Btrfs: add sanity tests for new qgroup accounting code
[linux-2.6-block.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 #include "sysfs.h"
52 #include "qgroup.h"
53
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57
58 static struct extent_io_ops btree_extent_io_ops;
59 static void end_workqueue_fn(struct btrfs_work *work);
60 static void free_fs_root(struct btrfs_root *root);
61 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
62                                     int read_only);
63 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
64                                              struct btrfs_root *root);
65 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
66 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
67                                       struct btrfs_root *root);
68 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
69 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
70                                         struct extent_io_tree *dirty_pages,
71                                         int mark);
72 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
73                                        struct extent_io_tree *pinned_extents);
74 static int btrfs_cleanup_transaction(struct btrfs_root *root);
75 static void btrfs_error_commit_super(struct btrfs_root *root);
76
77 /*
78  * end_io_wq structs are used to do processing in task context when an IO is
79  * complete.  This is used during reads to verify checksums, and it is used
80  * by writes to insert metadata for new file extents after IO is complete.
81  */
82 struct end_io_wq {
83         struct bio *bio;
84         bio_end_io_t *end_io;
85         void *private;
86         struct btrfs_fs_info *info;
87         int error;
88         int metadata;
89         struct list_head list;
90         struct btrfs_work work;
91 };
92
93 /*
94  * async submit bios are used to offload expensive checksumming
95  * onto the worker threads.  They checksum file and metadata bios
96  * just before they are sent down the IO stack.
97  */
98 struct async_submit_bio {
99         struct inode *inode;
100         struct bio *bio;
101         struct list_head list;
102         extent_submit_bio_hook_t *submit_bio_start;
103         extent_submit_bio_hook_t *submit_bio_done;
104         int rw;
105         int mirror_num;
106         unsigned long bio_flags;
107         /*
108          * bio_offset is optional, can be used if the pages in the bio
109          * can't tell us where in the file the bio should go
110          */
111         u64 bio_offset;
112         struct btrfs_work work;
113         int error;
114 };
115
116 /*
117  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
118  * eb, the lockdep key is determined by the btrfs_root it belongs to and
119  * the level the eb occupies in the tree.
120  *
121  * Different roots are used for different purposes and may nest inside each
122  * other and they require separate keysets.  As lockdep keys should be
123  * static, assign keysets according to the purpose of the root as indicated
124  * by btrfs_root->objectid.  This ensures that all special purpose roots
125  * have separate keysets.
126  *
127  * Lock-nesting across peer nodes is always done with the immediate parent
128  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
129  * subclass to avoid triggering lockdep warning in such cases.
130  *
131  * The key is set by the readpage_end_io_hook after the buffer has passed
132  * csum validation but before the pages are unlocked.  It is also set by
133  * btrfs_init_new_buffer on freshly allocated blocks.
134  *
135  * We also add a check to make sure the highest level of the tree is the
136  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
137  * needs update as well.
138  */
139 #ifdef CONFIG_DEBUG_LOCK_ALLOC
140 # if BTRFS_MAX_LEVEL != 8
141 #  error
142 # endif
143
144 static struct btrfs_lockdep_keyset {
145         u64                     id;             /* root objectid */
146         const char              *name_stem;     /* lock name stem */
147         char                    names[BTRFS_MAX_LEVEL + 1][20];
148         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
149 } btrfs_lockdep_keysets[] = {
150         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
151         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
152         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
153         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
154         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
155         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
156         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
157         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
158         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
159         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
160         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
161         { .id = 0,                              .name_stem = "tree"     },
162 };
163
164 void __init btrfs_init_lockdep(void)
165 {
166         int i, j;
167
168         /* initialize lockdep class names */
169         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
170                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
171
172                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
173                         snprintf(ks->names[j], sizeof(ks->names[j]),
174                                  "btrfs-%s-%02d", ks->name_stem, j);
175         }
176 }
177
178 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
179                                     int level)
180 {
181         struct btrfs_lockdep_keyset *ks;
182
183         BUG_ON(level >= ARRAY_SIZE(ks->keys));
184
185         /* find the matching keyset, id 0 is the default entry */
186         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
187                 if (ks->id == objectid)
188                         break;
189
190         lockdep_set_class_and_name(&eb->lock,
191                                    &ks->keys[level], ks->names[level]);
192 }
193
194 #endif
195
196 /*
197  * extents on the btree inode are pretty simple, there's one extent
198  * that covers the entire device
199  */
200 static struct extent_map *btree_get_extent(struct inode *inode,
201                 struct page *page, size_t pg_offset, u64 start, u64 len,
202                 int create)
203 {
204         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
205         struct extent_map *em;
206         int ret;
207
208         read_lock(&em_tree->lock);
209         em = lookup_extent_mapping(em_tree, start, len);
210         if (em) {
211                 em->bdev =
212                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
213                 read_unlock(&em_tree->lock);
214                 goto out;
215         }
216         read_unlock(&em_tree->lock);
217
218         em = alloc_extent_map();
219         if (!em) {
220                 em = ERR_PTR(-ENOMEM);
221                 goto out;
222         }
223         em->start = 0;
224         em->len = (u64)-1;
225         em->block_len = (u64)-1;
226         em->block_start = 0;
227         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
228
229         write_lock(&em_tree->lock);
230         ret = add_extent_mapping(em_tree, em, 0);
231         if (ret == -EEXIST) {
232                 free_extent_map(em);
233                 em = lookup_extent_mapping(em_tree, start, len);
234                 if (!em)
235                         em = ERR_PTR(-EIO);
236         } else if (ret) {
237                 free_extent_map(em);
238                 em = ERR_PTR(ret);
239         }
240         write_unlock(&em_tree->lock);
241
242 out:
243         return em;
244 }
245
246 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
247 {
248         return btrfs_crc32c(seed, data, len);
249 }
250
251 void btrfs_csum_final(u32 crc, char *result)
252 {
253         put_unaligned_le32(~crc, result);
254 }
255
256 /*
257  * compute the csum for a btree block, and either verify it or write it
258  * into the csum field of the block.
259  */
260 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
261                            int verify)
262 {
263         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
264         char *result = NULL;
265         unsigned long len;
266         unsigned long cur_len;
267         unsigned long offset = BTRFS_CSUM_SIZE;
268         char *kaddr;
269         unsigned long map_start;
270         unsigned long map_len;
271         int err;
272         u32 crc = ~(u32)0;
273         unsigned long inline_result;
274
275         len = buf->len - offset;
276         while (len > 0) {
277                 err = map_private_extent_buffer(buf, offset, 32,
278                                         &kaddr, &map_start, &map_len);
279                 if (err)
280                         return 1;
281                 cur_len = min(len, map_len - (offset - map_start));
282                 crc = btrfs_csum_data(kaddr + offset - map_start,
283                                       crc, cur_len);
284                 len -= cur_len;
285                 offset += cur_len;
286         }
287         if (csum_size > sizeof(inline_result)) {
288                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
289                 if (!result)
290                         return 1;
291         } else {
292                 result = (char *)&inline_result;
293         }
294
295         btrfs_csum_final(crc, result);
296
297         if (verify) {
298                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
299                         u32 val;
300                         u32 found = 0;
301                         memcpy(&found, result, csum_size);
302
303                         read_extent_buffer(buf, &val, 0, csum_size);
304                         printk_ratelimited(KERN_INFO
305                                 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
306                                 "level %d\n",
307                                 root->fs_info->sb->s_id, buf->start,
308                                 val, found, btrfs_header_level(buf));
309                         if (result != (char *)&inline_result)
310                                 kfree(result);
311                         return 1;
312                 }
313         } else {
314                 write_extent_buffer(buf, result, 0, csum_size);
315         }
316         if (result != (char *)&inline_result)
317                 kfree(result);
318         return 0;
319 }
320
321 /*
322  * we can't consider a given block up to date unless the transid of the
323  * block matches the transid in the parent node's pointer.  This is how we
324  * detect blocks that either didn't get written at all or got written
325  * in the wrong place.
326  */
327 static int verify_parent_transid(struct extent_io_tree *io_tree,
328                                  struct extent_buffer *eb, u64 parent_transid,
329                                  int atomic)
330 {
331         struct extent_state *cached_state = NULL;
332         int ret;
333         bool need_lock = (current->journal_info ==
334                           (void *)BTRFS_SEND_TRANS_STUB);
335
336         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
337                 return 0;
338
339         if (atomic)
340                 return -EAGAIN;
341
342         if (need_lock) {
343                 btrfs_tree_read_lock(eb);
344                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
345         }
346
347         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
348                          0, &cached_state);
349         if (extent_buffer_uptodate(eb) &&
350             btrfs_header_generation(eb) == parent_transid) {
351                 ret = 0;
352                 goto out;
353         }
354         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
355                        "found %llu\n",
356                        eb->start, parent_transid, btrfs_header_generation(eb));
357         ret = 1;
358
359         /*
360          * Things reading via commit roots that don't have normal protection,
361          * like send, can have a really old block in cache that may point at a
362          * block that has been free'd and re-allocated.  So don't clear uptodate
363          * if we find an eb that is under IO (dirty/writeback) because we could
364          * end up reading in the stale data and then writing it back out and
365          * making everybody very sad.
366          */
367         if (!extent_buffer_under_io(eb))
368                 clear_extent_buffer_uptodate(eb);
369 out:
370         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
371                              &cached_state, GFP_NOFS);
372         btrfs_tree_read_unlock_blocking(eb);
373         return ret;
374 }
375
376 /*
377  * Return 0 if the superblock checksum type matches the checksum value of that
378  * algorithm. Pass the raw disk superblock data.
379  */
380 static int btrfs_check_super_csum(char *raw_disk_sb)
381 {
382         struct btrfs_super_block *disk_sb =
383                 (struct btrfs_super_block *)raw_disk_sb;
384         u16 csum_type = btrfs_super_csum_type(disk_sb);
385         int ret = 0;
386
387         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
388                 u32 crc = ~(u32)0;
389                 const int csum_size = sizeof(crc);
390                 char result[csum_size];
391
392                 /*
393                  * The super_block structure does not span the whole
394                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
395                  * is filled with zeros and is included in the checkum.
396                  */
397                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
398                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
399                 btrfs_csum_final(crc, result);
400
401                 if (memcmp(raw_disk_sb, result, csum_size))
402                         ret = 1;
403
404                 if (ret && btrfs_super_generation(disk_sb) < 10) {
405                         printk(KERN_WARNING
406                                 "BTRFS: super block crcs don't match, older mkfs detected\n");
407                         ret = 0;
408                 }
409         }
410
411         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
412                 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
413                                 csum_type);
414                 ret = 1;
415         }
416
417         return ret;
418 }
419
420 /*
421  * helper to read a given tree block, doing retries as required when
422  * the checksums don't match and we have alternate mirrors to try.
423  */
424 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
425                                           struct extent_buffer *eb,
426                                           u64 start, u64 parent_transid)
427 {
428         struct extent_io_tree *io_tree;
429         int failed = 0;
430         int ret;
431         int num_copies = 0;
432         int mirror_num = 0;
433         int failed_mirror = 0;
434
435         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
436         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
437         while (1) {
438                 ret = read_extent_buffer_pages(io_tree, eb, start,
439                                                WAIT_COMPLETE,
440                                                btree_get_extent, mirror_num);
441                 if (!ret) {
442                         if (!verify_parent_transid(io_tree, eb,
443                                                    parent_transid, 0))
444                                 break;
445                         else
446                                 ret = -EIO;
447                 }
448
449                 /*
450                  * This buffer's crc is fine, but its contents are corrupted, so
451                  * there is no reason to read the other copies, they won't be
452                  * any less wrong.
453                  */
454                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
455                         break;
456
457                 num_copies = btrfs_num_copies(root->fs_info,
458                                               eb->start, eb->len);
459                 if (num_copies == 1)
460                         break;
461
462                 if (!failed_mirror) {
463                         failed = 1;
464                         failed_mirror = eb->read_mirror;
465                 }
466
467                 mirror_num++;
468                 if (mirror_num == failed_mirror)
469                         mirror_num++;
470
471                 if (mirror_num > num_copies)
472                         break;
473         }
474
475         if (failed && !ret && failed_mirror)
476                 repair_eb_io_failure(root, eb, failed_mirror);
477
478         return ret;
479 }
480
481 /*
482  * checksum a dirty tree block before IO.  This has extra checks to make sure
483  * we only fill in the checksum field in the first page of a multi-page block
484  */
485
486 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
487 {
488         u64 start = page_offset(page);
489         u64 found_start;
490         struct extent_buffer *eb;
491
492         eb = (struct extent_buffer *)page->private;
493         if (page != eb->pages[0])
494                 return 0;
495         found_start = btrfs_header_bytenr(eb);
496         if (WARN_ON(found_start != start || !PageUptodate(page)))
497                 return 0;
498         csum_tree_block(root, eb, 0);
499         return 0;
500 }
501
502 static int check_tree_block_fsid(struct btrfs_root *root,
503                                  struct extent_buffer *eb)
504 {
505         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
506         u8 fsid[BTRFS_UUID_SIZE];
507         int ret = 1;
508
509         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
510         while (fs_devices) {
511                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
512                         ret = 0;
513                         break;
514                 }
515                 fs_devices = fs_devices->seed;
516         }
517         return ret;
518 }
519
520 #define CORRUPT(reason, eb, root, slot)                         \
521         btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"       \
522                    "root=%llu, slot=%d", reason,                        \
523                btrfs_header_bytenr(eb), root->objectid, slot)
524
525 static noinline int check_leaf(struct btrfs_root *root,
526                                struct extent_buffer *leaf)
527 {
528         struct btrfs_key key;
529         struct btrfs_key leaf_key;
530         u32 nritems = btrfs_header_nritems(leaf);
531         int slot;
532
533         if (nritems == 0)
534                 return 0;
535
536         /* Check the 0 item */
537         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
538             BTRFS_LEAF_DATA_SIZE(root)) {
539                 CORRUPT("invalid item offset size pair", leaf, root, 0);
540                 return -EIO;
541         }
542
543         /*
544          * Check to make sure each items keys are in the correct order and their
545          * offsets make sense.  We only have to loop through nritems-1 because
546          * we check the current slot against the next slot, which verifies the
547          * next slot's offset+size makes sense and that the current's slot
548          * offset is correct.
549          */
550         for (slot = 0; slot < nritems - 1; slot++) {
551                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
552                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
553
554                 /* Make sure the keys are in the right order */
555                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
556                         CORRUPT("bad key order", leaf, root, slot);
557                         return -EIO;
558                 }
559
560                 /*
561                  * Make sure the offset and ends are right, remember that the
562                  * item data starts at the end of the leaf and grows towards the
563                  * front.
564                  */
565                 if (btrfs_item_offset_nr(leaf, slot) !=
566                         btrfs_item_end_nr(leaf, slot + 1)) {
567                         CORRUPT("slot offset bad", leaf, root, slot);
568                         return -EIO;
569                 }
570
571                 /*
572                  * Check to make sure that we don't point outside of the leaf,
573                  * just incase all the items are consistent to eachother, but
574                  * all point outside of the leaf.
