(root_backup,
2051                                btrfs_header_level(info->fs_root->node));
2052         }
2053
2054         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2055         btrfs_set_backup_dev_root_gen(root_backup,
2056                                btrfs_header_generation(info->dev_root->node));
2057         btrfs_set_backup_dev_root_level(root_backup,
2058                                        btrfs_header_level(info->dev_root->node));
2059
2060         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2061         btrfs_set_backup_csum_root_gen(root_backup,
2062                                btrfs_header_generation(info->csum_root->node));
2063         btrfs_set_backup_csum_root_level(root_backup,
2064                                btrfs_header_level(info->csum_root->node));
2065
2066         btrfs_set_backup_total_bytes(root_backup,
2067                              btrfs_super_total_bytes(info->super_copy));
2068         btrfs_set_backup_bytes_used(root_backup,
2069                              btrfs_super_bytes_used(info->super_copy));
2070         btrfs_set_backup_num_devices(root_backup,
2071                              btrfs_super_num_devices(info->super_copy));
2072
2073         /*
2074          * if we don't copy this out to the super_copy, it won't get remembered
2075          * for the next commit
2076          */
2077         memcpy(&info->super_copy->super_roots,
2078                &info->super_for_commit->super_roots,
2079                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2080 }
2081
2082 /*
2083  * this copies info out of the root backup array and back into
2084  * the in-memory super block.  It is meant to help iterate through
2085  * the array, so you send it the number of backups you've already
2086  * tried and the last backup index you used.
2087  *
2088  * this returns -1 when it has tried all the backups
2089  */
2090 static noinline int next_root_backup(struct btrfs_fs_info *info,
2091                                      struct btrfs_super_block *super,
2092                                      int *num_backups_tried, int *backup_index)
2093 {
2094         struct btrfs_root_backup *root_backup;
2095         int newest = *backup_index;
2096
2097         if (*num_backups_tried == 0) {
2098                 u64 gen = btrfs_super_generation(super);
2099
2100                 newest = find_newest_super_backup(info, gen);
2101                 if (newest == -1)
2102                         return -1;
2103
2104                 *backup_index = newest;
2105                 *num_backups_tried = 1;
2106         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2107                 /* we've tried all the backups, all done */
2108                 return -1;
2109         } else {
2110                 /* jump to the next oldest backup */
2111                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2112                         BTRFS_NUM_BACKUP_ROOTS;
2113                 *backup_index = newest;
2114                 *num_backups_tried += 1;
2115         }
2116         root_backup = super->super_roots + newest;
2117
2118         btrfs_set_super_generation(super,
2119                                    btrfs_backup_tree_root_gen(root_backup));
2120         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2121         btrfs_set_super_root_level(super,
2122                                    btrfs_backup_tree_root_level(root_backup));
2123         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2124
2125         /*
2126          * fixme: the total bytes and num_devices need to match or we should
2127          * need a fsck
2128          */
2129         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2130         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2131         return 0;
2132 }
2133
2134 /* helper to cleanup workers */
2135 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2136 {
2137         btrfs_destroy_workqueue(fs_info->fixup_workers);
2138         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2139         btrfs_destroy_workqueue(fs_info->workers);
2140         btrfs_destroy_workqueue(fs_info->endio_workers);
2141         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2142         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2143         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2144         btrfs_destroy_workqueue(fs_info->rmw_workers);
2145         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2146         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2147         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2148         btrfs_destroy_workqueue(fs_info->submit_workers);
2149         btrfs_destroy_workqueue(fs_info->delayed_workers);
2150         btrfs_destroy_workqueue(fs_info->caching_workers);
2151         btrfs_destroy_workqueue(fs_info->readahead_workers);
2152         btrfs_destroy_workqueue(fs_info->flush_workers);
2153         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2154         btrfs_destroy_workqueue(fs_info->extent_workers);
2155 }
2156
2157 static void free_root_extent_buffers(struct btrfs_root *root)
2158 {
2159         if (root) {
2160                 free_extent_buffer(root->node);
2161                 free_extent_buffer(root->commit_root);
2162                 root->node = NULL;
2163                 root->commit_root = NULL;
2164         }
2165 }
2166
2167 /* helper to cleanup tree roots */
2168 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2169 {
2170         free_root_extent_buffers(info->tree_root);
2171
2172         free_root_extent_buffers(info->dev_root);
2173         free_root_extent_buffers(info->extent_root);
2174         free_root_extent_buffers(info->csum_root);
2175         free_root_extent_buffers(info->quota_root);
2176         free_root_extent_buffers(info->uuid_root);
2177         if (chunk_root)
2178                 free_root_extent_buffers(info->chunk_root);
2179         free_root_extent_buffers(info->free_space_root);
2180 }
2181
2182 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2183 {
2184         int ret;
2185         struct btrfs_root *gang[8];
2186         int i;
2187
2188         while (!list_empty(&fs_info->dead_roots)) {
2189                 gang[0] = list_entry(fs_info->dead_roots.next,
2190                                      struct btrfs_root, root_list);
2191                 list_del(&gang[0]->root_list);
2192
2193                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2194                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2195                 } else {
2196                         free_extent_buffer(gang[0]->node);
2197                         free_extent_buffer(gang[0]->commit_root);
2198                         btrfs_put_fs_root(gang[0]);
2199                 }
2200         }
2201
2202         while (1) {
2203                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2204                                              (void **)gang, 0,
2205                                              ARRAY_SIZE(gang));
2206                 if (!ret)
2207                         break;
2208                 for (i = 0; i < ret; i++)
2209                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2210         }
2211
2212         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2213                 btrfs_free_log_root_tree(NULL, fs_info);
2214                 btrfs_destroy_pinned_extent(fs_info->tree_root,
2215                                             fs_info->pinned_extents);
2216         }
2217 }
2218
2219 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2220 {
2221         mutex_init(&fs_info->scrub_lock);
2222         atomic_set(&fs_info->scrubs_running, 0);
2223         atomic_set(&fs_info->scrub_pause_req, 0);
2224         atomic_set(&fs_info->scrubs_paused, 0);
2225         atomic_set(&fs_info->scrub_cancel_req, 0);
2226         init_waitqueue_head(&fs_info->scrub_pause_wait);
2227         fs_info->scrub_workers_refcnt = 0;
2228 }
2229
2230 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2231 {
2232         spin_lock_init(&fs_info->balance_lock);
2233         mutex_init(&fs_info->balance_mutex);
2234         atomic_set(&fs_info->balance_running, 0);
2235         atomic_set(&fs_info->balance_pause_req, 0);
2236         atomic_set(&fs_info->balance_cancel_req, 0);
2237         fs_info->balance_ctl = NULL;
2238         init_waitqueue_head(&fs_info->balance_wait_q);
2239 }
2240
2241 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2242                                    struct btrfs_root *tree_root)
2243 {
2244         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2245         set_nlink(fs_info->btree_inode, 1);
2246         /*
2247          * we set the i_size on the btree inode to the max possible int.
