btrfs: rename BTRFS_ROOT_REF_COWS to BTRFS_ROOT_SHAREABLE
[linux-block.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
36 #include "raid56.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
42 #include "block-group.h"
43 #include "discard.h"
44 #include "space-info.h"
45
46 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
47                                  BTRFS_HEADER_FLAG_RELOC |\
48                                  BTRFS_SUPER_FLAG_ERROR |\
49                                  BTRFS_SUPER_FLAG_SEEDING |\
50                                  BTRFS_SUPER_FLAG_METADUMP |\
51                                  BTRFS_SUPER_FLAG_METADUMP_V2)
52
53 static const struct extent_io_ops btree_extent_io_ops;
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57                                       struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60                                         struct extent_io_tree *dirty_pages,
61                                         int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63                                        struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66
67 /*
68  * btrfs_end_io_wq structs are used to do processing in task context when an IO
69  * is complete.  This is used during reads to verify checksums, and it is used
70  * by writes to insert metadata for new file extents after IO is complete.
71  */
72 struct btrfs_end_io_wq {
73         struct bio *bio;
74         bio_end_io_t *end_io;
75         void *private;
76         struct btrfs_fs_info *info;
77         blk_status_t status;
78         enum btrfs_wq_endio_type metadata;
79         struct btrfs_work work;
80 };
81
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83
84 int __init btrfs_end_io_wq_init(void)
85 {
86         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87                                         sizeof(struct btrfs_end_io_wq),
88                                         0,
89                                         SLAB_MEM_SPREAD,
90                                         NULL);
91         if (!btrfs_end_io_wq_cache)
92                 return -ENOMEM;
93         return 0;
94 }
95
96 void __cold btrfs_end_io_wq_exit(void)
97 {
98         kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100
101 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102 {
103         if (fs_info->csum_shash)
104                 crypto_free_shash(fs_info->csum_shash);
105 }
106
107 /*
108  * async submit bios are used to offload expensive checksumming
109  * onto the worker threads.  They checksum file and metadata bios
110  * just before they are sent down the IO stack.
111  */
112 struct async_submit_bio {
113         void *private_data;
114         struct bio *bio;
115         extent_submit_bio_start_t *submit_bio_start;
116         int mirror_num;
117         /*
118          * bio_offset is optional, can be used if the pages in the bio
119          * can't tell us where in the file the bio should go
120          */
121         u64 bio_offset;
122         struct btrfs_work work;
123         blk_status_t status;
124 };
125
126 /*
127  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
128  * eb, the lockdep key is determined by the btrfs_root it belongs to and
129  * the level the eb occupies in the tree.
130  *
131  * Different roots are used for different purposes and may nest inside each
132  * other and they require separate keysets.  As lockdep keys should be
133  * static, assign keysets according to the purpose of the root as indicated
134  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
135  * roots have separate keysets.
136  *
137  * Lock-nesting across peer nodes is always done with the immediate parent
138  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
139  * subclass to avoid triggering lockdep warning in such cases.
140  *
141  * The key is set by the readpage_end_io_hook after the buffer has passed
142  * csum validation but before the pages are unlocked.  It is also set by
143  * btrfs_init_new_buffer on freshly allocated blocks.
144  *
145  * We also add a check to make sure the highest level of the tree is the
146  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
147  * needs update as well.
148  */
149 #ifdef CONFIG_DEBUG_LOCK_ALLOC
150 # if BTRFS_MAX_LEVEL != 8
151 #  error
152 # endif
153
154 static struct btrfs_lockdep_keyset {
155         u64                     id;             /* root objectid */
156         const char              *name_stem;     /* lock name stem */
157         char                    names[BTRFS_MAX_LEVEL + 1][20];
158         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
159 } btrfs_lockdep_keysets[] = {
160         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
161         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
162         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
163         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
164         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
165         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
166         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
167         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
168         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
169         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
170         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
171         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
172         { .id = 0,                              .name_stem = "tree"     },
173 };
174
175 void __init btrfs_init_lockdep(void)
176 {
177         int i, j;
178
179         /* initialize lockdep class names */
180         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
181                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
182
183                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
184                         snprintf(ks->names[j], sizeof(ks->names[j]),
185                                  "btrfs-%s-%02d", ks->name_stem, j);
186         }
187 }
188
189 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
190                                     int level)
191 {
192         struct btrfs_lockdep_keyset *ks;
193
194         BUG_ON(level >= ARRAY_SIZE(ks->keys));
195
196         /* find the matching keyset, id 0 is the default entry */
197         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
198                 if (ks->id == objectid)
199                         break;
200
201         lockdep_set_class_and_name(&eb->lock,
202                                    &ks->keys[level], ks->names[level]);
203 }
204
205 #endif
206
207 /*
208  * extents on the btree inode are pretty simple, there's one extent
209  * that covers the entire device
210  */
211 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
212                                     struct page *page, size_t pg_offset,
213                                     u64 start, u64 len)
214 {
215         struct extent_map_tree *em_tree = &inode->extent_tree;
216         struct extent_map *em;
217         int ret;
218
219         read_lock(&em_tree->lock);
220         em = lookup_extent_mapping(em_tree, start, len);
221         if (em) {
222                 read_unlock(&em_tree->lock);
223                 goto out;
224         }
225         read_unlock(&em_tree->lock);
226
227         em = alloc_extent_map();
228         if (!em) {
229                 em = ERR_PTR(-ENOMEM);
230                 goto out;
231         }
232         em->start = 0;
233         em->len = (u64)-1;
234         em->block_len = (u64)-1;
235         em->block_start = 0;
236
237         write_lock(&em_tree->lock);
238         ret = add_extent_mapping(em_tree, em, 0);
239         if (ret == -EEXIST) {
240                 free_extent_map(em);
241                 em = lookup_extent_mapping(em_tree, start, len);
242                 if (!em)
243                         em = ERR_PTR(-EIO);
244         } else if (ret) {
245                 free_extent_map(em);
246                 em = ERR_PTR(ret);
247         }
248         write_unlock(&em_tree->lock);
249
250 out:
251         return em;
252 }
253
254 /*
255  * Compute the csum of a btree block and store the result to provided buffer.
256  */
257 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
258 {
259         struct btrfs_fs_info *fs_info = buf->fs_info;
260         const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
261         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
262         char *kaddr;
263         int i;
264
265         shash->tfm = fs_info->csum_shash;
266         crypto_shash_init(shash);
267         kaddr = page_address(buf->pages[0]);
268         crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
269                             PAGE_SIZE - BTRFS_CSUM_SIZE);
270
271         for (i = 1; i < num_pages; i++) {
272                 kaddr = page_address(buf->pages[i]);
273                 crypto_shash_update(shash, kaddr, PAGE_SIZE);
274         }
275         memset(result, 0, BTRFS_CSUM_SIZE);
276         crypto_shash_final(shash, result);
277 }
278
279 /*
280  * we can't consider a given block up to date unless the transid of the
281  * block matches the transid in the parent node's pointer.  This is how we
282  * detect blocks that either didn't get written at all or got written
283  * in the wrong place.
284  */
285 static int verify_parent_transid(struct extent_io_tree *io_tree,
286                                  struct extent_buffer *eb, u64 parent_transid,
287                                  int atomic)
288 {
289         struct extent_state *cached_state = NULL;
290         int ret;
291         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
292
293         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
294                 return 0;
295
296         if (atomic)
297                 return -EAGAIN;
298
299         if (need_lock) {
300                 btrfs_tree_read_lock(eb);
301                 btrfs_set_lock_blocking_read(eb);
302         }
303
304         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
305                          &cached_state);
306         if (extent_buffer_uptodate(eb) &&
307             btrfs_header_generation(eb) == parent_transid) {
308                 ret = 0;
309                 goto out;
310         }
311         btrfs_err_rl(eb->fs_info,
312                 "parent transid verify failed on %llu wanted %llu found %llu",
313                         eb->start,
314                         parent_transid, btrfs_header_generation(eb));
315         ret = 1;
316
317         /*
318          * Things reading via commit roots that don't have normal protection,
319          * like send, can have a really old block in cache that may point at a
320          * block that has been freed and re-allocated.  So don't clear uptodate
321          * if we find an eb that is under IO (dirty/writeback) because we could
322          * end up reading in the stale data and then writing it back out and
323          * making everybody very sad.
324          */
325         if (!extent_buffer_under_io(eb))
326                 clear_extent_buffer_uptodate(eb);
327 out:
328         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
329                              &cached_state);
330         if (need_lock)
331                 btrfs_tree_read_unlock_blocking(eb);
332         return ret;
333 }
334
335 static bool btrfs_supported_super_csum(u16 csum_type)
336 {
337         switch (csum_type) {
338         case BTRFS_CSUM_TYPE_CRC32:
339         case BTRFS_CSUM_TYPE_XXHASH:
340         case BTRFS_CSUM_TYPE_SHA256:
341         case BTRFS_CSUM_TYPE_BLAKE2:
342                 return true;
343         default:
344                 return false;
345         }
346 }
347
348 /*
349  * Return 0 if the superblock checksum type matches the checksum value of that
350  * algorithm. Pass the raw disk superblock data.
351  */
352 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
353                                   char *raw_disk_sb)
354 {
355         struct btrfs_super_block *disk_sb =
356                 (struct btrfs_super_block *)raw_disk_sb;
357         char result[BTRFS_CSUM_SIZE];
358         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
359
360         shash->tfm = fs_info->csum_shash;
361
362         /*
363          * The super_block structure does not span the whole
364          * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
365          * filled with zeros and is included in the checksum.
366          */
367         crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
368                             BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
369
370         if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
371                 return 1;
372
373         return 0;
374 }
375
376 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
377                            struct btrfs_key *first_key, u64 parent_transid)
378 {
379         struct btrfs_fs_info *fs_info = eb->fs_info;
380         int found_level;
381         struct btrfs_key found_key;
382         int ret;
383
384         found_level = btrfs_header_level(eb);
385         if (found_level != level) {
386                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
387                      KERN_ERR "BTRFS: tree level check failed\n");
388                 btrfs_err(fs_info,
389 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
390                           eb->start, level, found_level);
391                 return -EIO;
392         }
393
394         if (!first_key)
395                 return 0;
396
397         /*
398          * For live tree block (new tree blocks in current transaction),
399          * we need proper lock context to avoid race, which is impossible here.
400          * So we only checks tree blocks which is read from disk, whose
401          * generation <= fs_info->last_trans_committed.
402          */
403         if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
404                 return 0;
405
406         /* We have @first_key, so this @eb must have at least one item */
407         if (btrfs_header_nritems(eb) == 0) {
408                 btrfs_err(fs_info,
409                 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
410                           eb->start);
411                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
412                 return -EUCLEAN;
413         }
414
415         if (found_level)
416                 btrfs_node_key_to_cpu(eb, &found_key, 0);
417         else
418                 btrfs_item_key_to_cpu(eb, &found_key, 0);
419         ret = btrfs_comp_cpu_keys(first_key, &found_key);
420
421         if (ret) {
422                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
423                      KERN_ERR "BTRFS: tree first key check failed\n");
424                 btrfs_err(fs_info,
425 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
426                           eb->start, parent_transid, first_key->objectid,
427                           first_key->type, first_key->offset,
428                           found_key.objectid, found_key.type,
429                           found_key.offset);
430         }
431         return ret;
432 }
433
434 /*
435  * helper to read a given tree block, doing retries as required when
436  * the checksums don't match and we have alternate mirrors to try.
437  *
438  * @parent_transid:     expected transid, skip check if 0
439  * @level:              expected level, mandatory check
440  * @first_key:          expected key of first slot, skip check if NULL
441  */
442 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
443                                           u64 parent_transid, int level,
444                                           struct btrfs_key *first_key)
445 {
446         struct btrfs_fs_info *fs_info = eb->fs_info;
447         struct extent_io_tree *io_tree;
448         int failed = 0;
449         int ret;
450         int num_copies = 0;
451         int mirror_num = 0;
452         int failed_mirror = 0;
453
454         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
455         while (1) {
456                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
457                 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
458                 if (!ret) {
459                         if (verify_parent_transid(io_tree, eb,
460                                                    parent_transid, 0))
461                                 ret = -EIO;
462                         else if (btrfs_verify_level_key(eb, level,
463                                                 first_key, parent_transid))
464                                 ret = -EUCLEAN;
465                         else
466                                 break;
467                 }
468
469                 num_copies = btrfs_num_copies(fs_info,
470                                               eb->start, eb->len);
471                 if (num_copies == 1)
472                         break;
473
474                 if (!failed_mirror) {
475                         failed = 1;
476                         failed_mirror = eb->read_mirror;
477                 }
478
479                 mirror_num++;
480                 if (mirror_num == failed_mirror)
481                         mirror_num++;
482
483                 if (mirror_num > num_copies)
484                         break;
485         }
486
487         if (failed && !ret && failed_mirror)
488                 btrfs_repair_eb_io_failure(eb, failed_mirror);
489
490         return ret;
491 }
492
493 /*
494  * checksum a dirty tree block before IO.  This has extra checks to make sure
495  * we only fill in the checksum field in the first page of a multi-page block
496  */
497
498 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
499 {
500         u64 start = page_offset(page);
501         u64 found_start;
502         u8 result[BTRFS_CSUM_SIZE];
503         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
504         struct extent_buffer *eb;
505         int ret;
506
507         eb = (struct extent_buffer *)page->private;
508         if (page != eb->pages[0])
509                 return 0;
510
511         found_start = btrfs_header_bytenr(eb);
512         /*
513          * Please do not consolidate these warnings into a single if.
514          * It is useful to know what went wrong.
515          */
516         if (WARN_ON(found_start != start))
517                 return -EUCLEAN;
518         if (WARN_ON(!PageUptodate(page)))
519                 return -EUCLEAN;
520
521         ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
522                                     offsetof(struct btrfs_header, fsid),
523                                     BTRFS_FSID_SIZE) == 0);
524
525         csum_tree_block(eb, result);
526
527         if (btrfs_header_level(eb))
528                 ret = btrfs_check_node(eb);
529         else
530                 ret = btrfs_check_leaf_full(eb);
531
532         if (ret < 0) {
533                 btrfs_print_tree(eb, 0);
534                 btrfs_err(fs_info,
535                 "block=%llu write time tree block corruption detected",
536                           eb->start);
537                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
538                 return ret;
539         }
540         write_extent_buffer(eb, result, 0, csum_size);
541
542         return 0;
543 }
544
545 static int check_tree_block_fsid(struct extent_buffer *eb)
546 {
547         struct btrfs_fs_info *fs_info = eb->fs_info;
548         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
549         u8 fsid[BTRFS_FSID_SIZE];
550         int ret = 1;
551
552         read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
553                            BTRFS_FSID_SIZE);
554         while (fs_devices) {
555                 u8 *metadata_uuid;
556
557                 /*
558                  * Checking the incompat flag is only valid for the current
559                  * fs. For seed devices it's forbidden to have their uuid
560                  * changed so reading ->fsid in this case is fine
561                  */
562                 if (fs_devices == fs_info->fs_devices &&
563                     btrfs_fs_incompat(fs_info, METADATA_UUID))
564                         metadata_uuid = fs_devices->metadata_uuid;
565                 else
566                         metadata_uuid = fs_devices->fsid;
567
568                 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
569                         ret = 0;
570                         break;
571                 }
572                 fs_devices = fs_devices->seed;
573         }
574         return ret;
575 }
576
577 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
578                                       u64 phy_offset, struct page *page,
579                                       u64 start, u64 end, int mirror)
580 {
581         u64 found_start;
582         int found_level;
583         struct extent_buffer *eb;
584         struct btrfs_fs_info *fs_info;
585         u16 csum_size;
586         int ret = 0;
587         u8 result[BTRFS_CSUM_SIZE];
588         int reads_done;
589
590         if (!page->private)
591                 goto out;
592
593         eb = (struct extent_buffer *)page->private;
594         fs_info = eb->fs_info;
595         csum_size = btrfs_super_csum_size(fs_info->super_copy);
596
597         /* the pending IO might have been the only thing that kept this buffer
598          * in memory.  Make sure we have a ref for all this other checks
599          */
600         atomic_inc(&eb->refs);
601
602         reads_done = atomic_dec_and_test(&eb->io_pages);
603         if (!reads_done)
604                 goto err;
605
606         eb->read_mirror = mirror;
607         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
608                 ret = -EIO;
609                 goto err;
610         }
611
612         found_start = btrfs_header_bytenr(eb);
613         if (found_start != eb->start) {
614                 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
615                              eb->start, found_start);
616                 ret = -EIO;
617                 goto err;
618         }
619         if (check_tree_block_fsid(eb)) {
620                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
621                              eb->start);
622                 ret = -EIO;
623                 goto err;
624         }
625         found_level = btrfs_header_level(eb);
626         if (found_level >= BTRFS_MAX_LEVEL) {
627                 btrfs_err(fs_info, "bad tree block level %d on %llu",
628                           (int)btrfs_header_level(eb), eb->start);
629                 ret = -EIO;
630                 goto err;
631         }
632
633         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
634                                        eb, found_level);
635
636         csum_tree_block(eb, result);
637
638         if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
639                 u32 val;
640                 u32 found = 0;
641
642                 memcpy(&found, result, csum_size);
643
644                 read_extent_buffer(eb, &val, 0, csum_size);
645                 btrfs_warn_rl(fs_info,
646                 "%s checksum verify failed on %llu wanted %x found %x level %d",
647                               fs_info->sb->s_id, eb->start,
648                               val, found, btrfs_header_level(eb));
649                 ret = -EUCLEAN;
650                 goto err;
651         }
652
653         /*
654          * If this is a leaf block and it is corrupt, set the corrupt bit so
655          * that we don't try and read the other copies of this block, just
656          * return -EIO.
