43e14a17e3f4fd083f59a787381e0ce79ed2eca8
[linux-block.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <linux/sched/mm.h>
21 #include <asm/unaligned.h>
22 #include <crypto/hash.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "btrfs_inode.h"
27 #include "volumes.h"
28 #include "print-tree.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "free-space-cache.h"
32 #include "free-space-tree.h"
33 #include "inode-map.h"
34 #include "check-integrity.h"
35 #include "rcu-string.h"
36 #include "dev-replace.h"
37 #include "raid56.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40 #include "compression.h"
41 #include "tree-checker.h"
42 #include "ref-verify.h"
43 #include "block-group.h"
44
45 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
46                                  BTRFS_HEADER_FLAG_RELOC |\
47                                  BTRFS_SUPER_FLAG_ERROR |\
48                                  BTRFS_SUPER_FLAG_SEEDING |\
49                                  BTRFS_SUPER_FLAG_METADUMP |\
50                                  BTRFS_SUPER_FLAG_METADUMP_V2)
51
52 static const struct extent_io_ops btree_extent_io_ops;
53 static void end_workqueue_fn(struct btrfs_work *work);
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56                                       struct btrfs_fs_info *fs_info);
57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59                                         struct extent_io_tree *dirty_pages,
60                                         int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62                                        struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65
66 /*
67  * btrfs_end_io_wq structs are used to do processing in task context when an IO
68  * is complete.  This is used during reads to verify checksums, and it is used
69  * by writes to insert metadata for new file extents after IO is complete.
70  */
71 struct btrfs_end_io_wq {
72         struct bio *bio;
73         bio_end_io_t *end_io;
74         void *private;
75         struct btrfs_fs_info *info;
76         blk_status_t status;
77         enum btrfs_wq_endio_type metadata;
78         struct btrfs_work work;
79 };
80
81 static struct kmem_cache *btrfs_end_io_wq_cache;
82
83 int __init btrfs_end_io_wq_init(void)
84 {
85         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86                                         sizeof(struct btrfs_end_io_wq),
87                                         0,
88                                         SLAB_MEM_SPREAD,
89                                         NULL);
90         if (!btrfs_end_io_wq_cache)
91                 return -ENOMEM;
92         return 0;
93 }
94
95 void __cold btrfs_end_io_wq_exit(void)
96 {
97         kmem_cache_destroy(btrfs_end_io_wq_cache);
98 }
99
100 /*
101  * async submit bios are used to offload expensive checksumming
102  * onto the worker threads.  They checksum file and metadata bios
103  * just before they are sent down the IO stack.
104  */
105 struct async_submit_bio {
106         void *private_data;
107         struct bio *bio;
108         extent_submit_bio_start_t *submit_bio_start;
109         int mirror_num;
110         /*
111          * bio_offset is optional, can be used if the pages in the bio
112          * can't tell us where in the file the bio should go
113          */
114         u64 bio_offset;
115         struct btrfs_work work;
116         blk_status_t status;
117 };
118
119 /*
120  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
121  * eb, the lockdep key is determined by the btrfs_root it belongs to and
122  * the level the eb occupies in the tree.
123  *
124  * Different roots are used for different purposes and may nest inside each
125  * other and they require separate keysets.  As lockdep keys should be
126  * static, assign keysets according to the purpose of the root as indicated
127  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
128  * roots have separate keysets.
129  *
130  * Lock-nesting across peer nodes is always done with the immediate parent
131  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
132  * subclass to avoid triggering lockdep warning in such cases.
133  *
134  * The key is set by the readpage_end_io_hook after the buffer has passed
135  * csum validation but before the pages are unlocked.  It is also set by
136  * btrfs_init_new_buffer on freshly allocated blocks.
137  *
138  * We also add a check to make sure the highest level of the tree is the
139  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
140  * needs update as well.
141  */
142 #ifdef CONFIG_DEBUG_LOCK_ALLOC
143 # if BTRFS_MAX_LEVEL != 8
144 #  error
145 # endif
146
147 static struct btrfs_lockdep_keyset {
148         u64                     id;             /* root objectid */
149         const char              *name_stem;     /* lock name stem */
150         char                    names[BTRFS_MAX_LEVEL + 1][20];
151         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
152 } btrfs_lockdep_keysets[] = {
153         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
154         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
155         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
156         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
157         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
158         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
159         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
160         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
161         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
162         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
163         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
164         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
165         { .id = 0,                              .name_stem = "tree"     },
166 };
167
168 void __init btrfs_init_lockdep(void)
169 {
170         int i, j;
171
172         /* initialize lockdep class names */
173         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
174                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
175
176                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
177                         snprintf(ks->names[j], sizeof(ks->names[j]),
178                                  "btrfs-%s-%02d", ks->name_stem, j);
179         }
180 }
181
182 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
183                                     int level)
184 {
185         struct btrfs_lockdep_keyset *ks;
186
187         BUG_ON(level >= ARRAY_SIZE(ks->keys));
188
189         /* find the matching keyset, id 0 is the default entry */
190         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
191                 if (ks->id == objectid)
192                         break;
193
194         lockdep_set_class_and_name(&eb->lock,
195                                    &ks->keys[level], ks->names[level]);
196 }
197
198 #endif
199
200 /*
201  * extents on the btree inode are pretty simple, there's one extent
202  * that covers the entire device
203  */
204 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
205                 struct page *page, size_t pg_offset, u64 start, u64 len,
206                 int create)
207 {
208         struct btrfs_fs_info *fs_info = inode->root->fs_info;
209         struct extent_map_tree *em_tree = &inode->extent_tree;
210         struct extent_map *em;
211         int ret;
212
213         read_lock(&em_tree->lock);
214         em = lookup_extent_mapping(em_tree, start, len);
215         if (em) {
216                 em->bdev = fs_info->fs_devices->latest_bdev;
217                 read_unlock(&em_tree->lock);
218                 goto out;
219         }
220         read_unlock(&em_tree->lock);
221
222         em = alloc_extent_map();
223         if (!em) {
224                 em = ERR_PTR(-ENOMEM);
225                 goto out;
226         }
227         em->start = 0;
228         em->len = (u64)-1;
229         em->block_len = (u64)-1;
230         em->block_start = 0;
231         em->bdev = fs_info->fs_devices->latest_bdev;
232
233         write_lock(&em_tree->lock);
234         ret = add_extent_mapping(em_tree, em, 0);
235         if (ret == -EEXIST) {
236                 free_extent_map(em);
237                 em = lookup_extent_mapping(em_tree, start, len);
238                 if (!em)
239                         em = ERR_PTR(-EIO);
240         } else if (ret) {
241                 free_extent_map(em);
242                 em = ERR_PTR(ret);
243         }
244         write_unlock(&em_tree->lock);
245
246 out:
247         return em;
248 }
249
250 /*
251  * Compute the csum of a btree block and store the result to provided buffer.
252  *
253  * Returns error if the extent buffer cannot be mapped.
254  */
255 static int csum_tree_block(struct extent_buffer *buf, u8 *result)
256 {
257         struct btrfs_fs_info *fs_info = buf->fs_info;
258         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
259         unsigned long len;
260         unsigned long cur_len;
261         unsigned long offset = BTRFS_CSUM_SIZE;
262         char *kaddr;
263         unsigned long map_start;
264         unsigned long map_len;
265         int err;
266
267         shash->tfm = fs_info->csum_shash;
268         crypto_shash_init(shash);
269
270         len = buf->len - offset;
271
272         while (len > 0) {
273                 /*
274                  * Note: we don't need to check for the err == 1 case here, as
275                  * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
276                  * and 'min_len = 32' and the currently implemented mapping
277                  * algorithm we cannot cross a page boundary.
278                  */
279                 err = map_private_extent_buffer(buf, offset, 32,
280                                         &kaddr, &map_start, &map_len);
281                 if (WARN_ON(err))
282                         return err;
283                 cur_len = min(len, map_len - (offset - map_start));
284                 crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
285                 len -= cur_len;
286                 offset += cur_len;
287         }
288         memset(result, 0, BTRFS_CSUM_SIZE);
289
290         crypto_shash_final(shash, result);
291
292         return 0;
293 }
294
295 /*
296  * we can't consider a given block up to date unless the transid of the
297  * block matches the transid in the parent node's pointer.  This is how we
298  * detect blocks that either didn't get written at all or got written
299  * in the wrong place.
300  */
301 static int verify_parent_transid(struct extent_io_tree *io_tree,
302                                  struct extent_buffer *eb, u64 parent_transid,
303                                  int atomic)
304 {
305         struct extent_state *cached_state = NULL;
306         int ret;
307         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
308
309         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
310                 return 0;
311
312         if (atomic)
313                 return -EAGAIN;
314
315         if (need_lock) {
316                 btrfs_tree_read_lock(eb);
317                 btrfs_set_lock_blocking_read(eb);
318         }
319
320         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
321                          &cached_state);
322         if (extent_buffer_uptodate(eb) &&
323             btrfs_header_generation(eb) == parent_transid) {
324                 ret = 0;
325                 goto out;
326         }
327         btrfs_err_rl(eb->fs_info,
328                 "parent transid verify failed on %llu wanted %llu found %llu",
329                         eb->start,
330                         parent_transid, btrfs_header_generation(eb));
331         ret = 1;
332
333         /*
334          * Things reading via commit roots that don't have normal protection,
335          * like send, can have a really old block in cache that may point at a
336          * block that has been freed and re-allocated.  So don't clear uptodate
337          * if we find an eb that is under IO (dirty/writeback) because we could
338          * end up reading in the stale data and then writing it back out and
339          * making everybody very sad.
340          */
341         if (!extent_buffer_under_io(eb))
342                 clear_extent_buffer_uptodate(eb);
343 out:
344         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
345                              &cached_state);
346         if (need_lock)
347                 btrfs_tree_read_unlock_blocking(eb);
348         return ret;
349 }
350
351 static bool btrfs_supported_super_csum(u16 csum_type)
352 {
353         switch (csum_type) {
354         case BTRFS_CSUM_TYPE_CRC32:
355                 return true;
356         default:
357                 return false;
358         }
359 }
360
361 /*
362  * Return 0 if the superblock checksum type matches the checksum value of that
363  * algorithm. Pass the raw disk superblock data.
364  */
365 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
366                                   char *raw_disk_sb)
367 {
368         struct btrfs_super_block *disk_sb =
369                 (struct btrfs_super_block *)raw_disk_sb;
370         char result[BTRFS_CSUM_SIZE];
371         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
372
373         shash->tfm = fs_info->csum_shash;
374         crypto_shash_init(shash);
375
376         /*
377          * The super_block structure does not span the whole
378          * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
379          * filled with zeros and is included in the checksum.
380          */
381         crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
382                             BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
383         crypto_shash_final(shash, result);
384
385         if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
386                 return 1;
387
388         return 0;
389 }
390
391 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
392                            struct btrfs_key *first_key, u64 parent_transid)
393 {
394         struct btrfs_fs_info *fs_info = eb->fs_info;
395         int found_level;
396         struct btrfs_key found_key;
397         int ret;
398
399         found_level = btrfs_header_level(eb);
400         if (found_level != level) {
401                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
402                      KERN_ERR "BTRFS: tree level check failed\n");
403                 btrfs_err(fs_info,
404 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
405                           eb->start, level, found_level);
406                 return -EIO;
407         }
408
409         if (!first_key)
410                 return 0;
411
412         /*
413          * For live tree block (new tree blocks in current transaction),
414          * we need proper lock context to avoid race, which is impossible here.
415          * So we only checks tree blocks which is read from disk, whose
416          * generation <= fs_info->last_trans_committed.
417          */
418         if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
419                 return 0;
420
421         /* We have @first_key, so this @eb must have at least one item */
422         if (btrfs_header_nritems(eb) == 0) {
423                 btrfs_err(fs_info,
424                 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
425                           eb->start);
426                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
427                 return -EUCLEAN;
428         }
429
430         if (found_level)
431                 btrfs_node_key_to_cpu(eb, &found_key, 0);
432         else
433                 btrfs_item_key_to_cpu(eb, &found_key, 0);
434         ret = btrfs_comp_cpu_keys(first_key, &found_key);
435
436         if (ret) {
437                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
438                      KERN_ERR "BTRFS: tree first key check failed\n");
439                 btrfs_err(fs_info,
440 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
441                           eb->start, parent_transid, first_key->objectid,
442                           first_key->type, first_key->offset,
443                           found_key.objectid, found_key.type,
444                           found_key.offset);
445         }
446         return ret;
447 }
448
449 /*
450  * helper to read a given tree block, doing retries as required when
451  * the checksums don't match and we have alternate mirrors to try.
452  *
453  * @parent_transid:     expected transid, skip check if 0
454  * @level:              expected level, mandatory check
455  * @first_key:          expected key of first slot, skip check if NULL
456  */
457 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
458                                           u64 parent_transid, int level,
459                                           struct btrfs_key *first_key)
460 {
461         struct btrfs_fs_info *fs_info = eb->fs_info;
462         struct extent_io_tree *io_tree;
463         int failed = 0;
464         int ret;
465         int num_copies = 0;
466         int mirror_num = 0;
467         int failed_mirror = 0;
468
469         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
470         while (1) {
471                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
472                 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
473                 if (!ret) {
474                         if (verify_parent_transid(io_tree, eb,
475                                                    parent_transid, 0))
476                                 ret = -EIO;
477                         else if (btrfs_verify_level_key(eb, level,
478                                                 first_key, parent_transid))
479                                 ret = -EUCLEAN;
480                         else
481                                 break;
482                 }
483
484                 num_copies = btrfs_num_copies(fs_info,
485                                               eb->start, eb->len);
486                 if (num_copies == 1)
487                         break;
488
489                 if (!failed_mirror) {
490                         failed = 1;
491                         failed_mirror = eb->read_mirror;
492                 }
493
494                 mirror_num++;
495                 if (mirror_num == failed_mirror)
496                         mirror_num++;
497
498                 if (mirror_num > num_copies)
499                         break;
500         }
501
502         if (failed && !ret && failed_mirror)
503                 btrfs_repair_eb_io_failure(eb, failed_mirror);
504
505         return ret;
506 }
507
508 /*
509  * checksum a dirty tree block before IO.  This has extra checks to make sure
510  * we only fill in the checksum field in the first page of a multi-page block
511  */
512
513 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
514 {
515         u64 start = page_offset(page);
516         u64 found_start;
517         u8 result[BTRFS_CSUM_SIZE];
518         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
519         struct extent_buffer *eb;
520         int ret;
521
522         eb = (struct extent_buffer *)page->private;
523         if (page != eb->pages[0])
524                 return 0;
525
526         found_start = btrfs_header_bytenr(eb);
527         /*
528          * Please do not consolidate these warnings into a single if.
529          * It is useful to know what went wrong.
530          */
531         if (WARN_ON(found_start != start))
532                 return -EUCLEAN;
533         if (WARN_ON(!PageUptodate(page)))
534                 return -EUCLEAN;
535
536         ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
537                         btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
538
539         if (csum_tree_block(eb, result))
540                 return -EINVAL;
541
542         if (btrfs_header_level(eb))
543                 ret = btrfs_check_node(eb);
544         else
545                 ret = btrfs_check_leaf_full(eb);
546
547         if (ret < 0) {
548                 btrfs_print_tree(eb, 0);
549                 btrfs_err(fs_info,
550                 "block=%llu write time tree block corruption detected",
551                           eb->start);
552                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
553                 return ret;
554         }
555         write_extent_buffer(eb, result, 0, csum_size);
556
557         return 0;
558 }
559
560 static int check_tree_block_fsid(struct extent_buffer *eb)
561 {
562         struct btrfs_fs_info *fs_info = eb->fs_info;
563         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
564         u8 fsid[BTRFS_FSID_SIZE];
565         int ret = 1;
566
567         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
568         while (fs_devices) {
569                 u8 *metadata_uuid;
570
571                 /*
572                  * Checking the incompat flag is only valid for the current
573                  * fs. For seed devices it's forbidden to have their uuid
574                  * changed so reading ->fsid in this case is fine
575                  */
576                 if (fs_devices == fs_info->fs_devices &&
577                     btrfs_fs_incompat(fs_info, METADATA_UUID))
578                         metadata_uuid = fs_devices->metadata_uuid;
579                 else
580                         metadata_uuid = fs_devices->fsid;
581
582                 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
583                         ret = 0;
584                         break;
585                 }
586                 fs_devices = fs_devices->seed;
587         }
588         return ret;
589 }
590
591 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
592                                       u64 phy_offset, struct page *page,
593                                       u64 start, u64 end, int mirror)
594 {
595         u64 found_start;
596         int found_level;
597         struct extent_buffer *eb;
598         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
599         struct btrfs_fs_info *fs_info = root->fs_info;
600         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
601         int ret = 0;
602         u8 result[BTRFS_CSUM_SIZE];
603         int reads_done;
604
605         if (!page->private)
606                 goto out;
607
608         eb = (struct extent_buffer *)page->private;
609
610         /* the pending IO might have been the only thing that kept this buffer
611          * in memory.  Make sure we have a ref for all this other checks
612          */
613         atomic_inc(&eb->refs);
614
615         reads_done = atomic_dec_and_test(&eb->io_pages);
616         if (!reads_done)
617                 goto err;
618
619         eb->read_mirror = mirror;
620         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
621                 ret = -EIO;
622                 goto err;
623         }
624
625         found_start = btrfs_header_bytenr(eb);
626         if (found_start != eb->start) {
627                 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
628                              eb->start, found_start);
629                 ret = -EIO;
630                 goto err;
631         }
632         if (check_tree_block_fsid(eb)) {
633                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
634                              eb->start);
635                 ret = -EIO;
636                 goto err;
637         }
638         found_level = btrfs_header_level(eb);
639         if (found_level >= BTRFS_MAX_LEVEL) {
640                 btrfs_err(fs_info, "bad tree block level %d on %llu",
641                           (int)btrfs_header_level(eb), eb->start);
642                 ret = -EIO;
643                 goto err;
644         }
645
646         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
647                                        eb, found_level);
648
649         ret = csum_tree_block(eb, result);
650         if (ret)
651                 goto err;
652
653         if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
654                 u32 val;
655                 u32 found = 0;
656
657                 memcpy(&found, result, csum_size);
658
659                 read_extent_buffer(eb, &val, 0, csum_size);
660                 btrfs_warn_rl(fs_info,
661                 "%s checksum verify failed on %llu wanted %x found %x level %d",
662                               fs_info->sb->s_id, eb->start,
663                               val, found, btrfs_header_level(eb));
664                 ret = -EUCLEAN;
665                 goto err;
666         }
667
668         /*
669          * If this is a leaf block and it is corrupt, set the corrupt bit so
670          * that we don't try and read the other copies of this block, just
671          * return -EIO.
