Btrfs: rework qgroup accounting
[linux-2.6-block.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 #include "sysfs.h"
52 #include "qgroup.h"
53
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57
58 static struct extent_io_ops btree_extent_io_ops;
59 static void end_workqueue_fn(struct btrfs_work *work);
60 static void free_fs_root(struct btrfs_root *root);
61 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
62                                     int read_only);
63 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
64                                              struct btrfs_root *root);
65 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
66 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
67                                       struct btrfs_root *root);
68 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
69 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
70                                         struct extent_io_tree *dirty_pages,
71                                         int mark);
72 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
73                                        struct extent_io_tree *pinned_extents);
74 static int btrfs_cleanup_transaction(struct btrfs_root *root);
75 static void btrfs_error_commit_super(struct btrfs_root *root);
76
77 /*
78  * end_io_wq structs are used to do processing in task context when an IO is
79  * complete.  This is used during reads to verify checksums, and it is used
80  * by writes to insert metadata for new file extents after IO is complete.
81  */
82 struct end_io_wq {
83         struct bio *bio;
84         bio_end_io_t *end_io;
85         void *private;
86         struct btrfs_fs_info *info;
87         int error;
88         int metadata;
89         struct list_head list;
90         struct btrfs_work work;
91 };
92
93 /*
94  * async submit bios are used to offload expensive checksumming
95  * onto the worker threads.  They checksum file and metadata bios
96  * just before they are sent down the IO stack.
97  */
98 struct async_submit_bio {
99         struct inode *inode;
100         struct bio *bio;
101         struct list_head list;
102         extent_submit_bio_hook_t *submit_bio_start;
103         extent_submit_bio_hook_t *submit_bio_done;
104         int rw;
105         int mirror_num;
106         unsigned long bio_flags;
107         /*
108          * bio_offset is optional, can be used if the pages in the bio
109          * can't tell us where in the file the bio should go
110          */
111         u64 bio_offset;
112         struct btrfs_work work;
113         int error;
114 };
115
116 /*
117  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
118  * eb, the lockdep key is determined by the btrfs_root it belongs to and
119  * the level the eb occupies in the tree.
120  *
121  * Different roots are used for different purposes and may nest inside each
122  * other and they require separate keysets.  As lockdep keys should be
123  * static, assign keysets according to the purpose of the root as indicated
124  * by btrfs_root->objectid.  This ensures that all special purpose roots
125  * have separate keysets.
126  *
127  * Lock-nesting across peer nodes is always done with the immediate parent
128  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
129  * subclass to avoid triggering lockdep warning in such cases.
130  *
131  * The key is set by the readpage_end_io_hook after the buffer has passed
132  * csum validation but before the pages are unlocked.  It is also set by
133  * btrfs_init_new_buffer on freshly allocated blocks.
134  *
135  * We also add a check to make sure the highest level of the tree is the
136  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
137  * needs update as well.
138  */
139 #ifdef CONFIG_DEBUG_LOCK_ALLOC
140 # if BTRFS_MAX_LEVEL != 8
141 #  error
142 # endif
143
144 static struct btrfs_lockdep_keyset {
145         u64                     id;             /* root objectid */
146         const char              *name_stem;     /* lock name stem */
147         char                    names[BTRFS_MAX_LEVEL + 1][20];
148         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
149 } btrfs_lockdep_keysets[] = {
150         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
151         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
152         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
153         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
154         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
155         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
156         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
157         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
158         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
159         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
160         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
161         { .id = 0,                              .name_stem = "tree"     },
162 };
163
164 void __init btrfs_init_lockdep(void)
165 {
166         int i, j;
167
168         /* initialize lockdep class names */
169         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
170                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
171
172                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
173                         snprintf(ks->names[j], sizeof(ks->names[j]),
174                                  "btrfs-%s-%02d", ks->name_stem, j);
175         }
176 }
177
178 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
179                                     int level)
180 {
181         struct btrfs_lockdep_keyset *ks;
182
183         BUG_ON(level >= ARRAY_SIZE(ks->keys));
184
185         /* find the matching keyset, id 0 is the default entry */
186         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
187                 if (ks->id == objectid)
188                         break;
189
190         lockdep_set_class_and_name(&eb->lock,
191                                    &ks->keys[level], ks->names[level]);
192 }
193
194 #endif
195
196 /*
197  * extents on the btree inode are pretty simple, there's one extent
198  * that covers the entire device
199  */
200 static struct extent_map *btree_get_extent(struct inode *inode,
201                 struct page *page, size_t pg_offset, u64 start, u64 len,
202                 int create)
203 {
204         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
205         struct extent_map *em;
206         int ret;
207
208         read_lock(&em_tree->lock);
209         em = lookup_extent_mapping(em_tree, start, len);
210         if (em) {
211                 em->bdev =
212                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
213                 read_unlock(&em_tree->lock);
214                 goto out;
215         }
216         read_unlock(&em_tree->lock);
217
218         em = alloc_extent_map();
219         if (!em) {
220                 em = ERR_PTR(-ENOMEM);
221                 goto out;
222         }
223         em->start = 0;
224         em->len = (u64)-1;
225         em->block_len = (u64)-1;
226         em->block_start = 0;
227         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
228
229         write_lock(&em_tree->lock);
230         ret = add_extent_mapping(em_tree, em, 0);
231         if (ret == -EEXIST) {
232                 free_extent_map(em);
233                 em = lookup_extent_mapping(em_tree, start, len);
234                 if (!em)
235                         em = ERR_PTR(-EIO);
236         } else if (ret) {
237                 free_extent_map(em);
238                 em = ERR_PTR(ret);
239         }
240         write_unlock(&em_tree->lock);
241
242 out:
243         return em;
244 }
245
246 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
247 {
248         return btrfs_crc32c(seed, data, len);
249 }
250
251 void btrfs_csum_final(u32 crc, char *result)
252 {
253         put_unaligned_le32(~crc, result);
254 }
255
256 /*
257  * compute the csum for a btree block, and either verify it or write it
258  * into the csum field of the block.
259  */
260 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
261                            int verify)
262 {
263         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
264         char *result = NULL;
265         unsigned long len;
266         unsigned long cur_len;
267         unsigned long offset = BTRFS_CSUM_SIZE;
268         char *kaddr;
269         unsigned long map_start;
270         unsigned long map_len;
271         int err;
272         u32 crc = ~(u32)0;
273         unsigned long inline_result;
274
275         len = buf->len - offset;
276         while (len > 0) {
277                 err = map_private_extent_buffer(buf, offset, 32,
278                                         &kaddr, &map_start, &map_len);
279                 if (err)
280                         return 1;
281                 cur_len = min(len, map_len - (offset - map_start));
282                 crc = btrfs_csum_data(kaddr + offset - map_start,
283                                       crc, cur_len);
284                 len -= cur_len;
285                 offset += cur_len;
286         }
287         if (csum_size > sizeof(inline_result)) {
288                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
289                 if (!result)
290                         return 1;
291         } else {
292                 result = (char *)&inline_result;
293         }
294
295         btrfs_csum_final(crc, result);
296
297         if (verify) {
298                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
299                         u32 val;
300                         u32 found = 0;
301                         memcpy(&found, result, csum_size);
302
303                         read_extent_buffer(buf, &val, 0, csum_size);
304                         printk_ratelimited(KERN_INFO
305                                 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
306                                 "level %d\n",
307                                 root->fs_info->sb->s_id, buf->start,
308                                 val, found, btrfs_header_level(buf));
309                         if (result != (char *)&inline_result)
310                                 kfree(result);
311                         return 1;
312                 }
313         } else {
314                 write_extent_buffer(buf, result, 0, csum_size);
315         }
316         if (result != (char *)&inline_result)
317                 kfree(result);
318         return 0;
319 }
320
321 /*
322  * we can't consider a given block up to date unless the transid of the
323  * block matches the transid in the parent node's pointer.  This is how we
324  * detect blocks that either didn't get written at all or got written
325  * in the wrong place.
326  */
327 static int verify_parent_transid(struct extent_io_tree *io_tree,
328                                  struct extent_buffer *eb, u64 parent_transid,
329                                  int atomic)
330 {
331         struct extent_state *cached_state = NULL;
332         int ret;
333         bool need_lock = (current->journal_info ==
334                           (void *)BTRFS_SEND_TRANS_STUB);
335
336         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
337                 return 0;
338
339         if (atomic)
340                 return -EAGAIN;
341
342         if (need_lock) {
343                 btrfs_tree_read_lock(eb);
344                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
345         }
346
347         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
348                          0, &cached_state);
349         if (extent_buffer_uptodate(eb) &&
350             btrfs_header_generation(eb) == parent_transid) {
351                 ret = 0;
352                 goto out;
353         }
354         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
355                        "found %llu\n",
356                        eb->start, parent_transid, btrfs_header_generation(eb));
357         ret = 1;
358
359         /*
360          * Things reading via commit roots that don't have normal protection,
361          * like send, can have a really old block in cache that may point at a
362          * block that has been free'd and re-allocated.  So don't clear uptodate
363          * if we find an eb that is under IO (dirty/writeback) because we could
364          * end up reading in the stale data and then writing it back out and
365          * making everybody very sad.
366          */
367         if (!extent_buffer_under_io(eb))
368                 clear_extent_buffer_uptodate(eb);
369 out:
370         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
371                              &cached_state, GFP_NOFS);
372         btrfs_tree_read_unlock_blocking(eb);
373         return ret;
374 }
375
376 /*
377  * Return 0 if the superblock checksum type matches the checksum value of that
378  * algorithm. Pass the raw disk superblock data.
379  */
380 static int btrfs_check_super_csum(char *raw_disk_sb)
381 {
382         struct btrfs_super_block *disk_sb =
383                 (struct btrfs_super_block *)raw_disk_sb;
384         u16 csum_type = btrfs_super_csum_type(disk_sb);
385         int ret = 0;
386
387         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
388                 u32 crc = ~(u32)0;
389                 const int csum_size = sizeof(crc);
390                 char result[csum_size];
391
392                 /*
393                  * The super_block structure does not span the whole
394                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
395                  * is filled with zeros and is included in the checkum.
396                  */
397                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
398                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
399                 btrfs_csum_final(crc, result);
400
401                 if (memcmp(raw_disk_sb, result, csum_size))
402                         ret = 1;
403
404                 if (ret && btrfs_super_generation(disk_sb) < 10) {
405                         printk(KERN_WARNING
406                                 "BTRFS: super block crcs don't match, older mkfs detected\n");
407                         ret = 0;
408                 }
409         }
410
411         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
412                 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
413                                 csum_type);
414                 ret = 1;
415         }
416
417         return ret;
418 }
419
420 /*
421  * helper to read a given tree block, doing retries as required when
422  * the checksums don't match and we have alternate mirrors to try.
423  */
424 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
425                                           struct extent_buffer *eb,
426                                           u64 start, u64 parent_transid)
427 {
428         struct extent_io_tree *io_tree;
429         int failed = 0;
430         int ret;
431         int num_copies = 0;
432         int mirror_num = 0;
433         int failed_mirror = 0;
434
435         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
436         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
437         while (1) {
438                 ret = read_extent_buffer_pages(io_tree, eb, start,
439                                                WAIT_COMPLETE,
440                                                btree_get_extent, mirror_num);
441                 if (!ret) {
442                         if (!verify_parent_transid(io_tree, eb,
443                                                    parent_transid, 0))
444                                 break;
445                         else
446                                 ret = -EIO;
447                 }
448
449                 /*
450                  * This buffer's crc is fine, but its contents are corrupted, so
451                  * there is no reason to read the other copies, they won't be
452                  * any less wrong.
453                  */
454                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
455                         break;
456
457                 num_copies = btrfs_num_copies(root->fs_info,
458                                               eb->start, eb->len);
459                 if (num_copies == 1)
460                         break;
461
462                 if (!failed_mirror) {
463                         failed = 1;
464                         failed_mirror = eb->read_mirror;
465                 }
466
467                 mirror_num++;
468                 if (mirror_num == failed_mirror)
469                         mirror_num++;
470
471                 if (mirror_num > num_copies)
472                         break;
473         }
474
475         if (failed && !ret && failed_mirror)
476                 repair_eb_io_failure(root, eb, failed_mirror);
477
478         return ret;
479 }
480
481 /*
482  * checksum a dirty tree block before IO.  This has extra checks to make sure
483  * we only fill in the checksum field in the first page of a multi-page block
484  */
485
486 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
487 {
488         u64 start = page_offset(page);
489         u64 found_start;
490         struct extent_buffer *eb;
491
492         eb = (struct extent_buffer *)page->private;
493         if (page != eb->pages[0])
494                 return 0;
495         found_start = btrfs_header_bytenr(eb);
496         if (WARN_ON(found_start != start || !PageUptodate(page)))
497                 return 0;
498         csum_tree_block(root, eb, 0);
499         return 0;
500 }
501
502 static int check_tree_block_fsid(struct btrfs_root *root,
503                                  struct extent_buffer *eb)
504 {
505         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
506         u8 fsid[BTRFS_UUID_SIZE];
507         int ret = 1;
508
509         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
510         while (fs_devices) {
511                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
512                         ret = 0;
513                         break;
514                 }
515                 fs_devices = fs_devices->seed;
516         }
517         return ret;
518 }
519
520 #define CORRUPT(reason, eb, root, slot)                         \
521         btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"       \
522                    "root=%llu, slot=%d", reason,                        \
523                btrfs_header_bytenr(eb), root->objectid, slot)
524
525 static noinline int check_leaf(struct btrfs_root *root,
526                                struct extent_buffer *leaf)
527 {
528         struct btrfs_key key;
529         struct btrfs_key leaf_key;
530         u32 nritems = btrfs_header_nritems(leaf);
531         int slot;
532
533         if (nritems == 0)
534                 return 0;
535
536         /* Check the 0 item */
537         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
538             BTRFS_LEAF_DATA_SIZE(root)) {
539                 CORRUPT("invalid item offset size pair", leaf, root, 0);
540                 return -EIO;
541         }
542
543         /*
544          * Check to make sure each items keys are in the correct order and their
545          * offsets make sense.  We only have to loop through nritems-1 because
546          * we check the current slot against the next slot, which verifies the
547          * next slot's offset+size makes sense and that the current's slot
548          * offset is correct.
549          */
550         for (slot = 0; slot < nritems - 1; slot++) {
551                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
552                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
553
554                 /* Make sure the keys are in the right order */
555                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
556                         CORRUPT("bad key order", leaf, root, slot);
557                         return -EIO;
558                 }
559
560                 /*
561                  * Make sure the offset and ends are right, remember that the
562                  * item data starts at the end of the leaf and grows towards the
563                  * front.
564                  */
565                 if (btrfs_item_offset_nr(leaf, slot) !=
566                         btrfs_item_end_nr(leaf, slot + 1)) {
567                         CORRUPT("slot offset bad", leaf, root, slot);
568                         return -EIO;
569                 }
570
571                 /*
572                  * Check to make sure that we don't point outside of the leaf,
573                  * just incase all the items are consistent to eachother, but
574                  * all point outside of the leaf.