575                  */
576                 if (btrfs_item_end_nr(leaf, slot) >
577                     BTRFS_LEAF_DATA_SIZE(root)) {
578                         CORRUPT("slot end outside of leaf", leaf, root, slot);
579                         return -EIO;
580                 }
581         }
582
583         return 0;
584 }
585
586 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
587                                       u64 phy_offset, struct page *page,
588                                       u64 start, u64 end, int mirror)
589 {
590         u64 found_start;
591         int found_level;
592         struct extent_buffer *eb;
593         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
594         int ret = 0;
595         int reads_done;
596
597         if (!page->private)
598                 goto out;
599
600         eb = (struct extent_buffer *)page->private;
601
602         /* the pending IO might have been the only thing that kept this buffer
603          * in memory.  Make sure we have a ref for all this other checks
604          */
605         extent_buffer_get(eb);
606
607         reads_done = atomic_dec_and_test(&eb->io_pages);
608         if (!reads_done)
609                 goto err;
610
611         eb->read_mirror = mirror;
612         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
613                 ret = -EIO;
614                 goto err;
615         }
616
617         found_start = btrfs_header_bytenr(eb);
618         if (found_start != eb->start) {
619                 printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
620                                "%llu %llu\n",
621                                found_start, eb->start);
622                 ret = -EIO;
623                 goto err;
624         }
625         if (check_tree_block_fsid(root, eb)) {
626                 printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
627                                eb->start);
628                 ret = -EIO;
629                 goto err;
630         }
631         found_level = btrfs_header_level(eb);
632         if (found_level >= BTRFS_MAX_LEVEL) {
633                 btrfs_info(root->fs_info, "bad tree block level %d",
634                            (int)btrfs_header_level(eb));
635                 ret = -EIO;
636                 goto err;
637         }
638
639         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
640                                        eb, found_level);
641
642         ret = csum_tree_block(root, eb, 1);
643         if (ret) {
644                 ret = -EIO;
645                 goto err;
646         }
647
648         /*
649          * If this is a leaf block and it is corrupt, set the corrupt bit so
650          * that we don't try and read the other copies of this block, just
651          * return -EIO.
652          */
653         if (found_level == 0 && check_leaf(root, eb)) {
654                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
655                 ret = -EIO;
656         }
657
658         if (!ret)
659                 set_extent_buffer_uptodate(eb);
660 err:
661         if (reads_done &&
662             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
663                 btree_readahead_hook(root, eb, eb->start, ret);
664
665         if (ret) {
666                 /*
667                  * our io error hook is going to dec the io pages
668                  * again, we have to make sure it has something
669                  * to decrement
670                  */
671                 atomic_inc(&eb->io_pages);
672                 clear_extent_buffer_uptodate(eb);
673         }
674         free_extent_buffer(eb);
675 out:
676         return ret;
677 }
678
679 static int btree_io_failed_hook(struct page *page, int failed_mirror)
680 {
681         struct extent_buffer *eb;
682         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
683
684         eb = (struct extent_buffer *)page->private;
685         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
686         eb->read_mirror = failed_mirror;
687         atomic_dec(&eb->io_pages);
688         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
689                 btree_readahead_hook(root, eb, eb->start, -EIO);
690         return -EIO;    /* we fixed nothing */
691 }
692
693 static void end_workqueue_bio(struct bio *bio, int err)
694 {
695         struct end_io_wq *end_io_wq = bio->bi_private;
696         struct btrfs_fs_info *fs_info;
697
698         fs_info = end_io_wq->info;
699         end_io_wq->error = err;
700         btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
701
702         if (bio->bi_rw & REQ_WRITE) {
703                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
704                         btrfs_queue_work(fs_info->endio_meta_write_workers,
705                                          &end_io_wq->work);
706                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
707                         btrfs_queue_work(fs_info->endio_freespace_worker,
708                                          &end_io_wq->work);
709                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
710                         btrfs_queue_work(fs_info->endio_raid56_workers,
711                                          &end_io_wq->work);
712                 else
713                         btrfs_queue_work(fs_info->endio_write_workers,
714                                          &end_io_wq->work);
715         } else {
716                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
717                         btrfs_queue_work(fs_info->endio_raid56_workers,
718                                          &end_io_wq->work);
719                 else if (end_io_wq->metadata)
720                         btrfs_queue_work(fs_info->endio_meta_workers,
721                                          &end_io_wq->work);
722                 else
723                         btrfs_queue_work(fs_info->endio_workers,
724                                          &end_io_wq->work);
725         }
726 }
727
728 /*
729  * For the metadata arg you want
730  *
731  * 0 - if data
732  * 1 - if normal metadta
733  * 2 - if writing to the free space cache area
734  * 3 - raid parity work
735  */
736 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
737                         int metadata)
738 {
739         struct end_io_wq *end_io_wq;
740         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
741         if (!end_io_wq)
742                 return -ENOMEM;
743
744         end_io_wq->private = bio->bi_private;
745         end_io_wq->end_io = bio->bi_end_io;
746         end_io_wq->info = info;
747         end_io_wq->error = 0;
748         end_io_wq->bio = bio;
749         end_io_wq->metadata = metadata;
750
751         bio->bi_private = end_io_wq;
752         bio->bi_end_io = end_workqueue_bio;
753         return 0;
754 }
755
756 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
757 {
758         unsigned long limit = min_t(unsigned long,
759                                     info->thread_pool_size,
760                                     info->fs_devices->open_devices);
761         return 256 * limit;
762 }
763
764 static void run_one_async_start(struct btrfs_work *work)
765 {
766         struct async_submit_bio *async;
767         int ret;
768
769         async = container_of(work, struct  async_submit_bio, work);
770         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
771                                       async->mirror_num, async->bio_flags,
772                                       async->bio_offset);
773         if (ret)
774                 async->error = ret;
775 }
776
777 static void run_one_async_done(struct btrfs_work *work)
778 {
779         struct btrfs_fs_info *fs_info;
780         struct async_submit_bio *async;
781         int limit;
782
783         async = container_of(work, struct  async_submit_bio, work);
784         fs_info = BTRFS_I(async->inode)->root->fs_info;
785
786         limit = btrfs_async_submit_limit(fs_info);
787         limit = limit * 2 / 3;
788
789         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
790             waitqueue_active(&fs_info->async_submit_wait))
791                 wake_up(&fs_info->async_submit_wait);
792
793         /* If an error occured we just want to clean up the bio and move on */
794         if (async->error) {
795                 bio_endio(async->bio, async->error);
796                 return;
797         }
798
799         async->submit_bio_done(async->inode, async->rw, async->bio,
800                                async->mirror_num, async->bio_flags,
801                                async->bio_offset);
802 }
803
804 static void run_one_async_free(struct btrfs_work *work)
805 {
806         struct async_submit_bio *async;
807
808         async = container_of(work, struct  async_submit_bio, work);
809         kfree(async);
810 }
811
812 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
813                         int rw, struct bio *bio, int mirror_num,
814                         unsigned long bio_flags,
815                         u64 bio_offset,
816                         extent_submit_bio_hook_t *submit_bio_start,
817                         extent_submit_bio_hook_t *submit_bio_done)
818 {
819         struct async_submit_bio *async;
820
821         async = kmalloc(sizeof(*async), GFP_NOFS);
822         if (!async)
823                 return -ENOMEM;
824
825         async->inode = inode;
826         async->rw = rw;
827         async->bio = bio;
828         async->mirror_num = mirror_num;
829         async->submit_bio_start = submit_bio_start;
830         async->submit_bio_done = submit_bio_done;
831
832         btrfs_init_work(&async->work, run_one_async_start,
833                         run_one_async_done, run_one_async_free);
834
835         async->bio_flags = bio_flags;
836         async->bio_offset = bio_offset;
837
838         async->error = 0;
839
840         atomic_inc(&fs_info->nr_async_submits);
841
842         if (rw & REQ_SYNC)
843                 btrfs_set_work_high_priority(&async->work);
844
845         btrfs_queue_work(fs_info->workers, &async->work);
846
847         while (atomic_read(&fs_info->async_submit_draining) &&
848               atomic_read(&fs_info->nr_async_submits)) {
849                 wait_event(fs_info->async_submit_wait,
850                            (atomic_read(&fs_info->nr_async_submits) == 0));
851         }
852
853         return 0;
854 }
855
856 static int btree_csum_one_bio(struct bio *bio)
857 {
858         struct bio_vec *bvec;
859         struct btrfs_root *root;
860         int i, ret = 0;
861
862         bio_for_each_segment_all(bvec, bio, i) {
863                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
864                 ret = csum_dirty_buffer(root, bvec->bv_page);
865                 if (ret)
866                         break;
867         }
868
869         return ret;
870 }
871
872 static int __btree_submit_bio_start(struct inode *inode, int rw,
873                                     struct bio *bio, int mirror_num,
874                                     unsigned long bio_flags,
875                                     u64 bio_offset)
876 {
877         /*
878          * when we're called for a write, we're already in the async
879          * submission context.  Just jump into btrfs_map_bio
880          */
881         return btree_csum_one_bio(bio);
882 }
883
884 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
885                                  int mirror_num, unsigned long bio_flags,
886                                  u64 bio_offset)
887 {
888         int ret;
889
890         /*
891          * when we're called for a write, we're already in the async
892          * submission context.  Just jump into btrfs_map_bio
893          */
894         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
895         if (ret)
896                 bio_endio(bio, ret);
897         return ret;
898 }
899
900 static int check_async_write(struct inode *inode, unsigned long bio_flags)
901 {
902         if (bio_flags & EXTENT_BIO_TREE_LOG)
903                 return 0;
904 #ifdef CONFIG_X86
905         if (cpu_has_xmm4_2)
906                 return 0;
907 #endif
908         return 1;
909 }
910
911 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
912                                  int mirror_num, unsigned long bio_flags,
913                                  u64 bio_offset)
914 {
915         int async = check_async_write(inode, bio_flags);
916         int ret;
917
918         if (!(rw & REQ_WRITE)) {
919                 /*
920                  * called for a read, do the setup so that checksum validation
921                  * can happen in the async kernel threads
922                  */
923                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
924                                           bio, 1);
925                 if (ret)
926                         goto out_w_error;
927                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
928                                     mirror_num, 0);
929         } else if (!async) {
930                 ret = btree_csum_one_bio(bio);
931                 if (ret)
932                         goto out_w_error;
933                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
934                                     mirror_num, 0);
935         } else {
936                 /*
937                  * kthread helpers are used to submit writes so that
938                  * checksumming can happen in parallel across all CPUs
939                  */
940                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
941                                           inode, rw, bio, mirror_num, 0,
942                                           bio_offset,
943                                           __btree_submit_bio_start,
944                                           __btree_submit_bio_done);
945         }
946
947         if (ret) {
948 out_w_error:
949                 bio_endio(bio, ret);
950         }
951         return ret;
952 }
953
954 #ifdef CONFIG_MIGRATION
955 static int btree_migratepage(struct address_space *mapping,
956                         struct page *newpage, struct page *page,
957                         enum migrate_mode mode)
958 {
959         /*
960          * we can't safely write a btree page from here,
961          * we haven't done the locking hook
962          */
963         if (PageDirty(page))
964                 return -EAGAIN;
965         /*
966          * Buffers may be managed in a filesystem specific way.
967          * We must have no buffers or drop them.
968          */
969         if (page_has_private(page) &&
970             !try_to_release_page(page, GFP_KERNEL))
971                 return -EAGAIN;
972         return migrate_page(mapping, newpage, page, mode);
973 }
974 #endif
975
976
977 static int btree_writepages(struct address_space *mapping,
978                             struct writeback_control *wbc)
979 {
980         struct btrfs_fs_info *fs_info;
981         int ret;
982
983         if (wbc->sync_mode == WB_SYNC_NONE) {
984
985                 if (wbc->for_kupdate)
986                         return 0;
987
988                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
989                 /* this is a bit racy, but that's ok */
990                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
991                                              BTRFS_DIRTY_METADATA_THRESH);
992                 if (ret < 0)
993                         return 0;
994         }
995         return btree_write_cache_pages(mapping, wbc);
996 }
997
998 static int btree_readpage(struct file *file, struct page *page)
999 {
1000         struct extent_io_tree *tree;
1001         tree = &BTRFS_I(page->mapping->host)->io_tree;
1002         return extent_read_full_page(tree, page, btree_get_extent, 0);
1003 }
1004
1005 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1006 {
1007         if (PageWriteback(page) || PageDirty(page))
1008                 return 0;
1009
1010         return try_release_extent_buffer(page);
1011 }
1012
1013 static void btree_invalidatepage(struct page *page, unsigned int offset,
1014                                  unsigned int length)
1015 {
1016         struct extent_io_tree *tree;
1017         tree = &BTRFS_I(page->mapping->host)->io_tree;
1018         extent_invalidatepage(tree, page, offset);
1019         btree_releasepage(page, GFP_NOFS);
1020         if (PagePrivate(page)) {
1021                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1022                            "page private not zero on page %llu",
1023                            (unsigned long long)page_offset(page));
1024                 ClearPagePrivate(page);
1025                 set_page_private(page, 0);
1026                 page_cache_release(page);
1027         }
1028 }
1029
1030 static int btree_set_page_dirty(struct page *page)
1031 {
1032 #ifdef DEBUG
1033         struct extent_buffer *eb;
1034
1035         BUG_ON(!PagePrivate(page));
1036         eb = (struct extent_buffer *)page->private;
1037         BUG_ON(!eb);
1038         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1039         BUG_ON(!atomic_read(&eb->refs));
1040         btrfs_assert_tree_locked(eb);
1041 #endif
1042         return __set_page_dirty_nobuffers(page);
1043 }
1044
1045 static const struct address_space_operations btree_aops = {
1046         .readpage       = btree_readpage,
1047         .writepages     = btree_writepages,
1048         .releasepage    = btree_releasepage,
1049         .invalidatepage = btree_invalidatepage,
1050 #ifdef CONFIG_MIGRATION
1051         .migratepage    = btree_migratepage,
1052 #endif
1053         .set_page_dirty = btree_set_page_dirty,
1054 };
1055
1056 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1057                          u64 parent_transid)
1058 {
1059         struct extent_buffer *buf = NULL;
1060         struct inode *btree_inode = root->fs_info->btree_inode;
1061         int ret = 0;
1062
1063         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1064         if (!buf)
1065                 return 0;
1066         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1067                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1068         free_extent_buffer(buf);
1069         return ret;
1070 }
1071
1072 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1073                          int mirror_num, struct extent_buffer **eb)
1074 {
1075         struct extent_buffer *buf = NULL;
1076         struct inode *btree_inode = root->fs_info->btree_inode;
1077         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1078         int ret;
1079
1080         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1081         if (!buf)
1082                 return 0;
1083
1084         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1085
1086         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1087                                        btree_get_extent, mirror_num);
1088         if (ret) {
1089                 free_extent_buffer(buf);
1090                 return ret;
1091         }
1092
1093         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1094                 free_extent_buffer(buf);
1095                 return -EIO;
1096         } else if (extent_buffer_uptodate(buf)) {
1097                 *eb = buf;
1098         } else {
1099                 free_extent_buffer(buf);
1100         }
1101         return 0;
1102 }
1103
1104 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1105                                             u64 bytenr, u32 blocksize)
1106 {
1107         return find_extent_buffer(root->fs_info, bytenr);
1108 }
1109
1110 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1111                                                  u64 bytenr, u32 blocksize)
1112 {
1113 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1114         if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
1115                 return alloc_test_extent_buffer(root->fs_info, bytenr,
1116                                                 blocksize);
1117 #endif
1118         return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
1119 }
1120
1121
1122 int btrfs_write_tree_block(struct extent_buffer *buf)
1123 {
1124         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1125                                         buf->start + buf->len - 1);
1126 }
1127
1128 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1129 {
1130         return filemap_fdatawait_range(buf->pages[0]->mapping,
1131                                        buf->start, buf->start + buf->len - 1);
1132 }
1133
1134 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1135                                       u32 blocksize, u64 parent_transid)
1136 {
1137         struct extent_buffer *buf = NULL;
1138         int ret;
1139
1140         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1141         if (!buf)
1142                 return NULL;
1143
1144         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1145         if (ret) {
1146                 free_extent_buffer(buf);
1147                 return NULL;
1148         }
1149         return buf;
1150
1151 }
1152
