Btrfs: adjust the write_lock_level as we unlock
[linux-2.6-block.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "print-tree.h"
25 #include "locking.h"
26
27 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
28                       *root, struct btrfs_path *path, int level);
29 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
30                       *root, struct btrfs_key *ins_key,
31                       struct btrfs_path *path, int data_size, int extend);
32 static int push_node_left(struct btrfs_trans_handle *trans,
33                           struct btrfs_root *root, struct extent_buffer *dst,
34                           struct extent_buffer *src, int empty);
35 static int balance_node_right(struct btrfs_trans_handle *trans,
36                               struct btrfs_root *root,
37                               struct extent_buffer *dst_buf,
38                               struct extent_buffer *src_buf);
39 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
40                    struct btrfs_path *path, int level, int slot);
41
42 struct btrfs_path *btrfs_alloc_path(void)
43 {
44         struct btrfs_path *path;
45         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
46         return path;
47 }
48
49 /*
50  * set all locked nodes in the path to blocking locks.  This should
51  * be done before scheduling
52  */
53 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
54 {
55         int i;
56         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
57                 if (!p->nodes[i] || !p->locks[i])
58                         continue;
59                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
60                 if (p->locks[i] == BTRFS_READ_LOCK)
61                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
62                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
63                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
64         }
65 }
66
67 /*
68  * reset all the locked nodes in the patch to spinning locks.
69  *
70  * held is used to keep lockdep happy, when lockdep is enabled
71  * we set held to a blocking lock before we go around and
72  * retake all the spinlocks in the path.  You can safely use NULL
73  * for held
74  */
75 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
76                                         struct extent_buffer *held, int held_rw)
77 {
78         int i;
79
80 #ifdef CONFIG_DEBUG_LOCK_ALLOC
81         /* lockdep really cares that we take all of these spinlocks
82          * in the right order.  If any of the locks in the path are not
83          * currently blocking, it is going to complain.  So, make really
84          * really sure by forcing the path to blocking before we clear
85          * the path blocking.
86          */
87         if (held) {
88                 btrfs_set_lock_blocking_rw(held, held_rw);
89                 if (held_rw == BTRFS_WRITE_LOCK)
90                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
91                 else if (held_rw == BTRFS_READ_LOCK)
92                         held_rw = BTRFS_READ_LOCK_BLOCKING;
93         }
94         btrfs_set_path_blocking(p);
95 #endif
96
97         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
98                 if (p->nodes[i] && p->locks[i]) {
99                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
100                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
101                                 p->locks[i] = BTRFS_WRITE_LOCK;
102                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
103                                 p->locks[i] = BTRFS_READ_LOCK;
104                 }
105         }
106
107 #ifdef CONFIG_DEBUG_LOCK_ALLOC
108         if (held)
109                 btrfs_clear_lock_blocking_rw(held, held_rw);
110 #endif
111 }
112
113 /* this also releases the path */
114 void btrfs_free_path(struct btrfs_path *p)
115 {
116         if (!p)
117                 return;
118         btrfs_release_path(p);
119         kmem_cache_free(btrfs_path_cachep, p);
120 }
121
122 /*
123  * path release drops references on the extent buffers in the path
124  * and it drops any locks held by this path
125  *
126  * It is safe to call this on paths that no locks or extent buffers held.
127  */
128 noinline void btrfs_release_path(struct btrfs_path *p)
129 {
130         int i;
131
132         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
133                 p->slots[i] = 0;
134                 if (!p->nodes[i])
135                         continue;
136                 if (p->locks[i]) {
137                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
138                         p->locks[i] = 0;
139                 }
140                 free_extent_buffer(p->nodes[i]);
141                 p->nodes[i] = NULL;
142         }
143 }
144
145 /*
146  * safely gets a reference on the root node of a tree.  A lock
147  * is not taken, so a concurrent writer may put a different node
148  * at the root of the tree.  See btrfs_lock_root_node for the
149  * looping required.
150  *
151  * The extent buffer returned by this has a reference taken, so
152  * it won't disappear.  It may stop being the root of the tree
153  * at any time because there are no locks held.
154  */
155 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
156 {
157         struct extent_buffer *eb;
158
159         while (1) {
160                 rcu_read_lock();
161                 eb = rcu_dereference(root->node);
162
163                 /*
164                  * RCU really hurts here, we could free up the root node because
165                  * it was cow'ed but we may not get the new root node yet so do
166                  * the inc_not_zero dance and if it doesn't work then
167                  * synchronize_rcu and try again.
168                  */
169                 if (atomic_inc_not_zero(&eb->refs)) {
170                         rcu_read_unlock();
171                         break;
172                 }
173                 rcu_read_unlock();
174                 synchronize_rcu();
175         }
176         return eb;
177 }
178
179 /* loop around taking references on and locking the root node of the
180  * tree until you end up with a lock on the root.  A locked buffer
181  * is returned, with a reference held.
182  */
183 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
184 {
185         struct extent_buffer *eb;
186
187         while (1) {
188                 eb = btrfs_root_node(root);
189                 btrfs_tree_lock(eb);
190                 if (eb == root->node)
191                         break;
192                 btrfs_tree_unlock(eb);
193                 free_extent_buffer(eb);
194         }
195         return eb;
196 }
197
198 /* loop around taking references on and locking the root node of the
199  * tree until you end up with a lock on the root.  A locked buffer
200  * is returned, with a reference held.
201  */
202 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
203 {
204         struct extent_buffer *eb;
205
206         while (1) {
207                 eb = btrfs_root_node(root);
208                 btrfs_tree_read_lock(eb);
209                 if (eb == root->node)
210                         break;
211                 btrfs_tree_read_unlock(eb);
212                 free_extent_buffer(eb);
213         }
214         return eb;
215 }
216
217 /* cowonly root (everything not a reference counted cow subvolume), just get
218  * put onto a simple dirty list.  transaction.c walks this to make sure they
219  * get properly updated on disk.
220  */
221 static void add_root_to_dirty_list(struct btrfs_root *root)
222 {
223         if (root->track_dirty && list_empty(&root->dirty_list)) {
224                 list_add(&root->dirty_list,
225                          &root->fs_info->dirty_cowonly_roots);
226         }
227 }
228
229 /*
230  * used by snapshot creation to make a copy of a root for a tree with
231  * a given objectid.  The buffer with the new root node is returned in
232  * cow_ret, and this func returns zero on success or a negative error code.
233  */
234 int btrfs_copy_root(struct btrfs_trans_handle *trans,
235                       struct btrfs_root *root,
236                       struct extent_buffer *buf,
237                       struct extent_buffer **cow_ret, u64 new_root_objectid)
238 {
239         struct extent_buffer *cow;
240         int ret = 0;
241         int level;
242         struct btrfs_disk_key disk_key;
243
244         WARN_ON(root->ref_cows && trans->transid !=
245                 root->fs_info->running_transaction->transid);
246         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
247
248         level = btrfs_header_level(buf);
249         if (level == 0)
250                 btrfs_item_key(buf, &disk_key, 0);
251         else
252                 btrfs_node_key(buf, &disk_key, 0);
253
254         cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
255                                      new_root_objectid, &disk_key, level,
256                                      buf->start, 0, 1);
257         if (IS_ERR(cow))
258                 return PTR_ERR(cow);
259
260         copy_extent_buffer(cow, buf, 0, 0, cow->len);
261         btrfs_set_header_bytenr(cow, cow->start);
262         btrfs_set_header_generation(cow, trans->transid);
263         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
264         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
265                                      BTRFS_HEADER_FLAG_RELOC);
266         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
267                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
268         else
269                 btrfs_set_header_owner(cow, new_root_objectid);
270
271         write_extent_buffer(cow, root->fs_info->fsid,
272                             (unsigned long)btrfs_header_fsid(cow),
273                             BTRFS_FSID_SIZE);
274
275         WARN_ON(btrfs_header_generation(buf) > trans->transid);
276         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
277                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
278         else
279                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
280
281         if (ret)
282                 return ret;
283
284         btrfs_mark_buffer_dirty(cow);
285         *cow_ret = cow;
286         return 0;
287 }
288
289 /*
290  * check if the tree block can be shared by multiple trees
291  */
292 int btrfs_block_can_be_shared(struct btrfs_root *root,
293                               struct extent_buffer *buf)
294 {
295         /*
296          * Tree blocks not in refernece counted trees and tree roots
297          * are never shared. If a block was allocated after the last
298          * snapshot and the block was not allocated by tree relocation,
299          * we know the block is not shared.
300          */
301         if (root->ref_cows &&
302             buf != root->node && buf != root->commit_root &&
303             (btrfs_header_generation(buf) <=
304              btrfs_root_last_snapshot(&root->root_item) ||
305              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
306                 return 1;
307 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
308         if (root->ref_cows &&
309             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
310                 return 1;
311 #endif
312         return 0;
313 }
314
315 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
316                                        struct btrfs_root *root,
317                                        struct extent_buffer *buf,
318                                        struct extent_buffer *cow,
319                                        int *last_ref)
320 {
321         u64 refs;
322         u64 owner;
323         u64 flags;
324         u64 new_flags = 0;
325         int ret;
326
327         /*
328          * Backrefs update rules:
329          *
330          * Always use full backrefs for extent pointers in tree block
331          * allocated by tree relocation.
332          *
333          * If a shared tree block is no longer referenced by its owner
334          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
335          * use full backrefs for extent pointers in tree block.
336          *
337          * If a tree block is been relocating
338          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
339          * use full backrefs for extent pointers in tree block.
340          * The reason for this is some operations (such as drop tree)
341          * are only allowed for blocks use full backrefs.
342          */
343
344         if (btrfs_block_can_be_shared(root, buf)) {
345                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
346                                                buf->len, &refs, &flags);
347                 BUG_ON(ret);
348                 BUG_ON(refs == 0);
349         } else {
350                 refs = 1;
351                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
352                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
353                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
354                 else
355                         flags = 0;
356         }
357
358         owner = btrfs_header_owner(buf);
359         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
360                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
361
362         if (refs > 1) {
363                 if ((owner == root->root_key.objectid ||
364                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
365                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
366                         ret = btrfs_inc_ref(trans, root, buf, 1, 1);
367                         BUG_ON(ret);
368
369                         if (root->root_key.objectid ==
370                             BTRFS_TREE_RELOC_OBJECTID) {
371                                 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
372                                 BUG_ON(ret);
373                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
374                                 BUG_ON(ret);
375                         }
376                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
377                 } else {
378
379                         if (root->root_key.objectid ==
380                             BTRFS_TREE_RELOC_OBJECTID)
381                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
382                         else
383                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
384                         BUG_ON(ret);
385                 }
386                 if (new_flags != 0) {
387                         ret = btrfs_set_disk_extent_flags(trans, root,
388                                                           buf->start,
389                                                           buf->len,
390                                                           new_flags, 0);
391                         BUG_ON(ret);
392                 }
393         } else {
394                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
395                         if (root->root_key.objectid ==
396                             BTRFS_TREE_RELOC_OBJECTID)
397                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
398                         else
399                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
400                         BUG_ON(ret);
401                         ret = btrfs_dec_ref(trans, root, buf, 1, 1);
402                         BUG_ON(ret);
403                 }
404                 clean_tree_block(trans, root, buf);
405                 *last_ref = 1;
406         }
407         return 0;
408 }
409
410 /*
411  * does the dirty work in cow of a single block.  The parent block (if
412  * supplied) is updated to point to the new cow copy.  The new buffer is marked
413  * dirty and returned locked.  If you modify the block it needs to be marked
414  * dirty again.
415  *
416  * search_start -- an allocation hint for the new block
417  *
418  * empty_size -- a hint that you plan on doing more cow.  This is the size in
419  * bytes the allocator should try to find free next to the block it returns.
420  * This is just a hint and may be ignored by the allocator.
421  */
422 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
423                              struct btrfs_root *root,
424                              struct extent_buffer *buf,
425                              struct extent_buffer *parent, int parent_slot,
426                              struct extent_buffer **cow_ret,
427                              u64 search_start, u64 empty_size)
428 {
429         struct btrfs_disk_key disk_key;
430         struct extent_buffer *cow;
431         int level;
432         int last_ref = 0;
433         int unlock_orig = 0;
434         u64 parent_start;
435
436         if (*cow_ret == buf)
437                 unlock_orig = 1;
438
439         btrfs_assert_tree_locked(buf);
440
441         WARN_ON(root->ref_cows && trans->transid !=
442                 root->fs_info->running_transaction->transid);
443         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
444
445         level = btrfs_header_level(buf);
446
447         if (level == 0)
448                 btrfs_item_key(buf, &disk_key, 0);
449         else
450                 btrfs_node_key(buf, &disk_key, 0);
451
452         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
453                 if (parent)
454                         parent_start = parent->start;
455                 else
456                         parent_start = 0;
457         } else
458                 parent_start = 0;
459
460         cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
461                                      root->root_key.objectid, &disk_key,
462                                      level, search_start, empty_size, 1);
463         if (IS_ERR(cow))
464                 return PTR_ERR(cow);
465
466         /* cow is set to blocking by btrfs_init_new_buffer */
467
468         copy_extent_buffer(cow, buf, 0, 0, cow->len);
469         btrfs_set_header_bytenr(cow, cow->start);
470         btrfs_set_header_generation(cow, trans->transid);
471         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
472         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
473                                      BTRFS_HEADER_FLAG_RELOC);
474         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
475                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
476         else
477                 btrfs_set_header_owner(cow, root->root_key.objectid);
478
479         write_extent_buffer(cow, root->fs_info->fsid,
480                             (unsigned long)btrfs_header_fsid(cow),
481                             BTRFS_FSID_SIZE);
482
483         update_ref_for_cow(trans, root, buf, cow, &last_ref);
484
485         if (root->ref_cows)
486                 btrfs_reloc_cow_block(trans, root, buf, cow);
487
488         if (buf == root->node) {
489                 WARN_ON(parent && parent != buf);
490                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
491                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
492                         parent_start = buf->start;
493                 else
494                         parent_start = 0;
495
496                 extent_buffer_get(cow);
497                 rcu_assign_pointer(root->node, cow);
498
499                 btrfs_free_tree_block(trans, root, buf, parent_start,
500                                       last_ref, 1);
501                 free_extent_buffer(buf);
502                 add_root_to_dirty_list(root);
503         } else {
504                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
505                         parent_start = parent->start;
506                 else
507                         parent_start = 0;
508
509                 WARN_ON(trans->transid != btrfs_header_generation(parent));
510                 btrfs_set_node_blockptr(parent, parent_slot,
511                                         cow->start);
512                 btrfs_set_node_ptr_generation(parent, parent_slot,
513                                               trans->transid);
514                 btrfs_mark_buffer_dirty(parent);
515                 btrfs_free_tree_block(trans, root, buf, parent_start,
516                                       last_ref, 1);
517         }
518         if (unlock_orig)
519                 btrfs_tree_unlock(buf);
520         free_extent_buffer_stale(buf);
521         btrfs_mark_buffer_dirty(cow);
522         *cow_ret = cow;
523         return 0;
524 }
525
526 static inline int should_cow_block(struct btrfs_trans_handle *trans,
527                                    struct btrfs_root *root,
528                                    struct extent_buffer *buf)
529 {
530         /* ensure we can see the force_cow */
531         smp_rmb();
532
533         /*
534          * We do not need to cow a block if
535          * 1) this block is not created or changed in this transaction;
536          * 2) this block does not belong to TREE_RELOC tree;
537          * 3) the root is not forced COW.
538          *
539          * What is forced COW:
540          *    when we create snapshot during commiting the transaction,
541          *    after we've finished coping src root, we must COW the shared
542          *    block to ensure the metadata consistency.
543          */
544         if (btrfs_header_generation(buf) == trans->transid &&
545             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
546             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
547               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
548             !root->force_cow)
549                 return 0;
550         return 1;
551 }
552
553 /*
554  * cows a single block, see __btrfs_cow_block for the real work.