575                  */
576                 if (btrfs_item_end_nr(leaf, slot) >
577                     BTRFS_LEAF_DATA_SIZE(root)) {
578                         CORRUPT("slot end outside of leaf", leaf, root, slot);
579                         return -EIO;
580                 }
581         }
582
583         return 0;
584 }
585
586 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
587                                       u64 phy_offset, struct page *page,
588                                       u64 start, u64 end, int mirror)
589 {
590         u64 found_start;
591         int found_level;
592         struct extent_buffer *eb;
593         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
594         int ret = 0;
595         int reads_done;
596
597         if (!page->private)
598                 goto out;
599
600         eb = (struct extent_buffer *)page->private;
601
602         /* the pending IO might have been the only thing that kept this buffer
603          * in memory.  Make sure we have a ref for all this other checks
604          */
605         extent_buffer_get(eb);
606
607         reads_done = atomic_dec_and_test(&eb->io_pages);
608         if (!reads_done)
609                 goto err;
610
611         eb->read_mirror = mirror;
612         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
613                 ret = -EIO;
614                 goto err;
615         }
616
617         found_start = btrfs_header_bytenr(eb);
618         if (found_start != eb->start) {
619                 printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
620                                "%llu %llu\n",
621                                found_start, eb->start);
622                 ret = -EIO;
623                 goto err;
624         }
625         if (check_tree_block_fsid(root, eb)) {
626                 printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
627                                eb->start);
628                 ret = -EIO;
629                 goto err;
630         }
631         found_level = btrfs_header_level(eb);
632         if (found_level >= BTRFS_MAX_LEVEL) {
633                 btrfs_info(root->fs_info, "bad tree block level %d",
634                            (int)btrfs_header_level(eb));
635                 ret = -EIO;
636                 goto err;
637         }
638
639         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
640                                        eb, found_level);
641
642         ret = csum_tree_block(root, eb, 1);
643         if (ret) {
644                 ret = -EIO;
645                 goto err;
646         }
647
648         /*
649          * If this is a leaf block and it is corrupt, set the corrupt bit so
650          * that we don't try and read the other copies of this block, just
651          * return -EIO.
652          */
653         if (found_level == 0 && check_leaf(root, eb)) {
654                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
655                 ret = -EIO;
656         }
657
658         if (!ret)
659                 set_extent_buffer_uptodate(eb);
660 err:
661         if (reads_done &&
662             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
663                 btree_readahead_hook(root, eb, eb->start, ret);
664
665         if (ret) {
666                 /*
667                  * our io error hook is going to dec the io pages
668                  * again, we have to make sure it has something
669                  * to decrement
670                  */
671                 atomic_inc(&eb->io_pages);
672                 clear_extent_buffer_uptodate(eb);
673         }
674         free_extent_buffer(eb);
675 out:
676         return ret;
677 }
678
679 static int btree_io_failed_hook(struct page *page, int failed_mirror)
680 {
681         struct extent_buffer *eb;
682         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
683
684         eb = (struct extent_buffer *)page->private;
685         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
686         eb->read_mirror = failed_mirror;
687         atomic_dec(&eb->io_pages);
688         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
689                 btree_readahead_hook(root, eb, eb->start, -EIO);
690         return -EIO;    /* we fixed nothing */
691 }
692
693 static void end_workqueue_bio(struct bio *bio, int err)
694 {
695         struct end_io_wq *end_io_wq = bio->bi_private;
696         struct btrfs_fs_info *fs_info;
697
698         fs_info = end_io_wq->info;
699         end_io_wq->error = err;
700         btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
701
702         if (bio->bi_rw & REQ_WRITE) {
703                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
704                         btrfs_queue_work(fs_info->endio_meta_write_workers,
705                                          &end_io_wq->work);
706                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
707                         btrfs_queue_work(fs_info->endio_freespace_worker,
708                                          &end_io_wq->work);
709                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
710                         btrfs_queue_work(fs_info->endio_raid56_workers,
711                                          &end_io_wq->work);
712                 else
713                         btrfs_queue_work(fs_info->endio_write_workers,
714                                          &end_io_wq->work);
715         } else {
716                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
717                         btrfs_queue_work(fs_info->endio_raid56_workers,
718                                          &end_io_wq->work);
719                 else if (end_io_wq->metadata)
720                         btrfs_queue_work(fs_info->endio_meta_workers,
721                                          &end_io_wq->work);
722                 else
723                         btrfs_queue_work(fs_info->endio_workers,
724                                          &end_io_wq->work);
725         }
726 }
727
728 /*
729  * For the metadata arg you want
730  *
731  * 0 - if data
732  * 1 - if normal metadta
733  * 2 - if writing to the free space cache area
734  * 3 - raid parity work
735  */
736 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
737                         int metadata)
738 {
739         struct end_io_wq *end_io_wq;
740         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
741         if (!end_io_wq)
742                 return -ENOMEM;
743
744         end_io_wq->private = bio->bi_private;
745         end_io_wq->end_io = bio->bi_end_io;
746         end_io_wq->info = info;
747         end_io_wq->error = 0;
748         end_io_wq->bio = bio;
749         end_io_wq->metadata = metadata;
750
751         bio->bi_private = end_io_wq;
752         bio->bi_end_io = end_workqueue_bio;
753         return 0;
754 }
755
756 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
757 {
758         unsigned long limit = min_t(unsigned long,
759                                     info->thread_pool_size,
760                                     info->fs_devices->open_devices);
761         return 256 * limit;
762 }
763
764 static void run_one_async_start(struct btrfs_work *work)
765 {
766         struct async_submit_bio *async;
767         int ret;
768
769         async = container_of(work, struct  async_submit_bio, work);
770         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
771                                       async->mirror_num, async->bio_flags,
772                                       async->bio_offset);
773         if (ret)
774                 async->error = ret;
775 }
776
777 static void run_one_async_done(struct btrfs_work *work)
778 {
779         struct btrfs_fs_info *fs_info;
780         struct async_submit_bio *async;
781         int limit;
782
783         async = container_of(work, struct  async_submit_bio, work);
784         fs_info = BTRFS_I(async->inode)->root->fs_info;
785
786         limit = btrfs_async_submit_limit(fs_info);
787         limit = limit * 2 / 3;
788
789         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
790             waitqueue_active(&fs_info->async_submit_wait))
791                 wake_up(&fs_info->async_submit_wait);
792
793         /* If an error occured we just want to clean up the bio and move on */
794         if (async->error) {
795                 bio_endio(async->bio, async->error);
796                 return;
797         }
798
799         async->submit_bio_done(async->inode, async->rw, async->bio,
800                                async->mirror_num, async->bio_flags,
801                                async->bio_offset);
802 }
803
804 static void run_one_async_free(struct btrfs_work *work)
805 {
806         struct async_submit_bio *async;
807
808         async = container_of(work, struct  async_submit_bio, work);
809         kfree(async);
810 }
811
812 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
813                         int rw, struct bio *bio, int mirror_num,
814                         unsigned long bio_flags,
815                         u64 bio_offset,
816                         extent_submit_bio_hook_t *submit_bio_start,
817                         extent_submit_bio_hook_t *submit_bio_done)
818 {
819         struct async_submit_bio *async;
820
821         async = kmalloc(sizeof(*async), GFP_NOFS);
822         if (!async)
823                 return -ENOMEM;
824
825         async->inode = inode;
826         async->rw = rw;
827         async->bio = bio;
828         async->mirror_num = mirror_num;
829         async->submit_bio_start = submit_bio_start;
830         async->submit_bio_done = submit_bio_done;
831
832         btrfs_init_work(&async->work, run_one_async_start,
833                         run_one_async_done, run_one_async_free);
834
835         async->bio_flags = bio_flags;
836         async->bio_offset = bio_offset;
837
838         async->error = 0;
839
840         atomic_inc(&fs_info->nr_async_submits);
841
842         if (rw & REQ_SYNC)
843                 btrfs_set_work_high_priority(&async->work);
844
845         btrfs_queue_work(fs_info->workers, &async->work);
846
847         while (atomic_read(&fs_info->async_submit_draining) &&
848               atomic_read(&fs_info->nr_async_submits)) {
849                 wait_event(fs_info->async_submit_wait,
850                            (atomic_read(&fs_info->nr_async_submits) == 0));
851         }
852
853         return 0;
854 }
855
856 static int btree_csum_one_bio(struct bio *bio)
857 {
858         struct bio_vec *bvec;
859         struct btrfs_root *root;
860         int i, ret = 0;
861
862         bio_for_each_segment_all(bvec, bio, i) {
863                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
864                 ret = csum_dirty_buffer(root, bvec->bv_page);
865                 if (ret)
866                         break;
867         }
868
869         return ret;
870 }
871
872 static int __btree_submit_bio_start(struct inode *inode, int rw,
873                                     struct bio *bio, int mirror_num,
874                                     unsigned long bio_flags,
875                                     u64 bio_offset)
876 {
877         /*
878          * when we're called for a write, we're already in the async
879          * submission context.  Just jump into btrfs_map_bio
880          */
881         return btree_csum_one_bio(bio);
882 }
883
884 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
885                                  int mirror_num, unsigned long bio_flags,
886                                  u64 bio_offset)
887 {
888         int ret;
889
890         /*
891          * when we're called for a write, we're already in the async
892          * submission context.  Just jump into btrfs_map_bio
893          */
894         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
895         if (ret)
896                 bio_endio(bio, ret);
897         return ret;
898 }
899
900 static int check_async_write(struct inode *inode, unsigned long bio_flags)
901 {
902         if (bio_flags & EXTENT_BIO_TREE_LOG)
903                 return 0;
904 #ifdef CONFIG_X86
905         if (cpu_has_xmm4_2)
906                 return 0;
907 #endif
908         return 1;
909 }
910
911 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
912                                  int mirror_num, unsigned long bio_flags,
913                                  u64 bio_offset)
914 {
915         int async = check_async_write(inode, bio_flags);
916         int ret;
917
918         if (!(rw & REQ_WRITE)) {
919                 /*
920                  * called for a read, do the setup so that checksum validation
921                  * can happen in the async kernel threads
922                  */
923                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
924                                           bio, 1);
925                 if (ret)
926                         goto out_w_error;
927                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
928                                     mirror_num, 0);
929         } else if (!async) {
930                 ret = btree_csum_one_bio(bio);
931                 if (ret)
932                         goto out_w_error;
933                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
934                                     mirror_num, 0);
935         } else {
936                 /*
937                  * kthread helpers are used to submit writes so that
938                  * checksumming can happen in parallel across all CPUs
939                  */
940                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
941                                           inode, rw, bio, mirror_num, 0,
942                                           bio_offset,
943                                           __btree_submit_bio_start,
944                                           __btree_submit_bio_done);
945         }
946
947         if (ret) {
948 out_w_error:
949                 bio_endio(bio, ret);
950         }
951         return ret;
952 }
953
954 #ifdef CONFIG_MIGRATION
955 static int btree_migratepage(struct address_space *mapping,
956                         struct page *newpage, struct page *page,
957                         enum migrate_mode mode)
958 {
959         /*
960          * we can't safely write a btree page from here,
961          * we haven't done the locking hook
962          */
963         if (PageDirty(page))
964                 return -EAGAIN;
965         /*
966          * Buffers may be managed in a filesystem specific way.
967          * We must have no buffers or drop them.
968          */
969         if (page_has_private(page) &&
970             !try_to_release_page(page, GFP_KERNEL))
971                 return -EAGAIN;
972         return migrate_page(mapping, newpage, page, mode);
973 }
974 #endif
975
976
977 static int btree_writepages(struct address_space *mapping,
978                             struct writeback_control *wbc)
979 {
980         struct btrfs_fs_info *fs_info;
981         int ret;
982
983         if (wbc->sync_mode == WB_SYNC_NONE) {
984
985                 if (wbc->for_kupdate)
986                         return 0;
987
988                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
989                 /* this is a bit racy, but that's ok */
990                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
991                                              BTRFS_DIRTY_METADATA_THRESH);
992                 if (ret < 0)
993                         return 0;
994         }
995         return btree_write_cache_pages(mapping, wbc);
996 }
997
998 static int btree_readpage(struct file *file, struct page *page)
999 {
1000         struct extent_io_tree *tree;
1001         tree = &BTRFS_I(page->mapping->host)->io_tree;
1002         return extent_read_full_page(tree, page, btree_get_extent, 0);
1003 }
1004
1005 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1006 {
1007         if (PageWriteback(page) || PageDirty(page))
1008                 return 0;
1009
1010         return try_release_extent_buffer(page);
1011 }
1012
1013 static void btree_invalidatepage(struct page *page, unsigned int offset,
1014                                  unsigned int length)
1015 {
1016         struct extent_io_tree *tree;
1017         tree = &BTRFS_I(page->mapping->host)->io_tree;
1018         extent_invalidatepage(tree, page, offset);
1019         btree_releasepage(page, GFP_NOFS);
1020         if (PagePrivate(page)) {
1021                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1022                            "page private not zero on page %llu",
1023                            (unsigned long long)page_offset(page));
1024                 ClearPagePrivate(page);
1025                 set_page_private(page, 0);
1026                 page_cache_release(page);
1027         }
1028 }
1029
1030 static int btree_set_page_dirty(struct page *page)
1031 {
1032 #ifdef DEBUG
1033         struct extent_buffer *eb;
1034
1035         BUG_ON(!PagePrivate(page));
1036         eb = (struct extent_buffer *)page->private;
1037         BUG_ON(!eb);
1038         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1039         BUG_ON(!atomic_read(&eb->refs));
1040         btrfs_assert_tree_locked(eb);
1041 #endif
1042         return __set_page_dirty_nobuffers(page);
1043 }
1044
1045 static const struct address_space_operations btree_aops = {
1046         .readpage       = btree_readpage,
1047         .writepages     = btree_writepages,
1048         .releasepage    = btree_releasepage,
1049         .invalidatepage = btree_invalidatepage,
1050 #ifdef CONFIG_MIGRATION
1051         .migratepage    = btree_migratepage,
1052 #endif
1053         .set_page_dirty = btree_set_page_dirty,
1054 };
1055
1056 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1057                          u64 parent_transid)
1058 {
1059         struct extent_buffer *buf = NULL;
1060         struct inode *btree_inode = root->fs_info->btree_inode;
1061         int ret = 0;
1062
1063         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1064         if (!buf)
1065                 return 0;
1066         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1067                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1068         free_extent_buffer(buf);
1069         return ret;
1070 }
1071
1072 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1073                          int mirror_num, struct extent_buffer **eb)
1074 {
1075         struct extent_buffer *buf = NULL;
1076         struct inode *btree_inode = root->fs_info->btree_inode;
1077         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1078         int ret;
1079
1080         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1081         if (!buf)
1082                 return 0;
1083
1084         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1085
1086         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1087                                        btree_get_extent, mirror_num);
1088         if (ret) {
1089                 free_extent_buffer(buf);
1090                 return ret;
1091         }
1092
1093         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1094                 free_extent_buffer(buf);
1095                 return -EIO;
1096         } else if (extent_buffer_uptodate(buf)) {
1097                 *eb = buf;
1098         } else {
1099                 free_extent_buffer(buf);
1100         }
1101         return 0;
1102 }
1103
1104 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1105                                             u64 bytenr, u32 blocksize)
1106 {
1107         return find_extent_buffer(root->fs_info, bytenr);
1108 }
1109
1110 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1111                                                  u64 bytenr, u32 blocksize)
1112 {
1113         return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
1114 }
1115
1116
1117 int btrfs_write_tree_block(struct extent_buffer *buf)
1118 {
1119         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1120                                         buf->start + buf->len - 1);
1121 }
1122
1123 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1124 {
1125         return filemap_fdatawait_range(buf->pages[0]->mapping,
1126                                        buf->start, buf->start + buf->len - 1);
1127 }
1128
1129 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1130                                       u32 blocksize, u64 parent_transid)
1131 {
1132         struct extent_buffer *buf = NULL;
1133         int ret;
1134
1135         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1136         if (!buf)
1137                 return NULL;
1138
1139         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1140         if (ret) {
1141                 free_extent_buffer(buf);
1142                 return NULL;
1143         }
1144         return buf;
1145
1146 }
1147
1148 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1149                       struct extent_buffer *buf)
1150 {