2248          * the real end of the address space is determined by all of
2249          * the devices in the system
2250          */
2251         fs_info->btree_inode->i_size = OFFSET_MAX;
2252         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2253
2254         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2255         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2256                              fs_info->btree_inode->i_mapping);
2257         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2258         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2259
2260         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2261
2262         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2263         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2264                sizeof(struct btrfs_key));
2265         set_bit(BTRFS_INODE_DUMMY,
2266                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2267         btrfs_insert_inode_hash(fs_info->btree_inode);
2268 }
2269
2270 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2271 {
2272         fs_info->dev_replace.lock_owner = 0;
2273         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2274         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2275         rwlock_init(&fs_info->dev_replace.lock);
2276         atomic_set(&fs_info->dev_replace.read_locks, 0);
2277         atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2278         init_waitqueue_head(&fs_info->replace_wait);
2279         init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2280 }
2281
2282 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2283 {
2284         spin_lock_init(&fs_info->qgroup_lock);
2285         mutex_init(&fs_info->qgroup_ioctl_lock);
2286         fs_info->qgroup_tree = RB_ROOT;
2287         fs_info->qgroup_op_tree = RB_ROOT;
2288         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2289         fs_info->qgroup_seq = 1;
2290         fs_info->quota_enabled = 0;
2291         fs_info->pending_quota_state = 0;
2292         fs_info->qgroup_ulist = NULL;
2293         mutex_init(&fs_info->qgroup_rescan_lock);
2294 }
2295
2296 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2297                 struct btrfs_fs_devices *fs_devices)
2298 {
2299         int max_active = fs_info->thread_pool_size;
2300         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2301
2302         fs_info->workers =
2303                 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2304                                       max_active, 16);
2305
2306         fs_info->delalloc_workers =
2307                 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2308
2309         fs_info->flush_workers =
2310                 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2311
2312         fs_info->caching_workers =
2313                 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2314
2315         /*
2316          * a higher idle thresh on the submit workers makes it much more
2317          * likely that bios will be send down in a sane order to the
2318          * devices
2319          */
2320         fs_info->submit_workers =
2321                 btrfs_alloc_workqueue("submit", flags,
2322                                       min_t(u64, fs_devices->num_devices,
2323                                             max_active), 64);
2324
2325         fs_info->fixup_workers =
2326                 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2327
2328         /*
2329          * endios are largely parallel and should have a very
2330          * low idle thresh
2331          */
2332         fs_info->endio_workers =
2333                 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2334         fs_info->endio_meta_workers =
2335                 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2336         fs_info->endio_meta_write_workers =
2337                 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2338         fs_info->endio_raid56_workers =
2339                 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2340         fs_info->endio_repair_workers =
2341                 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2342         fs_info->rmw_workers =
2343                 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2344         fs_info->endio_write_workers =
2345                 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2346         fs_info->endio_freespace_worker =
2347                 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2348         fs_info->delayed_workers =
2349                 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2350         fs_info->readahead_workers =
2351                 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2352         fs_info->qgroup_rescan_workers =
2353                 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2354         fs_info->extent_workers =
2355                 btrfs_alloc_workqueue("extent-refs", flags,
2356                                       min_t(u64, fs_devices->num_devices,
2357                                             max_active), 8);
2358
2359         if (!(fs_info->workers && fs_info->delalloc_workers &&
2360               fs_info->submit_workers && fs_info->flush_workers &&
2361               fs_info->endio_workers && fs_info->endio_meta_workers &&
2362               fs_info->endio_meta_write_workers &&
2363               fs_info->endio_repair_workers &&
2364               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2365               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2366               fs_info->caching_workers && fs_info->readahead_workers &&
2367               fs_info->fixup_workers && fs_info->delayed_workers &&
2368               fs_info->extent_workers &&
2369               fs_info->qgroup_rescan_workers)) {
2370                 return -ENOMEM;
2371         }
2372
2373         return 0;
2374 }
2375
2376 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2377                             struct btrfs_fs_devices *fs_devices)
2378 {
2379         int ret;
2380         struct btrfs_root *tree_root = fs_info->tree_root;
2381         struct btrfs_root *log_tree_root;
2382         struct btrfs_super_block *disk_super = fs_info->super_copy;
2383         u64 bytenr = btrfs_super_log_root(disk_super);
2384
2385         if (fs_devices->rw_devices == 0) {
2386                 btrfs_warn(fs_info, "log replay required on RO media");
2387                 return -EIO;
2388         }
2389
2390         log_tree_root = btrfs_alloc_root(fs_info);
2391         if (!log_tree_root)
2392                 return -ENOMEM;
2393
2394         __setup_root(tree_root->nodesize, tree_root->sectorsize,
2395                         tree_root->stripesize, log_tree_root, fs_info,
2396                         BTRFS_TREE_LOG_OBJECTID);
2397
2398         log_tree_root->node = read_tree_block(tree_root, bytenr,
2399                         fs_info->generation + 1);
2400         if (IS_ERR(log_tree_root->node)) {
2401                 btrfs_warn(fs_info, "failed to read log tree");
2402                 ret = PTR_ERR(log_tree_root->node);
2403                 kfree(log_tree_root);
2404                 return ret;
2405         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2406                 btrfs_err(fs_info, "failed to read log tree");
2407                 free_extent_buffer(log_tree_root->node);
2408                 kfree(log_tree_root);
2409                 return -EIO;
2410         }
2411         /* returns with log_tree_root freed on success */
2412         ret = btrfs_recover_log_trees(log_tree_root);
2413         if (ret) {
2414                 btrfs_std_error(tree_root->fs_info, ret,
2415                             "Failed to recover log tree");
2416                 free_extent_buffer(log_tree_root->node);
2417                 kfree(log_tree_root);
2418                 return ret;
2419         }
2420
2421         if (fs_info->sb->s_flags & MS_RDONLY) {
2422                 ret = btrfs_commit_super(tree_root);
2423                 if (ret)
2424                         return ret;
2425         }
2426
2427         return 0;
2428 }
2429
2430 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2431                             struct btrfs_root *tree_root)
2432 {
2433         struct btrfs_root *root;
2434         struct btrfs_key location;
2435         int ret;
2436
2437         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2438         location.type = BTRFS_ROOT_ITEM_KEY;
2439         location.offset = 0;
2440
2441         root = btrfs_read_tree_root(tree_root, &location);
2442         if (IS_ERR(root))
2443                 return PTR_ERR(root);
2444         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2445         fs_info->extent_root = root;
2446
2447         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2448         root = btrfs_read_tree_root(tree_root, &location);
2449         if (IS_ERR(root))
2450                 return PTR_ERR(root);
2451         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2452         fs_info->dev_root = root;
2453         btrfs_init_devices_late(fs_info);
2454
2455         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2456         root = btrfs_read_tree_root(tree_root, &location);
2457         if (IS_ERR(root))
2458                 return PTR_ERR(root);
2459         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2460         fs_info->csum_root = root;
2461
2462         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2463         root = btrfs_read_tree_root(tree_root, &location);
2464         if (!IS_ERR(root)) {
2465                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2466                 fs_info->quota_enabled = 1;
2467                 fs_info->pending_quota_state = 1;
2468                 fs_info->quota_root = root;
2469         }
2470
2471         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2472         root = btrfs_read_tree_root(tree_root, &location);
2473         if (IS_ERR(root)) {
2474                 ret = PTR_ERR(root);
2475                 if (ret != -ENOENT)
2476                         return ret;
2477         } else {
2478                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2479                 fs_info->uuid_root = root;
2480         }
2481
2482         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2483                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2484                 root = btrfs_read_tree_root(tree_root, &location);
2485                 if (IS_ERR(root))
2486                         return PTR_ERR(root);
2487                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2488                 fs_info->free_space_root = root;
2489         }
2490
2491         return 0;
2492 }
2493
2494 int open_ctree(struct super_block *sb,
2495                struct btrfs_fs_devices *fs_devices,
2496                char *options)
2497 {
2498         u32 sectorsize;
2499         u32 nodesize;
2500         u32 stripesize;
2501         u64 generation;
2502         u64 features;
2503         struct btrfs_key location;
2504         struct buffer_head *bh;
2505         struct btrfs_super_block *disk_super;
2506         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2507         struct btrfs_root *tree_root;
2508         struct btrfs_root *chunk_root;
2509         int ret;
2510         int err = -EINVAL;
2511         int num_backups_tried = 0;
2512         int backup_index = 0;
2513         int max_active;
2514
2515         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2516         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2517         if (!tree_root || !chunk_root) {
2518                 err = -ENOMEM;
2519                 goto fail;
2520         }
2521
2522         ret = init_srcu_struct(&fs_info->subvol_srcu);
2523         if (ret) {
2524                 err = ret;
2525                 goto fail;
2526         }
2527
2528         ret = setup_bdi(fs_info, &fs_info->bdi);
2529         if (ret) {
2530                 err = ret;
2531                 goto fail_srcu;
2532         }
2533
2534         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2535         if (ret) {
2536                 err = ret;
2537                 goto fail_bdi;
2538         }
2539         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2540                                         (1 + ilog2(nr_cpu_ids));
2541
2542         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2543         if (ret) {
2544                 err = ret;
2545                 goto fail_dirty_metadata_bytes;
2546         }
2547
2548         ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2549         if (ret) {
2550                 err = ret;
2551                 goto fail_delalloc_bytes;
2552         }
2553
2554         fs_info->btree_inode = new_inode(sb);
2555         if (!fs_info->btree_inode) {
2556                 err = -ENOMEM;
2557                 goto fail_bio_counter;
2558         }
2559
2560         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2561
2562         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2563         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2564         INIT_LIST_HEAD(&fs_info->trans_list);
2565         INIT_LIST_HEAD(&fs_info->dead_roots);
2566         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2567         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2568         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2569         spin_lock_init(&fs_info->delalloc_root_lock);
2570         spin_lock_init(&fs_info->trans_lock);
2571         spin_lock_init(&fs_info->fs_roots_radix_lock);
2572         spin_lock_init(&fs_info->delayed_iput_lock);
2573         spin_lock_init(&fs_info->defrag_inodes_lock);
2574         spin_lock_init(&fs_info->free_chunk_lock);
2575         spin_lock_init(&fs_info->tree_mod_seq_lock);
2576         spin_lock_init(&fs_info->super_lock);
2577         spin_lock_init(&fs_info->qgroup_op_lock);
2578         spin_lock_init(&fs_info->buffer_lock);
2579         spin_lock_init(&fs_info->unused_bgs_lock);
2580         rwlock_init(&fs_info->tree_mod_log_lock);
2581         mutex_init(&fs_info->unused_bg_unpin_mutex);
2582         mutex_init(&fs_info->delete_unused_bgs_mutex);
2583         mutex_init(&fs_info->reloc_mutex);
2584         mutex_init(&fs_info->delalloc_root_mutex);
2585         mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2586         seqlock_init(&fs_info->profiles_lock);
2587
2588         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2589         INIT_LIST_HEAD(&fs_info->space_info);
2590         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2591         INIT_LIST_HEAD(&fs_info->unused_bgs);
2592         btrfs_mapping_init(&fs_info->mapping_tree);
2593         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2594                              BTRFS_BLOCK_RSV_GLOBAL);
2595         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2596                              BTRFS_BLOCK_RSV_DELALLOC);
2597         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2598         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2599         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2600         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2601                              BTRFS_BLOCK_RSV_DELOPS);
2602         atomic_set(&fs_info->nr_async_submits, 0);
2603         atomic_set(&fs_info->async_delalloc_pages, 0);
2604         atomic_set(&fs_info->async_submit_draining, 0);
2605         atomic_set(&fs_info->nr_async_bios, 0);
2606         atomic_set(&fs_info->defrag_running, 0);
2607         atomic_set(&fs_info->qgroup_op_seq, 0);
2608         atomic64_set(&fs_info->tree_mod_seq, 0);
2609         fs_info->sb = sb;
2610         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2611         fs_info->metadata_ratio = 0;
2612         fs_info->defrag_inodes = RB_ROOT;
2613         fs_info->free_chunk_space = 0;
2614         fs_info->tree_mod_log = RB_ROOT;
2615         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2616         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2617         /* readahead state */
2618         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2619         spin_lock_init(&fs_info->reada_lock);
2620
2621         fs_info->thread_pool_size = min_t(unsigned long,
2622                                           num_online_cpus() + 2, 8);
2623
2624         INIT_LIST_HEAD(&fs_info->ordered_roots);
2625         spin_lock_init(&fs_info->ordered_root_lock);
2626         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2627                                         GFP_NOFS);
2628         if (!fs_info->delayed_root) {
2629                 err = -ENOMEM;
2630                 goto fail_iput;
2631         }
2632         btrfs_init_delayed_root(fs_info->delayed_root);
2633
2634         btrfs_init_scrub(fs_info);
2635 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2636         fs_info->check_integrity_print_mask = 0;
2637 #endif
2638         btrfs_init_balance(fs_info);
2639         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2640
2641         sb->s_blocksize = 4096;
2642         sb->s_blocksize_bits = blksize_bits(4096);
2643         sb->s_bdi = &fs_info->bdi;
2644
2645         btrfs_init_btree_inode(fs_info, tree_root);
2646
2647         spin_lock_init(&fs_info->block_group_cache_lock);
2648         fs_info->block_group_cache_tree = RB_ROOT;
2649         fs_info->first_logical_byte = (u64)-1;
2650
2651         extent_io_tree_init(&fs_info->freed_extents[0],
2652                              fs_info->btree_inode->i_mapping);
2653         extent_io_tree_init(&fs_info->freed_extents[1],
2654                              fs_info->btree_inode->i_mapping);
2655         fs_info->pinned_extents = &fs_info->freed_extents[0];
2656         fs_info->do_barriers = 1;
2657
2658
2659         mutex_init(&fs_info->ordered_operations_mutex);
2660         mutex_init(&fs_info->tree_log_mutex);
2661         mutex_init(&fs_info->chunk_mutex);
2662         mutex_init(&fs_info->transaction_kthread_mutex);
2663         mutex_init(&fs_info->cleaner_mutex);
2664         mutex_init(&fs_info->volume_mutex);
2665         mutex_init(&fs_info->ro_block_group_mutex);
2666         init_rwsem(&fs_info->commit_root_sem);
2667         init_rwsem(&fs_info->cleanup_work_sem);
2668         init_rwsem(&fs_info->subvol_sem);
2669         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2670
2671         btrfs_init_dev_replace_locks(fs_info);
2672         btrfs_init_qgroup(fs_info);
2673
2674         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2675         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2676
2677         init_waitqueue_head(&fs_info->transaction_throttle);
2678         init_waitqueue_head(&fs_info->transaction_wait);
2679         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2680         init_waitqueue_head(&fs_info->async_submit_wait);
2681
2682         INIT_LIST_HEAD(&fs_info->pinned_chunks);
2683
2684         ret = btrfs_alloc_stripe_hash_table(fs_info);
2685         if (ret) {
2686                 err = ret;
2687                 goto fail_alloc;
2688         }
2689
2690         __setup_root(4096, 4096, 4096, tree_root,
2691                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2692
2693         invalidate_bdev(fs_devices->latest_bdev);
2694
2695         /*
2696          * Read super block and check the signature bytes only
2697          */
2698         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2699         if (IS_ERR(bh)) {
2700                 err = PTR_ERR(bh);
2701                 goto fail_alloc;
2702         }
2703
2704         /*
2705          * We want to check superblock checksum, the type is stored inside.