555  * This version of it has extra checks so that a block isn't cow'd more than
556  * once per transaction, as long as it hasn't been written yet
557  */
558 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
559                     struct btrfs_root *root, struct extent_buffer *buf,
560                     struct extent_buffer *parent, int parent_slot,
561                     struct extent_buffer **cow_ret)
562 {
563         u64 search_start;
564         int ret;
565
566         if (trans->transaction != root->fs_info->running_transaction) {
567                 printk(KERN_CRIT "trans %llu running %llu\n",
568                        (unsigned long long)trans->transid,
569                        (unsigned long long)
570                        root->fs_info->running_transaction->transid);
571                 WARN_ON(1);
572         }
573         if (trans->transid != root->fs_info->generation) {
574                 printk(KERN_CRIT "trans %llu running %llu\n",
575                        (unsigned long long)trans->transid,
576                        (unsigned long long)root->fs_info->generation);
577                 WARN_ON(1);
578         }
579
580         if (!should_cow_block(trans, root, buf)) {
581                 *cow_ret = buf;
582                 return 0;
583         }
584
585         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
586
587         if (parent)
588                 btrfs_set_lock_blocking(parent);
589         btrfs_set_lock_blocking(buf);
590
591         ret = __btrfs_cow_block(trans, root, buf, parent,
592                                  parent_slot, cow_ret, search_start, 0);
593
594         trace_btrfs_cow_block(root, buf, *cow_ret);
595
596         return ret;
597 }
598
599 /*
600  * helper function for defrag to decide if two blocks pointed to by a
601  * node are actually close by
602  */
603 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
604 {
605         if (blocknr < other && other - (blocknr + blocksize) < 32768)
606                 return 1;
607         if (blocknr > other && blocknr - (other + blocksize) < 32768)
608                 return 1;
609         return 0;
610 }
611
612 /*
613  * compare two keys in a memcmp fashion
614  */
615 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
616 {
617         struct btrfs_key k1;
618
619         btrfs_disk_key_to_cpu(&k1, disk);
620
621         return btrfs_comp_cpu_keys(&k1, k2);
622 }
623
624 /*
625  * same as comp_keys only with two btrfs_key's
626  */
627 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
628 {
629         if (k1->objectid > k2->objectid)
630                 return 1;
631         if (k1->objectid < k2->objectid)
632                 return -1;
633         if (k1->type > k2->type)
634                 return 1;
635         if (k1->type < k2->type)
636                 return -1;
637         if (k1->offset > k2->offset)
638                 return 1;
639         if (k1->offset < k2->offset)
640                 return -1;
641         return 0;
642 }
643
644 /*
645  * this is used by the defrag code to go through all the
646  * leaves pointed to by a node and reallocate them so that
647  * disk order is close to key order
648  */
649 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
650                        struct btrfs_root *root, struct extent_buffer *parent,
651                        int start_slot, int cache_only, u64 *last_ret,
652                        struct btrfs_key *progress)
653 {
654         struct extent_buffer *cur;
655         u64 blocknr;
656         u64 gen;
657         u64 search_start = *last_ret;
658         u64 last_block = 0;
659         u64 other;
660         u32 parent_nritems;
661         int end_slot;
662         int i;
663         int err = 0;
664         int parent_level;
665         int uptodate;
666         u32 blocksize;
667         int progress_passed = 0;
668         struct btrfs_disk_key disk_key;
669
670         parent_level = btrfs_header_level(parent);
671         if (cache_only && parent_level != 1)
672                 return 0;
673
674         if (trans->transaction != root->fs_info->running_transaction)
675                 WARN_ON(1);
676         if (trans->transid != root->fs_info->generation)
677                 WARN_ON(1);
678
679         parent_nritems = btrfs_header_nritems(parent);
680         blocksize = btrfs_level_size(root, parent_level - 1);
681         end_slot = parent_nritems;
682
683         if (parent_nritems == 1)
684                 return 0;
685
686         btrfs_set_lock_blocking(parent);
687
688         for (i = start_slot; i < end_slot; i++) {
689                 int close = 1;
690
691                 btrfs_node_key(parent, &disk_key, i);
692                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
693                         continue;
694
695                 progress_passed = 1;
696                 blocknr = btrfs_node_blockptr(parent, i);
697                 gen = btrfs_node_ptr_generation(parent, i);
698                 if (last_block == 0)
699                         last_block = blocknr;
700
701                 if (i > 0) {
702                         other = btrfs_node_blockptr(parent, i - 1);
703                         close = close_blocks(blocknr, other, blocksize);
704                 }
705                 if (!close && i < end_slot - 2) {
706                         other = btrfs_node_blockptr(parent, i + 1);
707                         close = close_blocks(blocknr, other, blocksize);
708                 }
709                 if (close) {
710                         last_block = blocknr;
711                         continue;
712                 }
713
714                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
715                 if (cur)
716                         uptodate = btrfs_buffer_uptodate(cur, gen);
717                 else
718                         uptodate = 0;
719                 if (!cur || !uptodate) {
720                         if (cache_only) {
721                                 free_extent_buffer(cur);
722                                 continue;
723                         }
724                         if (!cur) {
725                                 cur = read_tree_block(root, blocknr,
726                                                          blocksize, gen);
727                                 if (!cur)
728                                         return -EIO;
729                         } else if (!uptodate) {
730                                 btrfs_read_buffer(cur, gen);
731                         }
732                 }
733                 if (search_start == 0)
734                         search_start = last_block;
735
736                 btrfs_tree_lock(cur);
737                 btrfs_set_lock_blocking(cur);
738                 err = __btrfs_cow_block(trans, root, cur, parent, i,
739                                         &cur, search_start,
740                                         min(16 * blocksize,
741                                             (end_slot - i) * blocksize));
742                 if (err) {
743                         btrfs_tree_unlock(cur);
744                         free_extent_buffer(cur);
745                         break;
746                 }
747                 search_start = cur->start;
748                 last_block = cur->start;
749                 *last_ret = search_start;
750                 btrfs_tree_unlock(cur);
751                 free_extent_buffer(cur);
752         }
753         return err;
754 }
755
756 /*
757  * The leaf data grows from end-to-front in the node.
758  * this returns the address of the start of the last item,
759  * which is the stop of the leaf data stack
760  */
761 static inline unsigned int leaf_data_end(struct btrfs_root *root,
762                                          struct extent_buffer *leaf)
763 {
764         u32 nr = btrfs_header_nritems(leaf);
765         if (nr == 0)
766                 return BTRFS_LEAF_DATA_SIZE(root);
767         return btrfs_item_offset_nr(leaf, nr - 1);
768 }
769
770
771 /*
772  * search for key in the extent_buffer.  The items start at offset p,
773  * and they are item_size apart.  There are 'max' items in p.
774  *
775  * the slot in the array is returned via slot, and it points to
776  * the place where you would insert key if it is not found in
777  * the array.
778  *
779  * slot may point to max if the key is bigger than all of the keys
780  */
781 static noinline int generic_bin_search(struct extent_buffer *eb,
782                                        unsigned long p,
783                                        int item_size, struct btrfs_key *key,
784                                        int max, int *slot)
785 {
786         int low = 0;
787         int high = max;
788         int mid;
789         int ret;
790         struct btrfs_disk_key *tmp = NULL;
791         struct btrfs_disk_key unaligned;
792         unsigned long offset;
793         char *kaddr = NULL;
794         unsigned long map_start = 0;
795         unsigned long map_len = 0;
796         int err;
797
798         while (low < high) {
799                 mid = (low + high) / 2;
800                 offset = p + mid * item_size;
801
802                 if (!kaddr || offset < map_start ||
803                     (offset + sizeof(struct btrfs_disk_key)) >
804                     map_start + map_len) {
805
806                         err = map_private_extent_buffer(eb, offset,
807                                                 sizeof(struct btrfs_disk_key),
808                                                 &kaddr, &map_start, &map_len);
809
810                         if (!err) {
811                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
812                                                         map_start);
813                         } else {
814                                 read_extent_buffer(eb, &unaligned,
815                                                    offset, sizeof(unaligned));
816                                 tmp = &unaligned;
817                         }
818
819                 } else {
820                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
821                                                         map_start);
822                 }
823                 ret = comp_keys(tmp, key);
824
825                 if (ret < 0)
826                         low = mid + 1;
827                 else if (ret > 0)
828                         high = mid;
829                 else {
830                         *slot = mid;
831                         return 0;
832                 }
833         }
834         *slot = low;
835         return 1;
836 }
837
838 /*
839  * simple bin_search frontend that does the right thing for
840  * leaves vs nodes
841  */
842 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
843                       int level, int *slot)
844 {
845         if (level == 0) {
846                 return generic_bin_search(eb,
847                                           offsetof(struct btrfs_leaf, items),
848                                           sizeof(struct btrfs_item),
849                                           key, btrfs_header_nritems(eb),
850                                           slot);
851         } else {
852                 return generic_bin_search(eb,
853                                           offsetof(struct btrfs_node, ptrs),
854                                           sizeof(struct btrfs_key_ptr),
855                                           key, btrfs_header_nritems(eb),
856                                           slot);
857         }
858         return -1;
859 }
860
861 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
862                      int level, int *slot)
863 {
864         return bin_search(eb, key, level, slot);
865 }
866
867 static void root_add_used(struct btrfs_root *root, u32 size)
868 {
869         spin_lock(&root->accounting_lock);
870         btrfs_set_root_used(&root->root_item,
871                             btrfs_root_used(&root->root_item) + size);
872         spin_unlock(&root->accounting_lock);
873 }
874
875 static void root_sub_used(struct btrfs_root *root, u32 size)
876 {
877         spin_lock(&root->accounting_lock);
878         btrfs_set_root_used(&root->root_item,
879                             btrfs_root_used(&root->root_item) - size);
880         spin_unlock(&root->accounting_lock);
881 }
882
883 /* given a node and slot number, this reads the blocks it points to.  The
884  * extent buffer is returned with a reference taken (but unlocked).
885  * NULL is returned on error.
886  */
887 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
888                                    struct extent_buffer *parent, int slot)
889 {
890         int level = btrfs_header_level(parent);
891         if (slot < 0)
892                 return NULL;
893         if (slot >= btrfs_header_nritems(parent))
894                 return NULL;
895
896         BUG_ON(level == 0);
897
898         return read_tree_block(root, btrfs_node_blockptr(parent, slot),
899                        btrfs_level_size(root, level - 1),
900                        btrfs_node_ptr_generation(parent, slot));
901 }
902
903 /*
904  * node level balancing, used to make sure nodes are in proper order for
905  * item deletion.  We balance from the top down, so we have to make sure
906  * that a deletion won't leave an node completely empty later on.
907  */
908 static noinline int balance_level(struct btrfs_trans_handle *trans,
909                          struct btrfs_root *root,
910                          struct btrfs_path *path, int level)
911 {
912         struct extent_buffer *right = NULL;
913         struct extent_buffer *mid;
914         struct extent_buffer *left = NULL;
915         struct extent_buffer *parent = NULL;
916         int ret = 0;
917         int wret;
918         int pslot;
919         int orig_slot = path->slots[level];
920         u64 orig_ptr;
921
922         if (level == 0)
923                 return 0;
924
925         mid = path->nodes[level];
926
927         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
928                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
929         WARN_ON(btrfs_header_generation(mid) != trans->transid);
930
931         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
932
933         if (level < BTRFS_MAX_LEVEL - 1) {
934                 parent = path->nodes[level + 1];
935                 pslot = path->slots[level + 1];
936         }
937
938         /*
939          * deal with the case where there is only one pointer in the root
940          * by promoting the node below to a root
941          */
942         if (!parent) {
943                 struct extent_buffer *child;
944
945                 if (btrfs_header_nritems(mid) != 1)
946                         return 0;
947
948                 /* promote the child to a root */
949                 child = read_node_slot(root, mid, 0);
950                 BUG_ON(!child);
951                 btrfs_tree_lock(child);
952                 btrfs_set_lock_blocking(child);
953                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
954                 if (ret) {
955                         btrfs_tree_unlock(child);
956                         free_extent_buffer(child);
957                         goto enospc;
958                 }
959
960                 rcu_assign_pointer(root->node, child);
961
962                 add_root_to_dirty_list(root);
963                 btrfs_tree_unlock(child);
964
965                 path->locks[level] = 0;
966                 path->nodes[level] = NULL;
967                 clean_tree_block(trans, root, mid);
968                 btrfs_tree_unlock(mid);
969                 /* once for the path */
970                 free_extent_buffer(mid);
971
972                 root_sub_used(root, mid->len);
973                 btrfs_free_tree_block(trans, root, mid, 0, 1, 0);
974                 /* once for the root ptr */
975                 free_extent_buffer_stale(mid);
976                 return 0;
977         }
978         if (btrfs_header_nritems(mid) >
979             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
980                 return 0;
981
982         btrfs_header_nritems(mid);
983
984         left = read_node_slot(root, parent, pslot - 1);
985         if (left) {
986                 btrfs_tree_lock(left);
987                 btrfs_set_lock_blocking(left);
988                 wret = btrfs_cow_block(trans, root, left,
989                                        parent, pslot - 1, &left);
990                 if (wret) {
991                         ret = wret;
992                         goto enospc;
993                 }
994         }
995         right = read_node_slot(root, parent, pslot + 1);
996         if (right) {
997                 btrfs_tree_lock(right);
998                 btrfs_set_lock_blocking(right);
999                 wret = btrfs_cow_block(trans, root, right,
1000                                        parent, pslot + 1, &right);
1001                 if (wret) {
1002                         ret = wret;
1003                         goto enospc;
1004                 }
1005         }
1006
1007         /* first, try to make some room in the middle buffer */
1008         if (left) {
1009                 orig_slot += btrfs_header_nritems(left);
1010                 wret = push_node_left(trans, root, left, mid, 1);
1011                 if (wret < 0)
1012                         ret = wret;
1013                 btrfs_header_nritems(mid);
1014         }
1015
1016         /*
1017          * then try to empty the right most buffer into the middle
1018          */
1019         if (right) {
1020                 wret = push_node_left(trans, root, mid, right, 1);
1021                 if (wret < 0 && wret != -ENOSPC)
1022                         ret = wret;
1023                 if (btrfs_header_nritems(right) == 0) {
1024                         clean_tree_block(trans, root, right);
1025                         btrfs_tree_unlock(right);
1026                         wret = del_ptr(trans, root, path, level + 1, pslot +
1027                                        1);
1028                         if (wret)
1029                                 ret = wret;
1030                         root_sub_used(root, right->len);
1031                         btrfs_free_tree_block(trans, root, right, 0, 1, 0);
1032                         free_extent_buffer_stale(right);
1033                         right = NULL;
1034                 } else {
1035                         struct btrfs_disk_key right_key;
1036                         btrfs_node_key(right, &right_key, 0);
1037                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1038                         btrfs_mark_buffer_dirty(parent);
1039                 }
1040         }
1041         if (btrfs_header_nritems(mid) == 1) {
1042                 /*
1043                  * we're not allowed to leave a node with one item in the
1044                  * tree during a delete.  A deletion from lower in the tree
1045                  * could try to delete the only pointer in this node.
1046                  * So, pull some keys from the left.
1047                  * There has to be a left pointer at this point because
1048                  * otherwise we would have pulled some pointers from the
1049                  * right
1050                  */
1051                 BUG_ON(!left);
1052                 wret = balance_node_right(trans, root, mid, left);
1053                 if (wret < 0) {
1054                         ret = wret;
1055                         goto enospc;
1056                 }
1057                 if (wret == 1) {
1058                         wret = push_node_left(trans, root, left, mid, 1);
1059                         if (wret < 0)
1060                                 ret = wret;
1061                 }
1062                 BUG_ON(wret == 1);
1063         }
1064         if (btrfs_header_nritems(mid) == 0) {
1065                 clean_tree_block(trans, root, mid);
1066                 btrfs_tree_unlock(mid);
1067                 wret = del_ptr(trans, root, path, level + 1, pslot);
1068                 if (wret)
1069                         ret = wret;
1070                 root_sub_used(root, mid->len);
1071                 btrfs_free_tree_block(trans, root, mid, 0, 1, 0);
1072                 free_extent_buffer_stale(mid);
1073                 mid = NULL;
1074         } else {
1075                 /* update the parent key to reflect our changes */
1076                 struct btrfs_disk_key mid_key;
1077                 btrfs_node_key(mid, &mid_key, 0);
1078                 btrfs_set_node_key(parent, &mid_key, pslot);
1079                 btrfs_mark_buffer_dirty(parent);
1080         }
1081
1082         /* update the path */
1083         if (left) {
1084                 if (btrfs_header_nritems(left) > orig_slot) {
1085                         extent_buffer_get(left);
1086                         /* left was locked after cow */
1087                         path->nodes[level] = left;
1088                         path->slots[level + 1] -= 1;
1089                         path->slots[level] = orig_slot;
1090                         if (mid) {
1091                                 btrfs_tree_unlock(mid);
1092                                 free_extent_buffer(mid);
1093                         }
1094                 } else {
1095                         orig_slot -= btrfs_header_nritems(left);
1096                         path->slots[level] = orig_slot;
1097                 }
1098         }
1099         /* double check we haven't messed things up */
1100         if (orig_ptr !=
1101             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1102                 BUG();
1103 enospc:
1104         if (right) {
1105                 btrfs_tree_unlock(right);
1106                 free_extent_buffer(right);
1107         }
1108         if (left) {
1109                 if (path->nodes[level] != left)
1110                         btrfs_tree_unlock(left);
1111                 free_extent_buffer(left);
1112         }
1113         return ret;
1114 }
1115
1116 /* Node balancing for insertion.  Here we only split or push nodes around
1117  * when they are completely full.  This is also done top down, so we
1118  * have to be pessimistic.
