Btrfs: fix possible memory leaks in open_ctree()
[linux-2.6-block.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 #include "sysfs.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61                                     int read_only);
62 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63                                              struct btrfs_root *root);
64 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
65 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66                                       struct btrfs_root *root);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69                                         struct extent_io_tree *dirty_pages,
70                                         int mark);
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72                                        struct extent_io_tree *pinned_extents);
73 static int btrfs_cleanup_transaction(struct btrfs_root *root);
74 static void btrfs_error_commit_super(struct btrfs_root *root);
75
76 /*
77  * end_io_wq structs are used to do processing in task context when an IO is
78  * complete.  This is used during reads to verify checksums, and it is used
79  * by writes to insert metadata for new file extents after IO is complete.
80  */
81 struct end_io_wq {
82         struct bio *bio;
83         bio_end_io_t *end_io;
84         void *private;
85         struct btrfs_fs_info *info;
86         int error;
87         int metadata;
88         struct list_head list;
89         struct btrfs_work work;
90 };
91
92 /*
93  * async submit bios are used to offload expensive checksumming
94  * onto the worker threads.  They checksum file and metadata bios
95  * just before they are sent down the IO stack.
96  */
97 struct async_submit_bio {
98         struct inode *inode;
99         struct bio *bio;
100         struct list_head list;
101         extent_submit_bio_hook_t *submit_bio_start;
102         extent_submit_bio_hook_t *submit_bio_done;
103         int rw;
104         int mirror_num;
105         unsigned long bio_flags;
106         /*
107          * bio_offset is optional, can be used if the pages in the bio
108          * can't tell us where in the file the bio should go
109          */
110         u64 bio_offset;
111         struct btrfs_work work;
112         int error;
113 };
114
115 /*
116  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
117  * eb, the lockdep key is determined by the btrfs_root it belongs to and
118  * the level the eb occupies in the tree.
119  *
120  * Different roots are used for different purposes and may nest inside each
121  * other and they require separate keysets.  As lockdep keys should be
122  * static, assign keysets according to the purpose of the root as indicated
123  * by btrfs_root->objectid.  This ensures that all special purpose roots
124  * have separate keysets.
125  *
126  * Lock-nesting across peer nodes is always done with the immediate parent
127  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
128  * subclass to avoid triggering lockdep warning in such cases.
129  *
130  * The key is set by the readpage_end_io_hook after the buffer has passed
131  * csum validation but before the pages are unlocked.  It is also set by
132  * btrfs_init_new_buffer on freshly allocated blocks.
133  *
134  * We also add a check to make sure the highest level of the tree is the
135  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
136  * needs update as well.
137  */
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
140 #  error
141 # endif
142
143 static struct btrfs_lockdep_keyset {
144         u64                     id;             /* root objectid */
145         const char              *name_stem;     /* lock name stem */
146         char                    names[BTRFS_MAX_LEVEL + 1][20];
147         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
148 } btrfs_lockdep_keysets[] = {
149         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
150         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
151         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
152         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
153         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
154         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
155         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
156         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
157         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
158         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
159         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
160         { .id = 0,                              .name_stem = "tree"     },
161 };
162
163 void __init btrfs_init_lockdep(void)
164 {
165         int i, j;
166
167         /* initialize lockdep class names */
168         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
169                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
170
171                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
172                         snprintf(ks->names[j], sizeof(ks->names[j]),
173                                  "btrfs-%s-%02d", ks->name_stem, j);
174         }
175 }
176
177 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
178                                     int level)
179 {
180         struct btrfs_lockdep_keyset *ks;
181
182         BUG_ON(level >= ARRAY_SIZE(ks->keys));
183
184         /* find the matching keyset, id 0 is the default entry */
185         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
186                 if (ks->id == objectid)
187                         break;
188
189         lockdep_set_class_and_name(&eb->lock,
190                                    &ks->keys[level], ks->names[level]);
191 }
192
193 #endif
194
195 /*
196  * extents on the btree inode are pretty simple, there's one extent
197  * that covers the entire device
198  */
199 static struct extent_map *btree_get_extent(struct inode *inode,
200                 struct page *page, size_t pg_offset, u64 start, u64 len,
201                 int create)
202 {
203         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
204         struct extent_map *em;
205         int ret;
206
207         read_lock(&em_tree->lock);
208         em = lookup_extent_mapping(em_tree, start, len);
209         if (em) {
210                 em->bdev =
211                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
212                 read_unlock(&em_tree->lock);
213                 goto out;
214         }
215         read_unlock(&em_tree->lock);
216
217         em = alloc_extent_map();
218         if (!em) {
219                 em = ERR_PTR(-ENOMEM);
220                 goto out;
221         }
222         em->start = 0;
223         em->len = (u64)-1;
224         em->block_len = (u64)-1;
225         em->block_start = 0;
226         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
227
228         write_lock(&em_tree->lock);
229         ret = add_extent_mapping(em_tree, em, 0);
230         if (ret == -EEXIST) {
231                 free_extent_map(em);
232                 em = lookup_extent_mapping(em_tree, start, len);
233                 if (!em)
234                         em = ERR_PTR(-EIO);
235         } else if (ret) {
236                 free_extent_map(em);
237                 em = ERR_PTR(ret);
238         }
239         write_unlock(&em_tree->lock);
240
241 out:
242         return em;
243 }
244
245 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
246 {
247         return btrfs_crc32c(seed, data, len);
248 }
249
250 void btrfs_csum_final(u32 crc, char *result)
251 {
252         put_unaligned_le32(~crc, result);
253 }
254
255 /*
256  * compute the csum for a btree block, and either verify it or write it
257  * into the csum field of the block.
258  */
259 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
260                            int verify)
261 {
262         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
263         char *result = NULL;
264         unsigned long len;
265         unsigned long cur_len;
266         unsigned long offset = BTRFS_CSUM_SIZE;
267         char *kaddr;
268         unsigned long map_start;
269         unsigned long map_len;
270         int err;
271         u32 crc = ~(u32)0;
272         unsigned long inline_result;
273
274         len = buf->len - offset;
275         while (len > 0) {
276                 err = map_private_extent_buffer(buf, offset, 32,
277                                         &kaddr, &map_start, &map_len);
278                 if (err)
279                         return 1;
280                 cur_len = min(len, map_len - (offset - map_start));
281                 crc = btrfs_csum_data(kaddr + offset - map_start,
282                                       crc, cur_len);
283                 len -= cur_len;
284                 offset += cur_len;
285         }
286         if (csum_size > sizeof(inline_result)) {
287                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
288                 if (!result)
289                         return 1;
290         } else {
291                 result = (char *)&inline_result;
292         }
293
294         btrfs_csum_final(crc, result);
295
296         if (verify) {
297                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
298                         u32 val;
299                         u32 found = 0;
300                         memcpy(&found, result, csum_size);
301
302                         read_extent_buffer(buf, &val, 0, csum_size);
303                         printk_ratelimited(KERN_INFO
304                                 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
305                                 "level %d\n",
306                                 root->fs_info->sb->s_id, buf->start,
307                                 val, found, btrfs_header_level(buf));
308                         if (result != (char *)&inline_result)
309                                 kfree(result);
310                         return 1;
311                 }
312         } else {
313                 write_extent_buffer(buf, result, 0, csum_size);
314         }
315         if (result != (char *)&inline_result)
316                 kfree(result);
317         return 0;
318 }
319
320 /*
321  * we can't consider a given block up to date unless the transid of the
322  * block matches the transid in the parent node's pointer.  This is how we
323  * detect blocks that either didn't get written at all or got written
324  * in the wrong place.
325  */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327                                  struct extent_buffer *eb, u64 parent_transid,
328                                  int atomic)
329 {
330         struct extent_state *cached_state = NULL;
331         int ret;
332         bool need_lock = (current->journal_info ==
333                           (void *)BTRFS_SEND_TRANS_STUB);
334
335         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
336                 return 0;
337
338         if (atomic)
339                 return -EAGAIN;
340
341         if (need_lock) {
342                 btrfs_tree_read_lock(eb);
343                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
344         }
345
346         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
347                          0, &cached_state);
348         if (extent_buffer_uptodate(eb) &&
349             btrfs_header_generation(eb) == parent_transid) {
350                 ret = 0;
351                 goto out;
352         }
353         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
354                        "found %llu\n",
355                        eb->start, parent_transid, btrfs_header_generation(eb));
356         ret = 1;
357
358         /*
359          * Things reading via commit roots that don't have normal protection,
360          * like send, can have a really old block in cache that may point at a
361          * block that has been free'd and re-allocated.  So don't clear uptodate
362          * if we find an eb that is under IO (dirty/writeback) because we could
363          * end up reading in the stale data and then writing it back out and
364          * making everybody very sad.
365          */
366         if (!extent_buffer_under_io(eb))
367                 clear_extent_buffer_uptodate(eb);
368 out:
369         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
370                              &cached_state, GFP_NOFS);
371         btrfs_tree_read_unlock_blocking(eb);
372         return ret;
373 }
374
375 /*
376  * Return 0 if the superblock checksum type matches the checksum value of that
377  * algorithm. Pass the raw disk superblock data.
378  */
379 static int btrfs_check_super_csum(char *raw_disk_sb)
380 {
381         struct btrfs_super_block *disk_sb =
382                 (struct btrfs_super_block *)raw_disk_sb;
383         u16 csum_type = btrfs_super_csum_type(disk_sb);
384         int ret = 0;
385
386         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
387                 u32 crc = ~(u32)0;
388                 const int csum_size = sizeof(crc);
389                 char result[csum_size];
390
391                 /*
392                  * The super_block structure does not span the whole
393                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
394                  * is filled with zeros and is included in the checkum.
395                  */
396                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
397                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
398                 btrfs_csum_final(crc, result);
399
400                 if (memcmp(raw_disk_sb, result, csum_size))
401                         ret = 1;
402
403                 if (ret && btrfs_super_generation(disk_sb) < 10) {
404                         printk(KERN_WARNING
405                                 "BTRFS: super block crcs don't match, older mkfs detected\n");
406                         ret = 0;
407                 }
408         }
409
410         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
411                 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
412                                 csum_type);
413                 ret = 1;
414         }
415
416         return ret;
417 }
418
419 /*
420  * helper to read a given tree block, doing retries as required when
421  * the checksums don't match and we have alternate mirrors to try.
422  */
423 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
424                                           struct extent_buffer *eb,
425                                           u64 start, u64 parent_transid)
426 {
427         struct extent_io_tree *io_tree;
428         int failed = 0;
429         int ret;
430         int num_copies = 0;
431         int mirror_num = 0;
432         int failed_mirror = 0;
433
434         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
435         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
436         while (1) {
437                 ret = read_extent_buffer_pages(io_tree, eb, start,
438                                                WAIT_COMPLETE,
439                                                btree_get_extent, mirror_num);
440                 if (!ret) {
441                         if (!verify_parent_transid(io_tree, eb,
442                                                    parent_transid, 0))
443                                 break;
444                         else
445                                 ret = -EIO;
446                 }
447
448                 /*
449                  * This buffer's crc is fine, but its contents are corrupted, so
450                  * there is no reason to read the other copies, they won't be
451                  * any less wrong.
452                  */
453                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
454                         break;
455
456                 num_copies = btrfs_num_copies(root->fs_info,
457                                               eb->start, eb->len);
458                 if (num_copies == 1)
459                         break;
460
461                 if (!failed_mirror) {
462                         failed = 1;
463                         failed_mirror = eb->read_mirror;
464                 }
465
466                 mirror_num++;
467                 if (mirror_num == failed_mirror)
468                         mirror_num++;
469
470                 if (mirror_num > num_copies)
471                         break;
472         }
473
474         if (failed && !ret && failed_mirror)
475                 repair_eb_io_failure(root, eb, failed_mirror);
476
477         return ret;
478 }
479
480 /*
481  * checksum a dirty tree block before IO.  This has extra checks to make sure
482  * we only fill in the checksum field in the first page of a multi-page block
483  */
484
485 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
486 {
487         u64 start = page_offset(page);
488         u64 found_start;
489         struct extent_buffer *eb;
490
491         eb = (struct extent_buffer *)page->private;
492         if (page != eb->pages[0])
493                 return 0;
494         found_start = btrfs_header_bytenr(eb);
495         if (WARN_ON(found_start != start || !PageUptodate(page)))
496                 return 0;
497         csum_tree_block(root, eb, 0);
498         return 0;
499 }
500
501 static int check_tree_block_fsid(struct btrfs_root *root,
502                                  struct extent_buffer *eb)
503 {
504         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
505         u8 fsid[BTRFS_UUID_SIZE];
506         int ret = 1;
507
508         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
509         while (fs_devices) {
510                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
511                         ret = 0;
512                         break;
513                 }
514                 fs_devices = fs_devices->seed;
515         }
516         return ret;
517 }
518
519 #define CORRUPT(reason, eb, root, slot)                         \
520         btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"       \
521                    "root=%llu, slot=%d", reason,                        \
522                btrfs_header_bytenr(eb), root->objectid, slot)
523
524 static noinline int check_leaf(struct btrfs_root *root,
525                                struct extent_buffer *leaf)
526 {
527         struct btrfs_key key;
528         struct btrfs_key leaf_key;
529         u32 nritems = btrfs_header_nritems(leaf);
530         int slot;
531
532         if (nritems == 0)
533                 return 0;
534
535         /* Check the 0 item */
536         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
537             BTRFS_LEAF_DATA_SIZE(root)) {
538                 CORRUPT("invalid item offset size pair", leaf, root, 0);
539                 return -EIO;
540         }
541
542         /*
543          * Check to make sure each items keys are in the correct order and their
544          * offsets make sense.  We only have to loop through nritems-1 because
545          * we check the current slot against the next slot, which verifies the
546          * next slot's offset+size makes sense and that the current's slot
547          * offset is correct.
548          */
549         for (slot = 0; slot < nritems - 1; slot++) {
550                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
551                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
552
553                 /* Make sure the keys are in the right order */
554                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
555                         CORRUPT("bad key order", leaf, root, slot);
556                         return -EIO;
557                 }
558
559                 /*
560                  * Make sure the offset and ends are right, remember that the
561                  * item data starts at the end of the leaf and grows towards the
562                  * front.
563                  */
564                 if (btrfs_item_offset_nr(leaf, slot) !=
565                         btrfs_item_end_nr(leaf, slot + 1)) {
566                         CORRUPT("slot offset bad", leaf, root, slot);
567                         return -EIO;
568                 }
569
570                 /*
571                  * Check to make sure that we don't point outside of the leaf,
572                  * just incase all the items are consistent to eachother, but
573                  * all point outside of the leaf.
574                  */
575                 if (btrfs_item_end_nr(leaf, slot) >
576                     BTRFS_LEAF_DATA_SIZE(root)) {
577                         CORRUPT("slot end outside of leaf", leaf, root, slot);
578                         return -EIO;
579                 }
580         }
581
582         return 0;
583 }
584
585 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
586                                       u64 phy_offset, struct page *page,
587                                       u64 start, u64 end, int mirror)
588 {
589         u64 found_start;
590         int found_level;
591         struct extent_buffer *eb;
592         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
593         int ret = 0;
594         int reads_done;
595
596         if (!page->private)
597                 goto out;
598
599         eb = (struct extent_buffer *)page->private;
600
601         /* the pending IO might have been the only thing that kept this buffer
602          * in memory.  Make sure we have a ref for all this other checks
603          */
604         extent_buffer_get(eb);
605
606         reads_done = atomic_dec_and_test(&eb->io_pages);
607         if (!reads_done)
608                 goto err;
609
610         eb->read_mirror = mirror;
611         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
612                 ret = -EIO;
613                 goto err;
614         }
615
616         found_start = btrfs_header_bytenr(eb);
617         if (found_start != eb->start) {
618                 printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
619                                "%llu %llu\n",
620                                found_start, eb->start);
621                 ret = -EIO;
622                 goto err;
623         }
624         if (check_tree_block_fsid(root, eb)) {
625                 printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
626                                eb->start);
627                 ret = -EIO;
628                 goto err;
629         }
630         found_level = btrfs_header_level(eb);
631         if (found_level >= BTRFS_MAX_LEVEL) {
632                 btrfs_info(root->fs_info, "bad tree block level %d",
633                            (int)btrfs_header_level(eb));
634                 ret = -EIO;
635                 goto err;
636         }
637
638         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
639                                        eb, found_level);
640
641         ret = csum_tree_block(root, eb, 1);
642         if (ret) {
643                 ret = -EIO;
644                 goto err;
645         }
646
647         /*
648          * If this is a leaf block and it is corrupt, set the corrupt bit so
649          * that we don't try and read the other copies of this block, just
650          * return -EIO.
