media: staging: media: use relevant lock
[linux-2.6-block.git] / fs / btrfs / delayed-inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 Fujitsu.  All rights reserved.
4  * Written by Miao Xie <miaox@cn.fujitsu.com>
5  */
6
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include "delayed-inode.h"
10 #include "disk-io.h"
11 #include "transaction.h"
12 #include "ctree.h"
13 #include "qgroup.h"
14
15 #define BTRFS_DELAYED_WRITEBACK         512
16 #define BTRFS_DELAYED_BACKGROUND        128
17 #define BTRFS_DELAYED_BATCH             16
18
19 static struct kmem_cache *delayed_node_cache;
20
21 int __init btrfs_delayed_inode_init(void)
22 {
23         delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
24                                         sizeof(struct btrfs_delayed_node),
25                                         0,
26                                         SLAB_MEM_SPREAD,
27                                         NULL);
28         if (!delayed_node_cache)
29                 return -ENOMEM;
30         return 0;
31 }
32
33 void __cold btrfs_delayed_inode_exit(void)
34 {
35         kmem_cache_destroy(delayed_node_cache);
36 }
37
38 static inline void btrfs_init_delayed_node(
39                                 struct btrfs_delayed_node *delayed_node,
40                                 struct btrfs_root *root, u64 inode_id)
41 {
42         delayed_node->root = root;
43         delayed_node->inode_id = inode_id;
44         refcount_set(&delayed_node->refs, 0);
45         delayed_node->ins_root = RB_ROOT;
46         delayed_node->del_root = RB_ROOT;
47         mutex_init(&delayed_node->mutex);
48         INIT_LIST_HEAD(&delayed_node->n_list);
49         INIT_LIST_HEAD(&delayed_node->p_list);
50 }
51
52 static inline int btrfs_is_continuous_delayed_item(
53                                         struct btrfs_delayed_item *item1,
54                                         struct btrfs_delayed_item *item2)
55 {
56         if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
57             item1->key.objectid == item2->key.objectid &&
58             item1->key.type == item2->key.type &&
59             item1->key.offset + 1 == item2->key.offset)
60                 return 1;
61         return 0;
62 }
63
64 static struct btrfs_delayed_node *btrfs_get_delayed_node(
65                 struct btrfs_inode *btrfs_inode)
66 {
67         struct btrfs_root *root = btrfs_inode->root;
68         u64 ino = btrfs_ino(btrfs_inode);
69         struct btrfs_delayed_node *node;
70
71         node = READ_ONCE(btrfs_inode->delayed_node);
72         if (node) {
73                 refcount_inc(&node->refs);
74                 return node;
75         }
76
77         spin_lock(&root->inode_lock);
78         node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
79
80         if (node) {
81                 if (btrfs_inode->delayed_node) {
82                         refcount_inc(&node->refs);      /* can be accessed */
83                         BUG_ON(btrfs_inode->delayed_node != node);
84                         spin_unlock(&root->inode_lock);
85                         return node;
86                 }
87
88                 /*
89                  * It's possible that we're racing into the middle of removing
90                  * this node from the radix tree.  In this case, the refcount
91                  * was zero and it should never go back to one.  Just return
92                  * NULL like it was never in the radix at all; our release
93                  * function is in the process of removing it.
94                  *
95                  * Some implementations of refcount_inc refuse to bump the
96                  * refcount once it has hit zero.  If we don't do this dance
97                  * here, refcount_inc() may decide to just WARN_ONCE() instead
98                  * of actually bumping the refcount.
99                  *
100                  * If this node is properly in the radix, we want to bump the
101                  * refcount twice, once for the inode and once for this get
102                  * operation.
103                  */
104                 if (refcount_inc_not_zero(&node->refs)) {
105                         refcount_inc(&node->refs);
106                         btrfs_inode->delayed_node = node;
107                 } else {
108                         node = NULL;
109                 }
110
111                 spin_unlock(&root->inode_lock);
112                 return node;
113         }
114         spin_unlock(&root->inode_lock);
115
116         return NULL;
117 }
118
119 /* Will return either the node or PTR_ERR(-ENOMEM) */
120 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
121                 struct btrfs_inode *btrfs_inode)
122 {
123         struct btrfs_delayed_node *node;
124         struct btrfs_root *root = btrfs_inode->root;
125         u64 ino = btrfs_ino(btrfs_inode);
126         int ret;
127
128 again:
129         node = btrfs_get_delayed_node(btrfs_inode);
130         if (node)
131                 return node;
132
133         node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
134         if (!node)
135                 return ERR_PTR(-ENOMEM);
136         btrfs_init_delayed_node(node, root, ino);
137
138         /* cached in the btrfs inode and can be accessed */
139         refcount_set(&node->refs, 2);
140
141         ret = radix_tree_preload(GFP_NOFS);
142         if (ret) {
143                 kmem_cache_free(delayed_node_cache, node);
144                 return ERR_PTR(ret);
145         }
146
147         spin_lock(&root->inode_lock);
148         ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
149         if (ret == -EEXIST) {
150                 spin_unlock(&root->inode_lock);
151                 kmem_cache_free(delayed_node_cache, node);
152                 radix_tree_preload_end();
153                 goto again;
154         }
155         btrfs_inode->delayed_node = node;
156         spin_unlock(&root->inode_lock);
157         radix_tree_preload_end();
158
159         return node;
160 }
161
162 /*
163  * Call it when holding delayed_node->mutex
164  *
165  * If mod = 1, add this node into the prepared list.
166  */
167 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
168                                      struct btrfs_delayed_node *node,
169                                      int mod)
170 {
171         spin_lock(&root->lock);
172         if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
173                 if (!list_empty(&node->p_list))
174                         list_move_tail(&node->p_list, &root->prepare_list);
175                 else if (mod)
176                         list_add_tail(&node->p_list, &root->prepare_list);
177         } else {
178                 list_add_tail(&node->n_list, &root->node_list);
179                 list_add_tail(&node->p_list, &root->prepare_list);
180                 refcount_inc(&node->refs);      /* inserted into list */
181                 root->nodes++;
182                 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
183         }
184         spin_unlock(&root->lock);
185 }
186
187 /* Call it when holding delayed_node->mutex */
188 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
189                                        struct btrfs_delayed_node *node)
190 {
191         spin_lock(&root->lock);
192         if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
193                 root->nodes--;
194                 refcount_dec(&node->refs);      /* not in the list */
195                 list_del_init(&node->n_list);
196                 if (!list_empty(&node->p_list))
197                         list_del_init(&node->p_list);
198                 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
199         }
200         spin_unlock(&root->lock);
201 }
202
203 static struct btrfs_delayed_node *btrfs_first_delayed_node(
204                         struct btrfs_delayed_root *delayed_root)
205 {
206         struct list_head *p;
207         struct btrfs_delayed_node *node = NULL;
208
209         spin_lock(&delayed_root->lock);
210         if (list_empty(&delayed_root->node_list))
211                 goto out;
212
213         p = delayed_root->node_list.next;
214         node = list_entry(p, struct btrfs_delayed_node, n_list);
215         refcount_inc(&node->refs);
216 out:
217         spin_unlock(&delayed_root->lock);
218
219         return node;
220 }
221
222 static struct btrfs_delayed_node *btrfs_next_delayed_node(
223                                                 struct btrfs_delayed_node *node)
224 {
225         struct btrfs_delayed_root *delayed_root;
226         struct list_head *p;
227         struct btrfs_delayed_node *next = NULL;
228
229         delayed_root = node->root->fs_info->delayed_root;
230         spin_lock(&delayed_root->lock);
231         if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
232                 /* not in the list */
233                 if (list_empty(&delayed_root->node_list))
234                         goto out;
235                 p = delayed_root->node_list.next;
236         } else if (list_is_last(&node->n_list, &delayed_root->node_list))
237                 goto out;
238         else
239                 p = node->n_list.next;
240
241         next = list_entry(p, struct btrfs_delayed_node, n_list);
242         refcount_inc(&next->refs);
243 out:
244         spin_unlock(&delayed_root->lock);
245
246         return next;
247 }
248
249 static void __btrfs_release_delayed_node(
250                                 struct btrfs_delayed_node *delayed_node,
251                                 int mod)
252 {
253         struct btrfs_delayed_root *delayed_root;
254
255         if (!delayed_node)
256                 return;
257
258         delayed_root = delayed_node->root->fs_info->delayed_root;
259
260         mutex_lock(&delayed_node->mutex);
261         if (delayed_node->count)
262                 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
263         else
264                 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
265         mutex_unlock(&delayed_node->mutex);
266
267         if (refcount_dec_and_test(&delayed_node->refs)) {
268                 struct btrfs_root *root = delayed_node->root;
269
270                 spin_lock(&root->inode_lock);
271                 /*
272                  * Once our refcount goes to zero, nobody is allowed to bump it
273                  * back up.  We can delete it now.