2706          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2707          */
2708         if (btrfs_check_super_csum(bh->b_data)) {
2709                 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2710                 err = -EINVAL;
2711                 brelse(bh);
2712                 goto fail_alloc;
2713         }
2714
2715         /*
2716          * super_copy is zeroed at allocation time and we never touch the
2717          * following bytes up to INFO_SIZE, the checksum is calculated from
2718          * the whole block of INFO_SIZE
2719          */
2720         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2721         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2722                sizeof(*fs_info->super_for_commit));
2723         brelse(bh);
2724
2725         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2726
2727         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2728         if (ret) {
2729                 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2730                 err = -EINVAL;
2731                 goto fail_alloc;
2732         }
2733
2734         disk_super = fs_info->super_copy;
2735         if (!btrfs_super_root(disk_super))
2736                 goto fail_alloc;
2737
2738         /* check FS state, whether FS is broken. */
2739         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2740                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2741
2742         /*
2743          * run through our array of backup supers and setup
2744          * our ring pointer to the oldest one
2745          */
2746         generation = btrfs_super_generation(disk_super);
2747         find_oldest_super_backup(fs_info, generation);
2748
2749         /*
2750          * In the long term, we'll store the compression type in the super
2751          * block, and it'll be used for per file compression control.
2752          */
2753         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2754
2755         ret = btrfs_parse_options(tree_root, options);
2756         if (ret) {
2757                 err = ret;
2758                 goto fail_alloc;
2759         }
2760
2761         features = btrfs_super_incompat_flags(disk_super) &
2762                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2763         if (features) {
2764                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2765                        "unsupported optional features (%Lx).\n",
2766                        features);
2767                 err = -EINVAL;
2768                 goto fail_alloc;
2769         }
2770
2771         features = btrfs_super_incompat_flags(disk_super);
2772         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2773         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2774                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2775
2776         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2777                 printk(KERN_INFO "BTRFS: has skinny extents\n");
2778
2779         /*
2780          * flag our filesystem as having big metadata blocks if
2781          * they are bigger than the page size
2782          */
2783         if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2784                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2785                         printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2786                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2787         }
2788
2789         nodesize = btrfs_super_nodesize(disk_super);
2790         sectorsize = btrfs_super_sectorsize(disk_super);
2791         stripesize = btrfs_super_stripesize(disk_super);
2792         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2793         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2794
2795         /*
2796          * mixed block groups end up with duplicate but slightly offset
2797          * extent buffers for the same range.  It leads to corruptions
2798          */
2799         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2800             (sectorsize != nodesize)) {
2801                 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2802                                 "are not allowed for mixed block groups on %s\n",
2803                                 sb->s_id);
2804                 goto fail_alloc;
2805         }
2806
2807         /*
2808          * Needn't use the lock because there is no other task which will
2809          * update the flag.
2810          */
2811         btrfs_set_super_incompat_flags(disk_super, features);
2812
2813         features = btrfs_super_compat_ro_flags(disk_super) &
2814                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2815         if (!(sb->s_flags & MS_RDONLY) && features) {
2816                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2817                        "unsupported option features (%Lx).\n",
2818                        features);
2819                 err = -EINVAL;
2820                 goto fail_alloc;
2821         }
2822
2823         max_active = fs_info->thread_pool_size;
2824
2825         ret = btrfs_init_workqueues(fs_info, fs_devices);
2826         if (ret) {
2827                 err = ret;
2828                 goto fail_sb_buffer;
2829         }
2830
2831         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2832         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2833                                     SZ_4M / PAGE_CACHE_SIZE);
2834
2835         tree_root->nodesize = nodesize;
2836         tree_root->sectorsize = sectorsize;
2837         tree_root->stripesize = stripesize;
2838
2839         sb->s_blocksize = sectorsize;
2840         sb->s_blocksize_bits = blksize_bits(sectorsize);
2841
2842         mutex_lock(&fs_info->chunk_mutex);
2843         ret = btrfs_read_sys_array(tree_root);
2844         mutex_unlock(&fs_info->chunk_mutex);
2845         if (ret) {
2846                 printk(KERN_ERR "BTRFS: failed to read the system "
2847                        "array on %s\n", sb->s_id);
2848                 goto fail_sb_buffer;
2849         }
2850
2851         generation = btrfs_super_chunk_root_generation(disk_super);
2852
2853         __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2854                      fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2855
2856         chunk_root->node = read_tree_block(chunk_root,
2857                                            btrfs_super_chunk_root(disk_super),
2858                                            generation);
2859         if (IS_ERR(chunk_root->node) ||
2860             !extent_buffer_uptodate(chunk_root->node)) {
2861                 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2862                        sb->s_id);
2863                 if (!IS_ERR(chunk_root->node))
2864                         free_extent_buffer(chunk_root->node);
2865                 chunk_root->node = NULL;
2866                 goto fail_tree_roots;
2867         }
2868         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2869         chunk_root->commit_root = btrfs_root_node(chunk_root);
2870
2871         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2872            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2873
2874         ret = btrfs_read_chunk_tree(chunk_root);
2875         if (ret) {
2876                 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2877                        sb->s_id);
2878                 goto fail_tree_roots;
2879         }
2880
2881         /*
2882          * keep the device that is marked to be the target device for the
2883          * dev_replace procedure
2884          */
2885         btrfs_close_extra_devices(fs_devices, 0);
2886
2887         if (!fs_devices->latest_bdev) {
2888                 printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2889                        sb->s_id);
2890                 goto fail_tree_roots;
2891         }
2892
2893 retry_root_backup:
2894         generation = btrfs_super_generation(disk_super);
2895
2896         tree_root->node = read_tree_block(tree_root,
2897                                           btrfs_super_root(disk_super),
2898                                           generation);
2899         if (IS_ERR(tree_root->node) ||
2900             !extent_buffer_uptodate(tree_root->node)) {
2901                 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2902                        sb->s_id);
2903                 if (!IS_ERR(tree_root->node))
2904                         free_extent_buffer(tree_root->node);
2905                 tree_root->node = NULL;
2906                 goto recovery_tree_root;
2907         }
2908
2909         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2910         tree_root->commit_root = btrfs_root_node(tree_root);
2911         btrfs_set_root_refs(&tree_root->root_item, 1);
2912
2913         mutex_lock(&tree_root->objectid_mutex);
2914         ret = btrfs_find_highest_objectid(tree_root,
2915                                         &tree_root->highest_objectid);
2916         if (ret) {
2917                 mutex_unlock(&tree_root->objectid_mutex);
2918                 goto recovery_tree_root;
2919         }
2920
2921         ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2922
2923         mutex_unlock(&tree_root->objectid_mutex);
2924
2925         ret = btrfs_read_roots(fs_info, tree_root);
2926         if (ret)
2927                 goto recovery_tree_root;
2928
2929         fs_info->generation = generation;
2930         fs_info->last_trans_committed = generation;
2931
2932         ret = btrfs_recover_balance(fs_info);
2933         if (ret) {
2934                 printk(KERN_ERR "BTRFS: failed to recover balance\n");
2935                 goto fail_block_groups;
2936         }
2937
2938         ret = btrfs_init_dev_stats(fs_info);
2939         if (ret) {
2940                 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2941                        ret);
2942                 goto fail_block_groups;
2943         }
2944
2945         ret = btrfs_init_dev_replace(fs_info);
2946         if (ret) {
2947                 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2948                 goto fail_block_groups;
2949         }
2950
2951         btrfs_close_extra_devices(fs_devices, 1);
2952
2953         ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2954         if (ret) {
2955                 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2956                 goto fail_block_groups;
2957         }
2958
2959         ret = btrfs_sysfs_add_device(fs_devices);
2960         if (ret) {
2961                 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2962                 goto fail_fsdev_sysfs;
2963         }
2964
2965         ret = btrfs_sysfs_add_mounted(fs_info);
2966         if (ret) {
2967                 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2968                 goto fail_fsdev_sysfs;
2969         }
2970
2971         ret = btrfs_init_space_info(fs_info);
2972         if (ret) {
2973                 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2974                 goto fail_sysfs;
2975         }
2976
2977         ret = btrfs_read_block_groups(fs_info->extent_root);
2978         if (ret) {