657          */
658         if (found_level == 0 && btrfs_check_leaf_full(eb)) {
659                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
660                 ret = -EIO;
661         }
662
663         if (found_level > 0 && btrfs_check_node(eb))
664                 ret = -EIO;
665
666         if (!ret)
667                 set_extent_buffer_uptodate(eb);
668         else
669                 btrfs_err(fs_info,
670                           "block=%llu read time tree block corruption detected",
671                           eb->start);
672 err:
673         if (reads_done &&
674             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
675                 btree_readahead_hook(eb, ret);
676
677         if (ret) {
678                 /*
679                  * our io error hook is going to dec the io pages
680                  * again, we have to make sure it has something
681                  * to decrement
682                  */
683                 atomic_inc(&eb->io_pages);
684                 clear_extent_buffer_uptodate(eb);
685         }
686         free_extent_buffer(eb);
687 out:
688         return ret;
689 }
690
691 static void end_workqueue_bio(struct bio *bio)
692 {
693         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
694         struct btrfs_fs_info *fs_info;
695         struct btrfs_workqueue *wq;
696
697         fs_info = end_io_wq->info;
698         end_io_wq->status = bio->bi_status;
699
700         if (bio_op(bio) == REQ_OP_WRITE) {
701                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
702                         wq = fs_info->endio_meta_write_workers;
703                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
704                         wq = fs_info->endio_freespace_worker;
705                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
706                         wq = fs_info->endio_raid56_workers;
707                 else
708                         wq = fs_info->endio_write_workers;
709         } else {
710                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
711                         wq = fs_info->endio_raid56_workers;
712                 else if (end_io_wq->metadata)
713                         wq = fs_info->endio_meta_workers;
714                 else
715                         wq = fs_info->endio_workers;
716         }
717
718         btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
719         btrfs_queue_work(wq, &end_io_wq->work);
720 }
721
722 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
723                         enum btrfs_wq_endio_type metadata)
724 {
725         struct btrfs_end_io_wq *end_io_wq;
726
727         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
728         if (!end_io_wq)
729                 return BLK_STS_RESOURCE;
730
731         end_io_wq->private = bio->bi_private;
732         end_io_wq->end_io = bio->bi_end_io;
733         end_io_wq->info = info;
734         end_io_wq->status = 0;
735         end_io_wq->bio = bio;
736         end_io_wq->metadata = metadata;
737
738         bio->bi_private = end_io_wq;
739         bio->bi_end_io = end_workqueue_bio;
740         return 0;
741 }
742
743 static void run_one_async_start(struct btrfs_work *work)
744 {
745         struct async_submit_bio *async;
746         blk_status_t ret;
747
748         async = container_of(work, struct  async_submit_bio, work);
749         ret = async->submit_bio_start(async->private_data, async->bio,
750                                       async->bio_offset);
751         if (ret)
752                 async->status = ret;
753 }
754
755 /*
756  * In order to insert checksums into the metadata in large chunks, we wait
757  * until bio submission time.   All the pages in the bio are checksummed and
758  * sums are attached onto the ordered extent record.
759  *
760  * At IO completion time the csums attached on the ordered extent record are
761  * inserted into the tree.
762  */
763 static void run_one_async_done(struct btrfs_work *work)
764 {
765         struct async_submit_bio *async;
766         struct inode *inode;
767         blk_status_t ret;
768
769         async = container_of(work, struct  async_submit_bio, work);
770         inode = async->private_data;
771
772         /* If an error occurred we just want to clean up the bio and move on */
773         if (async->status) {
774                 async->bio->bi_status = async->status;
775                 bio_endio(async->bio);
776                 return;
777         }
778
779         /*
780          * All of the bios that pass through here are from async helpers.
781          * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
782          * This changes nothing when cgroups aren't in use.
783          */
784         async->bio->bi_opf |= REQ_CGROUP_PUNT;
785         ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
786         if (ret) {
787                 async->bio->bi_status = ret;
788                 bio_endio(async->bio);
789         }
790 }
791
792 static void run_one_async_free(struct btrfs_work *work)
793 {
794         struct async_submit_bio *async;
795
796         async = container_of(work, struct  async_submit_bio, work);
797         kfree(async);
798 }
799
800 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
801                                  int mirror_num, unsigned long bio_flags,
802                                  u64 bio_offset, void *private_data,
803                                  extent_submit_bio_start_t *submit_bio_start)
804 {
805         struct async_submit_bio *async;
806
807         async = kmalloc(sizeof(*async), GFP_NOFS);
808         if (!async)
809                 return BLK_STS_RESOURCE;
810
811         async->private_data = private_data;
812         async->bio = bio;
813         async->mirror_num = mirror_num;
814         async->submit_bio_start = submit_bio_start;
815
816         btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
817                         run_one_async_free);
818
819         async->bio_offset = bio_offset;
820
821         async->status = 0;
822
823         if (op_is_sync(bio->bi_opf))
824                 btrfs_set_work_high_priority(&async->work);
825
826         btrfs_queue_work(fs_info->workers, &async->work);
827         return 0;
828 }
829
830 static blk_status_t btree_csum_one_bio(struct bio *bio)
831 {
832         struct bio_vec *bvec;
833         struct btrfs_root *root;
834         int ret = 0;
835         struct bvec_iter_all iter_all;
836
837         ASSERT(!bio_flagged(bio, BIO_CLONED));
838         bio_for_each_segment_all(bvec, bio, iter_all) {
839                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
840                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
841                 if (ret)
842                         break;
843         }
844
845         return errno_to_blk_status(ret);
846 }
847
848 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
849                                              u64 bio_offset)
850 {
851         /*
852          * when we're called for a write, we're already in the async
853          * submission context.  Just jump into btrfs_map_bio
854          */
855         return btree_csum_one_bio(bio);
856 }
857
858 static int check_async_write(struct btrfs_fs_info *fs_info,
859                              struct btrfs_inode *bi)
860 {
861         if (atomic_read(&bi->sync_writers))
862                 return 0;
863         if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
864                 return 0;
865         return 1;
866 }
867
868 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
869                                           int mirror_num,
870                                           unsigned long bio_flags)
871 {
872         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
873         int async = check_async_write(fs_info, BTRFS_I(inode));
874         blk_status_t ret;
875
876         if (bio_op(bio) != REQ_OP_WRITE) {
877                 /*
878                  * called for a read, do the setup so that checksum validation
879                  * can happen in the async kernel threads
880                  */
881                 ret = btrfs_bio_wq_end_io(fs_info, bio,
882                                           BTRFS_WQ_ENDIO_METADATA);
883                 if (ret)
884                         goto out_w_error;
885                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
886         } else if (!async) {
887                 ret = btree_csum_one_bio(bio);
888                 if (ret)
889                         goto out_w_error;
890                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
891         } else {
892                 /*
893                  * kthread helpers are used to submit writes so that
894                  * checksumming can happen in parallel across all CPUs
895                  */
896                 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
897                                           0, inode, btree_submit_bio_start);
898         }
899
900         if (ret)
901                 goto out_w_error;
902         return 0;
903
904 out_w_error:
905         bio->bi_status = ret;
906         bio_endio(bio);
907         return ret;
908 }
909
910 #ifdef CONFIG_MIGRATION
911 static int btree_migratepage(struct address_space *mapping,
912                         struct page *newpage, struct page *page,
913                         enum migrate_mode mode)
914 {
915         /*
916          * we can't safely write a btree page from here,
917          * we haven't done the locking hook
918          */
919         if (PageDirty(page))
920                 return -EAGAIN;
921         /*
922          * Buffers may be managed in a filesystem specific way.
923          * We must have no buffers or drop them.
924          */
925         if (page_has_private(page) &&
926             !try_to_release_page(page, GFP_KERNEL))
927                 return -EAGAIN;
928         return migrate_page(mapping, newpage, page, mode);
929 }
930 #endif
931
932
933 static int btree_writepages(struct address_space *mapping,
934                             struct writeback_control *wbc)
935 {
936         struct btrfs_fs_info *fs_info;
937         int ret;
938
939         if (wbc->sync_mode == WB_SYNC_NONE) {
940
941                 if (wbc->for_kupdate)
942                         return 0;
943
944                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
945                 /* this is a bit racy, but that's ok */
946                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
947                                              BTRFS_DIRTY_METADATA_THRESH,
948                                              fs_info->dirty_metadata_batch);
949                 if (ret < 0)
950                         return 0;
951         }
952         return btree_write_cache_pages(mapping, wbc);
953 }
954
955 static int btree_readpage(struct file *file, struct page *page)
956 {
957         return extent_read_full_page(page, btree_get_extent, 0);
958 }
959
960 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
961 {
962         if (PageWriteback(page) || PageDirty(page))
963                 return 0;
964
965         return try_release_extent_buffer(page);
966 }
967
968 static void btree_invalidatepage(struct page *page, unsigned int offset,
969                                  unsigned int length)
970 {
971         struct extent_io_tree *tree;
972         tree = &BTRFS_I(page->mapping->host)->io_tree;
973         extent_invalidatepage(tree, page, offset);
974         btree_releasepage(page, GFP_NOFS);
975         if (PagePrivate(page)) {
976                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
977                            "page private not zero on page %llu",
978                            (unsigned long long)page_offset(page));
979                 ClearPagePrivate(page);
980                 set_page_private(page, 0);
981                 put_page(page);
982         }
983 }
984
985 static int btree_set_page_dirty(struct page *page)
986 {
987 #ifdef DEBUG
988         struct extent_buffer *eb;
989
990         BUG_ON(!PagePrivate(page));
991         eb = (struct extent_buffer *)page->private;
992         BUG_ON(!eb);
993         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
994         BUG_ON(!atomic_read(&eb->refs));
995         btrfs_assert_tree_locked(eb);
996 #endif
997         return __set_page_dirty_nobuffers(page);
998 }
999
1000 static const struct address_space_operations btree_aops = {
1001         .readpage       = btree_readpage,
1002         .writepages     = btree_writepages,
1003         .releasepage    = btree_releasepage,
1004         .invalidatepage = btree_invalidatepage,
1005 #ifdef CONFIG_MIGRATION
1006         .migratepage    = btree_migratepage,
1007 #endif
1008         .set_page_dirty = btree_set_page_dirty,
1009 };
1010
1011 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1012 {
1013         struct extent_buffer *buf = NULL;
1014         int ret;
1015
1016         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1017         if (IS_ERR(buf))
1018                 return;
1019
1020         ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1021         if (ret < 0)
1022                 free_extent_buffer_stale(buf);
1023         else
1024                 free_extent_buffer(buf);
1025 }
1026
1027 struct extent_buffer *btrfs_find_create_tree_block(
1028                                                 struct btrfs_fs_info *fs_info,
1029                                                 u64 bytenr)
1030 {
1031         if (btrfs_is_testing(fs_info))
1032                 return alloc_test_extent_buffer(fs_info, bytenr);
1033         return alloc_extent_buffer(fs_info, bytenr);
1034 }
1035
1036 /*
1037  * Read tree block at logical address @bytenr and do variant basic but critical
1038  * verification.
1039  *
1040  * @parent_transid:     expected transid of this tree block, skip check if 0
1041  * @level:              expected level, mandatory check
1042  * @first_key:          expected key in slot 0, skip check if NULL
1043  */
1044 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1045                                       u64 parent_transid, int level,
1046                                       struct btrfs_key *first_key)
1047 {
1048         struct extent_buffer *buf = NULL;
1049         int ret;
1050
1051         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1052         if (IS_ERR(buf))
1053                 return buf;
1054
1055         ret = btree_read_extent_buffer_pages(buf, parent_transid,
1056                                              level, first_key);
1057         if (ret) {
1058                 free_extent_buffer_stale(buf);
1059                 return ERR_PTR(ret);
1060         }
1061         return buf;
1062
1063 }
1064
1065 void btrfs_clean_tree_block(struct extent_buffer *buf)
1066 {
1067         struct btrfs_fs_info *fs_info = buf->fs_info;
1068         if (btrfs_header_generation(buf) ==
1069             fs_info->running_transaction->transid) {
1070                 btrfs_assert_tree_locked(buf);
1071
1072                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1073                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1074                                                  -buf->len,
1075                                                  fs_info->dirty_metadata_batch);
1076                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1077                         btrfs_set_lock_blocking_write(buf);
1078                         clear_extent_buffer_dirty(buf);
1079                 }
1080         }
1081 }
1082
1083 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1084                          u64 objectid)
1085 {
1086         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1087         root->fs_info = fs_info;
1088         root->node = NULL;
1089         root->commit_root = NULL;
1090         root->state = 0;
1091         root->orphan_cleanup_state = 0;
1092
1093         root->last_trans = 0;
1094         root->highest_objectid = 0;
1095         root->nr_delalloc_inodes = 0;
1096         root->nr_ordered_extents = 0;
1097         root->inode_tree = RB_ROOT;
1098         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1099         root->block_rsv = NULL;
1100
1101         INIT_LIST_HEAD(&root->dirty_list);
1102         INIT_LIST_HEAD(&root->root_list);
1103         INIT_LIST_HEAD(&root->delalloc_inodes);
1104         INIT_LIST_HEAD(&root->delalloc_root);
1105         INIT_LIST_HEAD(&root->ordered_extents);
1106         INIT_LIST_HEAD(&root->ordered_root);
1107         INIT_LIST_HEAD(&root->reloc_dirty_list);
1108         INIT_LIST_HEAD(&root->logged_list[0]);
1109         INIT_LIST_HEAD(&root->logged_list[1]);
1110         spin_lock_init(&root->inode_lock);
1111         spin_lock_init(&root->delalloc_lock);
1112         spin_lock_init(&root->ordered_extent_lock);
1113         spin_lock_init(&root->accounting_lock);
1114         spin_lock_init(&root->log_extents_lock[0]);
1115         spin_lock_init(&root->log_extents_lock[1]);
1116         spin_lock_init(&root->qgroup_meta_rsv_lock);
1117         mutex_init(&root->objectid_mutex);
1118         mutex_init(&root->log_mutex);
1119         mutex_init(&root->ordered_extent_mutex);
1120         mutex_init(&root->delalloc_mutex);
1121         init_waitqueue_head(&root->log_writer_wait);
1122         init_waitqueue_head(&root->log_commit_wait[0]);
1123         init_waitqueue_head(&root->log_commit_wait[1]);
1124         INIT_LIST_HEAD(&root->log_ctxs[0]);
1125         INIT_LIST_HEAD(&root->log_ctxs[1]);
1126         atomic_set(&root->log_commit[0], 0);
1127         atomic_set(&root->log_commit[1], 0);
1128         atomic_set(&root->log_writers, 0);
1129         atomic_set(&root->log_batch, 0);
1130         refcount_set(&root->refs, 1);
1131         atomic_set(&root->snapshot_force_cow, 0);
1132         atomic_set(&root->nr_swapfiles, 0);
1133         root->log_transid = 0;
1134         root->log_transid_committed = -1;
1135         root->last_log_commit = 0;
1136         if (!dummy)
1137                 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1138                                     IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1139
1140         memset(&root->root_key, 0, sizeof(root->root_key));
1141         memset(&root->root_item, 0, sizeof(root->root_item));
1142         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1143         if (!dummy)
1144                 root->defrag_trans_start = fs_info->generation;
1145         else
1146                 root->defrag_trans_start = 0;
1147         root->root_key.objectid = objectid;
1148         root->anon_dev = 0;
1149
1150         spin_lock_init(&root->root_item_lock);
1151         btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1152 #ifdef CONFIG_BTRFS_DEBUG
1153         INIT_LIST_HEAD(&root->leak_list);
1154         spin_lock(&fs_info->fs_roots_radix_lock);
1155         list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1156         spin_unlock(&fs_info->fs_roots_radix_lock);
1157 #endif
1158 }
1159
1160 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1161                                            u64 objectid, gfp_t flags)
1162 {
1163         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1164         if (root)
1165                 __setup_root(root, fs_info, objectid);
1166         return root;
1167 }
1168
1169 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1170 /* Should only be used by the testing infrastructure */
1171 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1172 {
1173         struct btrfs_root *root;
1174
1175         if (!fs_info)
1176                 return ERR_PTR(-EINVAL);
1177
1178         root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1179         if (!root)
1180                 return ERR_PTR(-ENOMEM);
1181
1182         /* We don't use the stripesize in selftest, set it as sectorsize */
1183         root->alloc_bytenr = 0;
1184
1185         return root;
1186 }
1187 #endif
1188
1189 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1190                                      u64 objectid)
1191 {
1192         struct btrfs_fs_info *fs_info = trans->fs_info;
1193         struct extent_buffer *leaf;
1194         struct btrfs_root *tree_root = fs_info->tree_root;
1195         struct btrfs_root *root;
1196         struct btrfs_key key;
1197         unsigned int nofs_flag;
1198         int ret = 0;
1199
1200         /*
1201          * We're holding a transaction handle, so use a NOFS memory allocation
1202          * context to avoid deadlock if reclaim happens.
