Merge tag 'livepatching-for-5.18' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-block.git] / fs / btrfs / ctree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include <linux/error-injection.h>
11 #include "ctree.h"
12 #include "disk-io.h"
13 #include "transaction.h"
14 #include "print-tree.h"
15 #include "locking.h"
16 #include "volumes.h"
17 #include "qgroup.h"
18 #include "tree-mod-log.h"
19
20 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
21                       *root, struct btrfs_path *path, int level);
22 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
23                       const struct btrfs_key *ins_key, struct btrfs_path *path,
24                       int data_size, int extend);
25 static int push_node_left(struct btrfs_trans_handle *trans,
26                           struct extent_buffer *dst,
27                           struct extent_buffer *src, int empty);
28 static int balance_node_right(struct btrfs_trans_handle *trans,
29                               struct extent_buffer *dst_buf,
30                               struct extent_buffer *src_buf);
31 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
32                     int level, int slot);
33
34 static const struct btrfs_csums {
35         u16             size;
36         const char      name[10];
37         const char      driver[12];
38 } btrfs_csums[] = {
39         [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
40         [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
41         [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
42         [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
43                                      .driver = "blake2b-256" },
44 };
45
46 int btrfs_super_csum_size(const struct btrfs_super_block *s)
47 {
48         u16 t = btrfs_super_csum_type(s);
49         /*
50          * csum type is validated at mount time
51          */
52         return btrfs_csums[t].size;
53 }
54
55 const char *btrfs_super_csum_name(u16 csum_type)
56 {
57         /* csum type is validated at mount time */
58         return btrfs_csums[csum_type].name;
59 }
60
61 /*
62  * Return driver name if defined, otherwise the name that's also a valid driver
63  * name
64  */
65 const char *btrfs_super_csum_driver(u16 csum_type)
66 {
67         /* csum type is validated at mount time */
68         return btrfs_csums[csum_type].driver[0] ?
69                 btrfs_csums[csum_type].driver :
70                 btrfs_csums[csum_type].name;
71 }
72
73 size_t __attribute_const__ btrfs_get_num_csums(void)
74 {
75         return ARRAY_SIZE(btrfs_csums);
76 }
77
78 struct btrfs_path *btrfs_alloc_path(void)
79 {
80         return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
81 }
82
83 /* this also releases the path */
84 void btrfs_free_path(struct btrfs_path *p)
85 {
86         if (!p)
87                 return;
88         btrfs_release_path(p);
89         kmem_cache_free(btrfs_path_cachep, p);
90 }
91
92 /*
93  * path release drops references on the extent buffers in the path
94  * and it drops any locks held by this path
95  *
96  * It is safe to call this on paths that no locks or extent buffers held.
97  */
98 noinline void btrfs_release_path(struct btrfs_path *p)
99 {
100         int i;
101
102         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
103                 p->slots[i] = 0;
104                 if (!p->nodes[i])
105                         continue;
106                 if (p->locks[i]) {
107                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
108                         p->locks[i] = 0;
109                 }
110                 free_extent_buffer(p->nodes[i]);
111                 p->nodes[i] = NULL;
112         }
113 }
114
115 /*
116  * safely gets a reference on the root node of a tree.  A lock
117  * is not taken, so a concurrent writer may put a different node
118  * at the root of the tree.  See btrfs_lock_root_node for the
119  * looping required.
120  *
121  * The extent buffer returned by this has a reference taken, so
122  * it won't disappear.  It may stop being the root of the tree
123  * at any time because there are no locks held.
124  */
125 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
126 {
127         struct extent_buffer *eb;
128
129         while (1) {
130                 rcu_read_lock();
131                 eb = rcu_dereference(root->node);
132
133                 /*
134                  * RCU really hurts here, we could free up the root node because
135                  * it was COWed but we may not get the new root node yet so do
136                  * the inc_not_zero dance and if it doesn't work then
137                  * synchronize_rcu and try again.
138                  */
139                 if (atomic_inc_not_zero(&eb->refs)) {
140                         rcu_read_unlock();
141                         break;
142                 }
143                 rcu_read_unlock();
144                 synchronize_rcu();
145         }
146         return eb;
147 }
148
149 /*
150  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
151  * just get put onto a simple dirty list.  Transaction walks this list to make
152  * sure they get properly updated on disk.
153  */
154 static void add_root_to_dirty_list(struct btrfs_root *root)
155 {
156         struct btrfs_fs_info *fs_info = root->fs_info;
157
158         if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
159             !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
160                 return;
161
162         spin_lock(&fs_info->trans_lock);
163         if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
164                 /* Want the extent tree to be the last on the list */
165                 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
166                         list_move_tail(&root->dirty_list,
167                                        &fs_info->dirty_cowonly_roots);
168                 else
169                         list_move(&root->dirty_list,
170                                   &fs_info->dirty_cowonly_roots);
171         }
172         spin_unlock(&fs_info->trans_lock);
173 }
174
175 /*
176  * used by snapshot creation to make a copy of a root for a tree with
177  * a given objectid.  The buffer with the new root node is returned in
178  * cow_ret, and this func returns zero on success or a negative error code.
179  */
180 int btrfs_copy_root(struct btrfs_trans_handle *trans,
181                       struct btrfs_root *root,
182                       struct extent_buffer *buf,
183                       struct extent_buffer **cow_ret, u64 new_root_objectid)
184 {
185         struct btrfs_fs_info *fs_info = root->fs_info;
186         struct extent_buffer *cow;
187         int ret = 0;
188         int level;
189         struct btrfs_disk_key disk_key;
190
191         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
192                 trans->transid != fs_info->running_transaction->transid);
193         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
194                 trans->transid != root->last_trans);
195
196         level = btrfs_header_level(buf);
197         if (level == 0)
198                 btrfs_item_key(buf, &disk_key, 0);
199         else
200                 btrfs_node_key(buf, &disk_key, 0);
201
202         cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
203                                      &disk_key, level, buf->start, 0,
204                                      BTRFS_NESTING_NEW_ROOT);
205         if (IS_ERR(cow))
206                 return PTR_ERR(cow);
207
208         copy_extent_buffer_full(cow, buf);
209         btrfs_set_header_bytenr(cow, cow->start);
210         btrfs_set_header_generation(cow, trans->transid);
211         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
212         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
213                                      BTRFS_HEADER_FLAG_RELOC);
214         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
215                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
216         else
217                 btrfs_set_header_owner(cow, new_root_objectid);
218
219         write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
220
221         WARN_ON(btrfs_header_generation(buf) > trans->transid);
222         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
223                 ret = btrfs_inc_ref(trans, root, cow, 1);
224         else
225                 ret = btrfs_inc_ref(trans, root, cow, 0);
226         if (ret) {
227                 btrfs_tree_unlock(cow);
228                 free_extent_buffer(cow);
229                 btrfs_abort_transaction(trans, ret);
230                 return ret;
231         }
232
233         btrfs_mark_buffer_dirty(cow);
234         *cow_ret = cow;
235         return 0;
236 }
237
238 /*
239  * check if the tree block can be shared by multiple trees
240  */
241 int btrfs_block_can_be_shared(struct btrfs_root *root,
242                               struct extent_buffer *buf)
243 {
244         /*
245          * Tree blocks not in shareable trees and tree roots are never shared.
246          * If a block was allocated after the last snapshot and the block was
247          * not allocated by tree relocation, we know the block is not shared.
248          */
249         if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
250             buf != root->node && buf != root->commit_root &&
251             (btrfs_header_generation(buf) <=
252              btrfs_root_last_snapshot(&root->root_item) ||
253              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
254                 return 1;
255
256         return 0;
257 }
258
259 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
260                                        struct btrfs_root *root,
261                                        struct extent_buffer *buf,
262                                        struct extent_buffer *cow,
263                                        int *last_ref)
264 {
265         struct btrfs_fs_info *fs_info = root->fs_info;
266         u64 refs;
267         u64 owner;
268         u64 flags;
269         u64 new_flags = 0;
270         int ret;
271
272         /*
273          * Backrefs update rules:
274          *
275          * Always use full backrefs for extent pointers in tree block
276          * allocated by tree relocation.
277          *
278          * If a shared tree block is no longer referenced by its owner
279          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
280          * use full backrefs for extent pointers in tree block.
281          *
282          * If a tree block is been relocating
283          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
284          * use full backrefs for extent pointers in tree block.
285          * The reason for this is some operations (such as drop tree)
286          * are only allowed for blocks use full backrefs.
287          */
288
289         if (btrfs_block_can_be_shared(root, buf)) {
290                 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
291                                                btrfs_header_level(buf), 1,
292                                                &refs, &flags);
293                 if (ret)
294                         return ret;
295                 if (refs == 0) {
296                         ret = -EROFS;
297                         btrfs_handle_fs_error(fs_info, ret, NULL);
298                         return ret;
299                 }
300         } else {
301                 refs = 1;
302                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
303                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
304                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
305                 else
306                         flags = 0;
307         }
308
309         owner = btrfs_header_owner(buf);
310         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
311                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
312
313         if (refs > 1) {
314                 if ((owner == root->root_key.objectid ||
315                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
316                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
317                         ret = btrfs_inc_ref(trans, root, buf, 1);
318                         if (ret)
319                                 return ret;
320
321                         if (root->root_key.objectid ==
322                             BTRFS_TREE_RELOC_OBJECTID) {
323                                 ret = btrfs_dec_ref(trans, root, buf, 0);
324                                 if (ret)
325                                         return ret;
326                                 ret = btrfs_inc_ref(trans, root, cow, 1);
327                                 if (ret)
328                                         return ret;
329                         }
330                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
331                 } else {
332
333                         if (root->root_key.objectid ==
334                             BTRFS_TREE_RELOC_OBJECTID)
335                                 ret = btrfs_inc_ref(trans, root, cow, 1);
336                         else
337                                 ret = btrfs_inc_ref(trans, root, cow, 0);
338                         if (ret)
339                                 return ret;
340                 }
341                 if (new_flags != 0) {
342                         int level = btrfs_header_level(buf);
343
344                         ret = btrfs_set_disk_extent_flags(trans, buf,
345                                                           new_flags, level, 0);
346                         if (ret)
347                                 return ret;
348                 }
349         } else {
350                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
351                         if (root->root_key.objectid ==
352                             BTRFS_TREE_RELOC_OBJECTID)
353                                 ret = btrfs_inc_ref(trans, root, cow, 1);
354                         else
355                                 ret = btrfs_inc_ref(trans, root, cow, 0);
356                         if (ret)
357                                 return ret;
358                         ret = btrfs_dec_ref(trans, root, buf, 1);
359                         if (ret)
360                                 return ret;
361                 }
362                 btrfs_clean_tree_block(buf);
363                 *last_ref = 1;
364         }
365         return 0;
366 }
367
368 /*
369  * does the dirty work in cow of a single block.  The parent block (if
370  * supplied) is updated to point to the new cow copy.  The new buffer is marked
371  * dirty and returned locked.  If you modify the block it needs to be marked
372  * dirty again.