2979                 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2980                 goto fail_sysfs;
2981         }
2982         fs_info->num_tolerated_disk_barrier_failures =
2983                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2984         if (fs_info->fs_devices->missing_devices >
2985              fs_info->num_tolerated_disk_barrier_failures &&
2986             !(sb->s_flags & MS_RDONLY)) {
2987                 pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
2988                         fs_info->fs_devices->missing_devices,
2989                         fs_info->num_tolerated_disk_barrier_failures);
2990                 goto fail_sysfs;
2991         }
2992
2993         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2994                                                "btrfs-cleaner");
2995         if (IS_ERR(fs_info->cleaner_kthread))
2996                 goto fail_sysfs;
2997
2998         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2999                                                    tree_root,
3000                                                    "btrfs-transaction");
3001         if (IS_ERR(fs_info->transaction_kthread))
3002                 goto fail_cleaner;
3003
3004         if (!btrfs_test_opt(tree_root, SSD) &&
3005             !btrfs_test_opt(tree_root, NOSSD) &&
3006             !fs_info->fs_devices->rotating) {
3007                 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
3008                        "mode\n");
3009                 btrfs_set_opt(fs_info->mount_opt, SSD);
3010         }
3011
3012         /*
3013          * Mount does not set all options immediatelly, we can do it now and do
3014          * not have to wait for transaction commit
3015          */
3016         btrfs_apply_pending_changes(fs_info);
3017
3018 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3019         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
3020                 ret = btrfsic_mount(tree_root, fs_devices,
3021                                     btrfs_test_opt(tree_root,
3022                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3023                                     1 : 0,
3024                                     fs_info->check_integrity_print_mask);
3025                 if (ret)
3026                         printk(KERN_WARNING "BTRFS: failed to initialize"
3027                                " integrity check module %s\n", sb->s_id);
3028         }
3029 #endif
3030         ret = btrfs_read_qgroup_config(fs_info);
3031         if (ret)
3032                 goto fail_trans_kthread;
3033
3034         /* do not make disk changes in broken FS */
3035         if (btrfs_super_log_root(disk_super) != 0) {
3036                 ret = btrfs_replay_log(fs_info, fs_devices);
3037                 if (ret) {
3038                         err = ret;
3039                         goto fail_qgroup;
3040                 }
3041         }
3042
3043         ret = btrfs_find_orphan_roots(tree_root);
3044         if (ret)
3045                 goto fail_qgroup;
3046
3047         if (!(sb->s_flags & MS_RDONLY)) {
3048                 ret = btrfs_cleanup_fs_roots(fs_info);
3049                 if (ret)
3050                         goto fail_qgroup;
3051
3052                 mutex_lock(&fs_info->cleaner_mutex);
3053                 ret = btrfs_recover_relocation(tree_root);
3054                 mutex_unlock(&fs_info->cleaner_mutex);
3055                 if (ret < 0) {
3056                         printk(KERN_WARNING
3057                                "BTRFS: failed to recover relocation\n");
3058                         err = -EINVAL;
3059                         goto fail_qgroup;
3060                 }
3061         }
3062
3063         location.objectid = BTRFS_FS_TREE_OBJECTID;
3064         location.type = BTRFS_ROOT_ITEM_KEY;
3065         location.offset = 0;
3066
3067         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3068         if (IS_ERR(fs_info->fs_root)) {
3069                 err = PTR_ERR(fs_info->fs_root);
3070                 goto fail_qgroup;
3071         }
3072
3073         if (sb->s_flags & MS_RDONLY)
3074                 return 0;
3075
3076         if (btrfs_test_opt(tree_root, FREE_SPACE_TREE) &&
3077             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3078                 pr_info("BTRFS: creating free space tree\n");
3079                 ret = btrfs_create_free_space_tree(fs_info);
3080                 if (ret) {
3081                         pr_warn("BTRFS: failed to create free space tree %d\n",
3082                                 ret);
3083                         close_ctree(tree_root);
3084                         return ret;
3085                 }
3086         }
3087
3088         down_read(&fs_info->cleanup_work_sem);
3089         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3090             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3091                 up_read(&fs_info->cleanup_work_sem);
3092                 close_ctree(tree_root);
3093                 return ret;
3094         }
3095         up_read(&fs_info->cleanup_work_sem);
3096
3097         ret = btrfs_resume_balance_async(fs_info);
3098         if (ret) {
3099                 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
3100                 close_ctree(tree_root);
3101                 return ret;
3102         }
3103
3104         ret = btrfs_resume_dev_replace_async(fs_info);
3105         if (ret) {
3106                 pr_warn("BTRFS: failed to resume dev_replace\n");
3107                 close_ctree(tree_root);
3108                 return ret;
3109         }
3110
3111         btrfs_qgroup_rescan_resume(fs_info);
3112
3113         if (btrfs_test_opt(tree_root, CLEAR_CACHE) &&
3114             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3115                 pr_info("BTRFS: clearing free space tree\n");
3116                 ret = btrfs_clear_free_space_tree(fs_info);
3117                 if (ret) {
3118                         pr_warn("BTRFS: failed to clear free space tree %d\n",
3119                                 ret);
3120                         close_ctree(tree_root);
3121                         return ret;
3122                 }
3123         }
3124
3125         if (!fs_info->uuid_root) {
3126                 pr_info("BTRFS: creating UUID tree\n");
3127                 ret = btrfs_create_uuid_tree(fs_info);
3128                 if (ret) {
3129                         pr_warn("BTRFS: failed to create the UUID tree %d\n",
3130                                 ret);
3131                         close_ctree(tree_root);
3132                         return ret;
3133                 }
3134         } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3135                    fs_info->generation !=
3136                                 btrfs_super_uuid_tree_generation(disk_super)) {
3137                 pr_info("BTRFS: checking UUID tree\n");
3138                 ret = btrfs_check_uuid_tree(fs_info);
3139                 if (ret) {
3140                         pr_warn("BTRFS: failed to check the UUID tree %d\n",
3141                                 ret);
3142                         close_ctree(tree_root);
3143                         return ret;
3144                 }
3145         } else {
3146                 fs_info->update_uuid_tree_gen = 1;
3147         }
3148
3149         fs_info->open = 1;
3150
3151         return 0;
3152
3153 fail_qgroup:
3154         btrfs_free_qgroup_config(fs_info);
3155 fail_trans_kthread:
3156         kthread_stop(fs_info->transaction_kthread);
3157         btrfs_cleanup_transaction(fs_info->tree_root);
3158         btrfs_free_fs_roots(fs_info);
3159 fail_cleaner:
3160         kthread_stop(fs_info->cleaner_kthread);
3161
3162         /*
3163          * make sure we're done with the btree inode before we stop our
3164          * kthreads
3165          */
3166         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3167
3168 fail_sysfs:
3169         btrfs_sysfs_remove_mounted(fs_info);
3170
3171 fail_fsdev_sysfs:
3172         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3173
3174 fail_block_groups:
3175         btrfs_put_block_group_cache(fs_info);
3176         btrfs_free_block_groups(fs_info);
3177
3178 fail_tree_roots:
3179         free_root_pointers(fs_info, 1);
3180         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3181
3182 fail_sb_buffer:
3183         btrfs_stop_all_workers(fs_info);
3184 fail_alloc:
3185 fail_iput:
3186         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3187
3188         iput(fs_info->btree_inode);
3189 fail_bio_counter:
3190         percpu_counter_destroy(&fs_info->bio_counter);
3191 fail_delalloc_bytes:
3192         percpu_counter_destroy(&fs_info->delalloc_bytes);
3193 fail_dirty_metadata_bytes:
3194         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3195 fail_bdi:
3196         bdi_destroy(&fs_info->bdi);
3197 fail_srcu:
3198         cleanup_srcu_struct(&fs_info->subvol_srcu);
3199 fail:
3200         btrfs_free_stripe_hash_table(fs_info);
3201         btrfs_close_devices(fs_info->fs_devices);
3202         return err;
3203
3204 recovery_tree_root:
3205         if (!btrfs_test_opt(tree_root, RECOVERY))
3206                 goto fail_tree_roots;
3207
3208         free_root_pointers(fs_info, 0);
3209
3210         /* don't use the log in recovery mode, it won't be valid */
3211         btrfs_set_super_log_root(disk_super, 0);
3212
3213         /* we can't trust the free space cache either */
3214         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3215
3216         ret = next_root_backup(fs_info, fs_info->super_copy,
3217                                &num_backups_tried, &backup_index);
3218         if (ret == -1)
3219                 goto fail_block_groups;
3220         goto retry_root_backup;
3221 }
3222
3223 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3224 {
3225         if (uptodate) {
3226                 set_buffer_uptodate(bh);
3227         } else {
3228                 struct btrfs_device *device = (struct btrfs_device *)
3229                         bh->b_private;
3230
3231                 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3232                                 "lost page write due to IO error on %s",
3233                                           rcu_str_deref(device->name));
3234                 /* note, we dont' set_buffer_write_io_error because we have
3235                  * our own ways of dealing with the IO errors
3236                  */
3237                 clear_buffer_uptodate(bh);
3238                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3239         }
3240         unlock_buffer(bh);
3241         put_bh(bh);
3242 }
3243
3244 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3245                         struct buffer_head **bh_ret)
3246 {
3247         struct buffer_head *bh;
3248         struct btrfs_super_block *super;
3249         u64 bytenr;
3250
3251         bytenr = btrfs_sb_offset(copy_num);
3252         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3253                 return -EINVAL;
3254
3255         bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3256         /*
3257          * If we fail to read from the underlying devices, as of now
3258          * the best option we have is to mark it EIO.