274                  */
275                 ASSERT(refcount_read(&delayed_node->refs) == 0);
276                 radix_tree_delete(&root->delayed_nodes_tree,
277                                   delayed_node->inode_id);
278                 spin_unlock(&root->inode_lock);
279                 kmem_cache_free(delayed_node_cache, delayed_node);
280         }
281 }
282
283 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
284 {
285         __btrfs_release_delayed_node(node, 0);
286 }
287
288 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
289                                         struct btrfs_delayed_root *delayed_root)
290 {
291         struct list_head *p;
292         struct btrfs_delayed_node *node = NULL;
293
294         spin_lock(&delayed_root->lock);
295         if (list_empty(&delayed_root->prepare_list))
296                 goto out;
297
298         p = delayed_root->prepare_list.next;
299         list_del_init(p);
300         node = list_entry(p, struct btrfs_delayed_node, p_list);
301         refcount_inc(&node->refs);
302 out:
303         spin_unlock(&delayed_root->lock);
304
305         return node;
306 }
307
308 static inline void btrfs_release_prepared_delayed_node(
309                                         struct btrfs_delayed_node *node)
310 {
311         __btrfs_release_delayed_node(node, 1);
312 }
313
314 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
315 {
316         struct btrfs_delayed_item *item;
317         item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
318         if (item) {
319                 item->data_len = data_len;
320                 item->ins_or_del = 0;
321                 item->bytes_reserved = 0;
322                 item->delayed_node = NULL;
323                 refcount_set(&item->refs, 1);
324         }
325         return item;
326 }
327
328 /*
329  * __btrfs_lookup_delayed_item - look up the delayed item by key
330  * @delayed_node: pointer to the delayed node
331  * @key:          the key to look up
332  * @prev:         used to store the prev item if the right item isn't found
333  * @next:         used to store the next item if the right item isn't found
334  *
335  * Note: if we don't find the right item, we will return the prev item and
336  * the next item.
337  */
338 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
339                                 struct rb_root *root,
340                                 struct btrfs_key *key,
341                                 struct btrfs_delayed_item **prev,
342                                 struct btrfs_delayed_item **next)
343 {
344         struct rb_node *node, *prev_node = NULL;
345         struct btrfs_delayed_item *delayed_item = NULL;
346         int ret = 0;
347
348         node = root->rb_node;
349
350         while (node) {
351                 delayed_item = rb_entry(node, struct btrfs_delayed_item,
352                                         rb_node);
353                 prev_node = node;
354                 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
355                 if (ret < 0)
356                         node = node->rb_right;
357                 else if (ret > 0)
358                         node = node->rb_left;
359                 else
360                         return delayed_item;
361         }
362
363         if (prev) {
364                 if (!prev_node)
365                         *prev = NULL;
366                 else if (ret < 0)
367                         *prev = delayed_item;
368                 else if ((node = rb_prev(prev_node)) != NULL) {
369                         *prev = rb_entry(node, struct btrfs_delayed_item,
370                                          rb_node);
371                 } else
372                         *prev = NULL;
373         }
374
375         if (next) {
376                 if (!prev_node)
377                         *next = NULL;
378                 else if (ret > 0)
379                         *next = delayed_item;
380                 else if ((node = rb_next(prev_node)) != NULL) {
381                         *next = rb_entry(node, struct btrfs_delayed_item,
382                                          rb_node);
383                 } else
384                         *next = NULL;
385         }
386         return NULL;
387 }
388
389 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
390                                         struct btrfs_delayed_node *delayed_node,
391                                         struct btrfs_key *key)
392 {
393         return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
394                                            NULL, NULL);
395 }
396
397 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
398                                     struct btrfs_delayed_item *ins,
399                                     int action)
400 {
401         struct rb_node **p, *node;
402         struct rb_node *parent_node = NULL;
403         struct rb_root *root;
404         struct btrfs_delayed_item *item;
405         int cmp;
406
407         if (action == BTRFS_DELAYED_INSERTION_ITEM)
408                 root = &delayed_node->ins_root;
409         else if (action == BTRFS_DELAYED_DELETION_ITEM)
410                 root = &delayed_node->del_root;
411         else
412                 BUG();
413         p = &root->rb_node;
414         node = &ins->rb_node;
415
416         while (*p) {
417                 parent_node = *p;
418                 item = rb_entry(parent_node, struct btrfs_delayed_item,
419                                  rb_node);
420
421                 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
422                 if (cmp < 0)
423                         p = &(*p)->rb_right;
424                 else if (cmp > 0)
425                         p = &(*p)->rb_left;
426                 else
427                         return -EEXIST;
428         }
429
430         rb_link_node(node, parent_node, p);
431         rb_insert_color(node, root);
432         ins->delayed_node = delayed_node;
433         ins->ins_or_del = action;
434
435         if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
436             action == BTRFS_DELAYED_INSERTION_ITEM &&
437             ins->key.offset >= delayed_node->index_cnt)
438                         delayed_node->index_cnt = ins->key.offset + 1;
439
440         delayed_node->count++;
441         atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
442         return 0;
443 }
444
445 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
446                                               struct btrfs_delayed_item *item)
447 {
448         return __btrfs_add_delayed_item(node, item,
449                                         BTRFS_DELAYED_INSERTION_ITEM);
450 }
451
452 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
453                                              struct btrfs_delayed_item *item)
454 {
455         return __btrfs_add_delayed_item(node, item,
456                                         BTRFS_DELAYED_DELETION_ITEM);
457 }
458
459 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
460 {
461         int seq = atomic_inc_return(&delayed_root->items_seq);
462
463         /*
464          * atomic_dec_return implies a barrier for waitqueue_active
465          */
466         if ((atomic_dec_return(&delayed_root->items) <
467             BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
468             waitqueue_active(&delayed_root->wait))
469                 wake_up(&delayed_root->wait);
470 }
471
472 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
473 {
474         struct rb_root *root;
475         struct btrfs_delayed_root *delayed_root;
476
477         delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
478
479         BUG_ON(!delayed_root);
480         BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
481                delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
482
483         if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
484                 root = &delayed_item->delayed_node->ins_root;
485         else
486                 root = &delayed_item->delayed_node->del_root;
487
488         rb_erase(&delayed_item->rb_node, root);
489         delayed_item->delayed_node->count--;
490
491         finish_one_item(delayed_root);
492 }
493
494 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
495 {
496         if (item) {
497                 __btrfs_remove_delayed_item(item);
498                 if (refcount_dec_and_test(&item->refs))
499                         kfree(item);
500         }
501 }
502
503 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
504                                         struct btrfs_delayed_node *delayed_node)
505 {
506         struct rb_node *p;
507         struct btrfs_delayed_item *item = NULL;
508
509         p = rb_first(&delayed_node->ins_root);
510         if (p)
511                 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
512
513         return item;
514 }
515
516 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
517                                         struct btrfs_delayed_node *delayed_node)
518 {
519         struct rb_node *p;
520         struct btrfs_delayed_item *item = NULL;
521
522         p = rb_first(&delayed_node->del_root);
523         if (p)
524                 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
525
526         return item;
527 }
528
529 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
530                                                 struct btrfs_delayed_item *item)
531 {
532         struct rb_node *p;
533         struct btrfs_delayed_item *next = NULL;
534
535         p = rb_next(&item->rb_node);
536         if (p)
537                 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
538
539         return next;
540 }
541
542 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
543                                                struct btrfs_root *root,
544                                                struct btrfs_delayed_item *item)
545 {
546         struct btrfs_block_rsv *src_rsv;
547         struct btrfs_block_rsv *dst_rsv;
548         struct btrfs_fs_info *fs_info = root->fs_info;
549         u64 num_bytes;
550         int ret;
551
552         if (!trans->bytes_reserved)
553                 return 0;
554
555         src_rsv = trans->block_rsv;
556         dst_rsv = &fs_info->delayed_block_rsv;
557
558         num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
559
560         /*
561          * Here we migrate space rsv from transaction rsv, since have already
562          * reserved space when starting a transaction.  So no need to reserve
563          * qgroup space here.