672          */
673         if (found_level == 0 && btrfs_check_leaf_full(eb)) {
674                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
675                 ret = -EIO;
676         }
677
678         if (found_level > 0 && btrfs_check_node(eb))
679                 ret = -EIO;
680
681         if (!ret)
682                 set_extent_buffer_uptodate(eb);
683         else
684                 btrfs_err(fs_info,
685                           "block=%llu read time tree block corruption detected",
686                           eb->start);
687 err:
688         if (reads_done &&
689             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
690                 btree_readahead_hook(eb, ret);
691
692         if (ret) {
693                 /*
694                  * our io error hook is going to dec the io pages
695                  * again, we have to make sure it has something
696                  * to decrement
697                  */
698                 atomic_inc(&eb->io_pages);
699                 clear_extent_buffer_uptodate(eb);
700         }
701         free_extent_buffer(eb);
702 out:
703         return ret;
704 }
705
706 static void end_workqueue_bio(struct bio *bio)
707 {
708         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
709         struct btrfs_fs_info *fs_info;
710         struct btrfs_workqueue *wq;
711
712         fs_info = end_io_wq->info;
713         end_io_wq->status = bio->bi_status;
714
715         if (bio_op(bio) == REQ_OP_WRITE) {
716                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
717                         wq = fs_info->endio_meta_write_workers;
718                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
719                         wq = fs_info->endio_freespace_worker;
720                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
721                         wq = fs_info->endio_raid56_workers;
722                 else
723                         wq = fs_info->endio_write_workers;
724         } else {
725                 if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR))
726                         wq = fs_info->endio_repair_workers;
727                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
728                         wq = fs_info->endio_raid56_workers;
729                 else if (end_io_wq->metadata)
730                         wq = fs_info->endio_meta_workers;
731                 else
732                         wq = fs_info->endio_workers;
733         }
734
735         btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
736         btrfs_queue_work(wq, &end_io_wq->work);
737 }
738
739 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
740                         enum btrfs_wq_endio_type metadata)
741 {
742         struct btrfs_end_io_wq *end_io_wq;
743
744         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
745         if (!end_io_wq)
746                 return BLK_STS_RESOURCE;
747
748         end_io_wq->private = bio->bi_private;
749         end_io_wq->end_io = bio->bi_end_io;
750         end_io_wq->info = info;
751         end_io_wq->status = 0;
752         end_io_wq->bio = bio;
753         end_io_wq->metadata = metadata;
754
755         bio->bi_private = end_io_wq;
756         bio->bi_end_io = end_workqueue_bio;
757         return 0;
758 }
759
760 static void run_one_async_start(struct btrfs_work *work)
761 {
762         struct async_submit_bio *async;
763         blk_status_t ret;
764
765         async = container_of(work, struct  async_submit_bio, work);
766         ret = async->submit_bio_start(async->private_data, async->bio,
767                                       async->bio_offset);
768         if (ret)
769                 async->status = ret;
770 }
771
772 /*
773  * In order to insert checksums into the metadata in large chunks, we wait
774  * until bio submission time.   All the pages in the bio are checksummed and
775  * sums are attached onto the ordered extent record.
776  *
777  * At IO completion time the csums attached on the ordered extent record are
778  * inserted into the tree.
779  */
780 static void run_one_async_done(struct btrfs_work *work)
781 {
782         struct async_submit_bio *async;
783         struct inode *inode;
784         blk_status_t ret;
785
786         async = container_of(work, struct  async_submit_bio, work);
787         inode = async->private_data;
788
789         /* If an error occurred we just want to clean up the bio and move on */
790         if (async->status) {
791                 async->bio->bi_status = async->status;
792                 bio_endio(async->bio);
793                 return;
794         }
795
796         /*
797          * All of the bios that pass through here are from async helpers.
798          * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
799          * This changes nothing when cgroups aren't in use.
800          */
801         async->bio->bi_opf |= REQ_CGROUP_PUNT;
802         ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
803         if (ret) {
804                 async->bio->bi_status = ret;
805                 bio_endio(async->bio);
806         }
807 }
808
809 static void run_one_async_free(struct btrfs_work *work)
810 {
811         struct async_submit_bio *async;
812
813         async = container_of(work, struct  async_submit_bio, work);
814         kfree(async);
815 }
816
817 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
818                                  int mirror_num, unsigned long bio_flags,
819                                  u64 bio_offset, void *private_data,
820                                  extent_submit_bio_start_t *submit_bio_start)
821 {
822         struct async_submit_bio *async;
823
824         async = kmalloc(sizeof(*async), GFP_NOFS);
825         if (!async)
826                 return BLK_STS_RESOURCE;
827
828         async->private_data = private_data;
829         async->bio = bio;
830         async->mirror_num = mirror_num;
831         async->submit_bio_start = submit_bio_start;
832
833         btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
834                         run_one_async_free);
835
836         async->bio_offset = bio_offset;
837
838         async->status = 0;
839
840         if (op_is_sync(bio->bi_opf))
841                 btrfs_set_work_high_priority(&async->work);
842
843         btrfs_queue_work(fs_info->workers, &async->work);
844         return 0;
845 }
846
847 static blk_status_t btree_csum_one_bio(struct bio *bio)
848 {
849         struct bio_vec *bvec;
850         struct btrfs_root *root;
851         int ret = 0;
852         struct bvec_iter_all iter_all;
853
854         ASSERT(!bio_flagged(bio, BIO_CLONED));
855         bio_for_each_segment_all(bvec, bio, iter_all) {
856                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
857                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
858                 if (ret)
859                         break;
860         }
861
862         return errno_to_blk_status(ret);
863 }
864
865 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
866                                              u64 bio_offset)
867 {
868         /*
869          * when we're called for a write, we're already in the async
870          * submission context.  Just jump into btrfs_map_bio
871          */
872         return btree_csum_one_bio(bio);
873 }
874
875 static int check_async_write(struct btrfs_fs_info *fs_info,
876                              struct btrfs_inode *bi)
877 {
878         if (atomic_read(&bi->sync_writers))
879                 return 0;
880         if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
881                 return 0;
882         return 1;
883 }
884
885 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
886                                           int mirror_num,
887                                           unsigned long bio_flags)
888 {
889         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
890         int async = check_async_write(fs_info, BTRFS_I(inode));
891         blk_status_t ret;
892
893         if (bio_op(bio) != REQ_OP_WRITE) {
894                 /*
895                  * called for a read, do the setup so that checksum validation
896                  * can happen in the async kernel threads
897                  */
898                 ret = btrfs_bio_wq_end_io(fs_info, bio,
899                                           BTRFS_WQ_ENDIO_METADATA);
900                 if (ret)
901                         goto out_w_error;
902                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
903         } else if (!async) {
904                 ret = btree_csum_one_bio(bio);
905                 if (ret)
906                         goto out_w_error;
907                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
908         } else {
909                 /*
910                  * kthread helpers are used to submit writes so that
911                  * checksumming can happen in parallel across all CPUs
912                  */
913                 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
914                                           0, inode, btree_submit_bio_start);
915         }
916
917         if (ret)
918                 goto out_w_error;
919         return 0;
920
921 out_w_error:
922         bio->bi_status = ret;
923         bio_endio(bio);
924         return ret;
925 }
926
927 #ifdef CONFIG_MIGRATION
928 static int btree_migratepage(struct address_space *mapping,
929                         struct page *newpage, struct page *page,
930                         enum migrate_mode mode)
931 {
932         /*
933          * we can't safely write a btree page from here,
934          * we haven't done the locking hook
935          */
936         if (PageDirty(page))
937                 return -EAGAIN;
938         /*
939          * Buffers may be managed in a filesystem specific way.
940          * We must have no buffers or drop them.
941          */
942         if (page_has_private(page) &&
943             !try_to_release_page(page, GFP_KERNEL))
944                 return -EAGAIN;
945         return migrate_page(mapping, newpage, page, mode);
946 }
947 #endif
948
949
950 static int btree_writepages(struct address_space *mapping,
951                             struct writeback_control *wbc)
952 {
953         struct btrfs_fs_info *fs_info;
954         int ret;
955
956         if (wbc->sync_mode == WB_SYNC_NONE) {
957
958                 if (wbc->for_kupdate)
959                         return 0;
960
961                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
962                 /* this is a bit racy, but that's ok */
963                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
964                                              BTRFS_DIRTY_METADATA_THRESH,
965                                              fs_info->dirty_metadata_batch);
966                 if (ret < 0)
967                         return 0;
968         }
969         return btree_write_cache_pages(mapping, wbc);
970 }
971
972 static int btree_readpage(struct file *file, struct page *page)
973 {
974         struct extent_io_tree *tree;
975         tree = &BTRFS_I(page->mapping->host)->io_tree;
976         return extent_read_full_page(tree, page, btree_get_extent, 0);
977 }
978
979 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
980 {
981         if (PageWriteback(page) || PageDirty(page))
982                 return 0;
983
984         return try_release_extent_buffer(page);
985 }
986
987 static void btree_invalidatepage(struct page *page, unsigned int offset,
988                                  unsigned int length)
989 {
990         struct extent_io_tree *tree;
991         tree = &BTRFS_I(page->mapping->host)->io_tree;
992         extent_invalidatepage(tree, page, offset);
993         btree_releasepage(page, GFP_NOFS);
994         if (PagePrivate(page)) {
995                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
996                            "page private not zero on page %llu",
997                            (unsigned long long)page_offset(page));
998                 ClearPagePrivate(page);
999                 set_page_private(page, 0);
1000                 put_page(page);
1001         }
1002 }
1003
1004 static int btree_set_page_dirty(struct page *page)
1005 {
1006 #ifdef DEBUG
1007         struct extent_buffer *eb;
1008
1009         BUG_ON(!PagePrivate(page));
1010         eb = (struct extent_buffer *)page->private;
1011         BUG_ON(!eb);
1012         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1013         BUG_ON(!atomic_read(&eb->refs));
1014         btrfs_assert_tree_locked(eb);
1015 #endif
1016         return __set_page_dirty_nobuffers(page);
1017 }
1018
1019 static const struct address_space_operations btree_aops = {
1020         .readpage       = btree_readpage,
1021         .writepages     = btree_writepages,
1022         .releasepage    = btree_releasepage,
1023         .invalidatepage = btree_invalidatepage,
1024 #ifdef CONFIG_MIGRATION
1025         .migratepage    = btree_migratepage,
1026 #endif
1027         .set_page_dirty = btree_set_page_dirty,
1028 };
1029
1030 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1031 {
1032         struct extent_buffer *buf = NULL;
1033         int ret;
1034
1035         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1036         if (IS_ERR(buf))
1037                 return;
1038
1039         ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1040         if (ret < 0)
1041                 free_extent_buffer_stale(buf);
1042         else
1043                 free_extent_buffer(buf);
1044 }
1045
1046 struct extent_buffer *btrfs_find_create_tree_block(
1047                                                 struct btrfs_fs_info *fs_info,
1048                                                 u64 bytenr)
1049 {
1050         if (btrfs_is_testing(fs_info))
1051                 return alloc_test_extent_buffer(fs_info, bytenr);
1052         return alloc_extent_buffer(fs_info, bytenr);
1053 }
1054
1055 /*
1056  * Read tree block at logical address @bytenr and do variant basic but critical
1057  * verification.
1058  *
1059  * @parent_transid:     expected transid of this tree block, skip check if 0
1060  * @level:              expected level, mandatory check
1061  * @first_key:          expected key in slot 0, skip check if NULL
1062  */
1063 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1064                                       u64 parent_transid, int level,
1065                                       struct btrfs_key *first_key)
1066 {
1067         struct extent_buffer *buf = NULL;
1068         int ret;
1069
1070         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1071         if (IS_ERR(buf))
1072                 return buf;
1073
1074         ret = btree_read_extent_buffer_pages(buf, parent_transid,
1075                                              level, first_key);
1076         if (ret) {
1077                 free_extent_buffer_stale(buf);
1078                 return ERR_PTR(ret);
1079         }
1080         return buf;
1081
1082 }
1083
1084 void btrfs_clean_tree_block(struct extent_buffer *buf)
1085 {
1086         struct btrfs_fs_info *fs_info = buf->fs_info;
1087         if (btrfs_header_generation(buf) ==
1088             fs_info->running_transaction->transid) {
1089                 btrfs_assert_tree_locked(buf);
1090
1091                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1092                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1093                                                  -buf->len,
1094                                                  fs_info->dirty_metadata_batch);
1095                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1096                         btrfs_set_lock_blocking_write(buf);
1097                         clear_extent_buffer_dirty(buf);
1098                 }
1099         }
1100 }
1101
1102 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1103 {
1104         struct btrfs_subvolume_writers *writers;
1105         int ret;
1106
1107         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1108         if (!writers)
1109                 return ERR_PTR(-ENOMEM);
1110
1111         ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1112         if (ret < 0) {
1113                 kfree(writers);
1114                 return ERR_PTR(ret);
1115         }
1116
1117         init_waitqueue_head(&writers->wait);
1118         return writers;
1119 }
1120
1121 static void
1122 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1123 {
1124         percpu_counter_destroy(&writers->counter);
1125         kfree(writers);
1126 }
1127
1128 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1129                          u64 objectid)
1130 {
1131         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1132         root->node = NULL;
1133         root->commit_root = NULL;
1134         root->state = 0;
1135         root->orphan_cleanup_state = 0;
1136
1137         root->last_trans = 0;
1138         root->highest_objectid = 0;
1139         root->nr_delalloc_inodes = 0;
1140         root->nr_ordered_extents = 0;
1141         root->inode_tree = RB_ROOT;
1142         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1143         root->block_rsv = NULL;
1144
1145         INIT_LIST_HEAD(&root->dirty_list);
1146         INIT_LIST_HEAD(&root->root_list);
1147         INIT_LIST_HEAD(&root->delalloc_inodes);
1148         INIT_LIST_HEAD(&root->delalloc_root);
1149         INIT_LIST_HEAD(&root->ordered_extents);
1150         INIT_LIST_HEAD(&root->ordered_root);
1151         INIT_LIST_HEAD(&root->reloc_dirty_list);
1152         INIT_LIST_HEAD(&root->logged_list[0]);
1153         INIT_LIST_HEAD(&root->logged_list[1]);
1154         spin_lock_init(&root->inode_lock);
1155         spin_lock_init(&root->delalloc_lock);
1156         spin_lock_init(&root->ordered_extent_lock);
1157         spin_lock_init(&root->accounting_lock);
1158         spin_lock_init(&root->log_extents_lock[0]);
1159         spin_lock_init(&root->log_extents_lock[1]);
1160         spin_lock_init(&root->qgroup_meta_rsv_lock);
1161         mutex_init(&root->objectid_mutex);
1162         mutex_init(&root->log_mutex);
1163         mutex_init(&root->ordered_extent_mutex);
1164         mutex_init(&root->delalloc_mutex);
1165         init_waitqueue_head(&root->log_writer_wait);
1166         init_waitqueue_head(&root->log_commit_wait[0]);
1167         init_waitqueue_head(&root->log_commit_wait[1]);
1168         INIT_LIST_HEAD(&root->log_ctxs[0]);
1169         INIT_LIST_HEAD(&root->log_ctxs[1]);
1170         atomic_set(&root->log_commit[0], 0);
1171         atomic_set(&root->log_commit[1], 0);
1172         atomic_set(&root->log_writers, 0);
1173         atomic_set(&root->log_batch, 0);
1174         refcount_set(&root->refs, 1);
1175         atomic_set(&root->will_be_snapshotted, 0);
1176         atomic_set(&root->snapshot_force_cow, 0);
1177         atomic_set(&root->nr_swapfiles, 0);
1178         root->log_transid = 0;
1179         root->log_transid_committed = -1;
1180         root->last_log_commit = 0;
1181         if (!dummy)
1182                 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1183                                     IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1184
1185         memset(&root->root_key, 0, sizeof(root->root_key));
1186         memset(&root->root_item, 0, sizeof(root->root_item));
1187         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1188         if (!dummy)
1189                 root->defrag_trans_start = fs_info->generation;
1190         else
1191                 root->defrag_trans_start = 0;
1192         root->root_key.objectid = objectid;
1193         root->anon_dev = 0;
1194
1195         spin_lock_init(&root->root_item_lock);
1196         btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1197 }
1198
1199 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1200                 gfp_t flags)
1201 {
1202         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1203         if (root)
1204                 root->fs_info = fs_info;
1205         return root;
1206 }
1207
1208 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1209 /* Should only be used by the testing infrastructure */
1210 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1211 {
1212         struct btrfs_root *root;
1213
1214         if (!fs_info)
1215                 return ERR_PTR(-EINVAL);
1216
1217         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1218         if (!root)
1219                 return ERR_PTR(-ENOMEM);
1220
1221         /* We don't use the stripesize in selftest, set it as sectorsize */
1222         __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1223         root->alloc_bytenr = 0;
1224
1225         return root;
1226 }
1227 #endif
1228
1229 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1230                                      u64 objectid)
1231 {
1232         struct btrfs_fs_info *fs_info = trans->fs_info;
1233         struct extent_buffer *leaf;
1234         struct btrfs_root *tree_root = fs_info->tree_root;
1235         struct btrfs_root *root;
1236         struct btrfs_key key;
1237         unsigned int nofs_flag;
1238         int ret = 0;
1239         uuid_le uuid = NULL_UUID_LE;
1240
1241         /*
1242          * We're holding a transaction handle, so use a NOFS memory allocation
1243          * context to avoid deadlock if reclaim happens.