651          */
652         if (found_level == 0 && check_leaf(root, eb)) {
653                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
654                 ret = -EIO;
655         }
656
657         if (!ret)
658                 set_extent_buffer_uptodate(eb);
659 err:
660         if (reads_done &&
661             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
662                 btree_readahead_hook(root, eb, eb->start, ret);
663
664         if (ret) {
665                 /*
666                  * our io error hook is going to dec the io pages
667                  * again, we have to make sure it has something
668                  * to decrement
669                  */
670                 atomic_inc(&eb->io_pages);
671                 clear_extent_buffer_uptodate(eb);
672         }
673         free_extent_buffer(eb);
674 out:
675         return ret;
676 }
677
678 static int btree_io_failed_hook(struct page *page, int failed_mirror)
679 {
680         struct extent_buffer *eb;
681         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
682
683         eb = (struct extent_buffer *)page->private;
684         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
685         eb->read_mirror = failed_mirror;
686         atomic_dec(&eb->io_pages);
687         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
688                 btree_readahead_hook(root, eb, eb->start, -EIO);
689         return -EIO;    /* we fixed nothing */
690 }
691
692 static void end_workqueue_bio(struct bio *bio, int err)
693 {
694         struct end_io_wq *end_io_wq = bio->bi_private;
695         struct btrfs_fs_info *fs_info;
696
697         fs_info = end_io_wq->info;
698         end_io_wq->error = err;
699         btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
700
701         if (bio->bi_rw & REQ_WRITE) {
702                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
703                         btrfs_queue_work(fs_info->endio_meta_write_workers,
704                                          &end_io_wq->work);
705                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
706                         btrfs_queue_work(fs_info->endio_freespace_worker,
707                                          &end_io_wq->work);
708                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
709                         btrfs_queue_work(fs_info->endio_raid56_workers,
710                                          &end_io_wq->work);
711                 else
712                         btrfs_queue_work(fs_info->endio_write_workers,
713                                          &end_io_wq->work);
714         } else {
715                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
716                         btrfs_queue_work(fs_info->endio_raid56_workers,
717                                          &end_io_wq->work);
718                 else if (end_io_wq->metadata)
719                         btrfs_queue_work(fs_info->endio_meta_workers,
720                                          &end_io_wq->work);
721                 else
722                         btrfs_queue_work(fs_info->endio_workers,
723                                          &end_io_wq->work);
724         }
725 }
726
727 /*
728  * For the metadata arg you want
729  *
730  * 0 - if data
731  * 1 - if normal metadta
732  * 2 - if writing to the free space cache area
733  * 3 - raid parity work
734  */
735 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
736                         int metadata)
737 {
738         struct end_io_wq *end_io_wq;
739         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
740         if (!end_io_wq)
741                 return -ENOMEM;
742
743         end_io_wq->private = bio->bi_private;
744         end_io_wq->end_io = bio->bi_end_io;
745         end_io_wq->info = info;
746         end_io_wq->error = 0;
747         end_io_wq->bio = bio;
748         end_io_wq->metadata = metadata;
749
750         bio->bi_private = end_io_wq;
751         bio->bi_end_io = end_workqueue_bio;
752         return 0;
753 }
754
755 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
756 {
757         unsigned long limit = min_t(unsigned long,
758                                     info->thread_pool_size,
759                                     info->fs_devices->open_devices);
760         return 256 * limit;
761 }
762
763 static void run_one_async_start(struct btrfs_work *work)
764 {
765         struct async_submit_bio *async;
766         int ret;
767
768         async = container_of(work, struct  async_submit_bio, work);
769         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
770                                       async->mirror_num, async->bio_flags,
771                                       async->bio_offset);
772         if (ret)
773                 async->error = ret;
774 }
775
776 static void run_one_async_done(struct btrfs_work *work)
777 {
778         struct btrfs_fs_info *fs_info;
779         struct async_submit_bio *async;
780         int limit;
781
782         async = container_of(work, struct  async_submit_bio, work);
783         fs_info = BTRFS_I(async->inode)->root->fs_info;
784
785         limit = btrfs_async_submit_limit(fs_info);
786         limit = limit * 2 / 3;
787
788         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
789             waitqueue_active(&fs_info->async_submit_wait))
790                 wake_up(&fs_info->async_submit_wait);
791
792         /* If an error occured we just want to clean up the bio and move on */
793         if (async->error) {
794                 bio_endio(async->bio, async->error);
795                 return;
796         }
797
798         async->submit_bio_done(async->inode, async->rw, async->bio,
799                                async->mirror_num, async->bio_flags,
800                                async->bio_offset);
801 }
802
803 static void run_one_async_free(struct btrfs_work *work)
804 {
805         struct async_submit_bio *async;
806
807         async = container_of(work, struct  async_submit_bio, work);
808         kfree(async);
809 }
810
811 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
812                         int rw, struct bio *bio, int mirror_num,
813                         unsigned long bio_flags,
814                         u64 bio_offset,
815                         extent_submit_bio_hook_t *submit_bio_start,
816                         extent_submit_bio_hook_t *submit_bio_done)
817 {
818         struct async_submit_bio *async;
819
820         async = kmalloc(sizeof(*async), GFP_NOFS);
821         if (!async)
822                 return -ENOMEM;
823
824         async->inode = inode;
825         async->rw = rw;
826         async->bio = bio;
827         async->mirror_num = mirror_num;
828         async->submit_bio_start = submit_bio_start;
829         async->submit_bio_done = submit_bio_done;
830
831         btrfs_init_work(&async->work, run_one_async_start,
832                         run_one_async_done, run_one_async_free);
833
834         async->bio_flags = bio_flags;
835         async->bio_offset = bio_offset;
836
837         async->error = 0;
838
839         atomic_inc(&fs_info->nr_async_submits);
840
841         if (rw & REQ_SYNC)
842                 btrfs_set_work_high_priority(&async->work);
843
844         btrfs_queue_work(fs_info->workers, &async->work);
845
846         while (atomic_read(&fs_info->async_submit_draining) &&
847               atomic_read(&fs_info->nr_async_submits)) {
848                 wait_event(fs_info->async_submit_wait,
849                            (atomic_read(&fs_info->nr_async_submits) == 0));
850         }
851
852         return 0;
853 }
854
855 static int btree_csum_one_bio(struct bio *bio)
856 {
857         struct bio_vec *bvec = bio->bi_io_vec;
858         int bio_index = 0;
859         struct btrfs_root *root;
860         int ret = 0;
861
862         WARN_ON(bio->bi_vcnt <= 0);
863         while (bio_index < bio->bi_vcnt) {
864                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
865                 ret = csum_dirty_buffer(root, bvec->bv_page);
866                 if (ret)
867                         break;
868                 bio_index++;
869                 bvec++;
870         }
871         return ret;
872 }
873
874 static int __btree_submit_bio_start(struct inode *inode, int rw,
875                                     struct bio *bio, int mirror_num,
876                                     unsigned long bio_flags,
877                                     u64 bio_offset)
878 {
879         /*
880          * when we're called for a write, we're already in the async
881          * submission context.  Just jump into btrfs_map_bio
882          */
883         return btree_csum_one_bio(bio);
884 }
885
886 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
887                                  int mirror_num, unsigned long bio_flags,
888                                  u64 bio_offset)
889 {
890         int ret;
891
892         /*
893          * when we're called for a write, we're already in the async
894          * submission context.  Just jump into btrfs_map_bio
895          */
896         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
897         if (ret)
898                 bio_endio(bio, ret);
899         return ret;
900 }
901
902 static int check_async_write(struct inode *inode, unsigned long bio_flags)
903 {
904         if (bio_flags & EXTENT_BIO_TREE_LOG)
905                 return 0;
906 #ifdef CONFIG_X86
907         if (cpu_has_xmm4_2)
908                 return 0;
909 #endif
910         return 1;
911 }
912
913 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
914                                  int mirror_num, unsigned long bio_flags,
915                                  u64 bio_offset)
916 {
917         int async = check_async_write(inode, bio_flags);
918         int ret;
919
920         if (!(rw & REQ_WRITE)) {
921                 /*
922                  * called for a read, do the setup so that checksum validation
923                  * can happen in the async kernel threads
924                  */
925                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
926                                           bio, 1);
927                 if (ret)
928                         goto out_w_error;
929                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
930                                     mirror_num, 0);
931         } else if (!async) {
932                 ret = btree_csum_one_bio(bio);
933                 if (ret)
934                         goto out_w_error;
935                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
936                                     mirror_num, 0);
937         } else {
938                 /*
939                  * kthread helpers are used to submit writes so that
940                  * checksumming can happen in parallel across all CPUs
941                  */
942                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
943                                           inode, rw, bio, mirror_num, 0,
944                                           bio_offset,
945                                           __btree_submit_bio_start,
946                                           __btree_submit_bio_done);
947         }
948
949         if (ret) {
950 out_w_error:
951                 bio_endio(bio, ret);
952         }
953         return ret;
954 }
955
956 #ifdef CONFIG_MIGRATION
957 static int btree_migratepage(struct address_space *mapping,
958                         struct page *newpage, struct page *page,
959                         enum migrate_mode mode)
960 {
961         /*
962          * we can't safely write a btree page from here,
963          * we haven't done the locking hook
964          */
965         if (PageDirty(page))
966                 return -EAGAIN;
967         /*
968          * Buffers may be managed in a filesystem specific way.
969          * We must have no buffers or drop them.
970          */
971         if (page_has_private(page) &&
972             !try_to_release_page(page, GFP_KERNEL))
973                 return -EAGAIN;
974         return migrate_page(mapping, newpage, page, mode);
975 }
976 #endif
977
978
979 static int btree_writepages(struct address_space *mapping,
980                             struct writeback_control *wbc)
981 {
982         struct btrfs_fs_info *fs_info;
983         int ret;
984
985         if (wbc->sync_mode == WB_SYNC_NONE) {
986
987                 if (wbc->for_kupdate)
988                         return 0;
989
990                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
991                 /* this is a bit racy, but that's ok */
992                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
993                                              BTRFS_DIRTY_METADATA_THRESH);
994                 if (ret < 0)
995                         return 0;
996         }
997         return btree_write_cache_pages(mapping, wbc);
998 }
999
1000 static int btree_readpage(struct file *file, struct page *page)
1001 {
1002         struct extent_io_tree *tree;
1003         tree = &BTRFS_I(page->mapping->host)->io_tree;
1004         return extent_read_full_page(tree, page, btree_get_extent, 0);
1005 }
1006
1007 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1008 {
1009         if (PageWriteback(page) || PageDirty(page))
1010                 return 0;
1011
1012         return try_release_extent_buffer(page);
1013 }
1014
1015 static void btree_invalidatepage(struct page *page, unsigned int offset,
1016                                  unsigned int length)
1017 {
1018         struct extent_io_tree *tree;
1019         tree = &BTRFS_I(page->mapping->host)->io_tree;
1020         extent_invalidatepage(tree, page, offset);
1021         btree_releasepage(page, GFP_NOFS);
1022         if (PagePrivate(page)) {
1023                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1024                            "page private not zero on page %llu",
1025                            (unsigned long long)page_offset(page));
1026                 ClearPagePrivate(page);
1027                 set_page_private(page, 0);
1028                 page_cache_release(page);
1029         }
1030 }
1031
1032 static int btree_set_page_dirty(struct page *page)
1033 {
1034 #ifdef DEBUG
1035         struct extent_buffer *eb;
1036
1037         BUG_ON(!PagePrivate(page));
1038         eb = (struct extent_buffer *)page->private;
1039         BUG_ON(!eb);
1040         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1041         BUG_ON(!atomic_read(&eb->refs));
1042         btrfs_assert_tree_locked(eb);
1043 #endif
1044         return __set_page_dirty_nobuffers(page);
1045 }
1046
1047 static const struct address_space_operations btree_aops = {
1048         .readpage       = btree_readpage,
1049         .writepages     = btree_writepages,
1050         .releasepage    = btree_releasepage,
1051         .invalidatepage = btree_invalidatepage,
1052 #ifdef CONFIG_MIGRATION
1053         .migratepage    = btree_migratepage,
1054 #endif
1055         .set_page_dirty = btree_set_page_dirty,
1056 };
1057
1058 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1059                          u64 parent_transid)
1060 {
1061         struct extent_buffer *buf = NULL;
1062         struct inode *btree_inode = root->fs_info->btree_inode;
1063         int ret = 0;
1064
1065         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1066         if (!buf)
1067                 return 0;
1068         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1069                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1070         free_extent_buffer(buf);
1071         return ret;
1072 }
1073
1074 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1075                          int mirror_num, struct extent_buffer **eb)
1076 {
1077         struct extent_buffer *buf = NULL;
1078         struct inode *btree_inode = root->fs_info->btree_inode;
1079         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1080         int ret;
1081
1082         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1083         if (!buf)
1084                 return 0;
1085
1086         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1087
1088         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1089                                        btree_get_extent, mirror_num);
1090         if (ret) {
1091                 free_extent_buffer(buf);
1092                 return ret;
1093         }
1094
1095         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1096                 free_extent_buffer(buf);
1097                 return -EIO;
1098         } else if (extent_buffer_uptodate(buf)) {
1099                 *eb = buf;
1100         } else {
1101                 free_extent_buffer(buf);
1102         }
1103         return 0;
1104 }
1105
1106 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1107                                             u64 bytenr, u32 blocksize)
1108 {
1109         return find_extent_buffer(root->fs_info, bytenr);
1110 }
1111
1112 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1113                                                  u64 bytenr, u32 blocksize)
1114 {
1115         return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
1116 }
1117
1118
1119 int btrfs_write_tree_block(struct extent_buffer *buf)
1120 {
1121         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1122                                         buf->start + buf->len - 1);
1123 }
1124
1125 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1126 {
1127         return filemap_fdatawait_range(buf->pages[0]->mapping,
1128                                        buf->start, buf->start + buf->len - 1);
1129 }
1130
1131 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1132                                       u32 blocksize, u64 parent_transid)
1133 {
1134         struct extent_buffer *buf = NULL;
1135         int ret;
1136
1137         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1138         if (!buf)
1139                 return NULL;
1140
1141         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1142         if (ret) {
1143                 free_extent_buffer(buf);
1144                 return NULL;
1145         }
1146         return buf;
1147
1148 }
1149
1150 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1151                       struct extent_buffer *buf)
1152 {
1153         struct btrfs_fs_info *fs_info = root->fs_info;
1154
1155         if (btrfs_header_generation(buf) ==
1156             fs_info->running_transaction->transid) {
1157                 btrfs_assert_tree_locked(buf);
1158
1159                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1160                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1161                                              -buf->len,
1162                                              fs_info->dirty_metadata_batch);
1163                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1164                         btrfs_set_lock_blocking(buf);
1165                         clear_extent_buffer_dirty(buf);
1166                 }
1167         }
1168 }
1169
1170 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1171 {
1172         struct btrfs_subvolume_writers *writers;
1173         int ret;
1174
1175         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1176         if (!writers)
1177                 return ERR_PTR(-ENOMEM);
1178
1179         ret = percpu_counter_init(&writers->counter, 0);
1180         if (ret < 0) {
1181                 kfree(writers);
1182                 return ERR_PTR(ret);
1183         }
1184
1185         init_waitqueue_head(&writers->wait);
1186         return writers;
1187 }