1153 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1154                       struct extent_buffer *buf)
1155 {
1156         struct btrfs_fs_info *fs_info = root->fs_info;
1157
1158         if (btrfs_header_generation(buf) ==
1159             fs_info->running_transaction->transid) {
1160                 btrfs_assert_tree_locked(buf);
1161
1162                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1163                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1164                                              -buf->len,
1165                                              fs_info->dirty_metadata_batch);
1166                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1167                         btrfs_set_lock_blocking(buf);
1168                         clear_extent_buffer_dirty(buf);
1169                 }
1170         }
1171 }
1172
1173 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1174 {
1175         struct btrfs_subvolume_writers *writers;
1176         int ret;
1177
1178         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1179         if (!writers)
1180                 return ERR_PTR(-ENOMEM);
1181
1182         ret = percpu_counter_init(&writers->counter, 0);
1183         if (ret < 0) {
1184                 kfree(writers);
1185                 return ERR_PTR(ret);
1186         }
1187
1188         init_waitqueue_head(&writers->wait);
1189         return writers;
1190 }
1191
1192 static void
1193 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1194 {
1195         percpu_counter_destroy(&writers->counter);
1196         kfree(writers);
1197 }
1198
1199 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1200                          u32 stripesize, struct btrfs_root *root,
1201                          struct btrfs_fs_info *fs_info,
1202                          u64 objectid)
1203 {
1204         root->node = NULL;
1205         root->commit_root = NULL;
1206         root->sectorsize = sectorsize;
1207         root->nodesize = nodesize;
1208         root->leafsize = leafsize;
1209         root->stripesize = stripesize;
1210         root->state = 0;
1211         root->orphan_cleanup_state = 0;
1212
1213         root->objectid = objectid;
1214         root->last_trans = 0;
1215         root->highest_objectid = 0;
1216         root->nr_delalloc_inodes = 0;
1217         root->nr_ordered_extents = 0;
1218         root->name = NULL;
1219         root->inode_tree = RB_ROOT;
1220         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1221         root->block_rsv = NULL;
1222         root->orphan_block_rsv = NULL;
1223
1224         INIT_LIST_HEAD(&root->dirty_list);
1225         INIT_LIST_HEAD(&root->root_list);
1226         INIT_LIST_HEAD(&root->delalloc_inodes);
1227         INIT_LIST_HEAD(&root->delalloc_root);
1228         INIT_LIST_HEAD(&root->ordered_extents);
1229         INIT_LIST_HEAD(&root->ordered_root);
1230         INIT_LIST_HEAD(&root->logged_list[0]);
1231         INIT_LIST_HEAD(&root->logged_list[1]);
1232         spin_lock_init(&root->orphan_lock);
1233         spin_lock_init(&root->inode_lock);
1234         spin_lock_init(&root->delalloc_lock);
1235         spin_lock_init(&root->ordered_extent_lock);
1236         spin_lock_init(&root->accounting_lock);
1237         spin_lock_init(&root->log_extents_lock[0]);
1238         spin_lock_init(&root->log_extents_lock[1]);
1239         mutex_init(&root->objectid_mutex);
1240         mutex_init(&root->log_mutex);
1241         mutex_init(&root->ordered_extent_mutex);
1242         mutex_init(&root->delalloc_mutex);
1243         init_waitqueue_head(&root->log_writer_wait);
1244         init_waitqueue_head(&root->log_commit_wait[0]);
1245         init_waitqueue_head(&root->log_commit_wait[1]);
1246         INIT_LIST_HEAD(&root->log_ctxs[0]);
1247         INIT_LIST_HEAD(&root->log_ctxs[1]);
1248         atomic_set(&root->log_commit[0], 0);
1249         atomic_set(&root->log_commit[1], 0);
1250         atomic_set(&root->log_writers, 0);
1251         atomic_set(&root->log_batch, 0);
1252         atomic_set(&root->orphan_inodes, 0);
1253         atomic_set(&root->refs, 1);
1254         atomic_set(&root->will_be_snapshoted, 0);
1255         root->log_transid = 0;
1256         root->log_transid_committed = -1;
1257         root->last_log_commit = 0;
1258         if (fs_info)
1259                 extent_io_tree_init(&root->dirty_log_pages,
1260                                      fs_info->btree_inode->i_mapping);
1261
1262         memset(&root->root_key, 0, sizeof(root->root_key));
1263         memset(&root->root_item, 0, sizeof(root->root_item));
1264         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1265         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1266         if (fs_info)
1267                 root->defrag_trans_start = fs_info->generation;
1268         else
1269                 root->defrag_trans_start = 0;
1270         init_completion(&root->kobj_unregister);
1271         root->root_key.objectid = objectid;
1272         root->anon_dev = 0;
1273
1274         spin_lock_init(&root->root_item_lock);
1275 }
1276
1277 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1278 {
1279         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1280         if (root)
1281                 root->fs_info = fs_info;
1282         return root;
1283 }
1284
1285 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1286 /* Should only be used by the testing infrastructure */
1287 struct btrfs_root *btrfs_alloc_dummy_root(void)
1288 {
1289         struct btrfs_root *root;
1290
1291         root = btrfs_alloc_root(NULL);
1292         if (!root)
1293                 return ERR_PTR(-ENOMEM);
1294         __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1295         set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1296         root->alloc_bytenr = 0;
1297
1298         return root;
1299 }
1300 #endif
1301
1302 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1303                                      struct btrfs_fs_info *fs_info,
1304                                      u64 objectid)
1305 {
1306         struct extent_buffer *leaf;
1307         struct btrfs_root *tree_root = fs_info->tree_root;
1308         struct btrfs_root *root;
1309         struct btrfs_key key;
1310         int ret = 0;
1311         uuid_le uuid;
1312
1313         root = btrfs_alloc_root(fs_info);
1314         if (!root)
1315                 return ERR_PTR(-ENOMEM);
1316
1317         __setup_root(tree_root->nodesize, tree_root->leafsize,
1318                      tree_root->sectorsize, tree_root->stripesize,
1319                      root, fs_info, objectid);
1320         root->root_key.objectid = objectid;
1321         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1322         root->root_key.offset = 0;
1323
1324         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1325                                       0, objectid, NULL, 0, 0, 0);
1326         if (IS_ERR(leaf)) {
1327                 ret = PTR_ERR(leaf);
1328                 leaf = NULL;
1329                 goto fail;
1330         }
1331
1332         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1333         btrfs_set_header_bytenr(leaf, leaf->start);
1334         btrfs_set_header_generation(leaf, trans->transid);
1335         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1336         btrfs_set_header_owner(leaf, objectid);
1337         root->node = leaf;
1338
1339         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1340                             BTRFS_FSID_SIZE);
1341         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1342                             btrfs_header_chunk_tree_uuid(leaf),
1343                             BTRFS_UUID_SIZE);
1344         btrfs_mark_buffer_dirty(leaf);
1345
1346         root->commit_root = btrfs_root_node(root);
1347         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1348
1349         root->root_item.flags = 0;
1350         root->root_item.byte_limit = 0;
1351         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1352         btrfs_set_root_generation(&root->root_item, trans->transid);
1353         btrfs_set_root_level(&root->root_item, 0);
1354         btrfs_set_root_refs(&root->root_item, 1);
1355         btrfs_set_root_used(&root->root_item, leaf->len);
1356         btrfs_set_root_last_snapshot(&root->root_item, 0);
1357         btrfs_set_root_dirid(&root->root_item, 0);
1358         uuid_le_gen(&uuid);
1359         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1360         root->root_item.drop_level = 0;
1361
1362         key.objectid = objectid;
1363         key.type = BTRFS_ROOT_ITEM_KEY;
1364         key.offset = 0;
1365         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1366         if (ret)
1367                 goto fail;
1368
1369         btrfs_tree_unlock(leaf);
1370
1371         return root;
1372
1373 fail:
1374         if (leaf) {
1375                 btrfs_tree_unlock(leaf);
1376                 free_extent_buffer(root->commit_root);
1377                 free_extent_buffer(leaf);
1378         }
1379         kfree(root);
1380
1381         return ERR_PTR(ret);
1382 }
1383
1384 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1385                                          struct btrfs_fs_info *fs_info)
1386 {
1387         struct btrfs_root *root;
1388         struct btrfs_root *tree_root = fs_info->tree_root;
1389         struct extent_buffer *leaf;
1390
1391         root = btrfs_alloc_root(fs_info);
1392         if (!root)
1393                 return ERR_PTR(-ENOMEM);
1394
1395         __setup_root(tree_root->nodesize, tree_root->leafsize,
1396                      tree_root->sectorsize, tree_root->stripesize,
1397                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1398
1399         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1400         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1401         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1402
1403         /*
1404          * DON'T set REF_COWS for log trees
1405          *
1406          * log trees do not get reference counted because they go away
1407          * before a real commit is actually done.  They do store pointers
1408          * to file data extents, and those reference counts still get
1409          * updated (along with back refs to the log tree).
1410          */
1411
1412         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1413                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1414                                       0, 0, 0);
1415         if (IS_ERR(leaf)) {
1416                 kfree(root);
1417                 return ERR_CAST(leaf);
1418         }
1419
1420         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1421         btrfs_set_header_bytenr(leaf, leaf->start);
1422         btrfs_set_header_generation(leaf, trans->transid);
1423         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1424         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1425         root->node = leaf;
1426
1427         write_extent_buffer(root->node, root->fs_info->fsid,
1428                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1429         btrfs_mark_buffer_dirty(root->node);
1430         btrfs_tree_unlock(root->node);
1431         return root;
1432 }
1433
1434 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1435                              struct btrfs_fs_info *fs_info)
1436 {
1437         struct btrfs_root *log_root;
1438
1439         log_root = alloc_log_tree(trans, fs_info);
1440         if (IS_ERR(log_root))
1441                 return PTR_ERR(log_root);
1442         WARN_ON(fs_info->log_root_tree);
1443         fs_info->log_root_tree = log_root;
1444         return 0;
1445 }
1446
1447 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1448                        struct btrfs_root *root)
1449 {
1450         struct btrfs_root *log_root;
1451         struct btrfs_inode_item *inode_item;
1452
1453         log_root = alloc_log_tree(trans, root->fs_info);
1454         if (IS_ERR(log_root))
1455                 return PTR_ERR(log_root);
1456
1457         log_root->last_trans = trans->transid;
1458         log_root->root_key.offset = root->root_key.objectid;
1459
1460         inode_item = &log_root->root_item.inode;
1461         btrfs_set_stack_inode_generation(inode_item, 1);
1462         btrfs_set_stack_inode_size(inode_item, 3);
1463         btrfs_set_stack_inode_nlink(inode_item, 1);
1464         btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1465         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1466
1467         btrfs_set_root_node(&log_root->root_item, log_root->node);
1468
1469         WARN_ON(root->log_root);
1470         root->log_root = log_root;
1471         root->log_transid = 0;
1472         root->log_transid_committed = -1;
1473         root->last_log_commit = 0;
1474         return 0;
1475 }
1476
1477 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1478                                                struct btrfs_key *key)
1479 {
1480         struct btrfs_root *root;
1481         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1482         struct btrfs_path *path;
1483         u64 generation;
1484         u32 blocksize;
1485         int ret;
1486
1487         path = btrfs_alloc_path();
1488         if (!path)
1489                 return ERR_PTR(-ENOMEM);
1490
1491         root = btrfs_alloc_root(fs_info);
1492         if (!root) {
1493                 ret = -ENOMEM;
1494                 goto alloc_fail;
1495         }
1496
1497         __setup_root(tree_root->nodesize, tree_root->leafsize,
1498                      tree_root->sectorsize, tree_root->stripesize,
1499                      root, fs_info, key->objectid);
1500
1501         ret = btrfs_find_root(tree_root, key, path,
1502                               &root->root_item, &root->root_key);
1503         if (ret) {
1504                 if (ret > 0)
1505                         ret = -ENOENT;
1506                 goto find_fail;
1507         }
1508
1509         generation = btrfs_root_generation(&root->root_item);
1510         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1511         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1512                                      blocksize, generation);
1513         if (!root->node) {
1514                 ret = -ENOMEM;
1515                 goto find_fail;
1516         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1517                 ret = -EIO;
1518                 goto read_fail;
1519         }
1520         root->commit_root = btrfs_root_node(root);
1521 out:
1522         btrfs_free_path(path);
1523         return root;
1524
1525 read_fail:
1526         free_extent_buffer(root->node);
1527 find_fail:
1528         kfree(root);
1529 alloc_fail:
1530         root = ERR_PTR(ret);
1531         goto out;
1532 }
1533
1534 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1535                                       struct btrfs_key *location)
1536 {
1537         struct btrfs_root *root;
1538
1539         root = btrfs_read_tree_root(tree_root, location);
1540         if (IS_ERR(root))
1541                 return root;
1542
1543         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1544                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1545                 btrfs_check_and_init_root_item(&root->root_item);
1546         }
1547
1548         return root;
1549 }
1550
1551 int btrfs_init_fs_root(struct btrfs_root *root)
1552 {
1553         int ret;
1554         struct btrfs_subvolume_writers *writers;
1555
1556         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1557         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1558                                         GFP_NOFS);
1559         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1560                 ret = -ENOMEM;
1561                 goto fail;
1562         }
1563
1564         writers = btrfs_alloc_subvolume_writers();
1565         if (IS_ERR(writers)) {
1566                 ret = PTR_ERR(writers);
1567                 goto fail;
1568         }
1569         root->subv_writers = writers;
1570
1571         btrfs_init_free_ino_ctl(root);
1572         spin_lock_init(&root->cache_lock);
1573         init_waitqueue_head(&root->cache_wait);
1574
1575         ret = get_anon_bdev(&root->anon_dev);
1576         if (ret)
1577                 goto free_writers;
1578         return 0;
1579
1580 free_writers:
1581         btrfs_free_subvolume_writers(root->subv_writers);
1582 fail:
1583         kfree(root->free_ino_ctl);
1584         kfree(root->free_ino_pinned);
1585         return ret;
1586 }
1587
1588 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1589                                                u64 root_id)
1590 {
1591         struct btrfs_root *root;
1592
1593         spin_lock(&fs_info->fs_roots_radix_lock);
1594         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1595                                  (unsigned long)root_id);
1596         spin_unlock(&fs_info->fs_roots_radix_lock);
1597         return root;
1598 }
1599
1600 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1601                          struct btrfs_root *root)
1602 {
1603         int ret;
1604
1605         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1606         if (ret)
1607                 return ret;
1608
1609         spin_lock(&fs_info->fs_roots_radix_lock);
1610         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1611                                 (unsigned long)root->root_key.objectid,
1612                                 root);
1613         if (ret == 0)
1614                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1615         spin_unlock(&fs_info->fs_roots_radix_lock);
1616         radix_tree_preload_end();
1617
1618         return ret;
1619 }
1620
1621 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1622                                      struct btrfs_key *location,
1623                                      bool check_ref)
1624 {
1625         struct btrfs_root *root;
1626         int ret;
1627
1628         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1629                 return fs_info->tree_root;
1630         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1631                 return fs_info->extent_root;
1632         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1633                 return fs_info->chunk_root;
1634         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1635                 return fs_info->dev_root;
1636         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1637                 return fs_info->csum_root;
1638         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1639                 return fs_info->quota_root ? fs_info->quota_root :
1640                                              ERR_PTR(-ENOENT);
1641         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1642                 return fs_info->uuid_root ? fs_info->uuid_root :
1643                                             ERR_PTR(-ENOENT);
1644 again:
1645         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1646         if (root) {
1647                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1648                         return ERR_PTR(-ENOENT);
1649                 return root;
1650         }
1651
1652         root = btrfs_read_fs_root(fs_info->tree_root, location);
1653         if (IS_ERR(root))
1654                 return root;
1655
1656         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1657                 ret = -ENOENT;
1658                 goto fail;
1659         }
1660
1661         ret = btrfs_init_fs_root(root);
1662         if (ret)
1663                 goto fail;
1664
1665         ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1666                         location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
1667         if (ret < 0)
1668                 goto fail;
1669         if (ret == 0)
1670                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1671
1672         ret = btrfs_insert_fs_root(fs_info, root);
1673         if (ret) {
1674                 if (ret == -EEXIST) {
1675                         free_fs_root(root);
1676                         goto again;
1677                 }
1678                 goto fail;
1679         }
1680         return root;
1681 fail:
1682         free_fs_root(root);
1683         return ERR_PTR(ret);
1684 }
1685
1686 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1687 {
1688         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1689         int ret = 0;
1690         struct btrfs_device *device;
1691         struct backing_dev_info *bdi;
1692
1693         rcu_read_lock();
1694         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1695                 if (!device->bdev)
1696                         continue;
1697                 bdi = blk_get_backing_dev_info(device->bdev);
1698                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1699                         ret = 1;
1700                         break;
1701                 }
1702         }
1703         rcu_read_unlock();
1704         return ret;
1705 }
1706
1707 /*
1708  * If this fails, caller must call bdi_destroy() to get rid of the
1709  * bdi again.