3259          */
3260         if (!bh)
3261                 return -EIO;
3262
3263         super = (struct btrfs_super_block *)bh->b_data;
3264         if (btrfs_super_bytenr(super) != bytenr ||
3265                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3266                 brelse(bh);
3267                 return -EINVAL;
3268         }
3269
3270         *bh_ret = bh;
3271         return 0;
3272 }
3273
3274
3275 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3276 {
3277         struct buffer_head *bh;
3278         struct buffer_head *latest = NULL;
3279         struct btrfs_super_block *super;
3280         int i;
3281         u64 transid = 0;
3282         int ret = -EINVAL;
3283
3284         /* we would like to check all the supers, but that would make
3285          * a btrfs mount succeed after a mkfs from a different FS.
3286          * So, we need to add a special mount option to scan for
3287          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3288          */
3289         for (i = 0; i < 1; i++) {
3290                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3291                 if (ret)
3292                         continue;
3293
3294                 super = (struct btrfs_super_block *)bh->b_data;
3295
3296                 if (!latest || btrfs_super_generation(super) > transid) {
3297                         brelse(latest);
3298                         latest = bh;
3299                         transid = btrfs_super_generation(super);
3300                 } else {
3301                         brelse(bh);
3302                 }
3303         }
3304
3305         if (!latest)
3306                 return ERR_PTR(ret);
3307
3308         return latest;
3309 }
3310
3311 /*
3312  * this should be called twice, once with wait == 0 and
3313  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3314  * we write are pinned.
3315  *
3316  * They are released when wait == 1 is done.
3317  * max_mirrors must be the same for both runs, and it indicates how
3318  * many supers on this one device should be written.
3319  *
3320  * max_mirrors == 0 means to write them all.
3321  */
3322 static int write_dev_supers(struct btrfs_device *device,
3323                             struct btrfs_super_block *sb,
3324                             int do_barriers, int wait, int max_mirrors)
3325 {
3326         struct buffer_head *bh;
3327         int i;
3328         int ret;
3329         int errors = 0;
3330         u32 crc;
3331         u64 bytenr;
3332
3333         if (max_mirrors == 0)
3334                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3335
3336         for (i = 0; i < max_mirrors; i++) {
3337                 bytenr = btrfs_sb_offset(i);
3338                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3339                     device->commit_total_bytes)
3340                         break;
3341
3342                 if (wait) {
3343                         bh = __find_get_block(device->bdev, bytenr / 4096,
3344                                               BTRFS_SUPER_INFO_SIZE);
3345                         if (!bh) {
3346                                 errors++;
3347                                 continue;
3348                         }
3349                         wait_on_buffer(bh);
3350                         if (!buffer_uptodate(bh))
3351                                 errors++;
3352
3353                         /* drop our reference */
3354                         brelse(bh);
3355
3356                         /* drop the reference from the wait == 0 run */
3357                         brelse(bh);
3358                         continue;
3359                 } else {
3360                         btrfs_set_super_bytenr(sb, bytenr);
3361
3362                         crc = ~(u32)0;
3363                         crc = btrfs_csum_data((char *)sb +
3364                                               BTRFS_CSUM_SIZE, crc,
3365                                               BTRFS_SUPER_INFO_SIZE -
3366                                               BTRFS_CSUM_SIZE);
3367                         btrfs_csum_final(crc, sb->csum);
3368
3369                         /*
3370                          * one reference for us, and we leave it for the
3371                          * caller
3372                          */
3373                         bh = __getblk(device->bdev, bytenr / 4096,
3374                                       BTRFS_SUPER_INFO_SIZE);
3375                         if (!bh) {
3376                                 btrfs_err(device->dev_root->fs_info,
3377                                     "couldn't get super buffer head for bytenr %llu",
3378                                     bytenr);
3379                                 errors++;
3380                                 continue;
3381                         }
3382
3383                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3384
3385                         /* one reference for submit_bh */
3386                         get_bh(bh);
3387
3388                         set_buffer_uptodate(bh);
3389                         lock_buffer(bh);
3390                         bh->b_end_io = btrfs_end_buffer_write_sync;
3391                         bh->b_private = device;
3392                 }
3393
3394                 /*
3395                  * we fua the first super.  The others we allow
3396                  * to go down lazy.
3397                  */
3398                 if (i == 0)
3399                         ret = btrfsic_submit_bh(WRITE_FUA, bh);
3400                 else
3401                         ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3402                 if (ret)
3403                         errors++;
3404         }
3405         return errors < i ? 0 : -1;
3406 }
3407
3408 /*
3409  * endio for the write_dev_flush, this will wake anyone waiting
3410  * for the barrier when it is done
3411  */
3412 static void btrfs_end_empty_barrier(struct bio *bio)
3413 {
3414         if (bio->bi_private)
3415                 complete(bio->bi_private);
3416         bio_put(bio);
3417 }
3418
3419 /*
3420  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3421  * sent down.  With wait == 1, it waits for the previous flush.
3422  *
3423  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3424  * capable
3425  */
3426 static int write_dev_flush(struct btrfs_device *device, int wait)
3427 {
3428         struct bio *bio;
3429         int ret = 0;
3430
3431         if (device->nobarriers)
3432                 return 0;
3433
3434         if (wait) {
3435                 bio = device->flush_bio;
3436                 if (!bio)
3437                         return 0;
3438
3439                 wait_for_completion(&device->flush_wait);
3440
3441                 if (bio->bi_error) {
3442                         ret = bio->bi_error;
3443                         btrfs_dev_stat_inc_and_print(device,
3444                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3445                 }
3446
3447                 /* drop the reference from the wait == 0 run */
3448                 bio_put(bio);
3449                 device->flush_bio = NULL;
3450
3451                 return ret;
3452         }
3453
3454         /*
3455          * one reference for us, and we leave it for the
3456          * caller
3457          */
3458         device->flush_bio = NULL;
3459         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3460         if (!bio)
3461                 return -ENOMEM;
3462
3463         bio->bi_end_io = btrfs_end_empty_barrier;
3464         bio->bi_bdev = device->bdev;
3465         init_completion(&device->flush_wait);
3466         bio->bi_private = &device->flush_wait;
3467         device->flush_bio = bio;
3468
3469         bio_get(bio);
3470         btrfsic_submit_bio(WRITE_FLUSH, bio);
3471
3472         return 0;
3473 }
3474
3475 /*
3476  * send an empty flush down to each device in parallel,
3477  * then wait for them
3478  */
3479 static int barrier_all_devices(struct btrfs_fs_info *info)
3480 {
3481         struct list_head *head;
3482         struct btrfs_device *dev;
3483         int errors_send = 0;
3484         int errors_wait = 0;
3485         int ret;
3486
3487         /* send down all the barriers */
3488         head = &info->fs_devices->devices;
3489         list_for_each_entry_rcu(dev, head, dev_list) {
3490                 if (dev->missing)
3491                         continue;
3492                 if (!dev->bdev) {
3493                         errors_send++;
3494                         continue;
3495                 }
3496                 if (!dev->in_fs_metadata || !dev->writeable)
3497                         continue;
3498
3499                 ret = write_dev_flush(dev, 0);
3500                 if (ret)
3501                         errors_send++;
3502         }
3503
3504         /* wait for all the barriers */
3505         list_for_each_entry_rcu(dev, head, dev_list) {
3506                 if (dev->missing)
3507                         continue;
3508                 if (!dev->bdev) {
3509                         errors_wait++;
3510                         continue;
3511                 }
3512                 if (!dev->in_fs_metadata || !dev->writeable)
3513                         continue;
3514
3515                 ret = write_dev_flush(dev, 1);
3516                 if (ret)
3517                         errors_wait++;
3518         }
3519         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3520             errors_wait > info->num_tolerated_disk_barrier_failures)
3521                 return -EIO;
3522         return 0;
3523 }
3524
3525 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3526 {
3527         int raid_type;
3528         int min_tolerated = INT_MAX;
3529
3530         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3531             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3532                 min_tolerated = min(min_tolerated,
3533                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3534                                     tolerated_failures);
3535
3536         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3537                 if (raid_type == BTRFS_RAID_SINGLE)
3538                         continue;
3539                 if (!(flags & btrfs_raid_group[raid_type]))
3540                         continue;
3541                 min_tolerated = min(min_tolerated,
3542                                     btrfs_raid_array[raid_type].