1244          */
1245         nofs_flag = memalloc_nofs_save();
1246         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1247         memalloc_nofs_restore(nofs_flag);
1248         if (!root)
1249                 return ERR_PTR(-ENOMEM);
1250
1251         __setup_root(root, fs_info, objectid);
1252         root->root_key.objectid = objectid;
1253         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1254         root->root_key.offset = 0;
1255
1256         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1257         if (IS_ERR(leaf)) {
1258                 ret = PTR_ERR(leaf);
1259                 leaf = NULL;
1260                 goto fail;
1261         }
1262
1263         root->node = leaf;
1264         btrfs_mark_buffer_dirty(leaf);
1265
1266         root->commit_root = btrfs_root_node(root);
1267         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1268
1269         root->root_item.flags = 0;
1270         root->root_item.byte_limit = 0;
1271         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1272         btrfs_set_root_generation(&root->root_item, trans->transid);
1273         btrfs_set_root_level(&root->root_item, 0);
1274         btrfs_set_root_refs(&root->root_item, 1);
1275         btrfs_set_root_used(&root->root_item, leaf->len);
1276         btrfs_set_root_last_snapshot(&root->root_item, 0);
1277         btrfs_set_root_dirid(&root->root_item, 0);
1278         if (is_fstree(objectid))
1279                 uuid_le_gen(&uuid);
1280         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1281         root->root_item.drop_level = 0;
1282
1283         key.objectid = objectid;
1284         key.type = BTRFS_ROOT_ITEM_KEY;
1285         key.offset = 0;
1286         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1287         if (ret)
1288                 goto fail;
1289
1290         btrfs_tree_unlock(leaf);
1291
1292         return root;
1293
1294 fail:
1295         if (leaf) {
1296                 btrfs_tree_unlock(leaf);
1297                 free_extent_buffer(root->commit_root);
1298                 free_extent_buffer(leaf);
1299         }
1300         kfree(root);
1301
1302         return ERR_PTR(ret);
1303 }
1304
1305 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1306                                          struct btrfs_fs_info *fs_info)
1307 {
1308         struct btrfs_root *root;
1309         struct extent_buffer *leaf;
1310
1311         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1312         if (!root)
1313                 return ERR_PTR(-ENOMEM);
1314
1315         __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1316
1317         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1318         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1319         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1320
1321         /*
1322          * DON'T set REF_COWS for log trees
1323          *
1324          * log trees do not get reference counted because they go away
1325          * before a real commit is actually done.  They do store pointers
1326          * to file data extents, and those reference counts still get
1327          * updated (along with back refs to the log tree).
1328          */
1329
1330         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1331                         NULL, 0, 0, 0);
1332         if (IS_ERR(leaf)) {
1333                 kfree(root);
1334                 return ERR_CAST(leaf);
1335         }
1336
1337         root->node = leaf;
1338
1339         btrfs_mark_buffer_dirty(root->node);
1340         btrfs_tree_unlock(root->node);
1341         return root;
1342 }
1343
1344 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1345                              struct btrfs_fs_info *fs_info)
1346 {
1347         struct btrfs_root *log_root;
1348
1349         log_root = alloc_log_tree(trans, fs_info);
1350         if (IS_ERR(log_root))
1351                 return PTR_ERR(log_root);
1352         WARN_ON(fs_info->log_root_tree);
1353         fs_info->log_root_tree = log_root;
1354         return 0;
1355 }
1356
1357 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1358                        struct btrfs_root *root)
1359 {
1360         struct btrfs_fs_info *fs_info = root->fs_info;
1361         struct btrfs_root *log_root;
1362         struct btrfs_inode_item *inode_item;
1363
1364         log_root = alloc_log_tree(trans, fs_info);
1365         if (IS_ERR(log_root))
1366                 return PTR_ERR(log_root);
1367
1368         log_root->last_trans = trans->transid;
1369         log_root->root_key.offset = root->root_key.objectid;
1370
1371         inode_item = &log_root->root_item.inode;
1372         btrfs_set_stack_inode_generation(inode_item, 1);
1373         btrfs_set_stack_inode_size(inode_item, 3);
1374         btrfs_set_stack_inode_nlink(inode_item, 1);
1375         btrfs_set_stack_inode_nbytes(inode_item,
1376                                      fs_info->nodesize);
1377         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1378
1379         btrfs_set_root_node(&log_root->root_item, log_root->node);
1380
1381         WARN_ON(root->log_root);
1382         root->log_root = log_root;
1383         root->log_transid = 0;
1384         root->log_transid_committed = -1;
1385         root->last_log_commit = 0;
1386         return 0;
1387 }
1388
1389 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1390                                                struct btrfs_key *key)
1391 {
1392         struct btrfs_root *root;
1393         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1394         struct btrfs_path *path;
1395         u64 generation;
1396         int ret;
1397         int level;
1398
1399         path = btrfs_alloc_path();
1400         if (!path)
1401                 return ERR_PTR(-ENOMEM);
1402
1403         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1404         if (!root) {
1405                 ret = -ENOMEM;
1406                 goto alloc_fail;
1407         }
1408
1409         __setup_root(root, fs_info, key->objectid);
1410
1411         ret = btrfs_find_root(tree_root, key, path,
1412                               &root->root_item, &root->root_key);
1413         if (ret) {
1414                 if (ret > 0)
1415                         ret = -ENOENT;
1416                 goto find_fail;
1417         }
1418
1419         generation = btrfs_root_generation(&root->root_item);
1420         level = btrfs_root_level(&root->root_item);
1421         root->node = read_tree_block(fs_info,
1422                                      btrfs_root_bytenr(&root->root_item),
1423                                      generation, level, NULL);
1424         if (IS_ERR(root->node)) {
1425                 ret = PTR_ERR(root->node);
1426                 goto find_fail;
1427         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1428                 ret = -EIO;
1429                 free_extent_buffer(root->node);
1430                 goto find_fail;
1431         }
1432         root->commit_root = btrfs_root_node(root);
1433 out:
1434         btrfs_free_path(path);
1435         return root;
1436
1437 find_fail:
1438         kfree(root);
1439 alloc_fail:
1440         root = ERR_PTR(ret);
1441         goto out;
1442 }
1443
1444 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1445                                       struct btrfs_key *location)
1446 {
1447         struct btrfs_root *root;
1448
1449         root = btrfs_read_tree_root(tree_root, location);
1450         if (IS_ERR(root))
1451                 return root;
1452
1453         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1454                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1455                 btrfs_check_and_init_root_item(&root->root_item);
1456         }
1457
1458         return root;
1459 }
1460
1461 int btrfs_init_fs_root(struct btrfs_root *root)
1462 {
1463         int ret;
1464         struct btrfs_subvolume_writers *writers;
1465
1466         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1467         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1468                                         GFP_NOFS);
1469         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1470                 ret = -ENOMEM;
1471                 goto fail;
1472         }
1473
1474         writers = btrfs_alloc_subvolume_writers();
1475         if (IS_ERR(writers)) {
1476                 ret = PTR_ERR(writers);
1477                 goto fail;
1478         }
1479         root->subv_writers = writers;
1480
1481         btrfs_init_free_ino_ctl(root);
1482         spin_lock_init(&root->ino_cache_lock);
1483         init_waitqueue_head(&root->ino_cache_wait);
1484
1485         ret = get_anon_bdev(&root->anon_dev);
1486         if (ret)
1487                 goto fail;
1488
1489         mutex_lock(&root->objectid_mutex);
1490         ret = btrfs_find_highest_objectid(root,
1491                                         &root->highest_objectid);
1492         if (ret) {
1493                 mutex_unlock(&root->objectid_mutex);
1494                 goto fail;
1495         }
1496
1497         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1498
1499         mutex_unlock(&root->objectid_mutex);
1500
1501         return 0;
1502 fail:
1503         /* The caller is responsible to call btrfs_free_fs_root */
1504         return ret;
1505 }
1506
1507 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1508                                         u64 root_id)
1509 {
1510         struct btrfs_root *root;
1511
1512         spin_lock(&fs_info->fs_roots_radix_lock);
1513         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1514                                  (unsigned long)root_id);
1515         spin_unlock(&fs_info->fs_roots_radix_lock);
1516         return root;
1517 }
1518
1519 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1520                          struct btrfs_root *root)
1521 {
1522         int ret;
1523
1524         ret = radix_tree_preload(GFP_NOFS);
1525         if (ret)
1526                 return ret;
1527
1528         spin_lock(&fs_info->fs_roots_radix_lock);
1529         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1530                                 (unsigned long)root->root_key.objectid,
1531                                 root);
1532         if (ret == 0)
1533                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1534         spin_unlock(&fs_info->fs_roots_radix_lock);
1535         radix_tree_preload_end();
1536
1537         return ret;
1538 }
1539
1540 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1541                                      struct btrfs_key *location,
1542                                      bool check_ref)
1543 {
1544         struct btrfs_root *root;
1545         struct btrfs_path *path;
1546         struct btrfs_key key;
1547         int ret;
1548
1549         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1550                 return fs_info->tree_root;
1551         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1552                 return fs_info->extent_root;
1553         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1554                 return fs_info->chunk_root;
1555         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1556                 return fs_info->dev_root;
1557         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1558                 return fs_info->csum_root;
1559         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1560                 return fs_info->quota_root ? fs_info->quota_root :
1561                                              ERR_PTR(-ENOENT);
1562         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1563                 return fs_info->uuid_root ? fs_info->uuid_root :
1564                                             ERR_PTR(-ENOENT);
1565         if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1566                 return fs_info->free_space_root ? fs_info->free_space_root :
1567                                                   ERR_PTR(-ENOENT);
1568 again:
1569         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1570         if (root) {
1571                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1572                         return ERR_PTR(-ENOENT);
1573                 return root;
1574         }
1575
1576         root = btrfs_read_fs_root(fs_info->tree_root, location);
1577         if (IS_ERR(root))
1578                 return root;
1579
1580         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1581                 ret = -ENOENT;
1582                 goto fail;
1583         }
1584
1585         ret = btrfs_init_fs_root(root);
1586         if (ret)
1587                 goto fail;
1588
1589         path = btrfs_alloc_path();
1590         if (!path) {
1591                 ret = -ENOMEM;
1592                 goto fail;
1593         }
1594         key.objectid = BTRFS_ORPHAN_OBJECTID;
1595         key.type = BTRFS_ORPHAN_ITEM_KEY;
1596         key.offset = location->objectid;
1597
1598         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1599         btrfs_free_path(path);
1600         if (ret < 0)
1601                 goto fail;
1602         if (ret == 0)
1603                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1604
1605         ret = btrfs_insert_fs_root(fs_info, root);
1606         if (ret) {
1607                 if (ret == -EEXIST) {
1608                         btrfs_free_fs_root(root);
1609                         goto again;
1610                 }
1611                 goto fail;
1612         }
1613         return root;
1614 fail:
1615         btrfs_free_fs_root(root);
1616         return ERR_PTR(ret);
1617 }
1618
1619 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1620 {
1621         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1622         int ret = 0;
1623         struct btrfs_device *device;
1624         struct backing_dev_info *bdi;
1625
1626         rcu_read_lock();
1627         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1628                 if (!device->bdev)
1629                         continue;
1630                 bdi = device->bdev->bd_bdi;
1631                 if (bdi_congested(bdi, bdi_bits)) {
1632                         ret = 1;
1633                         break;
1634                 }
1635         }
1636         rcu_read_unlock();
1637         return ret;
1638 }
1639
1640 /*
1641  * called by the kthread helper functions to finally call the bio end_io
1642  * functions.  This is where read checksum verification actually happens
1643  */
1644 static void end_workqueue_fn(struct btrfs_work *work)
1645 {
1646         struct bio *bio;
1647         struct btrfs_end_io_wq *end_io_wq;
1648
1649         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1650         bio = end_io_wq->bio;
1651
1652         bio->bi_status = end_io_wq->status;
1653         bio->bi_private = end_io_wq->private;
1654         bio->bi_end_io = end_io_wq->end_io;
1655         bio_endio(bio);
1656         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1657 }
1658
1659 static int cleaner_kthread(void *arg)
1660 {
1661         struct btrfs_root *root = arg;
1662         struct btrfs_fs_info *fs_info = root->fs_info;
1663         int again;
1664
1665         while (1) {
1666                 again = 0;
1667
1668                 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1669
1670                 /* Make the cleaner go to sleep early. */
1671                 if (btrfs_need_cleaner_sleep(fs_info))
1672                         goto sleep;
1673
1674                 /*
1675                  * Do not do anything if we might cause open_ctree() to block
1676                  * before we have finished mounting the filesystem.
1677                  */
1678                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1679                         goto sleep;
1680
1681                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1682                         goto sleep;
1683
1684                 /*
1685                  * Avoid the problem that we change the status of the fs
1686                  * during the above check and trylock.
1687                  */
1688                 if (btrfs_need_cleaner_sleep(fs_info)) {
1689                         mutex_unlock(&fs_info->cleaner_mutex);
1690                         goto sleep;
1691                 }
1692
1693                 btrfs_run_delayed_iputs(fs_info);
1694
1695                 again = btrfs_clean_one_deleted_snapshot(root);
1696                 mutex_unlock(&fs_info->cleaner_mutex);
1697
1698                 /*
1699                  * The defragger has dealt with the R/O remount and umount,
1700                  * needn't do anything special here.
1701                  */
1702                 btrfs_run_defrag_inodes(fs_info);
1703
1704                 /*
1705                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1706                  * with relocation (btrfs_relocate_chunk) and relocation
1707                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1708                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1709                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1710                  * unused block groups.
1711                  */
1712                 btrfs_delete_unused_bgs(fs_info);
1713 sleep:
1714                 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1715                 if (kthread_should_park())
1716                         kthread_parkme();
1717                 if (kthread_should_stop())
1718                         return 0;
1719                 if (!again) {
1720                         set_current_state(TASK_INTERRUPTIBLE);
1721                         schedule();
1722                         __set_current_state(TASK_RUNNING);
1723                 }
1724         }
1725 }
1726
1727 static int transaction_kthread(void *arg)
1728 {
1729         struct btrfs_root *root = arg;
1730         struct btrfs_fs_info *fs_info = root->fs_info;
1731         struct btrfs_trans_handle *trans;
1732         struct btrfs_transaction *cur;
1733         u64 transid;
1734         time64_t now;
1735         unsigned long delay;
1736         bool cannot_commit;
1737
1738         do {
1739                 cannot_commit = false;
1740                 delay = HZ * fs_info->commit_interval;
1741                 mutex_lock(&fs_info->transaction_kthread_mutex);
1742
1743                 spin_lock(&fs_info->trans_lock);
1744                 cur = fs_info->running_transaction;
1745                 if (!cur) {
1746                         spin_unlock(&fs_info->trans_lock);
1747                         goto sleep;
1748                 }
1749
1750                 now = ktime_get_seconds();
1751                 if (cur->state < TRANS_STATE_COMMIT_START &&
1752                     !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1753                     (now < cur->start_time ||
1754                      now - cur->start_time < fs_info->commit_interval)) {
1755                         spin_unlock(&fs_info->trans_lock);
1756                         delay = HZ * 5;
1757                         goto sleep;
1758                 }
1759                 transid = cur->transid;
1760                 spin_unlock(&fs_info->trans_lock);
1761
1762                 /* If the file system is aborted, this will always fail. */
1763                 trans = btrfs_attach_transaction(root);
1764                 if (IS_ERR(trans)) {
1765                         if (PTR_ERR(trans) != -ENOENT)
1766                                 cannot_commit = true;
1767                         goto sleep;
1768                 }
1769                 if (transid == trans->transid) {
1770                         btrfs_commit_transaction(trans);
1771                 } else {
1772                         btrfs_end_transaction(trans);
1773                 }
1774 sleep:
1775                 wake_up_process(fs_info->cleaner_kthread);
1776                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1777
1778                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1779                                       &fs_info->fs_state)))
1780                         btrfs_cleanup_transaction(fs_info);
1781                 if (!kthread_should_stop() &&
1782                                 (!btrfs_transaction_blocked(fs_info) ||
1783                                  cannot_commit))
1784                         schedule_timeout_interruptible(delay);
1785         } while (!kthread_should_stop());
1786         return 0;
1787 }
1788
1789 /*
1790  * this will find the highest generation in the array of
1791  * root backups.  The index of the highest array is returned,
1792  * or -1 if we can't find anything.