373  *
374  * search_start -- an allocation hint for the new block
375  *
376  * empty_size -- a hint that you plan on doing more cow.  This is the size in
377  * bytes the allocator should try to find free next to the block it returns.
378  * This is just a hint and may be ignored by the allocator.
379  */
380 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
381                              struct btrfs_root *root,
382                              struct extent_buffer *buf,
383                              struct extent_buffer *parent, int parent_slot,
384                              struct extent_buffer **cow_ret,
385                              u64 search_start, u64 empty_size,
386                              enum btrfs_lock_nesting nest)
387 {
388         struct btrfs_fs_info *fs_info = root->fs_info;
389         struct btrfs_disk_key disk_key;
390         struct extent_buffer *cow;
391         int level, ret;
392         int last_ref = 0;
393         int unlock_orig = 0;
394         u64 parent_start = 0;
395
396         if (*cow_ret == buf)
397                 unlock_orig = 1;
398
399         btrfs_assert_tree_write_locked(buf);
400
401         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
402                 trans->transid != fs_info->running_transaction->transid);
403         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
404                 trans->transid != root->last_trans);
405
406         level = btrfs_header_level(buf);
407
408         if (level == 0)
409                 btrfs_item_key(buf, &disk_key, 0);
410         else
411                 btrfs_node_key(buf, &disk_key, 0);
412
413         if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
414                 parent_start = parent->start;
415
416         cow = btrfs_alloc_tree_block(trans, root, parent_start,
417                                      root->root_key.objectid, &disk_key, level,
418                                      search_start, empty_size, nest);
419         if (IS_ERR(cow))
420                 return PTR_ERR(cow);
421
422         /* cow is set to blocking by btrfs_init_new_buffer */
423
424         copy_extent_buffer_full(cow, buf);
425         btrfs_set_header_bytenr(cow, cow->start);
426         btrfs_set_header_generation(cow, trans->transid);
427         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
428         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
429                                      BTRFS_HEADER_FLAG_RELOC);
430         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
431                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
432         else
433                 btrfs_set_header_owner(cow, root->root_key.objectid);
434
435         write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
436
437         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
438         if (ret) {
439                 btrfs_tree_unlock(cow);
440                 free_extent_buffer(cow);
441                 btrfs_abort_transaction(trans, ret);
442                 return ret;
443         }
444
445         if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
446                 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
447                 if (ret) {
448                         btrfs_tree_unlock(cow);
449                         free_extent_buffer(cow);
450                         btrfs_abort_transaction(trans, ret);
451                         return ret;
452                 }
453         }
454
455         if (buf == root->node) {
456                 WARN_ON(parent && parent != buf);
457                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
458                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
459                         parent_start = buf->start;
460
461                 atomic_inc(&cow->refs);
462                 ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
463                 BUG_ON(ret < 0);
464                 rcu_assign_pointer(root->node, cow);
465
466                 btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
467                                       parent_start, last_ref);
468                 free_extent_buffer(buf);
469                 add_root_to_dirty_list(root);
470         } else {
471                 WARN_ON(trans->transid != btrfs_header_generation(parent));
472                 btrfs_tree_mod_log_insert_key(parent, parent_slot,
473                                               BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
474                 btrfs_set_node_blockptr(parent, parent_slot,
475                                         cow->start);
476                 btrfs_set_node_ptr_generation(parent, parent_slot,
477                                               trans->transid);
478                 btrfs_mark_buffer_dirty(parent);
479                 if (last_ref) {
480                         ret = btrfs_tree_mod_log_free_eb(buf);
481                         if (ret) {
482                                 btrfs_tree_unlock(cow);
483                                 free_extent_buffer(cow);
484                                 btrfs_abort_transaction(trans, ret);
485                                 return ret;
486                         }
487                 }
488                 btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
489                                       parent_start, last_ref);
490         }
491         if (unlock_orig)
492                 btrfs_tree_unlock(buf);
493         free_extent_buffer_stale(buf);
494         btrfs_mark_buffer_dirty(cow);
495         *cow_ret = cow;
496         return 0;
497 }
498
499 static inline int should_cow_block(struct btrfs_trans_handle *trans,
500                                    struct btrfs_root *root,
501                                    struct extent_buffer *buf)
502 {
503         if (btrfs_is_testing(root->fs_info))
504                 return 0;
505
506         /* Ensure we can see the FORCE_COW bit */
507         smp_mb__before_atomic();
508
509         /*
510          * We do not need to cow a block if
511          * 1) this block is not created or changed in this transaction;
512          * 2) this block does not belong to TREE_RELOC tree;
513          * 3) the root is not forced COW.
514          *
515          * What is forced COW:
516          *    when we create snapshot during committing the transaction,
517          *    after we've finished copying src root, we must COW the shared
518          *    block to ensure the metadata consistency.
519          */
520         if (btrfs_header_generation(buf) == trans->transid &&
521             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
522             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
523               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
524             !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
525                 return 0;
526         return 1;
527 }
528
529 /*
530  * cows a single block, see __btrfs_cow_block for the real work.
531  * This version of it has extra checks so that a block isn't COWed more than
532  * once per transaction, as long as it hasn't been written yet
533  */
534 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
535                     struct btrfs_root *root, struct extent_buffer *buf,
536                     struct extent_buffer *parent, int parent_slot,
537                     struct extent_buffer **cow_ret,
538                     enum btrfs_lock_nesting nest)
539 {
540         struct btrfs_fs_info *fs_info = root->fs_info;
541         u64 search_start;
542         int ret;
543
544         if (test_bit(BTRFS_ROOT_DELETING, &root->state))
545                 btrfs_err(fs_info,
546                         "COW'ing blocks on a fs root that's being dropped");
547
548         if (trans->transaction != fs_info->running_transaction)
549                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
550                        trans->transid,
551                        fs_info->running_transaction->transid);
552
553         if (trans->transid != fs_info->generation)
554                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
555                        trans->transid, fs_info->generation);
556
557         if (!should_cow_block(trans, root, buf)) {
558                 *cow_ret = buf;
559                 return 0;
560         }
561
562         search_start = buf->start & ~((u64)SZ_1G - 1);
563
564         /*
565          * Before CoWing this block for later modification, check if it's
566          * the subtree root and do the delayed subtree trace if needed.
567          *
568          * Also We don't care about the error, as it's handled internally.
569          */
570         btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
571         ret = __btrfs_cow_block(trans, root, buf, parent,
572                                  parent_slot, cow_ret, search_start, 0, nest);
573
574         trace_btrfs_cow_block(root, buf, *cow_ret);
575
576         return ret;
577 }
578 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
579
580 /*
581  * helper function for defrag to decide if two blocks pointed to by a
582  * node are actually close by
583  */
584 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
585 {
586         if (blocknr < other && other - (blocknr + blocksize) < 32768)
587                 return 1;
588         if (blocknr > other && blocknr - (other + blocksize) < 32768)
589                 return 1;
590         return 0;
591 }
592
593 #ifdef __LITTLE_ENDIAN
594
595 /*
596  * Compare two keys, on little-endian the disk order is same as CPU order and
597  * we can avoid the conversion.
598  */
599 static int comp_keys(const struct btrfs_disk_key *disk_key,
600                      const struct btrfs_key *k2)
601 {
602         const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
603
604         return btrfs_comp_cpu_keys(k1, k2);
605 }
606
607 #else
608
609 /*
610  * compare two keys in a memcmp fashion
611  */
612 static int comp_keys(const struct btrfs_disk_key *disk,
613                      const struct btrfs_key *k2)
614 {
615         struct btrfs_key k1;
616
617         btrfs_disk_key_to_cpu(&k1, disk);
618
619         return btrfs_comp_cpu_keys(&k1, k2);
620 }
621 #endif
622
623 /*
624  * same as comp_keys only with two btrfs_key's
625  */
626 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
627 {
628         if (k1->objectid > k2->objectid)
629                 return 1;
630         if (k1->objectid < k2->objectid)
631                 return -1;
632         if (k1->type > k2->type)
633                 return 1;
634         if (k1->type < k2->type)
635                 return -1;
636         if (k1->offset > k2->offset)
637                 return 1;
638         if (k1->offset < k2->offset)
639                 return -1;
640         return 0;
641 }
642
643 /*
644  * this is used by the defrag code to go through all the
645  * leaves pointed to by a node and reallocate them so that
646  * disk order is close to key order
647  */
648 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
649                        struct btrfs_root *root, struct extent_buffer *parent,
650                        int start_slot, u64 *last_ret,
651                        struct btrfs_key *progress)
652 {
653         struct btrfs_fs_info *fs_info = root->fs_info;
654         struct extent_buffer *cur;
655         u64 blocknr;
656         u64 search_start = *last_ret;
657         u64 last_block = 0;
658         u64 other;
659         u32 parent_nritems;
660         int end_slot;
661         int i;
662         int err = 0;
663         u32 blocksize;
664         int progress_passed = 0;
665         struct btrfs_disk_key disk_key;
666
667         WARN_ON(trans->transaction != fs_info->running_transaction);
668         WARN_ON(trans->transid != fs_info->generation);
669
670         parent_nritems = btrfs_header_nritems(parent);
671         blocksize = fs_info->nodesize;
672         end_slot = parent_nritems - 1;
673
674         if (parent_nritems <= 1)
675                 return 0;
676
677         for (i = start_slot; i <= end_slot; i++) {
678                 int close = 1;
679
680                 btrfs_node_key(parent, &disk_key, i);
681                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
682                         continue;
683
684                 progress_passed = 1;
685                 blocknr = btrfs_node_blockptr(parent, i);
686                 if (last_block == 0)
687                         last_block = blocknr;
688
689                 if (i > 0) {
690                         other = btrfs_node_blockptr(parent, i - 1);
691                         close = close_blocks(blocknr, other, blocksize);
692                 }
693                 if (!close && i < end_slot) {
694                         other = btrfs_node_blockptr(parent, i + 1);
695                         close = close_blocks(blocknr, other, blocksize);
696                 }
697                 if (close) {
698                         last_block = blocknr;
699                         continue;
700                 }
701
702                 cur = btrfs_read_node_slot(parent, i);
703                 if (IS_ERR(cur))
704                         return PTR_ERR(cur);
705                 if (search_start == 0)
706                         search_start = last_block;
707
708                 btrfs_tree_lock(cur);
709                 err = __btrfs_cow_block(trans, root, cur, parent, i,
710                                         &cur, search_start,
711                                         min(16 * blocksize,
712                                             (end_slot - i) * blocksize),
713                                         BTRFS_NESTING_COW);
714                 if (err) {
715                         btrfs_tree_unlock(cur);
716                         free_extent_buffer(cur);
717                         break;
718                 }
719                 search_start = cur->start;
720                 last_block = cur->start;
721                 *last_ret = search_start;
722                 btrfs_tree_unlock(cur);
723                 free_extent_buffer(cur);
724         }
725         return err;
726 }
727
728 /*
729  * Search for a key in the given extent_buffer.