1203          */
1204         nofs_flag = memalloc_nofs_save();
1205         root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1206         memalloc_nofs_restore(nofs_flag);
1207         if (!root)
1208                 return ERR_PTR(-ENOMEM);
1209
1210         root->root_key.objectid = objectid;
1211         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1212         root->root_key.offset = 0;
1213
1214         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1215         if (IS_ERR(leaf)) {
1216                 ret = PTR_ERR(leaf);
1217                 leaf = NULL;
1218                 goto fail;
1219         }
1220
1221         root->node = leaf;
1222         btrfs_mark_buffer_dirty(leaf);
1223
1224         root->commit_root = btrfs_root_node(root);
1225         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1226
1227         root->root_item.flags = 0;
1228         root->root_item.byte_limit = 0;
1229         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1230         btrfs_set_root_generation(&root->root_item, trans->transid);
1231         btrfs_set_root_level(&root->root_item, 0);
1232         btrfs_set_root_refs(&root->root_item, 1);
1233         btrfs_set_root_used(&root->root_item, leaf->len);
1234         btrfs_set_root_last_snapshot(&root->root_item, 0);
1235         btrfs_set_root_dirid(&root->root_item, 0);
1236         if (is_fstree(objectid))
1237                 generate_random_guid(root->root_item.uuid);
1238         else
1239                 export_guid(root->root_item.uuid, &guid_null);
1240         root->root_item.drop_level = 0;
1241
1242         key.objectid = objectid;
1243         key.type = BTRFS_ROOT_ITEM_KEY;
1244         key.offset = 0;
1245         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1246         if (ret)
1247                 goto fail;
1248
1249         btrfs_tree_unlock(leaf);
1250
1251         return root;
1252
1253 fail:
1254         if (leaf)
1255                 btrfs_tree_unlock(leaf);
1256         btrfs_put_root(root);
1257
1258         return ERR_PTR(ret);
1259 }
1260
1261 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1262                                          struct btrfs_fs_info *fs_info)
1263 {
1264         struct btrfs_root *root;
1265         struct extent_buffer *leaf;
1266
1267         root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1268         if (!root)
1269                 return ERR_PTR(-ENOMEM);
1270
1271         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1272         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1273         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1274
1275         /*
1276          * DON'T set SHAREABLE bit for log trees.
1277          *
1278          * Log trees are not exposed to user space thus can't be snapshotted,
1279          * and they go away before a real commit is actually done.
1280          *
1281          * They do store pointers to file data extents, and those reference
1282          * counts still get updated (along with back refs to the log tree).
1283          */
1284
1285         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1286                         NULL, 0, 0, 0);
1287         if (IS_ERR(leaf)) {
1288                 btrfs_put_root(root);
1289                 return ERR_CAST(leaf);
1290         }
1291
1292         root->node = leaf;
1293
1294         btrfs_mark_buffer_dirty(root->node);
1295         btrfs_tree_unlock(root->node);
1296         return root;
1297 }
1298
1299 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1300                              struct btrfs_fs_info *fs_info)
1301 {
1302         struct btrfs_root *log_root;
1303
1304         log_root = alloc_log_tree(trans, fs_info);
1305         if (IS_ERR(log_root))
1306                 return PTR_ERR(log_root);
1307         WARN_ON(fs_info->log_root_tree);
1308         fs_info->log_root_tree = log_root;
1309         return 0;
1310 }
1311
1312 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1313                        struct btrfs_root *root)
1314 {
1315         struct btrfs_fs_info *fs_info = root->fs_info;
1316         struct btrfs_root *log_root;
1317         struct btrfs_inode_item *inode_item;
1318
1319         log_root = alloc_log_tree(trans, fs_info);
1320         if (IS_ERR(log_root))
1321                 return PTR_ERR(log_root);
1322
1323         log_root->last_trans = trans->transid;
1324         log_root->root_key.offset = root->root_key.objectid;
1325
1326         inode_item = &log_root->root_item.inode;
1327         btrfs_set_stack_inode_generation(inode_item, 1);
1328         btrfs_set_stack_inode_size(inode_item, 3);
1329         btrfs_set_stack_inode_nlink(inode_item, 1);
1330         btrfs_set_stack_inode_nbytes(inode_item,
1331                                      fs_info->nodesize);
1332         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1333
1334         btrfs_set_root_node(&log_root->root_item, log_root->node);
1335
1336         WARN_ON(root->log_root);
1337         root->log_root = log_root;
1338         root->log_transid = 0;
1339         root->log_transid_committed = -1;
1340         root->last_log_commit = 0;
1341         return 0;
1342 }
1343
1344 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1345                                         struct btrfs_key *key)
1346 {
1347         struct btrfs_root *root;
1348         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1349         struct btrfs_path *path;
1350         u64 generation;
1351         int ret;
1352         int level;
1353
1354         path = btrfs_alloc_path();
1355         if (!path)
1356                 return ERR_PTR(-ENOMEM);
1357
1358         root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1359         if (!root) {
1360                 ret = -ENOMEM;
1361                 goto alloc_fail;
1362         }
1363
1364         ret = btrfs_find_root(tree_root, key, path,
1365                               &root->root_item, &root->root_key);
1366         if (ret) {
1367                 if (ret > 0)
1368                         ret = -ENOENT;
1369                 goto find_fail;
1370         }
1371
1372         generation = btrfs_root_generation(&root->root_item);
1373         level = btrfs_root_level(&root->root_item);
1374         root->node = read_tree_block(fs_info,
1375                                      btrfs_root_bytenr(&root->root_item),
1376                                      generation, level, NULL);
1377         if (IS_ERR(root->node)) {
1378                 ret = PTR_ERR(root->node);
1379                 root->node = NULL;
1380                 goto find_fail;
1381         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1382                 ret = -EIO;
1383                 goto find_fail;
1384         }
1385         root->commit_root = btrfs_root_node(root);
1386 out:
1387         btrfs_free_path(path);
1388         return root;
1389
1390 find_fail:
1391         btrfs_put_root(root);
1392 alloc_fail:
1393         root = ERR_PTR(ret);
1394         goto out;
1395 }
1396
1397 static int btrfs_init_fs_root(struct btrfs_root *root)
1398 {
1399         int ret;
1400         unsigned int nofs_flag;
1401
1402         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1403         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1404                                         GFP_NOFS);
1405         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1406                 ret = -ENOMEM;
1407                 goto fail;
1408         }
1409
1410         /*
1411          * We might be called under a transaction (e.g. indirect backref
1412          * resolution) which could deadlock if it triggers memory reclaim
1413          */
1414         nofs_flag = memalloc_nofs_save();
1415         ret = btrfs_drew_lock_init(&root->snapshot_lock);
1416         memalloc_nofs_restore(nofs_flag);
1417         if (ret)
1418                 goto fail;
1419
1420         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1421                 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1422                 btrfs_check_and_init_root_item(&root->root_item);
1423         }
1424
1425         btrfs_init_free_ino_ctl(root);
1426         spin_lock_init(&root->ino_cache_lock);
1427         init_waitqueue_head(&root->ino_cache_wait);
1428
1429         ret = get_anon_bdev(&root->anon_dev);
1430         if (ret)
1431                 goto fail;
1432
1433         mutex_lock(&root->objectid_mutex);
1434         ret = btrfs_find_highest_objectid(root,
1435                                         &root->highest_objectid);
1436         if (ret) {
1437                 mutex_unlock(&root->objectid_mutex);
1438                 goto fail;
1439         }
1440
1441         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1442
1443         mutex_unlock(&root->objectid_mutex);
1444
1445         return 0;
1446 fail:
1447         /* The caller is responsible to call btrfs_free_fs_root */
1448         return ret;
1449 }
1450
1451 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1452                                                u64 root_id)
1453 {
1454         struct btrfs_root *root;
1455
1456         spin_lock(&fs_info->fs_roots_radix_lock);
1457         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1458                                  (unsigned long)root_id);
1459         if (root)
1460                 root = btrfs_grab_root(root);
1461         spin_unlock(&fs_info->fs_roots_radix_lock);
1462         return root;
1463 }
1464
1465 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1466                          struct btrfs_root *root)
1467 {
1468         int ret;
1469
1470         ret = radix_tree_preload(GFP_NOFS);
1471         if (ret)
1472                 return ret;
1473
1474         spin_lock(&fs_info->fs_roots_radix_lock);
1475         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1476                                 (unsigned long)root->root_key.objectid,
1477                                 root);
1478         if (ret == 0) {
1479                 btrfs_grab_root(root);
1480                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1481         }
1482         spin_unlock(&fs_info->fs_roots_radix_lock);
1483         radix_tree_preload_end();
1484
1485         return ret;
1486 }
1487
1488 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1489 {
1490 #ifdef CONFIG_BTRFS_DEBUG
1491         struct btrfs_root *root;
1492
1493         while (!list_empty(&fs_info->allocated_roots)) {
1494                 root = list_first_entry(&fs_info->allocated_roots,
1495                                         struct btrfs_root, leak_list);
1496                 btrfs_err(fs_info, "leaked root %llu-%llu refcount %d",
1497                           root->root_key.objectid, root->root_key.offset,
1498                           refcount_read(&root->refs));
1499                 while (refcount_read(&root->refs) > 1)
1500                         btrfs_put_root(root);
1501                 btrfs_put_root(root);
1502         }
1503 #endif
1504 }
1505
1506 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1507 {
1508         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1509         percpu_counter_destroy(&fs_info->delalloc_bytes);
1510         percpu_counter_destroy(&fs_info->dio_bytes);
1511         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1512         btrfs_free_csum_hash(fs_info);
1513         btrfs_free_stripe_hash_table(fs_info);
1514         btrfs_free_ref_cache(fs_info);
1515         kfree(fs_info->balance_ctl);
1516         kfree(fs_info->delayed_root);
1517         btrfs_put_root(fs_info->extent_root);
1518         btrfs_put_root(fs_info->tree_root);
1519         btrfs_put_root(fs_info->chunk_root);
1520         btrfs_put_root(fs_info->dev_root);
1521         btrfs_put_root(fs_info->csum_root);
1522         btrfs_put_root(fs_info->quota_root);
1523         btrfs_put_root(fs_info->uuid_root);
1524         btrfs_put_root(fs_info->free_space_root);
1525         btrfs_put_root(fs_info->fs_root);
1526         btrfs_check_leaked_roots(fs_info);
1527         btrfs_extent_buffer_leak_debug_check(fs_info);
1528         kfree(fs_info->super_copy);
1529         kfree(fs_info->super_for_commit);
1530         kvfree(fs_info);
1531 }
1532
1533
1534 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1535                                      struct btrfs_key *location,
1536                                      bool check_ref)
1537 {
1538         struct btrfs_root *root;
1539         struct btrfs_path *path;
1540         struct btrfs_key key;
1541         int ret;
1542
1543         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1544                 return btrfs_grab_root(fs_info->tree_root);
1545         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1546                 return btrfs_grab_root(fs_info->extent_root);
1547         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1548                 return btrfs_grab_root(fs_info->chunk_root);
1549         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1550                 return btrfs_grab_root(fs_info->dev_root);
1551         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1552                 return btrfs_grab_root(fs_info->csum_root);
1553         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1554                 return btrfs_grab_root(fs_info->quota_root) ?
1555                         fs_info->quota_root : ERR_PTR(-ENOENT);
1556         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1557                 return btrfs_grab_root(fs_info->uuid_root) ?
1558                         fs_info->uuid_root : ERR_PTR(-ENOENT);
1559         if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1560                 return btrfs_grab_root(fs_info->free_space_root) ?
1561                         fs_info->free_space_root : ERR_PTR(-ENOENT);
1562 again:
1563         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1564         if (root) {
1565                 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1566                         btrfs_put_root(root);
1567                         return ERR_PTR(-ENOENT);
1568                 }
1569                 return root;
1570         }
1571
1572         root = btrfs_read_tree_root(fs_info->tree_root, location);
1573         if (IS_ERR(root))
1574                 return root;
1575
1576         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1577                 ret = -ENOENT;
1578                 goto fail;
1579         }
1580
1581         ret = btrfs_init_fs_root(root);
1582         if (ret)
1583                 goto fail;
1584
1585         path = btrfs_alloc_path();
1586         if (!path) {
1587                 ret = -ENOMEM;
1588                 goto fail;
1589         }
1590         key.objectid = BTRFS_ORPHAN_OBJECTID;
1591         key.type = BTRFS_ORPHAN_ITEM_KEY;
1592         key.offset = location->objectid;
1593
1594         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1595         btrfs_free_path(path);
1596         if (ret < 0)
1597                 goto fail;
1598         if (ret == 0)
1599                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1600
1601         ret = btrfs_insert_fs_root(fs_info, root);
1602         if (ret) {
1603                 btrfs_put_root(root);
1604                 if (ret == -EEXIST)
1605                         goto again;
1606                 goto fail;
1607         }
1608         return root;
1609 fail:
1610         btrfs_put_root(root);
1611         return ERR_PTR(ret);
1612 }
1613
1614 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1615 {
1616         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1617         int ret = 0;
1618         struct btrfs_device *device;
1619         struct backing_dev_info *bdi;
1620
1621         rcu_read_lock();
1622         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1623                 if (!device->bdev)
1624                         continue;
1625                 bdi = device->bdev->bd_bdi;
1626                 if (bdi_congested(bdi, bdi_bits)) {
1627                         ret = 1;
1628                         break;
1629                 }
1630         }
1631         rcu_read_unlock();
1632         return ret;
1633 }
1634
1635 /*
1636  * called by the kthread helper functions to finally call the bio end_io
1637  * functions.  This is where read checksum verification actually happens
1638  */
1639 static void end_workqueue_fn(struct btrfs_work *work)
1640 {
1641         struct bio *bio;
1642         struct btrfs_end_io_wq *end_io_wq;
1643
1644         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1645         bio = end_io_wq->bio;
1646
1647         bio->bi_status = end_io_wq->status;
1648         bio->bi_private = end_io_wq->private;
1649         bio->bi_end_io = end_io_wq->end_io;
1650         bio_endio(bio);
1651         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1652 }
1653
1654 static int cleaner_kthread(void *arg)
1655 {
1656         struct btrfs_root *root = arg;
1657         struct btrfs_fs_info *fs_info = root->fs_info;
1658         int again;
1659
1660         while (1) {
1661                 again = 0;
1662
1663                 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1664
1665                 /* Make the cleaner go to sleep early. */
1666                 if (btrfs_need_cleaner_sleep(fs_info))
1667                         goto sleep;
1668
1669                 /*
1670                  * Do not do anything if we might cause open_ctree() to block
1671                  * before we have finished mounting the filesystem.
1672                  */
1673                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1674                         goto sleep;
1675
1676                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1677                         goto sleep;
1678
1679                 /*
1680                  * Avoid the problem that we change the status of the fs
1681                  * during the above check and trylock.
1682                  */
1683                 if (btrfs_need_cleaner_sleep(fs_info)) {
1684                         mutex_unlock(&fs_info->cleaner_mutex);
1685                         goto sleep;
1686                 }
1687
1688                 btrfs_run_delayed_iputs(fs_info);
1689
1690                 again = btrfs_clean_one_deleted_snapshot(root);
1691                 mutex_unlock(&fs_info->cleaner_mutex);
1692
1693                 /*
1694                  * The defragger has dealt with the R/O remount and umount,
1695                  * needn't do anything special here.
1696                  */
1697                 btrfs_run_defrag_inodes(fs_info);
1698
1699                 /*
1700                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1701                  * with relocation (btrfs_relocate_chunk) and relocation
1702                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1703                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1704                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1705                  * unused block groups.
1706                  */
1707                 btrfs_delete_unused_bgs(fs_info);
1708 sleep:
1709                 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1710                 if (kthread_should_park())
1711                         kthread_parkme();
1712                 if (kthread_should_stop())
1713                         return 0;
1714                 if (!again) {
1715                         set_current_state(TASK_INTERRUPTIBLE);
1716                         schedule();
1717                         __set_current_state(TASK_RUNNING);
1718                 }
1719         }
1720 }
1721
1722 static int transaction_kthread(void *arg)
1723 {
1724         struct btrfs_root *root = arg;
1725         struct btrfs_fs_info *fs_info = root->fs_info;
1726         struct btrfs_trans_handle *trans;
1727         struct btrfs_transaction *cur;
1728         u64 transid;
1729         time64_t now;
1730         unsigned long delay;
1731         bool cannot_commit;
1732
1733         do {
1734                 cannot_commit = false;
1735                 delay = HZ * fs_info->commit_interval;
1736                 mutex_lock(&fs_info->transaction_kthread_mutex);
1737
1738                 spin_lock(&fs_info->trans_lock);
1739                 cur = fs_info->running_transaction;
1740                 if (!cur) {
1741                         spin_unlock(&fs_info->trans_lock);
1742                         goto sleep;
1743                 }
1744
1745                 now = ktime_get_seconds();
1746                 if (cur->state < TRANS_STATE_COMMIT_START &&
1747                     !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1748                     (now < cur->start_time ||
1749                      now - cur->start_time < fs_info->commit_interval)) {
1750                         spin_unlock(&fs_info->trans_lock);
1751                         delay = HZ * 5;
1752                         goto sleep;
1753                 }
1754                 transid = cur->transid;
1755                 spin_unlock(&fs_info->trans_lock);
1756
1757                 /* If the file system is aborted, this will always fail. */
1758                 trans = btrfs_attach_transaction(root);
1759                 if (IS_ERR(trans)) {
1760                         if (PTR_ERR(trans) != -ENOENT)
1761                                 cannot_commit = true;
1762                         goto sleep;
1763                 }
1764                 if (transid == trans->transid) {
1765                         btrfs_commit_transaction(trans);
1766                 } else {
1767                         btrfs_end_transaction(trans);
1768                 }
1769 sleep:
1770                 wake_up_process(fs_info->cleaner_kthread);
1771                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1772
1773                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1774                                       &fs_info->fs_state)))
1775                         btrfs_cleanup_transaction(fs_info);
1776                 if (!kthread_should_stop() &&
1777                                 (!btrfs_transaction_blocked(fs_info) ||
1778                                  cannot_commit))
1779                         schedule_timeout_interruptible(delay);
1780         } while (!kthread_should_stop());
1781         return 0;
1782 }
1783
1784 /*
1785  * This will find the highest generation in the array of root backups.  The
1786  * index of the highest array is returned, or -EINVAL if we can't find
1787  * anything.
1788  *
1789  * We check to make sure the array is valid by comparing the
1790  * generation of the latest  root in the array with the generation
1791  * in the super block.  If they don't match we pitch it.
1792  */
1793 static int find_newest_super_backup(struct btrfs_fs_info *info)
1794 {
1795         const u64 newest_gen = btrfs_super_generation(info->super_copy);
1796         u64 cur;
1797         struct btrfs_root_backup *root_backup;
1798         int i;
1799
1800         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1801                 root_backup = info->super_copy->super_roots + i;
1802                 cur = btrfs_backup_tree_root_gen(root_backup);
1803                 if (cur == newest_gen)
1804                         return i;
1805         }
1806
1807         return -EINVAL;
1808 }
1809
1810 /*
1811  * copy all the root pointers into the super backup array.