1151         struct btrfs_fs_info *fs_info = root->fs_info;
1152
1153         if (btrfs_header_generation(buf) ==
1154             fs_info->running_transaction->transid) {
1155                 btrfs_assert_tree_locked(buf);
1156
1157                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1158                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1159                                              -buf->len,
1160                                              fs_info->dirty_metadata_batch);
1161                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1162                         btrfs_set_lock_blocking(buf);
1163                         clear_extent_buffer_dirty(buf);
1164                 }
1165         }
1166 }
1167
1168 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1169 {
1170         struct btrfs_subvolume_writers *writers;
1171         int ret;
1172
1173         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1174         if (!writers)
1175                 return ERR_PTR(-ENOMEM);
1176
1177         ret = percpu_counter_init(&writers->counter, 0);
1178         if (ret < 0) {
1179                 kfree(writers);
1180                 return ERR_PTR(ret);
1181         }
1182
1183         init_waitqueue_head(&writers->wait);
1184         return writers;
1185 }
1186
1187 static void
1188 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1189 {
1190         percpu_counter_destroy(&writers->counter);
1191         kfree(writers);
1192 }
1193
1194 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1195                          u32 stripesize, struct btrfs_root *root,
1196                          struct btrfs_fs_info *fs_info,
1197                          u64 objectid)
1198 {
1199         root->node = NULL;
1200         root->commit_root = NULL;
1201         root->sectorsize = sectorsize;
1202         root->nodesize = nodesize;
1203         root->leafsize = leafsize;
1204         root->stripesize = stripesize;
1205         root->state = 0;
1206         root->orphan_cleanup_state = 0;
1207
1208         root->objectid = objectid;
1209         root->last_trans = 0;
1210         root->highest_objectid = 0;
1211         root->nr_delalloc_inodes = 0;
1212         root->nr_ordered_extents = 0;
1213         root->name = NULL;
1214         root->inode_tree = RB_ROOT;
1215         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1216         root->block_rsv = NULL;
1217         root->orphan_block_rsv = NULL;
1218
1219         INIT_LIST_HEAD(&root->dirty_list);
1220         INIT_LIST_HEAD(&root->root_list);
1221         INIT_LIST_HEAD(&root->delalloc_inodes);
1222         INIT_LIST_HEAD(&root->delalloc_root);
1223         INIT_LIST_HEAD(&root->ordered_extents);
1224         INIT_LIST_HEAD(&root->ordered_root);
1225         INIT_LIST_HEAD(&root->logged_list[0]);
1226         INIT_LIST_HEAD(&root->logged_list[1]);
1227         spin_lock_init(&root->orphan_lock);
1228         spin_lock_init(&root->inode_lock);
1229         spin_lock_init(&root->delalloc_lock);
1230         spin_lock_init(&root->ordered_extent_lock);
1231         spin_lock_init(&root->accounting_lock);
1232         spin_lock_init(&root->log_extents_lock[0]);
1233         spin_lock_init(&root->log_extents_lock[1]);
1234         mutex_init(&root->objectid_mutex);
1235         mutex_init(&root->log_mutex);
1236         mutex_init(&root->ordered_extent_mutex);
1237         mutex_init(&root->delalloc_mutex);
1238         init_waitqueue_head(&root->log_writer_wait);
1239         init_waitqueue_head(&root->log_commit_wait[0]);
1240         init_waitqueue_head(&root->log_commit_wait[1]);
1241         INIT_LIST_HEAD(&root->log_ctxs[0]);
1242         INIT_LIST_HEAD(&root->log_ctxs[1]);
1243         atomic_set(&root->log_commit[0], 0);
1244         atomic_set(&root->log_commit[1], 0);
1245         atomic_set(&root->log_writers, 0);
1246         atomic_set(&root->log_batch, 0);
1247         atomic_set(&root->orphan_inodes, 0);
1248         atomic_set(&root->refs, 1);
1249         atomic_set(&root->will_be_snapshoted, 0);
1250         root->log_transid = 0;
1251         root->log_transid_committed = -1;
1252         root->last_log_commit = 0;
1253         if (fs_info)
1254                 extent_io_tree_init(&root->dirty_log_pages,
1255                                      fs_info->btree_inode->i_mapping);
1256
1257         memset(&root->root_key, 0, sizeof(root->root_key));
1258         memset(&root->root_item, 0, sizeof(root->root_item));
1259         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1260         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1261         if (fs_info)
1262                 root->defrag_trans_start = fs_info->generation;
1263         else
1264                 root->defrag_trans_start = 0;
1265         init_completion(&root->kobj_unregister);
1266         root->root_key.objectid = objectid;
1267         root->anon_dev = 0;
1268
1269         spin_lock_init(&root->root_item_lock);
1270 }
1271
1272 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1273 {
1274         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1275         if (root)
1276                 root->fs_info = fs_info;
1277         return root;
1278 }
1279
1280 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1281 /* Should only be used by the testing infrastructure */
1282 struct btrfs_root *btrfs_alloc_dummy_root(void)
1283 {
1284         struct btrfs_root *root;
1285
1286         root = btrfs_alloc_root(NULL);
1287         if (!root)
1288                 return ERR_PTR(-ENOMEM);
1289         __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1290         set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1291
1292         return root;
1293 }
1294 #endif
1295
1296 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1297                                      struct btrfs_fs_info *fs_info,
1298                                      u64 objectid)
1299 {
1300         struct extent_buffer *leaf;
1301         struct btrfs_root *tree_root = fs_info->tree_root;
1302         struct btrfs_root *root;
1303         struct btrfs_key key;
1304         int ret = 0;
1305         uuid_le uuid;
1306
1307         root = btrfs_alloc_root(fs_info);
1308         if (!root)
1309                 return ERR_PTR(-ENOMEM);
1310
1311         __setup_root(tree_root->nodesize, tree_root->leafsize,
1312                      tree_root->sectorsize, tree_root->stripesize,
1313                      root, fs_info, objectid);
1314         root->root_key.objectid = objectid;
1315         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1316         root->root_key.offset = 0;
1317
1318         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1319                                       0, objectid, NULL, 0, 0, 0);
1320         if (IS_ERR(leaf)) {
1321                 ret = PTR_ERR(leaf);
1322                 leaf = NULL;
1323                 goto fail;
1324         }
1325
1326         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1327         btrfs_set_header_bytenr(leaf, leaf->start);
1328         btrfs_set_header_generation(leaf, trans->transid);
1329         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1330         btrfs_set_header_owner(leaf, objectid);
1331         root->node = leaf;
1332
1333         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1334                             BTRFS_FSID_SIZE);
1335         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1336                             btrfs_header_chunk_tree_uuid(leaf),
1337                             BTRFS_UUID_SIZE);
1338         btrfs_mark_buffer_dirty(leaf);
1339
1340         root->commit_root = btrfs_root_node(root);
1341         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1342
1343         root->root_item.flags = 0;
1344         root->root_item.byte_limit = 0;
1345         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1346         btrfs_set_root_generation(&root->root_item, trans->transid);
1347         btrfs_set_root_level(&root->root_item, 0);
1348         btrfs_set_root_refs(&root->root_item, 1);
1349         btrfs_set_root_used(&root->root_item, leaf->len);
1350         btrfs_set_root_last_snapshot(&root->root_item, 0);
1351         btrfs_set_root_dirid(&root->root_item, 0);
1352         uuid_le_gen(&uuid);
1353         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1354         root->root_item.drop_level = 0;
1355
1356         key.objectid = objectid;
1357         key.type = BTRFS_ROOT_ITEM_KEY;
1358         key.offset = 0;
1359         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1360         if (ret)
1361                 goto fail;
1362
1363         btrfs_tree_unlock(leaf);
1364
1365         return root;
1366
1367 fail:
1368         if (leaf) {
1369                 btrfs_tree_unlock(leaf);
1370                 free_extent_buffer(root->commit_root);
1371                 free_extent_buffer(leaf);
1372         }
1373         kfree(root);
1374
1375         return ERR_PTR(ret);
1376 }
1377
1378 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1379                                          struct btrfs_fs_info *fs_info)
1380 {
1381         struct btrfs_root *root;
1382         struct btrfs_root *tree_root = fs_info->tree_root;
1383         struct extent_buffer *leaf;
1384
1385         root = btrfs_alloc_root(fs_info);
1386         if (!root)
1387                 return ERR_PTR(-ENOMEM);
1388
1389         __setup_root(tree_root->nodesize, tree_root->leafsize,
1390                      tree_root->sectorsize, tree_root->stripesize,
1391                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1392
1393         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1394         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1395         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1396
1397         /*
1398          * DON'T set REF_COWS for log trees
1399          *
1400          * log trees do not get reference counted because they go away
1401          * before a real commit is actually done.  They do store pointers
1402          * to file data extents, and those reference counts still get
1403          * updated (along with back refs to the log tree).
1404          */
1405
1406         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1407                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1408                                       0, 0, 0);
1409         if (IS_ERR(leaf)) {
1410                 kfree(root);
1411                 return ERR_CAST(leaf);
1412         }
1413
1414         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1415         btrfs_set_header_bytenr(leaf, leaf->start);
1416         btrfs_set_header_generation(leaf, trans->transid);
1417         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1418         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1419         root->node = leaf;
1420
1421         write_extent_buffer(root->node, root->fs_info->fsid,
1422                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1423         btrfs_mark_buffer_dirty(root->node);
1424         btrfs_tree_unlock(root->node);
1425         return root;
1426 }
1427
1428 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1429                              struct btrfs_fs_info *fs_info)
1430 {
1431         struct btrfs_root *log_root;
1432
1433         log_root = alloc_log_tree(trans, fs_info);
1434         if (IS_ERR(log_root))
1435                 return PTR_ERR(log_root);
1436         WARN_ON(fs_info->log_root_tree);
1437         fs_info->log_root_tree = log_root;
1438         return 0;
1439 }
1440
1441 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1442                        struct btrfs_root *root)
1443 {
1444         struct btrfs_root *log_root;
1445         struct btrfs_inode_item *inode_item;
1446
1447         log_root = alloc_log_tree(trans, root->fs_info);
1448         if (IS_ERR(log_root))
1449                 return PTR_ERR(log_root);
1450
1451         log_root->last_trans = trans->transid;
1452         log_root->root_key.offset = root->root_key.objectid;
1453
1454         inode_item = &log_root->root_item.inode;
1455         btrfs_set_stack_inode_generation(inode_item, 1);
1456         btrfs_set_stack_inode_size(inode_item, 3);
1457         btrfs_set_stack_inode_nlink(inode_item, 1);
1458         btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1459         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1460
1461         btrfs_set_root_node(&log_root->root_item, log_root->node);
1462
1463         WARN_ON(root->log_root);
1464         root->log_root = log_root;
1465         root->log_transid = 0;
1466         root->log_transid_committed = -1;
1467         root->last_log_commit = 0;
1468         return 0;
1469 }
1470
1471 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1472                                                struct btrfs_key *key)
1473 {
1474         struct btrfs_root *root;
1475         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1476         struct btrfs_path *path;
1477         u64 generation;
1478         u32 blocksize;
1479         int ret;
1480
1481         path = btrfs_alloc_path();
1482         if (!path)
1483                 return ERR_PTR(-ENOMEM);
1484
1485         root = btrfs_alloc_root(fs_info);
1486         if (!root) {
1487                 ret = -ENOMEM;
1488                 goto alloc_fail;
1489         }
1490
1491         __setup_root(tree_root->nodesize, tree_root->leafsize,
1492                      tree_root->sectorsize, tree_root->stripesize,
1493                      root, fs_info, key->objectid);
1494
1495         ret = btrfs_find_root(tree_root, key, path,
1496                               &root->root_item, &root->root_key);
1497         if (ret) {
1498                 if (ret > 0)
1499                         ret = -ENOENT;
1500                 goto find_fail;
1501         }
1502
1503         generation = btrfs_root_generation(&root->root_item);
1504         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1505         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1506                                      blocksize, generation);
1507         if (!root->node) {
1508                 ret = -ENOMEM;
1509                 goto find_fail;
1510         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1511                 ret = -EIO;
1512                 goto read_fail;
1513         }
1514         root->commit_root = btrfs_root_node(root);
1515 out:
1516         btrfs_free_path(path);
1517         return root;
1518
1519 read_fail:
1520         free_extent_buffer(root->node);
1521 find_fail:
1522         kfree(root);
1523 alloc_fail:
1524         root = ERR_PTR(ret);
1525         goto out;
1526 }
1527
1528 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1529                                       struct btrfs_key *location)
1530 {
1531         struct btrfs_root *root;
1532
1533         root = btrfs_read_tree_root(tree_root, location);
1534         if (IS_ERR(root))
1535                 return root;
1536
1537         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1538                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1539                 btrfs_check_and_init_root_item(&root->root_item);
1540         }
1541
1542         return root;
1543 }
1544
1545 int btrfs_init_fs_root(struct btrfs_root *root)
1546 {
1547         int ret;
1548         struct btrfs_subvolume_writers *writers;
1549
1550         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1551         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1552                                         GFP_NOFS);
1553         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1554                 ret = -ENOMEM;
1555                 goto fail;
1556         }
1557
1558         writers = btrfs_alloc_subvolume_writers();
1559         if (IS_ERR(writers)) {
1560                 ret = PTR_ERR(writers);
1561                 goto fail;
1562         }
1563         root->subv_writers = writers;
1564
1565         btrfs_init_free_ino_ctl(root);
1566         spin_lock_init(&root->cache_lock);
1567         init_waitqueue_head(&root->cache_wait);
1568
1569         ret = get_anon_bdev(&root->anon_dev);
1570         if (ret)
1571                 goto free_writers;
1572         return 0;
1573
1574 free_writers:
1575         btrfs_free_subvolume_writers(root->subv_writers);
1576 fail:
1577         kfree(root->free_ino_ctl);
1578         kfree(root->free_ino_pinned);
1579         return ret;
1580 }
1581
1582 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1583                                                u64 root_id)
1584 {
1585         struct btrfs_root *root;
1586
1587         spin_lock(&fs_info->fs_roots_radix_lock);
1588         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1589                                  (unsigned long)root_id);
1590         spin_unlock(&fs_info->fs_roots_radix_lock);
1591         return root;
1592 }
1593
1594 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1595                          struct btrfs_root *root)
1596 {
1597         int ret;
1598
1599         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1600         if (ret)
1601                 return ret;
1602
1603         spin_lock(&fs_info->fs_roots_radix_lock);
1604         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1605                                 (unsigned long)root->root_key.objectid,
1606                                 root);
1607         if (ret == 0)
1608                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1609         spin_unlock(&fs_info->fs_roots_radix_lock);
1610         radix_tree_preload_end();
1611
1612         return ret;
1613 }
1614
1615 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1616                                      struct btrfs_key *location,
1617                                      bool check_ref)
1618 {
1619         struct btrfs_root *root;
1620         int ret;
1621
1622         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1623                 return fs_info->tree_root;
1624         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1625                 return fs_info->extent_root;
1626         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1627                 return fs_info->chunk_root;
1628         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1629                 return fs_info->dev_root;
1630         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1631                 return fs_info->csum_root;
1632         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1633                 return fs_info->quota_root ? fs_info->quota_root :
1634                                              ERR_PTR(-ENOENT);
1635         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1636                 return fs_info->uuid_root ? fs_info->uuid_root :
1637                                             ERR_PTR(-ENOENT);
1638 again:
1639         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1640         if (root) {
1641                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1642                         return ERR_PTR(-ENOENT);
1643                 return root;
1644         }
1645
1646         root = btrfs_read_fs_root(fs_info->tree_root, location);
1647         if (IS_ERR(root))
1648                 return root;
1649
1650         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1651                 ret = -ENOENT;
1652                 goto fail;
1653         }
1654
1655         ret = btrfs_init_fs_root(root);
1656         if (ret)
1657                 goto fail;
1658
1659         ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1660                         location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
1661         if (ret < 0)
1662                 goto fail;
1663         if (ret == 0)
1664                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1665
1666         ret = btrfs_insert_fs_root(fs_info, root);
1667         if (ret) {
1668                 if (ret == -EEXIST) {
1669                         free_fs_root(root);
1670                         goto again;
1671                 }
1672                 goto fail;
1673         }
1674         return root;
1675 fail:
1676         free_fs_root(root);
1677         return ERR_PTR(ret);
1678 }
1679
1680 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1681 {
1682         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1683         int ret = 0;
1684         struct btrfs_device *device;
1685         struct backing_dev_info *bdi;
1686
1687         rcu_read_lock();
1688         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1689                 if (!device->bdev)
1690                         continue;
1691                 bdi = blk_get_backing_dev_info(device->bdev);
1692                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1693                         ret = 1;
1694                         break;
1695                 }
1696         }
1697         rcu_read_unlock();
1698         return ret;
1699 }
1700
1701 /*
1702  * If this fails, caller must call bdi_destroy() to get rid of the
1703  * bdi again.