1119  */
1120 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1121                                           struct btrfs_root *root,
1122                                           struct btrfs_path *path, int level)
1123 {
1124         struct extent_buffer *right = NULL;
1125         struct extent_buffer *mid;
1126         struct extent_buffer *left = NULL;
1127         struct extent_buffer *parent = NULL;
1128         int ret = 0;
1129         int wret;
1130         int pslot;
1131         int orig_slot = path->slots[level];
1132
1133         if (level == 0)
1134                 return 1;
1135
1136         mid = path->nodes[level];
1137         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1138
1139         if (level < BTRFS_MAX_LEVEL - 1) {
1140                 parent = path->nodes[level + 1];
1141                 pslot = path->slots[level + 1];
1142         }
1143
1144         if (!parent)
1145                 return 1;
1146
1147         left = read_node_slot(root, parent, pslot - 1);
1148
1149         /* first, try to make some room in the middle buffer */
1150         if (left) {
1151                 u32 left_nr;
1152
1153                 btrfs_tree_lock(left);
1154                 btrfs_set_lock_blocking(left);
1155
1156                 left_nr = btrfs_header_nritems(left);
1157                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1158                         wret = 1;
1159                 } else {
1160                         ret = btrfs_cow_block(trans, root, left, parent,
1161                                               pslot - 1, &left);
1162                         if (ret)
1163                                 wret = 1;
1164                         else {
1165                                 wret = push_node_left(trans, root,
1166                                                       left, mid, 0);
1167                         }
1168                 }
1169                 if (wret < 0)
1170                         ret = wret;
1171                 if (wret == 0) {
1172                         struct btrfs_disk_key disk_key;
1173                         orig_slot += left_nr;
1174                         btrfs_node_key(mid, &disk_key, 0);
1175                         btrfs_set_node_key(parent, &disk_key, pslot);
1176                         btrfs_mark_buffer_dirty(parent);
1177                         if (btrfs_header_nritems(left) > orig_slot) {
1178                                 path->nodes[level] = left;
1179                                 path->slots[level + 1] -= 1;
1180                                 path->slots[level] = orig_slot;
1181                                 btrfs_tree_unlock(mid);
1182                                 free_extent_buffer(mid);
1183                         } else {
1184                                 orig_slot -=
1185                                         btrfs_header_nritems(left);
1186                                 path->slots[level] = orig_slot;
1187                                 btrfs_tree_unlock(left);
1188                                 free_extent_buffer(left);
1189                         }
1190                         return 0;
1191                 }
1192                 btrfs_tree_unlock(left);
1193                 free_extent_buffer(left);
1194         }
1195         right = read_node_slot(root, parent, pslot + 1);
1196
1197         /*
1198          * then try to empty the right most buffer into the middle
1199          */
1200         if (right) {
1201                 u32 right_nr;
1202
1203                 btrfs_tree_lock(right);
1204                 btrfs_set_lock_blocking(right);
1205
1206                 right_nr = btrfs_header_nritems(right);
1207                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1208                         wret = 1;
1209                 } else {
1210                         ret = btrfs_cow_block(trans, root, right,
1211                                               parent, pslot + 1,
1212                                               &right);
1213                         if (ret)
1214                                 wret = 1;
1215                         else {
1216                                 wret = balance_node_right(trans, root,
1217                                                           right, mid);
1218                         }
1219                 }
1220                 if (wret < 0)
1221                         ret = wret;
1222                 if (wret == 0) {
1223                         struct btrfs_disk_key disk_key;
1224
1225                         btrfs_node_key(right, &disk_key, 0);
1226                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
1227                         btrfs_mark_buffer_dirty(parent);
1228
1229                         if (btrfs_header_nritems(mid) <= orig_slot) {
1230                                 path->nodes[level] = right;
1231                                 path->slots[level + 1] += 1;
1232                                 path->slots[level] = orig_slot -
1233                                         btrfs_header_nritems(mid);
1234                                 btrfs_tree_unlock(mid);
1235                                 free_extent_buffer(mid);
1236                         } else {
1237                                 btrfs_tree_unlock(right);
1238                                 free_extent_buffer(right);
1239                         }
1240                         return 0;
1241                 }
1242                 btrfs_tree_unlock(right);
1243                 free_extent_buffer(right);
1244         }
1245         return 1;
1246 }
1247
1248 /*
1249  * readahead one full node of leaves, finding things that are close
1250  * to the block in 'slot', and triggering ra on them.
1251  */
1252 static void reada_for_search(struct btrfs_root *root,
1253                              struct btrfs_path *path,
1254                              int level, int slot, u64 objectid)
1255 {
1256         struct extent_buffer *node;
1257         struct btrfs_disk_key disk_key;
1258         u32 nritems;
1259         u64 search;
1260         u64 target;
1261         u64 nread = 0;
1262         u64 gen;
1263         int direction = path->reada;
1264         struct extent_buffer *eb;
1265         u32 nr;
1266         u32 blocksize;
1267         u32 nscan = 0;
1268
1269         if (level != 1)
1270                 return;
1271
1272         if (!path->nodes[level])
1273                 return;
1274
1275         node = path->nodes[level];
1276
1277         search = btrfs_node_blockptr(node, slot);
1278         blocksize = btrfs_level_size(root, level - 1);
1279         eb = btrfs_find_tree_block(root, search, blocksize);
1280         if (eb) {
1281                 free_extent_buffer(eb);
1282                 return;
1283         }
1284
1285         target = search;
1286
1287         nritems = btrfs_header_nritems(node);
1288         nr = slot;
1289
1290         while (1) {
1291                 if (direction < 0) {
1292                         if (nr == 0)
1293                                 break;
1294                         nr--;
1295                 } else if (direction > 0) {
1296                         nr++;
1297                         if (nr >= nritems)
1298                                 break;
1299                 }
1300                 if (path->reada < 0 && objectid) {
1301                         btrfs_node_key(node, &disk_key, nr);
1302                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
1303                                 break;
1304                 }
1305                 search = btrfs_node_blockptr(node, nr);
1306                 if ((search <= target && target - search <= 65536) ||
1307                     (search > target && search - target <= 65536)) {
1308                         gen = btrfs_node_ptr_generation(node, nr);
1309                         readahead_tree_block(root, search, blocksize, gen);
1310                         nread += blocksize;
1311                 }
1312                 nscan++;
1313                 if ((nread > 65536 || nscan > 32))
1314                         break;
1315         }
1316 }
1317
1318 /*
1319  * returns -EAGAIN if it had to drop the path, or zero if everything was in
1320  * cache
1321  */
1322 static noinline int reada_for_balance(struct btrfs_root *root,
1323                                       struct btrfs_path *path, int level)
1324 {
1325         int slot;
1326         int nritems;
1327         struct extent_buffer *parent;
1328         struct extent_buffer *eb;
1329         u64 gen;
1330         u64 block1 = 0;
1331         u64 block2 = 0;
1332         int ret = 0;
1333         int blocksize;
1334
1335         parent = path->nodes[level + 1];
1336         if (!parent)
1337                 return 0;
1338
1339         nritems = btrfs_header_nritems(parent);
1340         slot = path->slots[level + 1];
1341         blocksize = btrfs_level_size(root, level);
1342
1343         if (slot > 0) {
1344                 block1 = btrfs_node_blockptr(parent, slot - 1);
1345                 gen = btrfs_node_ptr_generation(parent, slot - 1);
1346                 eb = btrfs_find_tree_block(root, block1, blocksize);
1347                 if (eb && btrfs_buffer_uptodate(eb, gen))
1348                         block1 = 0;
1349                 free_extent_buffer(eb);
1350         }
1351         if (slot + 1 < nritems) {
1352                 block2 = btrfs_node_blockptr(parent, slot + 1);
1353                 gen = btrfs_node_ptr_generation(parent, slot + 1);
1354                 eb = btrfs_find_tree_block(root, block2, blocksize);
1355                 if (eb && btrfs_buffer_uptodate(eb, gen))
1356                         block2 = 0;
1357                 free_extent_buffer(eb);
1358         }
1359         if (block1 || block2) {
1360                 ret = -EAGAIN;
1361
1362                 /* release the whole path */
1363                 btrfs_release_path(path);
1364
1365                 /* read the blocks */
1366                 if (block1)
1367                         readahead_tree_block(root, block1, blocksize, 0);
1368                 if (block2)
1369                         readahead_tree_block(root, block2, blocksize, 0);
1370
1371                 if (block1) {
1372                         eb = read_tree_block(root, block1, blocksize, 0);
1373                         free_extent_buffer(eb);
1374                 }
1375                 if (block2) {
1376                         eb = read_tree_block(root, block2, blocksize, 0);
1377                         free_extent_buffer(eb);
1378                 }
1379         }
1380         return ret;
1381 }
1382
1383
1384 /*
1385  * when we walk down the tree, it is usually safe to unlock the higher layers
1386  * in the tree.  The exceptions are when our path goes through slot 0, because
1387  * operations on the tree might require changing key pointers higher up in the
1388  * tree.
1389  *
1390  * callers might also have set path->keep_locks, which tells this code to keep
1391  * the lock if the path points to the last slot in the block.  This is part of
1392  * walking through the tree, and selecting the next slot in the higher block.
1393  *
1394  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1395  * if lowest_unlock is 1, level 0 won't be unlocked
1396  */
1397 static noinline void unlock_up(struct btrfs_path *path, int level,
1398                                int lowest_unlock, int min_write_lock_level,
1399                                int *write_lock_level)
1400 {
1401         int i;
1402         int skip_level = level;
1403         int no_skips = 0;
1404         struct extent_buffer *t;
1405
1406         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1407                 if (!path->nodes[i])
1408                         break;
1409                 if (!path->locks[i])
1410                         break;
1411                 if (!no_skips && path->slots[i] == 0) {
1412                         skip_level = i + 1;
1413                         continue;
1414                 }
1415                 if (!no_skips && path->keep_locks) {
1416                         u32 nritems;
1417                         t = path->nodes[i];
1418                         nritems = btrfs_header_nritems(t);
1419                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
1420                                 skip_level = i + 1;
1421                                 continue;
1422                         }
1423                 }
1424                 if (skip_level < i && i >= lowest_unlock)
1425                         no_skips = 1;
1426
1427                 t = path->nodes[i];
1428                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1429                         btrfs_tree_unlock_rw(t, path->locks[i]);
1430                         path->locks[i] = 0;
1431                         if (write_lock_level &&
1432                             i > min_write_lock_level &&
1433                             i <= *write_lock_level) {
1434                                 *write_lock_level = i - 1;
1435                         }
1436                 }
1437         }
1438 }
1439
1440 /*
1441  * This releases any locks held in the path starting at level and
1442  * going all the way up to the root.
1443  *
1444  * btrfs_search_slot will keep the lock held on higher nodes in a few
1445  * corner cases, such as COW of the block at slot zero in the node.  This
1446  * ignores those rules, and it should only be called when there are no
1447  * more updates to be done higher up in the tree.
1448  */
1449 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1450 {
1451         int i;
1452
1453         if (path->keep_locks)
1454                 return;
1455
1456         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1457                 if (!path->nodes[i])
1458                         continue;
1459                 if (!path->locks[i])
1460                         continue;
1461                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1462                 path->locks[i] = 0;
1463         }
1464 }
1465
1466 /*
1467  * helper function for btrfs_search_slot.  The goal is to find a block
1468  * in cache without setting the path to blocking.  If we find the block
1469  * we return zero and the path is unchanged.
1470  *
1471  * If we can't find the block, we set the path blocking and do some
1472  * reada.  -EAGAIN is returned and the search must be repeated.
1473  */
1474 static int
1475 read_block_for_search(struct btrfs_trans_handle *trans,
1476                        struct btrfs_root *root, struct btrfs_path *p,
1477                        struct extent_buffer **eb_ret, int level, int slot,
1478                        struct btrfs_key *key)
1479 {
1480         u64 blocknr;
1481         u64 gen;
1482         u32 blocksize;
1483         struct extent_buffer *b = *eb_ret;
1484         struct extent_buffer *tmp;
1485         int ret;
1486
1487         blocknr = btrfs_node_blockptr(b, slot);
1488         gen = btrfs_node_ptr_generation(b, slot);
1489         blocksize = btrfs_level_size(root, level - 1);
1490
1491         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1492         if (tmp) {
1493                 if (btrfs_buffer_uptodate(tmp, 0)) {
1494                         if (btrfs_buffer_uptodate(tmp, gen)) {
1495                                 /*
1496                                  * we found an up to date block without
1497                                  * sleeping, return
1498                                  * right away
1499                                  */
1500                                 *eb_ret = tmp;
1501                                 return 0;
1502                         }
1503                         /* the pages were up to date, but we failed
1504                          * the generation number check.  Do a full
1505                          * read for the generation number that is correct.
1506                          * We must do this without dropping locks so
1507                          * we can trust our generation number
1508                          */
1509                         free_extent_buffer(tmp);
1510                         btrfs_set_path_blocking(p);
1511
1512                         tmp = read_tree_block(root, blocknr, blocksize, gen);
1513                         if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1514                                 *eb_ret = tmp;
1515                                 return 0;
1516                         }
1517                         free_extent_buffer(tmp);
1518                         btrfs_release_path(p);
1519                         return -EIO;
1520                 }
1521         }
1522
1523         /*
1524          * reduce lock contention at high levels
1525          * of the btree by dropping locks before
1526          * we read.  Don't release the lock on the current
1527          * level because we need to walk this node to figure
1528          * out which blocks to read.
1529          */
1530         btrfs_unlock_up_safe(p, level + 1);
1531         btrfs_set_path_blocking(p);
1532
1533         free_extent_buffer(tmp);
1534         if (p->reada)
1535                 reada_for_search(root, p, level, slot, key->objectid);
1536
1537         btrfs_release_path(p);
1538
1539         ret = -EAGAIN;
1540         tmp = read_tree_block(root, blocknr, blocksize, 0);
1541         if (tmp) {
1542                 /*
1543                  * If the read above didn't mark this buffer up to date,
1544                  * it will never end up being up to date.  Set ret to EIO now
1545                  * and give up so that our caller doesn't loop forever
1546                  * on our EAGAINs.
1547                  */
1548                 if (!btrfs_buffer_uptodate(tmp, 0))
1549                         ret = -EIO;
1550                 free_extent_buffer(tmp);
1551         }
1552         return ret;
1553 }
1554
1555 /*
1556  * helper function for btrfs_search_slot.  This does all of the checks
1557  * for node-level blocks and does any balancing required based on
1558  * the ins_len.
1559  *
1560  * If no extra work was required, zero is returned.  If we had to
1561  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1562  * start over
1563  */
1564 static int
1565 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1566                        struct btrfs_root *root, struct btrfs_path *p,
1567                        struct extent_buffer *b, int level, int ins_len,
1568                        int *write_lock_level)
1569 {
1570         int ret;
1571         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1572             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1573                 int sret;
1574
1575                 if (*write_lock_level < level + 1) {
1576                         *write_lock_level = level + 1;
1577                         btrfs_release_path(p);
1578                         goto again;
1579                 }
1580
1581                 sret = reada_for_balance(root, p, level);
1582                 if (sret)
1583                         goto again;
1584
1585                 btrfs_set_path_blocking(p);
1586                 sret = split_node(trans, root, p, level);
1587                 btrfs_clear_path_blocking(p, NULL, 0);
1588
1589                 BUG_ON(sret > 0);
1590                 if (sret) {
1591                         ret = sret;
1592                         goto done;
1593                 }
1594                 b = p->nodes[level];
1595         } else if (ins_len < 0 && btrfs_header_nritems(b) <
1596                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
1597                 int sret;
1598
1599                 if (*write_lock_level < level + 1) {
1600                         *write_lock_level = level + 1;
1601                         btrfs_release_path(p);
1602                         goto again;
1603                 }
1604
1605                 sret = reada_for_balance(root, p, level);
1606                 if (sret)
1607                         goto again;
1608
1609                 btrfs_set_path_blocking(p);
1610                 sret = balance_level(trans, root, p, level);
1611                 btrfs_clear_path_blocking(p, NULL, 0);
1612
1613                 if (sret) {
1614                         ret = sret;
1615                         goto done;
1616                 }
1617                 b = p->nodes[level];
1618                 if (!b) {
1619                         btrfs_release_path(p);
1620                         goto again;
1621                 }
1622                 BUG_ON(btrfs_header_nritems(b) == 1);
1623         }
1624         return 0;
1625
1626 again:
1627         ret = -EAGAIN;
1628 done:
1629         return ret;
1630 }
1631
1632 /*
1633  * look for key in the tree.  path is filled in with nodes along the way
1634  * if key is found, we return zero and you can find the item in the leaf
1635  * level of the path (level 0)
1636  *
1637  * If the key isn't found, the path points to the slot where it should
1638  * be inserted, and 1 is returned.  If there are other errors during the
1639  * search a negative error number is returned.
1640  *
1641  * if ins_len > 0, nodes and leaves will be split as we walk down the
1642  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
1643  * possible)
1644  */
1645 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1646                       *root, struct btrfs_key *key, struct btrfs_path *p, int
1647                       ins_len, int cow)
1648 {
1649         struct extent_buffer *b;
1650         int slot;
1651         int ret;
1652         int err;
1653         int level;
1654         int lowest_unlock = 1;
1655         int root_lock;
1656         /* everything at write_lock_level or lower must be write locked */
1657         int write_lock_level = 0;
1658         u8 lowest_level = 0;
1659         int min_write_lock_level;
1660
1661         lowest_level = p->lowest_level;
1662         WARN_ON(lowest_level && ins_len > 0);
1663         WARN_ON(p->nodes[0] != NULL);
1664
1665         if (ins_len < 0) {
1666                 lowest_unlock = 2;
1667
1668                 /* when we are removing items, we might have to go up to level
1669                  * two as we update tree pointers  Make sure we keep write
1670                  * for those levels as well
1671                  */
1672                 write_lock_level = 2;
1673         } else if (ins_len > 0) {
1674                 /*
1675                  * for inserting items, make sure we have a write lock on
1676                  * level 1 so we can update keys
1677                  */
1678                 write_lock_level = 1;
1679         }
1680
1681         if (!cow)
1682                 write_lock_level = -1;
1683
1684         if (cow && (p->keep_locks || p->lowest_level))
1685                 write_lock_level = BTRFS_MAX_LEVEL;
1686
1687         min_write_lock_level = write_lock_level;
1688
1689 again:
1690         /*
1691          * we try very hard to do read locks on the root
1692          */
1693         root_lock = BTRFS_READ_LOCK;
1694         level = 0;
1695         if (p->search_commit_root) {
1696                 /*
1697                  * the commit roots are read only
1698                  * so we always do read locks
1699                  */
1700                 b = root->commit_root;
1701                 extent_buffer_get(b);
1702                 level = btrfs_header_level(b);
1703                 if (!p->skip_locking)
1704                         btrfs_tree_read_lock(b);
1705         } else {
1706                 if (p->skip_locking) {
1707                         b = btrfs_root_node(root);
1708                         level = btrfs_header_level(b);
1709                 } else {
1710                         /* we don't know the level of the root node
1711                          * until we actually have it read locked
1712                          */
1713                         b = btrfs_read_lock_root_node(root);
1714                         level = btrfs_header_level(b);
1715                         if (level <= write_lock_level) {
1716                                 /* whoops, must trade for write lock */
1717                                 btrfs_tree_read_unlock(b);
1718                                 free_extent_buffer(b);
1719                                 b = btrfs_lock_root_node(root);
1720                                 root_lock = BTRFS_WRITE_LOCK;
1721
1722                                 /* the level might have changed, check again */
1723                                 level = btrfs_header_level(b);
1724                         }
1725                 }
1726         }
1727         p->nodes[level] = b;
1728         if (!p->skip_locking)
1729                 p->locks[level] = root_lock;
1730
1731         while (b) {
1732                 level = btrfs_header_level(b);
1733
1734                 /*
1735                  * setup the path here so we can release it under lock
1736                  * contention with the cow code
1737                  */
1738                 if (cow) {
1739                         /*
1740                          * if we don't really need to cow this block
1741                          * then we don't want to set the path blocking,
1742                          * so we test it here
1743                          */
1744                         if (!should_cow_block(trans, root, b))
1745                                 goto cow_done;
1746
1747                         btrfs_set_path_blocking(p);
1748
1749                         /*
1750                          * must have write locks on this node and the
1751                          * parent
1752                          */
1753                         if (level + 1 > write_lock_level) {
1754                                 write_lock_level = level + 1;
1755                                 btrfs_release_path(p);
1756                                 goto again;
1757                         }
1758
1759                         err = btrfs_cow_block(trans, root, b,
1760                                               p->nodes[level + 1],
1761                                               p->slots[level + 1], &b);
1762                         if (err) {
1763                                 ret = err;
1764                                 goto done;
1765                         }
1766                 }
1767 cow_done:
1768                 BUG_ON(!cow && ins_len);
1769
1770                 p->nodes[level] = b;
1771                 btrfs_clear_path_blocking(p, NULL, 0);
1772
1773                 /*
1774                  * we have a lock on b and as long as we aren't changing
1775                  * the tree, there is no way to for the items in b to change.