1812  * this will bump the backup pointer by one when it is
1813  * done
1814  */
1815 static void backup_super_roots(struct btrfs_fs_info *info)
1816 {
1817         const int next_backup = info->backup_root_index;
1818         struct btrfs_root_backup *root_backup;
1819
1820         root_backup = info->super_for_commit->super_roots + next_backup;
1821
1822         /*
1823          * make sure all of our padding and empty slots get zero filled
1824          * regardless of which ones we use today
1825          */
1826         memset(root_backup, 0, sizeof(*root_backup));
1827
1828         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1829
1830         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1831         btrfs_set_backup_tree_root_gen(root_backup,
1832                                btrfs_header_generation(info->tree_root->node));
1833
1834         btrfs_set_backup_tree_root_level(root_backup,
1835                                btrfs_header_level(info->tree_root->node));
1836
1837         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1838         btrfs_set_backup_chunk_root_gen(root_backup,
1839                                btrfs_header_generation(info->chunk_root->node));
1840         btrfs_set_backup_chunk_root_level(root_backup,
1841                                btrfs_header_level(info->chunk_root->node));
1842
1843         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1844         btrfs_set_backup_extent_root_gen(root_backup,
1845                                btrfs_header_generation(info->extent_root->node));
1846         btrfs_set_backup_extent_root_level(root_backup,
1847                                btrfs_header_level(info->extent_root->node));
1848
1849         /*
1850          * we might commit during log recovery, which happens before we set
1851          * the fs_root.  Make sure it is valid before we fill it in.
1852          */
1853         if (info->fs_root && info->fs_root->node) {
1854                 btrfs_set_backup_fs_root(root_backup,
1855                                          info->fs_root->node->start);
1856                 btrfs_set_backup_fs_root_gen(root_backup,
1857                                btrfs_header_generation(info->fs_root->node));
1858                 btrfs_set_backup_fs_root_level(root_backup,
1859                                btrfs_header_level(info->fs_root->node));
1860         }
1861
1862         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1863         btrfs_set_backup_dev_root_gen(root_backup,
1864                                btrfs_header_generation(info->dev_root->node));
1865         btrfs_set_backup_dev_root_level(root_backup,
1866                                        btrfs_header_level(info->dev_root->node));
1867
1868         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1869         btrfs_set_backup_csum_root_gen(root_backup,
1870                                btrfs_header_generation(info->csum_root->node));
1871         btrfs_set_backup_csum_root_level(root_backup,
1872                                btrfs_header_level(info->csum_root->node));
1873
1874         btrfs_set_backup_total_bytes(root_backup,
1875                              btrfs_super_total_bytes(info->super_copy));
1876         btrfs_set_backup_bytes_used(root_backup,
1877                              btrfs_super_bytes_used(info->super_copy));
1878         btrfs_set_backup_num_devices(root_backup,
1879                              btrfs_super_num_devices(info->super_copy));
1880
1881         /*
1882          * if we don't copy this out to the super_copy, it won't get remembered
1883          * for the next commit
1884          */
1885         memcpy(&info->super_copy->super_roots,
1886                &info->super_for_commit->super_roots,
1887                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1888 }
1889
1890 /*
1891  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1892  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1893  *
1894  * fs_info - filesystem whose backup roots need to be read
1895  * priority - priority of backup root required
1896  *
1897  * Returns backup root index on success and -EINVAL otherwise.
1898  */
1899 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1900 {
1901         int backup_index = find_newest_super_backup(fs_info);
1902         struct btrfs_super_block *super = fs_info->super_copy;
1903         struct btrfs_root_backup *root_backup;
1904
1905         if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1906                 if (priority == 0)
1907                         return backup_index;
1908
1909                 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1910                 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1911         } else {
1912                 return -EINVAL;
1913         }
1914
1915         root_backup = super->super_roots + backup_index;
1916
1917         btrfs_set_super_generation(super,
1918                                    btrfs_backup_tree_root_gen(root_backup));
1919         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1920         btrfs_set_super_root_level(super,
1921                                    btrfs_backup_tree_root_level(root_backup));
1922         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1923
1924         /*
1925          * Fixme: the total bytes and num_devices need to match or we should
1926          * need a fsck
1927          */
1928         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1929         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1930
1931         return backup_index;
1932 }
1933
1934 /* helper to cleanup workers */
1935 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1936 {
1937         btrfs_destroy_workqueue(fs_info->fixup_workers);
1938         btrfs_destroy_workqueue(fs_info->delalloc_workers);
1939         btrfs_destroy_workqueue(fs_info->workers);
1940         btrfs_destroy_workqueue(fs_info->endio_workers);
1941         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1942         btrfs_destroy_workqueue(fs_info->rmw_workers);
1943         btrfs_destroy_workqueue(fs_info->endio_write_workers);
1944         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1945         btrfs_destroy_workqueue(fs_info->delayed_workers);
1946         btrfs_destroy_workqueue(fs_info->caching_workers);
1947         btrfs_destroy_workqueue(fs_info->readahead_workers);
1948         btrfs_destroy_workqueue(fs_info->flush_workers);
1949         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1950         if (fs_info->discard_ctl.discard_workers)
1951                 destroy_workqueue(fs_info->discard_ctl.discard_workers);
1952         /*
1953          * Now that all other work queues are destroyed, we can safely destroy
1954          * the queues used for metadata I/O, since tasks from those other work
1955          * queues can do metadata I/O operations.
1956          */
1957         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
1958         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
1959 }
1960
1961 static void free_root_extent_buffers(struct btrfs_root *root)
1962 {
1963         if (root) {
1964                 free_extent_buffer(root->node);
1965                 free_extent_buffer(root->commit_root);
1966                 root->node = NULL;
1967                 root->commit_root = NULL;
1968         }
1969 }
1970
1971 /* helper to cleanup tree roots */
1972 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1973 {
1974         free_root_extent_buffers(info->tree_root);
1975
1976         free_root_extent_buffers(info->dev_root);
1977         free_root_extent_buffers(info->extent_root);
1978         free_root_extent_buffers(info->csum_root);
1979         free_root_extent_buffers(info->quota_root);
1980         free_root_extent_buffers(info->uuid_root);
1981         free_root_extent_buffers(info->fs_root);
1982         if (free_chunk_root)
1983                 free_root_extent_buffers(info->chunk_root);
1984         free_root_extent_buffers(info->free_space_root);
1985 }
1986
1987 void btrfs_put_root(struct btrfs_root *root)
1988 {
1989         if (!root)
1990                 return;
1991
1992         if (refcount_dec_and_test(&root->refs)) {
1993                 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1994                 if (root->anon_dev)
1995                         free_anon_bdev(root->anon_dev);
1996                 btrfs_drew_lock_destroy(&root->snapshot_lock);
1997                 free_extent_buffer(root->node);
1998                 free_extent_buffer(root->commit_root);
1999                 kfree(root->free_ino_ctl);
2000                 kfree(root->free_ino_pinned);
2001 #ifdef CONFIG_BTRFS_DEBUG
2002                 spin_lock(&root->fs_info->fs_roots_radix_lock);
2003                 list_del_init(&root->leak_list);
2004                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2005 #endif
2006                 kfree(root);
2007         }
2008 }
2009
2010 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2011 {
2012         int ret;
2013         struct btrfs_root *gang[8];
2014         int i;
2015
2016         while (!list_empty(&fs_info->dead_roots)) {
2017                 gang[0] = list_entry(fs_info->dead_roots.next,
2018                                      struct btrfs_root, root_list);
2019                 list_del(&gang[0]->root_list);
2020
2021                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2022                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2023                 btrfs_put_root(gang[0]);
2024         }
2025
2026         while (1) {
2027                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2028                                              (void **)gang, 0,
2029                                              ARRAY_SIZE(gang));
2030                 if (!ret)
2031                         break;
2032                 for (i = 0; i < ret; i++)
2033                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2034         }
2035 }
2036
2037 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2038 {
2039         mutex_init(&fs_info->scrub_lock);
2040         atomic_set(&fs_info->scrubs_running, 0);
2041         atomic_set(&fs_info->scrub_pause_req, 0);
2042         atomic_set(&fs_info->scrubs_paused, 0);
2043         atomic_set(&fs_info->scrub_cancel_req, 0);
2044         init_waitqueue_head(&fs_info->scrub_pause_wait);
2045         refcount_set(&fs_info->scrub_workers_refcnt, 0);
2046 }
2047
2048 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2049 {
2050         spin_lock_init(&fs_info->balance_lock);
2051         mutex_init(&fs_info->balance_mutex);
2052         atomic_set(&fs_info->balance_pause_req, 0);
2053         atomic_set(&fs_info->balance_cancel_req, 0);
2054         fs_info->balance_ctl = NULL;
2055         init_waitqueue_head(&fs_info->balance_wait_q);
2056 }
2057
2058 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2059 {
2060         struct inode *inode = fs_info->btree_inode;
2061
2062         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2063         set_nlink(inode, 1);
2064         /*
2065          * we set the i_size on the btree inode to the max possible int.
2066          * the real end of the address space is determined by all of
2067          * the devices in the system
2068          */
2069         inode->i_size = OFFSET_MAX;
2070         inode->i_mapping->a_ops = &btree_aops;
2071
2072         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2073         extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2074                             IO_TREE_INODE_IO, inode);
2075         BTRFS_I(inode)->io_tree.track_uptodate = false;
2076         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2077
2078         BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2079
2080         BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2081         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2082         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2083         btrfs_insert_inode_hash(inode);
2084 }
2085
2086 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2087 {
2088         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2089         init_rwsem(&fs_info->dev_replace.rwsem);
2090         init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2091 }
2092
2093 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2094 {
2095         spin_lock_init(&fs_info->qgroup_lock);
2096         mutex_init(&fs_info->qgroup_ioctl_lock);
2097         fs_info->qgroup_tree = RB_ROOT;
2098         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2099         fs_info->qgroup_seq = 1;
2100         fs_info->qgroup_ulist = NULL;
2101         fs_info->qgroup_rescan_running = false;
2102         mutex_init(&fs_info->qgroup_rescan_lock);
2103 }
2104
2105 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2106                 struct btrfs_fs_devices *fs_devices)
2107 {
2108         u32 max_active = fs_info->thread_pool_size;
2109         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2110
2111         fs_info->workers =
2112                 btrfs_alloc_workqueue(fs_info, "worker",
2113                                       flags | WQ_HIGHPRI, max_active, 16);
2114
2115         fs_info->delalloc_workers =
2116                 btrfs_alloc_workqueue(fs_info, "delalloc",
2117                                       flags, max_active, 2);
2118
2119         fs_info->flush_workers =
2120                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2121                                       flags, max_active, 0);
2122
2123         fs_info->caching_workers =
2124                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2125
2126         fs_info->fixup_workers =
2127                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2128
2129         /*
2130          * endios are largely parallel and should have a very
2131          * low idle thresh
2132          */
2133         fs_info->endio_workers =
2134                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2135         fs_info->endio_meta_workers =
2136                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2137                                       max_active, 4);
2138         fs_info->endio_meta_write_workers =
2139                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2140                                       max_active, 2);
2141         fs_info->endio_raid56_workers =
2142                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2143                                       max_active, 4);
2144         fs_info->rmw_workers =
2145                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2146         fs_info->endio_write_workers =
2147                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2148                                       max_active, 2);
2149         fs_info->endio_freespace_worker =
2150                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2151                                       max_active, 0);
2152         fs_info->delayed_workers =
2153                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2154                                       max_active, 0);
2155         fs_info->readahead_workers =
2156                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2157                                       max_active, 2);
2158         fs_info->qgroup_rescan_workers =
2159                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2160         fs_info->discard_ctl.discard_workers =
2161                 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2162
2163         if (!(fs_info->workers && fs_info->delalloc_workers &&
2164               fs_info->flush_workers &&
2165               fs_info->endio_workers && fs_info->endio_meta_workers &&
2166               fs_info->endio_meta_write_workers &&
2167               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2168               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2169               fs_info->caching_workers && fs_info->readahead_workers &&
2170               fs_info->fixup_workers && fs_info->delayed_workers &&
2171               fs_info->qgroup_rescan_workers &&
2172               fs_info->discard_ctl.discard_workers)) {
2173                 return -ENOMEM;
2174         }
2175
2176         return 0;
2177 }
2178
2179 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2180 {
2181         struct crypto_shash *csum_shash;
2182         const char *csum_driver = btrfs_super_csum_driver(csum_type);
2183
2184         csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2185
2186         if (IS_ERR(csum_shash)) {
2187                 btrfs_err(fs_info, "error allocating %s hash for checksum",
2188                           csum_driver);
2189                 return PTR_ERR(csum_shash);
2190         }
2191
2192         fs_info->csum_shash = csum_shash;
2193
2194         return 0;
2195 }
2196
2197 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2198                             struct btrfs_fs_devices *fs_devices)
2199 {
2200         int ret;
2201         struct btrfs_root *log_tree_root;
2202         struct btrfs_super_block *disk_super = fs_info->super_copy;
2203         u64 bytenr = btrfs_super_log_root(disk_super);
2204         int level = btrfs_super_log_root_level(disk_super);
2205
2206         if (fs_devices->rw_devices == 0) {
2207                 btrfs_warn(fs_info, "log replay required on RO media");
2208                 return -EIO;
2209         }
2210
2211         log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2212                                          GFP_KERNEL);
2213         if (!log_tree_root)
2214                 return -ENOMEM;
2215
2216         log_tree_root->node = read_tree_block(fs_info, bytenr,
2217                                               fs_info->generation + 1,
2218                                               level, NULL);
2219         if (IS_ERR(log_tree_root->node)) {
2220                 btrfs_warn(fs_info, "failed to read log tree");
2221                 ret = PTR_ERR(log_tree_root->node);
2222                 log_tree_root->node = NULL;
2223                 btrfs_put_root(log_tree_root);
2224                 return ret;
2225         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2226                 btrfs_err(fs_info, "failed to read log tree");
2227                 btrfs_put_root(log_tree_root);
2228                 return -EIO;
2229         }
2230         /* returns with log_tree_root freed on success */
2231         ret = btrfs_recover_log_trees(log_tree_root);
2232         if (ret) {
2233                 btrfs_handle_fs_error(fs_info, ret,
2234                                       "Failed to recover log tree");
2235                 btrfs_put_root(log_tree_root);
2236                 return ret;
2237         }
2238
2239         if (sb_rdonly(fs_info->sb)) {
2240                 ret = btrfs_commit_super(fs_info);
2241                 if (ret)
2242                         return ret;
2243         }
2244
2245         return 0;
2246 }
2247
2248 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2249 {
2250         struct btrfs_root *tree_root = fs_info->tree_root;
2251         struct btrfs_root *root;
2252         struct btrfs_key location;
2253         int ret;
2254
2255         BUG_ON(!fs_info->tree_root);
2256
2257         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2258         location.type = BTRFS_ROOT_ITEM_KEY;
2259         location.offset = 0;
2260
2261         root = btrfs_read_tree_root(tree_root, &location);
2262         if (IS_ERR(root)) {
2263                 ret = PTR_ERR(root);
2264                 goto out;
2265         }
2266         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2267         fs_info->extent_root = root;
2268
2269         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2270         root = btrfs_read_tree_root(tree_root, &location);
2271         if (IS_ERR(root)) {
2272                 ret = PTR_ERR(root);
2273                 goto out;
2274         }
2275         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2276         fs_info->dev_root = root;
2277         btrfs_init_devices_late(fs_info);
2278
2279         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2280         root = btrfs_read_tree_root(tree_root, &location);
2281         if (IS_ERR(root)) {
2282                 ret = PTR_ERR(root);
2283                 goto out;
2284         }
2285         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2286         fs_info->csum_root = root;
2287
2288         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2289         root = btrfs_read_tree_root(tree_root, &location);
2290         if (!IS_ERR(root)) {
2291                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2292                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2293                 fs_info->quota_root = root;
2294         }
2295
2296         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2297         root = btrfs_read_tree_root(tree_root, &location);
2298         if (IS_ERR(root)) {
2299                 ret = PTR_ERR(root);
2300                 if (ret != -ENOENT)
2301                         goto out;
2302         } else {
2303                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2304                 fs_info->uuid_root = root;
2305         }
2306
2307         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2308                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2309                 root = btrfs_read_tree_root(tree_root, &location);
2310                 if (IS_ERR(root)) {
2311                         ret = PTR_ERR(root);
2312                         goto out;
2313                 }
2314                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2315                 fs_info->free_space_root = root;
2316         }
2317
2318         return 0;
2319 out:
2320         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2321                    location.objectid, ret);
2322         return ret;
2323 }
2324
2325 /*
2326  * Real super block validation
2327  * NOTE: super csum type and incompat features will not be checked here.
2328  *
2329  * @sb:         super block to check
2330  * @mirror_num: the super block number to check its bytenr:
2331  *              0       the primary (1st) sb
2332  *              1, 2    2nd and 3rd backup copy
2333  *             -1       skip bytenr check
2334  */
2335 static int validate_super(struct btrfs_fs_info *fs_info,
2336                             struct btrfs_super_block *sb, int mirror_num)
2337 {
2338         u64 nodesize = btrfs_super_nodesize(sb);
2339         u64 sectorsize = btrfs_super_sectorsize(sb);
2340         int ret = 0;
2341
2342         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2343                 btrfs_err(fs_info, "no valid FS found");
2344                 ret = -EINVAL;
2345         }
2346         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2347                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2348                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2349                 ret = -EINVAL;
2350         }
2351         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2352                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2353                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2354                 ret = -EINVAL;
2355         }
2356         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2357                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2358                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2359                 ret = -EINVAL;
2360         }
2361         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2362                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2363                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2364                 ret = -EINVAL;
2365         }
2366
2367         /*
2368          * Check sectorsize and nodesize first, other check will need it.