564          */
565         ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
566         if (!ret) {
567                 trace_btrfs_space_reservation(fs_info, "delayed_item",
568                                               item->key.objectid,
569                                               num_bytes, 1);
570                 item->bytes_reserved = num_bytes;
571         }
572
573         return ret;
574 }
575
576 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
577                                                 struct btrfs_delayed_item *item)
578 {
579         struct btrfs_block_rsv *rsv;
580         struct btrfs_fs_info *fs_info = root->fs_info;
581
582         if (!item->bytes_reserved)
583                 return;
584
585         rsv = &fs_info->delayed_block_rsv;
586         /*
587          * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
588          * to release/reserve qgroup space.
589          */
590         trace_btrfs_space_reservation(fs_info, "delayed_item",
591                                       item->key.objectid, item->bytes_reserved,
592                                       0);
593         btrfs_block_rsv_release(fs_info, rsv,
594                                 item->bytes_reserved);
595 }
596
597 static int btrfs_delayed_inode_reserve_metadata(
598                                         struct btrfs_trans_handle *trans,
599                                         struct btrfs_root *root,
600                                         struct btrfs_inode *inode,
601                                         struct btrfs_delayed_node *node)
602 {
603         struct btrfs_fs_info *fs_info = root->fs_info;
604         struct btrfs_block_rsv *src_rsv;
605         struct btrfs_block_rsv *dst_rsv;
606         u64 num_bytes;
607         int ret;
608
609         src_rsv = trans->block_rsv;
610         dst_rsv = &fs_info->delayed_block_rsv;
611
612         num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
613
614         /*
615          * btrfs_dirty_inode will update the inode under btrfs_join_transaction
616          * which doesn't reserve space for speed.  This is a problem since we
617          * still need to reserve space for this update, so try to reserve the
618          * space.
619          *
620          * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
621          * we always reserve enough to update the inode item.
622          */
623         if (!src_rsv || (!trans->bytes_reserved &&
624                          src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
625                 ret = btrfs_qgroup_reserve_meta_prealloc(root,
626                                 fs_info->nodesize, true);
627                 if (ret < 0)
628                         return ret;
629                 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
630                                           BTRFS_RESERVE_NO_FLUSH);
631                 /*
632                  * Since we're under a transaction reserve_metadata_bytes could
633                  * try to commit the transaction which will make it return
634                  * EAGAIN to make us stop the transaction we have, so return
635                  * ENOSPC instead so that btrfs_dirty_inode knows what to do.
636                  */
637                 if (ret == -EAGAIN) {
638                         ret = -ENOSPC;
639                         btrfs_qgroup_free_meta_prealloc(root, num_bytes);
640                 }
641                 if (!ret) {
642                         node->bytes_reserved = num_bytes;
643                         trace_btrfs_space_reservation(fs_info,
644                                                       "delayed_inode",
645                                                       btrfs_ino(inode),
646                                                       num_bytes, 1);
647                 } else {
648                         btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize);
649                 }
650                 return ret;
651         }
652
653         ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
654         if (!ret) {
655                 trace_btrfs_space_reservation(fs_info, "delayed_inode",
656                                               btrfs_ino(inode), num_bytes, 1);
657                 node->bytes_reserved = num_bytes;
658         }
659
660         return ret;
661 }
662
663 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
664                                                 struct btrfs_delayed_node *node,
665                                                 bool qgroup_free)
666 {
667         struct btrfs_block_rsv *rsv;
668
669         if (!node->bytes_reserved)
670                 return;
671
672         rsv = &fs_info->delayed_block_rsv;
673         trace_btrfs_space_reservation(fs_info, "delayed_inode",
674                                       node->inode_id, node->bytes_reserved, 0);
675         btrfs_block_rsv_release(fs_info, rsv,
676                                 node->bytes_reserved);
677         if (qgroup_free)
678                 btrfs_qgroup_free_meta_prealloc(node->root,
679                                 node->bytes_reserved);
680         else
681                 btrfs_qgroup_convert_reserved_meta(node->root,
682                                 node->bytes_reserved);
683         node->bytes_reserved = 0;
684 }
685
686 /*
687  * This helper will insert some continuous items into the same leaf according
688  * to the free space of the leaf.
689  */
690 static int btrfs_batch_insert_items(struct btrfs_root *root,
691                                     struct btrfs_path *path,
692                                     struct btrfs_delayed_item *item)
693 {
694         struct btrfs_fs_info *fs_info = root->fs_info;
695         struct btrfs_delayed_item *curr, *next;
696         int free_space;
697         int total_data_size = 0, total_size = 0;
698         struct extent_buffer *leaf;
699         char *data_ptr;
700         struct btrfs_key *keys;
701         u32 *data_size;
702         struct list_head head;
703         int slot;
704         int nitems;
705         int i;
706         int ret = 0;
707
708         BUG_ON(!path->nodes[0]);
709
710         leaf = path->nodes[0];
711         free_space = btrfs_leaf_free_space(fs_info, leaf);
712         INIT_LIST_HEAD(&head);
713
714         next = item;
715         nitems = 0;
716
717         /*
718          * count the number of the continuous items that we can insert in batch
719          */
720         while (total_size + next->data_len + sizeof(struct btrfs_item) <=
721                free_space) {
722                 total_data_size += next->data_len;
723                 total_size += next->data_len + sizeof(struct btrfs_item);
724                 list_add_tail(&next->tree_list, &head);
725                 nitems++;
726
727                 curr = next;
728                 next = __btrfs_next_delayed_item(curr);
729                 if (!next)
730                         break;
731
732                 if (!btrfs_is_continuous_delayed_item(curr, next))
733                         break;
734         }
735
736         if (!nitems) {
737                 ret = 0;
738                 goto out;
739         }
740
741         /*
742          * we need allocate some memory space, but it might cause the task
743          * to sleep, so we set all locked nodes in the path to blocking locks
744          * first.