1188
1189 static void
1190 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1191 {
1192         percpu_counter_destroy(&writers->counter);
1193         kfree(writers);
1194 }
1195
1196 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1197                          u32 stripesize, struct btrfs_root *root,
1198                          struct btrfs_fs_info *fs_info,
1199                          u64 objectid)
1200 {
1201         root->node = NULL;
1202         root->commit_root = NULL;
1203         root->sectorsize = sectorsize;
1204         root->nodesize = nodesize;
1205         root->leafsize = leafsize;
1206         root->stripesize = stripesize;
1207         root->ref_cows = 0;
1208         root->track_dirty = 0;
1209         root->in_radix = 0;
1210         root->orphan_item_inserted = 0;
1211         root->orphan_cleanup_state = 0;
1212
1213         root->objectid = objectid;
1214         root->last_trans = 0;
1215         root->highest_objectid = 0;
1216         root->nr_delalloc_inodes = 0;
1217         root->nr_ordered_extents = 0;
1218         root->name = NULL;
1219         root->inode_tree = RB_ROOT;
1220         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1221         root->block_rsv = NULL;
1222         root->orphan_block_rsv = NULL;
1223
1224         INIT_LIST_HEAD(&root->dirty_list);
1225         INIT_LIST_HEAD(&root->root_list);
1226         INIT_LIST_HEAD(&root->delalloc_inodes);
1227         INIT_LIST_HEAD(&root->delalloc_root);
1228         INIT_LIST_HEAD(&root->ordered_extents);
1229         INIT_LIST_HEAD(&root->ordered_root);
1230         INIT_LIST_HEAD(&root->logged_list[0]);
1231         INIT_LIST_HEAD(&root->logged_list[1]);
1232         spin_lock_init(&root->orphan_lock);
1233         spin_lock_init(&root->inode_lock);
1234         spin_lock_init(&root->delalloc_lock);
1235         spin_lock_init(&root->ordered_extent_lock);
1236         spin_lock_init(&root->accounting_lock);
1237         spin_lock_init(&root->log_extents_lock[0]);
1238         spin_lock_init(&root->log_extents_lock[1]);
1239         mutex_init(&root->objectid_mutex);
1240         mutex_init(&root->log_mutex);
1241         mutex_init(&root->ordered_extent_mutex);
1242         mutex_init(&root->delalloc_mutex);
1243         init_waitqueue_head(&root->log_writer_wait);
1244         init_waitqueue_head(&root->log_commit_wait[0]);
1245         init_waitqueue_head(&root->log_commit_wait[1]);
1246         INIT_LIST_HEAD(&root->log_ctxs[0]);
1247         INIT_LIST_HEAD(&root->log_ctxs[1]);
1248         atomic_set(&root->log_commit[0], 0);
1249         atomic_set(&root->log_commit[1], 0);
1250         atomic_set(&root->log_writers, 0);
1251         atomic_set(&root->log_batch, 0);
1252         atomic_set(&root->orphan_inodes, 0);
1253         atomic_set(&root->refs, 1);
1254         atomic_set(&root->will_be_snapshoted, 0);
1255         root->log_transid = 0;
1256         root->log_transid_committed = -1;
1257         root->last_log_commit = 0;
1258         if (fs_info)
1259                 extent_io_tree_init(&root->dirty_log_pages,
1260                                      fs_info->btree_inode->i_mapping);
1261
1262         memset(&root->root_key, 0, sizeof(root->root_key));
1263         memset(&root->root_item, 0, sizeof(root->root_item));
1264         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1265         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1266         if (fs_info)
1267                 root->defrag_trans_start = fs_info->generation;
1268         else
1269                 root->defrag_trans_start = 0;
1270         init_completion(&root->kobj_unregister);
1271         root->defrag_running = 0;
1272         root->root_key.objectid = objectid;
1273         root->anon_dev = 0;
1274
1275         spin_lock_init(&root->root_item_lock);
1276 }
1277
1278 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1279 {
1280         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1281         if (root)
1282                 root->fs_info = fs_info;
1283         return root;
1284 }
1285
1286 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1287 /* Should only be used by the testing infrastructure */
1288 struct btrfs_root *btrfs_alloc_dummy_root(void)
1289 {
1290         struct btrfs_root *root;
1291
1292         root = btrfs_alloc_root(NULL);
1293         if (!root)
1294                 return ERR_PTR(-ENOMEM);
1295         __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1296         root->dummy_root = 1;
1297
1298         return root;
1299 }
1300 #endif
1301
1302 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1303                                      struct btrfs_fs_info *fs_info,
1304                                      u64 objectid)
1305 {
1306         struct extent_buffer *leaf;
1307         struct btrfs_root *tree_root = fs_info->tree_root;
1308         struct btrfs_root *root;
1309         struct btrfs_key key;
1310         int ret = 0;
1311         uuid_le uuid;
1312
1313         root = btrfs_alloc_root(fs_info);
1314         if (!root)
1315                 return ERR_PTR(-ENOMEM);
1316
1317         __setup_root(tree_root->nodesize, tree_root->leafsize,
1318                      tree_root->sectorsize, tree_root->stripesize,
1319                      root, fs_info, objectid);
1320         root->root_key.objectid = objectid;
1321         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1322         root->root_key.offset = 0;
1323
1324         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1325                                       0, objectid, NULL, 0, 0, 0);
1326         if (IS_ERR(leaf)) {
1327                 ret = PTR_ERR(leaf);
1328                 leaf = NULL;
1329                 goto fail;
1330         }
1331
1332         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1333         btrfs_set_header_bytenr(leaf, leaf->start);
1334         btrfs_set_header_generation(leaf, trans->transid);
1335         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1336         btrfs_set_header_owner(leaf, objectid);
1337         root->node = leaf;
1338
1339         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1340                             BTRFS_FSID_SIZE);
1341         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1342                             btrfs_header_chunk_tree_uuid(leaf),
1343                             BTRFS_UUID_SIZE);
1344         btrfs_mark_buffer_dirty(leaf);
1345
1346         root->commit_root = btrfs_root_node(root);
1347         root->track_dirty = 1;
1348
1349
1350         root->root_item.flags = 0;
1351         root->root_item.byte_limit = 0;
1352         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1353         btrfs_set_root_generation(&root->root_item, trans->transid);
1354         btrfs_set_root_level(&root->root_item, 0);
1355         btrfs_set_root_refs(&root->root_item, 1);
1356         btrfs_set_root_used(&root->root_item, leaf->len);
1357         btrfs_set_root_last_snapshot(&root->root_item, 0);
1358         btrfs_set_root_dirid(&root->root_item, 0);
1359         uuid_le_gen(&uuid);
1360         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1361         root->root_item.drop_level = 0;
1362
1363         key.objectid = objectid;
1364         key.type = BTRFS_ROOT_ITEM_KEY;
1365         key.offset = 0;
1366         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1367         if (ret)
1368                 goto fail;
1369
1370         btrfs_tree_unlock(leaf);
1371
1372         return root;
1373
1374 fail:
1375         if (leaf) {
1376                 btrfs_tree_unlock(leaf);
1377                 free_extent_buffer(leaf);
1378         }
1379         kfree(root);
1380
1381         return ERR_PTR(ret);
1382 }
1383
1384 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1385                                          struct btrfs_fs_info *fs_info)
1386 {
1387         struct btrfs_root *root;
1388         struct btrfs_root *tree_root = fs_info->tree_root;
1389         struct extent_buffer *leaf;
1390
1391         root = btrfs_alloc_root(fs_info);
1392         if (!root)
1393                 return ERR_PTR(-ENOMEM);
1394
1395         __setup_root(tree_root->nodesize, tree_root->leafsize,
1396                      tree_root->sectorsize, tree_root->stripesize,
1397                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1398
1399         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1400         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1401         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1402         /*
1403          * log trees do not get reference counted because they go away
1404          * before a real commit is actually done.  They do store pointers
1405          * to file data extents, and those reference counts still get
1406          * updated (along with back refs to the log tree).
1407          */
1408         root->ref_cows = 0;
1409
1410         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1411                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1412                                       0, 0, 0);
1413         if (IS_ERR(leaf)) {
1414                 kfree(root);
1415                 return ERR_CAST(leaf);
1416         }
1417
1418         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1419         btrfs_set_header_bytenr(leaf, leaf->start);
1420         btrfs_set_header_generation(leaf, trans->transid);
1421         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1422         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1423         root->node = leaf;
1424
1425         write_extent_buffer(root->node, root->fs_info->fsid,
1426                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1427         btrfs_mark_buffer_dirty(root->node);
1428         btrfs_tree_unlock(root->node);
1429         return root;
1430 }
1431
1432 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1433                              struct btrfs_fs_info *fs_info)
1434 {
1435         struct btrfs_root *log_root;
1436
1437         log_root = alloc_log_tree(trans, fs_info);
1438         if (IS_ERR(log_root))
1439                 return PTR_ERR(log_root);
1440         WARN_ON(fs_info->log_root_tree);
1441         fs_info->log_root_tree = log_root;
1442         return 0;
1443 }
1444
1445 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1446                        struct btrfs_root *root)
1447 {
1448         struct btrfs_root *log_root;
1449         struct btrfs_inode_item *inode_item;
1450
1451         log_root = alloc_log_tree(trans, root->fs_info);
1452         if (IS_ERR(log_root))
1453                 return PTR_ERR(log_root);
1454
1455         log_root->last_trans = trans->transid;
1456         log_root->root_key.offset = root->root_key.objectid;
1457
1458         inode_item = &log_root->root_item.inode;
1459         btrfs_set_stack_inode_generation(inode_item, 1);
1460         btrfs_set_stack_inode_size(inode_item, 3);
1461         btrfs_set_stack_inode_nlink(inode_item, 1);
1462         btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1463         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1464
1465         btrfs_set_root_node(&log_root->root_item, log_root->node);
1466
1467         WARN_ON(root->log_root);
1468         root->log_root = log_root;
1469         root->log_transid = 0;
1470         root->log_transid_committed = -1;
1471         root->last_log_commit = 0;
1472         return 0;
1473 }
1474
1475 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1476                                                struct btrfs_key *key)
1477 {
1478         struct btrfs_root *root;
1479         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1480         struct btrfs_path *path;
1481         u64 generation;
1482         u32 blocksize;
1483         int ret;
1484
1485         path = btrfs_alloc_path();
1486         if (!path)
1487                 return ERR_PTR(-ENOMEM);
1488
1489         root = btrfs_alloc_root(fs_info);
1490         if (!root) {
1491                 ret = -ENOMEM;
1492                 goto alloc_fail;
1493         }
1494
1495         __setup_root(tree_root->nodesize, tree_root->leafsize,
1496                      tree_root->sectorsize, tree_root->stripesize,
1497                      root, fs_info, key->objectid);
1498
1499         ret = btrfs_find_root(tree_root, key, path,
1500                               &root->root_item, &root->root_key);
1501         if (ret) {
1502                 if (ret > 0)
1503                         ret = -ENOENT;
1504                 goto find_fail;
1505         }
1506
1507         generation = btrfs_root_generation(&root->root_item);
1508         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1509         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1510                                      blocksize, generation);
1511         if (!root->node) {
1512                 ret = -ENOMEM;
1513                 goto find_fail;
1514         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1515                 ret = -EIO;
1516                 goto read_fail;
1517         }
1518         root->commit_root = btrfs_root_node(root);
1519 out:
1520         btrfs_free_path(path);
1521         return root;
1522
1523 read_fail:
1524         free_extent_buffer(root->node);
1525 find_fail:
1526         kfree(root);
1527 alloc_fail:
1528         root = ERR_PTR(ret);
1529         goto out;
1530 }
1531
1532 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1533                                       struct btrfs_key *location)
1534 {
1535         struct btrfs_root *root;
1536
1537         root = btrfs_read_tree_root(tree_root, location);
1538         if (IS_ERR(root))
1539                 return root;
1540
1541         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1542                 root->ref_cows = 1;
1543                 btrfs_check_and_init_root_item(&root->root_item);
1544         }
1545
1546         return root;
1547 }
1548
1549 int btrfs_init_fs_root(struct btrfs_root *root)
1550 {
1551         int ret;
1552         struct btrfs_subvolume_writers *writers;
1553
1554         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1555         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1556                                         GFP_NOFS);
1557         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1558                 ret = -ENOMEM;
1559                 goto fail;
1560         }
1561
1562         writers = btrfs_alloc_subvolume_writers();
1563         if (IS_ERR(writers)) {
1564                 ret = PTR_ERR(writers);
1565                 goto fail;
1566         }
1567         root->subv_writers = writers;
1568
1569         btrfs_init_free_ino_ctl(root);
1570         spin_lock_init(&root->cache_lock);
1571         init_waitqueue_head(&root->cache_wait);
1572
1573         ret = get_anon_bdev(&root->anon_dev);
1574         if (ret)
1575                 goto free_writers;
1576         return 0;
1577
1578 free_writers:
1579         btrfs_free_subvolume_writers(root->subv_writers);
1580 fail:
1581         kfree(root->free_ino_ctl);
1582         kfree(root->free_ino_pinned);
1583         return ret;
1584 }
1585
1586 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1587                                                u64 root_id)
1588 {
1589         struct btrfs_root *root;
1590
1591         spin_lock(&fs_info->fs_roots_radix_lock);
1592         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1593                                  (unsigned long)root_id);
1594         spin_unlock(&fs_info->fs_roots_radix_lock);
1595         return root;
1596 }
1597
1598 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1599                          struct btrfs_root *root)
1600 {
1601         int ret;
1602
1603         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1604         if (ret)
1605                 return ret;
1606
1607         spin_lock(&fs_info->fs_roots_radix_lock);
1608         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1609                                 (unsigned long)root->root_key.objectid,
1610                                 root);
1611         if (ret == 0)
1612                 root->in_radix = 1;
1613         spin_unlock(&fs_info->fs_roots_radix_lock);
1614         radix_tree_preload_end();
1615
1616         return ret;
1617 }
1618
1619 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1620                                      struct btrfs_key *location,
1621                                      bool check_ref)
1622 {
1623         struct btrfs_root *root;
1624         int ret;
1625
1626         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1627                 return fs_info->tree_root;
1628         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1629                 return fs_info->extent_root;
1630         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1631                 return fs_info->chunk_root;
1632         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1633                 return fs_info->dev_root;
1634         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1635                 return fs_info->csum_root;
1636         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1637                 return fs_info->quota_root ? fs_info->quota_root :
1638                                              ERR_PTR(-ENOENT);
1639         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1640                 return fs_info->uuid_root ? fs_info->uuid_root :
1641                                             ERR_PTR(-ENOENT);
1642 again:
1643         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1644         if (root) {
1645                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1646                         return ERR_PTR(-ENOENT);
1647                 return root;
1648         }
1649
1650         root = btrfs_read_fs_root(fs_info->tree_root, location);
1651         if (IS_ERR(root))
1652                 return root;
1653
1654         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1655                 ret = -ENOENT;
1656                 goto fail;
1657         }
1658
1659         ret = btrfs_init_fs_root(root);
1660         if (ret)
1661                 goto fail;
1662
1663         ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1664                         location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
1665         if (ret < 0)
1666                 goto fail;
1667         if (ret == 0)
1668                 root->orphan_item_inserted = 1;
1669
1670         ret = btrfs_insert_fs_root(fs_info, root);
1671         if (ret) {
1672                 if (ret == -EEXIST) {
1673                         free_fs_root(root);
1674                         goto again;
1675                 }
1676                 goto fail;
1677         }
1678         return root;
1679 fail:
1680         free_fs_root(root);
1681         return ERR_PTR(ret);
1682 }
1683
1684 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1685 {
1686         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1687         int ret = 0;
1688         struct btrfs_device *device;
1689         struct backing_dev_info *bdi;
1690
1691         rcu_read_lock();
1692         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1693                 if (!device->bdev)
1694                         continue;
1695                 bdi = blk_get_backing_dev_info(device->bdev);
1696                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1697                         ret = 1;
1698                         break;
1699                 }
1700         }
1701         rcu_read_unlock();
1702         return ret;
1703 }
1704
1705 /*
1706  * If this fails, caller must call bdi_destroy() to get rid of the
1707  * bdi again.