730  *
731  * The lower boundary for the search is specified by the slot number @low. Use a
732  * value of 0 to search over the whole extent buffer.
733  *
734  * The slot in the extent buffer is returned via @slot. If the key exists in the
735  * extent buffer, then @slot will point to the slot where the key is, otherwise
736  * it points to the slot where you would insert the key.
737  *
738  * Slot may point to the total number of items (i.e. one position beyond the last
739  * key) if the key is bigger than the last key in the extent buffer.
740  */
741 static noinline int generic_bin_search(struct extent_buffer *eb, int low,
742                                        const struct btrfs_key *key, int *slot)
743 {
744         unsigned long p;
745         int item_size;
746         int high = btrfs_header_nritems(eb);
747         int ret;
748         const int key_size = sizeof(struct btrfs_disk_key);
749
750         if (low > high) {
751                 btrfs_err(eb->fs_info,
752                  "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
753                           __func__, low, high, eb->start,
754                           btrfs_header_owner(eb), btrfs_header_level(eb));
755                 return -EINVAL;
756         }
757
758         if (btrfs_header_level(eb) == 0) {
759                 p = offsetof(struct btrfs_leaf, items);
760                 item_size = sizeof(struct btrfs_item);
761         } else {
762                 p = offsetof(struct btrfs_node, ptrs);
763                 item_size = sizeof(struct btrfs_key_ptr);
764         }
765
766         while (low < high) {
767                 unsigned long oip;
768                 unsigned long offset;
769                 struct btrfs_disk_key *tmp;
770                 struct btrfs_disk_key unaligned;
771                 int mid;
772
773                 mid = (low + high) / 2;
774                 offset = p + mid * item_size;
775                 oip = offset_in_page(offset);
776
777                 if (oip + key_size <= PAGE_SIZE) {
778                         const unsigned long idx = get_eb_page_index(offset);
779                         char *kaddr = page_address(eb->pages[idx]);
780
781                         oip = get_eb_offset_in_page(eb, offset);
782                         tmp = (struct btrfs_disk_key *)(kaddr + oip);
783                 } else {
784                         read_extent_buffer(eb, &unaligned, offset, key_size);
785                         tmp = &unaligned;
786                 }
787
788                 ret = comp_keys(tmp, key);
789
790                 if (ret < 0)
791                         low = mid + 1;
792                 else if (ret > 0)
793                         high = mid;
794                 else {
795                         *slot = mid;
796                         return 0;
797                 }
798         }
799         *slot = low;
800         return 1;
801 }
802
803 /*
804  * Simple binary search on an extent buffer. Works for both leaves and nodes, and
805  * always searches over the whole range of keys (slot 0 to slot 'nritems - 1').
806  */
807 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
808                      int *slot)
809 {
810         return generic_bin_search(eb, 0, key, slot);
811 }
812
813 static void root_add_used(struct btrfs_root *root, u32 size)
814 {
815         spin_lock(&root->accounting_lock);
816         btrfs_set_root_used(&root->root_item,
817                             btrfs_root_used(&root->root_item) + size);
818         spin_unlock(&root->accounting_lock);
819 }
820
821 static void root_sub_used(struct btrfs_root *root, u32 size)
822 {
823         spin_lock(&root->accounting_lock);
824         btrfs_set_root_used(&root->root_item,
825                             btrfs_root_used(&root->root_item) - size);
826         spin_unlock(&root->accounting_lock);
827 }
828
829 /* given a node and slot number, this reads the blocks it points to.  The
830  * extent buffer is returned with a reference taken (but unlocked).
831  */
832 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
833                                            int slot)
834 {
835         int level = btrfs_header_level(parent);
836         struct extent_buffer *eb;
837         struct btrfs_key first_key;
838
839         if (slot < 0 || slot >= btrfs_header_nritems(parent))
840                 return ERR_PTR(-ENOENT);
841
842         BUG_ON(level == 0);
843
844         btrfs_node_key_to_cpu(parent, &first_key, slot);
845         eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
846                              btrfs_header_owner(parent),
847                              btrfs_node_ptr_generation(parent, slot),
848                              level - 1, &first_key);
849         if (IS_ERR(eb))
850                 return eb;
851         if (!extent_buffer_uptodate(eb)) {
852                 free_extent_buffer(eb);
853                 return ERR_PTR(-EIO);
854         }
855
856         return eb;
857 }
858
859 /*
860  * node level balancing, used to make sure nodes are in proper order for
861  * item deletion.  We balance from the top down, so we have to make sure
862  * that a deletion won't leave an node completely empty later on.
863  */
864 static noinline int balance_level(struct btrfs_trans_handle *trans,
865                          struct btrfs_root *root,
866                          struct btrfs_path *path, int level)
867 {
868         struct btrfs_fs_info *fs_info = root->fs_info;
869         struct extent_buffer *right = NULL;
870         struct extent_buffer *mid;
871         struct extent_buffer *left = NULL;
872         struct extent_buffer *parent = NULL;
873         int ret = 0;
874         int wret;
875         int pslot;
876         int orig_slot = path->slots[level];
877         u64 orig_ptr;
878
879         ASSERT(level > 0);
880
881         mid = path->nodes[level];
882
883         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
884         WARN_ON(btrfs_header_generation(mid) != trans->transid);
885
886         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
887
888         if (level < BTRFS_MAX_LEVEL - 1) {
889                 parent = path->nodes[level + 1];
890                 pslot = path->slots[level + 1];
891         }
892
893         /*
894          * deal with the case where there is only one pointer in the root
895          * by promoting the node below to a root
896          */
897         if (!parent) {
898                 struct extent_buffer *child;
899
900                 if (btrfs_header_nritems(mid) != 1)
901                         return 0;
902
903                 /* promote the child to a root */
904                 child = btrfs_read_node_slot(mid, 0);
905                 if (IS_ERR(child)) {
906                         ret = PTR_ERR(child);
907                         btrfs_handle_fs_error(fs_info, ret, NULL);
908                         goto enospc;
909                 }
910
911                 btrfs_tree_lock(child);
912                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
913                                       BTRFS_NESTING_COW);
914                 if (ret) {
915                         btrfs_tree_unlock(child);
916                         free_extent_buffer(child);
917                         goto enospc;
918                 }
919
920                 ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
921                 BUG_ON(ret < 0);
922                 rcu_assign_pointer(root->node, child);
923
924                 add_root_to_dirty_list(root);
925                 btrfs_tree_unlock(child);
926
927                 path->locks[level] = 0;
928                 path->nodes[level] = NULL;
929                 btrfs_clean_tree_block(mid);
930                 btrfs_tree_unlock(mid);
931                 /* once for the path */
932                 free_extent_buffer(mid);
933
934                 root_sub_used(root, mid->len);
935                 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
936                 /* once for the root ptr */
937                 free_extent_buffer_stale(mid);
938                 return 0;
939         }
940         if (btrfs_header_nritems(mid) >
941             BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
942                 return 0;
943
944         left = btrfs_read_node_slot(parent, pslot - 1);
945         if (IS_ERR(left))
946                 left = NULL;
947
948         if (left) {
949                 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
950                 wret = btrfs_cow_block(trans, root, left,
951                                        parent, pslot - 1, &left,
952                                        BTRFS_NESTING_LEFT_COW);
953                 if (wret) {
954                         ret = wret;
955                         goto enospc;
956                 }
957         }
958
959         right = btrfs_read_node_slot(parent, pslot + 1);
960         if (IS_ERR(right))
961                 right = NULL;
962
963         if (right) {
964                 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
965                 wret = btrfs_cow_block(trans, root, right,
966                                        parent, pslot + 1, &right,
967                                        BTRFS_NESTING_RIGHT_COW);
968                 if (wret) {
969                         ret = wret;
970                         goto enospc;
971                 }
972         }
973
974         /* first, try to make some room in the middle buffer */
975         if (left) {
976                 orig_slot += btrfs_header_nritems(left);
977                 wret = push_node_left(trans, left, mid, 1);
978                 if (wret < 0)
979                         ret = wret;
980         }
981
982         /*
983          * then try to empty the right most buffer into the middle
984          */
985         if (right) {
986                 wret = push_node_left(trans, mid, right, 1);
987                 if (wret < 0 && wret != -ENOSPC)
988                         ret = wret;
989                 if (btrfs_header_nritems(right) == 0) {
990                         btrfs_clean_tree_block(right);
991                         btrfs_tree_unlock(right);
992                         del_ptr(root, path, level + 1, pslot + 1);
993                         root_sub_used(root, right->len);
994                         btrfs_free_tree_block(trans, btrfs_root_id(root), right,
995                                               0, 1);
996                         free_extent_buffer_stale(right);
997                         right = NULL;
998                 } else {
999                         struct btrfs_disk_key right_key;
1000                         btrfs_node_key(right, &right_key, 0);
1001                         ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1002                                         BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1003                         BUG_ON(ret < 0);
1004                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1005                         btrfs_mark_buffer_dirty(parent);
1006                 }
1007         }
1008         if (btrfs_header_nritems(mid) == 1) {
1009                 /*
1010                  * we're not allowed to leave a node with one item in the
1011                  * tree during a delete.  A deletion from lower in the tree
1012                  * could try to delete the only pointer in this node.
1013                  * So, pull some keys from the left.