1776                  * It is safe to drop the lock on our parent before we
1777                  * go through the expensive btree search on b.
1778                  *
1779                  * If cow is true, then we might be changing slot zero,
1780                  * which may require changing the parent.  So, we can't
1781                  * drop the lock until after we know which slot we're
1782                  * operating on.
1783                  */
1784                 if (!cow)
1785                         btrfs_unlock_up_safe(p, level + 1);
1786
1787                 ret = bin_search(b, key, level, &slot);
1788
1789                 if (level != 0) {
1790                         int dec = 0;
1791                         if (ret && slot > 0) {
1792                                 dec = 1;
1793                                 slot -= 1;
1794                         }
1795                         p->slots[level] = slot;
1796                         err = setup_nodes_for_search(trans, root, p, b, level,
1797                                              ins_len, &write_lock_level);
1798                         if (err == -EAGAIN)
1799                                 goto again;
1800                         if (err) {
1801                                 ret = err;
1802                                 goto done;
1803                         }
1804                         b = p->nodes[level];
1805                         slot = p->slots[level];
1806
1807                         /*
1808                          * slot 0 is special, if we change the key
1809                          * we have to update the parent pointer
1810                          * which means we must have a write lock
1811                          * on the parent
1812                          */
1813                         if (slot == 0 && cow &&
1814                             write_lock_level < level + 1) {
1815                                 write_lock_level = level + 1;
1816                                 btrfs_release_path(p);
1817                                 goto again;
1818                         }
1819
1820                         unlock_up(p, level, lowest_unlock,
1821                                   min_write_lock_level, &write_lock_level);
1822
1823                         if (level == lowest_level) {
1824                                 if (dec)
1825                                         p->slots[level]++;
1826                                 goto done;
1827                         }
1828
1829                         err = read_block_for_search(trans, root, p,
1830                                                     &b, level, slot, key);
1831                         if (err == -EAGAIN)
1832                                 goto again;
1833                         if (err) {
1834                                 ret = err;
1835                                 goto done;
1836                         }
1837
1838                         if (!p->skip_locking) {
1839                                 level = btrfs_header_level(b);
1840                                 if (level <= write_lock_level) {
1841                                         err = btrfs_try_tree_write_lock(b);
1842                                         if (!err) {
1843                                                 btrfs_set_path_blocking(p);
1844                                                 btrfs_tree_lock(b);
1845                                                 btrfs_clear_path_blocking(p, b,
1846                                                                   BTRFS_WRITE_LOCK);
1847                                         }
1848                                         p->locks[level] = BTRFS_WRITE_LOCK;
1849                                 } else {
1850                                         err = btrfs_try_tree_read_lock(b);
1851                                         if (!err) {
1852                                                 btrfs_set_path_blocking(p);
1853                                                 btrfs_tree_read_lock(b);
1854                                                 btrfs_clear_path_blocking(p, b,
1855                                                                   BTRFS_READ_LOCK);
1856                                         }
1857                                         p->locks[level] = BTRFS_READ_LOCK;
1858                                 }
1859                                 p->nodes[level] = b;
1860                         }
1861                 } else {
1862                         p->slots[level] = slot;
1863                         if (ins_len > 0 &&
1864                             btrfs_leaf_free_space(root, b) < ins_len) {
1865                                 if (write_lock_level < 1) {
1866                                         write_lock_level = 1;
1867                                         btrfs_release_path(p);
1868                                         goto again;
1869                                 }
1870
1871                                 btrfs_set_path_blocking(p);
1872                                 err = split_leaf(trans, root, key,
1873                                                  p, ins_len, ret == 0);
1874                                 btrfs_clear_path_blocking(p, NULL, 0);
1875
1876                                 BUG_ON(err > 0);
1877                                 if (err) {
1878                                         ret = err;
1879                                         goto done;
1880                                 }
1881                         }
1882                         if (!p->search_for_split)
1883                                 unlock_up(p, level, lowest_unlock,
1884                                           min_write_lock_level, &write_lock_level);
1885                         goto done;
1886                 }
1887         }
1888         ret = 1;
1889 done:
1890         /*
1891          * we don't really know what they plan on doing with the path
1892          * from here on, so for now just mark it as blocking
1893          */
1894         if (!p->leave_spinning)
1895                 btrfs_set_path_blocking(p);
1896         if (ret < 0)
1897                 btrfs_release_path(p);
1898         return ret;
1899 }
1900
1901 /*
1902  * adjust the pointers going up the tree, starting at level
1903  * making sure the right key of each node is points to 'key'.
1904  * This is used after shifting pointers to the left, so it stops
1905  * fixing up pointers when a given leaf/node is not in slot 0 of the
1906  * higher levels
1907  *
1908  * If this fails to write a tree block, it returns -1, but continues
1909  * fixing up the blocks in ram so the tree is consistent.
1910  */
1911 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1912                           struct btrfs_root *root, struct btrfs_path *path,
1913                           struct btrfs_disk_key *key, int level)
1914 {
1915         int i;
1916         int ret = 0;
1917         struct extent_buffer *t;
1918
1919         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1920                 int tslot = path->slots[i];
1921                 if (!path->nodes[i])
1922                         break;
1923                 t = path->nodes[i];
1924                 btrfs_set_node_key(t, key, tslot);
1925                 btrfs_mark_buffer_dirty(path->nodes[i]);
1926                 if (tslot != 0)
1927                         break;
1928         }
1929         return ret;
1930 }
1931
1932 /*
1933  * update item key.
1934  *
1935  * This function isn't completely safe. It's the caller's responsibility
1936  * that the new key won't break the order
1937  */
1938 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1939                             struct btrfs_root *root, struct btrfs_path *path,
1940                             struct btrfs_key *new_key)
1941 {
1942         struct btrfs_disk_key disk_key;
1943         struct extent_buffer *eb;
1944         int slot;
1945
1946         eb = path->nodes[0];
1947         slot = path->slots[0];
1948         if (slot > 0) {
1949                 btrfs_item_key(eb, &disk_key, slot - 1);
1950                 if (comp_keys(&disk_key, new_key) >= 0)
1951                         return -1;
1952         }
1953         if (slot < btrfs_header_nritems(eb) - 1) {
1954                 btrfs_item_key(eb, &disk_key, slot + 1);
1955                 if (comp_keys(&disk_key, new_key) <= 0)
1956                         return -1;
1957         }
1958
1959         btrfs_cpu_key_to_disk(&disk_key, new_key);
1960         btrfs_set_item_key(eb, &disk_key, slot);
1961         btrfs_mark_buffer_dirty(eb);
1962         if (slot == 0)
1963                 fixup_low_keys(trans, root, path, &disk_key, 1);
1964         return 0;
1965 }
1966
1967 /*
1968  * try to push data from one node into the next node left in the
1969  * tree.
1970  *
1971  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1972  * error, and > 0 if there was no room in the left hand block.
1973  */
1974 static int push_node_left(struct btrfs_trans_handle *trans,
1975                           struct btrfs_root *root, struct extent_buffer *dst,
1976                           struct extent_buffer *src, int empty)
1977 {
1978         int push_items = 0;
1979         int src_nritems;
1980         int dst_nritems;
1981         int ret = 0;
1982
1983         src_nritems = btrfs_header_nritems(src);
1984         dst_nritems = btrfs_header_nritems(dst);
1985         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1986         WARN_ON(btrfs_header_generation(src) != trans->transid);
1987         WARN_ON(btrfs_header_generation(dst) != trans->transid);
1988
1989         if (!empty && src_nritems <= 8)
1990                 return 1;
1991
1992         if (push_items <= 0)
1993                 return 1;
1994
1995         if (empty) {
1996                 push_items = min(src_nritems, push_items);
1997                 if (push_items < src_nritems) {
1998                         /* leave at least 8 pointers in the node if
1999                          * we aren't going to empty it
2000                          */
2001                         if (src_nritems - push_items < 8) {
2002                                 if (push_items <= 8)
2003                                         return 1;
2004                                 push_items -= 8;
2005                         }
2006                 }
2007         } else
2008                 push_items = min(src_nritems - 8, push_items);
2009
2010         copy_extent_buffer(dst, src,
2011                            btrfs_node_key_ptr_offset(dst_nritems),
2012                            btrfs_node_key_ptr_offset(0),
2013                            push_items * sizeof(struct btrfs_key_ptr));
2014
2015         if (push_items < src_nritems) {
2016                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2017                                       btrfs_node_key_ptr_offset(push_items),
2018                                       (src_nritems - push_items) *
2019                                       sizeof(struct btrfs_key_ptr));
2020         }
2021         btrfs_set_header_nritems(src, src_nritems - push_items);
2022         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2023         btrfs_mark_buffer_dirty(src);
2024         btrfs_mark_buffer_dirty(dst);
2025
2026         return ret;
2027 }
2028
2029 /*
2030  * try to push data from one node into the next node right in the
2031  * tree.
2032  *
2033  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2034  * error, and > 0 if there was no room in the right hand block.
2035  *
2036  * this will  only push up to 1/2 the contents of the left node over
2037  */
2038 static int balance_node_right(struct btrfs_trans_handle *trans,
2039                               struct btrfs_root *root,
2040                               struct extent_buffer *dst,
2041                               struct extent_buffer *src)
2042 {
2043         int push_items = 0;
2044         int max_push;
2045         int src_nritems;
2046         int dst_nritems;
2047         int ret = 0;
2048
2049         WARN_ON(btrfs_header_generation(src) != trans->transid);
2050         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2051
2052         src_nritems = btrfs_header_nritems(src);
2053         dst_nritems = btrfs_header_nritems(dst);
2054         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2055         if (push_items <= 0)
2056                 return 1;
2057
2058         if (src_nritems < 4)
2059                 return 1;
2060
2061         max_push = src_nritems / 2 + 1;
2062         /* don't try to empty the node */
2063         if (max_push >= src_nritems)
2064                 return 1;
2065
2066         if (max_push < push_items)
2067                 push_items = max_push;
2068
2069         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2070                                       btrfs_node_key_ptr_offset(0),
2071                                       (dst_nritems) *
2072                                       sizeof(struct btrfs_key_ptr));
2073
2074         copy_extent_buffer(dst, src,
2075                            btrfs_node_key_ptr_offset(0),
2076                            btrfs_node_key_ptr_offset(src_nritems - push_items),
2077                            push_items * sizeof(struct btrfs_key_ptr));
2078
2079         btrfs_set_header_nritems(src, src_nritems - push_items);
2080         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2081
2082         btrfs_mark_buffer_dirty(src);
2083         btrfs_mark_buffer_dirty(dst);
2084
2085         return ret;
2086 }
2087
2088 /*
2089  * helper function to insert a new root level in the tree.
2090  * A new node is allocated, and a single item is inserted to
2091  * point to the existing root
2092  *
2093  * returns zero on success or < 0 on failure.
2094  */
2095 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2096                            struct btrfs_root *root,
2097                            struct btrfs_path *path, int level)
2098 {
2099         u64 lower_gen;
2100         struct extent_buffer *lower;
2101         struct extent_buffer *c;
2102         struct extent_buffer *old;
2103         struct btrfs_disk_key lower_key;
2104
2105         BUG_ON(path->nodes[level]);
2106         BUG_ON(path->nodes[level-1] != root->node);
2107
2108         lower = path->nodes[level-1];
2109         if (level == 1)
2110                 btrfs_item_key(lower, &lower_key, 0);
2111         else
2112                 btrfs_node_key(lower, &lower_key, 0);
2113
2114         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2115                                    root->root_key.objectid, &lower_key,
2116                                    level, root->node->start, 0, 0);
2117         if (IS_ERR(c))
2118                 return PTR_ERR(c);
2119
2120         root_add_used(root, root->nodesize);
2121
2122         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2123         btrfs_set_header_nritems(c, 1);
2124         btrfs_set_header_level(c, level);
2125         btrfs_set_header_bytenr(c, c->start);
2126         btrfs_set_header_generation(c, trans->transid);
2127         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2128         btrfs_set_header_owner(c, root->root_key.objectid);
2129
2130         write_extent_buffer(c, root->fs_info->fsid,
2131                             (unsigned long)btrfs_header_fsid(c),
2132                             BTRFS_FSID_SIZE);
2133
2134         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2135                             (unsigned long)btrfs_header_chunk_tree_uuid(c),
2136                             BTRFS_UUID_SIZE);
2137
2138         btrfs_set_node_key(c, &lower_key, 0);
2139         btrfs_set_node_blockptr(c, 0, lower->start);
2140         lower_gen = btrfs_header_generation(lower);
2141         WARN_ON(lower_gen != trans->transid);
2142
2143         btrfs_set_node_ptr_generation(c, 0, lower_gen);
2144
2145         btrfs_mark_buffer_dirty(c);
2146
2147         old = root->node;
2148         rcu_assign_pointer(root->node, c);
2149
2150         /* the super has an extra ref to root->node */
2151         free_extent_buffer(old);
2152
2153         add_root_to_dirty_list(root);
2154         extent_buffer_get(c);
2155         path->nodes[level] = c;
2156         path->locks[level] = BTRFS_WRITE_LOCK;
2157         path->slots[level] = 0;
2158         return 0;
2159 }
2160
2161 /*
2162  * worker function to insert a single pointer in a node.
2163  * the node should have enough room for the pointer already
2164  *
2165  * slot and level indicate where you want the key to go, and
2166  * blocknr is the block the key points to.
2167  *
2168  * returns zero on success and < 0 on any error
2169  */
2170 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2171                       *root, struct btrfs_path *path, struct btrfs_disk_key
2172                       *key, u64 bytenr, int slot, int level)
2173 {
2174         struct extent_buffer *lower;
2175         int nritems;
2176
2177         BUG_ON(!path->nodes[level]);
2178         btrfs_assert_tree_locked(path->nodes[level]);
2179         lower = path->nodes[level];
2180         nritems = btrfs_header_nritems(lower);
2181         BUG_ON(slot > nritems);
2182         if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2183                 BUG();
2184         if (slot != nritems) {
2185                 memmove_extent_buffer(lower,
2186                               btrfs_node_key_ptr_offset(slot + 1),
2187                               btrfs_node_key_ptr_offset(slot),
2188                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
2189         }
2190         btrfs_set_node_key(lower, key, slot);
2191         btrfs_set_node_blockptr(lower, slot, bytenr);
2192         WARN_ON(trans->transid == 0);
2193         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2194         btrfs_set_header_nritems(lower, nritems + 1);
2195         btrfs_mark_buffer_dirty(lower);
2196         return 0;
2197 }
2198
2199 /*
2200  * split the node at the specified level in path in two.
2201  * The path is corrected to point to the appropriate node after the split
2202  *
2203  * Before splitting this tries to make some room in the node by pushing
2204  * left and right, if either one works, it returns right away.