1710  */
1711 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1712 {
1713         int err;
1714
1715         bdi->capabilities = BDI_CAP_MAP_COPY;
1716         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1717         if (err)
1718                 return err;
1719
1720         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1721         bdi->congested_fn       = btrfs_congested_fn;
1722         bdi->congested_data     = info;
1723         return 0;
1724 }
1725
1726 /*
1727  * called by the kthread helper functions to finally call the bio end_io
1728  * functions.  This is where read checksum verification actually happens
1729  */
1730 static void end_workqueue_fn(struct btrfs_work *work)
1731 {
1732         struct bio *bio;
1733         struct end_io_wq *end_io_wq;
1734         int error;
1735
1736         end_io_wq = container_of(work, struct end_io_wq, work);
1737         bio = end_io_wq->bio;
1738
1739         error = end_io_wq->error;
1740         bio->bi_private = end_io_wq->private;
1741         bio->bi_end_io = end_io_wq->end_io;
1742         kfree(end_io_wq);
1743         bio_endio_nodec(bio, error);
1744 }
1745
1746 static int cleaner_kthread(void *arg)
1747 {
1748         struct btrfs_root *root = arg;
1749         int again;
1750
1751         do {
1752                 again = 0;
1753
1754                 /* Make the cleaner go to sleep early. */
1755                 if (btrfs_need_cleaner_sleep(root))
1756                         goto sleep;
1757
1758                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1759                         goto sleep;
1760
1761                 /*
1762                  * Avoid the problem that we change the status of the fs
1763                  * during the above check and trylock.
1764                  */
1765                 if (btrfs_need_cleaner_sleep(root)) {
1766                         mutex_unlock(&root->fs_info->cleaner_mutex);
1767                         goto sleep;
1768                 }
1769
1770                 btrfs_run_delayed_iputs(root);
1771                 again = btrfs_clean_one_deleted_snapshot(root);
1772                 mutex_unlock(&root->fs_info->cleaner_mutex);
1773
1774                 /*
1775                  * The defragger has dealt with the R/O remount and umount,
1776                  * needn't do anything special here.
1777                  */
1778                 btrfs_run_defrag_inodes(root->fs_info);
1779 sleep:
1780                 if (!try_to_freeze() && !again) {
1781                         set_current_state(TASK_INTERRUPTIBLE);
1782                         if (!kthread_should_stop())
1783                                 schedule();
1784                         __set_current_state(TASK_RUNNING);
1785                 }
1786         } while (!kthread_should_stop());
1787         return 0;
1788 }
1789
1790 static int transaction_kthread(void *arg)
1791 {
1792         struct btrfs_root *root = arg;
1793         struct btrfs_trans_handle *trans;
1794         struct btrfs_transaction *cur;
1795         u64 transid;
1796         unsigned long now;
1797         unsigned long delay;
1798         bool cannot_commit;
1799
1800         do {
1801                 cannot_commit = false;
1802                 delay = HZ * root->fs_info->commit_interval;
1803                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1804
1805                 spin_lock(&root->fs_info->trans_lock);
1806                 cur = root->fs_info->running_transaction;
1807                 if (!cur) {
1808                         spin_unlock(&root->fs_info->trans_lock);
1809                         goto sleep;
1810                 }
1811
1812                 now = get_seconds();
1813                 if (cur->state < TRANS_STATE_BLOCKED &&
1814                     (now < cur->start_time ||
1815                      now - cur->start_time < root->fs_info->commit_interval)) {
1816                         spin_unlock(&root->fs_info->trans_lock);
1817                         delay = HZ * 5;
1818                         goto sleep;
1819                 }
1820                 transid = cur->transid;
1821                 spin_unlock(&root->fs_info->trans_lock);
1822
1823                 /* If the file system is aborted, this will always fail. */
1824                 trans = btrfs_attach_transaction(root);
1825                 if (IS_ERR(trans)) {
1826                         if (PTR_ERR(trans) != -ENOENT)
1827                                 cannot_commit = true;
1828                         goto sleep;
1829                 }
1830                 if (transid == trans->transid) {
1831                         btrfs_commit_transaction(trans, root);
1832                 } else {
1833                         btrfs_end_transaction(trans, root);
1834                 }
1835 sleep:
1836                 wake_up_process(root->fs_info->cleaner_kthread);
1837                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1838
1839                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1840                                       &root->fs_info->fs_state)))
1841                         btrfs_cleanup_transaction(root);
1842                 if (!try_to_freeze()) {
1843                         set_current_state(TASK_INTERRUPTIBLE);
1844                         if (!kthread_should_stop() &&
1845                             (!btrfs_transaction_blocked(root->fs_info) ||
1846                              cannot_commit))
1847                                 schedule_timeout(delay);
1848                         __set_current_state(TASK_RUNNING);
1849                 }
1850         } while (!kthread_should_stop());
1851         return 0;
1852 }
1853
1854 /*
1855  * this will find the highest generation in the array of
1856  * root backups.  The index of the highest array is returned,
1857  * or -1 if we can't find anything.
1858  *
1859  * We check to make sure the array is valid by comparing the
1860  * generation of the latest  root in the array with the generation
1861  * in the super block.  If they don't match we pitch it.
1862  */
1863 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1864 {
1865         u64 cur;
1866         int newest_index = -1;
1867         struct btrfs_root_backup *root_backup;
1868         int i;
1869
1870         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1871                 root_backup = info->super_copy->super_roots + i;
1872                 cur = btrfs_backup_tree_root_gen(root_backup);
1873                 if (cur == newest_gen)
1874                         newest_index = i;
1875         }
1876
1877         /* check to see if we actually wrapped around */
1878         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1879                 root_backup = info->super_copy->super_roots;
1880                 cur = btrfs_backup_tree_root_gen(root_backup);
1881                 if (cur == newest_gen)
1882                         newest_index = 0;
1883         }
1884         return newest_index;
1885 }
1886
1887
1888 /*
1889  * find the oldest backup so we know where to store new entries
1890  * in the backup array.  This will set the backup_root_index
1891  * field in the fs_info struct
1892  */
1893 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1894                                      u64 newest_gen)
1895 {
1896         int newest_index = -1;
1897
1898         newest_index = find_newest_super_backup(info, newest_gen);
1899         /* if there was garbage in there, just move along */
1900         if (newest_index == -1) {
1901                 info->backup_root_index = 0;
1902         } else {
1903                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1904         }
1905 }
1906
1907 /*
1908  * copy all the root pointers into the super backup array.
1909  * this will bump the backup pointer by one when it is
1910  * done
1911  */
1912 static void backup_super_roots(struct btrfs_fs_info *info)
1913 {
1914         int next_backup;
1915         struct btrfs_root_backup *root_backup;
1916         int last_backup;
1917
1918         next_backup = info->backup_root_index;
1919         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1920                 BTRFS_NUM_BACKUP_ROOTS;
1921
1922         /*
1923          * just overwrite the last backup if we're at the same generation
1924          * this happens only at umount
1925          */
1926         root_backup = info->super_for_commit->super_roots + last_backup;
1927         if (btrfs_backup_tree_root_gen(root_backup) ==
1928             btrfs_header_generation(info->tree_root->node))
1929                 next_backup = last_backup;
1930
1931         root_backup = info->super_for_commit->super_roots + next_backup;
1932
1933         /*
1934          * make sure all of our padding and empty slots get zero filled
1935          * regardless of which ones we use today
1936          */
1937         memset(root_backup, 0, sizeof(*root_backup));
1938
1939         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1940
1941         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1942         btrfs_set_backup_tree_root_gen(root_backup,
1943                                btrfs_header_generation(info->tree_root->node));
1944
1945         btrfs_set_backup_tree_root_level(root_backup,
1946                                btrfs_header_level(info->tree_root->node));
1947
1948         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1949         btrfs_set_backup_chunk_root_gen(root_backup,
1950                                btrfs_header_generation(info->chunk_root->node));
1951         btrfs_set_backup_chunk_root_level(root_backup,
1952                                btrfs_header_level(info->chunk_root->node));
1953
1954         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1955         btrfs_set_backup_extent_root_gen(root_backup,
1956                                btrfs_header_generation(info->extent_root->node));
1957         btrfs_set_backup_extent_root_level(root_backup,
1958                                btrfs_header_level(info->extent_root->node));
1959
1960         /*
1961          * we might commit during log recovery, which happens before we set
1962          * the fs_root.  Make sure it is valid before we fill it in.
1963          */
1964         if (info->fs_root && info->fs_root->node) {
1965                 btrfs_set_backup_fs_root(root_backup,
1966                                          info->fs_root->node->start);
1967                 btrfs_set_backup_fs_root_gen(root_backup,
1968                                btrfs_header_generation(info->fs_root->node));
1969                 btrfs_set_backup_fs_root_level(root_backup,
1970                                btrfs_header_level(info->fs_root->node));
1971         }
1972
1973         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1974         btrfs_set_backup_dev_root_gen(root_backup,
1975                                btrfs_header_generation(info->dev_root->node));
1976         btrfs_set_backup_dev_root_level(root_backup,
1977                                        btrfs_header_level(info->dev_root->node));
1978
1979         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1980         btrfs_set_backup_csum_root_gen(root_backup,
1981                                btrfs_header_generation(info->csum_root->node));
1982         btrfs_set_backup_csum_root_level(root_backup,
1983                                btrfs_header_level(info->csum_root->node));
1984
1985         btrfs_set_backup_total_bytes(root_backup,
1986                              btrfs_super_total_bytes(info->super_copy));
1987         btrfs_set_backup_bytes_used(root_backup,
1988                              btrfs_super_bytes_used(info->super_copy));
1989         btrfs_set_backup_num_devices(root_backup,
1990                              btrfs_super_num_devices(info->super_copy));
1991
1992         /*
1993          * if we don't copy this out to the super_copy, it won't get remembered
1994          * for the next commit
1995          */
1996         memcpy(&info->super_copy->super_roots,
1997                &info->super_for_commit->super_roots,
1998                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1999 }
2000
2001 /*
2002  * this copies info out of the root backup array and back into
2003  * the in-memory super block.  It is meant to help iterate through
2004  * the array, so you send it the number of backups you've already
2005  * tried and the last backup index you used.
2006  *
2007  * this returns -1 when it has tried all the backups
2008  */
2009 static noinline int next_root_backup(struct btrfs_fs_info *info,
2010                                      struct btrfs_super_block *super,
2011                                      int *num_backups_tried, int *backup_index)
2012 {
2013         struct btrfs_root_backup *root_backup;
2014         int newest = *backup_index;
2015
2016         if (*num_backups_tried == 0) {
2017                 u64 gen = btrfs_super_generation(super);
2018
2019                 newest = find_newest_super_backup(info, gen);
2020                 if (newest == -1)
2021                         return -1;
2022
2023                 *backup_index = newest;
2024                 *num_backups_tried = 1;
2025         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2026                 /* we've tried all the backups, all done */
2027                 return -1;
2028         } else {
2029                 /* jump to the next oldest backup */
2030                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2031                         BTRFS_NUM_BACKUP_ROOTS;
2032                 *backup_index = newest;
2033                 *num_backups_tried += 1;
2034         }
2035         root_backup = super->super_roots + newest;
2036
2037         btrfs_set_super_generation(super,
2038                                    btrfs_backup_tree_root_gen(root_backup));
2039         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2040         btrfs_set_super_root_level(super,
2041                                    btrfs_backup_tree_root_level(root_backup));
2042         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2043
2044         /*
2045          * fixme: the total bytes and num_devices need to match or we should
2046          * need a fsck
2047          */
2048         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2049         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2050         return 0;
2051 }
2052
2053 /* helper to cleanup workers */
2054 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2055 {
2056         btrfs_destroy_workqueue(fs_info->fixup_workers);
2057         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2058         btrfs_destroy_workqueue(fs_info->workers);
2059         btrfs_destroy_workqueue(fs_info->endio_workers);
2060         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2061         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2062         btrfs_destroy_workqueue(fs_info->rmw_workers);
2063         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2064         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2065         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2066         btrfs_destroy_workqueue(fs_info->submit_workers);
2067         btrfs_destroy_workqueue(fs_info->delayed_workers);
2068         btrfs_destroy_workqueue(fs_info->caching_workers);
2069         btrfs_destroy_workqueue(fs_info->readahead_workers);
2070         btrfs_destroy_workqueue(fs_info->flush_workers);
2071         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2072 }
2073
2074 static void free_root_extent_buffers(struct btrfs_root *root)
2075 {
2076         if (root) {
2077                 free_extent_buffer(root->node);
2078                 free_extent_buffer(root->commit_root);
2079                 root->node = NULL;
2080                 root->commit_root = NULL;
2081         }
2082 }
2083
2084 /* helper to cleanup tree roots */
2085 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2086 {
2087         free_root_extent_buffers(info->tree_root);
2088
2089         free_root_extent_buffers(info->dev_root);
2090         free_root_extent_buffers(info->extent_root);
2091         free_root_extent_buffers(info->csum_root);
2092         free_root_extent_buffers(info->quota_root);
2093         free_root_extent_buffers(info->uuid_root);
2094         if (chunk_root)
2095                 free_root_extent_buffers(info->chunk_root);
2096 }
2097
2098 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2099 {
2100         int ret;
2101         struct btrfs_root *gang[8];
2102         int i;
2103
2104         while (!list_empty(&fs_info->dead_roots)) {
2105                 gang[0] = list_entry(fs_info->dead_roots.next,
2106                                      struct btrfs_root, root_list);
2107                 list_del(&gang[0]->root_list);
2108
2109                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2110                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2111                 } else {
2112                         free_extent_buffer(gang[0]->node);
2113                         free_extent_buffer(gang[0]->commit_root);
2114                         btrfs_put_fs_root(gang[0]);
2115                 }
2116         }
2117
2118         while (1) {
2119                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2120                                              (void **)gang, 0,
2121                                              ARRAY_SIZE(gang));
2122                 if (!ret)
2123                         break;