2369          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2370          */
2371         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2372             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2373                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2374                 ret = -EINVAL;
2375         }
2376         /* Only PAGE SIZE is supported yet */
2377         if (sectorsize != PAGE_SIZE) {
2378                 btrfs_err(fs_info,
2379                         "sectorsize %llu not supported yet, only support %lu",
2380                         sectorsize, PAGE_SIZE);
2381                 ret = -EINVAL;
2382         }
2383         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2384             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2385                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2386                 ret = -EINVAL;
2387         }
2388         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2389                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2390                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2391                 ret = -EINVAL;
2392         }
2393
2394         /* Root alignment check */
2395         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2396                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2397                            btrfs_super_root(sb));
2398                 ret = -EINVAL;
2399         }
2400         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2401                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2402                            btrfs_super_chunk_root(sb));
2403                 ret = -EINVAL;
2404         }
2405         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2406                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2407                            btrfs_super_log_root(sb));
2408                 ret = -EINVAL;
2409         }
2410
2411         if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2412                    BTRFS_FSID_SIZE) != 0) {
2413                 btrfs_err(fs_info,
2414                         "dev_item UUID does not match metadata fsid: %pU != %pU",
2415                         fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2416                 ret = -EINVAL;
2417         }
2418
2419         /*
2420          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2421          * done later
2422          */
2423         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2424                 btrfs_err(fs_info, "bytes_used is too small %llu",
2425                           btrfs_super_bytes_used(sb));
2426                 ret = -EINVAL;
2427         }
2428         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2429                 btrfs_err(fs_info, "invalid stripesize %u",
2430                           btrfs_super_stripesize(sb));
2431                 ret = -EINVAL;
2432         }
2433         if (btrfs_super_num_devices(sb) > (1UL << 31))
2434                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2435                            btrfs_super_num_devices(sb));
2436         if (btrfs_super_num_devices(sb) == 0) {
2437                 btrfs_err(fs_info, "number of devices is 0");
2438                 ret = -EINVAL;
2439         }
2440
2441         if (mirror_num >= 0 &&
2442             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2443                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2444                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2445                 ret = -EINVAL;
2446         }
2447
2448         /*
2449          * Obvious sys_chunk_array corruptions, it must hold at least one key
2450          * and one chunk
2451          */
2452         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2453                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2454                           btrfs_super_sys_array_size(sb),
2455                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2456                 ret = -EINVAL;
2457         }
2458         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2459                         + sizeof(struct btrfs_chunk)) {
2460                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2461                           btrfs_super_sys_array_size(sb),
2462                           sizeof(struct btrfs_disk_key)
2463                           + sizeof(struct btrfs_chunk));
2464                 ret = -EINVAL;
2465         }
2466
2467         /*
2468          * The generation is a global counter, we'll trust it more than the others
2469          * but it's still possible that it's the one that's wrong.
2470          */
2471         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2472                 btrfs_warn(fs_info,
2473                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2474                         btrfs_super_generation(sb),
2475                         btrfs_super_chunk_root_generation(sb));
2476         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2477             && btrfs_super_cache_generation(sb) != (u64)-1)
2478                 btrfs_warn(fs_info,
2479                         "suspicious: generation < cache_generation: %llu < %llu",
2480                         btrfs_super_generation(sb),
2481                         btrfs_super_cache_generation(sb));
2482
2483         return ret;
2484 }
2485
2486 /*
2487  * Validation of super block at mount time.
2488  * Some checks already done early at mount time, like csum type and incompat
2489  * flags will be skipped.
2490  */
2491 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2492 {
2493         return validate_super(fs_info, fs_info->super_copy, 0);
2494 }
2495
2496 /*
2497  * Validation of super block at write time.
2498  * Some checks like bytenr check will be skipped as their values will be
2499  * overwritten soon.
2500  * Extra checks like csum type and incompat flags will be done here.
2501  */
2502 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2503                                       struct btrfs_super_block *sb)
2504 {
2505         int ret;
2506
2507         ret = validate_super(fs_info, sb, -1);
2508         if (ret < 0)
2509                 goto out;
2510         if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2511                 ret = -EUCLEAN;
2512                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2513                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2514                 goto out;
2515         }
2516         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2517                 ret = -EUCLEAN;
2518                 btrfs_err(fs_info,
2519                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2520                           btrfs_super_incompat_flags(sb),
2521                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2522                 goto out;
2523         }
2524 out:
2525         if (ret < 0)
2526                 btrfs_err(fs_info,
2527                 "super block corruption detected before writing it to disk");
2528         return ret;
2529 }
2530
2531 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2532 {
2533         int backup_index = find_newest_super_backup(fs_info);
2534         struct btrfs_super_block *sb = fs_info->super_copy;
2535         struct btrfs_root *tree_root = fs_info->tree_root;
2536         bool handle_error = false;
2537         int ret = 0;
2538         int i;
2539
2540         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2541                 u64 generation;
2542                 int level;
2543
2544                 if (handle_error) {
2545                         if (!IS_ERR(tree_root->node))
2546                                 free_extent_buffer(tree_root->node);
2547                         tree_root->node = NULL;
2548
2549                         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2550                                 break;
2551
2552                         free_root_pointers(fs_info, 0);
2553
2554                         /*
2555                          * Don't use the log in recovery mode, it won't be
2556                          * valid
2557                          */
2558                         btrfs_set_super_log_root(sb, 0);
2559
2560                         /* We can't trust the free space cache either */
2561                         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2562
2563                         ret = read_backup_root(fs_info, i);
2564                         backup_index = ret;
2565                         if (ret < 0)
2566                                 return ret;
2567                 }
2568                 generation = btrfs_super_generation(sb);
2569                 level = btrfs_super_root_level(sb);
2570                 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2571                                                   generation, level, NULL);
2572                 if (IS_ERR(tree_root->node) ||
2573                     !extent_buffer_uptodate(tree_root->node)) {
2574                         handle_error = true;
2575
2576                         if (IS_ERR(tree_root->node))
2577                                 ret = PTR_ERR(tree_root->node);
2578                         else if (!extent_buffer_uptodate(tree_root->node))
2579                                 ret = -EUCLEAN;
2580
2581                         btrfs_warn(fs_info, "failed to read tree root");
2582                         continue;
2583                 }
2584
2585                 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2586                 tree_root->commit_root = btrfs_root_node(tree_root);
2587                 btrfs_set_root_refs(&tree_root->root_item, 1);
2588
2589                 /*
2590                  * No need to hold btrfs_root::objectid_mutex since the fs
2591                  * hasn't been fully initialised and we are the only user
2592                  */
2593                 ret = btrfs_find_highest_objectid(tree_root,
2594                                                 &tree_root->highest_objectid);
2595                 if (ret < 0) {
2596                         handle_error = true;
2597                         continue;
2598                 }
2599
2600                 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2601
2602                 ret = btrfs_read_roots(fs_info);
2603                 if (ret < 0) {
2604                         handle_error = true;
2605                         continue;
2606                 }
2607
2608                 /* All successful */
2609                 fs_info->generation = generation;
2610                 fs_info->last_trans_committed = generation;
2611
2612                 /* Always begin writing backup roots after the one being used */
2613                 if (backup_index < 0) {
2614                         fs_info->backup_root_index = 0;
2615                 } else {
2616                         fs_info->backup_root_index = backup_index + 1;
2617                         fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2618                 }
2619                 break;
2620         }
2621
2622         return ret;
2623 }
2624
2625 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2626 {
2627         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2628         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2629         INIT_LIST_HEAD(&fs_info->trans_list);
2630         INIT_LIST_HEAD(&fs_info->dead_roots);
2631         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2632         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2633         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2634         spin_lock_init(&fs_info->delalloc_root_lock);
2635         spin_lock_init(&fs_info->trans_lock);
2636         spin_lock_init(&fs_info->fs_roots_radix_lock);
2637         spin_lock_init(&fs_info->delayed_iput_lock);
2638         spin_lock_init(&fs_info->defrag_inodes_lock);
2639         spin_lock_init(&fs_info->super_lock);
2640         spin_lock_init(&fs_info->buffer_lock);
2641         spin_lock_init(&fs_info->unused_bgs_lock);
2642         rwlock_init(&fs_info->tree_mod_log_lock);
2643         mutex_init(&fs_info->unused_bg_unpin_mutex);
2644         mutex_init(&fs_info->delete_unused_bgs_mutex);
2645         mutex_init(&fs_info->reloc_mutex);
2646         mutex_init(&fs_info->delalloc_root_mutex);
2647         seqlock_init(&fs_info->profiles_lock);
2648
2649         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2650         INIT_LIST_HEAD(&fs_info->space_info);
2651         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2652         INIT_LIST_HEAD(&fs_info->unused_bgs);
2653 #ifdef CONFIG_BTRFS_DEBUG
2654         INIT_LIST_HEAD(&fs_info->allocated_roots);
2655         INIT_LIST_HEAD(&fs_info->allocated_ebs);
2656         spin_lock_init(&fs_info->eb_leak_lock);
2657 #endif
2658         extent_map_tree_init(&fs_info->mapping_tree);
2659         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2660                              BTRFS_BLOCK_RSV_GLOBAL);
2661         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2662         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2663         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2664         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2665                              BTRFS_BLOCK_RSV_DELOPS);
2666         btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2667                              BTRFS_BLOCK_RSV_DELREFS);
2668
2669         atomic_set(&fs_info->async_delalloc_pages, 0);
2670         atomic_set(&fs_info->defrag_running, 0);
2671         atomic_set(&fs_info->reada_works_cnt, 0);
2672         atomic_set(&fs_info->nr_delayed_iputs, 0);
2673         atomic64_set(&fs_info->tree_mod_seq, 0);
2674         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2675         fs_info->metadata_ratio = 0;
2676         fs_info->defrag_inodes = RB_ROOT;
2677         atomic64_set(&fs_info->free_chunk_space, 0);
2678         fs_info->tree_mod_log = RB_ROOT;
2679         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2680         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2681         /* readahead state */
2682         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2683         spin_lock_init(&fs_info->reada_lock);
2684         btrfs_init_ref_verify(fs_info);
2685
2686         fs_info->thread_pool_size = min_t(unsigned long,
2687                                           num_online_cpus() + 2, 8);
2688
2689         INIT_LIST_HEAD(&fs_info->ordered_roots);
2690         spin_lock_init(&fs_info->ordered_root_lock);
2691
2692         btrfs_init_scrub(fs_info);
2693 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2694         fs_info->check_integrity_print_mask = 0;
2695 #endif
2696         btrfs_init_balance(fs_info);
2697         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2698
2699         spin_lock_init(&fs_info->block_group_cache_lock);
2700         fs_info->block_group_cache_tree = RB_ROOT;
2701         fs_info->first_logical_byte = (u64)-1;
2702
2703         extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2704                             IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2705         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2706
2707         mutex_init(&fs_info->ordered_operations_mutex);
2708         mutex_init(&fs_info->tree_log_mutex);
2709         mutex_init(&fs_info->chunk_mutex);
2710         mutex_init(&fs_info->transaction_kthread_mutex);
2711         mutex_init(&fs_info->cleaner_mutex);
2712         mutex_init(&fs_info->ro_block_group_mutex);
2713         init_rwsem(&fs_info->commit_root_sem);
2714         init_rwsem(&fs_info->cleanup_work_sem);
2715         init_rwsem(&fs_info->subvol_sem);
2716         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2717
2718         btrfs_init_dev_replace_locks(fs_info);
2719         btrfs_init_qgroup(fs_info);
2720         btrfs_discard_init(fs_info);
2721
2722         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2723         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2724
2725         init_waitqueue_head(&fs_info->transaction_throttle);
2726         init_waitqueue_head(&fs_info->transaction_wait);
2727         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2728         init_waitqueue_head(&fs_info->async_submit_wait);
2729         init_waitqueue_head(&fs_info->delayed_iputs_wait);
2730
2731         /* Usable values until the real ones are cached from the superblock */
2732         fs_info->nodesize = 4096;
2733         fs_info->sectorsize = 4096;
2734         fs_info->stripesize = 4096;
2735
2736         spin_lock_init(&fs_info->swapfile_pins_lock);
2737         fs_info->swapfile_pins = RB_ROOT;
2738
2739         fs_info->send_in_progress = 0;
2740 }
2741
2742 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2743 {
2744         int ret;
2745
2746         fs_info->sb = sb;
2747         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2748         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2749
2750         ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2751         if (ret)
2752                 return ret;
2753
2754         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2755         if (ret)
2756                 return ret;
2757
2758         fs_info->dirty_metadata_batch = PAGE_SIZE *
2759                                         (1 + ilog2(nr_cpu_ids));
2760
2761         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2762         if (ret)
2763                 return ret;
2764
2765         ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2766                         GFP_KERNEL);
2767         if (ret)
2768                 return ret;
2769
2770         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2771                                         GFP_KERNEL);
2772         if (!fs_info->delayed_root)
2773                 return -ENOMEM;
2774         btrfs_init_delayed_root(fs_info->delayed_root);
2775
2776         return btrfs_alloc_stripe_hash_table(fs_info);
2777 }
2778
2779 static int btrfs_uuid_rescan_kthread(void *data)
2780 {
2781         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2782         int ret;
2783
2784         /*
2785          * 1st step is to iterate through the existing UUID tree and
2786          * to delete all entries that contain outdated data.
2787          * 2nd step is to add all missing entries to the UUID tree.
2788          */
2789         ret = btrfs_uuid_tree_iterate(fs_info);
2790         if (ret < 0) {
2791                 if (ret != -EINTR)
2792                         btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2793                                    ret);
2794                 up(&fs_info->uuid_tree_rescan_sem);
2795                 return ret;
2796         }
2797         return btrfs_uuid_scan_kthread(data);
2798 }
2799
2800 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2801 {
2802         struct task_struct *task;
2803
2804         down(&fs_info->uuid_tree_rescan_sem);
2805         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2806         if (IS_ERR(task)) {
2807                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2808                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2809                 up(&fs_info->uuid_tree_rescan_sem);
2810                 return PTR_ERR(task);
2811         }
2812
2813         return 0;
2814 }
2815
2816 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2817                       char *options)
2818 {
2819         u32 sectorsize;
2820         u32 nodesize;
2821         u32 stripesize;
2822         u64 generation;
2823         u64 features;
2824         u16 csum_type;
2825         struct btrfs_key location;
2826         struct btrfs_super_block *disk_super;
2827         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2828         struct btrfs_root *tree_root;
2829         struct btrfs_root *chunk_root;
2830         int ret;
2831         int err = -EINVAL;
2832         int clear_free_space_tree = 0;
2833         int level;
2834
2835         ret = init_mount_fs_info(fs_info, sb);
2836         if (ret) {
2837                 err = ret;
2838                 goto fail;
2839         }
2840
2841         /* These need to be init'ed before we start creating inodes and such. */
2842         tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2843                                      GFP_KERNEL);
2844         fs_info->tree_root = tree_root;
2845         chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2846                                       GFP_KERNEL);
2847         fs_info->chunk_root = chunk_root;
2848         if (!tree_root || !chunk_root) {
2849                 err = -ENOMEM;
2850                 goto fail;
2851         }
2852
2853         fs_info->btree_inode = new_inode(sb);
2854         if (!fs_info->btree_inode) {
2855                 err = -ENOMEM;
2856                 goto fail;
2857         }
2858         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2859         btrfs_init_btree_inode(fs_info);
2860
2861         invalidate_bdev(fs_devices->latest_bdev);
2862
2863         /*
2864          * Read super block and check the signature bytes only
2865          */
2866         disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2867         if (IS_ERR(disk_super)) {
2868                 err = PTR_ERR(disk_super);
2869                 goto fail_alloc;
2870         }
2871
2872         /*
2873          * Verify the type first, if that or the the checksum value are
2874          * corrupted, we'll find out
2875          */
2876         csum_type = btrfs_super_csum_type(disk_super);
2877         if (!btrfs_supported_super_csum(csum_type)) {
2878                 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2879                           csum_type);
2880                 err = -EINVAL;
2881                 btrfs_release_disk_super(disk_super);
2882                 goto fail_alloc;
2883         }
2884
2885         ret = btrfs_init_csum_hash(fs_info, csum_type);
2886         if (ret) {
2887                 err = ret;
2888                 btrfs_release_disk_super(disk_super);
2889                 goto fail_alloc;
2890         }
2891
2892         /*
2893          * We want to check superblock checksum, the type is stored inside.
2894          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2895          */
2896         if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
2897                 btrfs_err(fs_info, "superblock checksum mismatch");
2898                 err = -EINVAL;
2899                 btrfs_release_disk_super(disk_super);
2900                 goto fail_alloc;
2901         }
2902
2903         /*
2904          * super_copy is zeroed at allocation time and we never touch the
2905          * following bytes up to INFO_SIZE, the checksum is calculated from
2906          * the whole block of INFO_SIZE
2907          */
2908         memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2909         btrfs_release_disk_super(disk_super);
2910
2911         disk_super = fs_info->super_copy;
2912
2913         ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2914                        BTRFS_FSID_SIZE));
2915
2916         if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2917                 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2918                                 fs_info->super_copy->metadata_uuid,
2919                                 BTRFS_FSID_SIZE));
2920         }
2921
2922         features = btrfs_super_flags(disk_super);
2923         if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2924                 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2925                 btrfs_set_super_flags(disk_super, features);
2926                 btrfs_info(fs_info,
2927                         "found metadata UUID change in progress flag, clearing");
2928         }
2929
2930         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2931                sizeof(*fs_info->super_for_commit));
2932
2933         ret = btrfs_validate_mount_super(fs_info);
2934         if (ret) {
2935                 btrfs_err(fs_info, "superblock contains fatal errors");
2936                 err = -EINVAL;
2937                 goto fail_alloc;
2938         }
2939
2940         if (!btrfs_super_root(disk_super))
2941                 goto fail_alloc;
2942
2943         /* check FS state, whether FS is broken. */
2944         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2945                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2946
2947         /*
2948          * In the long term, we'll store the compression type in the super
2949          * block, and it'll be used for per file compression control.