2205  *
2206  * returns 0 on success and < 0 on failure
2207  */
2208 static noinline int split_node(struct btrfs_trans_handle *trans,
2209                                struct btrfs_root *root,
2210                                struct btrfs_path *path, int level)
2211 {
2212         struct extent_buffer *c;
2213         struct extent_buffer *split;
2214         struct btrfs_disk_key disk_key;
2215         int mid;
2216         int ret;
2217         int wret;
2218         u32 c_nritems;
2219
2220         c = path->nodes[level];
2221         WARN_ON(btrfs_header_generation(c) != trans->transid);
2222         if (c == root->node) {
2223                 /* trying to split the root, lets make a new one */
2224                 ret = insert_new_root(trans, root, path, level + 1);
2225                 if (ret)
2226                         return ret;
2227         } else {
2228                 ret = push_nodes_for_insert(trans, root, path, level);
2229                 c = path->nodes[level];
2230                 if (!ret && btrfs_header_nritems(c) <
2231                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2232                         return 0;
2233                 if (ret < 0)
2234                         return ret;
2235         }
2236
2237         c_nritems = btrfs_header_nritems(c);
2238         mid = (c_nritems + 1) / 2;
2239         btrfs_node_key(c, &disk_key, mid);
2240
2241         split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2242                                         root->root_key.objectid,
2243                                         &disk_key, level, c->start, 0, 0);
2244         if (IS_ERR(split))
2245                 return PTR_ERR(split);
2246
2247         root_add_used(root, root->nodesize);
2248
2249         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
2250         btrfs_set_header_level(split, btrfs_header_level(c));
2251         btrfs_set_header_bytenr(split, split->start);
2252         btrfs_set_header_generation(split, trans->transid);
2253         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
2254         btrfs_set_header_owner(split, root->root_key.objectid);
2255         write_extent_buffer(split, root->fs_info->fsid,
2256                             (unsigned long)btrfs_header_fsid(split),
2257                             BTRFS_FSID_SIZE);
2258         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2259                             (unsigned long)btrfs_header_chunk_tree_uuid(split),
2260                             BTRFS_UUID_SIZE);
2261
2262
2263         copy_extent_buffer(split, c,
2264                            btrfs_node_key_ptr_offset(0),
2265                            btrfs_node_key_ptr_offset(mid),
2266                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2267         btrfs_set_header_nritems(split, c_nritems - mid);
2268         btrfs_set_header_nritems(c, mid);
2269         ret = 0;
2270
2271         btrfs_mark_buffer_dirty(c);
2272         btrfs_mark_buffer_dirty(split);
2273
2274         wret = insert_ptr(trans, root, path, &disk_key, split->start,
2275                           path->slots[level + 1] + 1,
2276                           level + 1);
2277         if (wret)
2278                 ret = wret;
2279
2280         if (path->slots[level] >= mid) {
2281                 path->slots[level] -= mid;
2282                 btrfs_tree_unlock(c);
2283                 free_extent_buffer(c);
2284                 path->nodes[level] = split;
2285                 path->slots[level + 1] += 1;
2286         } else {
2287                 btrfs_tree_unlock(split);
2288                 free_extent_buffer(split);
2289         }
2290         return ret;
2291 }
2292
2293 /*
2294  * how many bytes are required to store the items in a leaf.  start
2295  * and nr indicate which items in the leaf to check.  This totals up the
2296  * space used both by the item structs and the item data
2297  */
2298 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2299 {
2300         int data_len;
2301         int nritems = btrfs_header_nritems(l);
2302         int end = min(nritems, start + nr) - 1;
2303
2304         if (!nr)
2305                 return 0;
2306         data_len = btrfs_item_end_nr(l, start);
2307         data_len = data_len - btrfs_item_offset_nr(l, end);
2308         data_len += sizeof(struct btrfs_item) * nr;
2309         WARN_ON(data_len < 0);
2310         return data_len;
2311 }
2312
2313 /*
2314  * The space between the end of the leaf items and
2315  * the start of the leaf data.  IOW, how much room
2316  * the leaf has left for both items and data
2317  */
2318 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2319                                    struct extent_buffer *leaf)
2320 {
2321         int nritems = btrfs_header_nritems(leaf);
2322         int ret;
2323         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2324         if (ret < 0) {
2325                 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2326                        "used %d nritems %d\n",
2327                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2328                        leaf_space_used(leaf, 0, nritems), nritems);
2329         }
2330         return ret;
2331 }
2332
2333 /*
2334  * min slot controls the lowest index we're willing to push to the
2335  * right.  We'll push up to and including min_slot, but no lower
2336  */
2337 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2338                                       struct btrfs_root *root,
2339                                       struct btrfs_path *path,
2340                                       int data_size, int empty,
2341                                       struct extent_buffer *right,
2342                                       int free_space, u32 left_nritems,
2343                                       u32 min_slot)
2344 {
2345         struct extent_buffer *left = path->nodes[0];
2346         struct extent_buffer *upper = path->nodes[1];
2347         struct btrfs_map_token token;
2348         struct btrfs_disk_key disk_key;
2349         int slot;
2350         u32 i;
2351         int push_space = 0;
2352         int push_items = 0;
2353         struct btrfs_item *item;
2354         u32 nr;
2355         u32 right_nritems;
2356         u32 data_end;
2357         u32 this_item_size;
2358
2359         btrfs_init_map_token(&token);
2360
2361         if (empty)
2362                 nr = 0;
2363         else
2364                 nr = max_t(u32, 1, min_slot);
2365
2366         if (path->slots[0] >= left_nritems)
2367                 push_space += data_size;
2368
2369         slot = path->slots[1];
2370         i = left_nritems - 1;
2371         while (i >= nr) {
2372                 item = btrfs_item_nr(left, i);
2373
2374                 if (!empty && push_items > 0) {
2375                         if (path->slots[0] > i)
2376                                 break;
2377                         if (path->slots[0] == i) {
2378                                 int space = btrfs_leaf_free_space(root, left);
2379                                 if (space + push_space * 2 > free_space)
2380                                         break;
2381                         }
2382                 }
2383
2384                 if (path->slots[0] == i)
2385                         push_space += data_size;
2386
2387                 this_item_size = btrfs_item_size(left, item);
2388                 if (this_item_size + sizeof(*item) + push_space > free_space)
2389                         break;
2390
2391                 push_items++;
2392                 push_space += this_item_size + sizeof(*item);
2393                 if (i == 0)
2394                         break;
2395                 i--;
2396         }
2397
2398         if (push_items == 0)
2399                 goto out_unlock;
2400
2401         if (!empty && push_items == left_nritems)
2402                 WARN_ON(1);
2403
2404         /* push left to right */
2405         right_nritems = btrfs_header_nritems(right);
2406
2407         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2408         push_space -= leaf_data_end(root, left);
2409
2410         /* make room in the right data area */
2411         data_end = leaf_data_end(root, right);
2412         memmove_extent_buffer(right,
2413                               btrfs_leaf_data(right) + data_end - push_space,
2414                               btrfs_leaf_data(right) + data_end,
2415                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
2416
2417         /* copy from the left data area */
2418         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2419                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
2420                      btrfs_leaf_data(left) + leaf_data_end(root, left),
2421                      push_space);
2422
2423         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2424                               btrfs_item_nr_offset(0),
2425                               right_nritems * sizeof(struct btrfs_item));
2426
2427         /* copy the items from left to right */
2428         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2429                    btrfs_item_nr_offset(left_nritems - push_items),
2430                    push_items * sizeof(struct btrfs_item));
2431
2432         /* update the item pointers */
2433         right_nritems += push_items;
2434         btrfs_set_header_nritems(right, right_nritems);
2435         push_space = BTRFS_LEAF_DATA_SIZE(root);
2436         for (i = 0; i < right_nritems; i++) {
2437                 item = btrfs_item_nr(right, i);
2438                 push_space -= btrfs_token_item_size(right, item, &token);
2439                 btrfs_set_token_item_offset(right, item, push_space, &token);
2440         }
2441
2442         left_nritems -= push_items;
2443         btrfs_set_header_nritems(left, left_nritems);
2444
2445         if (left_nritems)
2446                 btrfs_mark_buffer_dirty(left);
2447         else
2448                 clean_tree_block(trans, root, left);
2449
2450         btrfs_mark_buffer_dirty(right);
2451
2452         btrfs_item_key(right, &disk_key, 0);
2453         btrfs_set_node_key(upper, &disk_key, slot + 1);
2454         btrfs_mark_buffer_dirty(upper);
2455
2456         /* then fixup the leaf pointer in the path */
2457         if (path->slots[0] >= left_nritems) {
2458                 path->slots[0] -= left_nritems;
2459                 if (btrfs_header_nritems(path->nodes[0]) == 0)
2460                         clean_tree_block(trans, root, path->nodes[0]);
2461                 btrfs_tree_unlock(path->nodes[0]);
2462                 free_extent_buffer(path->nodes[0]);
2463                 path->nodes[0] = right;
2464                 path->slots[1] += 1;
2465         } else {
2466                 btrfs_tree_unlock(right);
2467                 free_extent_buffer(right);
2468         }
2469         return 0;
2470
2471 out_unlock:
2472         btrfs_tree_unlock(right);
2473         free_extent_buffer(right);
2474         return 1;
2475 }
2476
2477 /*
2478  * push some data in the path leaf to the right, trying to free up at
2479  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2480  *
2481  * returns 1 if the push failed because the other node didn't have enough
2482  * room, 0 if everything worked out and < 0 if there were major errors.
2483  *
2484  * this will push starting from min_slot to the end of the leaf.  It won't
2485  * push any slot lower than min_slot
2486  */
2487 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2488                            *root, struct btrfs_path *path,
2489                            int min_data_size, int data_size,
2490                            int empty, u32 min_slot)
2491 {
2492         struct extent_buffer *left = path->nodes[0];
2493         struct extent_buffer *right;
2494         struct extent_buffer *upper;
2495         int slot;
2496         int free_space;
2497         u32 left_nritems;
2498         int ret;
2499
2500         if (!path->nodes[1])
2501                 return 1;
2502
2503         slot = path->slots[1];
2504         upper = path->nodes[1];
2505         if (slot >= btrfs_header_nritems(upper) - 1)
2506                 return 1;
2507
2508         btrfs_assert_tree_locked(path->nodes[1]);
2509
2510         right = read_node_slot(root, upper, slot + 1);
2511         if (right == NULL)
2512                 return 1;
2513
2514         btrfs_tree_lock(right);
2515         btrfs_set_lock_blocking(right);
2516
2517         free_space = btrfs_leaf_free_space(root, right);
2518         if (free_space < data_size)
2519                 goto out_unlock;
2520
2521         /* cow and double check */
2522         ret = btrfs_cow_block(trans, root, right, upper,
2523                               slot + 1, &right);
2524         if (ret)
2525                 goto out_unlock;
2526
2527         free_space = btrfs_leaf_free_space(root, right);
2528         if (free_space < data_size)
2529                 goto out_unlock;
2530
2531         left_nritems = btrfs_header_nritems(left);
2532         if (left_nritems == 0)
2533                 goto out_unlock;
2534
2535         return __push_leaf_right(trans, root, path, min_data_size, empty,
2536                                 right, free_space, left_nritems, min_slot);
2537 out_unlock:
2538         btrfs_tree_unlock(right);
2539         free_extent_buffer(right);
2540         return 1;
2541 }
2542
2543 /*
2544  * push some data in the path leaf to the left, trying to free up at
2545  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2546  *
2547  * max_slot can put a limit on how far into the leaf we'll push items.  The
2548  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
2549  * items
2550  */
2551 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2552                                      struct btrfs_root *root,
2553                                      struct btrfs_path *path, int data_size,
2554                                      int empty, struct extent_buffer *left,
2555                                      int free_space, u32 right_nritems,
2556                                      u32 max_slot)
2557 {
2558         struct btrfs_disk_key disk_key;
2559         struct extent_buffer *right = path->nodes[0];
2560         int i;
2561         int push_space = 0;
2562         int push_items = 0;
2563         struct btrfs_item *item;
2564         u32 old_left_nritems;
2565         u32 nr;
2566         int ret = 0;
2567         int wret;
2568         u32 this_item_size;
2569         u32 old_left_item_size;
2570         struct btrfs_map_token token;
2571
2572         btrfs_init_map_token(&token);
2573
2574         if (empty)
2575                 nr = min(right_nritems, max_slot);
2576         else
2577                 nr = min(right_nritems - 1, max_slot);
2578
2579         for (i = 0; i < nr; i++) {
2580                 item = btrfs_item_nr(right, i);
2581
2582                 if (!empty && push_items > 0) {
2583                         if (path->slots[0] < i)
2584                                 break;
2585                         if (path->slots[0] == i) {
2586                                 int space = btrfs_leaf_free_space(root, right);
2587                                 if (space + push_space * 2 > free_space)
2588                                         break;
2589                         }
2590                 }
2591
2592                 if (path->slots[0] == i)
2593                         push_space += data_size;
2594
2595                 this_item_size = btrfs_item_size(right, item);
2596                 if (this_item_size + sizeof(*item) + push_space > free_space)
2597                         break;
2598
2599                 push_items++;
2600                 push_space += this_item_size + sizeof(*item);
2601         }
2602
2603         if (push_items == 0) {
2604                 ret = 1;
2605                 goto out;
2606         }
2607         if (!empty && push_items == btrfs_header_nritems(right))
2608                 WARN_ON(1);
2609
2610         /* push data from right to left */
2611         copy_extent_buffer(left, right,
2612                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
2613                            btrfs_item_nr_offset(0),
2614                            push_items * sizeof(struct btrfs_item));
2615
2616         push_space = BTRFS_LEAF_DATA_SIZE(root) -
2617                      btrfs_item_offset_nr(right, push_items - 1);
2618
2619         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2620                      leaf_data_end(root, left) - push_space,
2621                      btrfs_leaf_data(right) +
2622                      btrfs_item_offset_nr(right, push_items - 1),
2623                      push_space);
2624         old_left_nritems = btrfs_header_nritems(left);
2625         BUG_ON(old_left_nritems <= 0);
2626
2627         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2628         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2629                 u32 ioff;
2630
2631                 item = btrfs_item_nr(left, i);
2632
2633                 ioff = btrfs_token_item_offset(left, item, &token);
2634                 btrfs_set_token_item_offset(left, item,
2635                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
2636                       &token);
2637         }
2638         btrfs_set_header_nritems(left, old_left_nritems + push_items);
2639
2640         /* fixup right node */
2641         if (push_items > right_nritems) {
2642                 printk(KERN_CRIT "push items %d nr %u\n", push_items,
2643                        right_nritems);
2644                 WARN_ON(1);
2645         }
2646
2647         if (push_items < right_nritems) {
2648                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2649                                                   leaf_data_end(root, right);
2650                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
2651                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
2652                                       btrfs_leaf_data(right) +
2653                                       leaf_data_end(root, right), push_space);
2654
2655                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2656                               btrfs_item_nr_offset(push_items),
2657                              (btrfs_header_nritems(right) - push_items) *
2658                              sizeof(struct btrfs_item));
2659         }
2660         right_nritems -= push_items;
2661         btrfs_set_header_nritems(right, right_nritems);
2662         push_space = BTRFS_LEAF_DATA_SIZE(root);
2663         for (i = 0; i < right_nritems; i++) {
2664                 item = btrfs_item_nr(right, i);
2665
2666                 push_space = push_space - btrfs_token_item_size(right,
2667                                                                 item, &token);
2668                 btrfs_set_token_item_offset(right, item, push_space, &token);
2669         }
2670
2671         btrfs_mark_buffer_dirty(left);
2672         if (right_nritems)
2673                 btrfs_mark_buffer_dirty(right);
2674         else
2675                 clean_tree_block(trans, root, right);
2676
2677         btrfs_item_key(right, &disk_key, 0);
2678         wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2679         if (wret)
2680                 ret = wret;
2681
2682         /* then fixup the leaf pointer in the path */
2683         if (path->slots[0] < push_items) {
2684                 path->slots[0] += old_left_nritems;
2685                 btrfs_tree_unlock(path->nodes[0]);
2686                 free_extent_buffer(path->nodes[0]);
2687                 path->nodes[0] = left;
2688                 path->slots[1] -= 1;
2689         } else {
2690                 btrfs_tree_unlock(left);
2691                 free_extent_buffer(left);
2692                 path->slots[0] -= push_items;
2693         }
2694         BUG_ON(path->slots[0] < 0);
2695         return ret;
2696 out:
2697         btrfs_tree_unlock(left);
2698         free_extent_buffer(left);
2699         return ret;
2700 }
2701
2702 /*
2703  * push some data in the path leaf to the left, trying to free up at
2704  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2705  *
2706  * max_slot can put a limit on how far into the leaf we'll push items.  The
2707  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
2708  * items
2709  */
2710 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2711                           *root, struct btrfs_path *path, int min_data_size,
2712                           int data_size, int empty, u32 max_slot)
2713 {
2714         struct extent_buffer *right = path->nodes[0];
2715         struct extent_buffer *left;
2716         int slot;
2717         int free_space;
2718         u32 right_nritems;
2719         int ret = 0;
2720
2721         slot = path->slots[1];
2722         if (slot == 0)
2723                 return 1;
2724         if (!path->nodes[1])
2725                 return 1;
2726
2727         right_nritems = btrfs_header_nritems(right);
2728         if (right_nritems == 0)
2729                 return 1;
2730
2731         btrfs_assert_tree_locked(path->nodes[1]);
2732
2733         left = read_node_slot(root, path->nodes[1], slot - 1);
2734         if (left == NULL)
2735                 return 1;
2736
2737         btrfs_tree_lock(left);
2738         btrfs_set_lock_blocking(left);
2739
2740         free_space = btrfs_leaf_free_space(root, left);
2741         if (free_space < data_size) {
2742                 ret = 1;
2743                 goto out;
2744         }
2745
2746         /* cow and double check */
2747         ret = btrfs_cow_block(trans, root, left,
2748                               path->nodes[1], slot - 1, &left);
2749         if (ret) {
2750                 /* we hit -ENOSPC, but it isn't fatal here */
2751                 ret = 1;
2752                 goto out;
2753         }
2754
2755         free_space = btrfs_leaf_free_space(root, left);
2756         if (free_space < data_size) {
2757                 ret = 1;
2758                 goto out;
2759         }
2760
2761         return __push_leaf_left(trans, root, path, min_data_size,
2762                                empty, left, free_space, right_nritems,
2763                                max_slot);
2764 out:
2765         btrfs_tree_unlock(left);
2766         free_extent_buffer(left);
2767         return ret;
2768 }
2769
2770 /*
2771  * split the path's leaf in two, making sure there is at least data_size
2772  * available for the resulting leaf level of the path.
2773  *
2774  * returns 0 if all went well and < 0 on failure.