2124                 for (i = 0; i < ret; i++)
2125                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2126         }
2127
2128         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2129                 btrfs_free_log_root_tree(NULL, fs_info);
2130                 btrfs_destroy_pinned_extent(fs_info->tree_root,
2131                                             fs_info->pinned_extents);
2132         }
2133 }
2134
2135 int open_ctree(struct super_block *sb,
2136                struct btrfs_fs_devices *fs_devices,
2137                char *options)
2138 {
2139         u32 sectorsize;
2140         u32 nodesize;
2141         u32 leafsize;
2142         u32 blocksize;
2143         u32 stripesize;
2144         u64 generation;
2145         u64 features;
2146         struct btrfs_key location;
2147         struct buffer_head *bh;
2148         struct btrfs_super_block *disk_super;
2149         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2150         struct btrfs_root *tree_root;
2151         struct btrfs_root *extent_root;
2152         struct btrfs_root *csum_root;
2153         struct btrfs_root *chunk_root;
2154         struct btrfs_root *dev_root;
2155         struct btrfs_root *quota_root;
2156         struct btrfs_root *uuid_root;
2157         struct btrfs_root *log_tree_root;
2158         int ret;
2159         int err = -EINVAL;
2160         int num_backups_tried = 0;
2161         int backup_index = 0;
2162         int max_active;
2163         int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2164         bool create_uuid_tree;
2165         bool check_uuid_tree;
2166
2167         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2168         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2169         if (!tree_root || !chunk_root) {
2170                 err = -ENOMEM;
2171                 goto fail;
2172         }
2173
2174         ret = init_srcu_struct(&fs_info->subvol_srcu);
2175         if (ret) {
2176                 err = ret;
2177                 goto fail;
2178         }
2179
2180         ret = setup_bdi(fs_info, &fs_info->bdi);
2181         if (ret) {
2182                 err = ret;
2183                 goto fail_srcu;
2184         }
2185
2186         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2187         if (ret) {
2188                 err = ret;
2189                 goto fail_bdi;
2190         }
2191         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2192                                         (1 + ilog2(nr_cpu_ids));
2193
2194         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2195         if (ret) {
2196                 err = ret;
2197                 goto fail_dirty_metadata_bytes;
2198         }
2199
2200         ret = percpu_counter_init(&fs_info->bio_counter, 0);
2201         if (ret) {
2202                 err = ret;
2203                 goto fail_delalloc_bytes;
2204         }
2205
2206         fs_info->btree_inode = new_inode(sb);
2207         if (!fs_info->btree_inode) {
2208                 err = -ENOMEM;
2209                 goto fail_bio_counter;
2210         }
2211
2212         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2213
2214         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2215         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2216         INIT_LIST_HEAD(&fs_info->trans_list);
2217         INIT_LIST_HEAD(&fs_info->dead_roots);
2218         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2219         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2220         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2221         spin_lock_init(&fs_info->delalloc_root_lock);
2222         spin_lock_init(&fs_info->trans_lock);
2223         spin_lock_init(&fs_info->fs_roots_radix_lock);
2224         spin_lock_init(&fs_info->delayed_iput_lock);
2225         spin_lock_init(&fs_info->defrag_inodes_lock);
2226         spin_lock_init(&fs_info->free_chunk_lock);
2227         spin_lock_init(&fs_info->tree_mod_seq_lock);
2228         spin_lock_init(&fs_info->super_lock);
2229         spin_lock_init(&fs_info->qgroup_op_lock);
2230         spin_lock_init(&fs_info->buffer_lock);
2231         rwlock_init(&fs_info->tree_mod_log_lock);
2232         mutex_init(&fs_info->reloc_mutex);
2233         mutex_init(&fs_info->delalloc_root_mutex);
2234         seqlock_init(&fs_info->profiles_lock);
2235
2236         init_completion(&fs_info->kobj_unregister);
2237         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2238         INIT_LIST_HEAD(&fs_info->space_info);
2239         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2240         btrfs_mapping_init(&fs_info->mapping_tree);
2241         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2242                              BTRFS_BLOCK_RSV_GLOBAL);
2243         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2244                              BTRFS_BLOCK_RSV_DELALLOC);
2245         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2246         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2247         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2248         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2249                              BTRFS_BLOCK_RSV_DELOPS);
2250         atomic_set(&fs_info->nr_async_submits, 0);
2251         atomic_set(&fs_info->async_delalloc_pages, 0);
2252         atomic_set(&fs_info->async_submit_draining, 0);
2253         atomic_set(&fs_info->nr_async_bios, 0);
2254         atomic_set(&fs_info->defrag_running, 0);
2255         atomic_set(&fs_info->qgroup_op_seq, 0);
2256         atomic64_set(&fs_info->tree_mod_seq, 0);
2257         fs_info->sb = sb;
2258         fs_info->max_inline = 8192 * 1024;
2259         fs_info->metadata_ratio = 0;
2260         fs_info->defrag_inodes = RB_ROOT;
2261         fs_info->free_chunk_space = 0;
2262         fs_info->tree_mod_log = RB_ROOT;
2263         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2264         fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
2265         /* readahead state */
2266         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2267         spin_lock_init(&fs_info->reada_lock);
2268
2269         fs_info->thread_pool_size = min_t(unsigned long,
2270                                           num_online_cpus() + 2, 8);
2271
2272         INIT_LIST_HEAD(&fs_info->ordered_roots);
2273         spin_lock_init(&fs_info->ordered_root_lock);
2274         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2275                                         GFP_NOFS);
2276         if (!fs_info->delayed_root) {
2277                 err = -ENOMEM;
2278                 goto fail_iput;
2279         }
2280         btrfs_init_delayed_root(fs_info->delayed_root);
2281
2282         mutex_init(&fs_info->scrub_lock);
2283         atomic_set(&fs_info->scrubs_running, 0);
2284         atomic_set(&fs_info->scrub_pause_req, 0);
2285         atomic_set(&fs_info->scrubs_paused, 0);
2286         atomic_set(&fs_info->scrub_cancel_req, 0);
2287         init_waitqueue_head(&fs_info->replace_wait);
2288         init_waitqueue_head(&fs_info->scrub_pause_wait);
2289         fs_info->scrub_workers_refcnt = 0;
2290 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2291         fs_info->check_integrity_print_mask = 0;
2292 #endif
2293
2294         spin_lock_init(&fs_info->balance_lock);
2295         mutex_init(&fs_info->balance_mutex);
2296         atomic_set(&fs_info->balance_running, 0);
2297         atomic_set(&fs_info->balance_pause_req, 0);
2298         atomic_set(&fs_info->balance_cancel_req, 0);
2299         fs_info->balance_ctl = NULL;
2300         init_waitqueue_head(&fs_info->balance_wait_q);
2301         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2302
2303         sb->s_blocksize = 4096;
2304         sb->s_blocksize_bits = blksize_bits(4096);
2305         sb->s_bdi = &fs_info->bdi;
2306
2307         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2308         set_nlink(fs_info->btree_inode, 1);
2309         /*
2310          * we set the i_size on the btree inode to the max possible int.
2311          * the real end of the address space is determined by all of
2312          * the devices in the system
2313          */
2314         fs_info->btree_inode->i_size = OFFSET_MAX;
2315         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2316         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2317
2318         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2319         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2320                              fs_info->btree_inode->i_mapping);
2321         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2322         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2323
2324         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2325
2326         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2327         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2328                sizeof(struct btrfs_key));
2329         set_bit(BTRFS_INODE_DUMMY,
2330                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2331         btrfs_insert_inode_hash(fs_info->btree_inode);
2332
2333         spin_lock_init(&fs_info->block_group_cache_lock);
2334         fs_info->block_group_cache_tree = RB_ROOT;
2335         fs_info->first_logical_byte = (u64)-1;
2336
2337         extent_io_tree_init(&fs_info->freed_extents[0],
2338                              fs_info->btree_inode->i_mapping);
2339         extent_io_tree_init(&fs_info->freed_extents[1],
2340                              fs_info->btree_inode->i_mapping);
2341         fs_info->pinned_extents = &fs_info->freed_extents[0];
2342         fs_info->do_barriers = 1;
2343
2344
2345         mutex_init(&fs_info->ordered_operations_mutex);
2346         mutex_init(&fs_info->ordered_extent_flush_mutex);
2347         mutex_init(&fs_info->tree_log_mutex);
2348         mutex_init(&fs_info->chunk_mutex);
2349         mutex_init(&fs_info->transaction_kthread_mutex);
2350         mutex_init(&fs_info->cleaner_mutex);
2351         mutex_init(&fs_info->volume_mutex);
2352         init_rwsem(&fs_info->commit_root_sem);
2353         init_rwsem(&fs_info->cleanup_work_sem);
2354         init_rwsem(&fs_info->subvol_sem);
2355         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2356         fs_info->dev_replace.lock_owner = 0;
2357         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2358         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2359         mutex_init(&fs_info->dev_replace.lock_management_lock);
2360         mutex_init(&fs_info->dev_replace.lock);
2361
2362         spin_lock_init(&fs_info->qgroup_lock);
2363         mutex_init(&fs_info->qgroup_ioctl_lock);
2364         fs_info->qgroup_tree = RB_ROOT;
2365         fs_info->qgroup_op_tree = RB_ROOT;
2366         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2367         fs_info->qgroup_seq = 1;
2368         fs_info->quota_enabled = 0;
2369         fs_info->pending_quota_state = 0;
2370         fs_info->qgroup_ulist = NULL;
2371         mutex_init(&fs_info->qgroup_rescan_lock);
2372
2373         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2374         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2375
2376         init_waitqueue_head(&fs_info->transaction_throttle);
2377         init_waitqueue_head(&fs_info->transaction_wait);
2378         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2379         init_waitqueue_head(&fs_info->async_submit_wait);
2380
2381         ret = btrfs_alloc_stripe_hash_table(fs_info);
2382         if (ret) {
2383                 err = ret;
2384                 goto fail_alloc;
2385         }
2386
2387         __setup_root(4096, 4096, 4096, 4096, tree_root,
2388                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2389
2390         invalidate_bdev(fs_devices->latest_bdev);
2391
2392         /*
2393          * Read super block and check the signature bytes only
2394          */
2395         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2396         if (!bh) {
2397                 err = -EINVAL;
2398                 goto fail_alloc;
2399         }
2400
2401         /*
2402          * We want to check superblock checksum, the type is stored inside.
2403          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2404          */
2405         if (btrfs_check_super_csum(bh->b_data)) {
2406                 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2407                 err = -EINVAL;
2408                 goto fail_alloc;
2409         }
2410
2411         /*
2412          * super_copy is zeroed at allocation time and we never touch the
2413          * following bytes up to INFO_SIZE, the checksum is calculated from
2414          * the whole block of INFO_SIZE
2415          */
2416         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2417         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2418                sizeof(*fs_info->super_for_commit));
2419         brelse(bh);
2420
2421         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2422
2423         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2424         if (ret) {
2425                 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2426                 err = -EINVAL;
2427                 goto fail_alloc;
2428         }
2429
2430         disk_super = fs_info->super_copy;
2431         if (!btrfs_super_root(disk_super))
2432                 goto fail_alloc;
2433
2434         /* check FS state, whether FS is broken. */
2435         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2436                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2437
2438         /*
2439          * run through our array of backup supers and setup
2440          * our ring pointer to the oldest one
2441          */
2442         generation = btrfs_super_generation(disk_super);
2443         find_oldest_super_backup(fs_info, generation);
2444
2445         /*
2446          * In the long term, we'll store the compression type in the super
2447          * block, and it'll be used for per file compression control.
2448          */
2449         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2450
2451         ret = btrfs_parse_options(tree_root, options);
2452         if (ret) {
2453                 err = ret;
2454                 goto fail_alloc;
2455         }
2456
2457         features = btrfs_super_incompat_flags(disk_super) &
2458                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2459         if (features) {
2460                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2461                        "unsupported optional features (%Lx).\n",
2462                        features);
2463                 err = -EINVAL;
2464                 goto fail_alloc;
2465         }
2466
2467         if (btrfs_super_leafsize(disk_super) !=
2468             btrfs_super_nodesize(disk_super)) {
2469                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2470                        "blocksizes don't match.  node %d leaf %d\n",
2471                        btrfs_super_nodesize(disk_super),
2472                        btrfs_super_leafsize(disk_super));
2473                 err = -EINVAL;
2474                 goto fail_alloc;
2475         }
2476         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2477                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2478                        "blocksize (%d) was too large\n",
2479                        btrfs_super_leafsize(disk_super));
2480                 err = -EINVAL;
2481                 goto fail_alloc;
2482         }
2483
2484         features = btrfs_super_incompat_flags(disk_super);
2485         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2486         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2487                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2488
2489         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2490                 printk(KERN_ERR "BTRFS: has skinny extents\n");
2491
2492         /*
2493          * flag our filesystem as having big metadata blocks if
2494          * they are bigger than the page size
2495          */
2496         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2497                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2498                         printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2499                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2500         }
2501
2502         nodesize = btrfs_super_nodesize(disk_super);
2503         leafsize = btrfs_super_leafsize(disk_super);
2504         sectorsize = btrfs_super_sectorsize(disk_super);
2505         stripesize = btrfs_super_stripesize(disk_super);
2506         fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2507         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2508
2509         /*
2510          * mixed block groups end up with duplicate but slightly offset
2511          * extent buffers for the same range.  It leads to corruptions
2512          */
2513         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2514             (sectorsize != leafsize)) {
2515                 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
2516                                 "are not allowed for mixed block groups on %s\n",
2517                                 sb->s_id);
2518                 goto fail_alloc;
2519         }
2520
2521         /*
2522          * Needn't use the lock because there is no other task which will
2523          * update the flag.