1704  */
1705 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1706 {
1707         int err;
1708
1709         bdi->capabilities = BDI_CAP_MAP_COPY;
1710         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1711         if (err)
1712                 return err;
1713
1714         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1715         bdi->congested_fn       = btrfs_congested_fn;
1716         bdi->congested_data     = info;
1717         return 0;
1718 }
1719
1720 /*
1721  * called by the kthread helper functions to finally call the bio end_io
1722  * functions.  This is where read checksum verification actually happens
1723  */
1724 static void end_workqueue_fn(struct btrfs_work *work)
1725 {
1726         struct bio *bio;
1727         struct end_io_wq *end_io_wq;
1728         int error;
1729
1730         end_io_wq = container_of(work, struct end_io_wq, work);
1731         bio = end_io_wq->bio;
1732
1733         error = end_io_wq->error;
1734         bio->bi_private = end_io_wq->private;
1735         bio->bi_end_io = end_io_wq->end_io;
1736         kfree(end_io_wq);
1737         bio_endio_nodec(bio, error);
1738 }
1739
1740 static int cleaner_kthread(void *arg)
1741 {
1742         struct btrfs_root *root = arg;
1743         int again;
1744
1745         do {
1746                 again = 0;
1747
1748                 /* Make the cleaner go to sleep early. */
1749                 if (btrfs_need_cleaner_sleep(root))
1750                         goto sleep;
1751
1752                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1753                         goto sleep;
1754
1755                 /*
1756                  * Avoid the problem that we change the status of the fs
1757                  * during the above check and trylock.
1758                  */
1759                 if (btrfs_need_cleaner_sleep(root)) {
1760                         mutex_unlock(&root->fs_info->cleaner_mutex);
1761                         goto sleep;
1762                 }
1763
1764                 btrfs_run_delayed_iputs(root);
1765                 again = btrfs_clean_one_deleted_snapshot(root);
1766                 mutex_unlock(&root->fs_info->cleaner_mutex);
1767
1768                 /*
1769                  * The defragger has dealt with the R/O remount and umount,
1770                  * needn't do anything special here.
1771                  */
1772                 btrfs_run_defrag_inodes(root->fs_info);
1773 sleep:
1774                 if (!try_to_freeze() && !again) {
1775                         set_current_state(TASK_INTERRUPTIBLE);
1776                         if (!kthread_should_stop())
1777                                 schedule();
1778                         __set_current_state(TASK_RUNNING);
1779                 }
1780         } while (!kthread_should_stop());
1781         return 0;
1782 }
1783
1784 static int transaction_kthread(void *arg)
1785 {
1786         struct btrfs_root *root = arg;
1787         struct btrfs_trans_handle *trans;
1788         struct btrfs_transaction *cur;
1789         u64 transid;
1790         unsigned long now;
1791         unsigned long delay;
1792         bool cannot_commit;
1793
1794         do {
1795                 cannot_commit = false;
1796                 delay = HZ * root->fs_info->commit_interval;
1797                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1798
1799                 spin_lock(&root->fs_info->trans_lock);
1800                 cur = root->fs_info->running_transaction;
1801                 if (!cur) {
1802                         spin_unlock(&root->fs_info->trans_lock);
1803                         goto sleep;
1804                 }
1805
1806                 now = get_seconds();
1807                 if (cur->state < TRANS_STATE_BLOCKED &&
1808                     (now < cur->start_time ||
1809                      now - cur->start_time < root->fs_info->commit_interval)) {
1810                         spin_unlock(&root->fs_info->trans_lock);
1811                         delay = HZ * 5;
1812                         goto sleep;
1813                 }
1814                 transid = cur->transid;
1815                 spin_unlock(&root->fs_info->trans_lock);
1816
1817                 /* If the file system is aborted, this will always fail. */
1818                 trans = btrfs_attach_transaction(root);
1819                 if (IS_ERR(trans)) {
1820                         if (PTR_ERR(trans) != -ENOENT)
1821                                 cannot_commit = true;
1822                         goto sleep;
1823                 }
1824                 if (transid == trans->transid) {
1825                         btrfs_commit_transaction(trans, root);
1826                 } else {
1827                         btrfs_end_transaction(trans, root);
1828                 }
1829 sleep:
1830                 wake_up_process(root->fs_info->cleaner_kthread);
1831                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1832
1833                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1834                                       &root->fs_info->fs_state)))
1835                         btrfs_cleanup_transaction(root);
1836                 if (!try_to_freeze()) {
1837                         set_current_state(TASK_INTERRUPTIBLE);
1838                         if (!kthread_should_stop() &&
1839                             (!btrfs_transaction_blocked(root->fs_info) ||
1840                              cannot_commit))
1841                                 schedule_timeout(delay);
1842                         __set_current_state(TASK_RUNNING);
1843                 }
1844         } while (!kthread_should_stop());
1845         return 0;
1846 }
1847
1848 /*
1849  * this will find the highest generation in the array of
1850  * root backups.  The index of the highest array is returned,
1851  * or -1 if we can't find anything.
1852  *
1853  * We check to make sure the array is valid by comparing the
1854  * generation of the latest  root in the array with the generation
1855  * in the super block.  If they don't match we pitch it.
1856  */
1857 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1858 {
1859         u64 cur;
1860         int newest_index = -1;
1861         struct btrfs_root_backup *root_backup;
1862         int i;
1863
1864         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1865                 root_backup = info->super_copy->super_roots + i;
1866                 cur = btrfs_backup_tree_root_gen(root_backup);
1867                 if (cur == newest_gen)
1868                         newest_index = i;
1869         }
1870
1871         /* check to see if we actually wrapped around */
1872         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1873                 root_backup = info->super_copy->super_roots;
1874                 cur = btrfs_backup_tree_root_gen(root_backup);
1875                 if (cur == newest_gen)
1876                         newest_index = 0;
1877         }
1878         return newest_index;
1879 }
1880
1881
1882 /*
1883  * find the oldest backup so we know where to store new entries
1884  * in the backup array.  This will set the backup_root_index
1885  * field in the fs_info struct
1886  */
1887 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1888                                      u64 newest_gen)
1889 {
1890         int newest_index = -1;
1891
1892         newest_index = find_newest_super_backup(info, newest_gen);
1893         /* if there was garbage in there, just move along */
1894         if (newest_index == -1) {
1895                 info->backup_root_index = 0;
1896         } else {
1897                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1898         }
1899 }
1900
1901 /*
1902  * copy all the root pointers into the super backup array.
1903  * this will bump the backup pointer by one when it is
1904  * done
1905  */
1906 static void backup_super_roots(struct btrfs_fs_info *info)
1907 {
1908         int next_backup;
1909         struct btrfs_root_backup *root_backup;
1910         int last_backup;
1911
1912         next_backup = info->backup_root_index;
1913         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1914                 BTRFS_NUM_BACKUP_ROOTS;
1915
1916         /*
1917          * just overwrite the last backup if we're at the same generation
1918          * this happens only at umount
1919          */
1920         root_backup = info->super_for_commit->super_roots + last_backup;
1921         if (btrfs_backup_tree_root_gen(root_backup) ==
1922             btrfs_header_generation(info->tree_root->node))
1923                 next_backup = last_backup;
1924
1925         root_backup = info->super_for_commit->super_roots + next_backup;
1926
1927         /*
1928          * make sure all of our padding and empty slots get zero filled
1929          * regardless of which ones we use today
1930          */
1931         memset(root_backup, 0, sizeof(*root_backup));
1932
1933         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1934
1935         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1936         btrfs_set_backup_tree_root_gen(root_backup,
1937                                btrfs_header_generation(info->tree_root->node));
1938
1939         btrfs_set_backup_tree_root_level(root_backup,
1940                                btrfs_header_level(info->tree_root->node));
1941
1942         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1943         btrfs_set_backup_chunk_root_gen(root_backup,
1944                                btrfs_header_generation(info->chunk_root->node));
1945         btrfs_set_backup_chunk_root_level(root_backup,
1946                                btrfs_header_level(info->chunk_root->node));
1947
1948         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1949         btrfs_set_backup_extent_root_gen(root_backup,
1950                                btrfs_header_generation(info->extent_root->node));
1951         btrfs_set_backup_extent_root_level(root_backup,
1952                                btrfs_header_level(info->extent_root->node));
1953
1954         /*
1955          * we might commit during log recovery, which happens before we set
1956          * the fs_root.  Make sure it is valid before we fill it in.
1957          */
1958         if (info->fs_root && info->fs_root->node) {
1959                 btrfs_set_backup_fs_root(root_backup,
1960                                          info->fs_root->node->start);
1961                 btrfs_set_backup_fs_root_gen(root_backup,
1962                                btrfs_header_generation(info->fs_root->node));
1963                 btrfs_set_backup_fs_root_level(root_backup,
1964                                btrfs_header_level(info->fs_root->node));
1965         }
1966
1967         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1968         btrfs_set_backup_dev_root_gen(root_backup,
1969                                btrfs_header_generation(info->dev_root->node));
1970         btrfs_set_backup_dev_root_level(root_backup,
1971                                        btrfs_header_level(info->dev_root->node));
1972
1973         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1974         btrfs_set_backup_csum_root_gen(root_backup,
1975                                btrfs_header_generation(info->csum_root->node));
1976         btrfs_set_backup_csum_root_level(root_backup,
1977                                btrfs_header_level(info->csum_root->node));
1978
1979         btrfs_set_backup_total_bytes(root_backup,
1980                              btrfs_super_total_bytes(info->super_copy));
1981         btrfs_set_backup_bytes_used(root_backup,
1982                              btrfs_super_bytes_used(info->super_copy));
1983         btrfs_set_backup_num_devices(root_backup,
1984                              btrfs_super_num_devices(info->super_copy));
1985
1986         /*
1987          * if we don't copy this out to the super_copy, it won't get remembered
1988          * for the next commit
1989          */
1990         memcpy(&info->super_copy->super_roots,
1991                &info->super_for_commit->super_roots,
1992                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1993 }
1994
1995 /*
1996  * this copies info out of the root backup array and back into
1997  * the in-memory super block.  It is meant to help iterate through
1998  * the array, so you send it the number of backups you've already
1999  * tried and the last backup index you used.
2000  *
2001  * this returns -1 when it has tried all the backups
2002  */
2003 static noinline int next_root_backup(struct btrfs_fs_info *info,
2004                                      struct btrfs_super_block *super,
2005                                      int *num_backups_tried, int *backup_index)
2006 {
2007         struct btrfs_root_backup *root_backup;
2008         int newest = *backup_index;
2009
2010         if (*num_backups_tried == 0) {
2011                 u64 gen = btrfs_super_generation(super);
2012
2013                 newest = find_newest_super_backup(info, gen);
2014                 if (newest == -1)
2015                         return -1;
2016
2017                 *backup_index = newest;
2018                 *num_backups_tried = 1;
2019         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2020                 /* we've tried all the backups, all done */
2021                 return -1;
2022         } else {
2023                 /* jump to the next oldest backup */
2024                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2025                         BTRFS_NUM_BACKUP_ROOTS;
2026                 *backup_index = newest;
2027                 *num_backups_tried += 1;
2028         }
2029         root_backup = super->super_roots + newest;
2030
2031         btrfs_set_super_generation(super,
2032                                    btrfs_backup_tree_root_gen(root_backup));
2033         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2034         btrfs_set_super_root_level(super,
2035                                    btrfs_backup_tree_root_level(root_backup));
2036         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2037
2038         /*
2039          * fixme: the total bytes and num_devices need to match or we should
2040          * need a fsck
2041          */
2042         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2043         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2044         return 0;
2045 }
2046
2047 /* helper to cleanup workers */
2048 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2049 {
2050         btrfs_destroy_workqueue(fs_info->fixup_workers);
2051         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2052         btrfs_destroy_workqueue(fs_info->workers);
2053         btrfs_destroy_workqueue(fs_info->endio_workers);
2054         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2055         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2056         btrfs_destroy_workqueue(fs_info->rmw_workers);
2057         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2058         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2059         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2060         btrfs_destroy_workqueue(fs_info->submit_workers);
2061         btrfs_destroy_workqueue(fs_info->delayed_workers);
2062         btrfs_destroy_workqueue(fs_info->caching_workers);
2063         btrfs_destroy_workqueue(fs_info->readahead_workers);
2064         btrfs_destroy_workqueue(fs_info->flush_workers);
2065         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2066 }
2067
2068 static void free_root_extent_buffers(struct btrfs_root *root)
2069 {
2070         if (root) {
2071                 free_extent_buffer(root->node);
2072                 free_extent_buffer(root->commit_root);
2073                 root->node = NULL;
2074                 root->commit_root = NULL;
2075         }
2076 }
2077
2078 /* helper to cleanup tree roots */
2079 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2080 {
2081         free_root_extent_buffers(info->tree_root);
2082
2083         free_root_extent_buffers(info->dev_root);
2084         free_root_extent_buffers(info->extent_root);
2085         free_root_extent_buffers(info->csum_root);
2086         free_root_extent_buffers(info->quota_root);
2087         free_root_extent_buffers(info->uuid_root);
2088         if (chunk_root)
2089                 free_root_extent_buffers(info->chunk_root);
2090 }
2091
2092 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2093 {
2094         int ret;
2095         struct btrfs_root *gang[8];
2096         int i;
2097
2098         while (!list_empty(&fs_info->dead_roots)) {
2099                 gang[0] = list_entry(fs_info->dead_roots.next,
2100                                      struct btrfs_root, root_list);
2101                 list_del(&gang[0]->root_list);
2102
2103                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2104                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2105                 } else {
2106                         free_extent_buffer(gang[0]->node);
2107                         free_extent_buffer(gang[0]->commit_root);
2108                         btrfs_put_fs_root(gang[0]);
2109                 }
2110         }
2111
2112         while (1) {
2113                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2114                                              (void **)gang, 0,
2115                                              ARRAY_SIZE(gang));
2116                 if (!ret)
2117                         break;