2775  */
2776 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2777                                struct btrfs_root *root,
2778                                struct btrfs_path *path,
2779                                struct extent_buffer *l,
2780                                struct extent_buffer *right,
2781                                int slot, int mid, int nritems)
2782 {
2783         int data_copy_size;
2784         int rt_data_off;
2785         int i;
2786         int ret = 0;
2787         int wret;
2788         struct btrfs_disk_key disk_key;
2789         struct btrfs_map_token token;
2790
2791         btrfs_init_map_token(&token);
2792
2793         nritems = nritems - mid;
2794         btrfs_set_header_nritems(right, nritems);
2795         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2796
2797         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2798                            btrfs_item_nr_offset(mid),
2799                            nritems * sizeof(struct btrfs_item));
2800
2801         copy_extent_buffer(right, l,
2802                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2803                      data_copy_size, btrfs_leaf_data(l) +
2804                      leaf_data_end(root, l), data_copy_size);
2805
2806         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2807                       btrfs_item_end_nr(l, mid);
2808
2809         for (i = 0; i < nritems; i++) {
2810                 struct btrfs_item *item = btrfs_item_nr(right, i);
2811                 u32 ioff;
2812
2813                 ioff = btrfs_token_item_offset(right, item, &token);
2814                 btrfs_set_token_item_offset(right, item,
2815                                             ioff + rt_data_off, &token);
2816         }
2817
2818         btrfs_set_header_nritems(l, mid);
2819         ret = 0;
2820         btrfs_item_key(right, &disk_key, 0);
2821         wret = insert_ptr(trans, root, path, &disk_key, right->start,
2822                           path->slots[1] + 1, 1);
2823         if (wret)
2824                 ret = wret;
2825
2826         btrfs_mark_buffer_dirty(right);
2827         btrfs_mark_buffer_dirty(l);
2828         BUG_ON(path->slots[0] != slot);
2829
2830         if (mid <= slot) {
2831                 btrfs_tree_unlock(path->nodes[0]);
2832                 free_extent_buffer(path->nodes[0]);
2833                 path->nodes[0] = right;
2834                 path->slots[0] -= mid;
2835                 path->slots[1] += 1;
2836         } else {
2837                 btrfs_tree_unlock(right);
2838                 free_extent_buffer(right);
2839         }
2840
2841         BUG_ON(path->slots[0] < 0);
2842
2843         return ret;
2844 }
2845
2846 /*
2847  * double splits happen when we need to insert a big item in the middle
2848  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
2849  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
2850  *          A                 B                 C
2851  *
2852  * We avoid this by trying to push the items on either side of our target
2853  * into the adjacent leaves.  If all goes well we can avoid the double split
2854  * completely.
2855  */
2856 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
2857                                           struct btrfs_root *root,
2858                                           struct btrfs_path *path,
2859                                           int data_size)
2860 {
2861         int ret;
2862         int progress = 0;
2863         int slot;
2864         u32 nritems;
2865
2866         slot = path->slots[0];
2867
2868         /*
2869          * try to push all the items after our slot into the
2870          * right leaf
2871          */
2872         ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
2873         if (ret < 0)
2874                 return ret;
2875
2876         if (ret == 0)
2877                 progress++;
2878
2879         nritems = btrfs_header_nritems(path->nodes[0]);
2880         /*
2881          * our goal is to get our slot at the start or end of a leaf.  If
2882          * we've done so we're done
2883          */
2884         if (path->slots[0] == 0 || path->slots[0] == nritems)
2885                 return 0;
2886
2887         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
2888                 return 0;
2889
2890         /* try to push all the items before our slot into the next leaf */
2891         slot = path->slots[0];
2892         ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
2893         if (ret < 0)
2894                 return ret;
2895
2896         if (ret == 0)
2897                 progress++;
2898
2899         if (progress)
2900                 return 0;
2901         return 1;
2902 }
2903
2904 /*
2905  * split the path's leaf in two, making sure there is at least data_size
2906  * available for the resulting leaf level of the path.
2907  *
2908  * returns 0 if all went well and < 0 on failure.
2909  */
2910 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2911                                struct btrfs_root *root,
2912                                struct btrfs_key *ins_key,
2913                                struct btrfs_path *path, int data_size,
2914                                int extend)
2915 {
2916         struct btrfs_disk_key disk_key;
2917         struct extent_buffer *l;
2918         u32 nritems;
2919         int mid;
2920         int slot;
2921         struct extent_buffer *right;
2922         int ret = 0;
2923         int wret;
2924         int split;
2925         int num_doubles = 0;
2926         int tried_avoid_double = 0;
2927
2928         l = path->nodes[0];
2929         slot = path->slots[0];
2930         if (extend && data_size + btrfs_item_size_nr(l, slot) +
2931             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
2932                 return -EOVERFLOW;
2933
2934         /* first try to make some room by pushing left and right */
2935         if (data_size) {
2936                 wret = push_leaf_right(trans, root, path, data_size,
2937                                        data_size, 0, 0);
2938                 if (wret < 0)
2939                         return wret;
2940                 if (wret) {
2941                         wret = push_leaf_left(trans, root, path, data_size,
2942                                               data_size, 0, (u32)-1);
2943                         if (wret < 0)
2944                                 return wret;
2945                 }
2946                 l = path->nodes[0];
2947
2948                 /* did the pushes work? */
2949                 if (btrfs_leaf_free_space(root, l) >= data_size)
2950                         return 0;
2951         }
2952
2953         if (!path->nodes[1]) {
2954                 ret = insert_new_root(trans, root, path, 1);
2955                 if (ret)
2956                         return ret;
2957         }
2958 again:
2959         split = 1;
2960         l = path->nodes[0];
2961         slot = path->slots[0];
2962         nritems = btrfs_header_nritems(l);
2963         mid = (nritems + 1) / 2;
2964
2965         if (mid <= slot) {
2966                 if (nritems == 1 ||
2967                     leaf_space_used(l, mid, nritems - mid) + data_size >
2968                         BTRFS_LEAF_DATA_SIZE(root)) {
2969                         if (slot >= nritems) {
2970                                 split = 0;
2971                         } else {
2972                                 mid = slot;
2973                                 if (mid != nritems &&
2974                                     leaf_space_used(l, mid, nritems - mid) +
2975                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2976                                         if (data_size && !tried_avoid_double)
2977                                                 goto push_for_double;
2978                                         split = 2;
2979                                 }
2980                         }
2981                 }
2982         } else {
2983                 if (leaf_space_used(l, 0, mid) + data_size >
2984                         BTRFS_LEAF_DATA_SIZE(root)) {
2985                         if (!extend && data_size && slot == 0) {
2986                                 split = 0;
2987                         } else if ((extend || !data_size) && slot == 0) {
2988                                 mid = 1;
2989                         } else {
2990                                 mid = slot;
2991                                 if (mid != nritems &&
2992                                     leaf_space_used(l, mid, nritems - mid) +
2993                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2994                                         if (data_size && !tried_avoid_double)
2995                                                 goto push_for_double;
2996                                         split = 2 ;
2997                                 }
2998                         }
2999                 }
3000         }
3001
3002         if (split == 0)
3003                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3004         else
3005                 btrfs_item_key(l, &disk_key, mid);
3006
3007         right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
3008                                         root->root_key.objectid,
3009                                         &disk_key, 0, l->start, 0, 0);
3010         if (IS_ERR(right))
3011                 return PTR_ERR(right);
3012
3013         root_add_used(root, root->leafsize);
3014
3015         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
3016         btrfs_set_header_bytenr(right, right->start);
3017         btrfs_set_header_generation(right, trans->transid);
3018         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
3019         btrfs_set_header_owner(right, root->root_key.objectid);
3020         btrfs_set_header_level(right, 0);
3021         write_extent_buffer(right, root->fs_info->fsid,
3022                             (unsigned long)btrfs_header_fsid(right),
3023                             BTRFS_FSID_SIZE);
3024
3025         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
3026                             (unsigned long)btrfs_header_chunk_tree_uuid(right),
3027                             BTRFS_UUID_SIZE);
3028
3029         if (split == 0) {
3030                 if (mid <= slot) {
3031                         btrfs_set_header_nritems(right, 0);
3032                         wret = insert_ptr(trans, root, path,
3033                                           &disk_key, right->start,
3034                                           path->slots[1] + 1, 1);
3035                         if (wret)
3036                                 ret = wret;
3037
3038                         btrfs_tree_unlock(path->nodes[0]);
3039                         free_extent_buffer(path->nodes[0]);
3040                         path->nodes[0] = right;
3041                         path->slots[0] = 0;
3042                         path->slots[1] += 1;
3043                 } else {
3044                         btrfs_set_header_nritems(right, 0);
3045                         wret = insert_ptr(trans, root, path,
3046                                           &disk_key,
3047                                           right->start,
3048                                           path->slots[1], 1);
3049                         if (wret)
3050                                 ret = wret;
3051                         btrfs_tree_unlock(path->nodes[0]);
3052                         free_extent_buffer(path->nodes[0]);
3053                         path->nodes[0] = right;
3054                         path->slots[0] = 0;
3055                         if (path->slots[1] == 0) {
3056                                 wret = fixup_low_keys(trans, root,
3057                                                 path, &disk_key, 1);
3058                                 if (wret)
3059                                         ret = wret;
3060                         }
3061                 }
3062                 btrfs_mark_buffer_dirty(right);
3063                 return ret;
3064         }
3065
3066         ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
3067         BUG_ON(ret);
3068
3069         if (split == 2) {
3070                 BUG_ON(num_doubles != 0);
3071                 num_doubles++;
3072                 goto again;
3073         }
3074
3075         return ret;
3076
3077 push_for_double:
3078         push_for_double_split(trans, root, path, data_size);
3079         tried_avoid_double = 1;
3080         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3081                 return 0;
3082         goto again;
3083 }
3084
3085 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3086                                          struct btrfs_root *root,
3087                                          struct btrfs_path *path, int ins_len)
3088 {
3089         struct btrfs_key key;
3090         struct extent_buffer *leaf;
3091         struct btrfs_file_extent_item *fi;
3092         u64 extent_len = 0;
3093         u32 item_size;
3094         int ret;
3095
3096         leaf = path->nodes[0];
3097         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3098
3099         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3100                key.type != BTRFS_EXTENT_CSUM_KEY);
3101
3102         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3103                 return 0;
3104
3105         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3106         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3107                 fi = btrfs_item_ptr(leaf, path->slots[0],
3108                                     struct btrfs_file_extent_item);
3109                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3110         }
3111         btrfs_release_path(path);
3112
3113         path->keep_locks = 1;
3114         path->search_for_split = 1;
3115         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3116         path->search_for_split = 0;
3117         if (ret < 0)
3118                 goto err;
3119
3120         ret = -EAGAIN;
3121         leaf = path->nodes[0];
3122         /* if our item isn't there or got smaller, return now */
3123         if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3124                 goto err;
3125
3126         /* the leaf has  changed, it now has room.  return now */
3127         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
3128                 goto err;
3129
3130         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3131                 fi = btrfs_item_ptr(leaf, path->slots[0],
3132                                     struct btrfs_file_extent_item);
3133                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3134                         goto err;
3135         }
3136
3137         btrfs_set_path_blocking(path);
3138         ret = split_leaf(trans, root, &key, path, ins_len, 1);
3139         if (ret)
3140                 goto err;
3141
3142         path->keep_locks = 0;
3143         btrfs_unlock_up_safe(path, 1);
3144         return 0;
3145 err:
3146         path->keep_locks = 0;
3147         return ret;
3148 }
3149
3150 static noinline int split_item(struct btrfs_trans_handle *trans,
3151                                struct btrfs_root *root,
3152                                struct btrfs_path *path,
3153                                struct btrfs_key *new_key,
3154                                unsigned long split_offset)
3155 {
3156         struct extent_buffer *leaf;
3157         struct btrfs_item *item;
3158         struct btrfs_item *new_item;
3159         int slot;
3160         char *buf;
3161         u32 nritems;
3162         u32 item_size;
3163         u32 orig_offset;
3164         struct btrfs_disk_key disk_key;
3165
3166         leaf = path->nodes[0];
3167         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3168
3169         btrfs_set_path_blocking(path);
3170
3171         item = btrfs_item_nr(leaf, path->slots[0]);
3172         orig_offset = btrfs_item_offset(leaf, item);
3173         item_size = btrfs_item_size(leaf, item);
3174
3175         buf = kmalloc(item_size, GFP_NOFS);
3176         if (!buf)
3177                 return -ENOMEM;
3178
3179         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3180                             path->slots[0]), item_size);
3181
3182         slot = path->slots[0] + 1;
3183         nritems = btrfs_header_nritems(leaf);
3184         if (slot != nritems) {
3185                 /* shift the items */
3186                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3187                                 btrfs_item_nr_offset(slot),
3188                                 (nritems - slot) * sizeof(struct btrfs_item));
3189         }
3190
3191         btrfs_cpu_key_to_disk(&disk_key, new_key);
3192         btrfs_set_item_key(leaf, &disk_key, slot);
3193
3194         new_item = btrfs_item_nr(leaf, slot);
3195
3196         btrfs_set_item_offset(leaf, new_item, orig_offset);
3197         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3198
3199         btrfs_set_item_offset(leaf, item,
3200                               orig_offset + item_size - split_offset);
3201         btrfs_set_item_size(leaf, item, split_offset);
3202
3203         btrfs_set_header_nritems(leaf, nritems + 1);
3204
3205         /* write the data for the start of the original item */
3206         write_extent_buffer(leaf, buf,
3207                             btrfs_item_ptr_offset(leaf, path->slots[0]),
3208                             split_offset);
3209
3210         /* write the data for the new item */
3211         write_extent_buffer(leaf, buf + split_offset,
3212                             btrfs_item_ptr_offset(leaf, slot),
3213                             item_size - split_offset);
3214         btrfs_mark_buffer_dirty(leaf);
3215
3216         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
3217         kfree(buf);
3218         return 0;
3219 }
3220
3221 /*
3222  * This function splits a single item into two items,
3223  * giving 'new_key' to the new item and splitting the
3224  * old one at split_offset (from the start of the item).
3225  *
3226  * The path may be released by this operation.  After
3227  * the split, the path is pointing to the old item.  The
3228  * new item is going to be in the same node as the old one.
3229  *
3230  * Note, the item being split must be smaller enough to live alone on
3231  * a tree block with room for one extra struct btrfs_item
3232  *
3233  * This allows us to split the item in place, keeping a lock on the
3234  * leaf the entire time.
3235  */
3236 int btrfs_split_item(struct btrfs_trans_handle *trans,
3237                      struct btrfs_root *root,
3238                      struct btrfs_path *path,
3239                      struct btrfs_key *new_key,
3240                      unsigned long split_offset)
3241 {
3242         int ret;
3243         ret = setup_leaf_for_split(trans, root, path,
3244                                    sizeof(struct btrfs_item));
3245         if (ret)
3246                 return ret;
3247
3248         ret = split_item(trans, root, path, new_key, split_offset);
3249         return ret;
3250 }
3251
3252 /*
3253  * This function duplicate a item, giving 'new_key' to the new item.
3254  * It guarantees both items live in the same tree leaf and the new item
3255  * is contiguous with the original item.
3256  *
3257  * This allows us to split file extent in place, keeping a lock on the
3258  * leaf the entire time.
3259  */
3260 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3261                          struct btrfs_root *root,
3262                          struct btrfs_path *path,
3263                          struct btrfs_key *new_key)
3264 {
3265         struct extent_buffer *leaf;
3266         int ret;
3267         u32 item_size;
3268
3269         leaf = path->nodes[0];
3270         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3271         ret = setup_leaf_for_split(trans, root, path,
3272                                    item_size + sizeof(struct btrfs_item));
3273         if (ret)
3274                 return ret;
3275
3276         path->slots[0]++;
3277         ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
3278                                      item_size, item_size +
3279                                      sizeof(struct btrfs_item), 1);
3280         BUG_ON(ret);
3281
3282         leaf = path->nodes[0];
3283         memcpy_extent_buffer(leaf,
3284                              btrfs_item_ptr_offset(leaf, path->slots[0]),
3285                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3286                              item_size);
3287         return 0;
3288 }
3289
3290 /*
3291  * make the item pointed to by the path smaller.  new_size indicates
3292  * how small to make it, and from_end tells us if we just chop bytes
3293  * off the end of the item or if we shift the item to chop bytes off
3294  * the front.