2524          */
2525         btrfs_set_super_incompat_flags(disk_super, features);
2526
2527         features = btrfs_super_compat_ro_flags(disk_super) &
2528                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2529         if (!(sb->s_flags & MS_RDONLY) && features) {
2530                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2531                        "unsupported option features (%Lx).\n",
2532                        features);
2533                 err = -EINVAL;
2534                 goto fail_alloc;
2535         }
2536
2537         max_active = fs_info->thread_pool_size;
2538
2539         fs_info->workers =
2540                 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2541                                       max_active, 16);
2542
2543         fs_info->delalloc_workers =
2544                 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2545
2546         fs_info->flush_workers =
2547                 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2548
2549         fs_info->caching_workers =
2550                 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2551
2552         /*
2553          * a higher idle thresh on the submit workers makes it much more
2554          * likely that bios will be send down in a sane order to the
2555          * devices
2556          */
2557         fs_info->submit_workers =
2558                 btrfs_alloc_workqueue("submit", flags,
2559                                       min_t(u64, fs_devices->num_devices,
2560                                             max_active), 64);
2561
2562         fs_info->fixup_workers =
2563                 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2564
2565         /*
2566          * endios are largely parallel and should have a very
2567          * low idle thresh
2568          */
2569         fs_info->endio_workers =
2570                 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2571         fs_info->endio_meta_workers =
2572                 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2573         fs_info->endio_meta_write_workers =
2574                 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2575         fs_info->endio_raid56_workers =
2576                 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2577         fs_info->rmw_workers =
2578                 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2579         fs_info->endio_write_workers =
2580                 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2581         fs_info->endio_freespace_worker =
2582                 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2583         fs_info->delayed_workers =
2584                 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2585         fs_info->readahead_workers =
2586                 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2587         fs_info->qgroup_rescan_workers =
2588                 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2589
2590         if (!(fs_info->workers && fs_info->delalloc_workers &&
2591               fs_info->submit_workers && fs_info->flush_workers &&
2592               fs_info->endio_workers && fs_info->endio_meta_workers &&
2593               fs_info->endio_meta_write_workers &&
2594               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2595               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2596               fs_info->caching_workers && fs_info->readahead_workers &&
2597               fs_info->fixup_workers && fs_info->delayed_workers &&
2598               fs_info->qgroup_rescan_workers)) {
2599                 err = -ENOMEM;
2600                 goto fail_sb_buffer;
2601         }
2602
2603         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2604         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2605                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2606
2607         tree_root->nodesize = nodesize;
2608         tree_root->leafsize = leafsize;
2609         tree_root->sectorsize = sectorsize;
2610         tree_root->stripesize = stripesize;
2611
2612         sb->s_blocksize = sectorsize;
2613         sb->s_blocksize_bits = blksize_bits(sectorsize);
2614
2615         if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2616                 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
2617                 goto fail_sb_buffer;
2618         }
2619
2620         if (sectorsize != PAGE_SIZE) {
2621                 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
2622                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2623                 goto fail_sb_buffer;
2624         }
2625
2626         mutex_lock(&fs_info->chunk_mutex);
2627         ret = btrfs_read_sys_array(tree_root);
2628         mutex_unlock(&fs_info->chunk_mutex);
2629         if (ret) {
2630                 printk(KERN_WARNING "BTRFS: failed to read the system "
2631                        "array on %s\n", sb->s_id);
2632                 goto fail_sb_buffer;
2633         }
2634
2635         blocksize = btrfs_level_size(tree_root,
2636                                      btrfs_super_chunk_root_level(disk_super));
2637         generation = btrfs_super_chunk_root_generation(disk_super);
2638
2639         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2640                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2641
2642         chunk_root->node = read_tree_block(chunk_root,
2643                                            btrfs_super_chunk_root(disk_super),
2644                                            blocksize, generation);
2645         if (!chunk_root->node ||
2646             !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2647                 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
2648                        sb->s_id);
2649                 goto fail_tree_roots;
2650         }
2651         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2652         chunk_root->commit_root = btrfs_root_node(chunk_root);
2653
2654         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2655            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2656
2657         ret = btrfs_read_chunk_tree(chunk_root);
2658         if (ret) {
2659                 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
2660                        sb->s_id);
2661                 goto fail_tree_roots;
2662         }
2663
2664         /*
2665          * keep the device that is marked to be the target device for the
2666          * dev_replace procedure
2667          */
2668         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2669
2670         if (!fs_devices->latest_bdev) {
2671                 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
2672                        sb->s_id);
2673                 goto fail_tree_roots;
2674         }
2675
2676 retry_root_backup:
2677         blocksize = btrfs_level_size(tree_root,
2678                                      btrfs_super_root_level(disk_super));
2679         generation = btrfs_super_generation(disk_super);
2680
2681         tree_root->node = read_tree_block(tree_root,
2682                                           btrfs_super_root(disk_super),
2683                                           blocksize, generation);
2684         if (!tree_root->node ||
2685             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2686                 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2687                        sb->s_id);
2688
2689                 goto recovery_tree_root;
2690         }
2691
2692         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2693         tree_root->commit_root = btrfs_root_node(tree_root);
2694         btrfs_set_root_refs(&tree_root->root_item, 1);
2695
2696         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2697         location.type = BTRFS_ROOT_ITEM_KEY;
2698         location.offset = 0;
2699
2700         extent_root = btrfs_read_tree_root(tree_root, &location);
2701         if (IS_ERR(extent_root)) {
2702                 ret = PTR_ERR(extent_root);
2703                 goto recovery_tree_root;
2704         }
2705         set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
2706         fs_info->extent_root = extent_root;
2707
2708         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2709         dev_root = btrfs_read_tree_root(tree_root, &location);
2710         if (IS_ERR(dev_root)) {
2711                 ret = PTR_ERR(dev_root);
2712                 goto recovery_tree_root;
2713         }
2714         set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
2715         fs_info->dev_root = dev_root;
2716         btrfs_init_devices_late(fs_info);
2717
2718         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2719         csum_root = btrfs_read_tree_root(tree_root, &location);
2720         if (IS_ERR(csum_root)) {
2721                 ret = PTR_ERR(csum_root);
2722                 goto recovery_tree_root;
2723         }
2724         set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
2725         fs_info->csum_root = csum_root;
2726
2727         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2728         quota_root = btrfs_read_tree_root(tree_root, &location);
2729         if (!IS_ERR(quota_root)) {
2730                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &quota_root->state);
2731                 fs_info->quota_enabled = 1;
2732                 fs_info->pending_quota_state = 1;
2733                 fs_info->quota_root = quota_root;
2734         }
2735
2736         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2737         uuid_root = btrfs_read_tree_root(tree_root, &location);
2738         if (IS_ERR(uuid_root)) {
2739                 ret = PTR_ERR(uuid_root);
2740                 if (ret != -ENOENT)
2741                         goto recovery_tree_root;
2742                 create_uuid_tree = true;
2743                 check_uuid_tree = false;
2744         } else {
2745                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
2746                 fs_info->uuid_root = uuid_root;
2747                 create_uuid_tree = false;
2748                 check_uuid_tree =
2749                     generation != btrfs_super_uuid_tree_generation(disk_super);
2750         }
2751
2752         fs_info->generation = generation;
2753         fs_info->last_trans_committed = generation;
2754
2755         ret = btrfs_recover_balance(fs_info);
2756         if (ret) {
2757                 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
2758                 goto fail_block_groups;
2759         }
2760
2761         ret = btrfs_init_dev_stats(fs_info);
2762         if (ret) {
2763                 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2764                        ret);
2765                 goto fail_block_groups;
2766         }
2767
2768         ret = btrfs_init_dev_replace(fs_info);
2769         if (ret) {
2770                 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2771                 goto fail_block_groups;
2772         }
2773
2774         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2775
2776         ret = btrfs_sysfs_add_one(fs_info);
2777         if (ret) {
2778                 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2779                 goto fail_block_groups;
2780         }
2781
2782         ret = btrfs_init_space_info(fs_info);
2783         if (ret) {
2784                 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2785                 goto fail_sysfs;
2786         }
2787
2788         ret = btrfs_read_block_groups(extent_root);
2789         if (ret) {
2790                 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2791                 goto fail_sysfs;
2792         }
2793         fs_info->num_tolerated_disk_barrier_failures =
2794                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2795         if (fs_info->fs_devices->missing_devices >
2796              fs_info->num_tolerated_disk_barrier_failures &&
2797             !(sb->s_flags & MS_RDONLY)) {
2798                 printk(KERN_WARNING "BTRFS: "
2799                         "too many missing devices, writeable mount is not allowed\n");
2800                 goto fail_sysfs;
2801         }
2802
2803         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2804                                                "btrfs-cleaner");
2805         if (IS_ERR(fs_info->cleaner_kthread))
2806                 goto fail_sysfs;
2807
2808         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2809                                                    tree_root,
2810                                                    "btrfs-transaction");
2811         if (IS_ERR(fs_info->transaction_kthread))
2812                 goto fail_cleaner;
2813
2814         if (!btrfs_test_opt(tree_root, SSD) &&
2815             !btrfs_test_opt(tree_root, NOSSD) &&
2816             !fs_info->fs_devices->rotating) {
2817                 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2818                        "mode\n");
2819                 btrfs_set_opt(fs_info->mount_opt, SSD);
2820         }
2821
2822         /* Set the real inode map cache flag */
2823         if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2824                 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2825
2826 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2827         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2828                 ret = btrfsic_mount(tree_root, fs_devices,
2829                                     btrfs_test_opt(tree_root,
2830                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2831                                     1 : 0,
2832                                     fs_info->check_integrity_print_mask);
2833                 if (ret)
2834                         printk(KERN_WARNING "BTRFS: failed to initialize"
2835                                " integrity check module %s\n", sb->s_id);
2836         }
2837 #endif
2838         ret = btrfs_read_qgroup_config(fs_info);
2839         if (ret)
2840                 goto fail_trans_kthread;
2841
2842         /* do not make disk changes in broken FS */
2843         if (btrfs_super_log_root(disk_super) != 0) {
2844                 u64 bytenr = btrfs_super_log_root(disk_super);
2845
2846                 if (fs_devices->rw_devices == 0) {
2847                         printk(KERN_WARNING "BTRFS: log replay required "
2848                                "on RO media\n");
2849                         err = -EIO;
2850                         goto fail_qgroup;
2851                 }
2852                 blocksize =
2853                      btrfs_level_size(tree_root,
2854                                       btrfs_super_log_root_level(disk_super));
2855
2856                 log_tree_root = btrfs_alloc_root(fs_info);
2857                 if (!log_tree_root) {
2858                         err = -ENOMEM;
2859                         goto fail_qgroup;
2860                 }
2861
2862                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2863                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2864
2865                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2866                                                       blocksize,
2867                                                       generation + 1);
2868                 if (!log_tree_root->node ||
2869                     !extent_buffer_uptodate(log_tree_root->node)) {
2870                         printk(KERN_ERR "BTRFS: failed to read log tree\n");
2871                         free_extent_buffer(log_tree_root->node);
2872                         kfree(log_tree_root);
2873                         goto fail_qgroup;
2874                 }
2875                 /* returns with log_tree_root freed on success */
2876                 ret = btrfs_recover_log_trees(log_tree_root);
2877                 if (ret) {
2878                         btrfs_error(tree_root->fs_info, ret,
2879                                     "Failed to recover log tree");
2880                         free_extent_buffer(log_tree_root->node);
2881                         kfree(log_tree_root);
2882                         goto fail_qgroup;
2883                 }
2884
2885                 if (sb->s_flags & MS_RDONLY) {
2886                         ret = btrfs_commit_super(tree_root);
2887                         if (ret)
2888                                 goto fail_qgroup;
2889                 }
2890         }
2891
2892         ret = btrfs_find_orphan_roots(tree_root);
2893         if (ret)
2894                 goto fail_qgroup;
2895
2896         if (!(sb->s_flags & MS_RDONLY)) {
2897                 ret = btrfs_cleanup_fs_roots(fs_info);
2898                 if (ret)
2899                         goto fail_qgroup;
2900
2901                 ret = btrfs_recover_relocation(tree_root);
2902                 if (ret < 0) {
2903                         printk(KERN_WARNING
2904                                "BTRFS: failed to recover relocation\n");
2905                         err = -EINVAL;
2906                         goto fail_qgroup;
2907                 }
2908         }
2909
2910         location.objectid = BTRFS_FS_TREE_OBJECTID;
2911         location.type = BTRFS_ROOT_ITEM_KEY;
2912         location.offset = 0;
2913
2914         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2915         if (IS_ERR(fs_info->fs_root)) {
2916                 err = PTR_ERR(fs_info->fs_root);
2917                 goto fail_qgroup;
2918         }
2919
2920         if (sb->s_flags & MS_RDONLY)
2921                 return 0;
2922
2923         down_read(&fs_info->cleanup_work_sem);
2924         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2925             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2926                 up_read(&fs_info->cleanup_work_sem);
2927                 close_ctree(tree_root);
2928                 return ret;
2929         }
2930         up_read(&fs_info->cleanup_work_sem);
2931
2932         ret = btrfs_resume_balance_async(fs_info);
2933         if (ret) {
2934                 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2935                 close_ctree(tree_root);
2936                 return ret;
2937         }
2938
2939         ret = btrfs_resume_dev_replace_async(fs_info);
2940         if (ret) {
2941                 pr_warn("BTRFS: failed to resume dev_replace\n");
2942                 close_ctree(tree_root);
2943                 return ret;
2944         }
2945
2946         btrfs_qgroup_rescan_resume(fs_info);
2947
2948         if (create_uuid_tree) {
2949                 pr_info("BTRFS: creating UUID tree\n");
2950                 ret = btrfs_create_uuid_tree(fs_info);
2951                 if (ret) {
2952                         pr_warn("BTRFS: failed to create the UUID tree %d\n",
2953                                 ret);
2954                         close_ctree(tree_root);
2955                         return ret;
2956                 }
2957         } else if (check_uuid_tree ||
2958                    btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2959                 pr_info("BTRFS: checking UUID tree\n");
2960                 ret = btrfs_check_uuid_tree(fs_info);
2961                 if (ret) {
2962                         pr_warn("BTRFS: failed to check the UUID tree %d\n",
2963                                 ret);
2964                         close_ctree(tree_root);
2965                         return ret;
2966                 }
2967         } else {
2968                 fs_info->update_uuid_tree_gen = 1;
2969         }
2970
2971         return 0;
2972
2973 fail_qgroup:
2974         btrfs_free_qgroup_config(fs_info);
2975 fail_trans_kthread:
2976         kthread_stop(fs_info->transaction_kthread);
2977         btrfs_cleanup_transaction(fs_info->tree_root);
2978         btrfs_free_fs_roots(fs_info);
2979 fail_cleaner:
2980         kthread_stop(fs_info->cleaner_kthread);
2981
2982         /*
2983          * make sure we're done with the btree inode before we stop our
2984          * kthreads
2985          */
2986         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2987
2988 fail_sysfs:
2989         btrfs_sysfs_remove_one(fs_info);
2990
2991 fail_block_groups:
2992         btrfs_put_block_group_cache(fs_info);
2993         btrfs_free_block_groups(fs_info);
2994
2995 fail_tree_roots:
2996         free_root_pointers(fs_info, 1);
2997         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2998
2999 fail_sb_buffer:
3000         btrfs_stop_all_workers(fs_info);
3001 fail_alloc:
3002 fail_iput:
3003         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3004
3005         iput(fs_info->btree_inode);
3006 fail_bio_counter:
3007         percpu_counter_destroy(&fs_info->bio_counter);
3008 fail_delalloc_bytes:
3009         percpu_counter_destroy(&fs_info->delalloc_bytes);
3010 fail_dirty_metadata_bytes:
3011         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3012 fail_bdi:
3013         bdi_destroy(&fs_info->bdi);
3014 fail_srcu:
3015         cleanup_srcu_struct(&fs_info->subvol_srcu);
3016 fail:
3017         btrfs_free_stripe_hash_table(fs_info);
3018         btrfs_close_devices(fs_info->fs_devices);
3019         return err;
3020
3021 recovery_tree_root:
3022         if (!btrfs_test_opt(tree_root, RECOVERY))
3023                 goto fail_tree_roots;
3024
3025         free_root_pointers(fs_info, 0);
3026
3027         /* don't use the log in recovery mode, it won't be valid */
3028         btrfs_set_super_log_root(disk_super, 0);
3029
3030         /* we can't trust the free space cache either */
3031         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3032
3033         ret = next_root_backup(fs_info, fs_info->super_copy,
3034                                &num_backups_tried, &backup_index);
3035         if (ret == -1)
3036                 goto fail_block_groups;
3037         goto retry_root_backup;
3038 }
3039
3040 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3041 {
3042         if (uptodate) {
3043                 set_buffer_uptodate(bh);
3044         } else {
3045                 struct btrfs_device *device = (struct btrfs_device *)
3046                         bh->b_private;
3047
3048                 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3049                                           "I/O error on %s\n",
3050                                           rcu_str_deref(device->name));
3051                 /* note, we dont' set_buffer_write_io_error because we have
3052                  * our own ways of dealing with the IO errors
3053                  */
3054                 clear_buffer_uptodate(bh);
3055                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3056         }
3057         unlock_buffer(bh);
3058         put_bh(bh);
3059 }
3060
3061 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3062 {
3063         struct buffer_head *bh;
3064         struct buffer_head *latest = NULL;
3065         struct btrfs_super_block *super;
3066         int i;
3067         u64 transid = 0;
3068         u64 bytenr;
3069
3070         /* we would like to check all the supers, but that would make
3071          * a btrfs mount succeed after a mkfs from a different FS.
3072          * So, we need to add a special mount option to scan for
3073          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3074          */
3075         for (i = 0; i < 1; i++) {
3076                 bytenr = btrfs_sb_offset(i);
3077                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3078                                         i_size_read(bdev->bd_inode))
3079                         break;
3080                 bh = __bread(bdev, bytenr / 4096,
3081                                         BTRFS_SUPER_INFO_SIZE);
3082                 if (!bh)
3083                         continue;
3084
3085                 super = (struct btrfs_super_block *)bh->b_data;
3086                 if (btrfs_super_bytenr(super) != bytenr ||
3087                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3088                         brelse(bh);
3089                         continue;
3090                 }
3091
3092                 if (!latest || btrfs_super_generation(super) > transid) {
3093                         brelse(latest);
3094                         latest = bh;
3095                         transid = btrfs_super_generation(super);
3096                 } else {
3097                         brelse(bh);
3098                 }
3099         }
3100         return latest;
3101 }
3102
3103 /*
3104  * this should be called twice, once with wait == 0 and
3105  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3106  * we write are pinned.
3107  *
3108  * They are released when wait == 1 is done.
3109  * max_mirrors must be the same for both runs, and it indicates how
3110  * many supers on this one device should be written.
3111  *
3112  * max_mirrors == 0 means to write them all.
3113  */
3114 static int write_dev_supers(struct btrfs_device *device,
3115                             struct btrfs_super_block *sb,
3116                             int do_barriers, int wait, int max_mirrors)
3117 {
3118         struct buffer_head *bh;
3119         int i;
3120         int ret;
3121         int errors = 0;
3122         u32 crc;
3123         u64 bytenr;
3124
3125         if (max_mirrors == 0)
3126                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3127
3128         for (i = 0; i < max_mirrors; i++) {
3129                 bytenr = btrfs_sb_offset(i);
3130                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3131                         break;
3132
3133                 if (wait) {
3134                         bh = __find_get_block(device->bdev, bytenr / 4096,
3135                                               BTRFS_SUPER_INFO_SIZE);
3136                         if (!bh) {
3137                                 errors++;
3138                                 continue;
3139                         }
3140                         wait_on_buffer(bh);
3141                         if (!buffer_uptodate(bh))
3142                                 errors++;
3143
3144                         /* drop our reference */
3145                         brelse(bh);
3146
3147                         /* drop the reference from the wait == 0 run */
3148                         brelse(bh);
3149                         continue;
3150                 } else {
3151                         btrfs_set_super_bytenr(sb, bytenr);
3152
3153                         crc = ~(u32)0;
3154                         crc = btrfs_csum_data((char *)sb +
3155                                               BTRFS_CSUM_SIZE, crc,
3156                                               BTRFS_SUPER_INFO_SIZE -
3157                                               BTRFS_CSUM_SIZE);
3158                         btrfs_csum_final(crc, sb->csum);
3159
3160                         /*
3161                          * one reference for us, and we leave it for the
3162                          * caller
3163                          */
3164                         bh = __getblk(device->bdev, bytenr / 4096,
3165                                       BTRFS_SUPER_INFO_SIZE);
3166                         if (!bh) {
3167                                 printk(KERN_ERR "BTRFS: couldn't get super "
3168                                        "buffer head for bytenr %Lu\n", bytenr);
3169                                 errors++;
3170                                 continue;
3171                         }
3172
3173                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3174
3175                         /* one reference for submit_bh */
3176                         get_bh(bh);
3177
3178                         set_buffer_uptodate(bh);
3179                         lock_buffer(bh);
3180                         bh->b_end_io = btrfs_end_buffer_write_sync;
3181                         bh->b_private = device;
3182                 }
3183
3184                 /*
3185                  * we fua the first super.  The others we allow
3186                  * to go down lazy.