1793  *
1794  * We check to make sure the array is valid by comparing the
1795  * generation of the latest  root in the array with the generation
1796  * in the super block.  If they don't match we pitch it.
1797  */
1798 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1799 {
1800         u64 cur;
1801         int newest_index = -1;
1802         struct btrfs_root_backup *root_backup;
1803         int i;
1804
1805         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1806                 root_backup = info->super_copy->super_roots + i;
1807                 cur = btrfs_backup_tree_root_gen(root_backup);
1808                 if (cur == newest_gen)
1809                         newest_index = i;
1810         }
1811
1812         /* check to see if we actually wrapped around */
1813         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1814                 root_backup = info->super_copy->super_roots;
1815                 cur = btrfs_backup_tree_root_gen(root_backup);
1816                 if (cur == newest_gen)
1817                         newest_index = 0;
1818         }
1819         return newest_index;
1820 }
1821
1822
1823 /*
1824  * find the oldest backup so we know where to store new entries
1825  * in the backup array.  This will set the backup_root_index
1826  * field in the fs_info struct
1827  */
1828 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1829                                      u64 newest_gen)
1830 {
1831         int newest_index = -1;
1832
1833         newest_index = find_newest_super_backup(info, newest_gen);
1834         /* if there was garbage in there, just move along */
1835         if (newest_index == -1) {
1836                 info->backup_root_index = 0;
1837         } else {
1838                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1839         }
1840 }
1841
1842 /*
1843  * copy all the root pointers into the super backup array.
1844  * this will bump the backup pointer by one when it is
1845  * done
1846  */
1847 static void backup_super_roots(struct btrfs_fs_info *info)
1848 {
1849         int next_backup;
1850         struct btrfs_root_backup *root_backup;
1851         int last_backup;
1852
1853         next_backup = info->backup_root_index;
1854         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1855                 BTRFS_NUM_BACKUP_ROOTS;
1856
1857         /*
1858          * just overwrite the last backup if we're at the same generation
1859          * this happens only at umount
1860          */
1861         root_backup = info->super_for_commit->super_roots + last_backup;
1862         if (btrfs_backup_tree_root_gen(root_backup) ==
1863             btrfs_header_generation(info->tree_root->node))
1864                 next_backup = last_backup;
1865
1866         root_backup = info->super_for_commit->super_roots + next_backup;
1867
1868         /*
1869          * make sure all of our padding and empty slots get zero filled
1870          * regardless of which ones we use today
1871          */
1872         memset(root_backup, 0, sizeof(*root_backup));
1873
1874         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1875
1876         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1877         btrfs_set_backup_tree_root_gen(root_backup,
1878                                btrfs_header_generation(info->tree_root->node));
1879
1880         btrfs_set_backup_tree_root_level(root_backup,
1881                                btrfs_header_level(info->tree_root->node));
1882
1883         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1884         btrfs_set_backup_chunk_root_gen(root_backup,
1885                                btrfs_header_generation(info->chunk_root->node));
1886         btrfs_set_backup_chunk_root_level(root_backup,
1887                                btrfs_header_level(info->chunk_root->node));
1888
1889         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1890         btrfs_set_backup_extent_root_gen(root_backup,
1891                                btrfs_header_generation(info->extent_root->node));
1892         btrfs_set_backup_extent_root_level(root_backup,
1893                                btrfs_header_level(info->extent_root->node));
1894
1895         /*
1896          * we might commit during log recovery, which happens before we set
1897          * the fs_root.  Make sure it is valid before we fill it in.
1898          */
1899         if (info->fs_root && info->fs_root->node) {
1900                 btrfs_set_backup_fs_root(root_backup,
1901                                          info->fs_root->node->start);
1902                 btrfs_set_backup_fs_root_gen(root_backup,
1903                                btrfs_header_generation(info->fs_root->node));
1904                 btrfs_set_backup_fs_root_level(root_backup,
1905                                btrfs_header_level(info->fs_root->node));
1906         }
1907
1908         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1909         btrfs_set_backup_dev_root_gen(root_backup,
1910                                btrfs_header_generation(info->dev_root->node));
1911         btrfs_set_backup_dev_root_level(root_backup,
1912                                        btrfs_header_level(info->dev_root->node));
1913
1914         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1915         btrfs_set_backup_csum_root_gen(root_backup,
1916                                btrfs_header_generation(info->csum_root->node));
1917         btrfs_set_backup_csum_root_level(root_backup,
1918                                btrfs_header_level(info->csum_root->node));
1919
1920         btrfs_set_backup_total_bytes(root_backup,
1921                              btrfs_super_total_bytes(info->super_copy));
1922         btrfs_set_backup_bytes_used(root_backup,
1923                              btrfs_super_bytes_used(info->super_copy));
1924         btrfs_set_backup_num_devices(root_backup,
1925                              btrfs_super_num_devices(info->super_copy));
1926
1927         /*
1928          * if we don't copy this out to the super_copy, it won't get remembered
1929          * for the next commit
1930          */
1931         memcpy(&info->super_copy->super_roots,
1932                &info->super_for_commit->super_roots,
1933                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1934 }
1935
1936 /*
1937  * this copies info out of the root backup array and back into
1938  * the in-memory super block.  It is meant to help iterate through
1939  * the array, so you send it the number of backups you've already
1940  * tried and the last backup index you used.
1941  *
1942  * this returns -1 when it has tried all the backups
1943  */
1944 static noinline int next_root_backup(struct btrfs_fs_info *info,
1945                                      struct btrfs_super_block *super,
1946                                      int *num_backups_tried, int *backup_index)
1947 {
1948         struct btrfs_root_backup *root_backup;
1949         int newest = *backup_index;
1950
1951         if (*num_backups_tried == 0) {
1952                 u64 gen = btrfs_super_generation(super);
1953
1954                 newest = find_newest_super_backup(info, gen);
1955                 if (newest == -1)
1956                         return -1;
1957
1958                 *backup_index = newest;
1959                 *num_backups_tried = 1;
1960         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1961                 /* we've tried all the backups, all done */
1962                 return -1;
1963         } else {
1964                 /* jump to the next oldest backup */
1965                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1966                         BTRFS_NUM_BACKUP_ROOTS;
1967                 *backup_index = newest;
1968                 *num_backups_tried += 1;
1969         }
1970         root_backup = super->super_roots + newest;
1971
1972         btrfs_set_super_generation(super,
1973                                    btrfs_backup_tree_root_gen(root_backup));
1974         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1975         btrfs_set_super_root_level(super,
1976                                    btrfs_backup_tree_root_level(root_backup));
1977         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1978
1979         /*
1980          * fixme: the total bytes and num_devices need to match or we should
1981          * need a fsck
1982          */
1983         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1984         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1985         return 0;
1986 }
1987
1988 /* helper to cleanup workers */
1989 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1990 {
1991         btrfs_destroy_workqueue(fs_info->fixup_workers);
1992         btrfs_destroy_workqueue(fs_info->delalloc_workers);
1993         btrfs_destroy_workqueue(fs_info->workers);
1994         btrfs_destroy_workqueue(fs_info->endio_workers);
1995         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1996         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
1997         btrfs_destroy_workqueue(fs_info->rmw_workers);
1998         btrfs_destroy_workqueue(fs_info->endio_write_workers);
1999         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2000         btrfs_destroy_workqueue(fs_info->delayed_workers);
2001         btrfs_destroy_workqueue(fs_info->caching_workers);
2002         btrfs_destroy_workqueue(fs_info->readahead_workers);
2003         btrfs_destroy_workqueue(fs_info->flush_workers);
2004         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2005         /*
2006          * Now that all other work queues are destroyed, we can safely destroy
2007          * the queues used for metadata I/O, since tasks from those other work
2008          * queues can do metadata I/O operations.
2009          */
2010         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2011         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2012 }
2013
2014 static void free_root_extent_buffers(struct btrfs_root *root)
2015 {
2016         if (root) {
2017                 free_extent_buffer(root->node);
2018                 free_extent_buffer(root->commit_root);
2019                 root->node = NULL;
2020                 root->commit_root = NULL;
2021         }
2022 }
2023
2024 /* helper to cleanup tree roots */
2025 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2026 {
2027         free_root_extent_buffers(info->tree_root);
2028
2029         free_root_extent_buffers(info->dev_root);
2030         free_root_extent_buffers(info->extent_root);
2031         free_root_extent_buffers(info->csum_root);
2032         free_root_extent_buffers(info->quota_root);
2033         free_root_extent_buffers(info->uuid_root);
2034         if (chunk_root)
2035                 free_root_extent_buffers(info->chunk_root);
2036         free_root_extent_buffers(info->free_space_root);
2037 }
2038
2039 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2040 {
2041         int ret;
2042         struct btrfs_root *gang[8];
2043         int i;
2044
2045         while (!list_empty(&fs_info->dead_roots)) {
2046                 gang[0] = list_entry(fs_info->dead_roots.next,
2047                                      struct btrfs_root, root_list);
2048                 list_del(&gang[0]->root_list);
2049
2050                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2051                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2052                 } else {
2053                         free_extent_buffer(gang[0]->node);
2054                         free_extent_buffer(gang[0]->commit_root);
2055                         btrfs_put_fs_root(gang[0]);
2056                 }
2057         }
2058
2059         while (1) {
2060                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2061                                              (void **)gang, 0,
2062                                              ARRAY_SIZE(gang));
2063                 if (!ret)
2064                         break;
2065                 for (i = 0; i < ret; i++)
2066                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2067         }
2068
2069         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2070                 btrfs_free_log_root_tree(NULL, fs_info);
2071                 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2072         }
2073 }
2074
2075 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2076 {
2077         mutex_init(&fs_info->scrub_lock);
2078         atomic_set(&fs_info->scrubs_running, 0);
2079         atomic_set(&fs_info->scrub_pause_req, 0);
2080         atomic_set(&fs_info->scrubs_paused, 0);
2081         atomic_set(&fs_info->scrub_cancel_req, 0);
2082         init_waitqueue_head(&fs_info->scrub_pause_wait);
2083         refcount_set(&fs_info->scrub_workers_refcnt, 0);
2084 }
2085
2086 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2087 {
2088         spin_lock_init(&fs_info->balance_lock);
2089         mutex_init(&fs_info->balance_mutex);
2090         atomic_set(&fs_info->balance_pause_req, 0);
2091         atomic_set(&fs_info->balance_cancel_req, 0);
2092         fs_info->balance_ctl = NULL;
2093         init_waitqueue_head(&fs_info->balance_wait_q);
2094 }
2095
2096 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2097 {
2098         struct inode *inode = fs_info->btree_inode;
2099
2100         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2101         set_nlink(inode, 1);
2102         /*
2103          * we set the i_size on the btree inode to the max possible int.
2104          * the real end of the address space is determined by all of
2105          * the devices in the system
2106          */
2107         inode->i_size = OFFSET_MAX;
2108         inode->i_mapping->a_ops = &btree_aops;
2109
2110         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2111         extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2112                             IO_TREE_INODE_IO, inode);
2113         BTRFS_I(inode)->io_tree.track_uptodate = false;
2114         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2115
2116         BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2117
2118         BTRFS_I(inode)->root = fs_info->tree_root;
2119         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2120         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2121         btrfs_insert_inode_hash(inode);
2122 }
2123
2124 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2125 {
2126         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2127         init_rwsem(&fs_info->dev_replace.rwsem);
2128         init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2129 }
2130
2131 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2132 {
2133         spin_lock_init(&fs_info->qgroup_lock);
2134         mutex_init(&fs_info->qgroup_ioctl_lock);
2135         fs_info->qgroup_tree = RB_ROOT;
2136         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2137         fs_info->qgroup_seq = 1;
2138         fs_info->qgroup_ulist = NULL;
2139         fs_info->qgroup_rescan_running = false;
2140         mutex_init(&fs_info->qgroup_rescan_lock);
2141 }
2142
2143 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2144                 struct btrfs_fs_devices *fs_devices)
2145 {
2146         u32 max_active = fs_info->thread_pool_size;
2147         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2148
2149         fs_info->workers =
2150                 btrfs_alloc_workqueue(fs_info, "worker",
2151                                       flags | WQ_HIGHPRI, max_active, 16);
2152
2153         fs_info->delalloc_workers =
2154                 btrfs_alloc_workqueue(fs_info, "delalloc",
2155                                       flags, max_active, 2);
2156
2157         fs_info->flush_workers =
2158                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2159                                       flags, max_active, 0);
2160
2161         fs_info->caching_workers =
2162                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2163
2164         fs_info->fixup_workers =
2165                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2166
2167         /*
2168          * endios are largely parallel and should have a very
2169          * low idle thresh
2170          */
2171         fs_info->endio_workers =
2172                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2173         fs_info->endio_meta_workers =
2174                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2175                                       max_active, 4);
2176         fs_info->endio_meta_write_workers =
2177                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2178                                       max_active, 2);
2179         fs_info->endio_raid56_workers =
2180                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2181                                       max_active, 4);
2182         fs_info->endio_repair_workers =
2183                 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2184         fs_info->rmw_workers =
2185                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2186         fs_info->endio_write_workers =
2187                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2188                                       max_active, 2);
2189         fs_info->endio_freespace_worker =
2190                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2191                                       max_active, 0);
2192         fs_info->delayed_workers =
2193                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2194                                       max_active, 0);
2195         fs_info->readahead_workers =
2196                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2197                                       max_active, 2);
2198         fs_info->qgroup_rescan_workers =
2199                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2200
2201         if (!(fs_info->workers && fs_info->delalloc_workers &&
2202               fs_info->flush_workers &&
2203               fs_info->endio_workers && fs_info->endio_meta_workers &&
2204               fs_info->endio_meta_write_workers &&
2205               fs_info->endio_repair_workers &&
2206               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2207               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2208               fs_info->caching_workers && fs_info->readahead_workers &&
2209               fs_info->fixup_workers && fs_info->delayed_workers &&
2210               fs_info->qgroup_rescan_workers)) {
2211                 return -ENOMEM;
2212         }
2213
2214         return 0;
2215 }
2216
2217 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2218 {
2219         struct crypto_shash *csum_shash;
2220         const char *csum_name = btrfs_super_csum_name(csum_type);
2221
2222         csum_shash = crypto_alloc_shash(csum_name, 0, 0);
2223
2224         if (IS_ERR(csum_shash)) {
2225                 btrfs_err(fs_info, "error allocating %s hash for checksum",
2226                           csum_name);
2227                 return PTR_ERR(csum_shash);
2228         }
2229
2230         fs_info->csum_shash = csum_shash;
2231
2232         return 0;
2233 }
2234
2235 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
2236 {
2237         crypto_free_shash(fs_info->csum_shash);
2238 }
2239
2240 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2241                             struct btrfs_fs_devices *fs_devices)
2242 {
2243         int ret;
2244         struct btrfs_root *log_tree_root;
2245         struct btrfs_super_block *disk_super = fs_info->super_copy;
2246         u64 bytenr = btrfs_super_log_root(disk_super);
2247         int level = btrfs_super_log_root_level(disk_super);
2248
2249         if (fs_devices->rw_devices == 0) {
2250                 btrfs_warn(fs_info, "log replay required on RO media");
2251                 return -EIO;
2252         }
2253
2254         log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2255         if (!log_tree_root)
2256                 return -ENOMEM;
2257
2258         __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2259
2260         log_tree_root->node = read_tree_block(fs_info, bytenr,
2261                                               fs_info->generation + 1,
2262                                               level, NULL);
2263         if (IS_ERR(log_tree_root->node)) {
2264                 btrfs_warn(fs_info, "failed to read log tree");
2265                 ret = PTR_ERR(log_tree_root->node);
2266                 kfree(log_tree_root);
2267                 return ret;
2268         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2269                 btrfs_err(fs_info, "failed to read log tree");
2270                 free_extent_buffer(log_tree_root->node);
2271                 kfree(log_tree_root);
2272                 return -EIO;
2273         }
2274         /* returns with log_tree_root freed on success */
2275         ret = btrfs_recover_log_trees(log_tree_root);
2276         if (ret) {
2277                 btrfs_handle_fs_error(fs_info, ret,
2278                                       "Failed to recover log tree");
2279                 free_extent_buffer(log_tree_root->node);
2280                 kfree(log_tree_root);
2281                 return ret;
2282         }
2283
2284         if (sb_rdonly(fs_info->sb)) {
2285                 ret = btrfs_commit_super(fs_info);
2286                 if (ret)
2287                         return ret;
2288         }
2289
2290         return 0;
2291 }
2292
2293 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2294 {
2295         struct btrfs_root *tree_root = fs_info->tree_root;
2296         struct btrfs_root *root;
2297         struct btrfs_key location;
2298         int ret;
2299
2300         BUG_ON(!fs_info->tree_root);
2301
2302         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2303         location.type = BTRFS_ROOT_ITEM_KEY;
2304         location.offset = 0;
2305
2306         root = btrfs_read_tree_root(tree_root, &location);
2307         if (IS_ERR(root)) {
2308                 ret = PTR_ERR(root);
2309                 goto out;
2310         }
2311         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2312         fs_info->extent_root = root;
2313
2314         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2315         root = btrfs_read_tree_root(tree_root, &location);
2316         if (IS_ERR(root)) {
2317                 ret = PTR_ERR(root);
2318                 goto out;
2319         }
2320         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2321         fs_info->dev_root = root;
2322         btrfs_init_devices_late(fs_info);
2323
2324         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2325         root = btrfs_read_tree_root(tree_root, &location);
2326         if (IS_ERR(root)) {
2327                 ret = PTR_ERR(root);
2328                 goto out;
2329         }
2330         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2331         fs_info->csum_root = root;
2332
2333         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2334         root = btrfs_read_tree_root(tree_root, &location);
2335         if (!IS_ERR(root)) {
2336                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2337                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2338                 fs_info->quota_root = root;
2339         }
2340
2341         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2342         root = btrfs_read_tree_root(tree_root, &location);
2343         if (IS_ERR(root)) {
2344                 ret = PTR_ERR(root);
2345                 if (ret != -ENOENT)
2346                         goto out;
2347         } else {
2348                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2349                 fs_info->uuid_root = root;
2350         }
2351
2352         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2353                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2354                 root = btrfs_read_tree_root(tree_root, &location);
2355                 if (IS_ERR(root)) {
2356                         ret = PTR_ERR(root);
2357                         goto out;
2358                 }
2359                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2360                 fs_info->free_space_root = root;
2361         }
2362
2363         return 0;
2364 out:
2365         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2366                    location.objectid, ret);
2367         return ret;
2368 }
2369
2370 /*
2371  * Real super block validation
2372  * NOTE: super csum type and incompat features will not be checked here.