1014                  * There has to be a left pointer at this point because
1015                  * otherwise we would have pulled some pointers from the
1016                  * right
1017                  */
1018                 if (!left) {
1019                         ret = -EROFS;
1020                         btrfs_handle_fs_error(fs_info, ret, NULL);
1021                         goto enospc;
1022                 }
1023                 wret = balance_node_right(trans, mid, left);
1024                 if (wret < 0) {
1025                         ret = wret;
1026                         goto enospc;
1027                 }
1028                 if (wret == 1) {
1029                         wret = push_node_left(trans, left, mid, 1);
1030                         if (wret < 0)
1031                                 ret = wret;
1032                 }
1033                 BUG_ON(wret == 1);
1034         }
1035         if (btrfs_header_nritems(mid) == 0) {
1036                 btrfs_clean_tree_block(mid);
1037                 btrfs_tree_unlock(mid);
1038                 del_ptr(root, path, level + 1, pslot);
1039                 root_sub_used(root, mid->len);
1040                 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1041                 free_extent_buffer_stale(mid);
1042                 mid = NULL;
1043         } else {
1044                 /* update the parent key to reflect our changes */
1045                 struct btrfs_disk_key mid_key;
1046                 btrfs_node_key(mid, &mid_key, 0);
1047                 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1048                                 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1049                 BUG_ON(ret < 0);
1050                 btrfs_set_node_key(parent, &mid_key, pslot);
1051                 btrfs_mark_buffer_dirty(parent);
1052         }
1053
1054         /* update the path */
1055         if (left) {
1056                 if (btrfs_header_nritems(left) > orig_slot) {
1057                         atomic_inc(&left->refs);
1058                         /* left was locked after cow */
1059                         path->nodes[level] = left;
1060                         path->slots[level + 1] -= 1;
1061                         path->slots[level] = orig_slot;
1062                         if (mid) {
1063                                 btrfs_tree_unlock(mid);
1064                                 free_extent_buffer(mid);
1065                         }
1066                 } else {
1067                         orig_slot -= btrfs_header_nritems(left);
1068                         path->slots[level] = orig_slot;
1069                 }
1070         }
1071         /* double check we haven't messed things up */
1072         if (orig_ptr !=
1073             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1074                 BUG();
1075 enospc:
1076         if (right) {
1077                 btrfs_tree_unlock(right);
1078                 free_extent_buffer(right);
1079         }
1080         if (left) {
1081                 if (path->nodes[level] != left)
1082                         btrfs_tree_unlock(left);
1083                 free_extent_buffer(left);
1084         }
1085         return ret;
1086 }
1087
1088 /* Node balancing for insertion.  Here we only split or push nodes around
1089  * when they are completely full.  This is also done top down, so we
1090  * have to be pessimistic.
1091  */
1092 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1093                                           struct btrfs_root *root,
1094                                           struct btrfs_path *path, int level)
1095 {
1096         struct btrfs_fs_info *fs_info = root->fs_info;
1097         struct extent_buffer *right = NULL;
1098         struct extent_buffer *mid;
1099         struct extent_buffer *left = NULL;
1100         struct extent_buffer *parent = NULL;
1101         int ret = 0;
1102         int wret;
1103         int pslot;
1104         int orig_slot = path->slots[level];
1105
1106         if (level == 0)
1107                 return 1;
1108
1109         mid = path->nodes[level];
1110         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1111
1112         if (level < BTRFS_MAX_LEVEL - 1) {
1113                 parent = path->nodes[level + 1];
1114                 pslot = path->slots[level + 1];
1115         }
1116
1117         if (!parent)
1118                 return 1;
1119
1120         left = btrfs_read_node_slot(parent, pslot - 1);
1121         if (IS_ERR(left))
1122                 left = NULL;
1123
1124         /* first, try to make some room in the middle buffer */
1125         if (left) {
1126                 u32 left_nr;
1127
1128                 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1129
1130                 left_nr = btrfs_header_nritems(left);
1131                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1132                         wret = 1;
1133                 } else {
1134                         ret = btrfs_cow_block(trans, root, left, parent,
1135                                               pslot - 1, &left,
1136                                               BTRFS_NESTING_LEFT_COW);
1137                         if (ret)
1138                                 wret = 1;
1139                         else {
1140                                 wret = push_node_left(trans, left, mid, 0);
1141                         }
1142                 }
1143                 if (wret < 0)
1144                         ret = wret;
1145                 if (wret == 0) {
1146                         struct btrfs_disk_key disk_key;
1147                         orig_slot += left_nr;
1148                         btrfs_node_key(mid, &disk_key, 0);
1149                         ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1150                                         BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1151                         BUG_ON(ret < 0);
1152                         btrfs_set_node_key(parent, &disk_key, pslot);
1153                         btrfs_mark_buffer_dirty(parent);
1154                         if (btrfs_header_nritems(left) > orig_slot) {
1155                                 path->nodes[level] = left;
1156                                 path->slots[level + 1] -= 1;
1157                                 path->slots[level] = orig_slot;
1158                                 btrfs_tree_unlock(mid);
1159                                 free_extent_buffer(mid);
1160                         } else {
1161                                 orig_slot -=
1162                                         btrfs_header_nritems(left);
1163                                 path->slots[level] = orig_slot;
1164                                 btrfs_tree_unlock(left);
1165                                 free_extent_buffer(left);
1166                         }
1167                         return 0;
1168                 }
1169                 btrfs_tree_unlock(left);
1170                 free_extent_buffer(left);
1171         }
1172         right = btrfs_read_node_slot(parent, pslot + 1);
1173         if (IS_ERR(right))
1174                 right = NULL;
1175
1176         /*
1177          * then try to empty the right most buffer into the middle
1178          */
1179         if (right) {
1180                 u32 right_nr;
1181
1182                 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1183
1184                 right_nr = btrfs_header_nritems(right);
1185                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1186                         wret = 1;
1187                 } else {
1188                         ret = btrfs_cow_block(trans, root, right,
1189                                               parent, pslot + 1,
1190                                               &right, BTRFS_NESTING_RIGHT_COW);
1191                         if (ret)
1192                                 wret = 1;
1193                         else {
1194                                 wret = balance_node_right(trans, right, mid);
1195                         }
1196                 }
1197                 if (wret < 0)
1198                         ret = wret;
1199                 if (wret == 0) {
1200                         struct btrfs_disk_key disk_key;
1201
1202                         btrfs_node_key(right, &disk_key, 0);
1203                         ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1204                                         BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1205                         BUG_ON(ret < 0);
1206                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
1207                         btrfs_mark_buffer_dirty(parent);
1208
1209                         if (btrfs_header_nritems(mid) <= orig_slot) {
1210                                 path->nodes[level] = right;
1211                                 path->slots[level + 1] += 1;
1212                                 path->slots[level] = orig_slot -
1213                                         btrfs_header_nritems(mid);
1214                                 btrfs_tree_unlock(mid);
1215                                 free_extent_buffer(mid);
1216                         } else {
1217                                 btrfs_tree_unlock(right);
1218                                 free_extent_buffer(right);
1219                         }
1220                         return 0;
1221                 }
1222                 btrfs_tree_unlock(right);
1223                 free_extent_buffer(right);
1224         }
1225         return 1;
1226 }
1227
1228 /*
1229  * readahead one full node of leaves, finding things that are close
1230  * to the block in 'slot', and triggering ra on them.
1231  */
1232 static void reada_for_search(struct btrfs_fs_info *fs_info,
1233                              struct btrfs_path *path,
1234                              int level, int slot, u64 objectid)
1235 {
1236         struct extent_buffer *node;
1237         struct btrfs_disk_key disk_key;
1238         u32 nritems;
1239         u64 search;
1240         u64 target;
1241         u64 nread = 0;
1242         u64 nread_max;
1243         u32 nr;
1244         u32 blocksize;
1245         u32 nscan = 0;
1246
1247         if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1248                 return;
1249
1250         if (!path->nodes[level])
1251                 return;
1252
1253         node = path->nodes[level];
1254
1255         /*
1256          * Since the time between visiting leaves is much shorter than the time
1257          * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1258          * much IO at once (possibly random).
1259          */
1260         if (path->reada == READA_FORWARD_ALWAYS) {
1261                 if (level > 1)
1262                         nread_max = node->fs_info->nodesize;
1263                 else
1264                         nread_max = SZ_128K;
1265         } else {
1266                 nread_max = SZ_64K;
1267         }
1268
1269         search = btrfs_node_blockptr(node, slot);
1270         blocksize = fs_info->nodesize;
1271         if (path->reada != READA_FORWARD_ALWAYS) {
1272                 struct extent_buffer *eb;
1273
1274                 eb = find_extent_buffer(fs_info, search);
1275                 if (eb) {
1276                         free_extent_buffer(eb);
1277                         return;
1278                 }
1279         }
1280
1281         target = search;
1282
1283         nritems = btrfs_header_nritems(node);
1284         nr = slot;
1285
1286         while (1) {
1287                 if (path->reada == READA_BACK) {
1288                         if (nr == 0)
1289                                 break;
1290                         nr--;
1291                 } else if (path->reada == READA_FORWARD ||
1292                            path->reada == READA_FORWARD_ALWAYS) {
1293                         nr++;
1294                         if (nr >= nritems)
1295                                 break;
1296                 }
1297                 if (path->reada == READA_BACK && objectid) {
1298                         btrfs_node_key(node, &disk_key, nr);
1299                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
1300                                 break;
1301                 }
1302                 search = btrfs_node_blockptr(node, nr);
1303                 if (path->reada == READA_FORWARD_ALWAYS ||
1304                     (search <= target && target - search <= 65536) ||
1305                     (search > target && search - target <= 65536)) {
1306                         btrfs_readahead_node_child(node, nr);
1307                         nread += blocksize;
1308                 }
1309                 nscan++;
1310                 if (nread > nread_max || nscan > 32)
1311                         break;
1312         }
1313 }
1314
1315 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1316 {
1317         struct extent_buffer *parent;
1318         int slot;
1319         int nritems;
1320
1321         parent = path->nodes[level + 1];
1322         if (!parent)
1323                 return;
1324
1325         nritems = btrfs_header_nritems(parent);
1326         slot = path->slots[level + 1];
1327
1328         if (slot > 0)
1329                 btrfs_readahead_node_child(parent, slot - 1);
1330         if (slot + 1 < nritems)
1331                 btrfs_readahead_node_child(parent, slot + 1);
1332 }
1333
1334
1335 /*
1336  * when we walk down the tree, it is usually safe to unlock the higher layers
1337  * in the tree.  The exceptions are when our path goes through slot 0, because
1338  * operations on the tree might require changing key pointers higher up in the
1339  * tree.