3187                  */
3188                 if (i == 0)
3189                         ret = btrfsic_submit_bh(WRITE_FUA, bh);
3190                 else
3191                         ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3192                 if (ret)
3193                         errors++;
3194         }
3195         return errors < i ? 0 : -1;
3196 }
3197
3198 /*
3199  * endio for the write_dev_flush, this will wake anyone waiting
3200  * for the barrier when it is done
3201  */
3202 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3203 {
3204         if (err) {
3205                 if (err == -EOPNOTSUPP)
3206                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3207                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3208         }
3209         if (bio->bi_private)
3210                 complete(bio->bi_private);
3211         bio_put(bio);
3212 }
3213
3214 /*
3215  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3216  * sent down.  With wait == 1, it waits for the previous flush.
3217  *
3218  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3219  * capable
3220  */
3221 static int write_dev_flush(struct btrfs_device *device, int wait)
3222 {
3223         struct bio *bio;
3224         int ret = 0;
3225
3226         if (device->nobarriers)
3227                 return 0;
3228
3229         if (wait) {
3230                 bio = device->flush_bio;
3231                 if (!bio)
3232                         return 0;
3233
3234                 wait_for_completion(&device->flush_wait);
3235
3236                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3237                         printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3238                                       rcu_str_deref(device->name));
3239                         device->nobarriers = 1;
3240                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3241                         ret = -EIO;
3242                         btrfs_dev_stat_inc_and_print(device,
3243                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3244                 }
3245
3246                 /* drop the reference from the wait == 0 run */
3247                 bio_put(bio);
3248                 device->flush_bio = NULL;
3249
3250                 return ret;
3251         }
3252
3253         /*
3254          * one reference for us, and we leave it for the
3255          * caller
3256          */
3257         device->flush_bio = NULL;
3258         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3259         if (!bio)
3260                 return -ENOMEM;
3261
3262         bio->bi_end_io = btrfs_end_empty_barrier;
3263         bio->bi_bdev = device->bdev;
3264         init_completion(&device->flush_wait);
3265         bio->bi_private = &device->flush_wait;
3266         device->flush_bio = bio;
3267
3268         bio_get(bio);
3269         btrfsic_submit_bio(WRITE_FLUSH, bio);
3270
3271         return 0;
3272 }
3273
3274 /*
3275  * send an empty flush down to each device in parallel,
3276  * then wait for them
3277  */
3278 static int barrier_all_devices(struct btrfs_fs_info *info)
3279 {
3280         struct list_head *head;
3281         struct btrfs_device *dev;
3282         int errors_send = 0;
3283         int errors_wait = 0;
3284         int ret;
3285
3286         /* send down all the barriers */
3287         head = &info->fs_devices->devices;
3288         list_for_each_entry_rcu(dev, head, dev_list) {
3289                 if (dev->missing)
3290                         continue;
3291                 if (!dev->bdev) {
3292                         errors_send++;
3293                         continue;
3294                 }
3295                 if (!dev->in_fs_metadata || !dev->writeable)
3296                         continue;
3297
3298                 ret = write_dev_flush(dev, 0);
3299                 if (ret)
3300                         errors_send++;
3301         }
3302
3303         /* wait for all the barriers */
3304         list_for_each_entry_rcu(dev, head, dev_list) {
3305                 if (dev->missing)
3306                         continue;
3307                 if (!dev->bdev) {
3308                         errors_wait++;
3309                         continue;
3310                 }
3311                 if (!dev->in_fs_metadata || !dev->writeable)
3312                         continue;
3313
3314                 ret = write_dev_flush(dev, 1);
3315                 if (ret)
3316                         errors_wait++;
3317         }
3318         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3319             errors_wait > info->num_tolerated_disk_barrier_failures)
3320                 return -EIO;
3321         return 0;
3322 }
3323
3324 int btrfs_calc_num_tolerated_disk_barrier_failures(
3325         struct btrfs_fs_info *fs_info)
3326 {
3327         struct btrfs_ioctl_space_info space;
3328         struct btrfs_space_info *sinfo;
3329         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3330                        BTRFS_BLOCK_GROUP_SYSTEM,
3331                        BTRFS_BLOCK_GROUP_METADATA,
3332                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3333         int num_types = 4;
3334         int i;
3335         int c;
3336         int num_tolerated_disk_barrier_failures =
3337                 (int)fs_info->fs_devices->num_devices;
3338
3339         for (i = 0; i < num_types; i++) {
3340                 struct btrfs_space_info *tmp;
3341
3342                 sinfo = NULL;
3343                 rcu_read_lock();
3344                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3345                         if (tmp->flags == types[i]) {
3346                                 sinfo = tmp;
3347                                 break;
3348                         }
3349                 }
3350                 rcu_read_unlock();
3351
3352                 if (!sinfo)
3353                         continue;
3354
3355                 down_read(&sinfo->groups_sem);
3356                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3357                         if (!list_empty(&sinfo->block_groups[c])) {
3358                                 u64 flags;
3359
3360                                 btrfs_get_block_group_info(
3361                                         &sinfo->block_groups[c], &space);
3362                                 if (space.total_bytes == 0 ||
3363                                     space.used_bytes == 0)
3364                                         continue;
3365                                 flags = space.flags;
3366                                 /*
3367                                  * return
3368                                  * 0: if dup, single or RAID0 is configured for
3369                                  *    any of metadata, system or data, else
3370                                  * 1: if RAID5 is configured, or if RAID1 or
3371                                  *    RAID10 is configured and only two mirrors
3372                                  *    are used, else
3373                                  * 2: if RAID6 is configured, else
3374                                  * num_mirrors - 1: if RAID1 or RAID10 is
3375                                  *                  configured and more than
3376                                  *                  2 mirrors are used.
3377                                  */
3378                                 if (num_tolerated_disk_barrier_failures > 0 &&
3379                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3380                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3381                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3382                                       == 0)))
3383                                         num_tolerated_disk_barrier_failures = 0;
3384                                 else if (num_tolerated_disk_barrier_failures > 1) {
3385                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3386                                             BTRFS_BLOCK_GROUP_RAID5 |
3387                                             BTRFS_BLOCK_GROUP_RAID10)) {
3388                                                 num_tolerated_disk_barrier_failures = 1;
3389                                         } else if (flags &
3390                                                    BTRFS_BLOCK_GROUP_RAID6) {
3391                                                 num_tolerated_disk_barrier_failures = 2;
3392                                         }
3393                                 }
3394                         }
3395                 }
3396                 up_read(&sinfo->groups_sem);
3397         }
3398
3399         return num_tolerated_disk_barrier_failures;
3400 }
3401
3402 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3403 {
3404         struct list_head *head;
3405         struct btrfs_device *dev;
3406         struct btrfs_super_block *sb;
3407         struct btrfs_dev_item *dev_item;
3408         int ret;
3409         int do_barriers;
3410         int max_errors;
3411         int total_errors = 0;
3412         u64 flags;
3413
3414         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3415         backup_super_roots(root->fs_info);
3416
3417         sb = root->fs_info->super_for_commit;
3418         dev_item = &sb->dev_item;
3419
3420         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3421         head = &root->fs_info->fs_devices->devices;
3422         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3423
3424         if (do_barriers) {
3425                 ret = barrier_all_devices(root->fs_info);
3426                 if (ret) {
3427                         mutex_unlock(
3428                                 &root->fs_info->fs_devices->device_list_mutex);
3429                         btrfs_error(root->fs_info, ret,
3430                                     "errors while submitting device barriers.");
3431                         return ret;
3432                 }
3433         }
3434
3435         list_for_each_entry_rcu(dev, head, dev_list) {
3436                 if (!dev->bdev) {
3437                         total_errors++;
3438                         continue;
3439                 }
3440                 if (!dev->in_fs_metadata || !dev->writeable)
3441                         continue;
3442
3443                 btrfs_set_stack_device_generation(dev_item, 0);
3444                 btrfs_set_stack_device_type(dev_item, dev->type);
3445                 btrfs_set_stack_device_id(dev_item, dev->devid);
3446                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3447                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3448                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3449                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3450                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3451                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3452                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3453
3454                 flags = btrfs_super_flags(sb);
3455                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3456
3457                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3458                 if (ret)
3459                         total_errors++;
3460         }
3461         if (total_errors > max_errors) {
3462                 btrfs_err(root->fs_info, "%d errors while writing supers",
3463                        total_errors);
3464                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3465
3466                 /* FUA is masked off if unsupported and can't be the reason */
3467                 btrfs_error(root->fs_info, -EIO,
3468                             "%d errors while writing supers", total_errors);
3469                 return -EIO;
3470         }
3471
3472         total_errors = 0;
3473         list_for_each_entry_rcu(dev, head, dev_list) {
3474                 if (!dev->bdev)
3475                         continue;
3476                 if (!dev->in_fs_metadata || !dev->writeable)
3477                         continue;
3478
3479                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3480                 if (ret)
3481                         total_errors++;
3482         }
3483         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3484         if (total_errors > max_errors) {
3485                 btrfs_error(root->fs_info, -EIO,
3486                             "%d errors while writing supers", total_errors);
3487                 return -EIO;
3488         }
3489         return 0;
3490 }
3491
3492 int write_ctree_super(struct btrfs_trans_handle *trans,
3493                       struct btrfs_root *root, int max_mirrors)
3494 {
3495         return write_all_supers(root, max_mirrors);
3496 }
3497
3498 /* Drop a fs root from the radix tree and free it. */
3499 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3500                                   struct btrfs_root *root)
3501 {
3502         spin_lock(&fs_info->fs_roots_radix_lock);
3503         radix_tree_delete(&fs_info->fs_roots_radix,
3504                           (unsigned long)root->root_key.objectid);
3505         spin_unlock(&fs_info->fs_roots_radix_lock);
3506
3507         if (btrfs_root_refs(&root->root_item) == 0)
3508                 synchronize_srcu(&fs_info->subvol_srcu);
3509
3510         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3511                 btrfs_free_log(NULL, root);
3512
3513         if (root->free_ino_pinned)
3514                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3515         if (root->free_ino_ctl)
3516                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3517         free_fs_root(root);
3518 }
3519
3520 static void free_fs_root(struct btrfs_root *root)
3521 {
3522         iput(root->cache_inode);
3523         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3524         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3525         root->orphan_block_rsv = NULL;
3526         if (root->anon_dev)
3527                 free_anon_bdev(root->anon_dev);
3528         if (root->subv_writers)
3529                 btrfs_free_subvolume_writers(root->subv_writers);
3530         free_extent_buffer(root->node);
3531         free_extent_buffer(root->commit_root);
3532         kfree(root->free_ino_ctl);
3533         kfree(root->free_ino_pinned);
3534         kfree(root->name);
3535         btrfs_put_fs_root(root);
3536 }
3537
3538 void btrfs_free_fs_root(struct btrfs_root *root)
3539 {
3540         free_fs_root(root);
3541 }
3542
3543 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3544 {
3545         u64 root_objectid = 0;
3546         struct btrfs_root *gang[8];
3547         int i = 0;
3548         int err = 0;
3549         unsigned int ret = 0;
3550         int index;
3551
3552         while (1) {
3553                 index = srcu_read_lock(&fs_info->subvol_srcu);
3554                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3555                                              (void **)gang, root_objectid,
3556                                              ARRAY_SIZE(gang));
3557                 if (!ret) {
3558                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3559                         break;
3560                 }
3561                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3562
3563                 for (i = 0; i < ret; i++) {
3564                         /* Avoid to grab roots in dead_roots */
3565                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3566                                 gang[i] = NULL;
3567                                 continue;
3568                         }
3569                         /* grab all the search result for later use */
3570                         gang[i] = btrfs_grab_fs_root(gang[i]);
3571                 }
3572                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3573
3574                 for (i = 0; i < ret; i++) {
3575                         if (!gang[i])
3576                                 continue;
3577                         root_objectid = gang[i]->root_key.objectid;
3578                         err = btrfs_orphan_cleanup(gang[i]);
3579                         if (err)
3580                                 break;
3581                         btrfs_put_fs_root(gang[i]);
3582                 }
3583                 root_objectid++;
3584         }
3585
3586         /* release the uncleaned roots due to error */
3587         for (; i < ret; i++) {
3588                 if (gang[i])
3589                         btrfs_put_fs_root(gang[i]);
3590         }
3591         return err;
3592 }
3593
3594 int btrfs_commit_super(struct btrfs_root *root)
3595 {
3596         struct btrfs_trans_handle *trans;
3597
3598         mutex_lock(&root->fs_info->cleaner_mutex);
3599         btrfs_run_delayed_iputs(root);
3600         mutex_unlock(&root->fs_info->cleaner_mutex);
3601         wake_up_process(root->fs_info->cleaner_kthread);
3602
3603         /* wait until ongoing cleanup work done */
3604         down_write(&root->fs_info->cleanup_work_sem);
3605         up_write(&root->fs_info->cleanup_work_sem);
3606
3607         trans = btrfs_join_transaction(root);
3608         if (IS_ERR(trans))
3609                 return PTR_ERR(trans);
3610         return btrfs_commit_transaction(trans, root);
3611 }
3612
3613 int close_ctree(struct btrfs_root *root)
3614 {
3615         struct btrfs_fs_info *fs_info = root->fs_info;
3616         int ret;
3617
3618         fs_info->closing = 1;
3619         smp_mb();
3620
3621         /* wait for the uuid_scan task to finish */
3622         down(&fs_info->uuid_tree_rescan_sem);
3623         /* avoid complains from lockdep et al., set sem back to initial state */
3624         up(&fs_info->uuid_tree_rescan_sem);
3625
3626         /* pause restriper - we want to resume on mount */
3627         btrfs_pause_balance(fs_info);
3628
3629         btrfs_dev_replace_suspend_for_unmount(fs_info);
3630
3631         btrfs_scrub_cancel(fs_info);
3632
3633         /* wait for any defraggers to finish */
3634         wait_event(fs_info->transaction_wait,
3635                    (atomic_read(&fs_info->defrag_running) == 0));
3636
3637         /* clear out the rbtree of defraggable inodes */
3638         btrfs_cleanup_defrag_inodes(fs_info);
3639
3640         cancel_work_sync(&fs_info->async_reclaim_work);
3641
3642         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3643                 ret = btrfs_commit_super(root);
3644                 if (ret)
3645                         btrfs_err(root->fs_info, "commit super ret %d", ret);
3646         }
3647
3648         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3649                 btrfs_error_commit_super(root);
3650
3651         kthread_stop(fs_info->transaction_kthread);
3652         kthread_stop(fs_info->cleaner_kthread);
3653
3654         fs_info->closing = 2;
3655         smp_mb();
3656
3657         btrfs_free_qgroup_config(root->fs_info);
3658
3659         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3660                 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3661                        percpu_counter_sum(&fs_info->delalloc_bytes));
3662         }
3663
3664         btrfs_sysfs_remove_one(fs_info);
3665
3666         btrfs_free_fs_roots(fs_info);
3667
3668         btrfs_put_block_group_cache(fs_info);
3669
3670         btrfs_free_block_groups(fs_info);
3671
3672         /*
3673          * we must make sure there is not any read request to
3674          * submit after we stopping all workers.