745          */
746         btrfs_set_path_blocking(path);
747
748         keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
749         if (!keys) {
750                 ret = -ENOMEM;
751                 goto out;
752         }
753
754         data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
755         if (!data_size) {
756                 ret = -ENOMEM;
757                 goto error;
758         }
759
760         /* get keys of all the delayed items */
761         i = 0;
762         list_for_each_entry(next, &head, tree_list) {
763                 keys[i] = next->key;
764                 data_size[i] = next->data_len;
765                 i++;
766         }
767
768         /* reset all the locked nodes in the patch to spinning locks. */
769         btrfs_clear_path_blocking(path, NULL, 0);
770
771         /* insert the keys of the items */
772         setup_items_for_insert(root, path, keys, data_size,
773                                total_data_size, total_size, nitems);
774
775         /* insert the dir index items */
776         slot = path->slots[0];
777         list_for_each_entry_safe(curr, next, &head, tree_list) {
778                 data_ptr = btrfs_item_ptr(leaf, slot, char);
779                 write_extent_buffer(leaf, &curr->data,
780                                     (unsigned long)data_ptr,
781                                     curr->data_len);
782                 slot++;
783
784                 btrfs_delayed_item_release_metadata(root, curr);
785
786                 list_del(&curr->tree_list);
787                 btrfs_release_delayed_item(curr);
788         }
789
790 error:
791         kfree(data_size);
792         kfree(keys);
793 out:
794         return ret;
795 }
796
797 /*
798  * This helper can just do simple insertion that needn't extend item for new
799  * data, such as directory name index insertion, inode insertion.
800  */
801 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
802                                      struct btrfs_root *root,
803                                      struct btrfs_path *path,
804                                      struct btrfs_delayed_item *delayed_item)
805 {
806         struct extent_buffer *leaf;
807         char *ptr;
808         int ret;
809
810         ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
811                                       delayed_item->data_len);
812         if (ret < 0 && ret != -EEXIST)
813                 return ret;
814
815         leaf = path->nodes[0];
816
817         ptr = btrfs_item_ptr(leaf, path->slots[0], char);
818
819         write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
820                             delayed_item->data_len);
821         btrfs_mark_buffer_dirty(leaf);
822
823         btrfs_delayed_item_release_metadata(root, delayed_item);
824         return 0;
825 }
826
827 /*
828  * we insert an item first, then if there are some continuous items, we try
829  * to insert those items into the same leaf.
830  */
831 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
832                                       struct btrfs_path *path,
833                                       struct btrfs_root *root,
834                                       struct btrfs_delayed_node *node)
835 {
836         struct btrfs_delayed_item *curr, *prev;
837         int ret = 0;
838
839 do_again:
840         mutex_lock(&node->mutex);
841         curr = __btrfs_first_delayed_insertion_item(node);
842         if (!curr)
843                 goto insert_end;
844
845         ret = btrfs_insert_delayed_item(trans, root, path, curr);
846         if (ret < 0) {
847                 btrfs_release_path(path);
848                 goto insert_end;
849         }
850
851         prev = curr;
852         curr = __btrfs_next_delayed_item(prev);
853         if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
854                 /* insert the continuous items into the same leaf */
855                 path->slots[0]++;
856                 btrfs_batch_insert_items(root, path, curr);
857         }
858         btrfs_release_delayed_item(prev);
859         btrfs_mark_buffer_dirty(path->nodes[0]);
860
861         btrfs_release_path(path);
862         mutex_unlock(&node->mutex);
863         goto do_again;
864
865 insert_end:
866         mutex_unlock(&node->mutex);
867         return ret;
868 }
869
870 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
871                                     struct btrfs_root *root,
872                                     struct btrfs_path *path,
873                                     struct btrfs_delayed_item *item)
874 {
875         struct btrfs_delayed_item *curr, *next;
876         struct extent_buffer *leaf;
877         struct btrfs_key key;
878         struct list_head head;
879         int nitems, i, last_item;
880         int ret = 0;
881
882         BUG_ON(!path->nodes[0]);
883
884         leaf = path->nodes[0];
885
886         i = path->slots[0];
887         last_item = btrfs_header_nritems(leaf) - 1;
888         if (i > last_item)
889                 return -ENOENT; /* FIXME: Is errno suitable? */
890
891         next = item;
892         INIT_LIST_HEAD(&head);
893         btrfs_item_key_to_cpu(leaf, &key, i);
894         nitems = 0;
895         /*
896          * count the number of the dir index items that we can delete in batch
897          */
898         while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
899                 list_add_tail(&next->tree_list, &head);
900                 nitems++;
901
902                 curr = next;
903                 next = __btrfs_next_delayed_item(curr);
904                 if (!next)
905                         break;
906
907                 if (!btrfs_is_continuous_delayed_item(curr, next))
908                         break;
909
910                 i++;
911                 if (i > last_item)
912                         break;
913                 btrfs_item_key_to_cpu(leaf, &key, i);
914         }
915
916         if (!nitems)
917                 return 0;
918
919         ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
920         if (ret)
921                 goto out;
922
923         list_for_each_entry_safe(curr, next, &head, tree_list) {
924                 btrfs_delayed_item_release_metadata(root, curr);
925                 list_del(&curr->tree_list);
926                 btrfs_release_delayed_item(curr);
927         }
928
929 out:
930         return ret;
931 }
932
933 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
934                                       struct btrfs_path *path,
935                                       struct btrfs_root *root,
936                                       struct btrfs_delayed_node *node)
937 {
938         struct btrfs_delayed_item *curr, *prev;
939         int ret = 0;
940
941 do_again:
942         mutex_lock(&node->mutex);
943         curr = __btrfs_first_delayed_deletion_item(node);
944         if (!curr)
945                 goto delete_fail;
946
947         ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
948         if (ret < 0)
949                 goto delete_fail;
950         else if (ret > 0) {
951                 /*
952                  * can't find the item which the node points to, so this node
953                  * is invalid, just drop it.