3543                                     tolerated_failures);
3544         }
3545
3546         if (min_tolerated == INT_MAX) {
3547                 pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3548                 min_tolerated = 0;
3549         }
3550
3551         return min_tolerated;
3552 }
3553
3554 int btrfs_calc_num_tolerated_disk_barrier_failures(
3555         struct btrfs_fs_info *fs_info)
3556 {
3557         struct btrfs_ioctl_space_info space;
3558         struct btrfs_space_info *sinfo;
3559         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3560                        BTRFS_BLOCK_GROUP_SYSTEM,
3561                        BTRFS_BLOCK_GROUP_METADATA,
3562                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3563         int i;
3564         int c;
3565         int num_tolerated_disk_barrier_failures =
3566                 (int)fs_info->fs_devices->num_devices;
3567
3568         for (i = 0; i < ARRAY_SIZE(types); i++) {
3569                 struct btrfs_space_info *tmp;
3570
3571                 sinfo = NULL;
3572                 rcu_read_lock();
3573                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3574                         if (tmp->flags == types[i]) {
3575                                 sinfo = tmp;
3576                                 break;
3577                         }
3578                 }
3579                 rcu_read_unlock();
3580
3581                 if (!sinfo)
3582                         continue;
3583
3584                 down_read(&sinfo->groups_sem);
3585                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3586                         u64 flags;
3587
3588                         if (list_empty(&sinfo->block_groups[c]))
3589                                 continue;
3590
3591                         btrfs_get_block_group_info(&sinfo->block_groups[c],
3592                                                    &space);
3593                         if (space.total_bytes == 0 || space.used_bytes == 0)
3594                                 continue;
3595                         flags = space.flags;
3596
3597                         num_tolerated_disk_barrier_failures = min(
3598                                 num_tolerated_disk_barrier_failures,
3599                                 btrfs_get_num_tolerated_disk_barrier_failures(
3600                                         flags));
3601                 }
3602                 up_read(&sinfo->groups_sem);
3603         }
3604
3605         return num_tolerated_disk_barrier_failures;
3606 }
3607
3608 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3609 {
3610         struct list_head *head;
3611         struct btrfs_device *dev;
3612         struct btrfs_super_block *sb;
3613         struct btrfs_dev_item *dev_item;
3614         int ret;
3615         int do_barriers;
3616         int max_errors;
3617         int total_errors = 0;
3618         u64 flags;
3619
3620         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3621         backup_super_roots(root->fs_info);
3622
3623         sb = root->fs_info->super_for_commit;
3624         dev_item = &sb->dev_item;
3625
3626         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3627         head = &root->fs_info->fs_devices->devices;
3628         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3629
3630         if (do_barriers) {
3631                 ret = barrier_all_devices(root->fs_info);
3632                 if (ret) {
3633                         mutex_unlock(
3634                                 &root->fs_info->fs_devices->device_list_mutex);
3635                         btrfs_std_error(root->fs_info, ret,
3636                                     "errors while submitting device barriers.");
3637                         return ret;
3638                 }
3639         }
3640
3641         list_for_each_entry_rcu(dev, head, dev_list) {
3642                 if (!dev->bdev) {
3643                         total_errors++;
3644                         continue;
3645                 }
3646                 if (!dev->in_fs_metadata || !dev->writeable)
3647                         continue;
3648
3649                 btrfs_set_stack_device_generation(dev_item, 0);
3650                 btrfs_set_stack_device_type(dev_item, dev->type);
3651                 btrfs_set_stack_device_id(dev_item, dev->devid);
3652                 btrfs_set_stack_device_total_bytes(dev_item,
3653                                                    dev->commit_total_bytes);
3654                 btrfs_set_stack_device_bytes_used(dev_item,
3655                                                   dev->commit_bytes_used);
3656                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3657                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3658                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3659                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3660                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3661
3662                 flags = btrfs_super_flags(sb);
3663                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3664
3665                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3666                 if (ret)
3667                         total_errors++;
3668         }
3669         if (total_errors > max_errors) {
3670                 btrfs_err(root->fs_info, "%d errors while writing supers",
3671                        total_errors);
3672                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3673
3674                 /* FUA is masked off if unsupported and can't be the reason */
3675                 btrfs_std_error(root->fs_info, -EIO,
3676                             "%d errors while writing supers", total_errors);
3677                 return -EIO;
3678         }
3679
3680         total_errors = 0;
3681         list_for_each_entry_rcu(dev, head, dev_list) {
3682                 if (!dev->bdev)
3683                         continue;
3684                 if (!dev->in_fs_metadata || !dev->writeable)
3685                         continue;
3686
3687                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3688                 if (ret)
3689                         total_errors++;
3690         }
3691         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3692         if (total_errors > max_errors) {
3693                 btrfs_std_error(root->fs_info, -EIO,
3694                             "%d errors while writing supers", total_errors);
3695                 return -EIO;
3696         }
3697         return 0;
3698 }
3699
3700 int write_ctree_super(struct btrfs_trans_handle *trans,
3701                       struct btrfs_root *root, int max_mirrors)
3702 {
3703         return write_all_supers(root, max_mirrors);
3704 }
3705
3706 /* Drop a fs root from the radix tree and free it. */
3707 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3708                                   struct btrfs_root *root)
3709 {
3710         spin_lock(&fs_info->fs_roots_radix_lock);
3711         radix_tree_delete(&fs_info->fs_roots_radix,
3712                           (unsigned long)root->root_key.objectid);
3713         spin_unlock(&fs_info->fs_roots_radix_lock);
3714
3715         if (btrfs_root_refs(&root->root_item) == 0)
3716                 synchronize_srcu(&fs_info->subvol_srcu);
3717
3718         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3719                 btrfs_free_log(NULL, root);
3720
3721         if (root->free_ino_pinned)
3722                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3723         if (root->free_ino_ctl)
3724                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3725         free_fs_root(root);
3726 }
3727
3728 static void free_fs_root(struct btrfs_root *root)
3729 {
3730         iput(root->ino_cache_inode);
3731         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3732         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3733         root->orphan_block_rsv = NULL;
3734         if (root->anon_dev)
3735                 free_anon_bdev(root->anon_dev);
3736         if (root->subv_writers)
3737                 btrfs_free_subvolume_writers(root->subv_writers);
3738         free_extent_buffer(root->node);
3739         free_extent_buffer(root->commit_root);
3740         kfree(root->free_ino_ctl);
3741         kfree(root->free_ino_pinned);
3742         kfree(root->name);
3743         btrfs_put_fs_root(root);
3744 }
3745
3746 void btrfs_free_fs_root(struct btrfs_root *root)
3747 {
3748         free_fs_root(root);
3749 }
3750
3751 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3752 {
3753         u64 root_objectid = 0;
3754         struct btrfs_root *gang[8];
3755         int i = 0;
3756         int err = 0;
3757         unsigned int ret = 0;
3758         int index;
3759
3760         while (1) {
3761                 index = srcu_read_lock(&fs_info->subvol_srcu);
3762                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3763                                              (void **)gang, root_objectid,
3764                                              ARRAY_SIZE(gang));
3765                 if (!ret) {
3766                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3767                         break;
3768                 }
3769                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3770
3771                 for (i = 0; i < ret; i++) {
3772                         /* Avoid to grab roots in dead_roots */
3773                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3774                                 gang[i] = NULL;
3775                                 continue;
3776                         }
3777                         /* grab all the search result for later use */
3778                         gang[i] = btrfs_grab_fs_root(gang[i]);
3779                 }
3780                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3781
3782                 for (i = 0; i < ret; i++) {
3783                         if (!gang[i])
3784                                 continue;
3785                         root_objectid = gang[i]->root_key.objectid;
3786                         err = btrfs_orphan_cleanup(gang[i]);
3787                         if (err)
3788                                 break;
3789                         btrfs_put_fs_root(gang[i]);
3790                 }
3791                 root_objectid++;
3792         }
3793
3794         /* release the uncleaned roots due to error */
3795         for (; i < ret; i++) {
3796                 if (gang[i])
3797                         btrfs_put_fs_root(gang[i]);
3798         }
3799         return err;
3800 }
3801
3802 int btrfs_commit_super(struct btrfs_root *root)
3803 {
3804         struct btrfs_trans_handle *trans;
3805
3806         mutex_lock(&root->fs_info->cleaner_mutex);
3807         btrfs_run_delayed_iputs(root);
3808         mutex_unlock(&root->fs_info->cleaner_mutex);
3809         wake_up_process(root->fs_info->cleaner_kthread);
3810
3811         /* wait until ongoing cleanup work done */
3812         down_write(&root->fs_info->cleanup_work_sem);
3813         up_write(&root->fs_info->cleanup_work_sem);
3814
3815         trans = btrfs_join_transaction(root);
3816         if (IS_ERR(trans))
3817                 return PTR_ERR(trans);
3818         return btrfs_commit_transaction(trans, root);
3819 }
3820
3821 void close_ctree(struct btrfs_root *root)
3822 {
3823         struct btrfs_fs_info *fs_info = root->fs_info;
3824         int ret;
3825
3826         fs_info->closing = 1;
3827         smp_mb();
3828
3829         /* wait for the qgroup rescan worker to stop */
3830         btrfs_qgroup_wait_for_completion(fs_info);
3831
3832         /* wait for the uuid_scan task to finish */
3833         down(&fs_info->uuid_tree_rescan_sem);
3834         /* avoid complains from lockdep et al., set sem back to initial state */
3835         up(&fs_info->uuid_tree_rescan_sem);
3836
3837         /* pause restriper - we want to resume on mount */
3838         btrfs_pause_balance(fs_info);
3839
3840         btrfs_dev_replace_suspend_for_unmount(fs_info);
3841
3842         btrfs_scrub_cancel(fs_info);
3843
3844         /* wait for any defraggers to finish */
3845         wait_event(fs_info->transaction_wait,
3846                    (atomic_read(&fs_info->defrag_running) == 0));
3847
3848         /* clear out the rbtree of defraggable inodes */
3849         btrfs_cleanup_defrag_inodes(fs_info);
3850
3851         cancel_work_sync(&fs_info->async_reclaim_work);
3852
3853         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3854                 /*
3855                  * If the cleaner thread is stopped and there are
3856                  * block groups queued for removal, the deletion will be
3857                  * skipped when we quit the cleaner thread.