2118                 for (i = 0; i < ret; i++)
2119                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2120         }
2121
2122         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2123                 btrfs_free_log_root_tree(NULL, fs_info);
2124                 btrfs_destroy_pinned_extent(fs_info->tree_root,
2125                                             fs_info->pinned_extents);
2126         }
2127 }
2128
2129 int open_ctree(struct super_block *sb,
2130                struct btrfs_fs_devices *fs_devices,
2131                char *options)
2132 {
2133         u32 sectorsize;
2134         u32 nodesize;
2135         u32 leafsize;
2136         u32 blocksize;
2137         u32 stripesize;
2138         u64 generation;
2139         u64 features;
2140         struct btrfs_key location;
2141         struct buffer_head *bh;
2142         struct btrfs_super_block *disk_super;
2143         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2144         struct btrfs_root *tree_root;
2145         struct btrfs_root *extent_root;
2146         struct btrfs_root *csum_root;
2147         struct btrfs_root *chunk_root;
2148         struct btrfs_root *dev_root;
2149         struct btrfs_root *quota_root;
2150         struct btrfs_root *uuid_root;
2151         struct btrfs_root *log_tree_root;
2152         int ret;
2153         int err = -EINVAL;
2154         int num_backups_tried = 0;
2155         int backup_index = 0;
2156         int max_active;
2157         int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2158         bool create_uuid_tree;
2159         bool check_uuid_tree;
2160
2161         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2162         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2163         if (!tree_root || !chunk_root) {
2164                 err = -ENOMEM;
2165                 goto fail;
2166         }
2167
2168         ret = init_srcu_struct(&fs_info->subvol_srcu);
2169         if (ret) {
2170                 err = ret;
2171                 goto fail;
2172         }
2173
2174         ret = setup_bdi(fs_info, &fs_info->bdi);
2175         if (ret) {
2176                 err = ret;
2177                 goto fail_srcu;
2178         }
2179
2180         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2181         if (ret) {
2182                 err = ret;
2183                 goto fail_bdi;
2184         }
2185         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2186                                         (1 + ilog2(nr_cpu_ids));
2187
2188         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2189         if (ret) {
2190                 err = ret;
2191                 goto fail_dirty_metadata_bytes;
2192         }
2193
2194         ret = percpu_counter_init(&fs_info->bio_counter, 0);
2195         if (ret) {
2196                 err = ret;
2197                 goto fail_delalloc_bytes;
2198         }
2199
2200         fs_info->btree_inode = new_inode(sb);
2201         if (!fs_info->btree_inode) {
2202                 err = -ENOMEM;
2203                 goto fail_bio_counter;
2204         }
2205
2206         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2207
2208         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2209         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2210         INIT_LIST_HEAD(&fs_info->trans_list);
2211         INIT_LIST_HEAD(&fs_info->dead_roots);
2212         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2213         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2214         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2215         spin_lock_init(&fs_info->delalloc_root_lock);
2216         spin_lock_init(&fs_info->trans_lock);
2217         spin_lock_init(&fs_info->fs_roots_radix_lock);
2218         spin_lock_init(&fs_info->delayed_iput_lock);
2219         spin_lock_init(&fs_info->defrag_inodes_lock);
2220         spin_lock_init(&fs_info->free_chunk_lock);
2221         spin_lock_init(&fs_info->tree_mod_seq_lock);
2222         spin_lock_init(&fs_info->super_lock);
2223         spin_lock_init(&fs_info->qgroup_op_lock);
2224         spin_lock_init(&fs_info->buffer_lock);
2225         rwlock_init(&fs_info->tree_mod_log_lock);
2226         mutex_init(&fs_info->reloc_mutex);
2227         mutex_init(&fs_info->delalloc_root_mutex);
2228         seqlock_init(&fs_info->profiles_lock);
2229
2230         init_completion(&fs_info->kobj_unregister);
2231         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2232         INIT_LIST_HEAD(&fs_info->space_info);
2233         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2234         btrfs_mapping_init(&fs_info->mapping_tree);
2235         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2236                              BTRFS_BLOCK_RSV_GLOBAL);
2237         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2238                              BTRFS_BLOCK_RSV_DELALLOC);
2239         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2240         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2241         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2242         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2243                              BTRFS_BLOCK_RSV_DELOPS);
2244         atomic_set(&fs_info->nr_async_submits, 0);
2245         atomic_set(&fs_info->async_delalloc_pages, 0);
2246         atomic_set(&fs_info->async_submit_draining, 0);
2247         atomic_set(&fs_info->nr_async_bios, 0);
2248         atomic_set(&fs_info->defrag_running, 0);
2249         atomic_set(&fs_info->qgroup_op_seq, 0);
2250         atomic64_set(&fs_info->tree_mod_seq, 0);
2251         fs_info->sb = sb;
2252         fs_info->max_inline = 8192 * 1024;
2253         fs_info->metadata_ratio = 0;
2254         fs_info->defrag_inodes = RB_ROOT;
2255         fs_info->free_chunk_space = 0;
2256         fs_info->tree_mod_log = RB_ROOT;
2257         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2258         fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
2259         /* readahead state */
2260         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2261         spin_lock_init(&fs_info->reada_lock);
2262
2263         fs_info->thread_pool_size = min_t(unsigned long,
2264                                           num_online_cpus() + 2, 8);
2265
2266         INIT_LIST_HEAD(&fs_info->ordered_roots);
2267         spin_lock_init(&fs_info->ordered_root_lock);
2268         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2269                                         GFP_NOFS);
2270         if (!fs_info->delayed_root) {
2271                 err = -ENOMEM;
2272                 goto fail_iput;
2273         }
2274         btrfs_init_delayed_root(fs_info->delayed_root);
2275
2276         mutex_init(&fs_info->scrub_lock);
2277         atomic_set(&fs_info->scrubs_running, 0);
2278         atomic_set(&fs_info->scrub_pause_req, 0);
2279         atomic_set(&fs_info->scrubs_paused, 0);
2280         atomic_set(&fs_info->scrub_cancel_req, 0);
2281         init_waitqueue_head(&fs_info->replace_wait);
2282         init_waitqueue_head(&fs_info->scrub_pause_wait);
2283         fs_info->scrub_workers_refcnt = 0;
2284 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2285         fs_info->check_integrity_print_mask = 0;
2286 #endif
2287
2288         spin_lock_init(&fs_info->balance_lock);
2289         mutex_init(&fs_info->balance_mutex);
2290         atomic_set(&fs_info->balance_running, 0);
2291         atomic_set(&fs_info->balance_pause_req, 0);
2292         atomic_set(&fs_info->balance_cancel_req, 0);
2293         fs_info->balance_ctl = NULL;
2294         init_waitqueue_head(&fs_info->balance_wait_q);
2295         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2296
2297         sb->s_blocksize = 4096;
2298         sb->s_blocksize_bits = blksize_bits(4096);
2299         sb->s_bdi = &fs_info->bdi;
2300
2301         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2302         set_nlink(fs_info->btree_inode, 1);
2303         /*
2304          * we set the i_size on the btree inode to the max possible int.
2305          * the real end of the address space is determined by all of
2306          * the devices in the system
2307          */
2308         fs_info->btree_inode->i_size = OFFSET_MAX;
2309         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2310         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2311
2312         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2313         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2314                              fs_info->btree_inode->i_mapping);
2315         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2316         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2317
2318         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2319
2320         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2321         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2322                sizeof(struct btrfs_key));
2323         set_bit(BTRFS_INODE_DUMMY,
2324                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2325         btrfs_insert_inode_hash(fs_info->btree_inode);
2326
2327         spin_lock_init(&fs_info->block_group_cache_lock);
2328         fs_info->block_group_cache_tree = RB_ROOT;
2329         fs_info->first_logical_byte = (u64)-1;
2330
2331         extent_io_tree_init(&fs_info->freed_extents[0],
2332                              fs_info->btree_inode->i_mapping);
2333         extent_io_tree_init(&fs_info->freed_extents[1],
2334                              fs_info->btree_inode->i_mapping);
2335         fs_info->pinned_extents = &fs_info->freed_extents[0];
2336         fs_info->do_barriers = 1;
2337
2338
2339         mutex_init(&fs_info->ordered_operations_mutex);
2340         mutex_init(&fs_info->ordered_extent_flush_mutex);
2341         mutex_init(&fs_info->tree_log_mutex);
2342         mutex_init(&fs_info->chunk_mutex);
2343         mutex_init(&fs_info->transaction_kthread_mutex);
2344         mutex_init(&fs_info->cleaner_mutex);
2345         mutex_init(&fs_info->volume_mutex);
2346         init_rwsem(&fs_info->commit_root_sem);
2347         init_rwsem(&fs_info->cleanup_work_sem);
2348         init_rwsem(&fs_info->subvol_sem);
2349         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2350         fs_info->dev_replace.lock_owner = 0;
2351         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2352         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2353         mutex_init(&fs_info->dev_replace.lock_management_lock);
2354         mutex_init(&fs_info->dev_replace.lock);
2355
2356         spin_lock_init(&fs_info->qgroup_lock);
2357         mutex_init(&fs_info->qgroup_ioctl_lock);
2358         fs_info->qgroup_tree = RB_ROOT;
2359         fs_info->qgroup_op_tree = RB_ROOT;
2360         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2361         fs_info->qgroup_seq = 1;
2362         fs_info->quota_enabled = 0;
2363         fs_info->pending_quota_state = 0;
2364         fs_info->qgroup_ulist = NULL;
2365         mutex_init(&fs_info->qgroup_rescan_lock);
2366
2367         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2368         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2369
2370         init_waitqueue_head(&fs_info->transaction_throttle);
2371         init_waitqueue_head(&fs_info->transaction_wait);
2372         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2373         init_waitqueue_head(&fs_info->async_submit_wait);
2374
2375         ret = btrfs_alloc_stripe_hash_table(fs_info);
2376         if (ret) {
2377                 err = ret;
2378                 goto fail_alloc;
2379         }
2380
2381         __setup_root(4096, 4096, 4096, 4096, tree_root,
2382                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2383
2384         invalidate_bdev(fs_devices->latest_bdev);
2385
2386         /*
2387          * Read super block and check the signature bytes only
2388          */
2389         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2390         if (!bh) {
2391                 err = -EINVAL;
2392                 goto fail_alloc;
2393         }
2394
2395         /*
2396          * We want to check superblock checksum, the type is stored inside.
2397          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2398          */
2399         if (btrfs_check_super_csum(bh->b_data)) {
2400                 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2401                 err = -EINVAL;
2402                 goto fail_alloc;
2403         }
2404
2405         /*
2406          * super_copy is zeroed at allocation time and we never touch the
2407          * following bytes up to INFO_SIZE, the checksum is calculated from
2408          * the whole block of INFO_SIZE
2409          */
2410         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2411         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2412                sizeof(*fs_info->super_for_commit));
2413         brelse(bh);
2414
2415         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2416
2417         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2418         if (ret) {
2419                 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2420                 err = -EINVAL;
2421                 goto fail_alloc;
2422         }
2423
2424         disk_super = fs_info->super_copy;
2425         if (!btrfs_super_root(disk_super))
2426                 goto fail_alloc;
2427
2428         /* check FS state, whether FS is broken. */
2429         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2430                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2431
2432         /*
2433          * run through our array of backup supers and setup
2434          * our ring pointer to the oldest one
2435          */
2436         generation = btrfs_super_generation(disk_super);
2437         find_oldest_super_backup(fs_info, generation);
2438
2439         /*
2440          * In the long term, we'll store the compression type in the super
2441          * block, and it'll be used for per file compression control.
2442          */
2443         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2444
2445         ret = btrfs_parse_options(tree_root, options);
2446         if (ret) {
2447                 err = ret;
2448                 goto fail_alloc;
2449         }
2450
2451         features = btrfs_super_incompat_flags(disk_super) &
2452                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2453         if (features) {
2454                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2455                        "unsupported optional features (%Lx).\n",
2456                        features);
2457                 err = -EINVAL;
2458                 goto fail_alloc;
2459         }
2460
2461         if (btrfs_super_leafsize(disk_super) !=
2462             btrfs_super_nodesize(disk_super)) {
2463                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2464                        "blocksizes don't match.  node %d leaf %d\n",
2465                        btrfs_super_nodesize(disk_super),
2466                        btrfs_super_leafsize(disk_super));
2467                 err = -EINVAL;
2468                 goto fail_alloc;
2469         }
2470         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2471                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2472                        "blocksize (%d) was too large\n",
2473                        btrfs_super_leafsize(disk_super));
2474                 err = -EINVAL;
2475                 goto fail_alloc;
2476         }
2477
2478         features = btrfs_super_incompat_flags(disk_super);
2479         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2480         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2481                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2482
2483         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2484                 printk(KERN_ERR "BTRFS: has skinny extents\n");
2485
2486         /*
2487          * flag our filesystem as having big metadata blocks if
2488          * they are bigger than the page size
2489          */
2490         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2491                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2492                         printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2493                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2494         }
2495
2496         nodesize = btrfs_super_nodesize(disk_super);
2497         leafsize = btrfs_super_leafsize(disk_super);
2498         sectorsize = btrfs_super_sectorsize(disk_super);
2499         stripesize = btrfs_super_stripesize(disk_super);
2500         fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2501         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2502
2503         /*
2504          * mixed block groups end up with duplicate but slightly offset
2505          * extent buffers for the same range.  It leads to corruptions
2506          */
2507         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2508             (sectorsize != leafsize)) {
2509                 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
2510                                 "are not allowed for mixed block groups on %s\n",
2511                                 sb->s_id);
2512                 goto fail_alloc;
2513         }
2514
2515         /*
2516          * Needn't use the lock because there is no other task which will
2517          * update the flag.