2950          */
2951         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2952
2953         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2954         if (ret) {
2955                 err = ret;
2956                 goto fail_alloc;
2957         }
2958
2959         features = btrfs_super_incompat_flags(disk_super) &
2960                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2961         if (features) {
2962                 btrfs_err(fs_info,
2963                     "cannot mount because of unsupported optional features (%llx)",
2964                     features);
2965                 err = -EINVAL;
2966                 goto fail_alloc;
2967         }
2968
2969         features = btrfs_super_incompat_flags(disk_super);
2970         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2971         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2972                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2973         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2974                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2975
2976         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2977                 btrfs_info(fs_info, "has skinny extents");
2978
2979         /*
2980          * flag our filesystem as having big metadata blocks if
2981          * they are bigger than the page size
2982          */
2983         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2984                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2985                         btrfs_info(fs_info,
2986                                 "flagging fs with big metadata feature");
2987                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2988         }
2989
2990         nodesize = btrfs_super_nodesize(disk_super);
2991         sectorsize = btrfs_super_sectorsize(disk_super);
2992         stripesize = sectorsize;
2993         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2994         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2995
2996         /* Cache block sizes */
2997         fs_info->nodesize = nodesize;
2998         fs_info->sectorsize = sectorsize;
2999         fs_info->stripesize = stripesize;
3000
3001         /*
3002          * mixed block groups end up with duplicate but slightly offset
3003          * extent buffers for the same range.  It leads to corruptions
3004          */
3005         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3006             (sectorsize != nodesize)) {
3007                 btrfs_err(fs_info,
3008 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3009                         nodesize, sectorsize);
3010                 goto fail_alloc;
3011         }
3012
3013         /*
3014          * Needn't use the lock because there is no other task which will
3015          * update the flag.
3016          */
3017         btrfs_set_super_incompat_flags(disk_super, features);
3018
3019         features = btrfs_super_compat_ro_flags(disk_super) &
3020                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
3021         if (!sb_rdonly(sb) && features) {
3022                 btrfs_err(fs_info,
3023         "cannot mount read-write because of unsupported optional features (%llx)",
3024                        features);
3025                 err = -EINVAL;
3026                 goto fail_alloc;
3027         }
3028
3029         ret = btrfs_init_workqueues(fs_info, fs_devices);
3030         if (ret) {
3031                 err = ret;
3032                 goto fail_sb_buffer;
3033         }
3034
3035         sb->s_bdi->congested_fn = btrfs_congested_fn;
3036         sb->s_bdi->congested_data = fs_info;
3037         sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
3038         sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
3039         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3040         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3041
3042         sb->s_blocksize = sectorsize;
3043         sb->s_blocksize_bits = blksize_bits(sectorsize);
3044         memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3045
3046         mutex_lock(&fs_info->chunk_mutex);
3047         ret = btrfs_read_sys_array(fs_info);
3048         mutex_unlock(&fs_info->chunk_mutex);
3049         if (ret) {
3050                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3051                 goto fail_sb_buffer;
3052         }
3053
3054         generation = btrfs_super_chunk_root_generation(disk_super);
3055         level = btrfs_super_chunk_root_level(disk_super);
3056
3057         chunk_root->node = read_tree_block(fs_info,
3058                                            btrfs_super_chunk_root(disk_super),
3059                                            generation, level, NULL);
3060         if (IS_ERR(chunk_root->node) ||
3061             !extent_buffer_uptodate(chunk_root->node)) {
3062                 btrfs_err(fs_info, "failed to read chunk root");
3063                 if (!IS_ERR(chunk_root->node))
3064                         free_extent_buffer(chunk_root->node);
3065                 chunk_root->node = NULL;
3066                 goto fail_tree_roots;
3067         }
3068         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3069         chunk_root->commit_root = btrfs_root_node(chunk_root);
3070
3071         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3072                            offsetof(struct btrfs_header, chunk_tree_uuid),
3073                            BTRFS_UUID_SIZE);
3074
3075         ret = btrfs_read_chunk_tree(fs_info);
3076         if (ret) {
3077                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3078                 goto fail_tree_roots;
3079         }
3080
3081         /*
3082          * Keep the devid that is marked to be the target device for the
3083          * device replace procedure
3084          */
3085         btrfs_free_extra_devids(fs_devices, 0);
3086
3087         if (!fs_devices->latest_bdev) {
3088                 btrfs_err(fs_info, "failed to read devices");
3089                 goto fail_tree_roots;
3090         }
3091
3092         ret = init_tree_roots(fs_info);
3093         if (ret)
3094                 goto fail_tree_roots;
3095
3096         /*
3097          * If we have a uuid root and we're not being told to rescan we need to
3098          * check the generation here so we can set the
3099          * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3100          * transaction during a balance or the log replay without updating the
3101          * uuid generation, and then if we crash we would rescan the uuid tree,
3102          * even though it was perfectly fine.
3103          */
3104         if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3105             fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3106                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3107
3108         ret = btrfs_verify_dev_extents(fs_info);
3109         if (ret) {
3110                 btrfs_err(fs_info,
3111                           "failed to verify dev extents against chunks: %d",
3112                           ret);
3113                 goto fail_block_groups;
3114         }
3115         ret = btrfs_recover_balance(fs_info);
3116         if (ret) {
3117                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3118                 goto fail_block_groups;
3119         }
3120
3121         ret = btrfs_init_dev_stats(fs_info);
3122         if (ret) {
3123                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3124                 goto fail_block_groups;
3125         }
3126
3127         ret = btrfs_init_dev_replace(fs_info);
3128         if (ret) {
3129                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3130                 goto fail_block_groups;
3131         }
3132
3133         btrfs_free_extra_devids(fs_devices, 1);
3134
3135         ret = btrfs_sysfs_add_fsid(fs_devices);
3136         if (ret) {
3137                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3138                                 ret);
3139                 goto fail_block_groups;
3140         }
3141
3142         ret = btrfs_sysfs_add_mounted(fs_info);
3143         if (ret) {
3144                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3145                 goto fail_fsdev_sysfs;
3146         }
3147
3148         ret = btrfs_init_space_info(fs_info);
3149         if (ret) {
3150                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3151                 goto fail_sysfs;
3152         }
3153
3154         ret = btrfs_read_block_groups(fs_info);
3155         if (ret) {
3156                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3157                 goto fail_sysfs;
3158         }
3159
3160         if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3161                 btrfs_warn(fs_info,
3162                 "writable mount is not allowed due to too many missing devices");
3163                 goto fail_sysfs;
3164         }
3165
3166         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3167                                                "btrfs-cleaner");
3168         if (IS_ERR(fs_info->cleaner_kthread))
3169                 goto fail_sysfs;
3170
3171         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3172                                                    tree_root,
3173                                                    "btrfs-transaction");
3174         if (IS_ERR(fs_info->transaction_kthread))
3175                 goto fail_cleaner;
3176
3177         if (!btrfs_test_opt(fs_info, NOSSD) &&
3178             !fs_info->fs_devices->rotating) {
3179                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3180         }
3181
3182         /*
3183          * Mount does not set all options immediately, we can do it now and do
3184          * not have to wait for transaction commit
3185          */
3186         btrfs_apply_pending_changes(fs_info);
3187
3188 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3189         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3190                 ret = btrfsic_mount(fs_info, fs_devices,
3191                                     btrfs_test_opt(fs_info,
3192                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3193                                     1 : 0,
3194                                     fs_info->check_integrity_print_mask);
3195                 if (ret)
3196                         btrfs_warn(fs_info,
3197                                 "failed to initialize integrity check module: %d",
3198                                 ret);
3199         }
3200 #endif
3201         ret = btrfs_read_qgroup_config(fs_info);
3202         if (ret)
3203                 goto fail_trans_kthread;
3204
3205         if (btrfs_build_ref_tree(fs_info))
3206                 btrfs_err(fs_info, "couldn't build ref tree");
3207
3208         /* do not make disk changes in broken FS or nologreplay is given */
3209         if (btrfs_super_log_root(disk_super) != 0 &&
3210             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3211                 btrfs_info(fs_info, "start tree-log replay");
3212                 ret = btrfs_replay_log(fs_info, fs_devices);
3213                 if (ret) {
3214                         err = ret;
3215                         goto fail_qgroup;
3216                 }
3217         }
3218
3219         ret = btrfs_find_orphan_roots(fs_info);
3220         if (ret)
3221                 goto fail_qgroup;
3222
3223         if (!sb_rdonly(sb)) {
3224                 ret = btrfs_cleanup_fs_roots(fs_info);
3225                 if (ret)
3226                         goto fail_qgroup;
3227
3228                 mutex_lock(&fs_info->cleaner_mutex);
3229                 ret = btrfs_recover_relocation(tree_root);
3230                 mutex_unlock(&fs_info->cleaner_mutex);
3231                 if (ret < 0) {
3232                         btrfs_warn(fs_info, "failed to recover relocation: %d",
3233                                         ret);
3234                         err = -EINVAL;
3235                         goto fail_qgroup;
3236                 }
3237         }
3238
3239         location.objectid = BTRFS_FS_TREE_OBJECTID;
3240         location.type = BTRFS_ROOT_ITEM_KEY;
3241         location.offset = 0;
3242
3243         fs_info->fs_root = btrfs_get_fs_root(fs_info, &location, true);
3244         if (IS_ERR(fs_info->fs_root)) {
3245                 err = PTR_ERR(fs_info->fs_root);
3246                 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3247                 fs_info->fs_root = NULL;
3248                 goto fail_qgroup;
3249         }
3250
3251         if (sb_rdonly(sb))
3252                 return 0;
3253
3254         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3255             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3256                 clear_free_space_tree = 1;
3257         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3258                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3259                 btrfs_warn(fs_info, "free space tree is invalid");
3260                 clear_free_space_tree = 1;
3261         }
3262
3263         if (clear_free_space_tree) {
3264                 btrfs_info(fs_info, "clearing free space tree");
3265                 ret = btrfs_clear_free_space_tree(fs_info);
3266                 if (ret) {
3267                         btrfs_warn(fs_info,
3268                                    "failed to clear free space tree: %d", ret);
3269                         close_ctree(fs_info);
3270                         return ret;
3271                 }
3272         }
3273
3274         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3275             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3276                 btrfs_info(fs_info, "creating free space tree");
3277                 ret = btrfs_create_free_space_tree(fs_info);
3278                 if (ret) {
3279                         btrfs_warn(fs_info,
3280                                 "failed to create free space tree: %d", ret);
3281                         close_ctree(fs_info);
3282                         return ret;
3283                 }
3284         }
3285
3286         down_read(&fs_info->cleanup_work_sem);
3287         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3288             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3289                 up_read(&fs_info->cleanup_work_sem);
3290                 close_ctree(fs_info);
3291                 return ret;
3292         }
3293         up_read(&fs_info->cleanup_work_sem);
3294
3295         ret = btrfs_resume_balance_async(fs_info);
3296         if (ret) {
3297                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3298                 close_ctree(fs_info);
3299                 return ret;
3300         }
3301
3302         ret = btrfs_resume_dev_replace_async(fs_info);
3303         if (ret) {
3304                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3305                 close_ctree(fs_info);
3306                 return ret;
3307         }
3308
3309         btrfs_qgroup_rescan_resume(fs_info);
3310         btrfs_discard_resume(fs_info);
3311
3312         if (!fs_info->uuid_root) {
3313                 btrfs_info(fs_info, "creating UUID tree");
3314                 ret = btrfs_create_uuid_tree(fs_info);
3315                 if (ret) {
3316                         btrfs_warn(fs_info,
3317                                 "failed to create the UUID tree: %d", ret);
3318                         close_ctree(fs_info);
3319                         return ret;
3320                 }
3321         } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3322                    fs_info->generation !=
3323                                 btrfs_super_uuid_tree_generation(disk_super)) {
3324                 btrfs_info(fs_info, "checking UUID tree");
3325                 ret = btrfs_check_uuid_tree(fs_info);
3326                 if (ret) {
3327                         btrfs_warn(fs_info,
3328                                 "failed to check the UUID tree: %d", ret);
3329                         close_ctree(fs_info);
3330                         return ret;
3331                 }
3332         }
3333         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3334
3335         /*
3336          * backuproot only affect mount behavior, and if open_ctree succeeded,
3337          * no need to keep the flag
3338          */
3339         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3340
3341         return 0;
3342
3343 fail_qgroup:
3344         btrfs_free_qgroup_config(fs_info);
3345 fail_trans_kthread:
3346         kthread_stop(fs_info->transaction_kthread);
3347         btrfs_cleanup_transaction(fs_info);
3348         btrfs_free_fs_roots(fs_info);
3349 fail_cleaner:
3350         kthread_stop(fs_info->cleaner_kthread);
3351
3352         /*
3353          * make sure we're done with the btree inode before we stop our
3354          * kthreads
3355          */
3356         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3357
3358 fail_sysfs:
3359         btrfs_sysfs_remove_mounted(fs_info);
3360
3361 fail_fsdev_sysfs:
3362         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3363
3364 fail_block_groups:
3365         btrfs_put_block_group_cache(fs_info);
3366
3367 fail_tree_roots:
3368         free_root_pointers(fs_info, true);
3369         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3370
3371 fail_sb_buffer:
3372         btrfs_stop_all_workers(fs_info);
3373         btrfs_free_block_groups(fs_info);
3374 fail_alloc:
3375         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3376
3377         iput(fs_info->btree_inode);
3378 fail:
3379         btrfs_close_devices(fs_info->fs_devices);
3380         return err;
3381 }
3382 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3383
3384 static void btrfs_end_super_write(struct bio *bio)
3385 {
3386         struct btrfs_device *device = bio->bi_private;
3387         struct bio_vec *bvec;
3388         struct bvec_iter_all iter_all;
3389         struct page *page;
3390
3391         bio_for_each_segment_all(bvec, bio, iter_all) {
3392                 page = bvec->bv_page;
3393
3394                 if (bio->bi_status) {
3395                         btrfs_warn_rl_in_rcu(device->fs_info,
3396                                 "lost page write due to IO error on %s (%d)",
3397                                 rcu_str_deref(device->name),
3398                                 blk_status_to_errno(bio->bi_status));
3399                         ClearPageUptodate(page);
3400                         SetPageError(page);
3401                         btrfs_dev_stat_inc_and_print(device,
3402                                                      BTRFS_DEV_STAT_WRITE_ERRS);
3403                 } else {
3404                         SetPageUptodate(page);
3405                 }
3406
3407                 put_page(page);
3408                 unlock_page(page);
3409         }
3410
3411         bio_put(bio);
3412 }
3413
3414 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3415                                                    int copy_num)
3416 {
3417         struct btrfs_super_block *super;
3418         struct page *page;
3419         u64 bytenr;
3420         struct address_space *mapping = bdev->bd_inode->i_mapping;
3421
3422         bytenr = btrfs_sb_offset(copy_num);
3423         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3424                 return ERR_PTR(-EINVAL);
3425
3426         page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3427         if (IS_ERR(page))
3428                 return ERR_CAST(page);
3429
3430         super = page_address(page);
3431         if (btrfs_super_bytenr(super) != bytenr ||
3432                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3433                 btrfs_release_disk_super(super);
3434                 return ERR_PTR(-EINVAL);
3435         }
3436
3437         return super;
3438 }
3439
3440
3441 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3442 {
3443         struct btrfs_super_block *super, *latest = NULL;
3444         int i;
3445         u64 transid = 0;
3446
3447         /* we would like to check all the supers, but that would make
3448          * a btrfs mount succeed after a mkfs from a different FS.
3449          * So, we need to add a special mount option to scan for
3450          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3451          */
3452         for (i = 0; i < 1; i++) {
3453                 super = btrfs_read_dev_one_super(bdev, i);
3454                 if (IS_ERR(super))
3455                         continue;
3456
3457                 if (!latest || btrfs_super_generation(super) > transid) {
3458                         if (latest)
3459                                 btrfs_release_disk_super(super);
3460
3461                         latest = super;
3462                         transid = btrfs_super_generation(super);
3463                 }
3464         }
3465
3466         return super;
3467 }
3468
3469 /*
3470  * Write superblock @sb to the @device. Do not wait for completion, all the
3471  * pages we use for writing are locked.
3472  *
3473  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3474  * the expected device size at commit time. Note that max_mirrors must be
3475  * same for write and wait phases.
3476  *
3477  * Return number of errors when page is not found or submission fails.
3478  */
3479 static int write_dev_supers(struct btrfs_device *device,
3480                             struct btrfs_super_block *sb, int max_mirrors)
3481 {
3482         struct btrfs_fs_info *fs_info = device->fs_info;
3483         struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3484         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3485         int i;
3486         int errors = 0;
3487         u64 bytenr;
3488
3489         if (max_mirrors == 0)
3490                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3491
3492         shash->tfm = fs_info->csum_shash;
3493
3494         for (i = 0; i < max_mirrors; i++) {
3495                 struct page *page;
3496                 struct bio *bio;
3497                 struct btrfs_super_block *disk_super;
3498
3499                 bytenr = btrfs_sb_offset(i);
3500                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3501                     device->commit_total_bytes)
3502                         break;
3503
3504                 btrfs_set_super_bytenr(sb, bytenr);
3505
3506                 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3507                                     BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3508                                     sb->csum);
3509
3510                 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3511                                            GFP_NOFS);
3512                 if (!page) {
3513                         btrfs_err(device->fs_info,
3514                             "couldn't get super block page for bytenr %llu",
3515                             bytenr);
3516                         errors++;
3517                         continue;
3518                 }
3519
3520                 /* Bump the refcount for wait_dev_supers() */
3521                 get_page(page);
3522
3523                 disk_super = page_address(page);
3524                 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3525
3526                 /*
3527                  * Directly use bios here instead of relying on the page cache
3528                  * to do I/O, so we don't lose the ability to do integrity
3529                  * checking.