2373  *
2374  * @sb:         super block to check
2375  * @mirror_num: the super block number to check its bytenr:
2376  *              0       the primary (1st) sb
2377  *              1, 2    2nd and 3rd backup copy
2378  *             -1       skip bytenr check
2379  */
2380 static int validate_super(struct btrfs_fs_info *fs_info,
2381                             struct btrfs_super_block *sb, int mirror_num)
2382 {
2383         u64 nodesize = btrfs_super_nodesize(sb);
2384         u64 sectorsize = btrfs_super_sectorsize(sb);
2385         int ret = 0;
2386
2387         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2388                 btrfs_err(fs_info, "no valid FS found");
2389                 ret = -EINVAL;
2390         }
2391         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2392                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2393                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2394                 ret = -EINVAL;
2395         }
2396         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2397                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2398                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2399                 ret = -EINVAL;
2400         }
2401         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2402                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2403                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2404                 ret = -EINVAL;
2405         }
2406         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2407                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2408                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2409                 ret = -EINVAL;
2410         }
2411
2412         /*
2413          * Check sectorsize and nodesize first, other check will need it.
2414          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2415          */
2416         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2417             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2418                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2419                 ret = -EINVAL;
2420         }
2421         /* Only PAGE SIZE is supported yet */
2422         if (sectorsize != PAGE_SIZE) {
2423                 btrfs_err(fs_info,
2424                         "sectorsize %llu not supported yet, only support %lu",
2425                         sectorsize, PAGE_SIZE);
2426                 ret = -EINVAL;
2427         }
2428         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2429             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2430                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2431                 ret = -EINVAL;
2432         }
2433         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2434                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2435                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2436                 ret = -EINVAL;
2437         }
2438
2439         /* Root alignment check */
2440         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2441                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2442                            btrfs_super_root(sb));
2443                 ret = -EINVAL;
2444         }
2445         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2446                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2447                            btrfs_super_chunk_root(sb));
2448                 ret = -EINVAL;
2449         }
2450         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2451                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2452                            btrfs_super_log_root(sb));
2453                 ret = -EINVAL;
2454         }
2455
2456         if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2457                    BTRFS_FSID_SIZE) != 0) {
2458                 btrfs_err(fs_info,
2459                         "dev_item UUID does not match metadata fsid: %pU != %pU",
2460                         fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2461                 ret = -EINVAL;
2462         }
2463
2464         /*
2465          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2466          * done later
2467          */
2468         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2469                 btrfs_err(fs_info, "bytes_used is too small %llu",
2470                           btrfs_super_bytes_used(sb));
2471                 ret = -EINVAL;
2472         }
2473         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2474                 btrfs_err(fs_info, "invalid stripesize %u",
2475                           btrfs_super_stripesize(sb));
2476                 ret = -EINVAL;
2477         }
2478         if (btrfs_super_num_devices(sb) > (1UL << 31))
2479                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2480                            btrfs_super_num_devices(sb));
2481         if (btrfs_super_num_devices(sb) == 0) {
2482                 btrfs_err(fs_info, "number of devices is 0");
2483                 ret = -EINVAL;
2484         }
2485
2486         if (mirror_num >= 0 &&
2487             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2488                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2489                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2490                 ret = -EINVAL;
2491         }
2492
2493         /*
2494          * Obvious sys_chunk_array corruptions, it must hold at least one key
2495          * and one chunk
2496          */
2497         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2498                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2499                           btrfs_super_sys_array_size(sb),
2500                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2501                 ret = -EINVAL;
2502         }
2503         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2504                         + sizeof(struct btrfs_chunk)) {
2505                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2506                           btrfs_super_sys_array_size(sb),
2507                           sizeof(struct btrfs_disk_key)
2508                           + sizeof(struct btrfs_chunk));
2509                 ret = -EINVAL;
2510         }
2511
2512         /*
2513          * The generation is a global counter, we'll trust it more than the others
2514          * but it's still possible that it's the one that's wrong.
2515          */
2516         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2517                 btrfs_warn(fs_info,
2518                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2519                         btrfs_super_generation(sb),
2520                         btrfs_super_chunk_root_generation(sb));
2521         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2522             && btrfs_super_cache_generation(sb) != (u64)-1)
2523                 btrfs_warn(fs_info,
2524                         "suspicious: generation < cache_generation: %llu < %llu",
2525                         btrfs_super_generation(sb),
2526                         btrfs_super_cache_generation(sb));
2527
2528         return ret;
2529 }
2530
2531 /*
2532  * Validation of super block at mount time.
2533  * Some checks already done early at mount time, like csum type and incompat
2534  * flags will be skipped.
2535  */
2536 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2537 {
2538         return validate_super(fs_info, fs_info->super_copy, 0);
2539 }
2540
2541 /*
2542  * Validation of super block at write time.
2543  * Some checks like bytenr check will be skipped as their values will be
2544  * overwritten soon.
2545  * Extra checks like csum type and incompat flags will be done here.
2546  */
2547 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2548                                       struct btrfs_super_block *sb)
2549 {
2550         int ret;
2551
2552         ret = validate_super(fs_info, sb, -1);
2553         if (ret < 0)
2554                 goto out;
2555         if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2556                 ret = -EUCLEAN;
2557                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2558                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2559                 goto out;
2560         }
2561         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2562                 ret = -EUCLEAN;
2563                 btrfs_err(fs_info,
2564                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2565                           btrfs_super_incompat_flags(sb),
2566                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2567                 goto out;
2568         }
2569 out:
2570         if (ret < 0)
2571                 btrfs_err(fs_info,
2572                 "super block corruption detected before writing it to disk");
2573         return ret;
2574 }
2575
2576 int __cold open_ctree(struct super_block *sb,
2577                struct btrfs_fs_devices *fs_devices,
2578                char *options)
2579 {
2580         u32 sectorsize;
2581         u32 nodesize;
2582         u32 stripesize;
2583         u64 generation;
2584         u64 features;
2585         u16 csum_type;
2586         struct btrfs_key location;
2587         struct buffer_head *bh;
2588         struct btrfs_super_block *disk_super;
2589         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2590         struct btrfs_root *tree_root;
2591         struct btrfs_root *chunk_root;
2592         int ret;
2593         int err = -EINVAL;
2594         int num_backups_tried = 0;
2595         int backup_index = 0;
2596         int clear_free_space_tree = 0;
2597         int level;
2598
2599         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2600         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2601         if (!tree_root || !chunk_root) {
2602                 err = -ENOMEM;
2603                 goto fail;
2604         }
2605
2606         ret = init_srcu_struct(&fs_info->subvol_srcu);
2607         if (ret) {
2608                 err = ret;
2609                 goto fail;
2610         }
2611
2612         ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2613         if (ret) {
2614                 err = ret;
2615                 goto fail_srcu;
2616         }
2617
2618         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2619         if (ret) {
2620                 err = ret;
2621                 goto fail_dio_bytes;
2622         }
2623         fs_info->dirty_metadata_batch = PAGE_SIZE *
2624                                         (1 + ilog2(nr_cpu_ids));
2625
2626         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2627         if (ret) {
2628                 err = ret;
2629                 goto fail_dirty_metadata_bytes;
2630         }
2631
2632         ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2633                         GFP_KERNEL);
2634         if (ret) {
2635                 err = ret;
2636                 goto fail_delalloc_bytes;
2637         }
2638
2639         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2640         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2641         INIT_LIST_HEAD(&fs_info->trans_list);
2642         INIT_LIST_HEAD(&fs_info->dead_roots);
2643         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2644         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2645         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2646         spin_lock_init(&fs_info->delalloc_root_lock);
2647         spin_lock_init(&fs_info->trans_lock);
2648         spin_lock_init(&fs_info->fs_roots_radix_lock);
2649         spin_lock_init(&fs_info->delayed_iput_lock);
2650         spin_lock_init(&fs_info->defrag_inodes_lock);
2651         spin_lock_init(&fs_info->tree_mod_seq_lock);
2652         spin_lock_init(&fs_info->super_lock);
2653         spin_lock_init(&fs_info->buffer_lock);
2654         spin_lock_init(&fs_info->unused_bgs_lock);
2655         rwlock_init(&fs_info->tree_mod_log_lock);
2656         mutex_init(&fs_info->unused_bg_unpin_mutex);
2657         mutex_init(&fs_info->delete_unused_bgs_mutex);
2658         mutex_init(&fs_info->reloc_mutex);
2659         mutex_init(&fs_info->delalloc_root_mutex);
2660         seqlock_init(&fs_info->profiles_lock);
2661
2662         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2663         INIT_LIST_HEAD(&fs_info->space_info);
2664         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2665         INIT_LIST_HEAD(&fs_info->unused_bgs);
2666         extent_map_tree_init(&fs_info->mapping_tree);
2667         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2668                              BTRFS_BLOCK_RSV_GLOBAL);
2669         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2670         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2671         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2672         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2673                              BTRFS_BLOCK_RSV_DELOPS);
2674         btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2675                              BTRFS_BLOCK_RSV_DELREFS);
2676
2677         atomic_set(&fs_info->async_delalloc_pages, 0);
2678         atomic_set(&fs_info->defrag_running, 0);
2679         atomic_set(&fs_info->reada_works_cnt, 0);
2680         atomic_set(&fs_info->nr_delayed_iputs, 0);
2681         atomic64_set(&fs_info->tree_mod_seq, 0);
2682         fs_info->sb = sb;
2683         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2684         fs_info->metadata_ratio = 0;
2685         fs_info->defrag_inodes = RB_ROOT;
2686         atomic64_set(&fs_info->free_chunk_space, 0);
2687         fs_info->tree_mod_log = RB_ROOT;
2688         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2689         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2690         /* readahead state */
2691         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2692         spin_lock_init(&fs_info->reada_lock);
2693         btrfs_init_ref_verify(fs_info);
2694
2695         fs_info->thread_pool_size = min_t(unsigned long,
2696                                           num_online_cpus() + 2, 8);
2697
2698         INIT_LIST_HEAD(&fs_info->ordered_roots);
2699         spin_lock_init(&fs_info->ordered_root_lock);
2700
2701         fs_info->btree_inode = new_inode(sb);
2702         if (!fs_info->btree_inode) {
2703                 err = -ENOMEM;
2704                 goto fail_bio_counter;
2705         }
2706         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2707
2708         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2709                                         GFP_KERNEL);
2710         if (!fs_info->delayed_root) {
2711                 err = -ENOMEM;
2712                 goto fail_iput;
2713         }
2714         btrfs_init_delayed_root(fs_info->delayed_root);
2715
2716         btrfs_init_scrub(fs_info);
2717 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2718         fs_info->check_integrity_print_mask = 0;
2719 #endif
2720         btrfs_init_balance(fs_info);
2721         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2722
2723         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2724         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2725
2726         btrfs_init_btree_inode(fs_info);
2727
2728         spin_lock_init(&fs_info->block_group_cache_lock);
2729         fs_info->block_group_cache_tree = RB_ROOT;
2730         fs_info->first_logical_byte = (u64)-1;
2731
2732         extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2733                             IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2734         extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2735                             IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
2736         fs_info->pinned_extents = &fs_info->freed_extents[0];
2737         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2738
2739         mutex_init(&fs_info->ordered_operations_mutex);
2740         mutex_init(&fs_info->tree_log_mutex);
2741         mutex_init(&fs_info->chunk_mutex);
2742         mutex_init(&fs_info->transaction_kthread_mutex);
2743         mutex_init(&fs_info->cleaner_mutex);
2744         mutex_init(&fs_info->ro_block_group_mutex);
2745         init_rwsem(&fs_info->commit_root_sem);
2746         init_rwsem(&fs_info->cleanup_work_sem);
2747         init_rwsem(&fs_info->subvol_sem);
2748         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2749
2750         btrfs_init_dev_replace_locks(fs_info);
2751         btrfs_init_qgroup(fs_info);
2752
2753         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2754         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2755
2756         init_waitqueue_head(&fs_info->transaction_throttle);
2757         init_waitqueue_head(&fs_info->transaction_wait);
2758         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2759         init_waitqueue_head(&fs_info->async_submit_wait);
2760         init_waitqueue_head(&fs_info->delayed_iputs_wait);
2761
2762         /* Usable values until the real ones are cached from the superblock */
2763         fs_info->nodesize = 4096;
2764         fs_info->sectorsize = 4096;
2765         fs_info->stripesize = 4096;
2766
2767         spin_lock_init(&fs_info->swapfile_pins_lock);
2768         fs_info->swapfile_pins = RB_ROOT;
2769
2770         fs_info->send_in_progress = 0;
2771
2772         ret = btrfs_alloc_stripe_hash_table(fs_info);
2773         if (ret) {
2774                 err = ret;
2775                 goto fail_alloc;
2776         }
2777
2778         __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2779
2780         invalidate_bdev(fs_devices->latest_bdev);
2781
2782         /*
2783          * Read super block and check the signature bytes only
2784          */
2785         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2786         if (IS_ERR(bh)) {
2787                 err = PTR_ERR(bh);
2788                 goto fail_alloc;
2789         }
2790
2791         /*
2792          * Verify the type first, if that or the the checksum value are
2793          * corrupted, we'll find out
2794          */
2795         csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data);
2796         if (!btrfs_supported_super_csum(csum_type)) {
2797                 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2798                           csum_type);
2799                 err = -EINVAL;
2800                 brelse(bh);
2801                 goto fail_alloc;
2802         }
2803
2804         ret = btrfs_init_csum_hash(fs_info, csum_type);
2805         if (ret) {
2806                 err = ret;
2807                 goto fail_alloc;
2808         }
2809
2810         /*
2811          * We want to check superblock checksum, the type is stored inside.
2812          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2813          */
2814         if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2815                 btrfs_err(fs_info, "superblock checksum mismatch");
2816                 err = -EINVAL;
2817                 brelse(bh);
2818                 goto fail_csum;
2819         }
2820
2821         /*
2822          * super_copy is zeroed at allocation time and we never touch the
2823          * following bytes up to INFO_SIZE, the checksum is calculated from
2824          * the whole block of INFO_SIZE
2825          */
2826         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2827         brelse(bh);
2828
2829         disk_super = fs_info->super_copy;
2830
2831         ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2832                        BTRFS_FSID_SIZE));
2833
2834         if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2835                 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2836                                 fs_info->super_copy->metadata_uuid,
2837                                 BTRFS_FSID_SIZE));
2838         }
2839
2840         features = btrfs_super_flags(disk_super);
2841         if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2842                 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2843                 btrfs_set_super_flags(disk_super, features);
2844                 btrfs_info(fs_info,
2845                         "found metadata UUID change in progress flag, clearing");
2846         }
2847
2848         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2849                sizeof(*fs_info->super_for_commit));
2850
2851         ret = btrfs_validate_mount_super(fs_info);
2852         if (ret) {
2853                 btrfs_err(fs_info, "superblock contains fatal errors");
2854                 err = -EINVAL;
2855                 goto fail_csum;
2856         }
2857
2858         if (!btrfs_super_root(disk_super))
2859                 goto fail_csum;
2860
2861         /* check FS state, whether FS is broken. */
2862         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2863                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2864
2865         /*
2866          * run through our array of backup supers and setup
2867          * our ring pointer to the oldest one
2868          */
2869         generation = btrfs_super_generation(disk_super);
2870         find_oldest_super_backup(fs_info, generation);
2871
2872         /*
2873          * In the long term, we'll store the compression type in the super
2874          * block, and it'll be used for per file compression control.