954                  */
955                 prev = curr;
956                 curr = __btrfs_next_delayed_item(prev);
957                 btrfs_release_delayed_item(prev);
958                 ret = 0;
959                 btrfs_release_path(path);
960                 if (curr) {
961                         mutex_unlock(&node->mutex);
962                         goto do_again;
963                 } else
964                         goto delete_fail;
965         }
966
967         btrfs_batch_delete_items(trans, root, path, curr);
968         btrfs_release_path(path);
969         mutex_unlock(&node->mutex);
970         goto do_again;
971
972 delete_fail:
973         btrfs_release_path(path);
974         mutex_unlock(&node->mutex);
975         return ret;
976 }
977
978 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
979 {
980         struct btrfs_delayed_root *delayed_root;
981
982         if (delayed_node &&
983             test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
984                 BUG_ON(!delayed_node->root);
985                 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
986                 delayed_node->count--;
987
988                 delayed_root = delayed_node->root->fs_info->delayed_root;
989                 finish_one_item(delayed_root);
990         }
991 }
992
993 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
994 {
995         struct btrfs_delayed_root *delayed_root;
996
997         ASSERT(delayed_node->root);
998         clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
999         delayed_node->count--;
1000
1001         delayed_root = delayed_node->root->fs_info->delayed_root;
1002         finish_one_item(delayed_root);
1003 }
1004
1005 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1006                                         struct btrfs_root *root,
1007                                         struct btrfs_path *path,
1008                                         struct btrfs_delayed_node *node)
1009 {
1010         struct btrfs_fs_info *fs_info = root->fs_info;
1011         struct btrfs_key key;
1012         struct btrfs_inode_item *inode_item;
1013         struct extent_buffer *leaf;
1014         int mod;
1015         int ret;
1016
1017         key.objectid = node->inode_id;
1018         key.type = BTRFS_INODE_ITEM_KEY;
1019         key.offset = 0;
1020
1021         if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1022                 mod = -1;
1023         else
1024                 mod = 1;
1025
1026         ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1027         if (ret > 0) {
1028                 btrfs_release_path(path);
1029                 return -ENOENT;
1030         } else if (ret < 0) {
1031                 return ret;
1032         }
1033
1034         leaf = path->nodes[0];
1035         inode_item = btrfs_item_ptr(leaf, path->slots[0],
1036                                     struct btrfs_inode_item);
1037         write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1038                             sizeof(struct btrfs_inode_item));
1039         btrfs_mark_buffer_dirty(leaf);
1040
1041         if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1042                 goto no_iref;
1043
1044         path->slots[0]++;
1045         if (path->slots[0] >= btrfs_header_nritems(leaf))
1046                 goto search;
1047 again:
1048         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1049         if (key.objectid != node->inode_id)
1050                 goto out;
1051
1052         if (key.type != BTRFS_INODE_REF_KEY &&
1053             key.type != BTRFS_INODE_EXTREF_KEY)
1054                 goto out;
1055
1056         /*
1057          * Delayed iref deletion is for the inode who has only one link,
1058          * so there is only one iref. The case that several irefs are
1059          * in the same item doesn't exist.
1060          */
1061         btrfs_del_item(trans, root, path);
1062 out:
1063         btrfs_release_delayed_iref(node);
1064 no_iref:
1065         btrfs_release_path(path);
1066 err_out:
1067         btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1068         btrfs_release_delayed_inode(node);
1069
1070         return ret;
1071
1072 search:
1073         btrfs_release_path(path);
1074
1075         key.type = BTRFS_INODE_EXTREF_KEY;
1076         key.offset = -1;
1077         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1078         if (ret < 0)
1079                 goto err_out;
1080         ASSERT(ret);
1081
1082         ret = 0;
1083         leaf = path->nodes[0];
1084         path->slots[0]--;
1085         goto again;
1086 }
1087
1088 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1089                                              struct btrfs_root *root,
1090                                              struct btrfs_path *path,
1091                                              struct btrfs_delayed_node *node)
1092 {
1093         int ret;
1094
1095         mutex_lock(&node->mutex);
1096         if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1097                 mutex_unlock(&node->mutex);
1098                 return 0;
1099         }
1100
1101         ret = __btrfs_update_delayed_inode(trans, root, path, node);
1102         mutex_unlock(&node->mutex);
1103         return ret;
1104 }
1105
1106 static inline int
1107 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1108                                    struct btrfs_path *path,
1109                                    struct btrfs_delayed_node *node)
1110 {
1111         int ret;
1112
1113         ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1114         if (ret)
1115                 return ret;
1116
1117         ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1118         if (ret)
1119                 return ret;
1120
1121         ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1122         return ret;
1123 }
1124
1125 /*
1126  * Called when committing the transaction.
1127  * Returns 0 on success.
1128  * Returns < 0 on error and returns with an aborted transaction with any
1129  * outstanding delayed items cleaned up.
1130  */
1131 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1132 {
1133         struct btrfs_fs_info *fs_info = trans->fs_info;
1134         struct btrfs_delayed_root *delayed_root;
1135         struct btrfs_delayed_node *curr_node, *prev_node;
1136         struct btrfs_path *path;
1137         struct btrfs_block_rsv *block_rsv;
1138         int ret = 0;
1139         bool count = (nr > 0);
1140
1141         if (trans->aborted)
1142                 return -EIO;
1143
1144         path = btrfs_alloc_path();
1145         if (!path)
1146                 return -ENOMEM;
1147         path->leave_spinning = 1;
1148
1149         block_rsv = trans->block_rsv;
1150         trans->block_rsv = &fs_info->delayed_block_rsv;
1151
1152         delayed_root = fs_info->delayed_root;
1153
1154         curr_node = btrfs_first_delayed_node(delayed_root);
1155         while (curr_node && (!count || (count && nr--))) {
1156                 ret = __btrfs_commit_inode_delayed_items(trans, path,
1157                                                          curr_node);
1158                 if (ret) {
1159                         btrfs_release_delayed_node(curr_node);
1160                         curr_node = NULL;
1161                         btrfs_abort_transaction(trans, ret);
1162                         break;
1163                 }
1164
1165                 prev_node = curr_node;
1166                 curr_node = btrfs_next_delayed_node(curr_node);
1167                 btrfs_release_delayed_node(prev_node);
1168         }
1169
1170         if (curr_node)
1171                 btrfs_release_delayed_node(curr_node);
1172         btrfs_free_path(path);
1173         trans->block_rsv = block_rsv;
1174
1175         return ret;
1176 }
1177
1178 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1179 {
1180         return __btrfs_run_delayed_items(trans, -1);
1181 }
1182
1183 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1184 {
1185         return __btrfs_run_delayed_items(trans, nr);
1186 }
1187
1188 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1189                                      struct btrfs_inode *inode)
1190 {
1191         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1192         struct btrfs_path *path;
1193         struct btrfs_block_rsv *block_rsv;
1194         int ret;
1195
1196         if (!delayed_node)
1197                 return 0;
1198
1199         mutex_lock(&delayed_node->mutex);
1200         if (!delayed_node->count) {
1201                 mutex_unlock(&delayed_node->mutex);
1202                 btrfs_release_delayed_node(delayed_node);
1203                 return 0;
1204         }
1205         mutex_unlock(&delayed_node->mutex);
1206
1207         path = btrfs_alloc_path();
1208         if (!path) {
1209                 btrfs_release_delayed_node(delayed_node);
1210                 return -ENOMEM;
1211         }
1212         path->leave_spinning = 1;
1213
1214         block_rsv = trans->block_rsv;
1215         trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1216
1217         ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1218
1219         btrfs_release_delayed_node(delayed_node);
1220         btrfs_free_path(path);
1221         trans->block_rsv = block_rsv;
1222
1223         return ret;
1224 }
1225
1226 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1227 {
1228         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1229         struct btrfs_trans_handle *trans;
1230         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1231         struct btrfs_path *path;
1232         struct btrfs_block_rsv *block_rsv;
1233         int ret;
1234
1235         if (!delayed_node)
1236                 return 0;
1237
1238         mutex_lock(&delayed_node->mutex);
1239         if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1240                 mutex_unlock(&delayed_node->mutex);
1241                 btrfs_release_delayed_node(delayed_node);
1242                 return 0;
1243         }
1244         mutex_unlock(&delayed_node->mutex);
1245
1246         trans = btrfs_join_transaction(delayed_node->root);
1247         if (IS_ERR(trans)) {
1248                 ret = PTR_ERR(trans);