3675          */
3676         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3677         btrfs_stop_all_workers(fs_info);
3678
3679         free_root_pointers(fs_info, 1);
3680
3681         iput(fs_info->btree_inode);
3682
3683 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3684         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3685                 btrfsic_unmount(root, fs_info->fs_devices);
3686 #endif
3687
3688         btrfs_close_devices(fs_info->fs_devices);
3689         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3690
3691         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3692         percpu_counter_destroy(&fs_info->delalloc_bytes);
3693         percpu_counter_destroy(&fs_info->bio_counter);
3694         bdi_destroy(&fs_info->bdi);
3695         cleanup_srcu_struct(&fs_info->subvol_srcu);
3696
3697         btrfs_free_stripe_hash_table(fs_info);
3698
3699         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3700         root->orphan_block_rsv = NULL;
3701
3702         return 0;
3703 }
3704
3705 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3706                           int atomic)
3707 {
3708         int ret;
3709         struct inode *btree_inode = buf->pages[0]->mapping->host;
3710
3711         ret = extent_buffer_uptodate(buf);
3712         if (!ret)
3713                 return ret;
3714
3715         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3716                                     parent_transid, atomic);
3717         if (ret == -EAGAIN)
3718                 return ret;
3719         return !ret;
3720 }
3721
3722 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3723 {
3724         return set_extent_buffer_uptodate(buf);
3725 }
3726
3727 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3728 {
3729         struct btrfs_root *root;
3730         u64 transid = btrfs_header_generation(buf);
3731         int was_dirty;
3732
3733 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3734         /*
3735          * This is a fast path so only do this check if we have sanity tests
3736          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3737          * outside of the sanity tests.
3738          */
3739         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3740                 return;
3741 #endif
3742         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3743         btrfs_assert_tree_locked(buf);
3744         if (transid != root->fs_info->generation)
3745                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3746                        "found %llu running %llu\n",
3747                         buf->start, transid, root->fs_info->generation);
3748         was_dirty = set_extent_buffer_dirty(buf);
3749         if (!was_dirty)
3750                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3751                                      buf->len,
3752                                      root->fs_info->dirty_metadata_batch);
3753 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3754         if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3755                 btrfs_print_leaf(root, buf);
3756                 ASSERT(0);
3757         }
3758 #endif
3759 }
3760
3761 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3762                                         int flush_delayed)
3763 {
3764         /*
3765          * looks as though older kernels can get into trouble with
3766          * this code, they end up stuck in balance_dirty_pages forever
3767          */
3768         int ret;
3769
3770         if (current->flags & PF_MEMALLOC)
3771                 return;
3772
3773         if (flush_delayed)
3774                 btrfs_balance_delayed_items(root);
3775
3776         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3777                                      BTRFS_DIRTY_METADATA_THRESH);
3778         if (ret > 0) {
3779                 balance_dirty_pages_ratelimited(
3780                                    root->fs_info->btree_inode->i_mapping);
3781         }
3782         return;
3783 }
3784
3785 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3786 {
3787         __btrfs_btree_balance_dirty(root, 1);
3788 }
3789
3790 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3791 {
3792         __btrfs_btree_balance_dirty(root, 0);
3793 }
3794
3795 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3796 {
3797         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3798         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3799 }
3800
3801 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3802                               int read_only)
3803 {
3804         /*
3805          * Placeholder for checks
3806          */
3807         return 0;
3808 }
3809
3810 static void btrfs_error_commit_super(struct btrfs_root *root)
3811 {
3812         mutex_lock(&root->fs_info->cleaner_mutex);
3813         btrfs_run_delayed_iputs(root);
3814         mutex_unlock(&root->fs_info->cleaner_mutex);
3815
3816         down_write(&root->fs_info->cleanup_work_sem);
3817         up_write(&root->fs_info->cleanup_work_sem);
3818
3819         /* cleanup FS via transaction */
3820         btrfs_cleanup_transaction(root);
3821 }
3822
3823 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3824                                              struct btrfs_root *root)
3825 {
3826         struct btrfs_inode *btrfs_inode;
3827         struct list_head splice;
3828
3829         INIT_LIST_HEAD(&splice);
3830
3831         mutex_lock(&root->fs_info->ordered_operations_mutex);
3832         spin_lock(&root->fs_info->ordered_root_lock);
3833
3834         list_splice_init(&t->ordered_operations, &splice);
3835         while (!list_empty(&splice)) {
3836                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3837                                          ordered_operations);
3838
3839                 list_del_init(&btrfs_inode->ordered_operations);
3840                 spin_unlock(&root->fs_info->ordered_root_lock);
3841
3842                 btrfs_invalidate_inodes(btrfs_inode->root);
3843
3844                 spin_lock(&root->fs_info->ordered_root_lock);
3845         }
3846
3847         spin_unlock(&root->fs_info->ordered_root_lock);
3848         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3849 }
3850
3851 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3852 {
3853         struct btrfs_ordered_extent *ordered;
3854
3855         spin_lock(&root->ordered_extent_lock);
3856         /*
3857          * This will just short circuit the ordered completion stuff which will
3858          * make sure the ordered extent gets properly cleaned up.
3859          */
3860         list_for_each_entry(ordered, &root->ordered_extents,
3861                             root_extent_list)
3862                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3863         spin_unlock(&root->ordered_extent_lock);
3864 }
3865
3866 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3867 {
3868         struct btrfs_root *root;
3869         struct list_head splice;
3870
3871         INIT_LIST_HEAD(&splice);
3872
3873         spin_lock(&fs_info->ordered_root_lock);
3874         list_splice_init(&fs_info->ordered_roots, &splice);
3875         while (!list_empty(&splice)) {
3876                 root = list_first_entry(&splice, struct btrfs_root,
3877                                         ordered_root);
3878                 list_move_tail(&root->ordered_root,
3879                                &fs_info->ordered_roots);
3880
3881                 spin_unlock(&fs_info->ordered_root_lock);
3882                 btrfs_destroy_ordered_extents(root);
3883
3884                 cond_resched();
3885                 spin_lock(&fs_info->ordered_root_lock);
3886         }
3887         spin_unlock(&fs_info->ordered_root_lock);
3888 }
3889
3890 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3891                                       struct btrfs_root *root)
3892 {
3893         struct rb_node *node;
3894         struct btrfs_delayed_ref_root *delayed_refs;
3895         struct btrfs_delayed_ref_node *ref;
3896         int ret = 0;
3897
3898         delayed_refs = &trans->delayed_refs;
3899
3900         spin_lock(&delayed_refs->lock);
3901         if (atomic_read(&delayed_refs->num_entries) == 0) {
3902                 spin_unlock(&delayed_refs->lock);
3903                 btrfs_info(root->fs_info, "delayed_refs has NO entry");
3904                 return ret;
3905         }
3906
3907         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3908                 struct btrfs_delayed_ref_head *head;
3909                 bool pin_bytes = false;
3910
3911                 head = rb_entry(node, struct btrfs_delayed_ref_head,
3912                                 href_node);
3913                 if (!mutex_trylock(&head->mutex)) {
3914                         atomic_inc(&head->node.refs);
3915                         spin_unlock(&delayed_refs->lock);
3916
3917                         mutex_lock(&head->mutex);
3918                         mutex_unlock(&head->mutex);
3919                         btrfs_put_delayed_ref(&head->node);
3920                         spin_lock(&delayed_refs->lock);
3921                         continue;
3922                 }
3923                 spin_lock(&head->lock);
3924                 while ((node = rb_first(&head->ref_root)) != NULL) {
3925                         ref = rb_entry(node, struct btrfs_delayed_ref_node,
3926                                        rb_node);
3927                         ref->in_tree = 0;
3928                         rb_erase(&ref->rb_node, &head->ref_root);
3929                         atomic_dec(&delayed_refs->num_entries);
3930                         btrfs_put_delayed_ref(ref);
3931                 }
3932                 if (head->must_insert_reserved)
3933                         pin_bytes = true;
3934                 btrfs_free_delayed_extent_op(head->extent_op);
3935                 delayed_refs->num_heads--;
3936                 if (head->processing == 0)
3937                         delayed_refs->num_heads_ready--;
3938                 atomic_dec(&delayed_refs->num_entries);
3939                 head->node.in_tree = 0;
3940                 rb_erase(&head->href_node, &delayed_refs->href_root);
3941                 spin_unlock(&head->lock);
3942                 spin_unlock(&delayed_refs->lock);
3943                 mutex_unlock(&head->mutex);
3944
3945                 if (pin_bytes)
3946                         btrfs_pin_extent(root, head->node.bytenr,
3947                                          head->node.num_bytes, 1);
3948                 btrfs_put_delayed_ref(&head->node);
3949                 cond_resched();
3950                 spin_lock(&delayed_refs->lock);
3951         }
3952
3953         spin_unlock(&delayed_refs->lock);
3954
3955         return ret;
3956 }
3957
3958 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3959 {
3960         struct btrfs_inode *btrfs_inode;
3961         struct list_head splice;
3962
3963         INIT_LIST_HEAD(&splice);
3964
3965         spin_lock(&root->delalloc_lock);
3966         list_splice_init(&root->delalloc_inodes, &splice);
3967
3968         while (!list_empty(&splice)) {
3969                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3970                                                delalloc_inodes);
3971
3972                 list_del_init(&btrfs_inode->delalloc_inodes);
3973                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3974                           &btrfs_inode->runtime_flags);
3975                 spin_unlock(&root->delalloc_lock);
3976
3977                 btrfs_invalidate_inodes(btrfs_inode->root);
3978
3979                 spin_lock(&root->delalloc_lock);
3980         }
3981
3982         spin_unlock(&root->delalloc_lock);
3983 }
3984
3985 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3986 {
3987         struct btrfs_root *root;
3988         struct list_head splice;
3989
3990         INIT_LIST_HEAD(&splice);
3991
3992         spin_lock(&fs_info->delalloc_root_lock);
3993         list_splice_init(&fs_info->delalloc_roots, &splice);
3994         while (!list_empty(&splice)) {
3995                 root = list_first_entry(&splice, struct btrfs_root,
3996                                          delalloc_root);
3997                 list_del_init(&root->delalloc_root);
3998                 root = btrfs_grab_fs_root(root);
3999                 BUG_ON(!root);
4000                 spin_unlock(&fs_info->delalloc_root_lock);
4001
4002                 btrfs_destroy_delalloc_inodes(root);
4003                 btrfs_put_fs_root(root);
4004
4005                 spin_lock(&fs_info->delalloc_root_lock);
4006         }
4007         spin_unlock(&fs_info->delalloc_root_lock);
4008 }
4009
4010 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4011                                         struct extent_io_tree *dirty_pages,
4012                                         int mark)
4013 {
4014         int ret;
4015         struct extent_buffer *eb;
4016         u64 start = 0;
4017         u64 end;
4018
4019         while (1) {
4020                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4021                                             mark, NULL);
4022                 if (ret)
4023                         break;
4024
4025                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4026                 while (start <= end) {
4027                         eb = btrfs_find_tree_block(root, start,
4028                                                    root->leafsize);
4029                         start += root->leafsize;
4030                         if (!eb)
4031                                 continue;
4032                         wait_on_extent_buffer_writeback(eb);
4033
4034                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4035                                                &eb->bflags))
4036                                 clear_extent_buffer_dirty(eb);
4037                         free_extent_buffer_stale(eb);
4038                 }
4039         }
4040
4041         return ret;
4042 }
4043
4044 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4045                                        struct extent_io_tree *pinned_extents)
4046 {
4047         struct extent_io_tree *unpin;
4048         u64 start;
4049         u64 end;
4050         int ret;
4051         bool loop = true;
4052
4053         unpin = pinned_extents;
4054 again:
4055         while (1) {
4056                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4057                                             EXTENT_DIRTY, NULL);
4058                 if (ret)
4059                         break;
4060
4061                 /* opt_discard */
4062                 if (btrfs_test_opt(root, DISCARD))
4063                         ret = btrfs_error_discard_extent(root, start,
4064                                                          end + 1 - start,
4065                                                          NULL);
4066
4067                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4068                 btrfs_error_unpin_extent_range(root, start, end);
4069                 cond_resched();
4070         }
4071
4072         if (loop) {
4073                 if (unpin == &root->fs_info->freed_extents[0])
4074                         unpin = &root->fs_info->freed_extents[1];
4075                 else
4076                         unpin = &root->fs_info->freed_extents[0];
4077                 loop = false;
4078                 goto again;
4079         }
4080
4081         return 0;
4082 }
4083
4084 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4085                                    struct btrfs_root *root)
4086 {
4087         btrfs_destroy_ordered_operations(cur_trans, root);
4088
4089         btrfs_destroy_delayed_refs(cur_trans, root);
4090
4091         cur_trans->state = TRANS_STATE_COMMIT_START;
4092         wake_up(&root->fs_info->transaction_blocked_wait);
4093
4094         cur_trans->state = TRANS_STATE_UNBLOCKED;
4095         wake_up(&root->fs_info->transaction_wait);
4096
4097         btrfs_destroy_delayed_inodes(root);
4098         btrfs_assert_delayed_root_empty(root);
4099
4100         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4101                                      EXTENT_DIRTY);
4102         btrfs_destroy_pinned_extent(root,
4103                                     root->fs_info->pinned_extents);
4104
4105         cur_trans->state =TRANS_STATE_COMPLETED;
4106         wake_up(&cur_trans->commit_wait);
4107
4108         /*
4109         memset(cur_trans, 0, sizeof(*cur_trans));
4110         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4111         */
4112 }
4113
4114 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4115 {
4116         struct btrfs_transaction *t;
4117
4118         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4119
4120         spin_lock(&root->fs_info->trans_lock);
4121         while (!list_empty(&root->fs_info->trans_list)) {
4122                 t = list_first_entry(&root->fs_info->trans_list,
4123                                      struct btrfs_transaction, list);
4124                 if (t->state >= TRANS_STATE_COMMIT_START) {
4125                         atomic_inc(&t->use_count);
4126                         spin_unlock(&root->fs_info->trans_lock);
4127                         btrfs_wait_for_commit(root, t->transid);
4128                         btrfs_put_transaction(t);
4129                         spin_lock(&root->fs_info->trans_lock);
4130                         continue;
4131                 }
4132                 if (t == root->fs_info->running_transaction) {
4133                         t->state = TRANS_STATE_COMMIT_DOING;
4134                         spin_unlock(&root->fs_info->trans_lock);
4135                         /*
4136                          * We wait for 0 num_writers since we don't hold a trans
4137                          * handle open currently for this transaction.
4138                          */
4139                         wait_event(t->writer_wait,
4140                                    atomic_read(&t->num_writers) == 0);
4141                 } else {
4142                         spin_unlock(&root->fs_info->trans_lock);
4143                 }
4144                 btrfs_cleanup_one_transaction(t, root);
4145
4146                 spin_lock(&root->fs_info->trans_lock);
4147                 if (t == root->fs_info->running_transaction)
4148                         root->fs_info->running_transaction = NULL;
4149                 list_del_init(&t->list);
4150                 spin_unlock(&root->fs_info->trans_lock);
4151
4152                 btrfs_put_transaction(t);
4153                 trace_btrfs_transaction_commit(root);
4154                 spin_lock(&root->fs_info->trans_lock);
4155         }
4156         spin_unlock(&root->fs_info->trans_lock);
4157         btrfs_destroy_all_ordered_extents(root->fs_info);
4158         btrfs_destroy_delayed_inodes(root);
4159         btrfs_assert_delayed_root_empty(root);
4160         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4161         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4162         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4163
4164         return 0;
4165 }
4166
4167 static struct extent_io_ops btree_extent_io_ops = {
4168         .readpage_end_io_hook = btree_readpage_end_io_hook,
4169         .readpage_io_failed_hook = btree_io_failed_hook,
4170         .submit_bio_hook = btree_submit_bio_hook,
4171         /* note we're sharing with inode.c for the merge bio hook */
4172         .merge_bio_hook = btrfs_merge_bio_hook,
4173 };