1340  *
1341  * callers might also have set path->keep_locks, which tells this code to keep
1342  * the lock if the path points to the last slot in the block.  This is part of
1343  * walking through the tree, and selecting the next slot in the higher block.
1344  *
1345  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1346  * if lowest_unlock is 1, level 0 won't be unlocked
1347  */
1348 static noinline void unlock_up(struct btrfs_path *path, int level,
1349                                int lowest_unlock, int min_write_lock_level,
1350                                int *write_lock_level)
1351 {
1352         int i;
1353         int skip_level = level;
1354         bool check_skip = true;
1355
1356         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1357                 if (!path->nodes[i])
1358                         break;
1359                 if (!path->locks[i])
1360                         break;
1361
1362                 if (check_skip) {
1363                         if (path->slots[i] == 0) {
1364                                 skip_level = i + 1;
1365                                 continue;
1366                         }
1367
1368                         if (path->keep_locks) {
1369                                 u32 nritems;
1370
1371                                 nritems = btrfs_header_nritems(path->nodes[i]);
1372                                 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1373                                         skip_level = i + 1;
1374                                         continue;
1375                                 }
1376                         }
1377                 }
1378
1379                 if (i >= lowest_unlock && i > skip_level) {
1380                         check_skip = false;
1381                         btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1382                         path->locks[i] = 0;
1383                         if (write_lock_level &&
1384                             i > min_write_lock_level &&
1385                             i <= *write_lock_level) {
1386                                 *write_lock_level = i - 1;
1387                         }
1388                 }
1389         }
1390 }
1391
1392 /*
1393  * helper function for btrfs_search_slot.  The goal is to find a block
1394  * in cache without setting the path to blocking.  If we find the block
1395  * we return zero and the path is unchanged.
1396  *
1397  * If we can't find the block, we set the path blocking and do some
1398  * reada.  -EAGAIN is returned and the search must be repeated.
1399  */
1400 static int
1401 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1402                       struct extent_buffer **eb_ret, int level, int slot,
1403                       const struct btrfs_key *key)
1404 {
1405         struct btrfs_fs_info *fs_info = root->fs_info;
1406         u64 blocknr;
1407         u64 gen;
1408         struct extent_buffer *tmp;
1409         struct btrfs_key first_key;
1410         int ret;
1411         int parent_level;
1412
1413         blocknr = btrfs_node_blockptr(*eb_ret, slot);
1414         gen = btrfs_node_ptr_generation(*eb_ret, slot);
1415         parent_level = btrfs_header_level(*eb_ret);
1416         btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
1417
1418         tmp = find_extent_buffer(fs_info, blocknr);
1419         if (tmp) {
1420                 if (p->reada == READA_FORWARD_ALWAYS)
1421                         reada_for_search(fs_info, p, level, slot, key->objectid);
1422
1423                 /* first we do an atomic uptodate check */
1424                 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1425                         /*
1426                          * Do extra check for first_key, eb can be stale due to
1427                          * being cached, read from scrub, or have multiple
1428                          * parents (shared tree blocks).
1429                          */
1430                         if (btrfs_verify_level_key(tmp,
1431                                         parent_level - 1, &first_key, gen)) {
1432                                 free_extent_buffer(tmp);
1433                                 return -EUCLEAN;
1434                         }
1435                         *eb_ret = tmp;
1436                         return 0;
1437                 }
1438
1439                 /* now we're allowed to do a blocking uptodate check */
1440                 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
1441                 if (ret) {
1442                         free_extent_buffer(tmp);
1443                         btrfs_release_path(p);
1444                         return -EIO;
1445                 }
1446                 *eb_ret = tmp;
1447                 return 0;
1448         }
1449
1450         /*
1451          * reduce lock contention at high levels
1452          * of the btree by dropping locks before
1453          * we read.  Don't release the lock on the current
1454          * level because we need to walk this node to figure
1455          * out which blocks to read.
1456          */
1457         btrfs_unlock_up_safe(p, level + 1);
1458
1459         if (p->reada != READA_NONE)
1460                 reada_for_search(fs_info, p, level, slot, key->objectid);
1461
1462         ret = -EAGAIN;
1463         tmp = read_tree_block(fs_info, blocknr, root->root_key.objectid,
1464                               gen, parent_level - 1, &first_key);
1465         if (IS_ERR(tmp)) {
1466                 btrfs_release_path(p);
1467                 return PTR_ERR(tmp);
1468         }
1469         /*
1470          * If the read above didn't mark this buffer up to date,
1471          * it will never end up being up to date.  Set ret to EIO now
1472          * and give up so that our caller doesn't loop forever
1473          * on our EAGAINs.
1474          */
1475         if (!extent_buffer_uptodate(tmp))
1476                 ret = -EIO;
1477         free_extent_buffer(tmp);
1478
1479         btrfs_release_path(p);
1480         return ret;
1481 }
1482
1483 /*
1484  * helper function for btrfs_search_slot.  This does all of the checks
1485  * for node-level blocks and does any balancing required based on
1486  * the ins_len.
1487  *
1488  * If no extra work was required, zero is returned.  If we had to
1489  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1490  * start over
1491  */
1492 static int
1493 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1494                        struct btrfs_root *root, struct btrfs_path *p,
1495                        struct extent_buffer *b, int level, int ins_len,
1496                        int *write_lock_level)
1497 {
1498         struct btrfs_fs_info *fs_info = root->fs_info;
1499         int ret = 0;
1500
1501         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1502             BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1503
1504                 if (*write_lock_level < level + 1) {
1505                         *write_lock_level = level + 1;
1506                         btrfs_release_path(p);
1507                         return -EAGAIN;
1508                 }
1509
1510                 reada_for_balance(p, level);
1511                 ret = split_node(trans, root, p, level);
1512
1513                 b = p->nodes[level];
1514         } else if (ins_len < 0 && btrfs_header_nritems(b) <
1515                    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1516
1517                 if (*write_lock_level < level + 1) {
1518                         *write_lock_level = level + 1;
1519                         btrfs_release_path(p);
1520                         return -EAGAIN;
1521                 }
1522
1523                 reada_for_balance(p, level);
1524                 ret = balance_level(trans, root, p, level);
1525                 if (ret)
1526                         return ret;
1527
1528                 b = p->nodes[level];
1529                 if (!b) {
1530                         btrfs_release_path(p);
1531                         return -EAGAIN;
1532                 }
1533                 BUG_ON(btrfs_header_nritems(b) == 1);
1534         }
1535         return ret;
1536 }
1537
1538 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1539                 u64 iobjectid, u64 ioff, u8 key_type,
1540                 struct btrfs_key *found_key)
1541 {
1542         int ret;
1543         struct btrfs_key key;
1544         struct extent_buffer *eb;
1545
1546         ASSERT(path);
1547         ASSERT(found_key);
1548
1549         key.type = key_type;
1550         key.objectid = iobjectid;
1551         key.offset = ioff;
1552
1553         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1554         if (ret < 0)
1555                 return ret;
1556
1557         eb = path->nodes[0];
1558         if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1559                 ret = btrfs_next_leaf(fs_root, path);
1560                 if (ret)
1561                         return ret;
1562                 eb = path->nodes[0];
1563         }
1564
1565         btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1566         if (found_key->type != key.type ||
1567                         found_key->objectid != key.objectid)
1568                 return 1;
1569
1570         return 0;
1571 }
1572
1573 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1574                                                         struct btrfs_path *p,
1575                                                         int write_lock_level)
1576 {
1577         struct extent_buffer *b;
1578         int root_lock = 0;
1579         int level = 0;
1580
1581         if (p->search_commit_root) {
1582                 b = root->commit_root;
1583                 atomic_inc(&b->refs);
1584                 level = btrfs_header_level(b);
1585                 /*
1586                  * Ensure that all callers have set skip_locking when
1587                  * p->search_commit_root = 1.
1588                  */
1589                 ASSERT(p->skip_locking == 1);
1590
1591                 goto out;
1592         }
1593
1594         if (p->skip_locking) {
1595                 b = btrfs_root_node(root);
1596                 level = btrfs_header_level(b);
1597                 goto out;
1598         }
1599
1600         /* We try very hard to do read locks on the root */
1601         root_lock = BTRFS_READ_LOCK;
1602
1603         /*
1604          * If the level is set to maximum, we can skip trying to get the read
1605          * lock.
1606          */
1607         if (write_lock_level < BTRFS_MAX_LEVEL) {
1608                 /*
1609                  * We don't know the level of the root node until we actually
1610                  * have it read locked
1611                  */
1612                 b = btrfs_read_lock_root_node(root);
1613                 level = btrfs_header_level(b);
1614                 if (level > write_lock_level)
1615                         goto out;
1616
1617                 /* Whoops, must trade for write lock */
1618                 btrfs_tree_read_unlock(b);
1619                 free_extent_buffer(b);
1620         }
1621
1622         b = btrfs_lock_root_node(root);
1623         root_lock = BTRFS_WRITE_LOCK;
1624
1625         /* The level might have changed, check again */
1626         level = btrfs_header_level(b);
1627
1628 out:
1629         /*
1630          * The root may have failed to write out at some point, and thus is no
1631          * longer valid, return an error in this case.
1632          */
1633         if (!extent_buffer_uptodate(b)) {
1634                 if (root_lock)
1635                         btrfs_tree_unlock_rw(b, root_lock);
1636                 free_extent_buffer(b);
1637                 return ERR_PTR(-EIO);
1638         }
1639
1640         p->nodes[level] = b;
1641         if (!p->skip_locking)
1642                 p->locks[level] = root_lock;
1643         /*
1644          * Callers are responsible for dropping b's references.
1645          */
1646         return b;
1647 }
1648
1649 /*
1650  * Replace the extent buffer at the lowest level of the path with a cloned
1651  * version. The purpose is to be able to use it safely, after releasing the
1652  * commit root semaphore, even if relocation is happening in parallel, the
1653  * transaction used for relocation is committed and the extent buffer is
1654  * reallocated in the next transaction.
1655  *
1656  * This is used in a context where the caller does not prevent transaction
1657  * commits from happening, either by holding a transaction handle or holding
1658  * some lock, while it's doing searches through a commit root.
1659  * At the moment it's only used for send operations.