2518          */
2519         btrfs_set_super_incompat_flags(disk_super, features);
2520
2521         features = btrfs_super_compat_ro_flags(disk_super) &
2522                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2523         if (!(sb->s_flags & MS_RDONLY) && features) {
2524                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2525                        "unsupported option features (%Lx).\n",
2526                        features);
2527                 err = -EINVAL;
2528                 goto fail_alloc;
2529         }
2530
2531         max_active = fs_info->thread_pool_size;
2532
2533         fs_info->workers =
2534                 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2535                                       max_active, 16);
2536
2537         fs_info->delalloc_workers =
2538                 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2539
2540         fs_info->flush_workers =
2541                 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2542
2543         fs_info->caching_workers =
2544                 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2545
2546         /*
2547          * a higher idle thresh on the submit workers makes it much more
2548          * likely that bios will be send down in a sane order to the
2549          * devices
2550          */
2551         fs_info->submit_workers =
2552                 btrfs_alloc_workqueue("submit", flags,
2553                                       min_t(u64, fs_devices->num_devices,
2554                                             max_active), 64);
2555
2556         fs_info->fixup_workers =
2557                 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2558
2559         /*
2560          * endios are largely parallel and should have a very
2561          * low idle thresh
2562          */
2563         fs_info->endio_workers =
2564                 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2565         fs_info->endio_meta_workers =
2566                 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2567         fs_info->endio_meta_write_workers =
2568                 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2569         fs_info->endio_raid56_workers =
2570                 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2571         fs_info->rmw_workers =
2572                 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2573         fs_info->endio_write_workers =
2574                 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2575         fs_info->endio_freespace_worker =
2576                 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2577         fs_info->delayed_workers =
2578                 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2579         fs_info->readahead_workers =
2580                 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2581         fs_info->qgroup_rescan_workers =
2582                 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2583
2584         if (!(fs_info->workers && fs_info->delalloc_workers &&
2585               fs_info->submit_workers && fs_info->flush_workers &&
2586               fs_info->endio_workers && fs_info->endio_meta_workers &&
2587               fs_info->endio_meta_write_workers &&
2588               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2589               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2590               fs_info->caching_workers && fs_info->readahead_workers &&
2591               fs_info->fixup_workers && fs_info->delayed_workers &&
2592               fs_info->qgroup_rescan_workers)) {
2593                 err = -ENOMEM;
2594                 goto fail_sb_buffer;
2595         }
2596
2597         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2598         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2599                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2600
2601         tree_root->nodesize = nodesize;
2602         tree_root->leafsize = leafsize;
2603         tree_root->sectorsize = sectorsize;
2604         tree_root->stripesize = stripesize;
2605
2606         sb->s_blocksize = sectorsize;
2607         sb->s_blocksize_bits = blksize_bits(sectorsize);
2608
2609         if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2610                 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
2611                 goto fail_sb_buffer;
2612         }
2613
2614         if (sectorsize != PAGE_SIZE) {
2615                 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
2616                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2617                 goto fail_sb_buffer;
2618         }
2619
2620         mutex_lock(&fs_info->chunk_mutex);
2621         ret = btrfs_read_sys_array(tree_root);
2622         mutex_unlock(&fs_info->chunk_mutex);
2623         if (ret) {
2624                 printk(KERN_WARNING "BTRFS: failed to read the system "
2625                        "array on %s\n", sb->s_id);
2626                 goto fail_sb_buffer;
2627         }
2628
2629         blocksize = btrfs_level_size(tree_root,
2630                                      btrfs_super_chunk_root_level(disk_super));
2631         generation = btrfs_super_chunk_root_generation(disk_super);
2632
2633         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2634                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2635
2636         chunk_root->node = read_tree_block(chunk_root,
2637                                            btrfs_super_chunk_root(disk_super),
2638                                            blocksize, generation);
2639         if (!chunk_root->node ||
2640             !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2641                 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
2642                        sb->s_id);
2643                 goto fail_tree_roots;
2644         }
2645         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2646         chunk_root->commit_root = btrfs_root_node(chunk_root);
2647
2648         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2649            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2650
2651         ret = btrfs_read_chunk_tree(chunk_root);
2652         if (ret) {
2653                 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
2654                        sb->s_id);
2655                 goto fail_tree_roots;
2656         }
2657
2658         /*
2659          * keep the device that is marked to be the target device for the
2660          * dev_replace procedure
2661          */
2662         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2663
2664         if (!fs_devices->latest_bdev) {
2665                 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
2666                        sb->s_id);
2667                 goto fail_tree_roots;
2668         }
2669
2670 retry_root_backup:
2671         blocksize = btrfs_level_size(tree_root,
2672                                      btrfs_super_root_level(disk_super));
2673         generation = btrfs_super_generation(disk_super);
2674
2675         tree_root->node = read_tree_block(tree_root,
2676                                           btrfs_super_root(disk_super),
2677                                           blocksize, generation);
2678         if (!tree_root->node ||
2679             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2680                 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2681                        sb->s_id);
2682
2683                 goto recovery_tree_root;
2684         }
2685
2686         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2687         tree_root->commit_root = btrfs_root_node(tree_root);
2688         btrfs_set_root_refs(&tree_root->root_item, 1);
2689
2690         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2691         location.type = BTRFS_ROOT_ITEM_KEY;
2692         location.offset = 0;
2693
2694         extent_root = btrfs_read_tree_root(tree_root, &location);
2695         if (IS_ERR(extent_root)) {
2696                 ret = PTR_ERR(extent_root);
2697                 goto recovery_tree_root;
2698         }
2699         set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
2700         fs_info->extent_root = extent_root;
2701
2702         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2703         dev_root = btrfs_read_tree_root(tree_root, &location);
2704         if (IS_ERR(dev_root)) {
2705                 ret = PTR_ERR(dev_root);
2706                 goto recovery_tree_root;
2707         }
2708         set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
2709         fs_info->dev_root = dev_root;
2710         btrfs_init_devices_late(fs_info);
2711
2712         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2713         csum_root = btrfs_read_tree_root(tree_root, &location);
2714         if (IS_ERR(csum_root)) {
2715                 ret = PTR_ERR(csum_root);
2716                 goto recovery_tree_root;
2717         }
2718         set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
2719         fs_info->csum_root = csum_root;
2720
2721         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2722         quota_root = btrfs_read_tree_root(tree_root, &location);
2723         if (!IS_ERR(quota_root)) {
2724                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &quota_root->state);
2725                 fs_info->quota_enabled = 1;
2726                 fs_info->pending_quota_state = 1;
2727                 fs_info->quota_root = quota_root;
2728         }
2729
2730         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2731         uuid_root = btrfs_read_tree_root(tree_root, &location);
2732         if (IS_ERR(uuid_root)) {
2733                 ret = PTR_ERR(uuid_root);
2734                 if (ret != -ENOENT)
2735                         goto recovery_tree_root;
2736                 create_uuid_tree = true;
2737                 check_uuid_tree = false;
2738         } else {
2739                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
2740                 fs_info->uuid_root = uuid_root;
2741                 create_uuid_tree = false;
2742                 check_uuid_tree =
2743                     generation != btrfs_super_uuid_tree_generation(disk_super);
2744         }
2745
2746         fs_info->generation = generation;
2747         fs_info->last_trans_committed = generation;
2748
2749         ret = btrfs_recover_balance(fs_info);
2750         if (ret) {
2751                 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
2752                 goto fail_block_groups;
2753         }
2754
2755         ret = btrfs_init_dev_stats(fs_info);
2756         if (ret) {
2757                 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2758                        ret);
2759                 goto fail_block_groups;
2760         }
2761
2762         ret = btrfs_init_dev_replace(fs_info);
2763         if (ret) {
2764                 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2765                 goto fail_block_groups;
2766         }
2767
2768         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2769
2770         ret = btrfs_sysfs_add_one(fs_info);
2771         if (ret) {
2772                 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2773                 goto fail_block_groups;
2774         }
2775
2776         ret = btrfs_init_space_info(fs_info);
2777         if (ret) {
2778                 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2779                 goto fail_sysfs;
2780         }
2781
2782         ret = btrfs_read_block_groups(extent_root);
2783         if (ret) {
2784                 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2785                 goto fail_sysfs;
2786         }
2787         fs_info->num_tolerated_disk_barrier_failures =
2788                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2789         if (fs_info->fs_devices->missing_devices >
2790              fs_info->num_tolerated_disk_barrier_failures &&
2791             !(sb->s_flags & MS_RDONLY)) {
2792                 printk(KERN_WARNING "BTRFS: "
2793                         "too many missing devices, writeable mount is not allowed\n");
2794                 goto fail_sysfs;
2795         }
2796
2797         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2798                                                "btrfs-cleaner");
2799         if (IS_ERR(fs_info->cleaner_kthread))
2800                 goto fail_sysfs;
2801
2802         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2803                                                    tree_root,
2804                                                    "btrfs-transaction");
2805         if (IS_ERR(fs_info->transaction_kthread))
2806                 goto fail_cleaner;
2807
2808         if (!btrfs_test_opt(tree_root, SSD) &&
2809             !btrfs_test_opt(tree_root, NOSSD) &&
2810             !fs_info->fs_devices->rotating) {
2811                 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2812                        "mode\n");
2813                 btrfs_set_opt(fs_info->mount_opt, SSD);
2814         }
2815
2816         /* Set the real inode map cache flag */
2817         if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2818                 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2819
2820 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2821         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2822                 ret = btrfsic_mount(tree_root, fs_devices,
2823                                     btrfs_test_opt(tree_root,
2824                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2825                                     1 : 0,
2826                                     fs_info->check_integrity_print_mask);
2827                 if (ret)
2828                         printk(KERN_WARNING "BTRFS: failed to initialize"
2829                                " integrity check module %s\n", sb->s_id);
2830         }
2831 #endif
2832         ret = btrfs_read_qgroup_config(fs_info);
2833         if (ret)
2834                 goto fail_trans_kthread;
2835
2836         /* do not make disk changes in broken FS */
2837         if (btrfs_super_log_root(disk_super) != 0) {
2838                 u64 bytenr = btrfs_super_log_root(disk_super);
2839
2840                 if (fs_devices->rw_devices == 0) {
2841                         printk(KERN_WARNING "BTRFS: log replay required "
2842                                "on RO media\n");
2843                         err = -EIO;
2844                         goto fail_qgroup;
2845                 }
2846                 blocksize =
2847                      btrfs_level_size(tree_root,
2848                                       btrfs_super_log_root_level(disk_super));
2849
2850                 log_tree_root = btrfs_alloc_root(fs_info);
2851                 if (!log_tree_root) {
2852                         err = -ENOMEM;
2853                         goto fail_qgroup;
2854                 }
2855
2856                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2857                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2858
2859                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2860                                                       blocksize,
2861                                                       generation + 1);
2862                 if (!log_tree_root->node ||
2863                     !extent_buffer_uptodate(log_tree_root->node)) {
2864                         printk(KERN_ERR "BTRFS: failed to read log tree\n");
2865                         free_extent_buffer(log_tree_root->node);
2866                         kfree(log_tree_root);
2867                         goto fail_qgroup;
2868                 }
2869                 /* returns with log_tree_root freed on success */
2870                 ret = btrfs_recover_log_trees(log_tree_root);
2871                 if (ret) {
2872                         btrfs_error(tree_root->fs_info, ret,
2873                                     "Failed to recover log tree");
2874                         free_extent_buffer(log_tree_root->node);
2875                         kfree(log_tree_root);
2876                         goto fail_qgroup;
2877                 }
2878
2879                 if (sb->s_flags & MS_RDONLY) {
2880                         ret = btrfs_commit_super(tree_root);
2881                         if (ret)
2882                                 goto fail_qgroup;
2883                 }
2884         }
2885
2886         ret = btrfs_find_orphan_roots(tree_root);
2887         if (ret)
2888                 goto fail_qgroup;
2889
2890         if (!(sb->s_flags & MS_RDONLY)) {
2891                 ret = btrfs_cleanup_fs_roots(fs_info);
2892                 if (ret)
2893                         goto fail_qgroup;
2894
2895                 ret = btrfs_recover_relocation(tree_root);
2896                 if (ret < 0) {
2897                         printk(KERN_WARNING
2898                                "BTRFS: failed to recover relocation\n");
2899                         err = -EINVAL;
2900                         goto fail_qgroup;
2901                 }
2902         }
2903
2904         location.objectid = BTRFS_FS_TREE_OBJECTID;
2905         location.type = BTRFS_ROOT_ITEM_KEY;
2906         location.offset = 0;
2907
2908         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2909         if (IS_ERR(fs_info->fs_root)) {
2910                 err = PTR_ERR(fs_info->fs_root);
2911                 goto fail_qgroup;
2912         }
2913
2914         if (sb->s_flags & MS_RDONLY)
2915                 return 0;
2916
2917         down_read(&fs_info->cleanup_work_sem);
2918         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2919             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2920                 up_read(&fs_info->cleanup_work_sem);
2921                 close_ctree(tree_root);
2922                 return ret;
2923         }
2924         up_read(&fs_info->cleanup_work_sem);
2925
2926         ret = btrfs_resume_balance_async(fs_info);
2927         if (ret) {
2928                 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2929                 close_ctree(tree_root);
2930                 return ret;
2931         }
2932
2933         ret = btrfs_resume_dev_replace_async(fs_info);
2934         if (ret) {
2935                 pr_warn("BTRFS: failed to resume dev_replace\n");
2936                 close_ctree(tree_root);
2937                 return ret;
2938         }
2939
2940         btrfs_qgroup_rescan_resume(fs_info);
2941
2942         if (create_uuid_tree) {
2943                 pr_info("BTRFS: creating UUID tree\n");
2944                 ret = btrfs_create_uuid_tree(fs_info);
2945                 if (ret) {
2946                         pr_warn("BTRFS: failed to create the UUID tree %d\n",
2947                                 ret);
2948                         close_ctree(tree_root);
2949                         return ret;
2950                 }
2951         } else if (check_uuid_tree ||
2952                    btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2953                 pr_info("BTRFS: checking UUID tree\n");
2954                 ret = btrfs_check_uuid_tree(fs_info);
2955                 if (ret) {
2956                         pr_warn("BTRFS: failed to check the UUID tree %d\n",
2957                                 ret);
2958                         close_ctree(tree_root);
2959                         return ret;
2960                 }
2961         } else {
2962                 fs_info->update_uuid_tree_gen = 1;
2963         }
2964
2965         return 0;
2966
2967 fail_qgroup:
2968         btrfs_free_qgroup_config(fs_info);
2969 fail_trans_kthread:
2970         kthread_stop(fs_info->transaction_kthread);
2971         btrfs_cleanup_transaction(fs_info->tree_root);
2972         del_fs_roots(fs_info);
2973 fail_cleaner:
2974         kthread_stop(fs_info->cleaner_kthread);
2975
2976         /*
2977          * make sure we're done with the btree inode before we stop our
2978          * kthreads
2979          */
2980         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2981
2982 fail_sysfs:
2983         btrfs_sysfs_remove_one(fs_info);
2984
2985 fail_block_groups:
2986         btrfs_put_block_group_cache(fs_info);
2987         btrfs_free_block_groups(fs_info);
2988
2989 fail_tree_roots:
2990         free_root_pointers(fs_info, 1);
2991         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2992
2993 fail_sb_buffer:
2994         btrfs_stop_all_workers(fs_info);
2995 fail_alloc:
2996 fail_iput:
2997         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2998
2999         iput(fs_info->btree_inode);
3000 fail_bio_counter:
3001         percpu_counter_destroy(&fs_info->bio_counter);
3002 fail_delalloc_bytes:
3003         percpu_counter_destroy(&fs_info->delalloc_bytes);
3004 fail_dirty_metadata_bytes:
3005         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3006 fail_bdi:
3007         bdi_destroy(&fs_info->bdi);
3008 fail_srcu:
3009         cleanup_srcu_struct(&fs_info->subvol_srcu);
3010 fail:
3011         btrfs_free_stripe_hash_table(fs_info);
3012         btrfs_close_devices(fs_info->fs_devices);
3013         return err;
3014
3015 recovery_tree_root:
3016         if (!btrfs_test_opt(tree_root, RECOVERY))
3017                 goto fail_tree_roots;
3018
3019         free_root_pointers(fs_info, 0);
3020
3021         /* don't use the log in recovery mode, it won't be valid */
3022         btrfs_set_super_log_root(disk_super, 0);
3023
3024         /* we can't trust the free space cache either */
3025         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3026
3027         ret = next_root_backup(fs_info, fs_info->super_copy,
3028                                &num_backups_tried, &backup_index);
3029         if (ret == -1)
3030                 goto fail_block_groups;
3031         goto retry_root_backup;
3032 }
3033
3034 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3035 {
3036         if (uptodate) {
3037                 set_buffer_uptodate(bh);
3038         } else {
3039                 struct btrfs_device *device = (struct btrfs_device *)
3040                         bh->b_private;
3041
3042                 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3043                                           "I/O error on %s\n",
3044                                           rcu_str_deref(device->name));
3045                 /* note, we dont' set_buffer_write_io_error because we have
3046                  * our own ways of dealing with the IO errors
3047                  */
3048                 clear_buffer_uptodate(bh);
3049                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3050         }
3051         unlock_buffer(bh);
3052         put_bh(bh);
3053 }
3054
3055 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3056 {
3057         struct buffer_head *bh;
3058         struct buffer_head *latest = NULL;
3059         struct btrfs_super_block *super;
3060         int i;
3061         u64 transid = 0;
3062         u64 bytenr;
3063
3064         /* we would like to check all the supers, but that would make
3065          * a btrfs mount succeed after a mkfs from a different FS.
3066          * So, we need to add a special mount option to scan for
3067          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3068          */
3069         for (i = 0; i < 1; i++) {
3070                 bytenr = btrfs_sb_offset(i);
3071                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3072                                         i_size_read(bdev->bd_inode))
3073                         break;
3074                 bh = __bread(bdev, bytenr / 4096,
3075                                         BTRFS_SUPER_INFO_SIZE);
3076                 if (!bh)
3077                         continue;
3078
3079                 super = (struct btrfs_super_block *)bh->b_data;
3080                 if (btrfs_super_bytenr(super) != bytenr ||
3081                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3082                         brelse(bh);
3083                         continue;
3084                 }
3085
3086                 if (!latest || btrfs_super_generation(super) > transid) {
3087                         brelse(latest);
3088                         latest = bh;
3089                         transid = btrfs_super_generation(super);
3090                 } else {
3091                         brelse(bh);
3092                 }
3093         }
3094         return latest;
3095 }
3096
3097 /*
3098  * this should be called twice, once with wait == 0 and
3099  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3100  * we write are pinned.
3101  *
3102  * They are released when wait == 1 is done.
3103  * max_mirrors must be the same for both runs, and it indicates how
3104  * many supers on this one device should be written.
3105  *
3106  * max_mirrors == 0 means to write them all.
3107  */
3108 static int write_dev_supers(struct btrfs_device *device,
3109                             struct btrfs_super_block *sb,
3110                             int do_barriers, int wait, int max_mirrors)
3111 {
3112         struct buffer_head *bh;
3113         int i;
3114         int ret;
3115         int errors = 0;
3116         u32 crc;
3117         u64 bytenr;
3118
3119         if (max_mirrors == 0)
3120                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3121
3122         for (i = 0; i < max_mirrors; i++) {
3123                 bytenr = btrfs_sb_offset(i);
3124                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3125                         break;
3126
3127                 if (wait) {
3128                         bh = __find_get_block(device->bdev, bytenr / 4096,
3129                                               BTRFS_SUPER_INFO_SIZE);
3130                         if (!bh) {
3131                                 errors++;
3132                                 continue;
3133                         }
3134                         wait_on_buffer(bh);
3135                         if (!buffer_uptodate(bh))
3136                                 errors++;
3137
3138                         /* drop our reference */
3139                         brelse(bh);
3140
3141                         /* drop the reference from the wait == 0 run */
3142                         brelse(bh);
3143                         continue;
3144                 } else {
3145                         btrfs_set_super_bytenr(sb, bytenr);
3146
3147                         crc = ~(u32)0;
3148                         crc = btrfs_csum_data((char *)sb +
3149                                               BTRFS_CSUM_SIZE, crc,
3150                                               BTRFS_SUPER_INFO_SIZE -
3151                                               BTRFS_CSUM_SIZE);
3152                         btrfs_csum_final(crc, sb->csum);
3153
3154                         /*
3155                          * one reference for us, and we leave it for the
3156                          * caller
3157                          */
3158                         bh = __getblk(device->bdev, bytenr / 4096,
3159                                       BTRFS_SUPER_INFO_SIZE);
3160                         if (!bh) {
3161                                 printk(KERN_ERR "BTRFS: couldn't get super "
3162                                        "buffer head for bytenr %Lu\n", bytenr);
3163                                 errors++;
3164                                 continue;
3165                         }
3166
3167                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3168
3169                         /* one reference for submit_bh */
3170                         get_bh(bh);
3171
3172                         set_buffer_uptodate(bh);
3173                         lock_buffer(bh);
3174                         bh->b_end_io = btrfs_end_buffer_write_sync;
3175                         bh->b_private = device;
3176                 }
3177
3178                 /*
3179                  * we fua the first super.  The others we allow
3180                  * to go down lazy.