1708  */
1709 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1710 {
1711         int err;
1712
1713         bdi->capabilities = BDI_CAP_MAP_COPY;
1714         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1715         if (err)
1716                 return err;
1717
1718         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1719         bdi->congested_fn       = btrfs_congested_fn;
1720         bdi->congested_data     = info;
1721         return 0;
1722 }
1723
1724 /*
1725  * called by the kthread helper functions to finally call the bio end_io
1726  * functions.  This is where read checksum verification actually happens
1727  */
1728 static void end_workqueue_fn(struct btrfs_work *work)
1729 {
1730         struct bio *bio;
1731         struct end_io_wq *end_io_wq;
1732         int error;
1733
1734         end_io_wq = container_of(work, struct end_io_wq, work);
1735         bio = end_io_wq->bio;
1736
1737         error = end_io_wq->error;
1738         bio->bi_private = end_io_wq->private;
1739         bio->bi_end_io = end_io_wq->end_io;
1740         kfree(end_io_wq);
1741         bio_endio(bio, error);
1742 }
1743
1744 static int cleaner_kthread(void *arg)
1745 {
1746         struct btrfs_root *root = arg;
1747         int again;
1748
1749         do {
1750                 again = 0;
1751
1752                 /* Make the cleaner go to sleep early. */
1753                 if (btrfs_need_cleaner_sleep(root))
1754                         goto sleep;
1755
1756                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1757                         goto sleep;
1758
1759                 /*
1760                  * Avoid the problem that we change the status of the fs
1761                  * during the above check and trylock.
1762                  */
1763                 if (btrfs_need_cleaner_sleep(root)) {
1764                         mutex_unlock(&root->fs_info->cleaner_mutex);
1765                         goto sleep;
1766                 }
1767
1768                 btrfs_run_delayed_iputs(root);
1769                 again = btrfs_clean_one_deleted_snapshot(root);
1770                 mutex_unlock(&root->fs_info->cleaner_mutex);
1771
1772                 /*
1773                  * The defragger has dealt with the R/O remount and umount,
1774                  * needn't do anything special here.
1775                  */
1776                 btrfs_run_defrag_inodes(root->fs_info);
1777 sleep:
1778                 if (!try_to_freeze() && !again) {
1779                         set_current_state(TASK_INTERRUPTIBLE);
1780                         if (!kthread_should_stop())
1781                                 schedule();
1782                         __set_current_state(TASK_RUNNING);
1783                 }
1784         } while (!kthread_should_stop());
1785         return 0;
1786 }
1787
1788 static int transaction_kthread(void *arg)
1789 {
1790         struct btrfs_root *root = arg;
1791         struct btrfs_trans_handle *trans;
1792         struct btrfs_transaction *cur;
1793         u64 transid;
1794         unsigned long now;
1795         unsigned long delay;
1796         bool cannot_commit;
1797
1798         do {
1799                 cannot_commit = false;
1800                 delay = HZ * root->fs_info->commit_interval;
1801                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1802
1803                 spin_lock(&root->fs_info->trans_lock);
1804                 cur = root->fs_info->running_transaction;
1805                 if (!cur) {
1806                         spin_unlock(&root->fs_info->trans_lock);
1807                         goto sleep;
1808                 }
1809
1810                 now = get_seconds();
1811                 if (cur->state < TRANS_STATE_BLOCKED &&
1812                     (now < cur->start_time ||
1813                      now - cur->start_time < root->fs_info->commit_interval)) {
1814                         spin_unlock(&root->fs_info->trans_lock);
1815                         delay = HZ * 5;
1816                         goto sleep;
1817                 }
1818                 transid = cur->transid;
1819                 spin_unlock(&root->fs_info->trans_lock);
1820
1821                 /* If the file system is aborted, this will always fail. */
1822                 trans = btrfs_attach_transaction(root);
1823                 if (IS_ERR(trans)) {
1824                         if (PTR_ERR(trans) != -ENOENT)
1825                                 cannot_commit = true;
1826                         goto sleep;
1827                 }
1828                 if (transid == trans->transid) {
1829                         btrfs_commit_transaction(trans, root);
1830                 } else {
1831                         btrfs_end_transaction(trans, root);
1832                 }
1833 sleep:
1834                 wake_up_process(root->fs_info->cleaner_kthread);
1835                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1836
1837                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1838                                       &root->fs_info->fs_state)))
1839                         btrfs_cleanup_transaction(root);
1840                 if (!try_to_freeze()) {
1841                         set_current_state(TASK_INTERRUPTIBLE);
1842                         if (!kthread_should_stop() &&
1843                             (!btrfs_transaction_blocked(root->fs_info) ||
1844                              cannot_commit))
1845                                 schedule_timeout(delay);
1846                         __set_current_state(TASK_RUNNING);
1847                 }
1848         } while (!kthread_should_stop());
1849         return 0;
1850 }
1851
1852 /*
1853  * this will find the highest generation in the array of
1854  * root backups.  The index of the highest array is returned,
1855  * or -1 if we can't find anything.
1856  *
1857  * We check to make sure the array is valid by comparing the
1858  * generation of the latest  root in the array with the generation
1859  * in the super block.  If they don't match we pitch it.
1860  */
1861 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1862 {
1863         u64 cur;
1864         int newest_index = -1;
1865         struct btrfs_root_backup *root_backup;
1866         int i;
1867
1868         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1869                 root_backup = info->super_copy->super_roots + i;
1870                 cur = btrfs_backup_tree_root_gen(root_backup);
1871                 if (cur == newest_gen)
1872                         newest_index = i;
1873         }
1874
1875         /* check to see if we actually wrapped around */
1876         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1877                 root_backup = info->super_copy->super_roots;
1878                 cur = btrfs_backup_tree_root_gen(root_backup);
1879                 if (cur == newest_gen)
1880                         newest_index = 0;
1881         }
1882         return newest_index;
1883 }
1884
1885
1886 /*
1887  * find the oldest backup so we know where to store new entries
1888  * in the backup array.  This will set the backup_root_index
1889  * field in the fs_info struct
1890  */
1891 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1892                                      u64 newest_gen)
1893 {
1894         int newest_index = -1;
1895
1896         newest_index = find_newest_super_backup(info, newest_gen);
1897         /* if there was garbage in there, just move along */
1898         if (newest_index == -1) {
1899                 info->backup_root_index = 0;
1900         } else {
1901                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1902         }
1903 }
1904
1905 /*
1906  * copy all the root pointers into the super backup array.
1907  * this will bump the backup pointer by one when it is
1908  * done
1909  */
1910 static void backup_super_roots(struct btrfs_fs_info *info)
1911 {
1912         int next_backup;
1913         struct btrfs_root_backup *root_backup;
1914         int last_backup;
1915
1916         next_backup = info->backup_root_index;
1917         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1918                 BTRFS_NUM_BACKUP_ROOTS;
1919
1920         /*
1921          * just overwrite the last backup if we're at the same generation
1922          * this happens only at umount
1923          */
1924         root_backup = info->super_for_commit->super_roots + last_backup;
1925         if (btrfs_backup_tree_root_gen(root_backup) ==
1926             btrfs_header_generation(info->tree_root->node))
1927                 next_backup = last_backup;
1928
1929         root_backup = info->super_for_commit->super_roots + next_backup;
1930
1931         /*
1932          * make sure all of our padding and empty slots get zero filled
1933          * regardless of which ones we use today
1934          */
1935         memset(root_backup, 0, sizeof(*root_backup));
1936
1937         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1938
1939         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1940         btrfs_set_backup_tree_root_gen(root_backup,
1941                                btrfs_header_generation(info->tree_root->node));
1942
1943         btrfs_set_backup_tree_root_level(root_backup,
1944                                btrfs_header_level(info->tree_root->node));
1945
1946         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1947         btrfs_set_backup_chunk_root_gen(root_backup,
1948                                btrfs_header_generation(info->chunk_root->node));
1949         btrfs_set_backup_chunk_root_level(root_backup,
1950                                btrfs_header_level(info->chunk_root->node));
1951
1952         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1953         btrfs_set_backup_extent_root_gen(root_backup,
1954                                btrfs_header_generation(info->extent_root->node));
1955         btrfs_set_backup_extent_root_level(root_backup,
1956                                btrfs_header_level(info->extent_root->node));
1957
1958         /*
1959          * we might commit during log recovery, which happens before we set
1960          * the fs_root.  Make sure it is valid before we fill it in.
1961          */
1962         if (info->fs_root && info->fs_root->node) {
1963                 btrfs_set_backup_fs_root(root_backup,
1964                                          info->fs_root->node->start);
1965                 btrfs_set_backup_fs_root_gen(root_backup,
1966                                btrfs_header_generation(info->fs_root->node));
1967                 btrfs_set_backup_fs_root_level(root_backup,
1968                                btrfs_header_level(info->fs_root->node));
1969         }
1970
1971         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1972         btrfs_set_backup_dev_root_gen(root_backup,
1973                                btrfs_header_generation(info->dev_root->node));
1974         btrfs_set_backup_dev_root_level(root_backup,
1975                                        btrfs_header_level(info->dev_root->node));
1976
1977         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1978         btrfs_set_backup_csum_root_gen(root_backup,
1979                                btrfs_header_generation(info->csum_root->node));
1980         btrfs_set_backup_csum_root_level(root_backup,
1981                                btrfs_header_level(info->csum_root->node));
1982
1983         btrfs_set_backup_total_bytes(root_backup,
1984                              btrfs_super_total_bytes(info->super_copy));
1985         btrfs_set_backup_bytes_used(root_backup,
1986                              btrfs_super_bytes_used(info->super_copy));
1987         btrfs_set_backup_num_devices(root_backup,
1988                              btrfs_super_num_devices(info->super_copy));
1989
1990         /*
1991          * if we don't copy this out to the super_copy, it won't get remembered
1992          * for the next commit
1993          */
1994         memcpy(&info->super_copy->super_roots,
1995                &info->super_for_commit->super_roots,
1996                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1997 }
1998
1999 /*
2000  * this copies info out of the root backup array and back into
2001  * the in-memory super block.  It is meant to help iterate through
2002  * the array, so you send it the number of backups you've already
2003  * tried and the last backup index you used.
2004  *
2005  * this returns -1 when it has tried all the backups
2006  */
2007 static noinline int next_root_backup(struct btrfs_fs_info *info,
2008                                      struct btrfs_super_block *super,
2009                                      int *num_backups_tried, int *backup_index)
2010 {
2011         struct btrfs_root_backup *root_backup;
2012         int newest = *backup_index;
2013
2014         if (*num_backups_tried == 0) {
2015                 u64 gen = btrfs_super_generation(super);
2016
2017                 newest = find_newest_super_backup(info, gen);
2018                 if (newest == -1)
2019                         return -1;
2020
2021                 *backup_index = newest;
2022                 *num_backups_tried = 1;
2023         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2024                 /* we've tried all the backups, all done */
2025                 return -1;
2026         } else {
2027                 /* jump to the next oldest backup */
2028                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2029                         BTRFS_NUM_BACKUP_ROOTS;
2030                 *backup_index = newest;
2031                 *num_backups_tried += 1;
2032         }
2033         root_backup = super->super_roots + newest;
2034
2035         btrfs_set_super_generation(super,
2036                                    btrfs_backup_tree_root_gen(root_backup));
2037         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2038         btrfs_set_super_root_level(super,
2039                                    btrfs_backup_tree_root_level(root_backup));
2040         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2041
2042         /*
2043          * fixme: the total bytes and num_devices need to match or we should
2044          * need a fsck
2045          */
2046         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2047         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2048         return 0;
2049 }
2050
2051 /* helper to cleanup workers */
2052 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2053 {
2054         btrfs_destroy_workqueue(fs_info->fixup_workers);
2055         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2056         btrfs_destroy_workqueue(fs_info->workers);
2057         btrfs_destroy_workqueue(fs_info->endio_workers);
2058         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2059         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2060         btrfs_destroy_workqueue(fs_info->rmw_workers);
2061         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2062         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2063         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2064         btrfs_destroy_workqueue(fs_info->submit_workers);
2065         btrfs_destroy_workqueue(fs_info->delayed_workers);
2066         btrfs_destroy_workqueue(fs_info->caching_workers);
2067         btrfs_destroy_workqueue(fs_info->readahead_workers);
2068         btrfs_destroy_workqueue(fs_info->flush_workers);
2069         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2070 }
2071
2072 static void free_root_extent_buffers(struct btrfs_root *root)
2073 {
2074         if (root) {
2075                 free_extent_buffer(root->node);
2076                 free_extent_buffer(root->commit_root);
2077                 root->node = NULL;
2078                 root->commit_root = NULL;
2079         }
2080 }
2081
2082 /* helper to cleanup tree roots */
2083 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2084 {
2085         free_root_extent_buffers(info->tree_root);
2086
2087         free_root_extent_buffers(info->dev_root);
2088         free_root_extent_buffers(info->extent_root);
2089         free_root_extent_buffers(info->csum_root);
2090         free_root_extent_buffers(info->quota_root);
2091         free_root_extent_buffers(info->uuid_root);
2092         if (chunk_root)
2093                 free_root_extent_buffers(info->chunk_root);
2094 }
2095
2096 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2097 {
2098         int ret;
2099         struct btrfs_root *gang[8];
2100         int i;
2101
2102         while (!list_empty(&fs_info->dead_roots)) {
2103                 gang[0] = list_entry(fs_info->dead_roots.next,
2104                                      struct btrfs_root, root_list);
2105                 list_del(&gang[0]->root_list);
2106
2107                 if (gang[0]->in_radix) {
2108                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2109                 } else {
2110                         free_extent_buffer(gang[0]->node);
2111                         free_extent_buffer(gang[0]->commit_root);
2112                         btrfs_put_fs_root(gang[0]);
2113                 }
2114         }
2115
2116         while (1) {
2117                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2118                                              (void **)gang, 0,
2119                                              ARRAY_SIZE(gang));