2875          */
2876         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2877
2878         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2879         if (ret) {
2880                 err = ret;
2881                 goto fail_csum;
2882         }
2883
2884         features = btrfs_super_incompat_flags(disk_super) &
2885                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2886         if (features) {
2887                 btrfs_err(fs_info,
2888                     "cannot mount because of unsupported optional features (%llx)",
2889                     features);
2890                 err = -EINVAL;
2891                 goto fail_csum;
2892         }
2893
2894         features = btrfs_super_incompat_flags(disk_super);
2895         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2896         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2897                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2898         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2899                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2900
2901         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2902                 btrfs_info(fs_info, "has skinny extents");
2903
2904         /*
2905          * flag our filesystem as having big metadata blocks if
2906          * they are bigger than the page size
2907          */
2908         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2909                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2910                         btrfs_info(fs_info,
2911                                 "flagging fs with big metadata feature");
2912                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2913         }
2914
2915         nodesize = btrfs_super_nodesize(disk_super);
2916         sectorsize = btrfs_super_sectorsize(disk_super);
2917         stripesize = sectorsize;
2918         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2919         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2920
2921         /* Cache block sizes */
2922         fs_info->nodesize = nodesize;
2923         fs_info->sectorsize = sectorsize;
2924         fs_info->stripesize = stripesize;
2925
2926         /*
2927          * mixed block groups end up with duplicate but slightly offset
2928          * extent buffers for the same range.  It leads to corruptions
2929          */
2930         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2931             (sectorsize != nodesize)) {
2932                 btrfs_err(fs_info,
2933 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2934                         nodesize, sectorsize);
2935                 goto fail_csum;
2936         }
2937
2938         /*
2939          * Needn't use the lock because there is no other task which will
2940          * update the flag.
2941          */
2942         btrfs_set_super_incompat_flags(disk_super, features);
2943
2944         features = btrfs_super_compat_ro_flags(disk_super) &
2945                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2946         if (!sb_rdonly(sb) && features) {
2947                 btrfs_err(fs_info,
2948         "cannot mount read-write because of unsupported optional features (%llx)",
2949                        features);
2950                 err = -EINVAL;
2951                 goto fail_csum;
2952         }
2953
2954         ret = btrfs_init_workqueues(fs_info, fs_devices);
2955         if (ret) {
2956                 err = ret;
2957                 goto fail_sb_buffer;
2958         }
2959
2960         sb->s_bdi->congested_fn = btrfs_congested_fn;
2961         sb->s_bdi->congested_data = fs_info;
2962         sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2963         sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
2964         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2965         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2966
2967         sb->s_blocksize = sectorsize;
2968         sb->s_blocksize_bits = blksize_bits(sectorsize);
2969         memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
2970
2971         mutex_lock(&fs_info->chunk_mutex);
2972         ret = btrfs_read_sys_array(fs_info);
2973         mutex_unlock(&fs_info->chunk_mutex);
2974         if (ret) {
2975                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2976                 goto fail_sb_buffer;
2977         }
2978
2979         generation = btrfs_super_chunk_root_generation(disk_super);
2980         level = btrfs_super_chunk_root_level(disk_super);
2981
2982         __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2983
2984         chunk_root->node = read_tree_block(fs_info,
2985                                            btrfs_super_chunk_root(disk_super),
2986                                            generation, level, NULL);
2987         if (IS_ERR(chunk_root->node) ||
2988             !extent_buffer_uptodate(chunk_root->node)) {
2989                 btrfs_err(fs_info, "failed to read chunk root");
2990                 if (!IS_ERR(chunk_root->node))
2991                         free_extent_buffer(chunk_root->node);
2992                 chunk_root->node = NULL;
2993                 goto fail_tree_roots;
2994         }
2995         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2996         chunk_root->commit_root = btrfs_root_node(chunk_root);
2997
2998         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2999            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
3000
3001         ret = btrfs_read_chunk_tree(fs_info);
3002         if (ret) {
3003                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3004                 goto fail_tree_roots;
3005         }
3006
3007         /*
3008          * Keep the devid that is marked to be the target device for the
3009          * device replace procedure
3010          */
3011         btrfs_free_extra_devids(fs_devices, 0);
3012
3013         if (!fs_devices->latest_bdev) {
3014                 btrfs_err(fs_info, "failed to read devices");
3015                 goto fail_tree_roots;
3016         }
3017
3018 retry_root_backup:
3019         generation = btrfs_super_generation(disk_super);
3020         level = btrfs_super_root_level(disk_super);
3021
3022         tree_root->node = read_tree_block(fs_info,
3023                                           btrfs_super_root(disk_super),
3024                                           generation, level, NULL);
3025         if (IS_ERR(tree_root->node) ||
3026             !extent_buffer_uptodate(tree_root->node)) {
3027                 btrfs_warn(fs_info, "failed to read tree root");
3028                 if (!IS_ERR(tree_root->node))
3029                         free_extent_buffer(tree_root->node);
3030                 tree_root->node = NULL;
3031                 goto recovery_tree_root;
3032         }
3033
3034         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3035         tree_root->commit_root = btrfs_root_node(tree_root);
3036         btrfs_set_root_refs(&tree_root->root_item, 1);
3037
3038         mutex_lock(&tree_root->objectid_mutex);
3039         ret = btrfs_find_highest_objectid(tree_root,
3040                                         &tree_root->highest_objectid);
3041         if (ret) {
3042                 mutex_unlock(&tree_root->objectid_mutex);
3043                 goto recovery_tree_root;
3044         }
3045
3046         ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3047
3048         mutex_unlock(&tree_root->objectid_mutex);
3049
3050         ret = btrfs_read_roots(fs_info);
3051         if (ret)
3052                 goto recovery_tree_root;
3053
3054         fs_info->generation = generation;
3055         fs_info->last_trans_committed = generation;
3056
3057         ret = btrfs_verify_dev_extents(fs_info);
3058         if (ret) {
3059                 btrfs_err(fs_info,
3060                           "failed to verify dev extents against chunks: %d",
3061                           ret);
3062                 goto fail_block_groups;
3063         }
3064         ret = btrfs_recover_balance(fs_info);
3065         if (ret) {
3066                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3067                 goto fail_block_groups;
3068         }
3069
3070         ret = btrfs_init_dev_stats(fs_info);
3071         if (ret) {
3072                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3073                 goto fail_block_groups;
3074         }
3075
3076         ret = btrfs_init_dev_replace(fs_info);
3077         if (ret) {
3078                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3079                 goto fail_block_groups;
3080         }
3081
3082         btrfs_free_extra_devids(fs_devices, 1);
3083
3084         ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3085         if (ret) {
3086                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3087                                 ret);
3088                 goto fail_block_groups;
3089         }
3090
3091         ret = btrfs_sysfs_add_device(fs_devices);
3092         if (ret) {
3093                 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3094                                 ret);
3095                 goto fail_fsdev_sysfs;
3096         }
3097
3098         ret = btrfs_sysfs_add_mounted(fs_info);
3099         if (ret) {
3100                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3101                 goto fail_fsdev_sysfs;
3102         }
3103
3104         ret = btrfs_init_space_info(fs_info);
3105         if (ret) {
3106                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3107                 goto fail_sysfs;
3108         }
3109
3110         ret = btrfs_read_block_groups(fs_info);
3111         if (ret) {
3112                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3113                 goto fail_sysfs;
3114         }
3115
3116         if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3117                 btrfs_warn(fs_info,
3118                 "writable mount is not allowed due to too many missing devices");
3119                 goto fail_sysfs;
3120         }
3121
3122         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3123                                                "btrfs-cleaner");
3124         if (IS_ERR(fs_info->cleaner_kthread))
3125                 goto fail_sysfs;
3126
3127         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3128                                                    tree_root,
3129                                                    "btrfs-transaction");
3130         if (IS_ERR(fs_info->transaction_kthread))
3131                 goto fail_cleaner;
3132
3133         if (!btrfs_test_opt(fs_info, NOSSD) &&
3134             !fs_info->fs_devices->rotating) {
3135                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3136         }
3137
3138         /*
3139          * Mount does not set all options immediately, we can do it now and do
3140          * not have to wait for transaction commit
3141          */
3142         btrfs_apply_pending_changes(fs_info);
3143
3144 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3145         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3146                 ret = btrfsic_mount(fs_info, fs_devices,
3147                                     btrfs_test_opt(fs_info,
3148                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3149                                     1 : 0,
3150                                     fs_info->check_integrity_print_mask);
3151                 if (ret)
3152                         btrfs_warn(fs_info,
3153                                 "failed to initialize integrity check module: %d",
3154                                 ret);
3155         }
3156 #endif
3157         ret = btrfs_read_qgroup_config(fs_info);
3158         if (ret)
3159                 goto fail_trans_kthread;
3160
3161         if (btrfs_build_ref_tree(fs_info))
3162                 btrfs_err(fs_info, "couldn't build ref tree");
3163
3164         /* do not make disk changes in broken FS or nologreplay is given */
3165         if (btrfs_super_log_root(disk_super) != 0 &&
3166             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3167                 ret = btrfs_replay_log(fs_info, fs_devices);
3168                 if (ret) {
3169                         err = ret;
3170                         goto fail_qgroup;
3171                 }
3172         }
3173
3174         ret = btrfs_find_orphan_roots(fs_info);
3175         if (ret)
3176                 goto fail_qgroup;
3177
3178         if (!sb_rdonly(sb)) {
3179                 ret = btrfs_cleanup_fs_roots(fs_info);
3180                 if (ret)
3181                         goto fail_qgroup;
3182
3183                 mutex_lock(&fs_info->cleaner_mutex);
3184                 ret = btrfs_recover_relocation(tree_root);
3185                 mutex_unlock(&fs_info->cleaner_mutex);
3186                 if (ret < 0) {
3187                         btrfs_warn(fs_info, "failed to recover relocation: %d",
3188                                         ret);
3189                         err = -EINVAL;
3190                         goto fail_qgroup;
3191                 }
3192         }
3193
3194         location.objectid = BTRFS_FS_TREE_OBJECTID;
3195         location.type = BTRFS_ROOT_ITEM_KEY;
3196         location.offset = 0;
3197
3198         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3199         if (IS_ERR(fs_info->fs_root)) {
3200                 err = PTR_ERR(fs_info->fs_root);
3201                 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3202                 goto fail_qgroup;
3203         }
3204
3205         if (sb_rdonly(sb))
3206                 return 0;
3207
3208         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3209             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3210                 clear_free_space_tree = 1;
3211         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3212                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3213                 btrfs_warn(fs_info, "free space tree is invalid");
3214                 clear_free_space_tree = 1;
3215         }
3216
3217         if (clear_free_space_tree) {
3218                 btrfs_info(fs_info, "clearing free space tree");
3219                 ret = btrfs_clear_free_space_tree(fs_info);
3220                 if (ret) {
3221                         btrfs_warn(fs_info,
3222                                    "failed to clear free space tree: %d", ret);
3223                         close_ctree(fs_info);
3224                         return ret;
3225                 }
3226         }
3227
3228         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3229             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3230                 btrfs_info(fs_info, "creating free space tree");
3231                 ret = btrfs_create_free_space_tree(fs_info);
3232                 if (ret) {
3233                         btrfs_warn(fs_info,
3234                                 "failed to create free space tree: %d", ret);
3235                         close_ctree(fs_info);
3236                         return ret;
3237                 }
3238         }
3239
3240         down_read(&fs_info->cleanup_work_sem);
3241         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3242             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3243                 up_read(&fs_info->cleanup_work_sem);
3244                 close_ctree(fs_info);
3245                 return ret;
3246         }
3247         up_read(&fs_info->cleanup_work_sem);
3248
3249         ret = btrfs_resume_balance_async(fs_info);
3250         if (ret) {
3251                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3252                 close_ctree(fs_info);
3253                 return ret;
3254         }
3255
3256         ret = btrfs_resume_dev_replace_async(fs_info);
3257         if (ret) {
3258                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3259                 close_ctree(fs_info);
3260                 return ret;
3261         }
3262
3263         btrfs_qgroup_rescan_resume(fs_info);
3264
3265         if (!fs_info->uuid_root) {
3266                 btrfs_info(fs_info, "creating UUID tree");
3267                 ret = btrfs_create_uuid_tree(fs_info);
3268                 if (ret) {
3269                         btrfs_warn(fs_info,
3270                                 "failed to create the UUID tree: %d", ret);
3271                         close_ctree(fs_info);
3272                         return ret;
3273                 }
3274         } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3275                    fs_info->generation !=
3276                                 btrfs_super_uuid_tree_generation(disk_super)) {
3277                 btrfs_info(fs_info, "checking UUID tree");
3278                 ret = btrfs_check_uuid_tree(fs_info);
3279                 if (ret) {
3280                         btrfs_warn(fs_info,
3281                                 "failed to check the UUID tree: %d", ret);
3282                         close_ctree(fs_info);
3283                         return ret;
3284                 }
3285         } else {
3286                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3287         }
3288         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3289
3290         /*
3291          * backuproot only affect mount behavior, and if open_ctree succeeded,
3292          * no need to keep the flag
3293          */
3294         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3295
3296         return 0;
3297
3298 fail_qgroup:
3299         btrfs_free_qgroup_config(fs_info);
3300 fail_trans_kthread:
3301         kthread_stop(fs_info->transaction_kthread);
3302         btrfs_cleanup_transaction(fs_info);
3303         btrfs_free_fs_roots(fs_info);
3304 fail_cleaner:
3305         kthread_stop(fs_info->cleaner_kthread);
3306
3307         /*
3308          * make sure we're done with the btree inode before we stop our
3309          * kthreads
3310          */
3311         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3312
3313 fail_sysfs:
3314         btrfs_sysfs_remove_mounted(fs_info);
3315
3316 fail_fsdev_sysfs:
3317         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3318
3319 fail_block_groups:
3320         btrfs_put_block_group_cache(fs_info);
3321
3322 fail_tree_roots:
3323         free_root_pointers(fs_info, 1);
3324         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3325
3326 fail_sb_buffer:
3327         btrfs_stop_all_workers(fs_info);
3328         btrfs_free_block_groups(fs_info);
3329 fail_csum:
3330         btrfs_free_csum_hash(fs_info);
3331 fail_alloc:
3332 fail_iput:
3333         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3334
3335         iput(fs_info->btree_inode);
3336 fail_bio_counter:
3337         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
3338 fail_delalloc_bytes:
3339         percpu_counter_destroy(&fs_info->delalloc_bytes);
3340 fail_dirty_metadata_bytes:
3341         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3342 fail_dio_bytes:
3343         percpu_counter_destroy(&fs_info->dio_bytes);
3344 fail_srcu:
3345         cleanup_srcu_struct(&fs_info->subvol_srcu);
3346 fail:
3347         btrfs_free_stripe_hash_table(fs_info);
3348         btrfs_close_devices(fs_info->fs_devices);
3349         return err;
3350
3351 recovery_tree_root:
3352         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3353                 goto fail_tree_roots;
3354
3355         free_root_pointers(fs_info, 0);
3356
3357         /* don't use the log in recovery mode, it won't be valid */
3358         btrfs_set_super_log_root(disk_super, 0);
3359
3360         /* we can't trust the free space cache either */
3361         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3362
3363         ret = next_root_backup(fs_info, fs_info->super_copy,
3364                                &num_backups_tried, &backup_index);
3365         if (ret == -1)
3366                 goto fail_block_groups;
3367         goto retry_root_backup;
3368 }
3369 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3370
3371 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3372 {
3373         if (uptodate) {
3374                 set_buffer_uptodate(bh);
3375         } else {
3376                 struct btrfs_device *device = (struct btrfs_device *)
3377                         bh->b_private;
3378
3379                 btrfs_warn_rl_in_rcu(device->fs_info,
3380                                 "lost page write due to IO error on %s",
3381                                           rcu_str_deref(device->name));
3382                 /* note, we don't set_buffer_write_io_error because we have
3383                  * our own ways of dealing with the IO errors
3384                  */
3385                 clear_buffer_uptodate(bh);
3386                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3387         }
3388         unlock_buffer(bh);
3389         put_bh(bh);
3390 }
3391
3392 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3393                         struct buffer_head **bh_ret)
3394 {
3395         struct buffer_head *bh;
3396         struct btrfs_super_block *super;
3397         u64 bytenr;
3398
3399         bytenr = btrfs_sb_offset(copy_num);
3400         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3401                 return -EINVAL;
3402
3403         bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3404         /*
3405          * If we fail to read from the underlying devices, as of now
3406          * the best option we have is to mark it EIO.
3407          */
3408         if (!bh)
3409                 return -EIO;
3410
3411         super = (struct btrfs_super_block *)bh->b_data;
3412         if (btrfs_super_bytenr(super) != bytenr ||
3413                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3414                 brelse(bh);
3415                 return -EINVAL;
3416         }
3417
3418         *bh_ret = bh;
3419         return 0;
3420 }
3421
3422
3423 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3424 {
3425         struct buffer_head *bh;
3426         struct buffer_head *latest = NULL;
3427         struct btrfs_super_block *super;
3428         int i;
3429         u64 transid = 0;
3430         int ret = -EINVAL;
3431
3432         /* we would like to check all the supers, but that would make
3433          * a btrfs mount succeed after a mkfs from a different FS.
3434          * So, we need to add a special mount option to scan for
3435          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3436          */
3437         for (i = 0; i < 1; i++) {
3438                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3439                 if (ret)
3440                         continue;
3441
3442                 super = (struct btrfs_super_block *)bh->b_data;
3443
3444                 if (!latest || btrfs_super_generation(super) > transid) {
3445                         brelse(latest);
3446                         latest = bh;
3447                         transid = btrfs_super_generation(super);
3448                 } else {
3449                         brelse(bh);
3450                 }
3451         }
3452
3453         if (!latest)
3454                 return ERR_PTR(ret);
3455
3456         return latest;
3457 }
3458
3459 /*
3460  * Write superblock @sb to the @device. Do not wait for completion, all the
3461  * buffer heads we write are pinned.
3462  *
3463  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3464  * the expected device size at commit time. Note that max_mirrors must be
3465  * same for write and wait phases.
3466  *
3467  * Return number of errors when buffer head is not found or submission fails.