3181                  */
3182                 if (i == 0)
3183                         ret = btrfsic_submit_bh(WRITE_FUA, bh);
3184                 else
3185                         ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3186                 if (ret)
3187                         errors++;
3188         }
3189         return errors < i ? 0 : -1;
3190 }
3191
3192 /*
3193  * endio for the write_dev_flush, this will wake anyone waiting
3194  * for the barrier when it is done
3195  */
3196 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3197 {
3198         if (err) {
3199                 if (err == -EOPNOTSUPP)
3200                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3201                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3202         }
3203         if (bio->bi_private)
3204                 complete(bio->bi_private);
3205         bio_put(bio);
3206 }
3207
3208 /*
3209  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3210  * sent down.  With wait == 1, it waits for the previous flush.
3211  *
3212  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3213  * capable
3214  */
3215 static int write_dev_flush(struct btrfs_device *device, int wait)
3216 {
3217         struct bio *bio;
3218         int ret = 0;
3219
3220         if (device->nobarriers)
3221                 return 0;
3222
3223         if (wait) {
3224                 bio = device->flush_bio;
3225                 if (!bio)
3226                         return 0;
3227
3228                 wait_for_completion(&device->flush_wait);
3229
3230                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3231                         printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3232                                       rcu_str_deref(device->name));
3233                         device->nobarriers = 1;
3234                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3235                         ret = -EIO;
3236                         btrfs_dev_stat_inc_and_print(device,
3237                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3238                 }
3239
3240                 /* drop the reference from the wait == 0 run */
3241                 bio_put(bio);
3242                 device->flush_bio = NULL;
3243
3244                 return ret;
3245         }
3246
3247         /*
3248          * one reference for us, and we leave it for the
3249          * caller
3250          */
3251         device->flush_bio = NULL;
3252         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3253         if (!bio)
3254                 return -ENOMEM;
3255
3256         bio->bi_end_io = btrfs_end_empty_barrier;
3257         bio->bi_bdev = device->bdev;
3258         init_completion(&device->flush_wait);
3259         bio->bi_private = &device->flush_wait;
3260         device->flush_bio = bio;
3261
3262         bio_get(bio);
3263         btrfsic_submit_bio(WRITE_FLUSH, bio);
3264
3265         return 0;
3266 }
3267
3268 /*
3269  * send an empty flush down to each device in parallel,
3270  * then wait for them
3271  */
3272 static int barrier_all_devices(struct btrfs_fs_info *info)
3273 {
3274         struct list_head *head;
3275         struct btrfs_device *dev;
3276         int errors_send = 0;
3277         int errors_wait = 0;
3278         int ret;
3279
3280         /* send down all the barriers */
3281         head = &info->fs_devices->devices;
3282         list_for_each_entry_rcu(dev, head, dev_list) {
3283                 if (dev->missing)
3284                         continue;
3285                 if (!dev->bdev) {
3286                         errors_send++;
3287                         continue;
3288                 }
3289                 if (!dev->in_fs_metadata || !dev->writeable)
3290                         continue;
3291
3292                 ret = write_dev_flush(dev, 0);
3293                 if (ret)
3294                         errors_send++;
3295         }
3296
3297         /* wait for all the barriers */
3298         list_for_each_entry_rcu(dev, head, dev_list) {
3299                 if (dev->missing)
3300                         continue;
3301                 if (!dev->bdev) {
3302                         errors_wait++;
3303                         continue;
3304                 }
3305                 if (!dev->in_fs_metadata || !dev->writeable)
3306                         continue;
3307
3308                 ret = write_dev_flush(dev, 1);
3309                 if (ret)
3310                         errors_wait++;
3311         }
3312         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3313             errors_wait > info->num_tolerated_disk_barrier_failures)
3314                 return -EIO;
3315         return 0;
3316 }
3317
3318 int btrfs_calc_num_tolerated_disk_barrier_failures(
3319         struct btrfs_fs_info *fs_info)
3320 {
3321         struct btrfs_ioctl_space_info space;
3322         struct btrfs_space_info *sinfo;
3323         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3324                        BTRFS_BLOCK_GROUP_SYSTEM,
3325                        BTRFS_BLOCK_GROUP_METADATA,
3326                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3327         int num_types = 4;
3328         int i;
3329         int c;
3330         int num_tolerated_disk_barrier_failures =
3331                 (int)fs_info->fs_devices->num_devices;
3332
3333         for (i = 0; i < num_types; i++) {
3334                 struct btrfs_space_info *tmp;
3335
3336                 sinfo = NULL;
3337                 rcu_read_lock();
3338                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3339                         if (tmp->flags == types[i]) {
3340                                 sinfo = tmp;
3341                                 break;
3342                         }
3343                 }
3344                 rcu_read_unlock();
3345
3346                 if (!sinfo)
3347                         continue;
3348
3349                 down_read(&sinfo->groups_sem);
3350                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3351                         if (!list_empty(&sinfo->block_groups[c])) {
3352                                 u64 flags;
3353
3354                                 btrfs_get_block_group_info(
3355                                         &sinfo->block_groups[c], &space);
3356                                 if (space.total_bytes == 0 ||
3357                                     space.used_bytes == 0)
3358                                         continue;
3359                                 flags = space.flags;
3360                                 /*
3361                                  * return
3362                                  * 0: if dup, single or RAID0 is configured for
3363                                  *    any of metadata, system or data, else
3364                                  * 1: if RAID5 is configured, or if RAID1 or
3365                                  *    RAID10 is configured and only two mirrors
3366                                  *    are used, else
3367                                  * 2: if RAID6 is configured, else
3368                                  * num_mirrors - 1: if RAID1 or RAID10 is
3369                                  *                  configured and more than
3370                                  *                  2 mirrors are used.
3371                                  */
3372                                 if (num_tolerated_disk_barrier_failures > 0 &&
3373                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3374                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3375                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3376                                       == 0)))
3377                                         num_tolerated_disk_barrier_failures = 0;
3378                                 else if (num_tolerated_disk_barrier_failures > 1) {
3379                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3380                                             BTRFS_BLOCK_GROUP_RAID5 |
3381                                             BTRFS_BLOCK_GROUP_RAID10)) {
3382                                                 num_tolerated_disk_barrier_failures = 1;
3383                                         } else if (flags &
3384                                                    BTRFS_BLOCK_GROUP_RAID6) {
3385                                                 num_tolerated_disk_barrier_failures = 2;
3386                                         }
3387                                 }
3388                         }
3389                 }
3390                 up_read(&sinfo->groups_sem);
3391         }
3392
3393         return num_tolerated_disk_barrier_failures;
3394 }
3395
3396 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3397 {
3398         struct list_head *head;
3399         struct btrfs_device *dev;
3400         struct btrfs_super_block *sb;
3401         struct btrfs_dev_item *dev_item;
3402         int ret;
3403         int do_barriers;
3404         int max_errors;
3405         int total_errors = 0;
3406         u64 flags;
3407
3408         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3409         backup_super_roots(root->fs_info);
3410
3411         sb = root->fs_info->super_for_commit;
3412         dev_item = &sb->dev_item;
3413
3414         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3415         head = &root->fs_info->fs_devices->devices;
3416         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3417
3418         if (do_barriers) {
3419                 ret = barrier_all_devices(root->fs_info);
3420                 if (ret) {
3421                         mutex_unlock(
3422                                 &root->fs_info->fs_devices->device_list_mutex);
3423                         btrfs_error(root->fs_info, ret,
3424                                     "errors while submitting device barriers.");
3425                         return ret;
3426                 }
3427         }
3428
3429         list_for_each_entry_rcu(dev, head, dev_list) {
3430                 if (!dev->bdev) {
3431                         total_errors++;
3432                         continue;
3433                 }
3434                 if (!dev->in_fs_metadata || !dev->writeable)
3435                         continue;
3436
3437                 btrfs_set_stack_device_generation(dev_item, 0);
3438                 btrfs_set_stack_device_type(dev_item, dev->type);
3439                 btrfs_set_stack_device_id(dev_item, dev->devid);
3440                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3441                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3442                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3443                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3444                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3445                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3446                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3447
3448                 flags = btrfs_super_flags(sb);
3449                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3450
3451                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3452                 if (ret)
3453                         total_errors++;
3454         }
3455         if (total_errors > max_errors) {
3456                 btrfs_err(root->fs_info, "%d errors while writing supers",
3457                        total_errors);
3458                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3459
3460                 /* FUA is masked off if unsupported and can't be the reason */
3461                 btrfs_error(root->fs_info, -EIO,
3462                             "%d errors while writing supers", total_errors);
3463                 return -EIO;
3464         }
3465
3466         total_errors = 0;
3467         list_for_each_entry_rcu(dev, head, dev_list) {
3468                 if (!dev->bdev)
3469                         continue;
3470                 if (!dev->in_fs_metadata || !dev->writeable)
3471                         continue;
3472
3473                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3474                 if (ret)
3475                         total_errors++;
3476         }
3477         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3478         if (total_errors > max_errors) {
3479                 btrfs_error(root->fs_info, -EIO,
3480                             "%d errors while writing supers", total_errors);
3481                 return -EIO;
3482         }
3483         return 0;
3484 }
3485
3486 int write_ctree_super(struct btrfs_trans_handle *trans,
3487                       struct btrfs_root *root, int max_mirrors)
3488 {
3489         return write_all_supers(root, max_mirrors);
3490 }
3491
3492 /* Drop a fs root from the radix tree and free it. */
3493 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3494                                   struct btrfs_root *root)
3495 {
3496         spin_lock(&fs_info->fs_roots_radix_lock);
3497         radix_tree_delete(&fs_info->fs_roots_radix,
3498                           (unsigned long)root->root_key.objectid);
3499         spin_unlock(&fs_info->fs_roots_radix_lock);
3500
3501         if (btrfs_root_refs(&root->root_item) == 0)
3502                 synchronize_srcu(&fs_info->subvol_srcu);
3503
3504         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3505                 btrfs_free_log(NULL, root);
3506
3507         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3508         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3509         free_fs_root(root);
3510 }
3511
3512 static void free_fs_root(struct btrfs_root *root)
3513 {
3514         iput(root->cache_inode);
3515         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3516         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3517         root->orphan_block_rsv = NULL;
3518         if (root->anon_dev)
3519                 free_anon_bdev(root->anon_dev);
3520         if (root->subv_writers)
3521                 btrfs_free_subvolume_writers(root->subv_writers);
3522         free_extent_buffer(root->node);
3523         free_extent_buffer(root->commit_root);
3524         kfree(root->free_ino_ctl);
3525         kfree(root->free_ino_pinned);
3526         kfree(root->name);
3527         btrfs_put_fs_root(root);
3528 }
3529
3530 void btrfs_free_fs_root(struct btrfs_root *root)
3531 {
3532         free_fs_root(root);
3533 }
3534
3535 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3536 {
3537         u64 root_objectid = 0;
3538         struct btrfs_root *gang[8];
3539         int i = 0;
3540         int err = 0;
3541         unsigned int ret = 0;
3542         int index;
3543
3544         while (1) {
3545                 index = srcu_read_lock(&fs_info->subvol_srcu);
3546                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3547                                              (void **)gang, root_objectid,
3548                                              ARRAY_SIZE(gang));
3549                 if (!ret) {
3550                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3551                         break;
3552                 }
3553                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3554
3555                 for (i = 0; i < ret; i++) {
3556                         /* Avoid to grab roots in dead_roots */
3557                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3558                                 gang[i] = NULL;
3559                                 continue;
3560                         }
3561                         /* grab all the search result for later use */
3562                         gang[i] = btrfs_grab_fs_root(gang[i]);
3563                 }
3564                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3565
3566                 for (i = 0; i < ret; i++) {
3567                         if (!gang[i])
3568                                 continue;
3569                         root_objectid = gang[i]->root_key.objectid;
3570                         err = btrfs_orphan_cleanup(gang[i]);
3571                         if (err)
3572                                 break;
3573                         btrfs_put_fs_root(gang[i]);
3574                 }
3575                 root_objectid++;
3576         }
3577
3578         /* release the uncleaned roots due to error */
3579         for (; i < ret; i++) {
3580                 if (gang[i])
3581                         btrfs_put_fs_root(gang[i]);
3582         }
3583         return err;
3584 }
3585
3586 int btrfs_commit_super(struct btrfs_root *root)
3587 {
3588         struct btrfs_trans_handle *trans;
3589
3590         mutex_lock(&root->fs_info->cleaner_mutex);
3591         btrfs_run_delayed_iputs(root);
3592         mutex_unlock(&root->fs_info->cleaner_mutex);
3593         wake_up_process(root->fs_info->cleaner_kthread);
3594
3595         /* wait until ongoing cleanup work done */
3596         down_write(&root->fs_info->cleanup_work_sem);
3597         up_write(&root->fs_info->cleanup_work_sem);
3598
3599         trans = btrfs_join_transaction(root);
3600         if (IS_ERR(trans))
3601                 return PTR_ERR(trans);
3602         return btrfs_commit_transaction(trans, root);
3603 }
3604
3605 int close_ctree(struct btrfs_root *root)
3606 {
3607         struct btrfs_fs_info *fs_info = root->fs_info;
3608         int ret;
3609
3610         fs_info->closing = 1;
3611         smp_mb();
3612
3613         /* wait for the uuid_scan task to finish */
3614         down(&fs_info->uuid_tree_rescan_sem);
3615         /* avoid complains from lockdep et al., set sem back to initial state */
3616         up(&fs_info->uuid_tree_rescan_sem);
3617
3618         /* pause restriper - we want to resume on mount */
3619         btrfs_pause_balance(fs_info);
3620
3621         btrfs_dev_replace_suspend_for_unmount(fs_info);
3622
3623         btrfs_scrub_cancel(fs_info);
3624
3625         /* wait for any defraggers to finish */
3626         wait_event(fs_info->transaction_wait,
3627                    (atomic_read(&fs_info->defrag_running) == 0));
3628
3629         /* clear out the rbtree of defraggable inodes */
3630         btrfs_cleanup_defrag_inodes(fs_info);
3631
3632         cancel_work_sync(&fs_info->async_reclaim_work);
3633
3634         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3635                 ret = btrfs_commit_super(root);
3636                 if (ret)
3637                         btrfs_err(root->fs_info, "commit super ret %d", ret);
3638         }
3639
3640         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3641                 btrfs_error_commit_super(root);
3642
3643         kthread_stop(fs_info->transaction_kthread);
3644         kthread_stop(fs_info->cleaner_kthread);
3645
3646         fs_info->closing = 2;
3647         smp_mb();
3648
3649         btrfs_free_qgroup_config(root->fs_info);
3650
3651         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3652                 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3653                        percpu_counter_sum(&fs_info->delalloc_bytes));
3654         }
3655
3656         btrfs_sysfs_remove_one(fs_info);
3657
3658         del_fs_roots(fs_info);
3659
3660         btrfs_put_block_group_cache(fs_info);
3661
3662         btrfs_free_block_groups(fs_info);
3663
3664         /*
3665          * we must make sure there is not any read request to
3666          * submit after we stopping all workers.