2120                 if (!ret)
2121                         break;
2122                 for (i = 0; i < ret; i++)
2123                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2124         }
2125
2126         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2127                 btrfs_free_log_root_tree(NULL, fs_info);
2128                 btrfs_destroy_pinned_extent(fs_info->tree_root,
2129                                             fs_info->pinned_extents);
2130         }
2131 }
2132
2133 int open_ctree(struct super_block *sb,
2134                struct btrfs_fs_devices *fs_devices,
2135                char *options)
2136 {
2137         u32 sectorsize;
2138         u32 nodesize;
2139         u32 leafsize;
2140         u32 blocksize;
2141         u32 stripesize;
2142         u64 generation;
2143         u64 features;
2144         struct btrfs_key location;
2145         struct buffer_head *bh;
2146         struct btrfs_super_block *disk_super;
2147         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2148         struct btrfs_root *tree_root;
2149         struct btrfs_root *extent_root;
2150         struct btrfs_root *csum_root;
2151         struct btrfs_root *chunk_root;
2152         struct btrfs_root *dev_root;
2153         struct btrfs_root *quota_root;
2154         struct btrfs_root *uuid_root;
2155         struct btrfs_root *log_tree_root;
2156         int ret;
2157         int err = -EINVAL;
2158         int num_backups_tried = 0;
2159         int backup_index = 0;
2160         int max_active;
2161         int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2162         bool create_uuid_tree;
2163         bool check_uuid_tree;
2164
2165         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2166         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2167         if (!tree_root || !chunk_root) {
2168                 err = -ENOMEM;
2169                 goto fail;
2170         }
2171
2172         ret = init_srcu_struct(&fs_info->subvol_srcu);
2173         if (ret) {
2174                 err = ret;
2175                 goto fail;
2176         }
2177
2178         ret = setup_bdi(fs_info, &fs_info->bdi);
2179         if (ret) {
2180                 err = ret;
2181                 goto fail_srcu;
2182         }
2183
2184         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2185         if (ret) {
2186                 err = ret;
2187                 goto fail_bdi;
2188         }
2189         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2190                                         (1 + ilog2(nr_cpu_ids));
2191
2192         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2193         if (ret) {
2194                 err = ret;
2195                 goto fail_dirty_metadata_bytes;
2196         }
2197
2198         ret = percpu_counter_init(&fs_info->bio_counter, 0);
2199         if (ret) {
2200                 err = ret;
2201                 goto fail_delalloc_bytes;
2202         }
2203
2204         fs_info->btree_inode = new_inode(sb);
2205         if (!fs_info->btree_inode) {
2206                 err = -ENOMEM;
2207                 goto fail_bio_counter;
2208         }
2209
2210         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2211
2212         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2213         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2214         INIT_LIST_HEAD(&fs_info->trans_list);
2215         INIT_LIST_HEAD(&fs_info->dead_roots);
2216         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2217         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2218         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2219         spin_lock_init(&fs_info->delalloc_root_lock);
2220         spin_lock_init(&fs_info->trans_lock);
2221         spin_lock_init(&fs_info->fs_roots_radix_lock);
2222         spin_lock_init(&fs_info->delayed_iput_lock);
2223         spin_lock_init(&fs_info->defrag_inodes_lock);
2224         spin_lock_init(&fs_info->free_chunk_lock);
2225         spin_lock_init(&fs_info->tree_mod_seq_lock);
2226         spin_lock_init(&fs_info->super_lock);
2227         spin_lock_init(&fs_info->buffer_lock);
2228         rwlock_init(&fs_info->tree_mod_log_lock);
2229         mutex_init(&fs_info->reloc_mutex);
2230         mutex_init(&fs_info->delalloc_root_mutex);
2231         seqlock_init(&fs_info->profiles_lock);
2232
2233         init_completion(&fs_info->kobj_unregister);
2234         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2235         INIT_LIST_HEAD(&fs_info->space_info);
2236         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2237         btrfs_mapping_init(&fs_info->mapping_tree);
2238         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2239                              BTRFS_BLOCK_RSV_GLOBAL);
2240         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2241                              BTRFS_BLOCK_RSV_DELALLOC);
2242         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2243         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2244         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2245         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2246                              BTRFS_BLOCK_RSV_DELOPS);
2247         atomic_set(&fs_info->nr_async_submits, 0);
2248         atomic_set(&fs_info->async_delalloc_pages, 0);
2249         atomic_set(&fs_info->async_submit_draining, 0);
2250         atomic_set(&fs_info->nr_async_bios, 0);
2251         atomic_set(&fs_info->defrag_running, 0);
2252         atomic64_set(&fs_info->tree_mod_seq, 0);
2253         fs_info->sb = sb;
2254         fs_info->max_inline = 8192 * 1024;
2255         fs_info->metadata_ratio = 0;
2256         fs_info->defrag_inodes = RB_ROOT;
2257         fs_info->free_chunk_space = 0;
2258         fs_info->tree_mod_log = RB_ROOT;
2259         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2260         fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
2261         /* readahead state */
2262         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2263         spin_lock_init(&fs_info->reada_lock);
2264
2265         fs_info->thread_pool_size = min_t(unsigned long,
2266                                           num_online_cpus() + 2, 8);
2267
2268         INIT_LIST_HEAD(&fs_info->ordered_roots);
2269         spin_lock_init(&fs_info->ordered_root_lock);
2270         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2271                                         GFP_NOFS);
2272         if (!fs_info->delayed_root) {
2273                 err = -ENOMEM;
2274                 goto fail_iput;
2275         }
2276         btrfs_init_delayed_root(fs_info->delayed_root);
2277
2278         mutex_init(&fs_info->scrub_lock);
2279         atomic_set(&fs_info->scrubs_running, 0);
2280         atomic_set(&fs_info->scrub_pause_req, 0);
2281         atomic_set(&fs_info->scrubs_paused, 0);
2282         atomic_set(&fs_info->scrub_cancel_req, 0);
2283         init_waitqueue_head(&fs_info->replace_wait);
2284         init_waitqueue_head(&fs_info->scrub_pause_wait);
2285         fs_info->scrub_workers_refcnt = 0;
2286 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2287         fs_info->check_integrity_print_mask = 0;
2288 #endif
2289
2290         spin_lock_init(&fs_info->balance_lock);
2291         mutex_init(&fs_info->balance_mutex);
2292         atomic_set(&fs_info->balance_running, 0);
2293         atomic_set(&fs_info->balance_pause_req, 0);
2294         atomic_set(&fs_info->balance_cancel_req, 0);
2295         fs_info->balance_ctl = NULL;
2296         init_waitqueue_head(&fs_info->balance_wait_q);
2297
2298         sb->s_blocksize = 4096;
2299         sb->s_blocksize_bits = blksize_bits(4096);
2300         sb->s_bdi = &fs_info->bdi;
2301
2302         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2303         set_nlink(fs_info->btree_inode, 1);
2304         /*
2305          * we set the i_size on the btree inode to the max possible int.
2306          * the real end of the address space is determined by all of
2307          * the devices in the system
2308          */
2309         fs_info->btree_inode->i_size = OFFSET_MAX;
2310         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2311         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2312
2313         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2314         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2315                              fs_info->btree_inode->i_mapping);
2316         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2317         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2318
2319         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2320
2321         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2322         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2323                sizeof(struct btrfs_key));
2324         set_bit(BTRFS_INODE_DUMMY,
2325                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2326         btrfs_insert_inode_hash(fs_info->btree_inode);
2327
2328         spin_lock_init(&fs_info->block_group_cache_lock);
2329         fs_info->block_group_cache_tree = RB_ROOT;
2330         fs_info->first_logical_byte = (u64)-1;
2331
2332         extent_io_tree_init(&fs_info->freed_extents[0],
2333                              fs_info->btree_inode->i_mapping);
2334         extent_io_tree_init(&fs_info->freed_extents[1],
2335                              fs_info->btree_inode->i_mapping);
2336         fs_info->pinned_extents = &fs_info->freed_extents[0];
2337         fs_info->do_barriers = 1;
2338
2339
2340         mutex_init(&fs_info->ordered_operations_mutex);
2341         mutex_init(&fs_info->ordered_extent_flush_mutex);
2342         mutex_init(&fs_info->tree_log_mutex);
2343         mutex_init(&fs_info->chunk_mutex);
2344         mutex_init(&fs_info->transaction_kthread_mutex);
2345         mutex_init(&fs_info->cleaner_mutex);
2346         mutex_init(&fs_info->volume_mutex);
2347         init_rwsem(&fs_info->commit_root_sem);
2348         init_rwsem(&fs_info->cleanup_work_sem);
2349         init_rwsem(&fs_info->subvol_sem);
2350         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2351         fs_info->dev_replace.lock_owner = 0;
2352         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2353         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2354         mutex_init(&fs_info->dev_replace.lock_management_lock);
2355         mutex_init(&fs_info->dev_replace.lock);
2356
2357         spin_lock_init(&fs_info->qgroup_lock);
2358         mutex_init(&fs_info->qgroup_ioctl_lock);
2359         fs_info->qgroup_tree = RB_ROOT;
2360         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2361         fs_info->qgroup_seq = 1;
2362         fs_info->quota_enabled = 0;
2363         fs_info->pending_quota_state = 0;
2364         fs_info->qgroup_ulist = NULL;
2365         mutex_init(&fs_info->qgroup_rescan_lock);
2366
2367         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2368         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2369
2370         init_waitqueue_head(&fs_info->transaction_throttle);
2371         init_waitqueue_head(&fs_info->transaction_wait);
2372         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2373         init_waitqueue_head(&fs_info->async_submit_wait);
2374
2375         ret = btrfs_alloc_stripe_hash_table(fs_info);
2376         if (ret) {
2377                 err = ret;
2378                 goto fail_alloc;
2379         }
2380
2381         __setup_root(4096, 4096, 4096, 4096, tree_root,
2382                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2383
2384         invalidate_bdev(fs_devices->latest_bdev);
2385
2386         /*
2387          * Read super block and check the signature bytes only
2388          */
2389         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2390         if (!bh) {
2391                 err = -EINVAL;
2392                 goto fail_alloc;
2393         }
2394
2395         /*
2396          * We want to check superblock checksum, the type is stored inside.
2397          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2398          */
2399         if (btrfs_check_super_csum(bh->b_data)) {
2400                 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2401                 err = -EINVAL;
2402                 goto fail_alloc;
2403         }
2404
2405         /*
2406          * super_copy is zeroed at allocation time and we never touch the
2407          * following bytes up to INFO_SIZE, the checksum is calculated from
2408          * the whole block of INFO_SIZE
2409          */
2410         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2411         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2412                sizeof(*fs_info->super_for_commit));
2413         brelse(bh);
2414
2415         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2416
2417         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2418         if (ret) {
2419                 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2420                 err = -EINVAL;
2421                 goto fail_alloc;
2422         }
2423
2424         disk_super = fs_info->super_copy;
2425         if (!btrfs_super_root(disk_super))
2426                 goto fail_alloc;
2427
2428         /* check FS state, whether FS is broken. */
2429         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2430                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2431
2432         /*
2433          * run through our array of backup supers and setup
2434          * our ring pointer to the oldest one
2435          */
2436         generation = btrfs_super_generation(disk_super);
2437         find_oldest_super_backup(fs_info, generation);
2438
2439         /*
2440          * In the long term, we'll store the compression type in the super
2441          * block, and it'll be used for per file compression control.
2442          */
2443         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2444
2445         ret = btrfs_parse_options(tree_root, options);
2446         if (ret) {
2447                 err = ret;
2448                 goto fail_alloc;
2449         }
2450
2451         features = btrfs_super_incompat_flags(disk_super) &
2452                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2453         if (features) {
2454                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2455                        "unsupported optional features (%Lx).\n",
2456                        features);
2457                 err = -EINVAL;
2458                 goto fail_alloc;
2459         }
2460
2461         if (btrfs_super_leafsize(disk_super) !=
2462             btrfs_super_nodesize(disk_super)) {
2463                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2464                        "blocksizes don't match.  node %d leaf %d\n",
2465                        btrfs_super_nodesize(disk_super),
2466                        btrfs_super_leafsize(disk_super));
2467                 err = -EINVAL;
2468                 goto fail_alloc;
2469         }
2470         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2471                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2472                        "blocksize (%d) was too large\n",
2473                        btrfs_super_leafsize(disk_super));
2474                 err = -EINVAL;
2475                 goto fail_alloc;
2476         }
2477
2478         features = btrfs_super_incompat_flags(disk_super);
2479         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2480         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2481                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2482
2483         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2484                 printk(KERN_ERR "BTRFS: has skinny extents\n");
2485
2486         /*
2487          * flag our filesystem as having big metadata blocks if
2488          * they are bigger than the page size
2489          */
2490         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2491                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2492                         printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2493                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2494         }
2495
2496         nodesize = btrfs_super_nodesize(disk_super);
2497         leafsize = btrfs_super_leafsize(disk_super);
2498         sectorsize = btrfs_super_sectorsize(disk_super);
2499         stripesize = btrfs_super_stripesize(disk_super);
2500         fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2501         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2502
2503         /*
2504          * mixed block groups end up with duplicate but slightly offset
2505          * extent buffers for the same range.  It leads to corruptions
2506          */
2507         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2508             (sectorsize != leafsize)) {
2509                 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
2510                                 "are not allowed for mixed block groups on %s\n",
2511                                 sb->s_id);
2512                 goto fail_alloc;
2513         }
2514
2515         /*
2516          * Needn't use the lock because there is no other task which will
2517          * update the flag.