1660  */
1661 static int finish_need_commit_sem_search(struct btrfs_path *path)
1662 {
1663         const int i = path->lowest_level;
1664         const int slot = path->slots[i];
1665         struct extent_buffer *lowest = path->nodes[i];
1666         struct extent_buffer *clone;
1667
1668         ASSERT(path->need_commit_sem);
1669
1670         if (!lowest)
1671                 return 0;
1672
1673         lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1674
1675         clone = btrfs_clone_extent_buffer(lowest);
1676         if (!clone)
1677                 return -ENOMEM;
1678
1679         btrfs_release_path(path);
1680         path->nodes[i] = clone;
1681         path->slots[i] = slot;
1682
1683         return 0;
1684 }
1685
1686 static inline int search_for_key_slot(struct extent_buffer *eb,
1687                                       int search_low_slot,
1688                                       const struct btrfs_key *key,
1689                                       int prev_cmp,
1690                                       int *slot)
1691 {
1692         /*
1693          * If a previous call to btrfs_bin_search() on a parent node returned an
1694          * exact match (prev_cmp == 0), we can safely assume the target key will
1695          * always be at slot 0 on lower levels, since each key pointer
1696          * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1697          * subtree it points to. Thus we can skip searching lower levels.
1698          */
1699         if (prev_cmp == 0) {
1700                 *slot = 0;
1701                 return 0;
1702         }
1703
1704         return generic_bin_search(eb, search_low_slot, key, slot);
1705 }
1706
1707 static int search_leaf(struct btrfs_trans_handle *trans,
1708                        struct btrfs_root *root,
1709                        const struct btrfs_key *key,
1710                        struct btrfs_path *path,
1711                        int ins_len,
1712                        int prev_cmp)
1713 {
1714         struct extent_buffer *leaf = path->nodes[0];
1715         int leaf_free_space = -1;
1716         int search_low_slot = 0;
1717         int ret;
1718         bool do_bin_search = true;
1719
1720         /*
1721          * If we are doing an insertion, the leaf has enough free space and the
1722          * destination slot for the key is not slot 0, then we can unlock our
1723          * write lock on the parent, and any other upper nodes, before doing the
1724          * binary search on the leaf (with search_for_key_slot()), allowing other
1725          * tasks to lock the parent and any other upper nodes.
1726          */
1727         if (ins_len > 0) {
1728                 /*
1729                  * Cache the leaf free space, since we will need it later and it
1730                  * will not change until then.
1731                  */
1732                 leaf_free_space = btrfs_leaf_free_space(leaf);
1733
1734                 /*
1735                  * !path->locks[1] means we have a single node tree, the leaf is
1736                  * the root of the tree.
1737                  */
1738                 if (path->locks[1] && leaf_free_space >= ins_len) {
1739                         struct btrfs_disk_key first_key;
1740
1741                         ASSERT(btrfs_header_nritems(leaf) > 0);
1742                         btrfs_item_key(leaf, &first_key, 0);
1743
1744                         /*
1745                          * Doing the extra comparison with the first key is cheap,
1746                          * taking into account that the first key is very likely
1747                          * already in a cache line because it immediately follows
1748                          * the extent buffer's header and we have recently accessed
1749                          * the header's level field.
1750                          */
1751                         ret = comp_keys(&first_key, key);
1752                         if (ret < 0) {
1753                                 /*
1754                                  * The first key is smaller than the key we want
1755                                  * to insert, so we are safe to unlock all upper
1756                                  * nodes and we have to do the binary search.
1757                                  *
1758                                  * We do use btrfs_unlock_up_safe() and not
1759                                  * unlock_up() because the later does not unlock
1760                                  * nodes with a slot of 0 - we can safely unlock
1761                                  * any node even if its slot is 0 since in this
1762                                  * case the key does not end up at slot 0 of the
1763                                  * leaf and there's no need to split the leaf.
1764                                  */
1765                                 btrfs_unlock_up_safe(path, 1);
1766                                 search_low_slot = 1;
1767                         } else {
1768                                 /*
1769                                  * The first key is >= then the key we want to
1770                                  * insert, so we can skip the binary search as
1771                                  * the target key will be at slot 0.
1772                                  *
1773                                  * We can not unlock upper nodes when the key is
1774                                  * less than the first key, because we will need
1775                                  * to update the key at slot 0 of the parent node
1776                                  * and possibly of other upper nodes too.
1777                                  * If the key matches the first key, then we can
1778                                  * unlock all the upper nodes, using
1779                                  * btrfs_unlock_up_safe() instead of unlock_up()
1780                                  * as stated above.
1781                                  */
1782                                 if (ret == 0)
1783                                         btrfs_unlock_up_safe(path, 1);
1784                                 /*
1785                                  * ret is already 0 or 1, matching the result of
1786                                  * a btrfs_bin_search() call, so there is no need
1787                                  * to adjust it.
1788                                  */
1789                                 do_bin_search = false;
1790                                 path->slots[0] = 0;
1791                         }
1792                 }
1793         }
1794
1795         if (do_bin_search) {
1796                 ret = search_for_key_slot(leaf, search_low_slot, key,
1797                                           prev_cmp, &path->slots[0]);
1798                 if (ret < 0)
1799                         return ret;
1800         }
1801
1802         if (ins_len > 0) {
1803                 /*
1804                  * Item key already exists. In this case, if we are allowed to
1805                  * insert the item (for example, in dir_item case, item key
1806                  * collision is allowed), it will be merged with the original
1807                  * item. Only the item size grows, no new btrfs item will be
1808                  * added. If search_for_extension is not set, ins_len already
1809                  * accounts the size btrfs_item, deduct it here so leaf space
1810                  * check will be correct.
1811                  */
1812                 if (ret == 0 && !path->search_for_extension) {
1813                         ASSERT(ins_len >= sizeof(struct btrfs_item));
1814                         ins_len -= sizeof(struct btrfs_item);
1815                 }
1816
1817                 ASSERT(leaf_free_space >= 0);
1818
1819                 if (leaf_free_space < ins_len) {
1820                         int err;
1821
1822                         err = split_leaf(trans, root, key, path, ins_len,
1823                                          (ret == 0));
1824                         ASSERT(err <= 0);
1825                         if (WARN_ON(err > 0))
1826                                 err = -EUCLEAN;
1827                         if (err)
1828                                 ret = err;
1829                 }
1830         }
1831
1832         return ret;
1833 }
1834
1835 /*
1836  * btrfs_search_slot - look for a key in a tree and perform necessary
1837  * modifications to preserve tree invariants.
1838  *
1839  * @trans:      Handle of transaction, used when modifying the tree
1840  * @p:          Holds all btree nodes along the search path
1841  * @root:       The root node of the tree
1842  * @key:        The key we are looking for
1843  * @ins_len:    Indicates purpose of search:
1844  *              >0  for inserts it's size of item inserted (*)
1845  *              <0  for deletions
1846  *               0  for plain searches, not modifying the tree
1847  *
1848  *              (*) If size of item inserted doesn't include
1849  *              sizeof(struct btrfs_item), then p->search_for_extension must
1850  *              be set.
1851  * @cow:        boolean should CoW operations be performed. Must always be 1
1852  *              when modifying the tree.
1853  *
1854  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
1855  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
1856  *
1857  * If @key is found, 0 is returned and you can find the item in the leaf level
1858  * of the path (level 0)
1859  *
1860  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
1861  * points to the slot where it should be inserted
1862  *
1863  * If an error is encountered while searching the tree a negative error number
1864  * is returned
1865  */
1866 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1867                       const struct btrfs_key *key, struct btrfs_path *p,
1868                       int ins_len, int cow)
1869 {
1870         struct btrfs_fs_info *fs_info = root->fs_info;
1871         struct extent_buffer *b;
1872         int slot;
1873         int ret;
1874         int err;
1875         int level;
1876         int lowest_unlock = 1;
1877         /* everything at write_lock_level or lower must be write locked */
1878         int write_lock_level = 0;
1879         u8 lowest_level = 0;
1880         int min_write_lock_level;
1881         int prev_cmp;
1882
1883         lowest_level = p->lowest_level;
1884         WARN_ON(lowest_level && ins_len > 0);
1885         WARN_ON(p->nodes[0] != NULL);
1886         BUG_ON(!cow && ins_len);
1887
1888         if (ins_len < 0) {
1889                 lowest_unlock = 2;
1890
1891                 /* when we are removing items, we might have to go up to level
1892                  * two as we update tree pointers  Make sure we keep write
1893                  * for those levels as well
1894                  */
1895                 write_lock_level = 2;
1896         } else if (ins_len > 0) {
1897                 /*
1898                  * for inserting items, make sure we have a write lock on
1899                  * level 1 so we can update keys
1900                  */
1901                 write_lock_level = 1;
1902         }
1903
1904         if (!cow)
1905                 write_lock_level = -1;
1906
1907         if (cow && (p->keep_locks || p->lowest_level))
1908                 write_lock_level = BTRFS_MAX_LEVEL;
1909
1910         min_write_lock_level = write_lock_level;
1911
1912         if (p->need_commit_sem) {
1913                 ASSERT(p->search_commit_root);
1914                 down_read(&fs_info->commit_root_sem);
1915         }
1916
1917 again:
1918         prev_cmp = -1;
1919         b = btrfs_search_slot_get_root(root, p, write_lock_level);
1920         if (IS_ERR(b)) {
1921                 ret = PTR_ERR(b);
1922                 goto done;
1923         }
1924
1925         while (b) {
1926                 int dec = 0;
1927
1928                 level = btrfs_header_level(b);
1929
1930                 if (cow) {
1931                         bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
1932
1933                         /*
1934                          * if we don't really need to cow this block
1935                          * then we don't want to set the path blocking,
1936                          * so we test it here
1937                          */
1938                         if (!should_cow_block(trans, root, b))
1939                                 goto cow_done;
1940
1941                         /*
1942                          * must have write locks on this node and the
1943                          * parent
1944                          */
1945                         if (level > write_lock_level ||
1946                             (level + 1 > write_lock_level &&
1947                             level + 1 < BTRFS_MAX_LEVEL &&
1948                             p->nodes[level + 1])) {
1949                                 write_lock_level = level + 1;
1950                                 btrfs_release_path(p);
1951                                 goto again;
1952                         }
1953
1954                         if (last_level)
1955                                 err = btrfs_cow_block(trans, root, b, NULL, 0,
1956                                                       &b,
1957                                                       BTRFS_NESTING_COW);
1958                         else
1959                                 err = btrfs_cow_block(trans, root, b,
1960                                                       p->nodes[level + 1],
1961                                                       p->slots[level + 1], &b,
1962                                                       BTRFS_NESTING_COW);
1963                         if (err) {
1964                                 ret = err;
1965                                 goto done;
1966                         }
1967                 }
1968 cow_done:
1969                 p->nodes[level] = b;
1970
1971                 /*
1972                  * we have a lock on b and as long as we aren't changing
1973                  * the tree, there is no way to for the items in b to change.
