Btrfs: drop the inode map tree
[linux-2.6-block.git] / fs / btrfs / disk-io.c
1 #include <linux/module.h>
2 #include <linux/fs.h>
3 #include <linux/blkdev.h>
4 #include <linux/crypto.h>
5 #include <linux/scatterlist.h>
6 #include <linux/swap.h>
7 #include <linux/radix-tree.h>
8 #include "ctree.h"
9 #include "disk-io.h"
10 #include "transaction.h"
11 #include "btrfs_inode.h"
12
13 static int check_tree_block(struct btrfs_root *root, struct buffer_head *buf)
14 {
15         struct btrfs_node *node = btrfs_buffer_node(buf);
16         if (buf->b_blocknr != btrfs_header_blocknr(&node->header)) {
17                 BUG();
18         }
19         return 0;
20 }
21
22 struct buffer_head *btrfs_find_tree_block(struct btrfs_root *root, u64 blocknr)
23 {
24         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
25         int blockbits = root->fs_info->sb->s_blocksize_bits;
26         unsigned long index = blocknr >> (PAGE_CACHE_SHIFT - blockbits);
27         struct page *page;
28         struct buffer_head *bh;
29         struct buffer_head *head;
30         struct buffer_head *ret = NULL;
31
32
33         page = find_lock_page(mapping, index);
34         if (!page)
35                 return NULL;
36
37         if (!page_has_buffers(page))
38                 goto out_unlock;
39
40         head = page_buffers(page);
41         bh = head;
42         do {
43                 if (buffer_mapped(bh) && bh->b_blocknr == blocknr) {
44                         ret = bh;
45                         get_bh(bh);
46                         goto out_unlock;
47                 }
48                 bh = bh->b_this_page;
49         } while (bh != head);
50 out_unlock:
51         unlock_page(page);
52         if (ret) {
53                 touch_buffer(ret);
54         }
55         page_cache_release(page);
56         return ret;
57 }
58
59 struct buffer_head *btrfs_find_create_tree_block(struct btrfs_root *root,
60                                                  u64 blocknr)
61 {
62         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
63         int blockbits = root->fs_info->sb->s_blocksize_bits;
64         unsigned long index = blocknr >> (PAGE_CACHE_SHIFT - blockbits);
65         struct page *page;
66         struct buffer_head *bh;
67         struct buffer_head *head;
68         struct buffer_head *ret = NULL;
69         u64 first_block = index << (PAGE_CACHE_SHIFT - blockbits);
70
71         page = grab_cache_page(mapping, index);
72         if (!page)
73                 return NULL;
74
75         if (!page_has_buffers(page))
76                 create_empty_buffers(page, root->fs_info->sb->s_blocksize, 0);
77         head = page_buffers(page);
78         bh = head;
79         do {
80                 if (!buffer_mapped(bh)) {
81                         bh->b_bdev = root->fs_info->sb->s_bdev;
82                         bh->b_blocknr = first_block;
83                         set_buffer_mapped(bh);
84                 }
85                 if (bh->b_blocknr == blocknr) {
86                         ret = bh;
87                         get_bh(bh);
88                         goto out_unlock;
89                 }
90                 bh = bh->b_this_page;
91                 first_block++;
92         } while (bh != head);
93 out_unlock:
94         unlock_page(page);
95         if (ret)
96                 touch_buffer(ret);
97         page_cache_release(page);
98         return ret;
99 }
100
101 static sector_t max_block(struct block_device *bdev)
102 {
103         sector_t retval = ~((sector_t)0);
104         loff_t sz = i_size_read(bdev->bd_inode);
105
106         if (sz) {
107                 unsigned int size = block_size(bdev);
108                 unsigned int sizebits = blksize_bits(size);
109                 retval = (sz >> sizebits);
110         }
111         return retval;
112 }
113
114 static int btree_get_block(struct inode *inode, sector_t iblock,
115                            struct buffer_head *bh, int create)
116 {
117         if (iblock >= max_block(inode->i_sb->s_bdev)) {
118                 if (create)
119                         return -EIO;
120
121                 /*
122                  * for reads, we're just trying to fill a partial page.