2518          */
2519         btrfs_set_super_incompat_flags(disk_super, features);
2520
2521         features = btrfs_super_compat_ro_flags(disk_super) &
2522                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2523         if (!(sb->s_flags & MS_RDONLY) && features) {
2524                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2525                        "unsupported option features (%Lx).\n",
2526                        features);
2527                 err = -EINVAL;
2528                 goto fail_alloc;
2529         }
2530
2531         max_active = fs_info->thread_pool_size;
2532
2533         fs_info->workers =
2534                 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2535                                       max_active, 16);
2536
2537         fs_info->delalloc_workers =
2538                 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2539
2540         fs_info->flush_workers =
2541                 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2542
2543         fs_info->caching_workers =
2544                 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2545
2546         /*
2547          * a higher idle thresh on the submit workers makes it much more
2548          * likely that bios will be send down in a sane order to the
2549          * devices
2550          */
2551         fs_info->submit_workers =
2552                 btrfs_alloc_workqueue("submit", flags,
2553                                       min_t(u64, fs_devices->num_devices,
2554                                             max_active), 64);
2555
2556         fs_info->fixup_workers =
2557                 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2558
2559         /*
2560          * endios are largely parallel and should have a very
2561          * low idle thresh
2562          */
2563         fs_info->endio_workers =
2564                 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2565         fs_info->endio_meta_workers =
2566                 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2567         fs_info->endio_meta_write_workers =
2568                 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2569         fs_info->endio_raid56_workers =
2570                 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2571         fs_info->rmw_workers =
2572                 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2573         fs_info->endio_write_workers =
2574                 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2575         fs_info->endio_freespace_worker =
2576                 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2577         fs_info->delayed_workers =
2578                 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2579         fs_info->readahead_workers =
2580                 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2581         fs_info->qgroup_rescan_workers =
2582                 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2583
2584         if (!(fs_info->workers && fs_info->delalloc_workers &&
2585               fs_info->submit_workers && fs_info->flush_workers &&
2586               fs_info->endio_workers && fs_info->endio_meta_workers &&
2587               fs_info->endio_meta_write_workers &&
2588               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2589               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2590               fs_info->caching_workers && fs_info->readahead_workers &&
2591               fs_info->fixup_workers && fs_info->delayed_workers &&
2592               fs_info->qgroup_rescan_workers)) {
2593                 err = -ENOMEM;
2594                 goto fail_sb_buffer;
2595         }
2596
2597         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2598         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2599                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2600
2601         tree_root->nodesize = nodesize;
2602         tree_root->leafsize = leafsize;
2603         tree_root->sectorsize = sectorsize;
2604         tree_root->stripesize = stripesize;
2605
2606         sb->s_blocksize = sectorsize;
2607         sb->s_blocksize_bits = blksize_bits(sectorsize);
2608
2609         if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2610                 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
2611                 goto fail_sb_buffer;
2612         }
2613
2614         if (sectorsize != PAGE_SIZE) {
2615                 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
2616                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2617                 goto fail_sb_buffer;
2618         }
2619
2620         mutex_lock(&fs_info->chunk_mutex);
2621         ret = btrfs_read_sys_array(tree_root);
2622         mutex_unlock(&fs_info->chunk_mutex);
2623         if (ret) {
2624                 printk(KERN_WARNING "BTRFS: failed to read the system "
2625                        "array on %s\n", sb->s_id);
2626                 goto fail_sb_buffer;
2627         }
2628
2629         blocksize = btrfs_level_size(tree_root,
2630                                      btrfs_super_chunk_root_level(disk_super));
2631         generation = btrfs_super_chunk_root_generation(disk_super);
2632
2633         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2634                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2635
2636         chunk_root->node = read_tree_block(chunk_root,
2637                                            btrfs_super_chunk_root(disk_super),
2638                                            blocksize, generation);
2639         if (!chunk_root->node ||
2640             !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2641                 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
2642                        sb->s_id);
2643                 goto fail_tree_roots;
2644         }
2645         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2646         chunk_root->commit_root = btrfs_root_node(chunk_root);
2647
2648         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2649            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2650
2651         ret = btrfs_read_chunk_tree(chunk_root);
2652         if (ret) {
2653                 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
2654                        sb->s_id);
2655                 goto fail_tree_roots;
2656         }
2657
2658         /*
2659          * keep the device that is marked to be the target device for the
2660          * dev_replace procedure
2661          */
2662         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2663
2664         if (!fs_devices->latest_bdev) {
2665                 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
2666                        sb->s_id);
2667                 goto fail_tree_roots;
2668         }
2669
2670 retry_root_backup:
2671         blocksize = btrfs_level_size(tree_root,
2672                                      btrfs_super_root_level(disk_super));
2673         generation = btrfs_super_generation(disk_super);
2674
2675         tree_root->node = read_tree_block(tree_root,
2676                                           btrfs_super_root(disk_super),
2677                                           blocksize, generation);
2678         if (!tree_root->node ||
2679             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2680                 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2681                        sb->s_id);
2682
2683                 goto recovery_tree_root;
2684         }
2685
2686         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2687         tree_root->commit_root = btrfs_root_node(tree_root);
2688         btrfs_set_root_refs(&tree_root->root_item, 1);
2689
2690         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2691         location.type = BTRFS_ROOT_ITEM_KEY;
2692         location.offset = 0;
2693
2694         extent_root = btrfs_read_tree_root(tree_root, &location);
2695         if (IS_ERR(extent_root)) {
2696                 ret = PTR_ERR(extent_root);
2697                 goto recovery_tree_root;
2698         }
2699         extent_root->track_dirty = 1;
2700         fs_info->extent_root = extent_root;
2701
2702         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2703         dev_root = btrfs_read_tree_root(tree_root, &location);
2704         if (IS_ERR(dev_root)) {
2705                 ret = PTR_ERR(dev_root);
2706                 goto recovery_tree_root;
2707         }
2708         dev_root->track_dirty = 1;
2709         fs_info->dev_root = dev_root;
2710         btrfs_init_devices_late(fs_info);
2711
2712         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2713         csum_root = btrfs_read_tree_root(tree_root, &location);
2714         if (IS_ERR(csum_root)) {
2715                 ret = PTR_ERR(csum_root);
2716                 goto recovery_tree_root;
2717         }
2718         csum_root->track_dirty = 1;
2719         fs_info->csum_root = csum_root;
2720
2721         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2722         quota_root = btrfs_read_tree_root(tree_root, &location);
2723         if (!IS_ERR(quota_root)) {
2724                 quota_root->track_dirty = 1;
2725                 fs_info->quota_enabled = 1;
2726                 fs_info->pending_quota_state = 1;
2727                 fs_info->quota_root = quota_root;
2728         }
2729
2730         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2731         uuid_root = btrfs_read_tree_root(tree_root, &location);
2732         if (IS_ERR(uuid_root)) {
2733                 ret = PTR_ERR(uuid_root);
2734                 if (ret != -ENOENT)
2735                         goto recovery_tree_root;
2736                 create_uuid_tree = true;
2737                 check_uuid_tree = false;
2738         } else {
2739                 uuid_root->track_dirty = 1;
2740                 fs_info->uuid_root = uuid_root;
2741                 create_uuid_tree = false;
2742                 check_uuid_tree =
2743                     generation != btrfs_super_uuid_tree_generation(disk_super);
2744         }
2745
2746         fs_info->generation = generation;
2747         fs_info->last_trans_committed = generation;
2748
2749         ret = btrfs_recover_balance(fs_info);
2750         if (ret) {
2751                 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
2752                 goto fail_block_groups;
2753         }
2754
2755         ret = btrfs_init_dev_stats(fs_info);
2756         if (ret) {
2757                 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2758                        ret);
2759                 goto fail_block_groups;
2760         }
2761
2762         ret = btrfs_init_dev_replace(fs_info);
2763         if (ret) {
2764                 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2765                 goto fail_block_groups;
2766         }
2767
2768         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2769
2770         ret = btrfs_sysfs_add_one(fs_info);
2771         if (ret) {
2772                 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2773                 goto fail_block_groups;
2774         }
2775
2776         ret = btrfs_init_space_info(fs_info);
2777         if (ret) {
2778                 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2779                 goto fail_sysfs;
2780         }
2781
2782         ret = btrfs_read_block_groups(extent_root);
2783         if (ret) {
2784                 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2785                 goto fail_sysfs;
2786         }
2787         fs_info->num_tolerated_disk_barrier_failures =
2788                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2789         if (fs_info->fs_devices->missing_devices >
2790              fs_info->num_tolerated_disk_barrier_failures &&
2791             !(sb->s_flags & MS_RDONLY)) {
2792                 printk(KERN_WARNING "BTRFS: "
2793                         "too many missing devices, writeable mount is not allowed\n");
2794                 goto fail_sysfs;
2795         }
2796
2797         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2798                                                "btrfs-cleaner");
2799         if (IS_ERR(fs_info->cleaner_kthread))
2800                 goto fail_sysfs;
2801
2802         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2803                                                    tree_root,
2804                                                    "btrfs-transaction");
2805         if (IS_ERR(fs_info->transaction_kthread))
2806                 goto fail_cleaner;
2807
2808         if (!btrfs_test_opt(tree_root, SSD) &&
2809             !btrfs_test_opt(tree_root, NOSSD) &&
2810             !fs_info->fs_devices->rotating) {
2811                 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2812                        "mode\n");
2813                 btrfs_set_opt(fs_info->mount_opt, SSD);
2814         }
2815
2816         /* Set the real inode map cache flag */
2817         if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2818                 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2819
2820 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2821         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2822                 ret = btrfsic_mount(tree_root, fs_devices,
2823                                     btrfs_test_opt(tree_root,
2824                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2825                                     1 : 0,
2826                                     fs_info->check_integrity_print_mask);
2827                 if (ret)
2828                         printk(KERN_WARNING "BTRFS: failed to initialize"
2829                                " integrity check module %s\n", sb->s_id);
2830         }
2831 #endif
2832         ret = btrfs_read_qgroup_config(fs_info);
2833         if (ret)
2834                 goto fail_trans_kthread;
2835
2836         /* do not make disk changes in broken FS */
2837         if (btrfs_super_log_root(disk_super) != 0) {
2838                 u64 bytenr = btrfs_super_log_root(disk_super);
2839
2840                 if (fs_devices->rw_devices == 0) {
2841                         printk(KERN_WARNING "BTRFS: log replay required "
2842                                "on RO media\n");
2843                         err = -EIO;
2844                         goto fail_qgroup;
2845                 }
2846                 blocksize =
2847                      btrfs_level_size(tree_root,
2848                                       btrfs_super_log_root_level(disk_super));
2849
2850                 log_tree_root = btrfs_alloc_root(fs_info);
2851                 if (!log_tree_root) {
2852                         err = -ENOMEM;
2853                         goto fail_qgroup;
2854                 }
2855
2856                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2857                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2858
2859                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2860                                                       blocksize,
2861                                                       generation + 1);
2862                 if (!log_tree_root->node ||
2863                     !extent_buffer_uptodate(log_tree_root->node)) {
2864                         printk(KERN_ERR "BTRFS: failed to read log tree\n");
2865                         free_extent_buffer(log_tree_root->node);
2866                         kfree(log_tree_root);
2867                         goto fail_qgroup;
2868                 }
2869                 /* returns with log_tree_root freed on success */
2870                 ret = btrfs_recover_log_trees(log_tree_root);
2871                 if (ret) {
2872                         btrfs_error(tree_root->fs_info, ret,
2873                                     "Failed to recover log tree");
2874                         free_extent_buffer(log_tree_root->node);
2875                         kfree(log_tree_root);
2876                         goto fail_qgroup;
2877                 }
2878
2879                 if (sb->s_flags & MS_RDONLY) {
2880                         ret = btrfs_commit_super(tree_root);
2881                         if (ret)
2882                                 goto fail_qgroup;
2883                 }
2884         }
2885
2886         ret = btrfs_find_orphan_roots(tree_root);
2887         if (ret)
2888                 goto fail_qgroup;
2889
2890         if (!(sb->s_flags & MS_RDONLY)) {
2891                 ret = btrfs_cleanup_fs_roots(fs_info);
2892                 if (ret)
2893                         goto fail_qgroup;
2894
2895                 ret = btrfs_recover_relocation(tree_root);
2896                 if (ret < 0) {
2897                         printk(KERN_WARNING
2898                                "BTRFS: failed to recover relocation\n");
2899                         err = -EINVAL;
2900                         goto fail_qgroup;
2901                 }
2902         }
2903
2904         location.objectid = BTRFS_FS_TREE_OBJECTID;
2905         location.type = BTRFS_ROOT_ITEM_KEY;
2906         location.offset = 0;
2907
2908         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2909         if (IS_ERR(fs_info->fs_root)) {
2910                 err = PTR_ERR(fs_info->fs_root);
2911                 goto fail_qgroup;
2912         }
2913
2914         if (sb->s_flags & MS_RDONLY)
2915                 return 0;
2916
2917         down_read(&fs_info->cleanup_work_sem);
2918         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2919             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2920                 up_read(&fs_info->cleanup_work_sem);
2921                 close_ctree(tree_root);
2922                 return ret;
2923         }
2924         up_read(&fs_info->cleanup_work_sem);
2925
2926         ret = btrfs_resume_balance_async(fs_info);
2927         if (ret) {
2928                 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2929                 close_ctree(tree_root);
2930                 return ret;
2931         }
2932
2933         ret = btrfs_resume_dev_replace_async(fs_info);
2934         if (ret) {
2935                 pr_warn("BTRFS: failed to resume dev_replace\n");
2936                 close_ctree(tree_root);
2937                 return ret;
2938         }
2939
2940         btrfs_qgroup_rescan_resume(fs_info);
2941
2942         if (create_uuid_tree) {
2943                 pr_info("BTRFS: creating UUID tree\n");
2944                 ret = btrfs_create_uuid_tree(fs_info);
2945                 if (ret) {
2946                         pr_warn("BTRFS: failed to create the UUID tree %d\n",
2947                                 ret);
2948                         close_ctree(tree_root);
2949                         return ret;
2950                 }
2951         } else if (check_uuid_tree ||
2952                    btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2953                 pr_info("BTRFS: checking UUID tree\n");
2954                 ret = btrfs_check_uuid_tree(fs_info);
2955                 if (ret) {
2956                         pr_warn("BTRFS: failed to check the UUID tree %d\n",
2957                                 ret);
2958                         close_ctree(tree_root);
2959                         return ret;
2960                 }
2961         } else {
2962                 fs_info->update_uuid_tree_gen = 1;
2963         }
2964
2965         return 0;
2966
2967 fail_qgroup:
2968         btrfs_free_qgroup_config(fs_info);
2969 fail_trans_kthread:
2970         kthread_stop(fs_info->transaction_kthread);
2971         btrfs_cleanup_transaction(fs_info->tree_root);
2972         del_fs_roots(fs_info);
2973 fail_cleaner:
2974         kthread_stop(fs_info->cleaner_kthread);
2975
2976         /*
2977          * make sure we're done with the btree inode before we stop our
2978          * kthreads
2979          */
2980         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2981
2982 fail_sysfs:
2983         btrfs_sysfs_remove_one(fs_info);
2984
2985 fail_block_groups:
2986         btrfs_put_block_group_cache(fs_info);
2987         btrfs_free_block_groups(fs_info);
2988
2989 fail_tree_roots:
2990         free_root_pointers(fs_info, 1);
2991         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2992
2993 fail_sb_buffer:
2994         btrfs_stop_all_workers(fs_info);
2995 fail_alloc:
2996 fail_iput:
2997         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2998
2999         iput(fs_info->btree_inode);
3000 fail_bio_counter:
3001         percpu_counter_destroy(&fs_info->bio_counter);
3002 fail_delalloc_bytes:
3003         percpu_counter_destroy(&fs_info->delalloc_bytes);
3004 fail_dirty_metadata_bytes:
3005         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3006 fail_bdi:
3007         bdi_destroy(&fs_info->bdi);
3008 fail_srcu:
3009         cleanup_srcu_struct(&fs_info->subvol_srcu);
3010 fail:
3011         btrfs_free_stripe_hash_table(fs_info);
3012         btrfs_close_devices(fs_info->fs_devices);
3013         return err;
3014
3015 recovery_tree_root:
3016         if (!btrfs_test_opt(tree_root, RECOVERY))
3017                 goto fail_tree_roots;
3018
3019         free_root_pointers(fs_info, 0);
3020
3021         /* don't use the log in recovery mode, it won't be valid */
3022         btrfs_set_super_log_root(disk_super, 0);
3023
3024         /* we can't trust the free space cache either */
3025         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3026
3027         ret = next_root_backup(fs_info, fs_info->super_copy,
3028                                &num_backups_tried, &backup_index);
3029         if (ret == -1)
3030                 goto fail_block_groups;
3031         goto retry_root_backup;
3032 }
3033
3034 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3035 {
3036         if (uptodate) {
3037                 set_buffer_uptodate(bh);
3038         } else {
3039                 struct btrfs_device *device = (struct btrfs_device *)
3040                         bh->b_private;
3041
3042                 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3043                                           "I/O error on %s\n",
3044                                           rcu_str_deref(device->name));
3045                 /* note, we dont' set_buffer_write_io_error because we have
3046                  * our own ways of dealing with the IO errors
3047                  */
3048                 clear_buffer_uptodate(bh);
3049                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3050         }
3051         unlock_buffer(bh);
3052         put_bh(bh);
3053 }
3054
3055 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3056 {
3057         struct buffer_head *bh;
3058         struct buffer_head *latest = NULL;
3059         struct btrfs_super_block *super;
3060         int i;
3061         u64 transid = 0;
3062         u64 bytenr;
3063
3064         /* we would like to check all the supers, but that would make
3065          * a btrfs mount succeed after a mkfs from a different FS.
3066          * So, we need to add a special mount option to scan for
3067          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3068          */
3069         for (i = 0; i < 1; i++) {
3070                 bytenr = btrfs_sb_offset(i);
3071                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3072                                         i_size_read(bdev->bd_inode))
3073                         break;
3074                 bh = __bread(bdev, bytenr / 4096,
3075                                         BTRFS_SUPER_INFO_SIZE);
3076                 if (!bh)
3077                         continue;
3078
3079                 super = (struct btrfs_super_block *)bh->b_data;
3080                 if (btrfs_super_bytenr(super) != bytenr ||
3081                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3082                         brelse(bh);
3083                         continue;
3084                 }
3085
3086                 if (!latest || btrfs_super_generation(super) > transid) {
3087                         brelse(latest);
3088                         latest = bh;
3089                         transid = btrfs_super_generation(super);
3090                 } else {
3091                         brelse(bh);
3092                 }
3093         }
3094         return latest;
3095 }
3096
3097 /*
3098  * this should be called twice, once with wait == 0 and
3099  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3100  * we write are pinned.
3101  *
3102  * They are released when wait == 1 is done.
3103  * max_mirrors must be the same for both runs, and it indicates how
3104  * many supers on this one device should be written.
3105  *
3106  * max_mirrors == 0 means to write them all.