1974                  * It is safe to drop the lock on our parent before we
1975                  * go through the expensive btree search on b.
1976                  *
1977                  * If we're inserting or deleting (ins_len != 0), then we might
1978                  * be changing slot zero, which may require changing the parent.
1979                  * So, we can't drop the lock until after we know which slot
1980                  * we're operating on.
1981                  */
1982                 if (!ins_len && !p->keep_locks) {
1983                         int u = level + 1;
1984
1985                         if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
1986                                 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
1987                                 p->locks[u] = 0;
1988                         }
1989                 }
1990
1991                 if (level == 0) {
1992                         if (ins_len > 0)
1993                                 ASSERT(write_lock_level >= 1);
1994
1995                         ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
1996                         if (!p->search_for_split)
1997                                 unlock_up(p, level, lowest_unlock,
1998                                           min_write_lock_level, NULL);
1999                         goto done;
2000                 }
2001
2002                 ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2003                 if (ret < 0)
2004                         goto done;
2005                 prev_cmp = ret;
2006
2007                 if (ret && slot > 0) {
2008                         dec = 1;
2009                         slot--;
2010                 }
2011                 p->slots[level] = slot;
2012                 err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2013                                              &write_lock_level);
2014                 if (err == -EAGAIN)
2015                         goto again;
2016                 if (err) {
2017                         ret = err;
2018                         goto done;
2019                 }
2020                 b = p->nodes[level];
2021                 slot = p->slots[level];
2022
2023                 /*
2024                  * Slot 0 is special, if we change the key we have to update
2025                  * the parent pointer which means we must have a write lock on
2026                  * the parent
2027                  */
2028                 if (slot == 0 && ins_len && write_lock_level < level + 1) {
2029                         write_lock_level = level + 1;
2030                         btrfs_release_path(p);
2031                         goto again;
2032                 }
2033
2034                 unlock_up(p, level, lowest_unlock, min_write_lock_level,
2035                           &write_lock_level);
2036
2037                 if (level == lowest_level) {
2038                         if (dec)
2039                                 p->slots[level]++;
2040                         goto done;
2041                 }
2042
2043                 err = read_block_for_search(root, p, &b, level, slot, key);
2044                 if (err == -EAGAIN)
2045                         goto again;
2046                 if (err) {
2047                         ret = err;
2048                         goto done;
2049                 }
2050
2051                 if (!p->skip_locking) {
2052                         level = btrfs_header_level(b);
2053                         if (level <= write_lock_level) {
2054                                 btrfs_tree_lock(b);
2055                                 p->locks[level] = BTRFS_WRITE_LOCK;
2056                         } else {
2057                                 btrfs_tree_read_lock(b);
2058                                 p->locks[level] = BTRFS_READ_LOCK;
2059                         }
2060                         p->nodes[level] = b;
2061                 }
2062         }
2063         ret = 1;
2064 done:
2065         if (ret < 0 && !p->skip_release_on_error)
2066                 btrfs_release_path(p);
2067
2068         if (p->need_commit_sem) {
2069                 int ret2;
2070
2071                 ret2 = finish_need_commit_sem_search(p);
2072                 up_read(&fs_info->commit_root_sem);
2073                 if (ret2)
2074                         ret = ret2;
2075         }
2076
2077         return ret;
2078 }
2079 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2080
2081 /*
2082  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2083  * current state of the tree together with the operations recorded in the tree
2084  * modification log to search for the key in a previous version of this tree, as
2085  * denoted by the time_seq parameter.
2086  *
2087  * Naturally, there is no support for insert, delete or cow operations.
2088  *
2089  * The resulting path and return value will be set up as if we called
2090  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2091  */
2092 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2093                           struct btrfs_path *p, u64 time_seq)
2094 {
2095         struct btrfs_fs_info *fs_info = root->fs_info;
2096         struct extent_buffer *b;
2097         int slot;
2098         int ret;
2099         int err;
2100         int level;
2101         int lowest_unlock = 1;
2102         u8 lowest_level = 0;
2103
2104         lowest_level = p->lowest_level;
2105         WARN_ON(p->nodes[0] != NULL);
2106
2107         if (p->search_commit_root) {
2108                 BUG_ON(time_seq);
2109                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2110         }
2111
2112 again:
2113         b = btrfs_get_old_root(root, time_seq);
2114         if (!b) {
2115                 ret = -EIO;
2116                 goto done;
2117         }
2118         level = btrfs_header_level(b);
2119         p->locks[level] = BTRFS_READ_LOCK;
2120
2121         while (b) {
2122                 int dec = 0;
2123
2124                 level = btrfs_header_level(b);
2125                 p->nodes[level] = b;
2126
2127                 /*
2128                  * we have a lock on b and as long as we aren't changing
2129                  * the tree, there is no way to for the items in b to change.
2130                  * It is safe to drop the lock on our parent before we
2131                  * go through the expensive btree search on b.
2132                  */
2133                 btrfs_unlock_up_safe(p, level + 1);
2134
2135                 ret = btrfs_bin_search(b, key, &slot);
2136                 if (ret < 0)
2137                         goto done;
2138
2139                 if (level == 0) {
2140                         p->slots[level] = slot;
2141                         unlock_up(p, level, lowest_unlock, 0, NULL);
2142                         goto done;
2143                 }
2144
2145                 if (ret && slot > 0) {
2146                         dec = 1;
2147                         slot--;
2148                 }
2149                 p->slots[level] = slot;
2150                 unlock_up(p, level, lowest_unlock, 0, NULL);
2151
2152                 if (level == lowest_level) {
2153                         if (dec)
2154                                 p->slots[level]++;
2155                         goto done;
2156                 }
2157
2158                 err = read_block_for_search(root, p, &b, level, slot, key);
2159                 if (err == -EAGAIN)
2160                         goto again;
2161                 if (err) {
2162                         ret = err;
2163                         goto done;
2164                 }
2165
2166                 level = btrfs_header_level(b);
2167                 btrfs_tree_read_lock(b);
2168                 b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2169                 if (!b) {
2170                         ret = -ENOMEM;
2171                         goto done;
2172                 }
2173                 p->locks[level] = BTRFS_READ_LOCK;
2174                 p->nodes[level] = b;
2175         }
2176         ret = 1;
2177 done:
2178         if (ret < 0)
2179                 btrfs_release_path(p);
2180
2181         return ret;
2182 }
2183
2184 /*
2185  * helper to use instead of search slot if no exact match is needed but
2186  * instead the next or previous item should be returned.
2187  * When find_higher is true, the next higher item is returned, the next lower
2188  * otherwise.
2189  * When return_any and find_higher are both true, and no higher item is found,
2190  * return the next lower instead.
2191  * When return_any is true and find_higher is false, and no lower item is found,
2192  * return the next higher instead.
2193  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2194  * < 0 on error
2195  */
2196 int btrfs_search_slot_for_read(struct btrfs_root *root,
2197                                const struct btrfs_key *key,
2198                                struct btrfs_path *p, int find_higher,
2199                                int return_any)
2200 {
2201         int ret;
2202         struct extent_buffer *leaf;
2203
2204 again:
2205         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2206         if (ret <= 0)
2207                 return ret;
2208         /*
2209          * a return value of 1 means the path is at the position where the
2210          * item should be inserted. Normally this is the next bigger item,
2211          * but in case the previous item is the last in a leaf, path points
2212          * to the first free slot in the previous leaf, i.e. at an invalid
2213          * item.
2214          */
2215         leaf = p->nodes[0];
2216
2217         if (find_higher) {
2218                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2219                         ret = btrfs_next_leaf(root, p);
2220                         if (ret <= 0)
2221                                 return ret;
2222                         if (!return_any)
2223                                 return 1;
2224                         /*
2225                          * no higher item found, return the next
2226                          * lower instead
2227                          */
2228                         return_any = 0;
2229                         find_higher = 0;
2230                         btrfs_release_path(p);
2231                         goto again;
2232                 }
2233         } else {
2234                 if (p->slots[0] == 0) {
2235                         ret = btrfs_prev_leaf(root, p);
2236                         if (ret < 0)
2237                                 return ret;
2238                         if (!ret) {
2239                                 leaf = p->nodes[0];
2240                                 if (p->slots[0] == btrfs_header_nritems(leaf))
2241                                         p->slots[0]--;
2242                                 return 0;
2243                         }
2244                         if (!return_any)
2245                                 return 1;
2246                         /*
2247                          * no lower item found, return the next
2248                          * higher instead
2249                          */
2250                         return_any = 0;
2251                         find_higher = 1;
2252                         btrfs_release_path(p);
2253                         goto again;
2254                 } else {
2255                         --p->slots[0];
2256                 }
2257         }
2258         return 0;
2259 }
2260
2261 /*
2262  * Execute search and call btrfs_previous_item to traverse backwards if the item
2263  * was not found.
2264  *
2265  * Return 0 if found, 1 if not found and < 0 if error.
2266  */
2267 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2268                            struct btrfs_path *path)
2269 {
2270         int ret;
2271
2272         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2273         if (ret > 0)
2274                 ret = btrfs_previous_item(root, path, key->objectid, key->type);
2275
2276         if (ret == 0)
2277                 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2278
2279         return ret;
2280 }
2281
2282 /*
2283  * adjust the pointers going up the tree, starting at level
2284  * making sure the right key of each node is points to 'key'.
2285  * This is used after shifting pointers to the left, so it stops
2286  * fixing up pointers when a given leaf/node is not in slot 0 of the
2287  * higher levels
2288  *
2289  */
2290 static void fixup_low_keys(struct btrfs_path *path,
2291                            struct btrfs_disk_key *key, int level)
2292 {
2293         int i;
2294         struct extent_buffer *t;
2295         int ret;
2296
2297         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2298                 int tslot = path->slots[i];
2299
2300                 if (!path->nodes[i])
2301                         break;
2302                 t = path->nodes[i];
2303                 ret = btrfs_tree_mod_log_insert_key(t, tslot,
2304                                 BTRFS_MOD_LOG_KEY_REPLACE, GFP_ATOMIC);
2305                 BUG_ON(ret < 0);
2306                 btrfs_set_node_key(t, key, tslot);
2307                 btrfs_mark_buffer_dirty(path->nodes[i]);
2308                 if (tslot != 0)
2309                         break;
2310         }
2311 }
2312
2313 /*
2314  * update item key.