1249                 goto out;
1250         }
1251
1252         path = btrfs_alloc_path();
1253         if (!path) {
1254                 ret = -ENOMEM;
1255                 goto trans_out;
1256         }
1257         path->leave_spinning = 1;
1258
1259         block_rsv = trans->block_rsv;
1260         trans->block_rsv = &fs_info->delayed_block_rsv;
1261
1262         mutex_lock(&delayed_node->mutex);
1263         if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1264                 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1265                                                    path, delayed_node);
1266         else
1267                 ret = 0;
1268         mutex_unlock(&delayed_node->mutex);
1269
1270         btrfs_free_path(path);
1271         trans->block_rsv = block_rsv;
1272 trans_out:
1273         btrfs_end_transaction(trans);
1274         btrfs_btree_balance_dirty(fs_info);
1275 out:
1276         btrfs_release_delayed_node(delayed_node);
1277
1278         return ret;
1279 }
1280
1281 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1282 {
1283         struct btrfs_delayed_node *delayed_node;
1284
1285         delayed_node = READ_ONCE(inode->delayed_node);
1286         if (!delayed_node)
1287                 return;
1288
1289         inode->delayed_node = NULL;
1290         btrfs_release_delayed_node(delayed_node);
1291 }
1292
1293 struct btrfs_async_delayed_work {
1294         struct btrfs_delayed_root *delayed_root;
1295         int nr;
1296         struct btrfs_work work;
1297 };
1298
1299 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1300 {
1301         struct btrfs_async_delayed_work *async_work;
1302         struct btrfs_delayed_root *delayed_root;
1303         struct btrfs_trans_handle *trans;
1304         struct btrfs_path *path;
1305         struct btrfs_delayed_node *delayed_node = NULL;
1306         struct btrfs_root *root;
1307         struct btrfs_block_rsv *block_rsv;
1308         int total_done = 0;
1309
1310         async_work = container_of(work, struct btrfs_async_delayed_work, work);
1311         delayed_root = async_work->delayed_root;
1312
1313         path = btrfs_alloc_path();
1314         if (!path)
1315                 goto out;
1316
1317         do {
1318                 if (atomic_read(&delayed_root->items) <
1319                     BTRFS_DELAYED_BACKGROUND / 2)
1320                         break;
1321
1322                 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1323                 if (!delayed_node)
1324                         break;
1325
1326                 path->leave_spinning = 1;
1327                 root = delayed_node->root;
1328
1329                 trans = btrfs_join_transaction(root);
1330                 if (IS_ERR(trans)) {
1331                         btrfs_release_path(path);
1332                         btrfs_release_prepared_delayed_node(delayed_node);
1333                         total_done++;
1334                         continue;
1335                 }
1336
1337                 block_rsv = trans->block_rsv;
1338                 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1339
1340                 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1341
1342                 trans->block_rsv = block_rsv;
1343                 btrfs_end_transaction(trans);
1344                 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1345
1346                 btrfs_release_path(path);
1347                 btrfs_release_prepared_delayed_node(delayed_node);
1348                 total_done++;
1349
1350         } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1351                  || total_done < async_work->nr);
1352
1353         btrfs_free_path(path);
1354 out:
1355         wake_up(&delayed_root->wait);
1356         kfree(async_work);
1357 }
1358
1359
1360 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1361                                      struct btrfs_fs_info *fs_info, int nr)
1362 {
1363         struct btrfs_async_delayed_work *async_work;
1364
1365         async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1366         if (!async_work)
1367                 return -ENOMEM;
1368
1369         async_work->delayed_root = delayed_root;
1370         btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1371                         btrfs_async_run_delayed_root, NULL, NULL);
1372         async_work->nr = nr;
1373
1374         btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1375         return 0;
1376 }
1377
1378 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1379 {
1380         WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1381 }
1382
1383 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1384 {
1385         int val = atomic_read(&delayed_root->items_seq);
1386
1387         if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1388                 return 1;
1389
1390         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1391                 return 1;
1392
1393         return 0;
1394 }
1395
1396 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1397 {
1398         struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1399
1400         if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1401                 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1402                 return;
1403
1404         if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1405                 int seq;
1406                 int ret;
1407
1408                 seq = atomic_read(&delayed_root->items_seq);
1409
1410                 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1411                 if (ret)
1412                         return;
1413
1414                 wait_event_interruptible(delayed_root->wait,
1415                                          could_end_wait(delayed_root, seq));
1416                 return;
1417         }
1418
1419         btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1420 }
1421
1422 /* Will return 0 or -ENOMEM */
1423 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1424                                    struct btrfs_fs_info *fs_info,
1425                                    const char *name, int name_len,
1426                                    struct btrfs_inode *dir,
1427                                    struct btrfs_disk_key *disk_key, u8 type,
1428                                    u64 index)
1429 {
1430         struct btrfs_delayed_node *delayed_node;
1431         struct btrfs_delayed_item *delayed_item;
1432         struct btrfs_dir_item *dir_item;
1433         int ret;
1434
1435         delayed_node = btrfs_get_or_create_delayed_node(dir);
1436         if (IS_ERR(delayed_node))
1437                 return PTR_ERR(delayed_node);
1438
1439         delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1440         if (!delayed_item) {
1441                 ret = -ENOMEM;
1442                 goto release_node;
1443         }
1444
1445         delayed_item->key.objectid = btrfs_ino(dir);
1446         delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1447         delayed_item->key.offset = index;
1448
1449         dir_item = (struct btrfs_dir_item *)delayed_item->data;
1450         dir_item->location = *disk_key;
1451         btrfs_set_stack_dir_transid(dir_item, trans->transid);
1452         btrfs_set_stack_dir_data_len(dir_item, 0);
1453         btrfs_set_stack_dir_name_len(dir_item, name_len);
1454         btrfs_set_stack_dir_type(dir_item, type);
1455         memcpy((char *)(dir_item + 1), name, name_len);
1456
1457         ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1458         /*
1459          * we have reserved enough space when we start a new transaction,
1460          * so reserving metadata failure is impossible
1461          */
1462         BUG_ON(ret);
1463
1464
1465         mutex_lock(&delayed_node->mutex);
1466         ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1467         if (unlikely(ret)) {
1468                 btrfs_err(fs_info,
1469                           "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1470                           name_len, name, delayed_node->root->objectid,
1471                           delayed_node->inode_id, ret);
1472                 BUG();
1473         }
1474         mutex_unlock(&delayed_node->mutex);
1475
1476 release_node:
1477         btrfs_release_delayed_node(delayed_node);
1478         return ret;
1479 }
1480
1481 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1482                                                struct btrfs_delayed_node *node,
1483                                                struct btrfs_key *key)
1484 {
1485         struct btrfs_delayed_item *item;
1486
1487         mutex_lock(&node->mutex);
1488         item = __btrfs_lookup_delayed_insertion_item(node, key);
1489         if (!item) {
1490                 mutex_unlock(&node->mutex);
1491                 return 1;
1492         }
1493
1494         btrfs_delayed_item_release_metadata(node->root, item);
1495         btrfs_release_delayed_item(item);
1496         mutex_unlock(&node->mutex);
1497         return 0;
1498 }
1499
1500 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1501                                    struct btrfs_fs_info *fs_info,
1502                                    struct btrfs_inode *dir, u64 index)
1503 {
1504         struct btrfs_delayed_node *node;
1505         struct btrfs_delayed_item *item;
1506         struct btrfs_key item_key;
1507         int ret;
1508
1509         node = btrfs_get_or_create_delayed_node(dir);
1510         if (IS_ERR(node))
1511                 return PTR_ERR(node);
1512
1513         item_key.objectid = btrfs_ino(dir);
1514         item_key.type = BTRFS_DIR_INDEX_KEY;
1515         item_key.offset = index;
1516
1517         ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key);
1518         if (!ret)
1519                 goto end;
1520
1521         item = btrfs_alloc_delayed_item(0);
1522         if (!item) {
1523                 ret = -ENOMEM;
1524                 goto end;
1525         }
1526
1527         item->key = item_key;
1528
1529         ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1530         /*
1531          * we have reserved enough space when we start a new transaction,
1532          * so reserving metadata failure is impossible.