3468  */
3469 static int write_dev_supers(struct btrfs_device *device,
3470                             struct btrfs_super_block *sb, int max_mirrors)
3471 {
3472         struct btrfs_fs_info *fs_info = device->fs_info;
3473         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3474         struct buffer_head *bh;
3475         int i;
3476         int ret;
3477         int errors = 0;
3478         u64 bytenr;
3479         int op_flags;
3480
3481         if (max_mirrors == 0)
3482                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3483
3484         shash->tfm = fs_info->csum_shash;
3485
3486         for (i = 0; i < max_mirrors; i++) {
3487                 bytenr = btrfs_sb_offset(i);
3488                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3489                     device->commit_total_bytes)
3490                         break;
3491
3492                 btrfs_set_super_bytenr(sb, bytenr);
3493
3494                 crypto_shash_init(shash);
3495                 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3496                                     BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3497                 crypto_shash_final(shash, sb->csum);
3498
3499                 /* One reference for us, and we leave it for the caller */
3500                 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3501                               BTRFS_SUPER_INFO_SIZE);
3502                 if (!bh) {
3503                         btrfs_err(device->fs_info,
3504                             "couldn't get super buffer head for bytenr %llu",
3505                             bytenr);
3506                         errors++;
3507                         continue;
3508                 }
3509
3510                 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3511
3512                 /* one reference for submit_bh */
3513                 get_bh(bh);
3514
3515                 set_buffer_uptodate(bh);
3516                 lock_buffer(bh);
3517                 bh->b_end_io = btrfs_end_buffer_write_sync;
3518                 bh->b_private = device;
3519
3520                 /*
3521                  * we fua the first super.  The others we allow
3522                  * to go down lazy.
3523                  */
3524                 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3525                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3526                         op_flags |= REQ_FUA;
3527                 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3528                 if (ret)
3529                         errors++;
3530         }
3531         return errors < i ? 0 : -1;
3532 }
3533
3534 /*
3535  * Wait for write completion of superblocks done by write_dev_supers,
3536  * @max_mirrors same for write and wait phases.
3537  *
3538  * Return number of errors when buffer head is not found or not marked up to
3539  * date.
3540  */
3541 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3542 {
3543         struct buffer_head *bh;
3544         int i;
3545         int errors = 0;
3546         bool primary_failed = false;
3547         u64 bytenr;
3548
3549         if (max_mirrors == 0)
3550                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3551
3552         for (i = 0; i < max_mirrors; i++) {
3553                 bytenr = btrfs_sb_offset(i);
3554                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3555                     device->commit_total_bytes)
3556                         break;
3557
3558                 bh = __find_get_block(device->bdev,
3559                                       bytenr / BTRFS_BDEV_BLOCKSIZE,
3560                                       BTRFS_SUPER_INFO_SIZE);
3561                 if (!bh) {
3562                         errors++;
3563                         if (i == 0)
3564                                 primary_failed = true;
3565                         continue;
3566                 }
3567                 wait_on_buffer(bh);
3568                 if (!buffer_uptodate(bh)) {
3569                         errors++;
3570                         if (i == 0)
3571                                 primary_failed = true;
3572                 }
3573
3574                 /* drop our reference */
3575                 brelse(bh);
3576
3577                 /* drop the reference from the writing run */
3578                 brelse(bh);
3579         }
3580
3581         /* log error, force error return */
3582         if (primary_failed) {
3583                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3584                           device->devid);
3585                 return -1;
3586         }
3587
3588         return errors < i ? 0 : -1;
3589 }
3590
3591 /*
3592  * endio for the write_dev_flush, this will wake anyone waiting
3593  * for the barrier when it is done
3594  */
3595 static void btrfs_end_empty_barrier(struct bio *bio)
3596 {
3597         complete(bio->bi_private);
3598 }
3599
3600 /*
3601  * Submit a flush request to the device if it supports it. Error handling is
3602  * done in the waiting counterpart.
3603  */
3604 static void write_dev_flush(struct btrfs_device *device)
3605 {
3606         struct request_queue *q = bdev_get_queue(device->bdev);
3607         struct bio *bio = device->flush_bio;
3608
3609         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3610                 return;
3611
3612         bio_reset(bio);
3613         bio->bi_end_io = btrfs_end_empty_barrier;
3614         bio_set_dev(bio, device->bdev);
3615         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3616         init_completion(&device->flush_wait);
3617         bio->bi_private = &device->flush_wait;
3618
3619         btrfsic_submit_bio(bio);
3620         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3621 }
3622
3623 /*
3624  * If the flush bio has been submitted by write_dev_flush, wait for it.
3625  */
3626 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3627 {
3628         struct bio *bio = device->flush_bio;
3629
3630         if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3631                 return BLK_STS_OK;
3632
3633         clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3634         wait_for_completion_io(&device->flush_wait);
3635
3636         return bio->bi_status;
3637 }
3638
3639 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3640 {
3641         if (!btrfs_check_rw_degradable(fs_info, NULL))
3642                 return -EIO;
3643         return 0;
3644 }
3645
3646 /*
3647  * send an empty flush down to each device in parallel,
3648  * then wait for them
3649  */
3650 static int barrier_all_devices(struct btrfs_fs_info *info)
3651 {
3652         struct list_head *head;
3653         struct btrfs_device *dev;
3654         int errors_wait = 0;
3655         blk_status_t ret;
3656
3657         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3658         /* send down all the barriers */
3659         head = &info->fs_devices->devices;
3660         list_for_each_entry(dev, head, dev_list) {
3661                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3662                         continue;
3663                 if (!dev->bdev)
3664                         continue;
3665                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3666                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3667                         continue;
3668
3669                 write_dev_flush(dev);
3670                 dev->last_flush_error = BLK_STS_OK;
3671         }
3672
3673         /* wait for all the barriers */
3674         list_for_each_entry(dev, head, dev_list) {
3675                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3676                         continue;
3677                 if (!dev->bdev) {
3678                         errors_wait++;
3679                         continue;
3680                 }
3681                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3682                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3683                         continue;
3684
3685                 ret = wait_dev_flush(dev);
3686                 if (ret) {
3687                         dev->last_flush_error = ret;
3688                         btrfs_dev_stat_inc_and_print(dev,
3689                                         BTRFS_DEV_STAT_FLUSH_ERRS);
3690                         errors_wait++;
3691                 }
3692         }
3693
3694         if (errors_wait) {
3695                 /*
3696                  * At some point we need the status of all disks
3697                  * to arrive at the volume status. So error checking
3698                  * is being pushed to a separate loop.
3699                  */
3700                 return check_barrier_error(info);
3701         }
3702         return 0;
3703 }
3704
3705 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3706 {
3707         int raid_type;
3708         int min_tolerated = INT_MAX;
3709
3710         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3711             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3712                 min_tolerated = min_t(int, min_tolerated,
3713                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3714                                     tolerated_failures);
3715
3716         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3717                 if (raid_type == BTRFS_RAID_SINGLE)
3718                         continue;
3719                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3720                         continue;
3721                 min_tolerated = min_t(int, min_tolerated,
3722                                     btrfs_raid_array[raid_type].
3723                                     tolerated_failures);
3724         }
3725
3726         if (min_tolerated == INT_MAX) {
3727                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3728                 min_tolerated = 0;
3729         }
3730
3731         return min_tolerated;
3732 }
3733
3734 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3735 {
3736         struct list_head *head;
3737         struct btrfs_device *dev;
3738         struct btrfs_super_block *sb;
3739         struct btrfs_dev_item *dev_item;
3740         int ret;
3741         int do_barriers;
3742         int max_errors;
3743         int total_errors = 0;
3744         u64 flags;
3745
3746         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3747
3748         /*
3749          * max_mirrors == 0 indicates we're from commit_transaction,
3750          * not from fsync where the tree roots in fs_info have not
3751          * been consistent on disk.
3752          */
3753         if (max_mirrors == 0)
3754                 backup_super_roots(fs_info);
3755
3756         sb = fs_info->super_for_commit;
3757         dev_item = &sb->dev_item;
3758
3759         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3760         head = &fs_info->fs_devices->devices;
3761         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3762
3763         if (do_barriers) {
3764                 ret = barrier_all_devices(fs_info);
3765                 if (ret) {
3766                         mutex_unlock(
3767                                 &fs_info->fs_devices->device_list_mutex);
3768                         btrfs_handle_fs_error(fs_info, ret,
3769                                               "errors while submitting device barriers.");
3770                         return ret;
3771                 }
3772         }
3773
3774         list_for_each_entry(dev, head, dev_list) {
3775                 if (!dev->bdev) {
3776                         total_errors++;
3777                         continue;
3778                 }
3779                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3780                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3781                         continue;
3782
3783                 btrfs_set_stack_device_generation(dev_item, 0);
3784                 btrfs_set_stack_device_type(dev_item, dev->type);
3785                 btrfs_set_stack_device_id(dev_item, dev->devid);
3786                 btrfs_set_stack_device_total_bytes(dev_item,
3787                                                    dev->commit_total_bytes);
3788                 btrfs_set_stack_device_bytes_used(dev_item,
3789                                                   dev->commit_bytes_used);
3790                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3791                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3792                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3793                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3794                 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3795                        BTRFS_FSID_SIZE);
3796
3797                 flags = btrfs_super_flags(sb);
3798                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3799
3800                 ret = btrfs_validate_write_super(fs_info, sb);
3801                 if (ret < 0) {
3802                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3803                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
3804                                 "unexpected superblock corruption detected");
3805                         return -EUCLEAN;
3806                 }
3807
3808                 ret = write_dev_supers(dev, sb, max_mirrors);
3809                 if (ret)
3810                         total_errors++;
3811         }
3812         if (total_errors > max_errors) {
3813                 btrfs_err(fs_info, "%d errors while writing supers",
3814                           total_errors);
3815                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3816
3817                 /* FUA is masked off if unsupported and can't be the reason */
3818                 btrfs_handle_fs_error(fs_info, -EIO,
3819                                       "%d errors while writing supers",
3820                                       total_errors);
3821                 return -EIO;
3822         }
3823
3824         total_errors = 0;
3825         list_for_each_entry(dev, head, dev_list) {
3826                 if (!dev->bdev)
3827                         continue;
3828                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3829                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3830                         continue;
3831
3832                 ret = wait_dev_supers(dev, max_mirrors);
3833                 if (ret)
3834                         total_errors++;
3835         }
3836         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3837         if (total_errors > max_errors) {
3838                 btrfs_handle_fs_error(fs_info, -EIO,
3839                                       "%d errors while writing supers",
3840                                       total_errors);
3841                 return -EIO;
3842         }
3843         return 0;
3844 }
3845
3846 /* Drop a fs root from the radix tree and free it. */
3847 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3848                                   struct btrfs_root *root)
3849 {
3850         spin_lock(&fs_info->fs_roots_radix_lock);
3851         radix_tree_delete(&fs_info->fs_roots_radix,
3852                           (unsigned long)root->root_key.objectid);
3853         spin_unlock(&fs_info->fs_roots_radix_lock);
3854
3855         if (btrfs_root_refs(&root->root_item) == 0)
3856                 synchronize_srcu(&fs_info->subvol_srcu);
3857
3858         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3859                 btrfs_free_log(NULL, root);
3860                 if (root->reloc_root) {
3861                         free_extent_buffer(root->reloc_root->node);
3862                         free_extent_buffer(root->reloc_root->commit_root);
3863                         btrfs_put_fs_root(root->reloc_root);
3864                         root->reloc_root = NULL;
3865                 }
3866         }
3867
3868         if (root->free_ino_pinned)
3869                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3870         if (root->free_ino_ctl)
3871                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3872         btrfs_free_fs_root(root);
3873 }
3874
3875 void btrfs_free_fs_root(struct btrfs_root *root)
3876 {
3877         iput(root->ino_cache_inode);
3878         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3879         if (root->anon_dev)
3880                 free_anon_bdev(root->anon_dev);
3881         if (root->subv_writers)
3882                 btrfs_free_subvolume_writers(root->subv_writers);
3883         free_extent_buffer(root->node);
3884         free_extent_buffer(root->commit_root);
3885         kfree(root->free_ino_ctl);
3886         kfree(root->free_ino_pinned);
3887         btrfs_put_fs_root(root);
3888 }
3889
3890 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3891 {
3892         u64 root_objectid = 0;
3893         struct btrfs_root *gang[8];
3894         int i = 0;
3895         int err = 0;
3896         unsigned int ret = 0;
3897         int index;
3898
3899         while (1) {
3900                 index = srcu_read_lock(&fs_info->subvol_srcu);
3901                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3902                                              (void **)gang, root_objectid,
3903                                              ARRAY_SIZE(gang));
3904                 if (!ret) {
3905                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3906                         break;
3907                 }
3908                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3909
3910                 for (i = 0; i < ret; i++) {
3911                         /* Avoid to grab roots in dead_roots */
3912                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3913                                 gang[i] = NULL;
3914                                 continue;
3915                         }
3916                         /* grab all the search result for later use */
3917                         gang[i] = btrfs_grab_fs_root(gang[i]);
3918                 }
3919                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3920
3921                 for (i = 0; i < ret; i++) {
3922                         if (!gang[i])
3923                                 continue;
3924                         root_objectid = gang[i]->root_key.objectid;
3925                         err = btrfs_orphan_cleanup(gang[i]);
3926                         if (err)
3927                                 break;
3928                         btrfs_put_fs_root(gang[i]);
3929                 }
3930                 root_objectid++;
3931         }
3932
3933         /* release the uncleaned roots due to error */
3934         for (; i < ret; i++) {
3935                 if (gang[i])
3936                         btrfs_put_fs_root(gang[i]);
3937         }
3938         return err;
3939 }
3940
3941 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3942 {
3943         struct btrfs_root *root = fs_info->tree_root;
3944         struct btrfs_trans_handle *trans;
3945
3946         mutex_lock(&fs_info->cleaner_mutex);
3947         btrfs_run_delayed_iputs(fs_info);
3948         mutex_unlock(&fs_info->cleaner_mutex);
3949         wake_up_process(fs_info->cleaner_kthread);
3950
3951         /* wait until ongoing cleanup work done */
3952         down_write(&fs_info->cleanup_work_sem);
3953         up_write(&fs_info->cleanup_work_sem);
3954
3955         trans = btrfs_join_transaction(root);
3956         if (IS_ERR(trans))
3957                 return PTR_ERR(trans);
3958         return btrfs_commit_transaction(trans);
3959 }
3960
3961 void __cold close_ctree(struct btrfs_fs_info *fs_info)
3962 {
3963         int ret;
3964
3965         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3966         /*
3967          * We don't want the cleaner to start new transactions, add more delayed
3968          * iputs, etc. while we're closing. We can't use kthread_stop() yet
3969          * because that frees the task_struct, and the transaction kthread might
3970          * still try to wake up the cleaner.
3971          */
3972         kthread_park(fs_info->cleaner_kthread);
3973
3974         /* wait for the qgroup rescan worker to stop */
3975         btrfs_qgroup_wait_for_completion(fs_info, false);
3976
3977         /* wait for the uuid_scan task to finish */
3978         down(&fs_info->uuid_tree_rescan_sem);
3979         /* avoid complains from lockdep et al., set sem back to initial state */
3980         up(&fs_info->uuid_tree_rescan_sem);
3981
3982         /* pause restriper - we want to resume on mount */
3983         btrfs_pause_balance(fs_info);
3984
3985         btrfs_dev_replace_suspend_for_unmount(fs_info);
3986
3987         btrfs_scrub_cancel(fs_info);
3988
3989         /* wait for any defraggers to finish */
3990         wait_event(fs_info->transaction_wait,
3991                    (atomic_read(&fs_info->defrag_running) == 0));
3992
3993         /* clear out the rbtree of defraggable inodes */
3994         btrfs_cleanup_defrag_inodes(fs_info);
3995
3996         cancel_work_sync(&fs_info->async_reclaim_work);
3997
3998         if (!sb_rdonly(fs_info->sb)) {
3999                 /*
4000                  * The cleaner kthread is stopped, so do one final pass over
4001                  * unused block groups.
4002                  */
4003                 btrfs_delete_unused_bgs(fs_info);
4004
4005                 ret = btrfs_commit_super(fs_info);
4006                 if (ret)
4007                         btrfs_err(fs_info, "commit super ret %d", ret);
4008         }
4009
4010         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4011             test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4012                 btrfs_error_commit_super(fs_info);
4013
4014         kthread_stop(fs_info->transaction_kthread);
4015         kthread_stop(fs_info->cleaner_kthread);
4016
4017         ASSERT(list_empty(&fs_info->delayed_iputs));
4018         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4019
4020         btrfs_free_qgroup_config(fs_info);
4021         ASSERT(list_empty(&fs_info->delalloc_roots));
4022
4023         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4024                 btrfs_info(fs_info, "at unmount delalloc count %lld",
4025                        percpu_counter_sum(&fs_info->delalloc_bytes));
4026         }
4027
4028         if (percpu_counter_sum(&fs_info->dio_bytes))
4029                 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4030                            percpu_counter_sum(&fs_info->dio_bytes));
4031
4032         btrfs_sysfs_remove_mounted(fs_info);
4033         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4034
4035         btrfs_free_fs_roots(fs_info);
4036
4037         btrfs_put_block_group_cache(fs_info);
4038
4039         /*
4040          * we must make sure there is not any read request to
4041          * submit after we stopping all workers.