3295  */
3296 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3297                         struct btrfs_root *root,
3298                         struct btrfs_path *path,
3299                         u32 new_size, int from_end)
3300 {
3301         int slot;
3302         struct extent_buffer *leaf;
3303         struct btrfs_item *item;
3304         u32 nritems;
3305         unsigned int data_end;
3306         unsigned int old_data_start;
3307         unsigned int old_size;
3308         unsigned int size_diff;
3309         int i;
3310         struct btrfs_map_token token;
3311
3312         btrfs_init_map_token(&token);
3313
3314         leaf = path->nodes[0];
3315         slot = path->slots[0];
3316
3317         old_size = btrfs_item_size_nr(leaf, slot);
3318         if (old_size == new_size)
3319                 return 0;
3320
3321         nritems = btrfs_header_nritems(leaf);
3322         data_end = leaf_data_end(root, leaf);
3323
3324         old_data_start = btrfs_item_offset_nr(leaf, slot);
3325
3326         size_diff = old_size - new_size;
3327
3328         BUG_ON(slot < 0);
3329         BUG_ON(slot >= nritems);
3330
3331         /*
3332          * item0..itemN ... dataN.offset..dataN.size .. data0.size
3333          */
3334         /* first correct the data pointers */
3335         for (i = slot; i < nritems; i++) {
3336                 u32 ioff;
3337                 item = btrfs_item_nr(leaf, i);
3338
3339                 ioff = btrfs_token_item_offset(leaf, item, &token);
3340                 btrfs_set_token_item_offset(leaf, item,
3341                                             ioff + size_diff, &token);
3342         }
3343
3344         /* shift the data */
3345         if (from_end) {
3346                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3347                               data_end + size_diff, btrfs_leaf_data(leaf) +
3348                               data_end, old_data_start + new_size - data_end);
3349         } else {
3350                 struct btrfs_disk_key disk_key;
3351                 u64 offset;
3352
3353                 btrfs_item_key(leaf, &disk_key, slot);
3354
3355                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3356                         unsigned long ptr;
3357                         struct btrfs_file_extent_item *fi;
3358
3359                         fi = btrfs_item_ptr(leaf, slot,
3360                                             struct btrfs_file_extent_item);
3361                         fi = (struct btrfs_file_extent_item *)(
3362                              (unsigned long)fi - size_diff);
3363
3364                         if (btrfs_file_extent_type(leaf, fi) ==
3365                             BTRFS_FILE_EXTENT_INLINE) {
3366                                 ptr = btrfs_item_ptr_offset(leaf, slot);
3367                                 memmove_extent_buffer(leaf, ptr,
3368                                       (unsigned long)fi,
3369                                       offsetof(struct btrfs_file_extent_item,
3370                                                  disk_bytenr));
3371                         }
3372                 }
3373
3374                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3375                               data_end + size_diff, btrfs_leaf_data(leaf) +
3376                               data_end, old_data_start - data_end);
3377
3378                 offset = btrfs_disk_key_offset(&disk_key);
3379                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3380                 btrfs_set_item_key(leaf, &disk_key, slot);
3381                 if (slot == 0)
3382                         fixup_low_keys(trans, root, path, &disk_key, 1);
3383         }
3384
3385         item = btrfs_item_nr(leaf, slot);
3386         btrfs_set_item_size(leaf, item, new_size);
3387         btrfs_mark_buffer_dirty(leaf);
3388
3389         if (btrfs_leaf_free_space(root, leaf) < 0) {
3390                 btrfs_print_leaf(root, leaf);
3391                 BUG();
3392         }
3393         return 0;
3394 }
3395
3396 /*
3397  * make the item pointed to by the path bigger, data_size is the new size.
3398  */
3399 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3400                       struct btrfs_root *root, struct btrfs_path *path,
3401                       u32 data_size)
3402 {
3403         int slot;
3404         struct extent_buffer *leaf;
3405         struct btrfs_item *item;
3406         u32 nritems;
3407         unsigned int data_end;
3408         unsigned int old_data;
3409         unsigned int old_size;
3410         int i;
3411         struct btrfs_map_token token;
3412
3413         btrfs_init_map_token(&token);
3414
3415         leaf = path->nodes[0];
3416
3417         nritems = btrfs_header_nritems(leaf);
3418         data_end = leaf_data_end(root, leaf);
3419
3420         if (btrfs_leaf_free_space(root, leaf) < data_size) {
3421                 btrfs_print_leaf(root, leaf);
3422                 BUG();
3423         }
3424         slot = path->slots[0];
3425         old_data = btrfs_item_end_nr(leaf, slot);
3426
3427         BUG_ON(slot < 0);
3428         if (slot >= nritems) {
3429                 btrfs_print_leaf(root, leaf);
3430                 printk(KERN_CRIT "slot %d too large, nritems %d\n",
3431                        slot, nritems);
3432                 BUG_ON(1);
3433         }
3434
3435         /*
3436          * item0..itemN ... dataN.offset..dataN.size .. data0.size
3437          */
3438         /* first correct the data pointers */
3439         for (i = slot; i < nritems; i++) {
3440                 u32 ioff;
3441                 item = btrfs_item_nr(leaf, i);
3442
3443                 ioff = btrfs_token_item_offset(leaf, item, &token);
3444                 btrfs_set_token_item_offset(leaf, item,
3445                                             ioff - data_size, &token);
3446         }
3447
3448         /* shift the data */
3449         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3450                       data_end - data_size, btrfs_leaf_data(leaf) +
3451                       data_end, old_data - data_end);
3452
3453         data_end = old_data;
3454         old_size = btrfs_item_size_nr(leaf, slot);
3455         item = btrfs_item_nr(leaf, slot);
3456         btrfs_set_item_size(leaf, item, old_size + data_size);
3457         btrfs_mark_buffer_dirty(leaf);
3458
3459         if (btrfs_leaf_free_space(root, leaf) < 0) {
3460                 btrfs_print_leaf(root, leaf);
3461                 BUG();
3462         }
3463         return 0;
3464 }
3465
3466 /*
3467  * Given a key and some data, insert items into the tree.
3468  * This does all the path init required, making room in the tree if needed.
3469  * Returns the number of keys that were inserted.
3470  */
3471 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3472                             struct btrfs_root *root,
3473                             struct btrfs_path *path,
3474                             struct btrfs_key *cpu_key, u32 *data_size,
3475                             int nr)
3476 {
3477         struct extent_buffer *leaf;
3478         struct btrfs_item *item;
3479         int ret = 0;
3480         int slot;
3481         int i;
3482         u32 nritems;
3483         u32 total_data = 0;
3484         u32 total_size = 0;
3485         unsigned int data_end;
3486         struct btrfs_disk_key disk_key;
3487         struct btrfs_key found_key;
3488         struct btrfs_map_token token;
3489
3490         btrfs_init_map_token(&token);
3491
3492         for (i = 0; i < nr; i++) {
3493                 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3494                     BTRFS_LEAF_DATA_SIZE(root)) {
3495                         break;
3496                         nr = i;
3497                 }
3498                 total_data += data_size[i];
3499                 total_size += data_size[i] + sizeof(struct btrfs_item);
3500         }
3501         BUG_ON(nr == 0);
3502
3503         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3504         if (ret == 0)
3505                 return -EEXIST;
3506         if (ret < 0)
3507                 goto out;
3508
3509         leaf = path->nodes[0];
3510
3511         nritems = btrfs_header_nritems(leaf);
3512         data_end = leaf_data_end(root, leaf);
3513
3514         if (btrfs_leaf_free_space(root, leaf) < total_size) {
3515                 for (i = nr; i >= 0; i--) {
3516                         total_data -= data_size[i];
3517                         total_size -= data_size[i] + sizeof(struct btrfs_item);
3518                         if (total_size < btrfs_leaf_free_space(root, leaf))
3519                                 break;
3520                 }
3521                 nr = i;
3522         }
3523
3524         slot = path->slots[0];
3525         BUG_ON(slot < 0);
3526
3527         if (slot != nritems) {
3528                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3529
3530                 item = btrfs_item_nr(leaf, slot);
3531                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3532
3533                 /* figure out how many keys we can insert in here */
3534                 total_data = data_size[0];
3535                 for (i = 1; i < nr; i++) {
3536                         if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3537                                 break;
3538                         total_data += data_size[i];
3539                 }
3540                 nr = i;
3541
3542                 if (old_data < data_end) {
3543                         btrfs_print_leaf(root, leaf);
3544                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3545                                slot, old_data, data_end);
3546                         BUG_ON(1);
3547                 }
3548                 /*
3549                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
3550                  */
3551                 /* first correct the data pointers */
3552                 for (i = slot; i < nritems; i++) {
3553                         u32 ioff;
3554
3555                         item = btrfs_item_nr(leaf, i);
3556                         ioff = btrfs_token_item_offset(leaf, item, &token);
3557                         btrfs_set_token_item_offset(leaf, item,
3558                                                     ioff - total_data, &token);
3559                 }
3560                 /* shift the items */
3561                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3562                               btrfs_item_nr_offset(slot),
3563                               (nritems - slot) * sizeof(struct btrfs_item));
3564
3565                 /* shift the data */
3566                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3567                               data_end - total_data, btrfs_leaf_data(leaf) +
3568                               data_end, old_data - data_end);
3569                 data_end = old_data;
3570         } else {
3571                 /*
3572                  * this sucks but it has to be done, if we are inserting at
3573                  * the end of the leaf only insert 1 of the items, since we
3574                  * have no way of knowing whats on the next leaf and we'd have
3575                  * to drop our current locks to figure it out
3576                  */
3577                 nr = 1;
3578         }
3579
3580         /* setup the item for the new data */
3581         for (i = 0; i < nr; i++) {
3582                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3583                 btrfs_set_item_key(leaf, &disk_key, slot + i);
3584                 item = btrfs_item_nr(leaf, slot + i);
3585                 btrfs_set_token_item_offset(leaf, item,
3586                                             data_end - data_size[i], &token);
3587                 data_end -= data_size[i];
3588                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
3589         }
3590         btrfs_set_header_nritems(leaf, nritems + nr);
3591         btrfs_mark_buffer_dirty(leaf);
3592
3593         ret = 0;
3594         if (slot == 0) {
3595                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3596                 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3597         }
3598
3599         if (btrfs_leaf_free_space(root, leaf) < 0) {
3600                 btrfs_print_leaf(root, leaf);
3601                 BUG();
3602         }
3603 out:
3604         if (!ret)
3605                 ret = nr;
3606         return ret;
3607 }
3608
3609 /*
3610  * this is a helper for btrfs_insert_empty_items, the main goal here is
3611  * to save stack depth by doing the bulk of the work in a function
3612  * that doesn't call btrfs_search_slot
3613  */
3614 int setup_items_for_insert(struct btrfs_trans_handle *trans,
3615                            struct btrfs_root *root, struct btrfs_path *path,
3616                            struct btrfs_key *cpu_key, u32 *data_size,
3617                            u32 total_data, u32 total_size, int nr)
3618 {
3619         struct btrfs_item *item;
3620         int i;
3621         u32 nritems;
3622         unsigned int data_end;
3623         struct btrfs_disk_key disk_key;
3624         int ret;
3625         struct extent_buffer *leaf;
3626         int slot;
3627         struct btrfs_map_token token;
3628
3629         btrfs_init_map_token(&token);
3630
3631         leaf = path->nodes[0];
3632         slot = path->slots[0];
3633
3634         nritems = btrfs_header_nritems(leaf);
3635         data_end = leaf_data_end(root, leaf);
3636
3637         if (btrfs_leaf_free_space(root, leaf) < total_size) {
3638                 btrfs_print_leaf(root, leaf);
3639                 printk(KERN_CRIT "not enough freespace need %u have %d\n",
3640                        total_size, btrfs_leaf_free_space(root, leaf));
3641                 BUG();
3642         }
3643
3644         if (slot != nritems) {
3645                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3646
3647                 if (old_data < data_end) {
3648                         btrfs_print_leaf(root, leaf);
3649                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3650                                slot, old_data, data_end);
3651                         BUG_ON(1);
3652                 }
3653                 /*
3654                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
3655                  */
3656                 /* first correct the data pointers */
3657                 for (i = slot; i < nritems; i++) {
3658                         u32 ioff;
3659
3660                         item = btrfs_item_nr(leaf, i);
3661                         ioff = btrfs_token_item_offset(leaf, item, &token);
3662                         btrfs_set_token_item_offset(leaf, item,
3663                                                     ioff - total_data, &token);
3664                 }
3665                 /* shift the items */
3666                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3667                               btrfs_item_nr_offset(slot),
3668                               (nritems - slot) * sizeof(struct btrfs_item));
3669
3670                 /* shift the data */
3671                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3672                               data_end - total_data, btrfs_leaf_data(leaf) +
3673                               data_end, old_data - data_end);
3674                 data_end = old_data;
3675         }
3676
3677         /* setup the item for the new data */
3678         for (i = 0; i < nr; i++) {
3679                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3680                 btrfs_set_item_key(leaf, &disk_key, slot + i);
3681                 item = btrfs_item_nr(leaf, slot + i);
3682                 btrfs_set_token_item_offset(leaf, item,
3683                                             data_end - data_size[i], &token);
3684                 data_end -= data_size[i];
3685                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
3686         }
3687
3688         btrfs_set_header_nritems(leaf, nritems + nr);
3689
3690         ret = 0;
3691         if (slot == 0) {
3692                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3693                 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3694         }
3695         btrfs_unlock_up_safe(path, 1);
3696         btrfs_mark_buffer_dirty(leaf);
3697
3698         if (btrfs_leaf_free_space(root, leaf) < 0) {
3699                 btrfs_print_leaf(root, leaf);
3700                 BUG();
3701         }
3702         return ret;
3703 }
3704
3705 /*
3706  * Given a key and some data, insert items into the tree.
3707  * This does all the path init required, making room in the tree if needed.
3708  */
3709 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3710                             struct btrfs_root *root,
3711                             struct btrfs_path *path,
3712                             struct btrfs_key *cpu_key, u32 *data_size,
3713                             int nr)
3714 {
3715         int ret = 0;
3716         int slot;
3717         int i;
3718         u32 total_size = 0;
3719         u32 total_data = 0;
3720
3721         for (i = 0; i < nr; i++)
3722                 total_data += data_size[i];
3723
3724         total_size = total_data + (nr * sizeof(struct btrfs_item));
3725         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3726         if (ret == 0)
3727                 return -EEXIST;
3728         if (ret < 0)
3729                 goto out;
3730
3731         slot = path->slots[0];
3732         BUG_ON(slot < 0);
3733
3734         ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3735                                total_data, total_size, nr);
3736
3737 out:
3738         return ret;
3739 }
3740
3741 /*
3742  * Given a key and some data, insert an item into the tree.
3743  * This does all the path init required, making room in the tree if needed.
3744  */
3745 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3746                       *root, struct btrfs_key *cpu_key, void *data, u32
3747                       data_size)
3748 {
3749         int ret = 0;
3750         struct btrfs_path *path;
3751         struct extent_buffer *leaf;
3752         unsigned long ptr;
3753
3754         path = btrfs_alloc_path();
3755         if (!path)
3756                 return -ENOMEM;
3757         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3758         if (!ret) {
3759                 leaf = path->nodes[0];
3760                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3761                 write_extent_buffer(leaf, data, ptr, data_size);
3762                 btrfs_mark_buffer_dirty(leaf);
3763         }
3764         btrfs_free_path(path);
3765         return ret;
3766 }
3767
3768 /*
3769  * delete the pointer from a given node.
3770  *
3771  * the tree should have been previously balanced so the deletion does not
3772  * empty a node.
3773  */
3774 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3775                    struct btrfs_path *path, int level, int slot)
3776 {
3777         struct extent_buffer *parent = path->nodes[level];
3778         u32 nritems;
3779         int ret = 0;
3780         int wret;
3781
3782         nritems = btrfs_header_nritems(parent);
3783         if (slot != nritems - 1) {
3784                 memmove_extent_buffer(parent,
3785                               btrfs_node_key_ptr_offset(slot),
3786                               btrfs_node_key_ptr_offset(slot + 1),
3787                               sizeof(struct btrfs_key_ptr) *
3788                               (nritems - slot - 1));
3789         }
3790         nritems--;
3791         btrfs_set_header_nritems(parent, nritems);
3792         if (nritems == 0 && parent == root->node) {
3793                 BUG_ON(btrfs_header_level(root->node) != 1);
3794                 /* just turn the root into a leaf and break */
3795                 btrfs_set_header_level(root->node, 0);
3796         } else if (slot == 0) {
3797                 struct btrfs_disk_key disk_key;
3798
3799                 btrfs_node_key(parent, &disk_key, 0);
3800                 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3801                 if (wret)
3802                         ret = wret;
3803         }
3804         btrfs_mark_buffer_dirty(parent);
3805         return ret;
3806 }
3807
3808 /*
3809  * a helper function to delete the leaf pointed to by path->slots[1] and
3810  * path->nodes[1].
3811  *
3812  * This deletes the pointer in path->nodes[1] and frees the leaf
3813  * block extent.  zero is returned if it all worked out, < 0 otherwise.
3814  *
3815  * The path must have already been setup for deleting the leaf, including
3816  * all the proper balancing.  path->nodes[1] must be locked.
3817  */
3818 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3819                                    struct btrfs_root *root,
3820                                    struct btrfs_path *path,
3821                                    struct extent_buffer *leaf)
3822 {
3823         int ret;
3824
3825         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
3826         ret = del_ptr(trans, root, path, 1, path->slots[1]);
3827         if (ret)
3828                 return ret;
3829
3830         /*
3831          * btrfs_free_extent is expensive, we want to make sure we
3832          * aren't holding any locks when we call it
3833          */
3834         btrfs_unlock_up_safe(path, 0);
3835
3836         root_sub_used(root, leaf->len);
3837
3838         extent_buffer_get(leaf);
3839         btrfs_free_tree_block(trans, root, leaf, 0, 1, 0);
3840         free_extent_buffer_stale(leaf);
3841         return 0;
3842 }
3843 /*
3844  * delete the item at the leaf level in path.  If that empties
3845  * the leaf, remove it from the tree
3846  */
3847 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3848                     struct btrfs_path *path, int slot, int nr)
3849 {
3850         struct extent_buffer *leaf;
3851         struct btrfs_item *item;
3852         int last_off;
3853         int dsize = 0;
3854         int ret = 0;
3855         int wret;
3856         int i;
3857         u32 nritems;
3858         struct btrfs_map_token token;
3859
3860         btrfs_init_map_token(&token);
3861
3862         leaf = path->nodes[0];
3863         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3864
3865         for (i = 0; i < nr; i++)
3866                 dsize += btrfs_item_size_nr(leaf, slot + i);
3867
3868         nritems = btrfs_header_nritems(leaf);
3869
3870         if (slot + nr != nritems) {
3871                 int data_end = leaf_data_end(root, leaf);
3872
3873                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3874                               data_end + dsize,
3875                               btrfs_leaf_data(leaf) + data_end,
3876                               last_off - data_end);
3877
3878                 for (i = slot + nr; i < nritems; i++) {
3879                         u32 ioff;
3880
3881                         item = btrfs_item_nr(leaf, i);
3882                         ioff = btrfs_token_item_offset(leaf, item, &token);
3883                         btrfs_set_token_item_offset(leaf, item,
3884                                                     ioff + dsize, &token);
3885                 }
3886
3887                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3888                               btrfs_item_nr_offset(slot + nr),
3889                               sizeof(struct btrfs_item) *
3890                               (nritems - slot - nr));
3891         }
3892         btrfs_set_header_nritems(leaf, nritems - nr);
3893         nritems -= nr;
3894
3895         /* delete the leaf if we've emptied it */
3896         if (nritems == 0) {
3897                 if (leaf == root->node) {
3898                         btrfs_set_header_level(leaf, 0);
3899                 } else {
3900                         btrfs_set_path_blocking(path);
3901                         clean_tree_block(trans, root, leaf);
3902                         ret = btrfs_del_leaf(trans, root, path, leaf);
3903                         BUG_ON(ret);
3904                 }
3905         } else {
3906                 int used = leaf_space_used(leaf, 0, nritems);
3907                 if (slot == 0) {
3908                         struct btrfs_disk_key disk_key;
3909
3910                         btrfs_item_key(leaf, &disk_key, 0);
3911                         wret = fixup_low_keys(trans, root, path,
3912                                               &disk_key, 1);
3913                         if (wret)
3914                                 ret = wret;
3915                 }
3916
3917                 /* delete the leaf if it is mostly empty */
3918                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
3919                         /* push_leaf_left fixes the path.