3107  */
3108 static int write_dev_supers(struct btrfs_device *device,
3109                             struct btrfs_super_block *sb,
3110                             int do_barriers, int wait, int max_mirrors)
3111 {
3112         struct buffer_head *bh;
3113         int i;
3114         int ret;
3115         int errors = 0;
3116         u32 crc;
3117         u64 bytenr;
3118
3119         if (max_mirrors == 0)
3120                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3121
3122         for (i = 0; i < max_mirrors; i++) {
3123                 bytenr = btrfs_sb_offset(i);
3124                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3125                         break;
3126
3127                 if (wait) {
3128                         bh = __find_get_block(device->bdev, bytenr / 4096,
3129                                               BTRFS_SUPER_INFO_SIZE);
3130                         if (!bh) {
3131                                 errors++;
3132                                 continue;
3133                         }
3134                         wait_on_buffer(bh);
3135                         if (!buffer_uptodate(bh))
3136                                 errors++;
3137
3138                         /* drop our reference */
3139                         brelse(bh);
3140
3141                         /* drop the reference from the wait == 0 run */
3142                         brelse(bh);
3143                         continue;
3144                 } else {
3145                         btrfs_set_super_bytenr(sb, bytenr);
3146
3147                         crc = ~(u32)0;
3148                         crc = btrfs_csum_data((char *)sb +
3149                                               BTRFS_CSUM_SIZE, crc,
3150                                               BTRFS_SUPER_INFO_SIZE -
3151                                               BTRFS_CSUM_SIZE);
3152                         btrfs_csum_final(crc, sb->csum);
3153
3154                         /*
3155                          * one reference for us, and we leave it for the
3156                          * caller
3157                          */
3158                         bh = __getblk(device->bdev, bytenr / 4096,
3159                                       BTRFS_SUPER_INFO_SIZE);
3160                         if (!bh) {
3161                                 printk(KERN_ERR "BTRFS: couldn't get super "
3162                                        "buffer head for bytenr %Lu\n", bytenr);
3163                                 errors++;
3164                                 continue;
3165                         }
3166
3167                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3168
3169                         /* one reference for submit_bh */
3170                         get_bh(bh);
3171
3172                         set_buffer_uptodate(bh);
3173                         lock_buffer(bh);
3174                         bh->b_end_io = btrfs_end_buffer_write_sync;
3175                         bh->b_private = device;
3176                 }
3177
3178                 /*
3179                  * we fua the first super.  The others we allow
3180                  * to go down lazy.
3181                  */
3182                 if (i == 0)
3183                         ret = btrfsic_submit_bh(WRITE_FUA, bh);
3184                 else
3185                         ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3186                 if (ret)
3187                         errors++;
3188         }
3189         return errors < i ? 0 : -1;
3190 }
3191
3192 /*
3193  * endio for the write_dev_flush, this will wake anyone waiting
3194  * for the barrier when it is done
3195  */
3196 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3197 {
3198         if (err) {
3199                 if (err == -EOPNOTSUPP)
3200                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3201                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3202         }
3203         if (bio->bi_private)
3204                 complete(bio->bi_private);
3205         bio_put(bio);
3206 }
3207
3208 /*
3209  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3210  * sent down.  With wait == 1, it waits for the previous flush.
3211  *
3212  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3213  * capable
3214  */
3215 static int write_dev_flush(struct btrfs_device *device, int wait)
3216 {
3217         struct bio *bio;
3218         int ret = 0;
3219
3220         if (device->nobarriers)
3221                 return 0;
3222
3223         if (wait) {
3224                 bio = device->flush_bio;
3225                 if (!bio)
3226                         return 0;
3227
3228                 wait_for_completion(&device->flush_wait);
3229
3230                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3231                         printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3232                                       rcu_str_deref(device->name));
3233                         device->nobarriers = 1;
3234                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3235                         ret = -EIO;
3236                         btrfs_dev_stat_inc_and_print(device,
3237                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3238                 }
3239
3240                 /* drop the reference from the wait == 0 run */
3241                 bio_put(bio);
3242                 device->flush_bio = NULL;
3243
3244                 return ret;
3245         }
3246
3247         /*
3248          * one reference for us, and we leave it for the
3249          * caller
3250          */
3251         device->flush_bio = NULL;
3252         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3253         if (!bio)
3254                 return -ENOMEM;
3255
3256         bio->bi_end_io = btrfs_end_empty_barrier;
3257         bio->bi_bdev = device->bdev;
3258         init_completion(&device->flush_wait);
3259         bio->bi_private = &device->flush_wait;
3260         device->flush_bio = bio;
3261
3262         bio_get(bio);
3263         btrfsic_submit_bio(WRITE_FLUSH, bio);
3264
3265         return 0;
3266 }
3267
3268 /*
3269  * send an empty flush down to each device in parallel,
3270  * then wait for them
3271  */
3272 static int barrier_all_devices(struct btrfs_fs_info *info)
3273 {
3274         struct list_head *head;
3275         struct btrfs_device *dev;
3276         int errors_send = 0;
3277         int errors_wait = 0;
3278         int ret;
3279
3280         /* send down all the barriers */
3281         head = &info->fs_devices->devices;
3282         list_for_each_entry_rcu(dev, head, dev_list) {
3283                 if (dev->missing)
3284                         continue;
3285                 if (!dev->bdev) {
3286                         errors_send++;
3287                         continue;
3288                 }
3289                 if (!dev->in_fs_metadata || !dev->writeable)
3290                         continue;
3291
3292                 ret = write_dev_flush(dev, 0);
3293                 if (ret)
3294                         errors_send++;
3295         }
3296
3297         /* wait for all the barriers */
3298         list_for_each_entry_rcu(dev, head, dev_list) {
3299                 if (dev->missing)
3300                         continue;
3301                 if (!dev->bdev) {
3302                         errors_wait++;
3303                         continue;
3304                 }
3305                 if (!dev->in_fs_metadata || !dev->writeable)
3306                         continue;
3307
3308                 ret = write_dev_flush(dev, 1);
3309                 if (ret)
3310                         errors_wait++;
3311         }
3312         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3313             errors_wait > info->num_tolerated_disk_barrier_failures)
3314                 return -EIO;
3315         return 0;
3316 }
3317
3318 int btrfs_calc_num_tolerated_disk_barrier_failures(
3319         struct btrfs_fs_info *fs_info)
3320 {
3321         struct btrfs_ioctl_space_info space;
3322         struct btrfs_space_info *sinfo;
3323         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3324                        BTRFS_BLOCK_GROUP_SYSTEM,
3325                        BTRFS_BLOCK_GROUP_METADATA,
3326                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3327         int num_types = 4;
3328         int i;
3329         int c;
3330         int num_tolerated_disk_barrier_failures =
3331                 (int)fs_info->fs_devices->num_devices;
3332
3333         for (i = 0; i < num_types; i++) {
3334                 struct btrfs_space_info *tmp;
3335
3336                 sinfo = NULL;
3337                 rcu_read_lock();
3338                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3339                         if (tmp->flags == types[i]) {
3340                                 sinfo = tmp;
3341                                 break;
3342                         }
3343                 }
3344                 rcu_read_unlock();
3345
3346                 if (!sinfo)
3347                         continue;
3348
3349                 down_read(&sinfo->groups_sem);
3350                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3351                         if (!list_empty(&sinfo->block_groups[c])) {
3352                                 u64 flags;
3353
3354                                 btrfs_get_block_group_info(
3355                                         &sinfo->block_groups[c], &space);
3356                                 if (space.total_bytes == 0 ||
3357                                     space.used_bytes == 0)
3358                                         continue;
3359                                 flags = space.flags;
3360                                 /*
3361                                  * return
3362                                  * 0: if dup, single or RAID0 is configured for
3363                                  *    any of metadata, system or data, else
3364                                  * 1: if RAID5 is configured, or if RAID1 or
3365                                  *    RAID10 is configured and only two mirrors
3366                                  *    are used, else
3367                                  * 2: if RAID6 is configured, else
3368                                  * num_mirrors - 1: if RAID1 or RAID10 is
3369                                  *                  configured and more than
3370                                  *                  2 mirrors are used.
3371                                  */
3372                                 if (num_tolerated_disk_barrier_failures > 0 &&
3373                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3374                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3375                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3376                                       == 0)))
3377                                         num_tolerated_disk_barrier_failures = 0;
3378                                 else if (num_tolerated_disk_barrier_failures > 1) {
3379                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3380                                             BTRFS_BLOCK_GROUP_RAID5 |
3381                                             BTRFS_BLOCK_GROUP_RAID10)) {
3382                                                 num_tolerated_disk_barrier_failures = 1;
3383                                         } else if (flags &
3384                                                    BTRFS_BLOCK_GROUP_RAID6) {
3385                                                 num_tolerated_disk_barrier_failures = 2;
3386                                         }
3387                                 }
3388                         }
3389                 }
3390                 up_read(&sinfo->groups_sem);
3391         }
3392
3393         return num_tolerated_disk_barrier_failures;
3394 }
3395
3396 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3397 {
3398         struct list_head *head;
3399         struct btrfs_device *dev;
3400         struct btrfs_super_block *sb;
3401         struct btrfs_dev_item *dev_item;
3402         int ret;
3403         int do_barriers;
3404         int max_errors;
3405         int total_errors = 0;
3406         u64 flags;
3407
3408         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3409         backup_super_roots(root->fs_info);
3410
3411         sb = root->fs_info->super_for_commit;
3412         dev_item = &sb->dev_item;
3413
3414         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3415         head = &root->fs_info->fs_devices->devices;
3416         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3417
3418         if (do_barriers) {
3419                 ret = barrier_all_devices(root->fs_info);
3420                 if (ret) {
3421                         mutex_unlock(
3422                                 &root->fs_info->fs_devices->device_list_mutex);
3423                         btrfs_error(root->fs_info, ret,
3424                                     "errors while submitting device barriers.");
3425                         return ret;
3426                 }
3427         }
3428
3429         list_for_each_entry_rcu(dev, head, dev_list) {
3430                 if (!dev->bdev) {
3431                         total_errors++;
3432                         continue;
3433                 }
3434                 if (!dev->in_fs_metadata || !dev->writeable)
3435                         continue;
3436
3437                 btrfs_set_stack_device_generation(dev_item, 0);
3438                 btrfs_set_stack_device_type(dev_item, dev->type);
3439                 btrfs_set_stack_device_id(dev_item, dev->devid);
3440                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3441                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3442                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3443                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3444                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3445                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3446                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3447
3448                 flags = btrfs_super_flags(sb);
3449                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3450
3451                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3452                 if (ret)
3453                         total_errors++;
3454         }
3455         if (total_errors > max_errors) {
3456                 btrfs_err(root->fs_info, "%d errors while writing supers",
3457                        total_errors);
3458                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3459
3460                 /* FUA is masked off if unsupported and can't be the reason */
3461                 btrfs_error(root->fs_info, -EIO,
3462                             "%d errors while writing supers", total_errors);
3463                 return -EIO;
3464         }
3465
3466         total_errors = 0;
3467         list_for_each_entry_rcu(dev, head, dev_list) {
3468                 if (!dev->bdev)
3469                         continue;
3470                 if (!dev->in_fs_metadata || !dev->writeable)
3471                         continue;
3472
3473                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3474                 if (ret)
3475                         total_errors++;
3476         }
3477         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3478         if (total_errors > max_errors) {
3479                 btrfs_error(root->fs_info, -EIO,
3480                             "%d errors while writing supers", total_errors);
3481                 return -EIO;
3482         }
3483         return 0;
3484 }
3485
3486 int write_ctree_super(struct btrfs_trans_handle *trans,
3487                       struct btrfs_root *root, int max_mirrors)
3488 {
3489         return write_all_supers(root, max_mirrors);
3490 }
3491
3492 /* Drop a fs root from the radix tree and free it. */
3493 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3494                                   struct btrfs_root *root)
3495 {
3496         spin_lock(&fs_info->fs_roots_radix_lock);
3497         radix_tree_delete(&fs_info->fs_roots_radix,
3498                           (unsigned long)root->root_key.objectid);
3499         spin_unlock(&fs_info->fs_roots_radix_lock);
3500
3501         if (btrfs_root_refs(&root->root_item) == 0)
3502                 synchronize_srcu(&fs_info->subvol_srcu);
3503
3504         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3505                 btrfs_free_log(NULL, root);
3506
3507         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3508         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3509         free_fs_root(root);
3510 }
3511
3512 static void free_fs_root(struct btrfs_root *root)
3513 {
3514         iput(root->cache_inode);
3515         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3516         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3517         root->orphan_block_rsv = NULL;
3518         if (root->anon_dev)
3519                 free_anon_bdev(root->anon_dev);
3520         if (root->subv_writers)
3521                 btrfs_free_subvolume_writers(root->subv_writers);
3522         free_extent_buffer(root->node);
3523         free_extent_buffer(root->commit_root);
3524         kfree(root->free_ino_ctl);
3525         kfree(root->free_ino_pinned);
3526         kfree(root->name);
3527         btrfs_put_fs_root(root);
3528 }
3529
3530 void btrfs_free_fs_root(struct btrfs_root *root)
3531 {
3532         free_fs_root(root);
3533 }
3534
3535 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3536 {
3537         u64 root_objectid = 0;
3538         struct btrfs_root *gang[8];
3539         int i;
3540         int ret;
3541
3542         while (1) {
3543                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3544                                              (void **)gang, root_objectid,
3545                                              ARRAY_SIZE(gang));
3546                 if (!ret)
3547                         break;
3548
3549                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3550                 for (i = 0; i < ret; i++) {
3551                         int err;
3552
3553                         root_objectid = gang[i]->root_key.objectid;
3554                         err = btrfs_orphan_cleanup(gang[i]);
3555                         if (err)
3556                                 return err;
3557                 }
3558                 root_objectid++;
3559         }
3560         return 0;
3561 }
3562
3563 int btrfs_commit_super(struct btrfs_root *root)
3564 {
3565         struct btrfs_trans_handle *trans;
3566
3567         mutex_lock(&root->fs_info->cleaner_mutex);
3568         btrfs_run_delayed_iputs(root);
3569         mutex_unlock(&root->fs_info->cleaner_mutex);
3570         wake_up_process(root->fs_info->cleaner_kthread);
3571
3572         /* wait until ongoing cleanup work done */
3573         down_write(&root->fs_info->cleanup_work_sem);
3574         up_write(&root->fs_info->cleanup_work_sem);
3575
3576         trans = btrfs_join_transaction(root);
3577         if (IS_ERR(trans))
3578                 return PTR_ERR(trans);
3579         return btrfs_commit_transaction(trans, root);
3580 }
3581
3582 int close_ctree(struct btrfs_root *root)
3583 {
3584         struct btrfs_fs_info *fs_info = root->fs_info;
3585         int ret;
3586
3587         fs_info->closing = 1;
3588         smp_mb();
3589
3590         /* wait for the uuid_scan task to finish */
3591         down(&fs_info->uuid_tree_rescan_sem);
3592         /* avoid complains from lockdep et al., set sem back to initial state */
3593         up(&fs_info->uuid_tree_rescan_sem);
3594
3595         /* pause restriper - we want to resume on mount */
3596         btrfs_pause_balance(fs_info);
3597
3598         btrfs_dev_replace_suspend_for_unmount(fs_info);
3599
3600         btrfs_scrub_cancel(fs_info);
3601
3602         /* wait for any defraggers to finish */
3603         wait_event(fs_info->transaction_wait,
3604                    (atomic_read(&fs_info->defrag_running) == 0));
3605
3606         /* clear out the rbtree of defraggable inodes */
3607         btrfs_cleanup_defrag_inodes(fs_info);
3608
3609         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3610                 ret = btrfs_commit_super(root);
3611                 if (ret)
3612                         btrfs_err(root->fs_info, "commit super ret %d", ret);
3613         }
3614
3615         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3616                 btrfs_error_commit_super(root);
3617
3618         kthread_stop(fs_info->transaction_kthread);
3619         kthread_stop(fs_info->cleaner_kthread);
3620
3621         fs_info->closing = 2;
3622         smp_mb();
3623
3624         btrfs_free_qgroup_config(root->fs_info);
3625
3626         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3627                 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3628                        percpu_counter_sum(&fs_info->delalloc_bytes));
3629         }
3630
3631         btrfs_sysfs_remove_one(fs_info);
3632
3633         del_fs_roots(fs_info);
3634
3635         btrfs_put_block_group_cache(fs_info);
3636
3637         btrfs_free_block_groups(fs_info);
3638
3639         btrfs_stop_all_workers(fs_info);
3640
3641         free_root_pointers(fs_info, 1);
3642
3643         iput(fs_info->btree_inode);
3644
3645 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3646         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3647                 btrfsic_unmount(root, fs_info->fs_devices);
3648 #endif
3649
3650         btrfs_close_devices(fs_info->fs_devices);
3651         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3652
3653         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3654         percpu_counter_destroy(&fs_info->delalloc_bytes);
3655         percpu_counter_destroy(&fs_info->bio_counter);
3656         bdi_destroy(&fs_info->bdi);
3657         cleanup_srcu_struct(&fs_info->subvol_srcu);
3658
3659         btrfs_free_stripe_hash_table(fs_info);
3660
3661         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3662         root->orphan_block_rsv = NULL;
3663
3664         return 0;
3665 }
3666
3667 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3668                           int atomic)
3669 {
3670         int ret;
3671         struct inode *btree_inode = buf->pages[0]->mapping->host;
3672
3673         ret = extent_buffer_uptodate(buf);
3674         if (!ret)
3675                 return ret;
3676
3677         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3678                                     parent_transid, atomic);
3679         if (ret == -EAGAIN)
3680                 return ret;
3681         return !ret;
3682 }
3683
3684 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3685 {
3686         return set_extent_buffer_uptodate(buf);
3687 }
3688
3689 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3690 {
3691         struct btrfs_root *root;
3692         u64 transid = btrfs_header_generation(buf);
3693         int was_dirty;
3694
3695 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3696         /*
3697          * This is a fast path so only do this check if we have sanity tests
3698          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3699          * outside of the sanity tests.