4042          */
4043         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4044         btrfs_stop_all_workers(fs_info);
4045
4046         btrfs_free_block_groups(fs_info);
4047
4048         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4049         free_root_pointers(fs_info, 1);
4050
4051         iput(fs_info->btree_inode);
4052
4053 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4054         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4055                 btrfsic_unmount(fs_info->fs_devices);
4056 #endif
4057
4058         btrfs_mapping_tree_free(&fs_info->mapping_tree);
4059         btrfs_close_devices(fs_info->fs_devices);
4060
4061         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4062         percpu_counter_destroy(&fs_info->delalloc_bytes);
4063         percpu_counter_destroy(&fs_info->dio_bytes);
4064         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
4065         cleanup_srcu_struct(&fs_info->subvol_srcu);
4066
4067         btrfs_free_csum_hash(fs_info);
4068         btrfs_free_stripe_hash_table(fs_info);
4069         btrfs_free_ref_cache(fs_info);
4070 }
4071
4072 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4073                           int atomic)
4074 {
4075         int ret;
4076         struct inode *btree_inode = buf->pages[0]->mapping->host;
4077
4078         ret = extent_buffer_uptodate(buf);
4079         if (!ret)
4080                 return ret;
4081
4082         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4083                                     parent_transid, atomic);
4084         if (ret == -EAGAIN)
4085                 return ret;
4086         return !ret;
4087 }
4088
4089 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4090 {
4091         struct btrfs_fs_info *fs_info;
4092         struct btrfs_root *root;
4093         u64 transid = btrfs_header_generation(buf);
4094         int was_dirty;
4095
4096 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4097         /*
4098          * This is a fast path so only do this check if we have sanity tests
4099          * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4100          * outside of the sanity tests.
4101          */
4102         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4103                 return;
4104 #endif
4105         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4106         fs_info = root->fs_info;
4107         btrfs_assert_tree_locked(buf);
4108         if (transid != fs_info->generation)
4109                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4110                         buf->start, transid, fs_info->generation);
4111         was_dirty = set_extent_buffer_dirty(buf);
4112         if (!was_dirty)
4113                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4114                                          buf->len,
4115                                          fs_info->dirty_metadata_batch);
4116 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4117         /*
4118          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4119          * but item data not updated.
4120          * So here we should only check item pointers, not item data.
4121          */
4122         if (btrfs_header_level(buf) == 0 &&
4123             btrfs_check_leaf_relaxed(buf)) {
4124                 btrfs_print_leaf(buf);
4125                 ASSERT(0);
4126         }
4127 #endif
4128 }
4129
4130 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4131                                         int flush_delayed)
4132 {
4133         /*
4134          * looks as though older kernels can get into trouble with
4135          * this code, they end up stuck in balance_dirty_pages forever
4136          */
4137         int ret;
4138
4139         if (current->flags & PF_MEMALLOC)
4140                 return;
4141
4142         if (flush_delayed)
4143                 btrfs_balance_delayed_items(fs_info);
4144
4145         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4146                                      BTRFS_DIRTY_METADATA_THRESH,
4147                                      fs_info->dirty_metadata_batch);
4148         if (ret > 0) {
4149                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4150         }
4151 }
4152
4153 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4154 {
4155         __btrfs_btree_balance_dirty(fs_info, 1);
4156 }
4157
4158 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4159 {
4160         __btrfs_btree_balance_dirty(fs_info, 0);
4161 }
4162
4163 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4164                       struct btrfs_key *first_key)
4165 {
4166         return btree_read_extent_buffer_pages(buf, parent_transid,
4167                                               level, first_key);
4168 }
4169
4170 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4171 {
4172         /* cleanup FS via transaction */
4173         btrfs_cleanup_transaction(fs_info);
4174
4175         mutex_lock(&fs_info->cleaner_mutex);
4176         btrfs_run_delayed_iputs(fs_info);
4177         mutex_unlock(&fs_info->cleaner_mutex);
4178
4179         down_write(&fs_info->cleanup_work_sem);
4180         up_write(&fs_info->cleanup_work_sem);
4181 }
4182
4183 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4184 {
4185         struct btrfs_ordered_extent *ordered;
4186
4187         spin_lock(&root->ordered_extent_lock);
4188         /*
4189          * This will just short circuit the ordered completion stuff which will
4190          * make sure the ordered extent gets properly cleaned up.
4191          */
4192         list_for_each_entry(ordered, &root->ordered_extents,
4193                             root_extent_list)
4194                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4195         spin_unlock(&root->ordered_extent_lock);
4196 }
4197
4198 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4199 {
4200         struct btrfs_root *root;
4201         struct list_head splice;
4202
4203         INIT_LIST_HEAD(&splice);
4204
4205         spin_lock(&fs_info->ordered_root_lock);
4206         list_splice_init(&fs_info->ordered_roots, &splice);
4207         while (!list_empty(&splice)) {
4208                 root = list_first_entry(&splice, struct btrfs_root,
4209                                         ordered_root);
4210                 list_move_tail(&root->ordered_root,
4211                                &fs_info->ordered_roots);
4212
4213                 spin_unlock(&fs_info->ordered_root_lock);
4214                 btrfs_destroy_ordered_extents(root);
4215
4216                 cond_resched();
4217                 spin_lock(&fs_info->ordered_root_lock);
4218         }
4219         spin_unlock(&fs_info->ordered_root_lock);
4220
4221         /*
4222          * We need this here because if we've been flipped read-only we won't
4223          * get sync() from the umount, so we need to make sure any ordered
4224          * extents that haven't had their dirty pages IO start writeout yet
4225          * actually get run and error out properly.
4226          */
4227         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4228 }
4229
4230 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4231                                       struct btrfs_fs_info *fs_info)
4232 {
4233         struct rb_node *node;
4234         struct btrfs_delayed_ref_root *delayed_refs;
4235         struct btrfs_delayed_ref_node *ref;
4236         int ret = 0;
4237
4238         delayed_refs = &trans->delayed_refs;
4239
4240         spin_lock(&delayed_refs->lock);
4241         if (atomic_read(&delayed_refs->num_entries) == 0) {
4242                 spin_unlock(&delayed_refs->lock);
4243                 btrfs_info(fs_info, "delayed_refs has NO entry");
4244                 return ret;
4245         }
4246
4247         while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4248                 struct btrfs_delayed_ref_head *head;
4249                 struct rb_node *n;
4250                 bool pin_bytes = false;
4251
4252                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4253                                 href_node);
4254                 if (btrfs_delayed_ref_lock(delayed_refs, head))
4255                         continue;
4256
4257                 spin_lock(&head->lock);
4258                 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4259                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4260                                        ref_node);
4261                         ref->in_tree = 0;
4262                         rb_erase_cached(&ref->ref_node, &head->ref_tree);
4263                         RB_CLEAR_NODE(&ref->ref_node);
4264                         if (!list_empty(&ref->add_list))
4265                                 list_del(&ref->add_list);
4266                         atomic_dec(&delayed_refs->num_entries);
4267                         btrfs_put_delayed_ref(ref);
4268                 }
4269                 if (head->must_insert_reserved)
4270                         pin_bytes = true;
4271                 btrfs_free_delayed_extent_op(head->extent_op);
4272                 btrfs_delete_ref_head(delayed_refs, head);
4273                 spin_unlock(&head->lock);
4274                 spin_unlock(&delayed_refs->lock);
4275                 mutex_unlock(&head->mutex);
4276
4277                 if (pin_bytes)
4278                         btrfs_pin_extent(fs_info, head->bytenr,
4279                                          head->num_bytes, 1);
4280                 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4281                 btrfs_put_delayed_ref_head(head);
4282                 cond_resched();
4283                 spin_lock(&delayed_refs->lock);
4284         }
4285
4286         spin_unlock(&delayed_refs->lock);
4287
4288         return ret;
4289 }
4290
4291 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4292 {
4293         struct btrfs_inode *btrfs_inode;
4294         struct list_head splice;
4295
4296         INIT_LIST_HEAD(&splice);
4297
4298         spin_lock(&root->delalloc_lock);
4299         list_splice_init(&root->delalloc_inodes, &splice);
4300
4301         while (!list_empty(&splice)) {
4302                 struct inode *inode = NULL;
4303                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4304                                                delalloc_inodes);
4305                 __btrfs_del_delalloc_inode(root, btrfs_inode);
4306                 spin_unlock(&root->delalloc_lock);
4307
4308                 /*
4309                  * Make sure we get a live inode and that it'll not disappear
4310                  * meanwhile.
4311                  */
4312                 inode = igrab(&btrfs_inode->vfs_inode);
4313                 if (inode) {
4314                         invalidate_inode_pages2(inode->i_mapping);
4315                         iput(inode);
4316                 }
4317                 spin_lock(&root->delalloc_lock);
4318         }
4319         spin_unlock(&root->delalloc_lock);
4320 }
4321
4322 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4323 {
4324         struct btrfs_root *root;
4325         struct list_head splice;
4326
4327         INIT_LIST_HEAD(&splice);
4328
4329         spin_lock(&fs_info->delalloc_root_lock);
4330         list_splice_init(&fs_info->delalloc_roots, &splice);
4331         while (!list_empty(&splice)) {
4332                 root = list_first_entry(&splice, struct btrfs_root,
4333                                          delalloc_root);
4334                 root = btrfs_grab_fs_root(root);
4335                 BUG_ON(!root);
4336                 spin_unlock(&fs_info->delalloc_root_lock);
4337
4338                 btrfs_destroy_delalloc_inodes(root);
4339                 btrfs_put_fs_root(root);
4340
4341                 spin_lock(&fs_info->delalloc_root_lock);
4342         }
4343         spin_unlock(&fs_info->delalloc_root_lock);
4344 }
4345
4346 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4347                                         struct extent_io_tree *dirty_pages,
4348                                         int mark)
4349 {
4350         int ret;
4351         struct extent_buffer *eb;
4352         u64 start = 0;
4353         u64 end;
4354
4355         while (1) {
4356                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4357                                             mark, NULL);
4358                 if (ret)
4359                         break;
4360
4361                 clear_extent_bits(dirty_pages, start, end, mark);
4362                 while (start <= end) {
4363                         eb = find_extent_buffer(fs_info, start);
4364                         start += fs_info->nodesize;
4365                         if (!eb)
4366                                 continue;
4367                         wait_on_extent_buffer_writeback(eb);
4368
4369                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4370                                                &eb->bflags))
4371                                 clear_extent_buffer_dirty(eb);
4372                         free_extent_buffer_stale(eb);
4373                 }
4374         }
4375
4376         return ret;
4377 }
4378
4379 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4380                                        struct extent_io_tree *pinned_extents)
4381 {
4382         struct extent_io_tree *unpin;
4383         u64 start;
4384         u64 end;
4385         int ret;
4386         bool loop = true;
4387
4388         unpin = pinned_extents;
4389 again:
4390         while (1) {
4391                 struct extent_state *cached_state = NULL;
4392
4393                 /*
4394                  * The btrfs_finish_extent_commit() may get the same range as
4395                  * ours between find_first_extent_bit and clear_extent_dirty.
4396                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4397                  * the same extent range.
4398                  */
4399                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4400                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4401                                             EXTENT_DIRTY, &cached_state);
4402                 if (ret) {
4403                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4404                         break;
4405                 }
4406
4407                 clear_extent_dirty(unpin, start, end, &cached_state);
4408                 free_extent_state(cached_state);
4409                 btrfs_error_unpin_extent_range(fs_info, start, end);
4410                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4411                 cond_resched();
4412         }
4413
4414         if (loop) {
4415                 if (unpin == &fs_info->freed_extents[0])
4416                         unpin = &fs_info->freed_extents[1];
4417                 else
4418                         unpin = &fs_info->freed_extents[0];
4419                 loop = false;
4420                 goto again;
4421         }
4422
4423         return 0;
4424 }
4425
4426 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4427 {
4428         struct inode *inode;
4429
4430         inode = cache->io_ctl.inode;
4431         if (inode) {
4432                 invalidate_inode_pages2(inode->i_mapping);
4433                 BTRFS_I(inode)->generation = 0;
4434                 cache->io_ctl.inode = NULL;
4435                 iput(inode);
4436         }
4437         btrfs_put_block_group(cache);
4438 }
4439
4440 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4441                              struct btrfs_fs_info *fs_info)
4442 {
4443         struct btrfs_block_group_cache *cache;
4444
4445         spin_lock(&cur_trans->dirty_bgs_lock);
4446         while (!list_empty(&cur_trans->dirty_bgs)) {
4447                 cache = list_first_entry(&cur_trans->dirty_bgs,
4448                                          struct btrfs_block_group_cache,
4449                                          dirty_list);
4450
4451                 if (!list_empty(&cache->io_list)) {
4452                         spin_unlock(&cur_trans->dirty_bgs_lock);
4453                         list_del_init(&cache->io_list);
4454                         btrfs_cleanup_bg_io(cache);
4455                         spin_lock(&cur_trans->dirty_bgs_lock);
4456                 }
4457
4458                 list_del_init(&cache->dirty_list);
4459                 spin_lock(&cache->lock);
4460                 cache->disk_cache_state = BTRFS_DC_ERROR;
4461                 spin_unlock(&cache->lock);
4462
4463                 spin_unlock(&cur_trans->dirty_bgs_lock);
4464                 btrfs_put_block_group(cache);
4465                 btrfs_delayed_refs_rsv_release(fs_info, 1);
4466                 spin_lock(&cur_trans->dirty_bgs_lock);
4467         }
4468         spin_unlock(&cur_trans->dirty_bgs_lock);
4469
4470         /*
4471          * Refer to the definition of io_bgs member for details why it's safe
4472          * to use it without any locking
4473          */
4474         while (!list_empty(&cur_trans->io_bgs)) {
4475                 cache = list_first_entry(&cur_trans->io_bgs,
4476                                          struct btrfs_block_group_cache,
4477                                          io_list);
4478
4479                 list_del_init(&cache->io_list);
4480                 spin_lock(&cache->lock);
4481                 cache->disk_cache_state = BTRFS_DC_ERROR;
4482                 spin_unlock(&cache->lock);
4483                 btrfs_cleanup_bg_io(cache);
4484         }
4485 }
4486
4487 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4488                                    struct btrfs_fs_info *fs_info)
4489 {
4490         struct btrfs_device *dev, *tmp;
4491
4492         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4493         ASSERT(list_empty(&cur_trans->dirty_bgs));
4494         ASSERT(list_empty(&cur_trans->io_bgs));
4495
4496         list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4497                                  post_commit_list) {
4498                 list_del_init(&dev->post_commit_list);
4499         }
4500
4501         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4502
4503         cur_trans->state = TRANS_STATE_COMMIT_START;
4504         wake_up(&fs_info->transaction_blocked_wait);
4505
4506         cur_trans->state = TRANS_STATE_UNBLOCKED;
4507         wake_up(&fs_info->transaction_wait);
4508
4509         btrfs_destroy_delayed_inodes(fs_info);
4510         btrfs_assert_delayed_root_empty(fs_info);
4511
4512         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4513                                      EXTENT_DIRTY);
4514         btrfs_destroy_pinned_extent(fs_info,
4515                                     fs_info->pinned_extents);
4516
4517         cur_trans->state =TRANS_STATE_COMPLETED;
4518         wake_up(&cur_trans->commit_wait);
4519 }
4520
4521 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4522 {
4523         struct btrfs_transaction *t;
4524
4525         mutex_lock(&fs_info->transaction_kthread_mutex);
4526
4527         spin_lock(&fs_info->trans_lock);
4528         while (!list_empty(&fs_info->trans_list)) {
4529                 t = list_first_entry(&fs_info->trans_list,
4530                                      struct btrfs_transaction, list);
4531                 if (t->state >= TRANS_STATE_COMMIT_START) {
4532                         refcount_inc(&t->use_count);
4533                         spin_unlock(&fs_info->trans_lock);
4534                         btrfs_wait_for_commit(fs_info, t->transid);
4535                         btrfs_put_transaction(t);
4536                         spin_lock(&fs_info->trans_lock);
4537                         continue;
4538                 }
4539                 if (t == fs_info->running_transaction) {
4540                         t->state = TRANS_STATE_COMMIT_DOING;
4541                         spin_unlock(&fs_info->trans_lock);
4542                         /*
4543                          * We wait for 0 num_writers since we don't hold a trans
4544                          * handle open currently for this transaction.
4545                          */
4546                         wait_event(t->writer_wait,
4547                                    atomic_read(&t->num_writers) == 0);
4548                 } else {
4549                         spin_unlock(&fs_info->trans_lock);
4550                 }
4551                 btrfs_cleanup_one_transaction(t, fs_info);
4552
4553                 spin_lock(&fs_info->trans_lock);
4554                 if (t == fs_info->running_transaction)
4555                         fs_info->running_transaction = NULL;
4556                 list_del_init(&t->list);
4557                 spin_unlock(&fs_info->trans_lock);
4558
4559                 btrfs_put_transaction(t);
4560                 trace_btrfs_transaction_commit(fs_info->tree_root);
4561                 spin_lock(&fs_info->trans_lock);
4562         }
4563         spin_unlock(&fs_info->trans_lock);
4564         btrfs_destroy_all_ordered_extents(fs_info);
4565         btrfs_destroy_delayed_inodes(fs_info);
4566         btrfs_assert_delayed_root_empty(fs_info);
4567         btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4568         btrfs_destroy_all_delalloc_inodes(fs_info);
4569         mutex_unlock(&fs_info->transaction_kthread_mutex);
4570
4571         return 0;
4572 }
4573
4574 static const struct extent_io_ops btree_extent_io_ops = {
4575         /* mandatory callbacks */
4576         .submit_bio_hook = btree_submit_bio_hook,
4577         .readpage_end_io_hook = btree_readpage_end_io_hook,
4578 };