1533          */
1534         BUG_ON(ret);
1535
1536         mutex_lock(&node->mutex);
1537         ret = __btrfs_add_delayed_deletion_item(node, item);
1538         if (unlikely(ret)) {
1539                 btrfs_err(fs_info,
1540                           "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1541                           index, node->root->objectid, node->inode_id, ret);
1542                 BUG();
1543         }
1544         mutex_unlock(&node->mutex);
1545 end:
1546         btrfs_release_delayed_node(node);
1547         return ret;
1548 }
1549
1550 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1551 {
1552         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1553
1554         if (!delayed_node)
1555                 return -ENOENT;
1556
1557         /*
1558          * Since we have held i_mutex of this directory, it is impossible that
1559          * a new directory index is added into the delayed node and index_cnt
1560          * is updated now. So we needn't lock the delayed node.
1561          */
1562         if (!delayed_node->index_cnt) {
1563                 btrfs_release_delayed_node(delayed_node);
1564                 return -EINVAL;
1565         }
1566
1567         inode->index_cnt = delayed_node->index_cnt;
1568         btrfs_release_delayed_node(delayed_node);
1569         return 0;
1570 }
1571
1572 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1573                                      struct list_head *ins_list,
1574                                      struct list_head *del_list)
1575 {
1576         struct btrfs_delayed_node *delayed_node;
1577         struct btrfs_delayed_item *item;
1578
1579         delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1580         if (!delayed_node)
1581                 return false;
1582
1583         /*
1584          * We can only do one readdir with delayed items at a time because of
1585          * item->readdir_list.
1586          */
1587         inode_unlock_shared(inode);
1588         inode_lock(inode);
1589
1590         mutex_lock(&delayed_node->mutex);
1591         item = __btrfs_first_delayed_insertion_item(delayed_node);
1592         while (item) {
1593                 refcount_inc(&item->refs);
1594                 list_add_tail(&item->readdir_list, ins_list);
1595                 item = __btrfs_next_delayed_item(item);
1596         }
1597
1598         item = __btrfs_first_delayed_deletion_item(delayed_node);
1599         while (item) {
1600                 refcount_inc(&item->refs);
1601                 list_add_tail(&item->readdir_list, del_list);
1602                 item = __btrfs_next_delayed_item(item);
1603         }
1604         mutex_unlock(&delayed_node->mutex);
1605         /*
1606          * This delayed node is still cached in the btrfs inode, so refs
1607          * must be > 1 now, and we needn't check it is going to be freed
1608          * or not.
1609          *
1610          * Besides that, this function is used to read dir, we do not
1611          * insert/delete delayed items in this period. So we also needn't
1612          * requeue or dequeue this delayed node.
1613          */
1614         refcount_dec(&delayed_node->refs);
1615
1616         return true;
1617 }
1618
1619 void btrfs_readdir_put_delayed_items(struct inode *inode,
1620                                      struct list_head *ins_list,
1621                                      struct list_head *del_list)
1622 {
1623         struct btrfs_delayed_item *curr, *next;
1624
1625         list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1626                 list_del(&curr->readdir_list);
1627                 if (refcount_dec_and_test(&curr->refs))
1628                         kfree(curr);
1629         }
1630
1631         list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1632                 list_del(&curr->readdir_list);
1633                 if (refcount_dec_and_test(&curr->refs))
1634                         kfree(curr);
1635         }
1636
1637         /*
1638          * The VFS is going to do up_read(), so we need to downgrade back to a
1639          * read lock.
1640          */
1641         downgrade_write(&inode->i_rwsem);
1642 }
1643
1644 int btrfs_should_delete_dir_index(struct list_head *del_list,
1645                                   u64 index)
1646 {
1647         struct btrfs_delayed_item *curr;
1648         int ret = 0;
1649
1650         list_for_each_entry(curr, del_list, readdir_list) {
1651                 if (curr->key.offset > index)
1652                         break;
1653                 if (curr->key.offset == index) {
1654                         ret = 1;
1655                         break;
1656                 }
1657         }
1658         return ret;
1659 }
1660
1661 /*
1662  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1663  *
1664  */
1665 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1666                                     struct list_head *ins_list)
1667 {
1668         struct btrfs_dir_item *di;
1669         struct btrfs_delayed_item *curr, *next;
1670         struct btrfs_key location;
1671         char *name;
1672         int name_len;
1673         int over = 0;
1674         unsigned char d_type;
1675
1676         if (list_empty(ins_list))
1677                 return 0;
1678
1679         /*
1680          * Changing the data of the delayed item is impossible. So
1681          * we needn't lock them. And we have held i_mutex of the
1682          * directory, nobody can delete any directory indexes now.