3858                  */
3859                 btrfs_delete_unused_bgs(root->fs_info);
3860
3861                 ret = btrfs_commit_super(root);
3862                 if (ret)
3863                         btrfs_err(fs_info, "commit super ret %d", ret);
3864         }
3865
3866         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3867                 btrfs_error_commit_super(root);
3868
3869         kthread_stop(fs_info->transaction_kthread);
3870         kthread_stop(fs_info->cleaner_kthread);
3871
3872         fs_info->closing = 2;
3873         smp_mb();
3874
3875         btrfs_free_qgroup_config(fs_info);
3876
3877         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3878                 btrfs_info(fs_info, "at unmount delalloc count %lld",
3879                        percpu_counter_sum(&fs_info->delalloc_bytes));
3880         }
3881
3882         btrfs_sysfs_remove_mounted(fs_info);
3883         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3884
3885         btrfs_free_fs_roots(fs_info);
3886
3887         btrfs_put_block_group_cache(fs_info);
3888
3889         btrfs_free_block_groups(fs_info);
3890
3891         /*
3892          * we must make sure there is not any read request to
3893          * submit after we stopping all workers.
3894          */
3895         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3896         btrfs_stop_all_workers(fs_info);
3897
3898         fs_info->open = 0;
3899         free_root_pointers(fs_info, 1);
3900
3901         iput(fs_info->btree_inode);
3902
3903 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3904         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3905                 btrfsic_unmount(root, fs_info->fs_devices);
3906 #endif
3907
3908         btrfs_close_devices(fs_info->fs_devices);
3909         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3910
3911         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3912         percpu_counter_destroy(&fs_info->delalloc_bytes);
3913         percpu_counter_destroy(&fs_info->bio_counter);
3914         bdi_destroy(&fs_info->bdi);
3915         cleanup_srcu_struct(&fs_info->subvol_srcu);
3916
3917         btrfs_free_stripe_hash_table(fs_info);
3918
3919         __btrfs_free_block_rsv(root->orphan_block_rsv);
3920         root->orphan_block_rsv = NULL;
3921
3922         lock_chunks(root);
3923         while (!list_empty(&fs_info->pinned_chunks)) {
3924                 struct extent_map *em;
3925
3926                 em = list_first_entry(&fs_info->pinned_chunks,
3927                                       struct extent_map, list);
3928                 list_del_init(&em->list);
3929                 free_extent_map(em);
3930         }
3931         unlock_chunks(root);
3932 }
3933
3934 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3935                           int atomic)
3936 {
3937         int ret;
3938         struct inode *btree_inode = buf->pages[0]->mapping->host;
3939
3940         ret = extent_buffer_uptodate(buf);
3941         if (!ret)
3942                 return ret;
3943
3944         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3945                                     parent_transid, atomic);
3946         if (ret == -EAGAIN)
3947                 return ret;
3948         return !ret;
3949 }
3950
3951 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3952 {
3953         struct btrfs_root *root;
3954         u64 transid = btrfs_header_generation(buf);
3955         int was_dirty;
3956
3957 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3958         /*
3959          * This is a fast path so only do this check if we have sanity tests
3960          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3961          * outside of the sanity tests.
3962          */
3963         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3964                 return;
3965 #endif
3966         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3967         btrfs_assert_tree_locked(buf);
3968         if (transid != root->fs_info->generation)
3969                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3970                        "found %llu running %llu\n",
3971                         buf->start, transid, root->fs_info->generation);
3972         was_dirty = set_extent_buffer_dirty(buf);
3973         if (!was_dirty)
3974                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3975                                      buf->len,
3976                                      root->fs_info->dirty_metadata_batch);
3977 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3978         if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3979                 btrfs_print_leaf(root, buf);
3980                 ASSERT(0);
3981         }
3982 #endif
3983 }
3984
3985 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3986                                         int flush_delayed)
3987 {
3988         /*
3989          * looks as though older kernels can get into trouble with
3990          * this code, they end up stuck in balance_dirty_pages forever
3991          */
3992         int ret;
3993
3994         if (current->flags & PF_MEMALLOC)
3995                 return;
3996
3997         if (flush_delayed)
3998                 btrfs_balance_delayed_items(root);
3999
4000         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4001                                      BTRFS_DIRTY_METADATA_THRESH);
4002         if (ret > 0) {
4003                 balance_dirty_pages_ratelimited(
4004                                    root->fs_info->btree_inode->i_mapping);
4005         }
4006 }
4007
4008 void btrfs_btree_balance_dirty(struct btrfs_root *root)
4009 {
4010         __btrfs_btree_balance_dirty(root, 1);
4011 }
4012
4013 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4014 {
4015         __btrfs_btree_balance_dirty(root, 0);
4016 }
4017
4018 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4019 {
4020         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4021         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
4022 }
4023
4024 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4025                               int read_only)
4026 {
4027         struct btrfs_super_block *sb = fs_info->super_copy;
4028         u64 nodesize = btrfs_super_nodesize(sb);
4029         u64 sectorsize = btrfs_super_sectorsize(sb);
4030         int ret = 0;
4031
4032         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4033                 printk(KERN_ERR "BTRFS: no valid FS found\n");
4034                 ret = -EINVAL;
4035         }
4036         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4037                 printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
4038                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4039         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4040                 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4041                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4042                 ret = -EINVAL;
4043         }
4044         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4045                 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4046                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4047                 ret = -EINVAL;
4048         }
4049         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4050                 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4051                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4052                 ret = -EINVAL;
4053         }
4054
4055         /*
4056          * Check sectorsize and nodesize first, other check will need it.
4057          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4058          */
4059         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4060             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4061                 printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
4062                 ret = -EINVAL;
4063         }
4064         /* Only PAGE SIZE is supported yet */
4065         if (sectorsize != PAGE_CACHE_SIZE) {
4066                 printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
4067                                 sectorsize, PAGE_CACHE_SIZE);
4068                 ret = -EINVAL;
4069         }
4070         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4071             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4072                 printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
4073                 ret = -EINVAL;
4074         }
4075         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4076                 printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
4077                                 le32_to_cpu(sb->__unused_leafsize),
4078                                 nodesize);
4079                 ret = -EINVAL;
4080         }
4081
4082         /* Root alignment check */
4083         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4084                 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4085                                 btrfs_super_root(sb));
4086                 ret = -EINVAL;
4087         }
4088         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4089                 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4090                                 btrfs_super_chunk_root(sb));
4091                 ret = -EINVAL;
4092         }
4093         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4094                 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4095                                 btrfs_super_log_root(sb));
4096                 ret = -EINVAL;
4097         }
4098
4099         if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4100                 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4101                                 fs_info->fsid, sb->dev_item.fsid);
4102                 ret = -EINVAL;
4103         }
4104
4105         /*
4106          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4107          * done later
4108          */
4109         if (btrfs_super_num_devices(sb) > (1UL << 31))
4110                 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4111                                 btrfs_super_num_devices(sb));
4112         if (btrfs_super_num_devices(sb) == 0) {
4113                 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4114                 ret = -EINVAL;
4115         }
4116
4117         if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4118                 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4119                                 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4120                 ret = -EINVAL;
4121         }
4122
4123         /*
4124          * Obvious sys_chunk_array corruptions, it must hold at least one key
4125          * and one chunk
4126          */
4127         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4128                 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4129                                 btrfs_super_sys_array_size(sb),
4130                                 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4131                 ret = -EINVAL;
4132         }
4133         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4134                         + sizeof(struct btrfs_chunk)) {
4135                 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4136                                 btrfs_super_sys_array_size(sb),
4137                                 sizeof(struct btrfs_disk_key)
4138                                 + sizeof(struct btrfs_chunk));
4139                 ret = -EINVAL;
4140         }
4141
4142         /*
4143          * The generation is a global counter, we'll trust it more than the others
4144          * but it's still possible that it's the one that's wrong.
4145          */
4146         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4147                 printk(KERN_WARNING
4148                         "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4149                         btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4150         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4151             && btrfs_super_cache_generation(sb) != (u64)-1)
4152                 printk(KERN_WARNING
4153                         "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4154                         btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4155
4156         return ret;
4157 }
4158
4159 static void btrfs_error_commit_super(struct btrfs_root *root)
4160 {
4161         mutex_lock(&root->fs_info->cleaner_mutex);
4162         btrfs_run_delayed_iputs(root);
4163         mutex_unlock(&root->fs_info->cleaner_mutex);
4164
4165         down_write(&root->fs_info->cleanup_work_sem);
4166         up_write(&root->fs_info->cleanup_work_sem);
4167
4168         /* cleanup FS via transaction */
4169         btrfs_cleanup_transaction(root);
4170 }
4171
4172 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4173 {
4174         struct btrfs_ordered_extent *ordered;
4175
4176         spin_lock(&root->ordered_extent_lock);
4177         /*
4178          * This will just short circuit the ordered completion stuff which will
4179          * make sure the ordered extent gets properly cleaned up.