3920                          * make sure the path still points to our leaf
3921                          * for possible call to del_ptr below
3922                          */
3923                         slot = path->slots[1];
3924                         extent_buffer_get(leaf);
3925
3926                         btrfs_set_path_blocking(path);
3927                         wret = push_leaf_left(trans, root, path, 1, 1,
3928                                               1, (u32)-1);
3929                         if (wret < 0 && wret != -ENOSPC)
3930                                 ret = wret;
3931
3932                         if (path->nodes[0] == leaf &&
3933                             btrfs_header_nritems(leaf)) {
3934                                 wret = push_leaf_right(trans, root, path, 1,
3935                                                        1, 1, 0);
3936                                 if (wret < 0 && wret != -ENOSPC)
3937                                         ret = wret;
3938                         }
3939
3940                         if (btrfs_header_nritems(leaf) == 0) {
3941                                 path->slots[1] = slot;
3942                                 ret = btrfs_del_leaf(trans, root, path, leaf);
3943                                 BUG_ON(ret);
3944                                 free_extent_buffer(leaf);
3945                         } else {
3946                                 /* if we're still in the path, make sure
3947                                  * we're dirty.  Otherwise, one of the
3948                                  * push_leaf functions must have already
3949                                  * dirtied this buffer
3950                                  */
3951                                 if (path->nodes[0] == leaf)
3952                                         btrfs_mark_buffer_dirty(leaf);
3953                                 free_extent_buffer(leaf);
3954                         }
3955                 } else {
3956                         btrfs_mark_buffer_dirty(leaf);
3957                 }
3958         }
3959         return ret;
3960 }
3961
3962 /*
3963  * search the tree again to find a leaf with lesser keys
3964  * returns 0 if it found something or 1 if there are no lesser leaves.
3965  * returns < 0 on io errors.
3966  *
3967  * This may release the path, and so you may lose any locks held at the
3968  * time you call it.
3969  */
3970 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3971 {
3972         struct btrfs_key key;
3973         struct btrfs_disk_key found_key;
3974         int ret;
3975
3976         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3977
3978         if (key.offset > 0)
3979                 key.offset--;
3980         else if (key.type > 0)
3981                 key.type--;
3982         else if (key.objectid > 0)
3983                 key.objectid--;
3984         else
3985                 return 1;
3986
3987         btrfs_release_path(path);
3988         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3989         if (ret < 0)
3990                 return ret;
3991         btrfs_item_key(path->nodes[0], &found_key, 0);
3992         ret = comp_keys(&found_key, &key);
3993         if (ret < 0)
3994                 return 0;
3995         return 1;
3996 }
3997
3998 /*
3999  * A helper function to walk down the tree starting at min_key, and looking
4000  * for nodes or leaves that are either in cache or have a minimum
4001  * transaction id.  This is used by the btree defrag code, and tree logging
4002  *
4003  * This does not cow, but it does stuff the starting key it finds back
4004  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4005  * key and get a writable path.
4006  *
4007  * This does lock as it descends, and path->keep_locks should be set
4008  * to 1 by the caller.
4009  *
4010  * This honors path->lowest_level to prevent descent past a given level
4011  * of the tree.
4012  *
4013  * min_trans indicates the oldest transaction that you are interested
4014  * in walking through.  Any nodes or leaves older than min_trans are
4015  * skipped over (without reading them).
4016  *
4017  * returns zero if something useful was found, < 0 on error and 1 if there
4018  * was nothing in the tree that matched the search criteria.
4019  */
4020 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4021                          struct btrfs_key *max_key,
4022                          struct btrfs_path *path, int cache_only,
4023                          u64 min_trans)
4024 {
4025         struct extent_buffer *cur;
4026         struct btrfs_key found_key;
4027         int slot;
4028         int sret;
4029         u32 nritems;
4030         int level;
4031         int ret = 1;
4032
4033         WARN_ON(!path->keep_locks);
4034 again:
4035         cur = btrfs_read_lock_root_node(root);
4036         level = btrfs_header_level(cur);
4037         WARN_ON(path->nodes[level]);
4038         path->nodes[level] = cur;
4039         path->locks[level] = BTRFS_READ_LOCK;
4040
4041         if (btrfs_header_generation(cur) < min_trans) {
4042                 ret = 1;
4043                 goto out;
4044         }
4045         while (1) {
4046                 nritems = btrfs_header_nritems(cur);
4047                 level = btrfs_header_level(cur);
4048                 sret = bin_search(cur, min_key, level, &slot);
4049
4050                 /* at the lowest level, we're done, setup the path and exit */
4051                 if (level == path->lowest_level) {
4052                         if (slot >= nritems)
4053                                 goto find_next_key;
4054                         ret = 0;
4055                         path->slots[level] = slot;
4056                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4057                         goto out;
4058                 }
4059                 if (sret && slot > 0)
4060                         slot--;
4061                 /*
4062                  * check this node pointer against the cache_only and
4063                  * min_trans parameters.  If it isn't in cache or is too
4064                  * old, skip to the next one.
4065                  */
4066                 while (slot < nritems) {
4067                         u64 blockptr;
4068                         u64 gen;
4069                         struct extent_buffer *tmp;
4070                         struct btrfs_disk_key disk_key;
4071
4072                         blockptr = btrfs_node_blockptr(cur, slot);
4073                         gen = btrfs_node_ptr_generation(cur, slot);
4074                         if (gen < min_trans) {
4075                                 slot++;
4076                                 continue;
4077                         }
4078                         if (!cache_only)
4079                                 break;
4080
4081                         if (max_key) {
4082                                 btrfs_node_key(cur, &disk_key, slot);
4083                                 if (comp_keys(&disk_key, max_key) >= 0) {
4084                                         ret = 1;
4085                                         goto out;
4086                                 }
4087                         }
4088
4089                         tmp = btrfs_find_tree_block(root, blockptr,
4090                                             btrfs_level_size(root, level - 1));
4091
4092                         if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
4093                                 free_extent_buffer(tmp);
4094                                 break;
4095                         }
4096                         if (tmp)
4097                                 free_extent_buffer(tmp);
4098                         slot++;
4099                 }
4100 find_next_key:
4101                 /*
4102                  * we didn't find a candidate key in this node, walk forward
4103                  * and find another one
4104                  */
4105                 if (slot >= nritems) {
4106                         path->slots[level] = slot;
4107                         btrfs_set_path_blocking(path);
4108                         sret = btrfs_find_next_key(root, path, min_key, level,
4109                                                   cache_only, min_trans);
4110                         if (sret == 0) {
4111                                 btrfs_release_path(path);
4112                                 goto again;
4113                         } else {
4114                                 goto out;
4115                         }
4116                 }
4117                 /* save our key for returning back */
4118                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4119                 path->slots[level] = slot;
4120                 if (level == path->lowest_level) {
4121                         ret = 0;
4122                         unlock_up(path, level, 1, 0, NULL);
4123                         goto out;
4124                 }
4125                 btrfs_set_path_blocking(path);
4126                 cur = read_node_slot(root, cur, slot);
4127                 BUG_ON(!cur);
4128
4129                 btrfs_tree_read_lock(cur);
4130
4131                 path->locks[level - 1] = BTRFS_READ_LOCK;
4132                 path->nodes[level - 1] = cur;
4133                 unlock_up(path, level, 1, 0, NULL);
4134                 btrfs_clear_path_blocking(path, NULL, 0);
4135         }
4136 out:
4137         if (ret == 0)
4138                 memcpy(min_key, &found_key, sizeof(found_key));
4139         btrfs_set_path_blocking(path);
4140         return ret;
4141 }
4142
4143 /*
4144  * this is similar to btrfs_next_leaf, but does not try to preserve
4145  * and fixup the path.  It looks for and returns the next key in the
4146  * tree based on the current path and the cache_only and min_trans
4147  * parameters.
4148  *
4149  * 0 is returned if another key is found, < 0 if there are any errors
4150  * and 1 is returned if there are no higher keys in the tree
4151  *
4152  * path->keep_locks should be set to 1 on the search made before
4153  * calling this function.
4154  */
4155 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4156                         struct btrfs_key *key, int level,
4157                         int cache_only, u64 min_trans)
4158 {
4159         int slot;
4160         struct extent_buffer *c;
4161
4162         WARN_ON(!path->keep_locks);
4163         while (level < BTRFS_MAX_LEVEL) {
4164                 if (!path->nodes[level])
4165                         return 1;
4166
4167                 slot = path->slots[level] + 1;
4168                 c = path->nodes[level];
4169 next:
4170                 if (slot >= btrfs_header_nritems(c)) {
4171                         int ret;
4172                         int orig_lowest;
4173                         struct btrfs_key cur_key;
4174                         if (level + 1 >= BTRFS_MAX_LEVEL ||
4175                             !path->nodes[level + 1])
4176                                 return 1;
4177
4178                         if (path->locks[level + 1]) {
4179                                 level++;
4180                                 continue;
4181                         }
4182
4183                         slot = btrfs_header_nritems(c) - 1;
4184                         if (level == 0)
4185                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
4186                         else
4187                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
4188
4189                         orig_lowest = path->lowest_level;
4190                         btrfs_release_path(path);
4191                         path->lowest_level = level;
4192                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
4193                                                 0, 0);
4194                         path->lowest_level = orig_lowest;
4195                         if (ret < 0)
4196                                 return ret;
4197
4198                         c = path->nodes[level];
4199                         slot = path->slots[level];
4200                         if (ret == 0)
4201                                 slot++;
4202                         goto next;
4203                 }
4204
4205                 if (level == 0)
4206                         btrfs_item_key_to_cpu(c, key, slot);
4207                 else {
4208                         u64 blockptr = btrfs_node_blockptr(c, slot);
4209                         u64 gen = btrfs_node_ptr_generation(c, slot);
4210
4211                         if (cache_only) {
4212                                 struct extent_buffer *cur;
4213                                 cur = btrfs_find_tree_block(root, blockptr,
4214                                             btrfs_level_size(root, level - 1));
4215                                 if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4216                                         slot++;
4217                                         if (cur)
4218                                                 free_extent_buffer(cur);
4219                                         goto next;
4220                                 }
4221                                 free_extent_buffer(cur);
4222                         }
4223                         if (gen < min_trans) {
4224                                 slot++;
4225                                 goto next;
4226                         }
4227                         btrfs_node_key_to_cpu(c, key, slot);
4228                 }
4229                 return 0;
4230         }
4231         return 1;
4232 }
4233
4234 /*
4235  * search the tree again to find a leaf with greater keys
4236  * returns 0 if it found something or 1 if there are no greater leaves.
4237  * returns < 0 on io errors.
4238  */
4239 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4240 {
4241         int slot;
4242         int level;
4243         struct extent_buffer *c;
4244         struct extent_buffer *next;
4245         struct btrfs_key key;
4246         u32 nritems;
4247         int ret;
4248         int old_spinning = path->leave_spinning;
4249         int next_rw_lock = 0;
4250
4251         nritems = btrfs_header_nritems(path->nodes[0]);
4252         if (nritems == 0)
4253                 return 1;
4254
4255         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4256 again:
4257         level = 1;
4258         next = NULL;
4259         next_rw_lock = 0;
4260         btrfs_release_path(path);
4261
4262         path->keep_locks = 1;
4263         path->leave_spinning = 1;
4264
4265         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4266         path->keep_locks = 0;
4267
4268         if (ret < 0)
4269                 return ret;
4270
4271         nritems = btrfs_header_nritems(path->nodes[0]);
4272         /*
4273          * by releasing the path above we dropped all our locks.  A balance
4274          * could have added more items next to the key that used to be
4275          * at the very end of the block.  So, check again here and
4276          * advance the path if there are now more items available.
4277          */
4278         if (nritems > 0 && path->slots[0] < nritems - 1) {
4279                 if (ret == 0)
4280                         path->slots[0]++;
4281                 ret = 0;
4282                 goto done;
4283         }
4284
4285         while (level < BTRFS_MAX_LEVEL) {
4286                 if (!path->nodes[level]) {
4287                         ret = 1;
4288                         goto done;
4289                 }
4290
4291                 slot = path->slots[level] + 1;
4292                 c = path->nodes[level];
4293                 if (slot >= btrfs_header_nritems(c)) {
4294                         level++;
4295                         if (level == BTRFS_MAX_LEVEL) {
4296                                 ret = 1;
4297                                 goto done;
4298                         }
4299                         continue;
4300                 }
4301
4302                 if (next) {
4303                         btrfs_tree_unlock_rw(next, next_rw_lock);
4304                         free_extent_buffer(next);
4305                 }
4306
4307                 next = c;
4308                 next_rw_lock = path->locks[level];
4309                 ret = read_block_for_search(NULL, root, path, &next, level,
4310                                             slot, &key);
4311                 if (ret == -EAGAIN)
4312                         goto again;
4313
4314                 if (ret < 0) {
4315                         btrfs_release_path(path);
4316                         goto done;
4317                 }
4318
4319                 if (!path->skip_locking) {
4320                         ret = btrfs_try_tree_read_lock(next);
4321                         if (!ret) {
4322                                 btrfs_set_path_blocking(path);
4323                                 btrfs_tree_read_lock(next);
4324                                 btrfs_clear_path_blocking(path, next,
4325                                                           BTRFS_READ_LOCK);
4326                         }
4327                         next_rw_lock = BTRFS_READ_LOCK;
4328                 }
4329                 break;
4330         }
4331         path->slots[level] = slot;
4332         while (1) {
4333                 level--;
4334                 c = path->nodes[level];
4335                 if (path->locks[level])
4336                         btrfs_tree_unlock_rw(c, path->locks[level]);
4337
4338                 free_extent_buffer(c);
4339                 path->nodes[level] = next;
4340                 path->slots[level] = 0;
4341                 if (!path->skip_locking)
4342                         path->locks[level] = next_rw_lock;
4343                 if (!level)
4344                         break;
4345
4346                 ret = read_block_for_search(NULL, root, path, &next, level,
4347                                             0, &key);
4348                 if (ret == -EAGAIN)
4349                         goto again;
4350
4351                 if (ret < 0) {
4352                         btrfs_release_path(path);
4353                         goto done;
4354                 }
4355
4356                 if (!path->skip_locking) {
4357                         ret = btrfs_try_tree_read_lock(next);
4358                         if (!ret) {
4359                                 btrfs_set_path_blocking(path);
4360                                 btrfs_tree_read_lock(next);
4361                                 btrfs_clear_path_blocking(path, next,
4362                                                           BTRFS_READ_LOCK);
4363                         }
4364                         next_rw_lock = BTRFS_READ_LOCK;
4365                 }
4366         }
4367         ret = 0;
4368 done:
4369         unlock_up(path, 0, 1, 0, NULL);
4370         path->leave_spinning = old_spinning;
4371         if (!old_spinning)
4372                 btrfs_set_path_blocking(path);
4373
4374         return ret;
4375 }
4376
4377 /*
4378  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4379  * searching until it gets past min_objectid or finds an item of 'type'
4380  *
4381  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4382  */
4383 int btrfs_previous_item(struct btrfs_root *root,
4384                         struct btrfs_path *path, u64 min_objectid,
4385                         int type)
4386 {
4387         struct btrfs_key found_key;
4388         struct extent_buffer *leaf;
4389         u32 nritems;
4390         int ret;
4391
4392         while (1) {
4393                 if (path->slots[0] == 0) {
4394                         btrfs_set_path_blocking(path);
4395                         ret = btrfs_prev_leaf(root, path);
4396                         if (ret != 0)
4397                                 return ret;
4398                 } else {
4399                         path->slots[0]--;
4400                 }
4401                 leaf = path->nodes[0];
4402                 nritems = btrfs_header_nritems(leaf);
4403                 if (nritems == 0)
4404                         return 1;
4405                 if (path->slots[0] == nritems)
4406                         path->slots[0]--;
4407
4408                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4409                 if (found_key.objectid < min_objectid)
4410                         break;
4411                 if (found_key.type == type)
4412                         return 0;
4413                 if (found_key.objectid == min_objectid &&
4414                     found_key.type < type)
4415                         break;
4416         }
4417         return 1;
4418 }