1683          */
1684         list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1685                 list_del(&curr->readdir_list);
1686
1687                 if (curr->key.offset < ctx->pos) {
1688                         if (refcount_dec_and_test(&curr->refs))
1689                                 kfree(curr);
1690                         continue;
1691                 }
1692
1693                 ctx->pos = curr->key.offset;
1694
1695                 di = (struct btrfs_dir_item *)curr->data;
1696                 name = (char *)(di + 1);
1697                 name_len = btrfs_stack_dir_name_len(di);
1698
1699                 d_type = btrfs_filetype_table[di->type];
1700                 btrfs_disk_key_to_cpu(&location, &di->location);
1701
1702                 over = !dir_emit(ctx, name, name_len,
1703                                location.objectid, d_type);
1704
1705                 if (refcount_dec_and_test(&curr->refs))
1706                         kfree(curr);
1707
1708                 if (over)
1709                         return 1;
1710                 ctx->pos++;
1711         }
1712         return 0;
1713 }
1714
1715 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1716                                   struct btrfs_inode_item *inode_item,
1717                                   struct inode *inode)
1718 {
1719         btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1720         btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1721         btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1722         btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1723         btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1724         btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1725         btrfs_set_stack_inode_generation(inode_item,
1726                                          BTRFS_I(inode)->generation);
1727         btrfs_set_stack_inode_sequence(inode_item,
1728                                        inode_peek_iversion(inode));
1729         btrfs_set_stack_inode_transid(inode_item, trans->transid);
1730         btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1731         btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1732         btrfs_set_stack_inode_block_group(inode_item, 0);
1733
1734         btrfs_set_stack_timespec_sec(&inode_item->atime,
1735                                      inode->i_atime.tv_sec);
1736         btrfs_set_stack_timespec_nsec(&inode_item->atime,
1737                                       inode->i_atime.tv_nsec);
1738
1739         btrfs_set_stack_timespec_sec(&inode_item->mtime,
1740                                      inode->i_mtime.tv_sec);
1741         btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1742                                       inode->i_mtime.tv_nsec);
1743
1744         btrfs_set_stack_timespec_sec(&inode_item->ctime,
1745                                      inode->i_ctime.tv_sec);
1746         btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1747                                       inode->i_ctime.tv_nsec);
1748
1749         btrfs_set_stack_timespec_sec(&inode_item->otime,
1750                                      BTRFS_I(inode)->i_otime.tv_sec);
1751         btrfs_set_stack_timespec_nsec(&inode_item->otime,
1752                                      BTRFS_I(inode)->i_otime.tv_nsec);
1753 }
1754
1755 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1756 {
1757         struct btrfs_delayed_node *delayed_node;
1758         struct btrfs_inode_item *inode_item;
1759
1760         delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1761         if (!delayed_node)
1762                 return -ENOENT;
1763
1764         mutex_lock(&delayed_node->mutex);
1765         if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1766                 mutex_unlock(&delayed_node->mutex);
1767                 btrfs_release_delayed_node(delayed_node);
1768                 return -ENOENT;
1769         }
1770
1771         inode_item = &delayed_node->inode_item;
1772
1773         i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1774         i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1775         btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1776         inode->i_mode = btrfs_stack_inode_mode(inode_item);
1777         set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1778         inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1779         BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1780         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1781
1782         inode_set_iversion_queried(inode,
1783                                    btrfs_stack_inode_sequence(inode_item));
1784         inode->i_rdev = 0;
1785         *rdev = btrfs_stack_inode_rdev(inode_item);
1786         BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1787
1788         inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1789         inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1790
1791         inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1792         inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1793
1794         inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1795         inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1796
1797         BTRFS_I(inode)->i_otime.tv_sec =
1798                 btrfs_stack_timespec_sec(&inode_item->otime);
1799         BTRFS_I(inode)->i_otime.tv_nsec =
1800                 btrfs_stack_timespec_nsec(&inode_item->otime);
1801
1802         inode->i_generation = BTRFS_I(inode)->generation;
1803         BTRFS_I(inode)->index_cnt = (u64)-1;
1804
1805         mutex_unlock(&delayed_node->mutex);
1806         btrfs_release_delayed_node(delayed_node);
1807         return 0;
1808 }
1809
1810 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1811                                struct btrfs_root *root, struct inode *inode)
1812 {
1813         struct btrfs_delayed_node *delayed_node;
1814         int ret = 0;
1815
1816         delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1817         if (IS_ERR(delayed_node))
1818                 return PTR_ERR(delayed_node);
1819
1820         mutex_lock(&delayed_node->mutex);
1821         if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1822                 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1823                 goto release_node;
1824         }
1825
1826         ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1827                                                    delayed_node);
1828         if (ret)
1829                 goto release_node;
1830
1831         fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1832         set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1833         delayed_node->count++;
1834         atomic_inc(&root->fs_info->delayed_root->items);
1835 release_node:
1836         mutex_unlock(&delayed_node->mutex);
1837         btrfs_release_delayed_node(delayed_node);
1838         return ret;
1839 }
1840
1841 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1842 {
1843         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1844         struct btrfs_delayed_node *delayed_node;
1845
1846         /*
1847          * we don't do delayed inode updates during log recovery because it
1848          * leads to enospc problems.  This means we also can't do
1849          * delayed inode refs
1850          */
1851         if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1852                 return -EAGAIN;
1853
1854         delayed_node = btrfs_get_or_create_delayed_node(inode);
1855         if (IS_ERR(delayed_node))
1856                 return PTR_ERR(delayed_node);
1857
1858         /*
1859          * We don't reserve space for inode ref deletion is because:
1860          * - We ONLY do async inode ref deletion for the inode who has only
1861          *   one link(i_nlink == 1), it means there is only one inode ref.
1862          *   And in most case, the inode ref and the inode item are in the
1863          *   same leaf, and we will deal with them at the same time.
1864          *   Since we are sure we will reserve the space for the inode item,
1865          *   it is unnecessary to reserve space for inode ref deletion.
1866          * - If the inode ref and the inode item are not in the same leaf,
1867          *   We also needn't worry about enospc problem, because we reserve
1868          *   much more space for the inode update than it needs.
1869          * - At the worst, we can steal some space from the global reservation.
1870          *   It is very rare.
1871          */
1872         mutex_lock(&delayed_node->mutex);
1873         if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1874                 goto release_node;
1875
1876         set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1877         delayed_node->count++;
1878         atomic_inc(&fs_info->delayed_root->items);
1879 release_node:
1880         mutex_unlock(&delayed_node->mutex);
1881         btrfs_release_delayed_node(delayed_node);
1882         return 0;
1883 }
1884
1885 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1886 {
1887         struct btrfs_root *root = delayed_node->root;
1888         struct btrfs_fs_info *fs_info = root->fs_info;
1889         struct btrfs_delayed_item *curr_item, *prev_item;
1890
1891         mutex_lock(&delayed_node->mutex);
1892         curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1893         while (curr_item) {
1894                 btrfs_delayed_item_release_metadata(root, curr_item);
1895                 prev_item = curr_item;
1896                 curr_item = __btrfs_next_delayed_item(prev_item);
1897                 btrfs_release_delayed_item(prev_item);
1898         }
1899
1900         curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1901         while (curr_item) {
1902                 btrfs_delayed_item_release_metadata(root, curr_item);
1903                 prev_item = curr_item;
1904                 curr_item = __btrfs_next_delayed_item(prev_item);
1905                 btrfs_release_delayed_item(prev_item);
1906         }
1907
1908         if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1909                 btrfs_release_delayed_iref(delayed_node);
1910
1911         if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1912                 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1913                 btrfs_release_delayed_inode(delayed_node);
1914         }
1915         mutex_unlock(&delayed_node->mutex);
1916 }
1917
1918 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1919 {
1920         struct btrfs_delayed_node *delayed_node;
1921
1922         delayed_node = btrfs_get_delayed_node(inode);
1923         if (!delayed_node)
1924                 return;
1925
1926         __btrfs_kill_delayed_node(delayed_node);
1927         btrfs_release_delayed_node(delayed_node);
1928 }
1929
1930 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1931 {
1932         u64 inode_id = 0;
1933         struct btrfs_delayed_node *delayed_nodes[8];
1934         int i, n;
1935
1936         while (1) {
1937                 spin_lock(&root->inode_lock);
1938                 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1939                                            (void **)delayed_nodes, inode_id,
1940                                            ARRAY_SIZE(delayed_nodes));
1941                 if (!n) {
1942                         spin_unlock(&root->inode_lock);
1943                         break;
1944                 }
1945
1946                 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1947
1948                 for (i = 0; i < n; i++)
1949                         refcount_inc(&delayed_nodes[i]->refs);
1950                 spin_unlock(&root->inode_lock);
1951
1952                 for (i = 0; i < n; i++) {
1953                         __btrfs_kill_delayed_node(delayed_nodes[i]);
1954                         btrfs_release_delayed_node(delayed_nodes[i]);
1955                 }
1956         }
1957 }
1958
1959 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1960 {
1961         struct btrfs_delayed_node *curr_node, *prev_node;
1962
1963         curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1964         while (curr_node) {
1965                 __btrfs_kill_delayed_node(curr_node);
1966
1967                 prev_node = curr_node;
1968                 curr_node = btrfs_next_delayed_node(curr_node);
1969                 btrfs_release_delayed_node(prev_node);
1970         }
1971 }
1972