123                  * return a hole, they will have to call get_block again
124                  * before they can fill it, and they will get -EIO at that
125                  * time
126                  */
127                 return 0;
128         }
129         bh->b_bdev = inode->i_sb->s_bdev;
130         bh->b_blocknr = iblock;
131         set_buffer_mapped(bh);
132         return 0;
133 }
134
135 int btrfs_csum_data(struct btrfs_root * root, char *data, size_t len,
136                     char *result)
137 {
138         struct scatterlist sg;
139         struct crypto_hash *tfm = root->fs_info->hash_tfm;
140         struct hash_desc desc;
141         int ret;
142
143         desc.tfm = tfm;
144         desc.flags = 0;
145         sg_init_one(&sg, data, len);
146         spin_lock(&root->fs_info->hash_lock);
147         ret = crypto_hash_digest(&desc, &sg, 1, result);
148         spin_unlock(&root->fs_info->hash_lock);
149         if (ret) {
150                 printk("sha256 digest failed\n");
151         }
152         return ret;
153 }
154 static int csum_tree_block(struct btrfs_root *root, struct buffer_head *bh,
155                            int verify)
156 {
157         char result[BTRFS_CSUM_SIZE];
158         int ret;
159         struct btrfs_node *node;
160
161         ret = btrfs_csum_data(root, bh->b_data + BTRFS_CSUM_SIZE,
162                               bh->b_size - BTRFS_CSUM_SIZE, result);
163         if (ret)
164                 return ret;
165         if (verify) {
166                 if (memcmp(bh->b_data, result, BTRFS_CSUM_SIZE)) {
167                         printk("checksum verify failed on %lu\n",
168                                bh->b_blocknr);
169                         return 1;
170                 }
171         } else {
172                 node = btrfs_buffer_node(bh);
173                 memcpy(node->header.csum, result, BTRFS_CSUM_SIZE);
174         }
175         return 0;
176 }
177
178 static int btree_writepage(struct page *page, struct writeback_control *wbc)
179 {
180         struct buffer_head *bh;
181         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
182         struct buffer_head *head;
183         if (!page_has_buffers(page)) {
184                 create_empty_buffers(page, root->fs_info->sb->s_blocksize,
185                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
186         }
187         head = page_buffers(page);
188         bh = head;
189         do {
190                 if (buffer_dirty(bh))
191                         csum_tree_block(root, bh, 0);
192                 bh = bh->b_this_page;
193         } while (bh != head);
194         return block_write_full_page(page, btree_get_block, wbc);
195 }
196
197 static int btree_readpage(struct file * file, struct page * page)
198 {
199         return block_read_full_page(page, btree_get_block);
200 }
201
202 static struct address_space_operations btree_aops = {
203         .readpage       = btree_readpage,
204         .writepage      = btree_writepage,
205         .sync_page      = block_sync_page,
206 };
207
208 struct buffer_head *read_tree_block(struct btrfs_root *root, u64 blocknr)
209 {
210         struct buffer_head *bh = NULL;
211
212         bh = btrfs_find_create_tree_block(root, blocknr);
213         if (!bh)
214                 return bh;
215         if (buffer_uptodate(bh))
216                 goto uptodate;
217         lock_buffer(bh);
218         if (!buffer_uptodate(bh)) {
219                 get_bh(bh);
220                 bh->b_end_io = end_buffer_read_sync;
221                 submit_bh(READ, bh);
222                 wait_on_buffer(bh);
223                 if (!buffer_uptodate(bh))
224                         goto fail;
225                 csum_tree_block(root, bh, 1);
226         } else {
227                 unlock_buffer(bh);
228         }
229 uptodate:
230         if (check_tree_block(root, bh))
231                 BUG();
232         return bh;
233 fail:
234         brelse(bh);
235         return NULL;
236 }
237
238 int dirty_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
239                      struct buffer_head *buf)
240 {
241         WARN_ON(atomic_read(&buf->b_count) == 0);
242         mark_buffer_dirty(buf);
243         return 0;
244 }
245
246 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
247                      struct buffer_head *buf)
248 {
249         WARN_ON(atomic_read(&buf->b_count) == 0);
250         clear_buffer_dirty(buf);
251         return 0;
252 }
253
254 static int __setup_root(int blocksize,
255                         struct btrfs_root *root,
256                         struct btrfs_fs_info *fs_info,
257                         u64 objectid)
258 {
259         root->node = NULL;
260         root->inode = NULL;
261         root->commit_root = NULL;
262         root->blocksize = blocksize;
263         root->ref_cows = 0;
264         root->fs_info = fs_info;
265         root->objectid = objectid;
266         root->last_trans = 0;
267         root->highest_inode = 0;
268         root->last_inode_alloc = 0;
269         memset(&root->root_key, 0, sizeof(root->root_key));
270         memset(&root->root_item, 0, sizeof(root->root_item));
271         return 0;
272 }
273
274 static int find_and_setup_root(int blocksize,