4180          */
4181         list_for_each_entry(ordered, &root->ordered_extents,
4182                             root_extent_list)
4183                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4184         spin_unlock(&root->ordered_extent_lock);
4185 }
4186
4187 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4188 {
4189         struct btrfs_root *root;
4190         struct list_head splice;
4191
4192         INIT_LIST_HEAD(&splice);
4193
4194         spin_lock(&fs_info->ordered_root_lock);
4195         list_splice_init(&fs_info->ordered_roots, &splice);
4196         while (!list_empty(&splice)) {
4197                 root = list_first_entry(&splice, struct btrfs_root,
4198                                         ordered_root);
4199                 list_move_tail(&root->ordered_root,
4200                                &fs_info->ordered_roots);
4201
4202                 spin_unlock(&fs_info->ordered_root_lock);
4203                 btrfs_destroy_ordered_extents(root);
4204
4205                 cond_resched();
4206                 spin_lock(&fs_info->ordered_root_lock);
4207         }
4208         spin_unlock(&fs_info->ordered_root_lock);
4209 }
4210
4211 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4212                                       struct btrfs_root *root)
4213 {
4214         struct rb_node *node;
4215         struct btrfs_delayed_ref_root *delayed_refs;
4216         struct btrfs_delayed_ref_node *ref;
4217         int ret = 0;
4218
4219         delayed_refs = &trans->delayed_refs;
4220
4221         spin_lock(&delayed_refs->lock);
4222         if (atomic_read(&delayed_refs->num_entries) == 0) {
4223                 spin_unlock(&delayed_refs->lock);
4224                 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4225                 return ret;
4226         }
4227
4228         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4229                 struct btrfs_delayed_ref_head *head;
4230                 struct btrfs_delayed_ref_node *tmp;
4231                 bool pin_bytes = false;
4232
4233                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4234                                 href_node);
4235                 if (!mutex_trylock(&head->mutex)) {
4236                         atomic_inc(&head->node.refs);
4237                         spin_unlock(&delayed_refs->lock);
4238
4239                         mutex_lock(&head->mutex);
4240                         mutex_unlock(&head->mutex);
4241                         btrfs_put_delayed_ref(&head->node);
4242                         spin_lock(&delayed_refs->lock);
4243                         continue;
4244                 }
4245                 spin_lock(&head->lock);
4246                 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4247                                                  list) {
4248                         ref->in_tree = 0;
4249                         list_del(&ref->list);
4250                         atomic_dec(&delayed_refs->num_entries);
4251                         btrfs_put_delayed_ref(ref);
4252                 }
4253                 if (head->must_insert_reserved)
4254                         pin_bytes = true;
4255                 btrfs_free_delayed_extent_op(head->extent_op);
4256                 delayed_refs->num_heads--;
4257                 if (head->processing == 0)
4258                         delayed_refs->num_heads_ready--;
4259                 atomic_dec(&delayed_refs->num_entries);
4260                 head->node.in_tree = 0;
4261                 rb_erase(&head->href_node, &delayed_refs->href_root);
4262                 spin_unlock(&head->lock);
4263                 spin_unlock(&delayed_refs->lock);
4264                 mutex_unlock(&head->mutex);
4265
4266                 if (pin_bytes)
4267                         btrfs_pin_extent(root, head->node.bytenr,
4268                                          head->node.num_bytes, 1);
4269                 btrfs_put_delayed_ref(&head->node);
4270                 cond_resched();
4271                 spin_lock(&delayed_refs->lock);
4272         }
4273
4274         spin_unlock(&delayed_refs->lock);
4275
4276         return ret;
4277 }
4278
4279 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4280 {
4281         struct btrfs_inode *btrfs_inode;
4282         struct list_head splice;
4283
4284         INIT_LIST_HEAD(&splice);
4285
4286         spin_lock(&root->delalloc_lock);
4287         list_splice_init(&root->delalloc_inodes, &splice);
4288
4289         while (!list_empty(&splice)) {
4290                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4291                                                delalloc_inodes);
4292
4293                 list_del_init(&btrfs_inode->delalloc_inodes);
4294                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4295                           &btrfs_inode->runtime_flags);
4296                 spin_unlock(&root->delalloc_lock);
4297
4298                 btrfs_invalidate_inodes(btrfs_inode->root);
4299
4300                 spin_lock(&root->delalloc_lock);
4301         }
4302
4303         spin_unlock(&root->delalloc_lock);
4304 }
4305
4306 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4307 {
4308         struct btrfs_root *root;
4309         struct list_head splice;
4310
4311         INIT_LIST_HEAD(&splice);
4312
4313         spin_lock(&fs_info->delalloc_root_lock);
4314         list_splice_init(&fs_info->delalloc_roots, &splice);
4315         while (!list_empty(&splice)) {
4316                 root = list_first_entry(&splice, struct btrfs_root,
4317                                          delalloc_root);
4318                 list_del_init(&root->delalloc_root);
4319                 root = btrfs_grab_fs_root(root);
4320                 BUG_ON(!root);
4321                 spin_unlock(&fs_info->delalloc_root_lock);
4322
4323                 btrfs_destroy_delalloc_inodes(root);
4324                 btrfs_put_fs_root(root);
4325
4326                 spin_lock(&fs_info->delalloc_root_lock);
4327         }
4328         spin_unlock(&fs_info->delalloc_root_lock);
4329 }
4330
4331 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4332                                         struct extent_io_tree *dirty_pages,
4333                                         int mark)
4334 {
4335         int ret;
4336         struct extent_buffer *eb;
4337         u64 start = 0;
4338         u64 end;
4339
4340         while (1) {
4341                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4342                                             mark, NULL);
4343                 if (ret)
4344                         break;
4345
4346                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4347                 while (start <= end) {
4348                         eb = btrfs_find_tree_block(root->fs_info, start);
4349                         start += root->nodesize;
4350                         if (!eb)
4351                                 continue;
4352                         wait_on_extent_buffer_writeback(eb);
4353
4354                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4355                                                &eb->bflags))
4356                                 clear_extent_buffer_dirty(eb);
4357                         free_extent_buffer_stale(eb);
4358                 }
4359         }
4360
4361         return ret;
4362 }
4363
4364 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4365                                        struct extent_io_tree *pinned_extents)
4366 {
4367         struct extent_io_tree *unpin;
4368         u64 start;
4369         u64 end;
4370         int ret;
4371         bool loop = true;
4372
4373         unpin = pinned_extents;
4374 again:
4375         while (1) {
4376                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4377                                             EXTENT_DIRTY, NULL);
4378                 if (ret)
4379                         break;
4380
4381                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4382                 btrfs_error_unpin_extent_range(root, start, end);
4383                 cond_resched();
4384         }
4385
4386         if (loop) {
4387                 if (unpin == &root->fs_info->freed_extents[0])
4388                         unpin = &root->fs_info->freed_extents[1];
4389                 else
4390                         unpin = &root->fs_info->freed_extents[0];
4391                 loop = false;
4392                 goto again;
4393         }
4394
4395         return 0;
4396 }
4397
4398 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4399                                    struct btrfs_root *root)
4400 {
4401         btrfs_destroy_delayed_refs(cur_trans, root);
4402
4403         cur_trans->state = TRANS_STATE_COMMIT_START;
4404         wake_up(&root->fs_info->transaction_blocked_wait);
4405
4406         cur_trans->state = TRANS_STATE_UNBLOCKED;
4407         wake_up(&root->fs_info->transaction_wait);
4408
4409         btrfs_destroy_delayed_inodes(root);
4410         btrfs_assert_delayed_root_empty(root);
4411
4412         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4413                                      EXTENT_DIRTY);
4414         btrfs_destroy_pinned_extent(root,
4415                                     root->fs_info->pinned_extents);
4416
4417         cur_trans->state =TRANS_STATE_COMPLETED;
4418         wake_up(&cur_trans->commit_wait);
4419
4420         /*
4421         memset(cur_trans, 0, sizeof(*cur_trans));
4422         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4423         */
4424 }
4425
4426 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4427 {
4428         struct btrfs_transaction *t;
4429
4430         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4431
4432         spin_lock(&root->fs_info->trans_lock);
4433         while (!list_empty(&root->fs_info->trans_list)) {
4434                 t = list_first_entry(&root->fs_info->trans_list,
4435                                      struct btrfs_transaction, list);
4436                 if (t->state >= TRANS_STATE_COMMIT_START) {
4437                         atomic_inc(&t->use_count);
4438                         spin_unlock(&root->fs_info->trans_lock);
4439                         btrfs_wait_for_commit(root, t->transid);
4440                         btrfs_put_transaction(t);
4441                         spin_lock(&root->fs_info->trans_lock);
4442                         continue;
4443                 }
4444                 if (t == root->fs_info->running_transaction) {
4445                         t->state = TRANS_STATE_COMMIT_DOING;
4446                         spin_unlock(&root->fs_info->trans_lock);
4447                         /*
4448                          * We wait for 0 num_writers since we don't hold a trans
4449                          * handle open currently for this transaction.
4450                          */
4451                         wait_event(t->writer_wait,
4452                                    atomic_read(&t->num_writers) == 0);
4453                 } else {
4454                         spin_unlock(&root->fs_info->trans_lock);
4455                 }
4456                 btrfs_cleanup_one_transaction(t, root);
4457
4458                 spin_lock(&root->fs_info->trans_lock);
4459                 if (t == root->fs_info->running_transaction)
4460                         root->fs_info->running_transaction = NULL;
4461                 list_del_init(&t->list);
4462                 spin_unlock(&root->fs_info->trans_lock);
4463
4464                 btrfs_put_transaction(t);
4465                 trace_btrfs_transaction_commit(root);
4466                 spin_lock(&root->fs_info->trans_lock);
4467         }
4468         spin_unlock(&root->fs_info->trans_lock);
4469         btrfs_destroy_all_ordered_extents(root->fs_info);
4470         btrfs_destroy_delayed_inodes(root);
4471         btrfs_assert_delayed_root_empty(root);
4472         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4473         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4474         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4475
4476         return 0;
4477 }
4478
4479 static const struct extent_io_ops btree_extent_io_ops = {
4480         .readpage_end_io_hook = btree_readpage_end_io_hook,
4481         .readpage_io_failed_hook = btree_io_failed_hook,
4482         .submit_bio_hook = btree_submit_bio_hook,
4483         /* note we're sharing with inode.c for the merge bio hook */
4484         .merge_bio_hook = btrfs_merge_bio_hook,
4485 };