3667          */
3668         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3669         btrfs_stop_all_workers(fs_info);
3670
3671         free_root_pointers(fs_info, 1);
3672
3673         iput(fs_info->btree_inode);
3674
3675 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3676         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3677                 btrfsic_unmount(root, fs_info->fs_devices);
3678 #endif
3679
3680         btrfs_close_devices(fs_info->fs_devices);
3681         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3682
3683         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3684         percpu_counter_destroy(&fs_info->delalloc_bytes);
3685         percpu_counter_destroy(&fs_info->bio_counter);
3686         bdi_destroy(&fs_info->bdi);
3687         cleanup_srcu_struct(&fs_info->subvol_srcu);
3688
3689         btrfs_free_stripe_hash_table(fs_info);
3690
3691         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3692         root->orphan_block_rsv = NULL;
3693
3694         return 0;
3695 }
3696
3697 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3698                           int atomic)
3699 {
3700         int ret;
3701         struct inode *btree_inode = buf->pages[0]->mapping->host;
3702
3703         ret = extent_buffer_uptodate(buf);
3704         if (!ret)
3705                 return ret;
3706
3707         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3708                                     parent_transid, atomic);
3709         if (ret == -EAGAIN)
3710                 return ret;
3711         return !ret;
3712 }
3713
3714 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3715 {
3716         return set_extent_buffer_uptodate(buf);
3717 }
3718
3719 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3720 {
3721         struct btrfs_root *root;
3722         u64 transid = btrfs_header_generation(buf);
3723         int was_dirty;
3724
3725 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3726         /*
3727          * This is a fast path so only do this check if we have sanity tests
3728          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3729          * outside of the sanity tests.
3730          */
3731         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3732                 return;
3733 #endif
3734         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3735         btrfs_assert_tree_locked(buf);
3736         if (transid != root->fs_info->generation)
3737                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3738                        "found %llu running %llu\n",
3739                         buf->start, transid, root->fs_info->generation);
3740         was_dirty = set_extent_buffer_dirty(buf);
3741         if (!was_dirty)
3742                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3743                                      buf->len,
3744                                      root->fs_info->dirty_metadata_batch);
3745 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3746         if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3747                 btrfs_print_leaf(root, buf);
3748                 ASSERT(0);
3749         }
3750 #endif
3751 }
3752
3753 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3754                                         int flush_delayed)
3755 {
3756         /*
3757          * looks as though older kernels can get into trouble with
3758          * this code, they end up stuck in balance_dirty_pages forever
3759          */
3760         int ret;
3761
3762         if (current->flags & PF_MEMALLOC)
3763                 return;
3764
3765         if (flush_delayed)
3766                 btrfs_balance_delayed_items(root);
3767
3768         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3769                                      BTRFS_DIRTY_METADATA_THRESH);
3770         if (ret > 0) {
3771                 balance_dirty_pages_ratelimited(
3772                                    root->fs_info->btree_inode->i_mapping);
3773         }
3774         return;
3775 }
3776
3777 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3778 {
3779         __btrfs_btree_balance_dirty(root, 1);
3780 }
3781
3782 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3783 {
3784         __btrfs_btree_balance_dirty(root, 0);
3785 }
3786
3787 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3788 {
3789         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3790         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3791 }
3792
3793 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3794                               int read_only)
3795 {
3796         /*
3797          * Placeholder for checks
3798          */
3799         return 0;
3800 }
3801
3802 static void btrfs_error_commit_super(struct btrfs_root *root)
3803 {
3804         mutex_lock(&root->fs_info->cleaner_mutex);
3805         btrfs_run_delayed_iputs(root);
3806         mutex_unlock(&root->fs_info->cleaner_mutex);
3807
3808         down_write(&root->fs_info->cleanup_work_sem);
3809         up_write(&root->fs_info->cleanup_work_sem);
3810
3811         /* cleanup FS via transaction */
3812         btrfs_cleanup_transaction(root);
3813 }
3814
3815 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3816                                              struct btrfs_root *root)
3817 {
3818         struct btrfs_inode *btrfs_inode;
3819         struct list_head splice;
3820
3821         INIT_LIST_HEAD(&splice);
3822
3823         mutex_lock(&root->fs_info->ordered_operations_mutex);
3824         spin_lock(&root->fs_info->ordered_root_lock);
3825
3826         list_splice_init(&t->ordered_operations, &splice);
3827         while (!list_empty(&splice)) {
3828                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3829                                          ordered_operations);
3830
3831                 list_del_init(&btrfs_inode->ordered_operations);
3832                 spin_unlock(&root->fs_info->ordered_root_lock);
3833
3834                 btrfs_invalidate_inodes(btrfs_inode->root);
3835
3836                 spin_lock(&root->fs_info->ordered_root_lock);
3837         }
3838
3839         spin_unlock(&root->fs_info->ordered_root_lock);
3840         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3841 }
3842
3843 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3844 {
3845         struct btrfs_ordered_extent *ordered;
3846
3847         spin_lock(&root->ordered_extent_lock);
3848         /*
3849          * This will just short circuit the ordered completion stuff which will
3850          * make sure the ordered extent gets properly cleaned up.
3851          */
3852         list_for_each_entry(ordered, &root->ordered_extents,
3853                             root_extent_list)
3854                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3855         spin_unlock(&root->ordered_extent_lock);
3856 }
3857
3858 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3859 {
3860         struct btrfs_root *root;
3861         struct list_head splice;
3862
3863         INIT_LIST_HEAD(&splice);
3864
3865         spin_lock(&fs_info->ordered_root_lock);
3866         list_splice_init(&fs_info->ordered_roots, &splice);
3867         while (!list_empty(&splice)) {
3868                 root = list_first_entry(&splice, struct btrfs_root,
3869                                         ordered_root);
3870                 list_move_tail(&root->ordered_root,
3871                                &fs_info->ordered_roots);
3872
3873                 spin_unlock(&fs_info->ordered_root_lock);
3874                 btrfs_destroy_ordered_extents(root);
3875
3876                 cond_resched();
3877                 spin_lock(&fs_info->ordered_root_lock);
3878         }
3879         spin_unlock(&fs_info->ordered_root_lock);
3880 }
3881
3882 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3883                                       struct btrfs_root *root)
3884 {
3885         struct rb_node *node;
3886         struct btrfs_delayed_ref_root *delayed_refs;
3887         struct btrfs_delayed_ref_node *ref;
3888         int ret = 0;
3889
3890         delayed_refs = &trans->delayed_refs;
3891
3892         spin_lock(&delayed_refs->lock);
3893         if (atomic_read(&delayed_refs->num_entries) == 0) {
3894                 spin_unlock(&delayed_refs->lock);
3895                 btrfs_info(root->fs_info, "delayed_refs has NO entry");
3896                 return ret;
3897         }
3898
3899         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3900                 struct btrfs_delayed_ref_head *head;
3901                 bool pin_bytes = false;
3902
3903                 head = rb_entry(node, struct btrfs_delayed_ref_head,
3904                                 href_node);
3905                 if (!mutex_trylock(&head->mutex)) {
3906                         atomic_inc(&head->node.refs);
3907                         spin_unlock(&delayed_refs->lock);
3908
3909                         mutex_lock(&head->mutex);
3910                         mutex_unlock(&head->mutex);
3911                         btrfs_put_delayed_ref(&head->node);
3912                         spin_lock(&delayed_refs->lock);
3913                         continue;
3914                 }
3915                 spin_lock(&head->lock);
3916                 while ((node = rb_first(&head->ref_root)) != NULL) {
3917                         ref = rb_entry(node, struct btrfs_delayed_ref_node,
3918                                        rb_node);
3919                         ref->in_tree = 0;
3920                         rb_erase(&ref->rb_node, &head->ref_root);
3921                         atomic_dec(&delayed_refs->num_entries);
3922                         btrfs_put_delayed_ref(ref);
3923                 }
3924                 if (head->must_insert_reserved)
3925                         pin_bytes = true;
3926                 btrfs_free_delayed_extent_op(head->extent_op);
3927                 delayed_refs->num_heads--;
3928                 if (head->processing == 0)
3929                         delayed_refs->num_heads_ready--;
3930                 atomic_dec(&delayed_refs->num_entries);
3931                 head->node.in_tree = 0;
3932                 rb_erase(&head->href_node, &delayed_refs->href_root);
3933                 spin_unlock(&head->lock);
3934                 spin_unlock(&delayed_refs->lock);
3935                 mutex_unlock(&head->mutex);
3936
3937                 if (pin_bytes)
3938                         btrfs_pin_extent(root, head->node.bytenr,
3939                                          head->node.num_bytes, 1);
3940                 btrfs_put_delayed_ref(&head->node);
3941                 cond_resched();
3942                 spin_lock(&delayed_refs->lock);
3943         }
3944
3945         spin_unlock(&delayed_refs->lock);
3946
3947         return ret;
3948 }
3949
3950 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3951 {
3952         struct btrfs_inode *btrfs_inode;
3953         struct list_head splice;
3954
3955         INIT_LIST_HEAD(&splice);
3956
3957         spin_lock(&root->delalloc_lock);
3958         list_splice_init(&root->delalloc_inodes, &splice);
3959
3960         while (!list_empty(&splice)) {
3961                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3962                                                delalloc_inodes);
3963
3964                 list_del_init(&btrfs_inode->delalloc_inodes);
3965                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3966                           &btrfs_inode->runtime_flags);
3967                 spin_unlock(&root->delalloc_lock);
3968
3969                 btrfs_invalidate_inodes(btrfs_inode->root);
3970
3971                 spin_lock(&root->delalloc_lock);
3972         }
3973
3974         spin_unlock(&root->delalloc_lock);
3975 }
3976
3977 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3978 {
3979         struct btrfs_root *root;
3980         struct list_head splice;
3981
3982         INIT_LIST_HEAD(&splice);
3983
3984         spin_lock(&fs_info->delalloc_root_lock);
3985         list_splice_init(&fs_info->delalloc_roots, &splice);
3986         while (!list_empty(&splice)) {
3987                 root = list_first_entry(&splice, struct btrfs_root,
3988                                          delalloc_root);
3989                 list_del_init(&root->delalloc_root);
3990                 root = btrfs_grab_fs_root(root);
3991                 BUG_ON(!root);
3992                 spin_unlock(&fs_info->delalloc_root_lock);
3993
3994                 btrfs_destroy_delalloc_inodes(root);
3995                 btrfs_put_fs_root(root);
3996
3997                 spin_lock(&fs_info->delalloc_root_lock);
3998         }
3999         spin_unlock(&fs_info->delalloc_root_lock);
4000 }
4001
4002 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4003                                         struct extent_io_tree *dirty_pages,
4004                                         int mark)
4005 {
4006         int ret;
4007         struct extent_buffer *eb;
4008         u64 start = 0;
4009         u64 end;
4010
4011         while (1) {
4012                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4013                                             mark, NULL);
4014                 if (ret)
4015                         break;
4016
4017                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4018                 while (start <= end) {
4019                         eb = btrfs_find_tree_block(root, start,
4020                                                    root->leafsize);
4021                         start += root->leafsize;
4022                         if (!eb)
4023                                 continue;
4024                         wait_on_extent_buffer_writeback(eb);
4025
4026                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4027                                                &eb->bflags))
4028                                 clear_extent_buffer_dirty(eb);
4029                         free_extent_buffer_stale(eb);
4030                 }
4031         }
4032
4033         return ret;
4034 }
4035
4036 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4037                                        struct extent_io_tree *pinned_extents)
4038 {
4039         struct extent_io_tree *unpin;
4040         u64 start;
4041         u64 end;
4042         int ret;
4043         bool loop = true;
4044
4045         unpin = pinned_extents;
4046 again:
4047         while (1) {
4048                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4049                                             EXTENT_DIRTY, NULL);
4050                 if (ret)
4051                         break;
4052
4053                 /* opt_discard */
4054                 if (btrfs_test_opt(root, DISCARD))
4055                         ret = btrfs_error_discard_extent(root, start,
4056                                                          end + 1 - start,
4057                                                          NULL);
4058
4059                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4060                 btrfs_error_unpin_extent_range(root, start, end);
4061                 cond_resched();
4062         }
4063
4064         if (loop) {
4065                 if (unpin == &root->fs_info->freed_extents[0])
4066                         unpin = &root->fs_info->freed_extents[1];
4067                 else
4068                         unpin = &root->fs_info->freed_extents[0];
4069                 loop = false;
4070                 goto again;
4071         }
4072
4073         return 0;
4074 }
4075
4076 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4077                                    struct btrfs_root *root)
4078 {
4079         btrfs_destroy_ordered_operations(cur_trans, root);
4080
4081         btrfs_destroy_delayed_refs(cur_trans, root);
4082
4083         cur_trans->state = TRANS_STATE_COMMIT_START;
4084         wake_up(&root->fs_info->transaction_blocked_wait);
4085
4086         cur_trans->state = TRANS_STATE_UNBLOCKED;
4087         wake_up(&root->fs_info->transaction_wait);
4088
4089         btrfs_destroy_delayed_inodes(root);
4090         btrfs_assert_delayed_root_empty(root);
4091
4092         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4093                                      EXTENT_DIRTY);
4094         btrfs_destroy_pinned_extent(root,
4095                                     root->fs_info->pinned_extents);
4096
4097         cur_trans->state =TRANS_STATE_COMPLETED;
4098         wake_up(&cur_trans->commit_wait);
4099
4100         /*
4101         memset(cur_trans, 0, sizeof(*cur_trans));
4102         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4103         */
4104 }
4105
4106 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4107 {
4108         struct btrfs_transaction *t;
4109
4110         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4111
4112         spin_lock(&root->fs_info->trans_lock);
4113         while (!list_empty(&root->fs_info->trans_list)) {
4114                 t = list_first_entry(&root->fs_info->trans_list,
4115                                      struct btrfs_transaction, list);
4116                 if (t->state >= TRANS_STATE_COMMIT_START) {
4117                         atomic_inc(&t->use_count);
4118                         spin_unlock(&root->fs_info->trans_lock);
4119                         btrfs_wait_for_commit(root, t->transid);
4120                         btrfs_put_transaction(t);
4121                         spin_lock(&root->fs_info->trans_lock);
4122                         continue;
4123                 }
4124                 if (t == root->fs_info->running_transaction) {
4125                         t->state = TRANS_STATE_COMMIT_DOING;
4126                         spin_unlock(&root->fs_info->trans_lock);
4127                         /*
4128                          * We wait for 0 num_writers since we don't hold a trans
4129                          * handle open currently for this transaction.
4130                          */
4131                         wait_event(t->writer_wait,
4132                                    atomic_read(&t->num_writers) == 0);
4133                 } else {
4134                         spin_unlock(&root->fs_info->trans_lock);
4135                 }
4136                 btrfs_cleanup_one_transaction(t, root);
4137
4138                 spin_lock(&root->fs_info->trans_lock);
4139                 if (t == root->fs_info->running_transaction)
4140                         root->fs_info->running_transaction = NULL;
4141                 list_del_init(&t->list);
4142                 spin_unlock(&root->fs_info->trans_lock);
4143
4144                 btrfs_put_transaction(t);
4145                 trace_btrfs_transaction_commit(root);
4146                 spin_lock(&root->fs_info->trans_lock);
4147         }
4148         spin_unlock(&root->fs_info->trans_lock);
4149         btrfs_destroy_all_ordered_extents(root->fs_info);
4150         btrfs_destroy_delayed_inodes(root);
4151         btrfs_assert_delayed_root_empty(root);
4152         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4153         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4154         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4155
4156         return 0;
4157 }
4158
4159 static struct extent_io_ops btree_extent_io_ops = {
4160         .readpage_end_io_hook = btree_readpage_end_io_hook,
4161         .readpage_io_failed_hook = btree_io_failed_hook,
4162         .submit_bio_hook = btree_submit_bio_hook,
4163         /* note we're sharing with inode.c for the merge bio hook */
4164         .merge_bio_hook = btrfs_merge_bio_hook,
4165 };