275                                struct btrfs_root *tree_root,
276                                struct btrfs_fs_info *fs_info,
277                                u64 objectid,
278                                struct btrfs_root *root)
279 {
280         int ret;
281
282         __setup_root(blocksize, root, fs_info, objectid);
283         ret = btrfs_find_last_root(tree_root, objectid,
284                                    &root->root_item, &root->root_key);
285         BUG_ON(ret);
286
287         root->node = read_tree_block(root,
288                                      btrfs_root_blocknr(&root->root_item));
289         BUG_ON(!root->node);
290         return 0;
291 }
292
293 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
294                                       struct btrfs_key *location)
295 {
296         struct btrfs_root *root;
297         struct btrfs_root *tree_root = fs_info->tree_root;
298         struct btrfs_path *path;
299         struct btrfs_leaf *l;
300         u64 highest_inode;
301         int ret = 0;
302
303 printk("read_fs_root looking for %Lu %Lu %u\n", location->objectid, location->offset, location->flags);
304         root = kmalloc(sizeof(*root), GFP_NOFS);
305         if (!root) {
306 printk("failed1\n");
307                 return ERR_PTR(-ENOMEM);
308         }
309         if (location->offset == (u64)-1) {
310                 ret = find_and_setup_root(fs_info->sb->s_blocksize,
311                                           fs_info->tree_root, fs_info,
312                                           location->objectid, root);
313                 if (ret) {
314 printk("failed2\n");
315                         kfree(root);
316                         return ERR_PTR(ret);
317                 }
318                 goto insert;
319         }
320
321         __setup_root(fs_info->sb->s_blocksize, root, fs_info,
322                      location->objectid);
323
324         path = btrfs_alloc_path();
325         BUG_ON(!path);
326         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
327         if (ret != 0) {
328 printk("internal search_slot gives us %d\n", ret);
329                 if (ret > 0)
330                         ret = -ENOENT;
331                 goto out;
332         }
333         l = btrfs_buffer_leaf(path->nodes[0]);
334         memcpy(&root->root_item,
335                btrfs_item_ptr(l, path->slots[0], struct btrfs_root_item),
336                sizeof(root->root_item));
337         memcpy(&root->root_key, location, sizeof(*location));
338         ret = 0;
339 out:
340         btrfs_release_path(root, path);
341         btrfs_free_path(path);
342         if (ret) {
343                 kfree(root);
344                 return ERR_PTR(ret);
345         }
346         root->node = read_tree_block(root,
347                                      btrfs_root_blocknr(&root->root_item));
348         BUG_ON(!root->node);
349 insert:
350 printk("inserting %p\n", root);
351         root->ref_cows = 1;
352         ret = radix_tree_insert(&fs_info->fs_roots_radix, (unsigned long)root,
353                                 root);
354         if (ret) {
355 printk("radix_tree_insert gives us %d\n", ret);
356                 brelse(root->node);
357                 kfree(root);
358                 return ERR_PTR(ret);
359         }
360         ret = btrfs_find_highest_inode(root, &highest_inode);
361         if (ret == 0) {
362                 root->highest_inode = highest_inode;
363                 root->last_inode_alloc = highest_inode;
364 printk("highest inode is %Lu\n", highest_inode);
365         }
366 printk("all worked\n");
367         return root;
368 }
369
370 struct btrfs_root *open_ctree(struct super_block *sb)
371 {
372         struct btrfs_root *extent_root = kmalloc(sizeof(struct btrfs_root),
373                                                  GFP_NOFS);
374         struct btrfs_root *tree_root = kmalloc(sizeof(struct btrfs_root),
375                                                GFP_NOFS);
376         struct btrfs_fs_info *fs_info = kmalloc(sizeof(*fs_info),
377                                                 GFP_NOFS);
378         int ret;
379         struct btrfs_super_block *disk_super;
380
381         init_bit_radix(&fs_info->pinned_radix);
382         init_bit_radix(&fs_info->pending_del_radix);
383         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
384         sb_set_blocksize(sb, 4096);
385         fs_info->running_transaction = NULL;
386         fs_info->tree_root = tree_root;
387         fs_info->extent_root = extent_root;
388         fs_info->sb = sb;
389         fs_info->btree_inode = new_inode(sb);
390         fs_info->btree_inode->i_ino = 1;
391         fs_info->btree_inode->i_nlink = 1;
392         fs_info->btree_inode->i_size = sb->s_bdev->bd_inode->i_size;
393         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
394         BTRFS_I(fs_info->btree_inode)->root = tree_root;
395         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
396                sizeof(struct btrfs_key));
397         insert_inode_hash(fs_info->btree_inode);
398         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
399         fs_info->hash_tfm = crypto_alloc_hash("sha256", 0, CRYPTO_ALG_ASYNC);
400         spin_lock_init(&fs_info->hash_lock);