3700          */
3701         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3702                 return;
3703 #endif
3704         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3705         btrfs_assert_tree_locked(buf);
3706         if (transid != root->fs_info->generation)
3707                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3708                        "found %llu running %llu\n",
3709                         buf->start, transid, root->fs_info->generation);
3710         was_dirty = set_extent_buffer_dirty(buf);
3711         if (!was_dirty)
3712                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3713                                      buf->len,
3714                                      root->fs_info->dirty_metadata_batch);
3715 }
3716
3717 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3718                                         int flush_delayed)
3719 {
3720         /*
3721          * looks as though older kernels can get into trouble with
3722          * this code, they end up stuck in balance_dirty_pages forever
3723          */
3724         int ret;
3725
3726         if (current->flags & PF_MEMALLOC)
3727                 return;
3728
3729         if (flush_delayed)
3730                 btrfs_balance_delayed_items(root);
3731
3732         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3733                                      BTRFS_DIRTY_METADATA_THRESH);
3734         if (ret > 0) {
3735                 balance_dirty_pages_ratelimited(
3736                                    root->fs_info->btree_inode->i_mapping);
3737         }
3738         return;
3739 }
3740
3741 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3742 {
3743         __btrfs_btree_balance_dirty(root, 1);
3744 }
3745
3746 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3747 {
3748         __btrfs_btree_balance_dirty(root, 0);
3749 }
3750
3751 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3752 {
3753         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3754         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3755 }
3756
3757 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3758                               int read_only)
3759 {
3760         /*
3761          * Placeholder for checks
3762          */
3763         return 0;
3764 }
3765
3766 static void btrfs_error_commit_super(struct btrfs_root *root)
3767 {
3768         mutex_lock(&root->fs_info->cleaner_mutex);
3769         btrfs_run_delayed_iputs(root);
3770         mutex_unlock(&root->fs_info->cleaner_mutex);
3771
3772         down_write(&root->fs_info->cleanup_work_sem);
3773         up_write(&root->fs_info->cleanup_work_sem);
3774
3775         /* cleanup FS via transaction */
3776         btrfs_cleanup_transaction(root);
3777 }
3778
3779 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3780                                              struct btrfs_root *root)
3781 {
3782         struct btrfs_inode *btrfs_inode;
3783         struct list_head splice;
3784
3785         INIT_LIST_HEAD(&splice);
3786
3787         mutex_lock(&root->fs_info->ordered_operations_mutex);
3788         spin_lock(&root->fs_info->ordered_root_lock);
3789
3790         list_splice_init(&t->ordered_operations, &splice);
3791         while (!list_empty(&splice)) {
3792                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3793                                          ordered_operations);
3794
3795                 list_del_init(&btrfs_inode->ordered_operations);
3796                 spin_unlock(&root->fs_info->ordered_root_lock);
3797
3798                 btrfs_invalidate_inodes(btrfs_inode->root);
3799
3800                 spin_lock(&root->fs_info->ordered_root_lock);
3801         }
3802
3803         spin_unlock(&root->fs_info->ordered_root_lock);
3804         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3805 }
3806
3807 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3808 {
3809         struct btrfs_ordered_extent *ordered;
3810
3811         spin_lock(&root->ordered_extent_lock);
3812         /*
3813          * This will just short circuit the ordered completion stuff which will
3814          * make sure the ordered extent gets properly cleaned up.
3815          */
3816         list_for_each_entry(ordered, &root->ordered_extents,
3817                             root_extent_list)
3818                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3819         spin_unlock(&root->ordered_extent_lock);
3820 }
3821
3822 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3823 {
3824         struct btrfs_root *root;
3825         struct list_head splice;
3826
3827         INIT_LIST_HEAD(&splice);
3828
3829         spin_lock(&fs_info->ordered_root_lock);
3830         list_splice_init(&fs_info->ordered_roots, &splice);
3831         while (!list_empty(&splice)) {
3832                 root = list_first_entry(&splice, struct btrfs_root,
3833                                         ordered_root);
3834                 list_move_tail(&root->ordered_root,
3835                                &fs_info->ordered_roots);
3836
3837                 spin_unlock(&fs_info->ordered_root_lock);
3838                 btrfs_destroy_ordered_extents(root);
3839
3840                 cond_resched();
3841                 spin_lock(&fs_info->ordered_root_lock);
3842         }
3843         spin_unlock(&fs_info->ordered_root_lock);
3844 }
3845
3846 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3847                                       struct btrfs_root *root)
3848 {
3849         struct rb_node *node;
3850         struct btrfs_delayed_ref_root *delayed_refs;
3851         struct btrfs_delayed_ref_node *ref;
3852         int ret = 0;
3853
3854         delayed_refs = &trans->delayed_refs;
3855
3856         spin_lock(&delayed_refs->lock);
3857         if (atomic_read(&delayed_refs->num_entries) == 0) {
3858                 spin_unlock(&delayed_refs->lock);
3859                 btrfs_info(root->fs_info, "delayed_refs has NO entry");
3860                 return ret;
3861         }
3862
3863         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3864                 struct btrfs_delayed_ref_head *head;
3865                 bool pin_bytes = false;
3866
3867                 head = rb_entry(node, struct btrfs_delayed_ref_head,
3868                                 href_node);
3869                 if (!mutex_trylock(&head->mutex)) {
3870                         atomic_inc(&head->node.refs);
3871                         spin_unlock(&delayed_refs->lock);
3872
3873                         mutex_lock(&head->mutex);
3874                         mutex_unlock(&head->mutex);
3875                         btrfs_put_delayed_ref(&head->node);
3876                         spin_lock(&delayed_refs->lock);
3877                         continue;
3878                 }
3879                 spin_lock(&head->lock);
3880                 while ((node = rb_first(&head->ref_root)) != NULL) {
3881                         ref = rb_entry(node, struct btrfs_delayed_ref_node,
3882                                        rb_node);
3883                         ref->in_tree = 0;
3884                         rb_erase(&ref->rb_node, &head->ref_root);
3885                         atomic_dec(&delayed_refs->num_entries);
3886                         btrfs_put_delayed_ref(ref);
3887                 }
3888                 if (head->must_insert_reserved)
3889                         pin_bytes = true;
3890                 btrfs_free_delayed_extent_op(head->extent_op);
3891                 delayed_refs->num_heads--;
3892                 if (head->processing == 0)
3893                         delayed_refs->num_heads_ready--;
3894                 atomic_dec(&delayed_refs->num_entries);
3895                 head->node.in_tree = 0;
3896                 rb_erase(&head->href_node, &delayed_refs->href_root);
3897                 spin_unlock(&head->lock);
3898                 spin_unlock(&delayed_refs->lock);
3899                 mutex_unlock(&head->mutex);
3900
3901                 if (pin_bytes)
3902                         btrfs_pin_extent(root, head->node.bytenr,
3903                                          head->node.num_bytes, 1);
3904                 btrfs_put_delayed_ref(&head->node);
3905                 cond_resched();
3906                 spin_lock(&delayed_refs->lock);
3907         }
3908
3909         spin_unlock(&delayed_refs->lock);
3910
3911         return ret;
3912 }
3913
3914 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3915 {
3916         struct btrfs_inode *btrfs_inode;
3917         struct list_head splice;
3918
3919         INIT_LIST_HEAD(&splice);
3920
3921         spin_lock(&root->delalloc_lock);
3922         list_splice_init(&root->delalloc_inodes, &splice);
3923
3924         while (!list_empty(&splice)) {
3925                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3926                                                delalloc_inodes);
3927
3928                 list_del_init(&btrfs_inode->delalloc_inodes);
3929                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3930                           &btrfs_inode->runtime_flags);
3931                 spin_unlock(&root->delalloc_lock);
3932
3933                 btrfs_invalidate_inodes(btrfs_inode->root);
3934
3935                 spin_lock(&root->delalloc_lock);
3936         }
3937
3938         spin_unlock(&root->delalloc_lock);
3939 }
3940
3941 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3942 {
3943         struct btrfs_root *root;
3944         struct list_head splice;
3945
3946         INIT_LIST_HEAD(&splice);
3947
3948         spin_lock(&fs_info->delalloc_root_lock);
3949         list_splice_init(&fs_info->delalloc_roots, &splice);
3950         while (!list_empty(&splice)) {
3951                 root = list_first_entry(&splice, struct btrfs_root,
3952                                          delalloc_root);
3953                 list_del_init(&root->delalloc_root);
3954                 root = btrfs_grab_fs_root(root);
3955                 BUG_ON(!root);
3956                 spin_unlock(&fs_info->delalloc_root_lock);
3957
3958                 btrfs_destroy_delalloc_inodes(root);
3959                 btrfs_put_fs_root(root);
3960
3961                 spin_lock(&fs_info->delalloc_root_lock);
3962         }
3963         spin_unlock(&fs_info->delalloc_root_lock);
3964 }
3965
3966 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3967                                         struct extent_io_tree *dirty_pages,
3968                                         int mark)
3969 {
3970         int ret;
3971         struct extent_buffer *eb;
3972         u64 start = 0;
3973         u64 end;
3974
3975         while (1) {
3976                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3977                                             mark, NULL);
3978                 if (ret)
3979                         break;
3980
3981                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3982                 while (start <= end) {
3983                         eb = btrfs_find_tree_block(root, start,
3984                                                    root->leafsize);
3985                         start += root->leafsize;
3986                         if (!eb)
3987                                 continue;
3988                         wait_on_extent_buffer_writeback(eb);
3989
3990                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3991                                                &eb->bflags))
3992                                 clear_extent_buffer_dirty(eb);
3993                         free_extent_buffer_stale(eb);
3994                 }
3995         }
3996
3997         return ret;
3998 }
3999
4000 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4001                                        struct extent_io_tree *pinned_extents)
4002 {
4003         struct extent_io_tree *unpin;
4004         u64 start;
4005         u64 end;
4006         int ret;
4007         bool loop = true;
4008
4009         unpin = pinned_extents;
4010 again:
4011         while (1) {
4012                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4013                                             EXTENT_DIRTY, NULL);
4014                 if (ret)
4015                         break;
4016
4017                 /* opt_discard */
4018                 if (btrfs_test_opt(root, DISCARD))
4019                         ret = btrfs_error_discard_extent(root, start,
4020                                                          end + 1 - start,
4021                                                          NULL);
4022
4023                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4024                 btrfs_error_unpin_extent_range(root, start, end);
4025                 cond_resched();
4026         }
4027
4028         if (loop) {
4029                 if (unpin == &root->fs_info->freed_extents[0])
4030                         unpin = &root->fs_info->freed_extents[1];
4031                 else
4032                         unpin = &root->fs_info->freed_extents[0];
4033                 loop = false;
4034                 goto again;
4035         }
4036
4037         return 0;
4038 }
4039
4040 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4041                                    struct btrfs_root *root)
4042 {
4043         btrfs_destroy_ordered_operations(cur_trans, root);
4044
4045         btrfs_destroy_delayed_refs(cur_trans, root);
4046
4047         cur_trans->state = TRANS_STATE_COMMIT_START;
4048         wake_up(&root->fs_info->transaction_blocked_wait);
4049
4050         cur_trans->state = TRANS_STATE_UNBLOCKED;
4051         wake_up(&root->fs_info->transaction_wait);
4052
4053         btrfs_destroy_delayed_inodes(root);
4054         btrfs_assert_delayed_root_empty(root);
4055
4056         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4057                                      EXTENT_DIRTY);
4058         btrfs_destroy_pinned_extent(root,
4059                                     root->fs_info->pinned_extents);
4060
4061         cur_trans->state =TRANS_STATE_COMPLETED;
4062         wake_up(&cur_trans->commit_wait);
4063
4064         /*
4065         memset(cur_trans, 0, sizeof(*cur_trans));
4066         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4067         */
4068 }
4069
4070 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4071 {
4072         struct btrfs_transaction *t;
4073
4074         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4075
4076         spin_lock(&root->fs_info->trans_lock);
4077         while (!list_empty(&root->fs_info->trans_list)) {
4078                 t = list_first_entry(&root->fs_info->trans_list,
4079                                      struct btrfs_transaction, list);
4080                 if (t->state >= TRANS_STATE_COMMIT_START) {
4081                         atomic_inc(&t->use_count);
4082                         spin_unlock(&root->fs_info->trans_lock);
4083                         btrfs_wait_for_commit(root, t->transid);
4084                         btrfs_put_transaction(t);
4085                         spin_lock(&root->fs_info->trans_lock);
4086                         continue;
4087                 }
4088                 if (t == root->fs_info->running_transaction) {
4089                         t->state = TRANS_STATE_COMMIT_DOING;
4090                         spin_unlock(&root->fs_info->trans_lock);
4091                         /*
4092                          * We wait for 0 num_writers since we don't hold a trans
4093                          * handle open currently for this transaction.
4094                          */
4095                         wait_event(t->writer_wait,
4096                                    atomic_read(&t->num_writers) == 0);
4097                 } else {
4098                         spin_unlock(&root->fs_info->trans_lock);
4099                 }
4100                 btrfs_cleanup_one_transaction(t, root);
4101
4102                 spin_lock(&root->fs_info->trans_lock);
4103                 if (t == root->fs_info->running_transaction)
4104                         root->fs_info->running_transaction = NULL;
4105                 list_del_init(&t->list);
4106                 spin_unlock(&root->fs_info->trans_lock);
4107
4108                 btrfs_put_transaction(t);
4109                 trace_btrfs_transaction_commit(root);
4110                 spin_lock(&root->fs_info->trans_lock);
4111         }
4112         spin_unlock(&root->fs_info->trans_lock);
4113         btrfs_destroy_all_ordered_extents(root->fs_info);
4114         btrfs_destroy_delayed_inodes(root);
4115         btrfs_assert_delayed_root_empty(root);
4116         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4117         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4118         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4119
4120         return 0;
4121 }
4122
4123 static struct extent_io_ops btree_extent_io_ops = {
4124         .readpage_end_io_hook = btree_readpage_end_io_hook,
4125         .readpage_io_failed_hook = btree_io_failed_hook,
4126         .submit_bio_hook = btree_submit_bio_hook,
4127         /* note we're sharing with inode.c for the merge bio hook */
4128         .merge_bio_hook = btrfs_merge_bio_hook,
4129 };