3530                  */
3531                 bio = bio_alloc(GFP_NOFS, 1);
3532                 bio_set_dev(bio, device->bdev);
3533                 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3534                 bio->bi_private = device;
3535                 bio->bi_end_io = btrfs_end_super_write;
3536                 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3537                                offset_in_page(bytenr));
3538
3539                 /*
3540                  * We FUA only the first super block.  The others we allow to
3541                  * go down lazy and there's a short window where the on-disk
3542                  * copies might still contain the older version.
3543                  */
3544                 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3545                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3546                         bio->bi_opf |= REQ_FUA;
3547
3548                 btrfsic_submit_bio(bio);
3549         }
3550         return errors < i ? 0 : -1;
3551 }
3552
3553 /*
3554  * Wait for write completion of superblocks done by write_dev_supers,
3555  * @max_mirrors same for write and wait phases.
3556  *
3557  * Return number of errors when page is not found or not marked up to
3558  * date.
3559  */
3560 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3561 {
3562         int i;
3563         int errors = 0;
3564         bool primary_failed = false;
3565         u64 bytenr;
3566
3567         if (max_mirrors == 0)
3568                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3569
3570         for (i = 0; i < max_mirrors; i++) {
3571                 struct page *page;
3572
3573                 bytenr = btrfs_sb_offset(i);
3574                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3575                     device->commit_total_bytes)
3576                         break;
3577
3578                 page = find_get_page(device->bdev->bd_inode->i_mapping,
3579                                      bytenr >> PAGE_SHIFT);
3580                 if (!page) {
3581                         errors++;
3582                         if (i == 0)
3583                                 primary_failed = true;
3584                         continue;
3585                 }
3586                 /* Page is submitted locked and unlocked once the IO completes */
3587                 wait_on_page_locked(page);
3588                 if (PageError(page)) {
3589                         errors++;
3590                         if (i == 0)
3591                                 primary_failed = true;
3592                 }
3593
3594                 /* Drop our reference */
3595                 put_page(page);
3596
3597                 /* Drop the reference from the writing run */
3598                 put_page(page);
3599         }
3600
3601         /* log error, force error return */
3602         if (primary_failed) {
3603                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3604                           device->devid);
3605                 return -1;
3606         }
3607
3608         return errors < i ? 0 : -1;
3609 }
3610
3611 /*
3612  * endio for the write_dev_flush, this will wake anyone waiting
3613  * for the barrier when it is done
3614  */
3615 static void btrfs_end_empty_barrier(struct bio *bio)
3616 {
3617         complete(bio->bi_private);
3618 }
3619
3620 /*
3621  * Submit a flush request to the device if it supports it. Error handling is
3622  * done in the waiting counterpart.
3623  */
3624 static void write_dev_flush(struct btrfs_device *device)
3625 {
3626         struct request_queue *q = bdev_get_queue(device->bdev);
3627         struct bio *bio = device->flush_bio;
3628
3629         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3630                 return;
3631
3632         bio_reset(bio);
3633         bio->bi_end_io = btrfs_end_empty_barrier;
3634         bio_set_dev(bio, device->bdev);
3635         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3636         init_completion(&device->flush_wait);
3637         bio->bi_private = &device->flush_wait;
3638
3639         btrfsic_submit_bio(bio);
3640         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3641 }
3642
3643 /*
3644  * If the flush bio has been submitted by write_dev_flush, wait for it.
3645  */
3646 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3647 {
3648         struct bio *bio = device->flush_bio;
3649
3650         if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3651                 return BLK_STS_OK;
3652
3653         clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3654         wait_for_completion_io(&device->flush_wait);
3655
3656         return bio->bi_status;
3657 }
3658
3659 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3660 {
3661         if (!btrfs_check_rw_degradable(fs_info, NULL))
3662                 return -EIO;
3663         return 0;
3664 }
3665
3666 /*
3667  * send an empty flush down to each device in parallel,
3668  * then wait for them
3669  */
3670 static int barrier_all_devices(struct btrfs_fs_info *info)
3671 {
3672         struct list_head *head;
3673         struct btrfs_device *dev;
3674         int errors_wait = 0;
3675         blk_status_t ret;
3676
3677         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3678         /* send down all the barriers */
3679         head = &info->fs_devices->devices;
3680         list_for_each_entry(dev, head, dev_list) {
3681                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3682                         continue;
3683                 if (!dev->bdev)
3684                         continue;
3685                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3686                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3687                         continue;
3688
3689                 write_dev_flush(dev);
3690                 dev->last_flush_error = BLK_STS_OK;
3691         }
3692
3693         /* wait for all the barriers */
3694         list_for_each_entry(dev, head, dev_list) {
3695                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3696                         continue;
3697                 if (!dev->bdev) {
3698                         errors_wait++;
3699                         continue;
3700                 }
3701                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3702                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3703                         continue;
3704
3705                 ret = wait_dev_flush(dev);
3706                 if (ret) {
3707                         dev->last_flush_error = ret;
3708                         btrfs_dev_stat_inc_and_print(dev,
3709                                         BTRFS_DEV_STAT_FLUSH_ERRS);
3710                         errors_wait++;
3711                 }
3712         }
3713
3714         if (errors_wait) {
3715                 /*
3716                  * At some point we need the status of all disks
3717                  * to arrive at the volume status. So error checking
3718                  * is being pushed to a separate loop.
3719                  */
3720                 return check_barrier_error(info);
3721         }
3722         return 0;
3723 }
3724
3725 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3726 {
3727         int raid_type;
3728         int min_tolerated = INT_MAX;
3729
3730         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3731             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3732                 min_tolerated = min_t(int, min_tolerated,
3733                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3734                                     tolerated_failures);
3735
3736         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3737                 if (raid_type == BTRFS_RAID_SINGLE)
3738                         continue;
3739                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3740                         continue;
3741                 min_tolerated = min_t(int, min_tolerated,
3742                                     btrfs_raid_array[raid_type].
3743                                     tolerated_failures);
3744         }
3745
3746         if (min_tolerated == INT_MAX) {
3747                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3748                 min_tolerated = 0;
3749         }
3750
3751         return min_tolerated;
3752 }
3753
3754 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3755 {
3756         struct list_head *head;
3757         struct btrfs_device *dev;
3758         struct btrfs_super_block *sb;
3759         struct btrfs_dev_item *dev_item;
3760         int ret;
3761         int do_barriers;
3762         int max_errors;
3763         int total_errors = 0;
3764         u64 flags;
3765
3766         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3767
3768         /*
3769          * max_mirrors == 0 indicates we're from commit_transaction,
3770          * not from fsync where the tree roots in fs_info have not
3771          * been consistent on disk.
3772          */
3773         if (max_mirrors == 0)
3774                 backup_super_roots(fs_info);
3775
3776         sb = fs_info->super_for_commit;
3777         dev_item = &sb->dev_item;
3778
3779         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3780         head = &fs_info->fs_devices->devices;
3781         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3782
3783         if (do_barriers) {
3784                 ret = barrier_all_devices(fs_info);
3785                 if (ret) {
3786                         mutex_unlock(
3787                                 &fs_info->fs_devices->device_list_mutex);
3788                         btrfs_handle_fs_error(fs_info, ret,
3789                                               "errors while submitting device barriers.");
3790                         return ret;
3791                 }
3792         }
3793
3794         list_for_each_entry(dev, head, dev_list) {
3795                 if (!dev->bdev) {
3796                         total_errors++;
3797                         continue;
3798                 }
3799                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3800                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3801                         continue;
3802
3803                 btrfs_set_stack_device_generation(dev_item, 0);
3804                 btrfs_set_stack_device_type(dev_item, dev->type);
3805                 btrfs_set_stack_device_id(dev_item, dev->devid);
3806                 btrfs_set_stack_device_total_bytes(dev_item,
3807                                                    dev->commit_total_bytes);
3808                 btrfs_set_stack_device_bytes_used(dev_item,
3809                                                   dev->commit_bytes_used);
3810                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3811                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3812                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3813                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3814                 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3815                        BTRFS_FSID_SIZE);
3816
3817                 flags = btrfs_super_flags(sb);
3818                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3819
3820                 ret = btrfs_validate_write_super(fs_info, sb);
3821                 if (ret < 0) {
3822                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3823                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
3824                                 "unexpected superblock corruption detected");
3825                         return -EUCLEAN;
3826                 }
3827
3828                 ret = write_dev_supers(dev, sb, max_mirrors);
3829                 if (ret)
3830                         total_errors++;
3831         }
3832         if (total_errors > max_errors) {
3833                 btrfs_err(fs_info, "%d errors while writing supers",
3834                           total_errors);
3835                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3836
3837                 /* FUA is masked off if unsupported and can't be the reason */
3838                 btrfs_handle_fs_error(fs_info, -EIO,
3839                                       "%d errors while writing supers",
3840                                       total_errors);
3841                 return -EIO;
3842         }
3843
3844         total_errors = 0;
3845         list_for_each_entry(dev, head, dev_list) {
3846                 if (!dev->bdev)
3847                         continue;
3848                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3849                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3850                         continue;
3851
3852                 ret = wait_dev_supers(dev, max_mirrors);
3853                 if (ret)
3854                         total_errors++;
3855         }
3856         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3857         if (total_errors > max_errors) {
3858                 btrfs_handle_fs_error(fs_info, -EIO,
3859                                       "%d errors while writing supers",
3860                                       total_errors);
3861                 return -EIO;
3862         }
3863         return 0;
3864 }
3865
3866 /* Drop a fs root from the radix tree and free it. */
3867 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3868                                   struct btrfs_root *root)
3869 {
3870         bool drop_ref = false;
3871
3872         spin_lock(&fs_info->fs_roots_radix_lock);
3873         radix_tree_delete(&fs_info->fs_roots_radix,
3874                           (unsigned long)root->root_key.objectid);
3875         if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3876                 drop_ref = true;
3877         spin_unlock(&fs_info->fs_roots_radix_lock);
3878
3879         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3880                 ASSERT(root->log_root == NULL);
3881                 if (root->reloc_root) {
3882                         btrfs_put_root(root->reloc_root);
3883                         root->reloc_root = NULL;
3884                 }
3885         }
3886
3887         if (root->free_ino_pinned)
3888                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3889         if (root->free_ino_ctl)
3890                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3891         if (root->ino_cache_inode) {
3892                 iput(root->ino_cache_inode);
3893                 root->ino_cache_inode = NULL;
3894         }
3895         if (drop_ref)
3896                 btrfs_put_root(root);
3897 }
3898
3899 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3900 {
3901         u64 root_objectid = 0;
3902         struct btrfs_root *gang[8];
3903         int i = 0;
3904         int err = 0;
3905         unsigned int ret = 0;
3906
3907         while (1) {
3908                 spin_lock(&fs_info->fs_roots_radix_lock);
3909                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3910                                              (void **)gang, root_objectid,
3911                                              ARRAY_SIZE(gang));
3912                 if (!ret) {
3913                         spin_unlock(&fs_info->fs_roots_radix_lock);
3914                         break;
3915                 }
3916                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3917
3918                 for (i = 0; i < ret; i++) {
3919                         /* Avoid to grab roots in dead_roots */
3920                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3921                                 gang[i] = NULL;
3922                                 continue;
3923                         }
3924                         /* grab all the search result for later use */
3925                         gang[i] = btrfs_grab_root(gang[i]);
3926                 }
3927                 spin_unlock(&fs_info->fs_roots_radix_lock);
3928
3929                 for (i = 0; i < ret; i++) {
3930                         if (!gang[i])
3931                                 continue;
3932                         root_objectid = gang[i]->root_key.objectid;
3933                         err = btrfs_orphan_cleanup(gang[i]);
3934                         if (err)
3935                                 break;
3936                         btrfs_put_root(gang[i]);
3937                 }
3938                 root_objectid++;
3939         }
3940
3941         /* release the uncleaned roots due to error */
3942         for (; i < ret; i++) {
3943                 if (gang[i])
3944                         btrfs_put_root(gang[i]);
3945         }
3946         return err;
3947 }
3948
3949 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3950 {
3951         struct btrfs_root *root = fs_info->tree_root;
3952         struct btrfs_trans_handle *trans;
3953
3954         mutex_lock(&fs_info->cleaner_mutex);
3955         btrfs_run_delayed_iputs(fs_info);
3956         mutex_unlock(&fs_info->cleaner_mutex);
3957         wake_up_process(fs_info->cleaner_kthread);
3958
3959         /* wait until ongoing cleanup work done */
3960         down_write(&fs_info->cleanup_work_sem);
3961         up_write(&fs_info->cleanup_work_sem);
3962
3963         trans = btrfs_join_transaction(root);
3964         if (IS_ERR(trans))
3965                 return PTR_ERR(trans);
3966         return btrfs_commit_transaction(trans);
3967 }
3968
3969 void __cold close_ctree(struct btrfs_fs_info *fs_info)
3970 {
3971         int ret;
3972
3973         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3974         /*
3975          * We don't want the cleaner to start new transactions, add more delayed
3976          * iputs, etc. while we're closing. We can't use kthread_stop() yet
3977          * because that frees the task_struct, and the transaction kthread might
3978          * still try to wake up the cleaner.
3979          */
3980         kthread_park(fs_info->cleaner_kthread);
3981
3982         /* wait for the qgroup rescan worker to stop */
3983         btrfs_qgroup_wait_for_completion(fs_info, false);
3984
3985         /* wait for the uuid_scan task to finish */
3986         down(&fs_info->uuid_tree_rescan_sem);
3987         /* avoid complains from lockdep et al., set sem back to initial state */
3988         up(&fs_info->uuid_tree_rescan_sem);
3989
3990         /* pause restriper - we want to resume on mount */
3991         btrfs_pause_balance(fs_info);
3992
3993         btrfs_dev_replace_suspend_for_unmount(fs_info);
3994
3995         btrfs_scrub_cancel(fs_info);
3996
3997         /* wait for any defraggers to finish */
3998         wait_event(fs_info->transaction_wait,
3999                    (atomic_read(&fs_info->defrag_running) == 0));
4000
4001         /* clear out the rbtree of defraggable inodes */
4002         btrfs_cleanup_defrag_inodes(fs_info);
4003
4004         cancel_work_sync(&fs_info->async_reclaim_work);
4005
4006         /* Cancel or finish ongoing discard work */
4007         btrfs_discard_cleanup(fs_info);
4008
4009         if (!sb_rdonly(fs_info->sb)) {
4010                 /*
4011                  * The cleaner kthread is stopped, so do one final pass over
4012                  * unused block groups.
4013                  */
4014                 btrfs_delete_unused_bgs(fs_info);
4015
4016                 /*
4017                  * There might be existing delayed inode workers still running
4018                  * and holding an empty delayed inode item. We must wait for
4019                  * them to complete first because they can create a transaction.
4020                  * This happens when someone calls btrfs_balance_delayed_items()
4021                  * and then a transaction commit runs the same delayed nodes
4022                  * before any delayed worker has done something with the nodes.
4023                  * We must wait for any worker here and not at transaction
4024                  * commit time since that could cause a deadlock.
4025                  * This is a very rare case.
4026                  */
4027                 btrfs_flush_workqueue(fs_info->delayed_workers);
4028
4029                 ret = btrfs_commit_super(fs_info);
4030                 if (ret)
4031                         btrfs_err(fs_info, "commit super ret %d", ret);
4032         }
4033
4034         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4035             test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4036                 btrfs_error_commit_super(fs_info);
4037
4038         kthread_stop(fs_info->transaction_kthread);
4039         kthread_stop(fs_info->cleaner_kthread);
4040
4041         ASSERT(list_empty(&fs_info->delayed_iputs));
4042         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4043
4044         btrfs_free_qgroup_config(fs_info);
4045         ASSERT(list_empty(&fs_info->delalloc_roots));
4046
4047         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4048                 btrfs_info(fs_info, "at unmount delalloc count %lld",
4049                        percpu_counter_sum(&fs_info->delalloc_bytes));
4050         }
4051
4052         if (percpu_counter_sum(&fs_info->dio_bytes))
4053                 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4054                            percpu_counter_sum(&fs_info->dio_bytes));
4055
4056         btrfs_sysfs_remove_mounted(fs_info);
4057         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4058
4059         btrfs_put_block_group_cache(fs_info);
4060
4061         /*
4062          * we must make sure there is not any read request to
4063          * submit after we stopping all workers.
4064          */
4065         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4066         btrfs_stop_all_workers(fs_info);
4067
4068         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4069         free_root_pointers(fs_info, true);
4070         btrfs_free_fs_roots(fs_info);
4071
4072         /*
4073          * We must free the block groups after dropping the fs_roots as we could
4074          * have had an IO error and have left over tree log blocks that aren't
4075          * cleaned up until the fs roots are freed.  This makes the block group
4076          * accounting appear to be wrong because there's pending reserved bytes,
4077          * so make sure we do the block group cleanup afterwards.
4078          */
4079         btrfs_free_block_groups(fs_info);
4080
4081         iput(fs_info->btree_inode);
4082
4083 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4084         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4085                 btrfsic_unmount(fs_info->fs_devices);
4086 #endif
4087
4088         btrfs_mapping_tree_free(&fs_info->mapping_tree);
4089         btrfs_close_devices(fs_info->fs_devices);
4090 }
4091
4092 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4093                           int atomic)
4094 {
4095         int ret;
4096         struct inode *btree_inode = buf->pages[0]->mapping->host;
4097
4098         ret = extent_buffer_uptodate(buf);
4099         if (!ret)
4100                 return ret;
4101
4102         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4103                                     parent_transid, atomic);
4104         if (ret == -EAGAIN)
4105                 return ret;
4106         return !ret;
4107 }
4108
4109 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4110 {
4111         struct btrfs_fs_info *fs_info;
4112         struct btrfs_root *root;
4113         u64 transid = btrfs_header_generation(buf);
4114         int was_dirty;
4115
4116 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4117         /*
4118          * This is a fast path so only do this check if we have sanity tests
4119          * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4120          * outside of the sanity tests.