401         if (!fs_info->hash_tfm || IS_ERR(fs_info->hash_tfm)) {
402                 printk("failed to allocate sha256 hash\n");
403                 return NULL;
404         }
405         mutex_init(&fs_info->trans_mutex);
406         mutex_init(&fs_info->fs_mutex);
407         memset(&fs_info->current_insert, 0, sizeof(fs_info->current_insert));
408         memset(&fs_info->last_insert, 0, sizeof(fs_info->last_insert));
409
410         __setup_root(sb->s_blocksize, tree_root,
411                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
412         fs_info->sb_buffer = read_tree_block(tree_root,
413                                              BTRFS_SUPER_INFO_OFFSET /
414                                              sb->s_blocksize);
415
416         if (!fs_info->sb_buffer)
417                 return NULL;
418         disk_super = (struct btrfs_super_block *)fs_info->sb_buffer->b_data;
419         if (!btrfs_super_root(disk_super))
420                 return NULL;
421
422         fs_info->disk_super = disk_super;
423         tree_root->node = read_tree_block(tree_root,
424                                           btrfs_super_root(disk_super));
425         BUG_ON(!tree_root->node);
426
427         mutex_lock(&fs_info->fs_mutex);
428         ret = find_and_setup_root(sb->s_blocksize, tree_root, fs_info,
429                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
430         BUG_ON(ret);
431
432         fs_info->generation = btrfs_super_generation(disk_super) + 1;
433         memset(&fs_info->kobj, 0, sizeof(fs_info->kobj));
434         kobj_set_kset_s(fs_info, btrfs_subsys);
435         kobject_set_name(&fs_info->kobj, "%s", sb->s_id);
436         kobject_register(&fs_info->kobj);
437         mutex_unlock(&fs_info->fs_mutex);
438         return tree_root;
439 }
440
441 int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
442                       *root)
443 {
444         struct buffer_head *bh = root->fs_info->sb_buffer;
445
446         btrfs_set_super_root(root->fs_info->disk_super,
447                              root->fs_info->tree_root->node->b_blocknr);
448         lock_buffer(bh);
449         WARN_ON(atomic_read(&bh->b_count) < 1);
450         clear_buffer_dirty(bh);
451         csum_tree_block(root, bh, 0);
452         bh->b_end_io = end_buffer_write_sync;
453         get_bh(bh);
454         submit_bh(WRITE, bh);
455         wait_on_buffer(bh);
456         if (!buffer_uptodate(bh)) {
457                 WARN_ON(1);
458                 return -EIO;
459         }
460         return 0;
461 }
462
463 int del_fs_roots(struct btrfs_fs_info *fs_info)
464 {
465         int ret;
466         struct btrfs_root *gang[8];
467         int i;
468
469         while(1) {
470                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
471                                              (void **)gang, 0,
472                                              ARRAY_SIZE(gang));
473                 if (!ret)
474                         break;
475                 for (i = 0; i < ret; i++) {
476                         radix_tree_delete(&fs_info->fs_roots_radix,
477                                           (unsigned long)gang[i]);
478                         if (gang[i]->inode)
479                                 iput(gang[i]->inode);
480                         else
481                                 printk("no inode for root %p\n", gang[i]);
482                         if (gang[i]->node)
483                                 brelse(gang[i]->node);
484                         if (gang[i]->commit_root)
485                                 brelse(gang[i]->commit_root);
486                         kfree(gang[i]);
487                 }
488         }
489         return 0;
490 }
491
492 int close_ctree(struct btrfs_root *root)
493 {
494         int ret;
495         struct btrfs_trans_handle *trans;
496         struct btrfs_fs_info *fs_info = root->fs_info;
497
498         mutex_lock(&fs_info->fs_mutex);
499         trans = btrfs_start_transaction(root, 1);
500         btrfs_commit_transaction(trans, root);
501         /* run commit again to  drop the original snapshot */
502         trans = btrfs_start_transaction(root, 1);
503         btrfs_commit_transaction(trans, root);
504         ret = btrfs_write_and_wait_transaction(NULL, root);
505         BUG_ON(ret);
506         write_ctree_super(NULL, root);
507         mutex_unlock(&fs_info->fs_mutex);
508
509         if (fs_info->extent_root->node)
510                 btrfs_block_release(fs_info->extent_root,
511                                     fs_info->extent_root->node);
512         if (fs_info->tree_root->node)
513                 btrfs_block_release(fs_info->tree_root,
514                                     fs_info->tree_root->node);
515         btrfs_block_release(root, fs_info->sb_buffer);
516         crypto_free_hash(fs_info->hash_tfm);
517         truncate_inode_pages(fs_info->btree_inode->i_mapping, 0);
518         iput(fs_info->btree_inode);
519         del_fs_roots(fs_info);
520         kfree(fs_info->extent_root);
521         kfree(fs_info->tree_root);
522         kobject_unregister(&fs_info->kobj);
523         return 0;
524 }
525
526 void btrfs_block_release(struct btrfs_root *root, struct buffer_head *buf)
527 {
528         brelse(buf);
529 }
530