4121          */
4122         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4123                 return;
4124 #endif
4125         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4126         fs_info = root->fs_info;
4127         btrfs_assert_tree_locked(buf);
4128         if (transid != fs_info->generation)
4129                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4130                         buf->start, transid, fs_info->generation);
4131         was_dirty = set_extent_buffer_dirty(buf);
4132         if (!was_dirty)
4133                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4134                                          buf->len,
4135                                          fs_info->dirty_metadata_batch);
4136 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4137         /*
4138          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4139          * but item data not updated.
4140          * So here we should only check item pointers, not item data.
4141          */
4142         if (btrfs_header_level(buf) == 0 &&
4143             btrfs_check_leaf_relaxed(buf)) {
4144                 btrfs_print_leaf(buf);
4145                 ASSERT(0);
4146         }
4147 #endif
4148 }
4149
4150 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4151                                         int flush_delayed)
4152 {
4153         /*
4154          * looks as though older kernels can get into trouble with
4155          * this code, they end up stuck in balance_dirty_pages forever
4156          */
4157         int ret;
4158
4159         if (current->flags & PF_MEMALLOC)
4160                 return;
4161
4162         if (flush_delayed)
4163                 btrfs_balance_delayed_items(fs_info);
4164
4165         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4166                                      BTRFS_DIRTY_METADATA_THRESH,
4167                                      fs_info->dirty_metadata_batch);
4168         if (ret > 0) {
4169                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4170         }
4171 }
4172
4173 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4174 {
4175         __btrfs_btree_balance_dirty(fs_info, 1);
4176 }
4177
4178 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4179 {
4180         __btrfs_btree_balance_dirty(fs_info, 0);
4181 }
4182
4183 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4184                       struct btrfs_key *first_key)
4185 {
4186         return btree_read_extent_buffer_pages(buf, parent_transid,
4187                                               level, first_key);
4188 }
4189
4190 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4191 {
4192         /* cleanup FS via transaction */
4193         btrfs_cleanup_transaction(fs_info);
4194
4195         mutex_lock(&fs_info->cleaner_mutex);
4196         btrfs_run_delayed_iputs(fs_info);
4197         mutex_unlock(&fs_info->cleaner_mutex);
4198
4199         down_write(&fs_info->cleanup_work_sem);
4200         up_write(&fs_info->cleanup_work_sem);
4201 }
4202
4203 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4204 {
4205         struct btrfs_root *gang[8];
4206         u64 root_objectid = 0;
4207         int ret;
4208
4209         spin_lock(&fs_info->fs_roots_radix_lock);
4210         while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4211                                              (void **)gang, root_objectid,
4212                                              ARRAY_SIZE(gang))) != 0) {
4213                 int i;
4214
4215                 for (i = 0; i < ret; i++)
4216                         gang[i] = btrfs_grab_root(gang[i]);
4217                 spin_unlock(&fs_info->fs_roots_radix_lock);
4218
4219                 for (i = 0; i < ret; i++) {
4220                         if (!gang[i])
4221                                 continue;
4222                         root_objectid = gang[i]->root_key.objectid;
4223                         btrfs_free_log(NULL, gang[i]);
4224                         btrfs_put_root(gang[i]);
4225                 }
4226                 root_objectid++;
4227                 spin_lock(&fs_info->fs_roots_radix_lock);
4228         }
4229         spin_unlock(&fs_info->fs_roots_radix_lock);
4230         btrfs_free_log_root_tree(NULL, fs_info);
4231 }
4232
4233 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4234 {
4235         struct btrfs_ordered_extent *ordered;
4236
4237         spin_lock(&root->ordered_extent_lock);
4238         /*
4239          * This will just short circuit the ordered completion stuff which will
4240          * make sure the ordered extent gets properly cleaned up.
4241          */
4242         list_for_each_entry(ordered, &root->ordered_extents,
4243                             root_extent_list)
4244                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4245         spin_unlock(&root->ordered_extent_lock);
4246 }
4247
4248 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4249 {
4250         struct btrfs_root *root;
4251         struct list_head splice;
4252
4253         INIT_LIST_HEAD(&splice);
4254
4255         spin_lock(&fs_info->ordered_root_lock);
4256         list_splice_init(&fs_info->ordered_roots, &splice);
4257         while (!list_empty(&splice)) {
4258                 root = list_first_entry(&splice, struct btrfs_root,
4259                                         ordered_root);
4260                 list_move_tail(&root->ordered_root,
4261                                &fs_info->ordered_roots);
4262
4263                 spin_unlock(&fs_info->ordered_root_lock);
4264                 btrfs_destroy_ordered_extents(root);
4265
4266                 cond_resched();
4267                 spin_lock(&fs_info->ordered_root_lock);
4268         }
4269         spin_unlock(&fs_info->ordered_root_lock);
4270
4271         /*
4272          * We need this here because if we've been flipped read-only we won't
4273          * get sync() from the umount, so we need to make sure any ordered
4274          * extents that haven't had their dirty pages IO start writeout yet
4275          * actually get run and error out properly.
4276          */
4277         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4278 }
4279
4280 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4281                                       struct btrfs_fs_info *fs_info)
4282 {
4283         struct rb_node *node;
4284         struct btrfs_delayed_ref_root *delayed_refs;
4285         struct btrfs_delayed_ref_node *ref;
4286         int ret = 0;
4287
4288         delayed_refs = &trans->delayed_refs;
4289
4290         spin_lock(&delayed_refs->lock);
4291         if (atomic_read(&delayed_refs->num_entries) == 0) {
4292                 spin_unlock(&delayed_refs->lock);
4293                 btrfs_debug(fs_info, "delayed_refs has NO entry");
4294                 return ret;
4295         }
4296
4297         while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4298                 struct btrfs_delayed_ref_head *head;
4299                 struct rb_node *n;
4300                 bool pin_bytes = false;
4301
4302                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4303                                 href_node);
4304                 if (btrfs_delayed_ref_lock(delayed_refs, head))
4305                         continue;
4306
4307                 spin_lock(&head->lock);
4308                 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4309                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4310                                        ref_node);
4311                         ref->in_tree = 0;
4312                         rb_erase_cached(&ref->ref_node, &head->ref_tree);
4313                         RB_CLEAR_NODE(&ref->ref_node);
4314                         if (!list_empty(&ref->add_list))
4315                                 list_del(&ref->add_list);
4316                         atomic_dec(&delayed_refs->num_entries);
4317                         btrfs_put_delayed_ref(ref);
4318                 }
4319                 if (head->must_insert_reserved)
4320                         pin_bytes = true;
4321                 btrfs_free_delayed_extent_op(head->extent_op);
4322                 btrfs_delete_ref_head(delayed_refs, head);
4323                 spin_unlock(&head->lock);
4324                 spin_unlock(&delayed_refs->lock);
4325                 mutex_unlock(&head->mutex);
4326
4327                 if (pin_bytes) {
4328                         struct btrfs_block_group *cache;
4329
4330                         cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4331                         BUG_ON(!cache);
4332
4333                         spin_lock(&cache->space_info->lock);
4334                         spin_lock(&cache->lock);
4335                         cache->pinned += head->num_bytes;
4336                         btrfs_space_info_update_bytes_pinned(fs_info,
4337                                 cache->space_info, head->num_bytes);
4338                         cache->reserved -= head->num_bytes;
4339                         cache->space_info->bytes_reserved -= head->num_bytes;
4340                         spin_unlock(&cache->lock);
4341                         spin_unlock(&cache->space_info->lock);
4342                         percpu_counter_add_batch(
4343                                 &cache->space_info->total_bytes_pinned,
4344                                 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4345
4346                         btrfs_put_block_group(cache);
4347
4348                         btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4349                                 head->bytenr + head->num_bytes - 1);
4350                 }
4351                 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4352                 btrfs_put_delayed_ref_head(head);
4353                 cond_resched();
4354                 spin_lock(&delayed_refs->lock);
4355         }
4356         btrfs_qgroup_destroy_extent_records(trans);
4357
4358         spin_unlock(&delayed_refs->lock);
4359
4360         return ret;
4361 }
4362
4363 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4364 {
4365         struct btrfs_inode *btrfs_inode;
4366         struct list_head splice;
4367
4368         INIT_LIST_HEAD(&splice);
4369
4370         spin_lock(&root->delalloc_lock);
4371         list_splice_init(&root->delalloc_inodes, &splice);
4372
4373         while (!list_empty(&splice)) {
4374                 struct inode *inode = NULL;
4375                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4376                                                delalloc_inodes);
4377                 __btrfs_del_delalloc_inode(root, btrfs_inode);
4378                 spin_unlock(&root->delalloc_lock);
4379
4380                 /*
4381                  * Make sure we get a live inode and that it'll not disappear
4382                  * meanwhile.
4383                  */
4384                 inode = igrab(&btrfs_inode->vfs_inode);
4385                 if (inode) {
4386                         invalidate_inode_pages2(inode->i_mapping);
4387                         iput(inode);
4388                 }
4389                 spin_lock(&root->delalloc_lock);
4390         }
4391         spin_unlock(&root->delalloc_lock);
4392 }
4393
4394 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4395 {
4396         struct btrfs_root *root;
4397         struct list_head splice;
4398
4399         INIT_LIST_HEAD(&splice);
4400
4401         spin_lock(&fs_info->delalloc_root_lock);
4402         list_splice_init(&fs_info->delalloc_roots, &splice);
4403         while (!list_empty(&splice)) {
4404                 root = list_first_entry(&splice, struct btrfs_root,
4405                                          delalloc_root);
4406                 root = btrfs_grab_root(root);
4407                 BUG_ON(!root);
4408                 spin_unlock(&fs_info->delalloc_root_lock);
4409
4410                 btrfs_destroy_delalloc_inodes(root);
4411                 btrfs_put_root(root);
4412
4413                 spin_lock(&fs_info->delalloc_root_lock);
4414         }
4415         spin_unlock(&fs_info->delalloc_root_lock);
4416 }
4417
4418 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4419                                         struct extent_io_tree *dirty_pages,
4420                                         int mark)
4421 {
4422         int ret;
4423         struct extent_buffer *eb;
4424         u64 start = 0;
4425         u64 end;
4426
4427         while (1) {
4428                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4429                                             mark, NULL);
4430                 if (ret)
4431                         break;
4432
4433                 clear_extent_bits(dirty_pages, start, end, mark);
4434                 while (start <= end) {
4435                         eb = find_extent_buffer(fs_info, start);
4436                         start += fs_info->nodesize;
4437                         if (!eb)
4438                                 continue;
4439                         wait_on_extent_buffer_writeback(eb);
4440
4441                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4442                                                &eb->bflags))
4443                                 clear_extent_buffer_dirty(eb);
4444                         free_extent_buffer_stale(eb);
4445                 }
4446         }
4447
4448         return ret;
4449 }
4450
4451 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4452                                        struct extent_io_tree *unpin)
4453 {
4454         u64 start;
4455         u64 end;
4456         int ret;
4457
4458         while (1) {
4459                 struct extent_state *cached_state = NULL;
4460
4461                 /*
4462                  * The btrfs_finish_extent_commit() may get the same range as
4463                  * ours between find_first_extent_bit and clear_extent_dirty.
4464                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4465                  * the same extent range.
4466                  */
4467                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4468                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4469                                             EXTENT_DIRTY, &cached_state);
4470                 if (ret) {
4471                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4472                         break;
4473                 }
4474
4475                 clear_extent_dirty(unpin, start, end, &cached_state);
4476                 free_extent_state(cached_state);
4477                 btrfs_error_unpin_extent_range(fs_info, start, end);
4478                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4479                 cond_resched();
4480         }
4481
4482         return 0;
4483 }
4484
4485 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4486 {
4487         struct inode *inode;
4488
4489         inode = cache->io_ctl.inode;
4490         if (inode) {
4491                 invalidate_inode_pages2(inode->i_mapping);
4492                 BTRFS_I(inode)->generation = 0;
4493                 cache->io_ctl.inode = NULL;
4494                 iput(inode);
4495         }
4496         btrfs_put_block_group(cache);
4497 }
4498
4499 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4500                              struct btrfs_fs_info *fs_info)
4501 {
4502         struct btrfs_block_group *cache;
4503
4504         spin_lock(&cur_trans->dirty_bgs_lock);
4505         while (!list_empty(&cur_trans->dirty_bgs)) {
4506                 cache = list_first_entry(&cur_trans->dirty_bgs,
4507                                          struct btrfs_block_group,
4508                                          dirty_list);
4509
4510                 if (!list_empty(&cache->io_list)) {
4511                         spin_unlock(&cur_trans->dirty_bgs_lock);
4512                         list_del_init(&cache->io_list);
4513                         btrfs_cleanup_bg_io(cache);
4514                         spin_lock(&cur_trans->dirty_bgs_lock);
4515                 }
4516
4517                 list_del_init(&cache->dirty_list);
4518                 spin_lock(&cache->lock);
4519                 cache->disk_cache_state = BTRFS_DC_ERROR;
4520                 spin_unlock(&cache->lock);
4521
4522                 spin_unlock(&cur_trans->dirty_bgs_lock);
4523                 btrfs_put_block_group(cache);
4524                 btrfs_delayed_refs_rsv_release(fs_info, 1);
4525                 spin_lock(&cur_trans->dirty_bgs_lock);
4526         }
4527         spin_unlock(&cur_trans->dirty_bgs_lock);
4528
4529         /*
4530          * Refer to the definition of io_bgs member for details why it's safe
4531          * to use it without any locking
4532          */
4533         while (!list_empty(&cur_trans->io_bgs)) {
4534                 cache = list_first_entry(&cur_trans->io_bgs,
4535                                          struct btrfs_block_group,
4536                                          io_list);
4537
4538                 list_del_init(&cache->io_list);
4539                 spin_lock(&cache->lock);
4540                 cache->disk_cache_state = BTRFS_DC_ERROR;
4541                 spin_unlock(&cache->lock);
4542                 btrfs_cleanup_bg_io(cache);
4543         }
4544 }
4545
4546 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4547                                    struct btrfs_fs_info *fs_info)
4548 {
4549         struct btrfs_device *dev, *tmp;
4550
4551         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4552         ASSERT(list_empty(&cur_trans->dirty_bgs));
4553         ASSERT(list_empty(&cur_trans->io_bgs));
4554
4555         list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4556                                  post_commit_list) {
4557                 list_del_init(&dev->post_commit_list);
4558         }
4559
4560         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4561
4562         cur_trans->state = TRANS_STATE_COMMIT_START;
4563         wake_up(&fs_info->transaction_blocked_wait);
4564
4565         cur_trans->state = TRANS_STATE_UNBLOCKED;
4566         wake_up(&fs_info->transaction_wait);
4567
4568         btrfs_destroy_delayed_inodes(fs_info);
4569
4570         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4571                                      EXTENT_DIRTY);
4572         btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4573
4574         cur_trans->state =TRANS_STATE_COMPLETED;
4575         wake_up(&cur_trans->commit_wait);
4576 }
4577
4578 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4579 {
4580         struct btrfs_transaction *t;
4581
4582         mutex_lock(&fs_info->transaction_kthread_mutex);
4583
4584         spin_lock(&fs_info->trans_lock);
4585         while (!list_empty(&fs_info->trans_list)) {
4586                 t = list_first_entry(&fs_info->trans_list,
4587                                      struct btrfs_transaction, list);
4588                 if (t->state >= TRANS_STATE_COMMIT_START) {
4589                         refcount_inc(&t->use_count);
4590                         spin_unlock(&fs_info->trans_lock);
4591                         btrfs_wait_for_commit(fs_info, t->transid);
4592                         btrfs_put_transaction(t);
4593                         spin_lock(&fs_info->trans_lock);
4594                         continue;
4595                 }
4596                 if (t == fs_info->running_transaction) {
4597                         t->state = TRANS_STATE_COMMIT_DOING;
4598                         spin_unlock(&fs_info->trans_lock);
4599                         /*
4600                          * We wait for 0 num_writers since we don't hold a trans
4601                          * handle open currently for this transaction.
4602                          */
4603                         wait_event(t->writer_wait,
4604                                    atomic_read(&t->num_writers) == 0);
4605                 } else {
4606                         spin_unlock(&fs_info->trans_lock);
4607                 }
4608                 btrfs_cleanup_one_transaction(t, fs_info);
4609
4610                 spin_lock(&fs_info->trans_lock);
4611                 if (t == fs_info->running_transaction)
4612                         fs_info->running_transaction = NULL;
4613                 list_del_init(&t->list);
4614                 spin_unlock(&fs_info->trans_lock);
4615
4616                 btrfs_put_transaction(t);
4617                 trace_btrfs_transaction_commit(fs_info->tree_root);
4618                 spin_lock(&fs_info->trans_lock);
4619         }
4620         spin_unlock(&fs_info->trans_lock);
4621         btrfs_destroy_all_ordered_extents(fs_info);
4622         btrfs_destroy_delayed_inodes(fs_info);
4623         btrfs_assert_delayed_root_empty(fs_info);
4624         btrfs_destroy_all_delalloc_inodes(fs_info);
4625         btrfs_drop_all_logs(fs_info);
4626         mutex_unlock(&fs_info->transaction_kthread_mutex);
4627
4628         return 0;
4629 }
4630
4631 static const struct extent_io_ops btree_extent_io_ops = {
4632         /* mandatory callbacks */
4633         .submit_bio_hook = btree_submit_bio_hook,
4634         .readpage_end_io_hook = btree_readpage_end_io_hook,
4635 };