2315  *
2316  * This function isn't completely safe. It's the caller's responsibility
2317  * that the new key won't break the order
2318  */
2319 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2320                              struct btrfs_path *path,
2321                              const struct btrfs_key *new_key)
2322 {
2323         struct btrfs_disk_key disk_key;
2324         struct extent_buffer *eb;
2325         int slot;
2326
2327         eb = path->nodes[0];
2328         slot = path->slots[0];
2329         if (slot > 0) {
2330                 btrfs_item_key(eb, &disk_key, slot - 1);
2331                 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2332                         btrfs_crit(fs_info,
2333                 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2334                                    slot, btrfs_disk_key_objectid(&disk_key),
2335                                    btrfs_disk_key_type(&disk_key),
2336                                    btrfs_disk_key_offset(&disk_key),
2337                                    new_key->objectid, new_key->type,
2338                                    new_key->offset);
2339                         btrfs_print_leaf(eb);
2340                         BUG();
2341                 }
2342         }
2343         if (slot < btrfs_header_nritems(eb) - 1) {
2344                 btrfs_item_key(eb, &disk_key, slot + 1);
2345                 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2346                         btrfs_crit(fs_info,
2347                 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2348                                    slot, btrfs_disk_key_objectid(&disk_key),
2349                                    btrfs_disk_key_type(&disk_key),
2350                                    btrfs_disk_key_offset(&disk_key),
2351                                    new_key->objectid, new_key->type,
2352                                    new_key->offset);
2353                         btrfs_print_leaf(eb);
2354                         BUG();
2355                 }
2356         }
2357
2358         btrfs_cpu_key_to_disk(&disk_key, new_key);
2359         btrfs_set_item_key(eb, &disk_key, slot);
2360         btrfs_mark_buffer_dirty(eb);
2361         if (slot == 0)
2362                 fixup_low_keys(path, &disk_key, 1);
2363 }
2364
2365 /*
2366  * Check key order of two sibling extent buffers.
2367  *
2368  * Return true if something is wrong.
2369  * Return false if everything is fine.
2370  *
2371  * Tree-checker only works inside one tree block, thus the following
2372  * corruption can not be detected by tree-checker:
2373  *
2374  * Leaf @left                   | Leaf @right
2375  * --------------------------------------------------------------
2376  * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2377  *
2378  * Key f6 in leaf @left itself is valid, but not valid when the next
2379  * key in leaf @right is 7.
2380  * This can only be checked at tree block merge time.
2381  * And since tree checker has ensured all key order in each tree block
2382  * is correct, we only need to bother the last key of @left and the first
2383  * key of @right.
2384  */
2385 static bool check_sibling_keys(struct extent_buffer *left,
2386                                struct extent_buffer *right)
2387 {
2388         struct btrfs_key left_last;
2389         struct btrfs_key right_first;
2390         int level = btrfs_header_level(left);
2391         int nr_left = btrfs_header_nritems(left);
2392         int nr_right = btrfs_header_nritems(right);
2393
2394         /* No key to check in one of the tree blocks */
2395         if (!nr_left || !nr_right)
2396                 return false;
2397
2398         if (level) {
2399                 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2400                 btrfs_node_key_to_cpu(right, &right_first, 0);
2401         } else {
2402                 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2403                 btrfs_item_key_to_cpu(right, &right_first, 0);
2404         }
2405
2406         if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
2407                 btrfs_crit(left->fs_info,
2408 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2409                            left_last.objectid, left_last.type,
2410                            left_last.offset, right_first.objectid,
2411                            right_first.type, right_first.offset);
2412                 return true;
2413         }
2414         return false;
2415 }
2416
2417 /*
2418  * try to push data from one node into the next node left in the
2419  * tree.
2420  *
2421  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2422  * error, and > 0 if there was no room in the left hand block.
2423  */
2424 static int push_node_left(struct btrfs_trans_handle *trans,
2425                           struct extent_buffer *dst,
2426                           struct extent_buffer *src, int empty)
2427 {
2428         struct btrfs_fs_info *fs_info = trans->fs_info;
2429         int push_items = 0;
2430         int src_nritems;
2431         int dst_nritems;
2432         int ret = 0;
2433
2434         src_nritems = btrfs_header_nritems(src);
2435         dst_nritems = btrfs_header_nritems(dst);
2436         push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2437         WARN_ON(btrfs_header_generation(src) != trans->transid);
2438         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2439
2440         if (!empty && src_nritems <= 8)
2441                 return 1;
2442
2443         if (push_items <= 0)
2444                 return 1;
2445
2446         if (empty) {
2447                 push_items = min(src_nritems, push_items);
2448                 if (push_items < src_nritems) {
2449                         /* leave at least 8 pointers in the node if
2450                          * we aren't going to empty it
2451                          */
2452                         if (src_nritems - push_items < 8) {
2453                                 if (push_items <= 8)
2454                                         return 1;
2455                                 push_items -= 8;
2456                         }
2457                 }
2458         } else
2459                 push_items = min(src_nritems - 8, push_items);
2460
2461         /* dst is the left eb, src is the middle eb */
2462         if (check_sibling_keys(dst, src)) {
2463                 ret = -EUCLEAN;
2464                 btrfs_abort_transaction(trans, ret);
2465                 return ret;
2466         }
2467         ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2468         if (ret) {
2469                 btrfs_abort_transaction(trans, ret);
2470                 return ret;
2471         }
2472         copy_extent_buffer(dst, src,
2473                            btrfs_node_key_ptr_offset(dst_nritems),
2474                            btrfs_node_key_ptr_offset(0),
2475                            push_items * sizeof(struct btrfs_key_ptr));
2476
2477         if (push_items < src_nritems) {
2478                 /*
2479                  * Don't call btrfs_tree_mod_log_insert_move() here, key removal
2480                  * was already fully logged by btrfs_tree_mod_log_eb_copy() above.
2481                  */
2482                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2483                                       btrfs_node_key_ptr_offset(push_items),
2484                                       (src_nritems - push_items) *
2485                                       sizeof(struct btrfs_key_ptr));
2486         }
2487         btrfs_set_header_nritems(src, src_nritems - push_items);
2488         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2489         btrfs_mark_buffer_dirty(src);
2490         btrfs_mark_buffer_dirty(dst);
2491
2492         return ret;
2493 }
2494
2495 /*
2496  * try to push data from one node into the next node right in the
2497  * tree.
2498  *
2499  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2500  * error, and > 0 if there was no room in the right hand block.
2501  *
2502  * this will  only push up to 1/2 the contents of the left node over
2503  */
2504 static int balance_node_right(struct btrfs_trans_handle *trans,
2505                               struct extent_buffer *dst,
2506                               struct extent_buffer *src)
2507 {
2508         struct btrfs_fs_info *fs_info = trans->fs_info;
2509         int push_items = 0;
2510         int max_push;
2511         int src_nritems;
2512         int dst_nritems;
2513         int ret = 0;
2514
2515         WARN_ON(btrfs_header_generation(src) != trans->transid);
2516         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2517
2518         src_nritems = btrfs_header_nritems(src);
2519         dst_nritems = btrfs_header_nritems(dst);
2520         push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2521         if (push_items <= 0)
2522                 return 1;
2523
2524         if (src_nritems < 4)
2525                 return 1;
2526
2527         max_push = src_nritems / 2 + 1;
2528         /* don't try to empty the node */
2529         if (max_push >= src_nritems)
2530                 return 1;
2531
2532         if (max_push < push_items)
2533                 push_items = max_push;
2534
2535         /* dst is the right eb, src is the middle eb */
2536         if (check_sibling_keys(src, dst)) {
2537                 ret = -EUCLEAN;
2538                 btrfs_abort_transaction(trans, ret);
2539                 return ret;
2540         }
2541         ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
2542         BUG_ON(ret < 0);
2543         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2544                                       btrfs_node_key_ptr_offset(0),
2545                                       (dst_nritems) *
2546                                       sizeof(struct btrfs_key_ptr));
2547
2548         ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2549                                          push_items);
2550         if (ret) {
2551                 btrfs_abort_transaction(trans, ret);
2552                 return ret;
2553         }
2554         copy_extent_buffer(dst, src,
2555                            btrfs_node_key_ptr_offset(0),
2556                            btrfs_node_key_ptr_offset(src_nritems - push_items),
2557                            push_items * sizeof(struct btrfs_key_ptr));
2558
2559         btrfs_set_header_nritems(src, src_nritems - push_items);
2560         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2561
2562         btrfs_mark_buffer_dirty(src);
2563         btrfs_mark_buffer_dirty(dst);
2564
2565         return ret;
2566 }
2567
2568 /*
2569  * helper function to insert a new root level in the tree.
2570  * A new node is allocated, and a single item is inserted to
2571  * point to the existing root
2572  *
2573  * returns zero on success or < 0 on failure.
2574  */
2575 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2576                            struct btrfs_root *root,
2577                            struct btrfs_path *path, int level)
2578 {
2579         struct btrfs_fs_info *fs_info = root->fs_info;
2580         u64 lower_gen;
2581         struct extent_buffer *lower;
2582         struct extent_buffer *c;
2583         struct extent_buffer *old;
2584         struct btrfs_disk_key lower_key;
2585         int ret;
2586
2587         BUG_ON(path->nodes[level]);
2588         BUG_ON(path->nodes[level-1] != root->node);
2589
2590         lower = path->nodes[level-1];
2591         if (level == 1)
2592                 btrfs_item_key(lower, &lower_key, 0);
2593         else
2594                 btrfs_node_key(lower, &lower_key, 0);
2595
2596         c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2597                                    &lower_key, level, root->node->start, 0,
2598                                    BTRFS_NESTING_NEW_ROOT);
2599         if (IS_ERR(c))
2600                 return PTR_ERR(c);
2601
2602         root_add_used(root, fs_info->nodesize);
2603
2604         btrfs_set_header_nritems(c, 1);
2605         btrfs_set_node_key(c, &lower_key, 0);
2606         btrfs_set_node_blockptr(c, 0, lower->start);
2607         lower_gen = btrfs_header_generation(lower);
2608         WARN_ON(lower_gen != trans->transid);
2609
2610         btrfs_set_node_ptr_generation(c, 0, lower_gen);
2611
2612         btrfs_mark_buffer_dirty(c);
2613
2614         old = root->node;
2615         ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2616         BUG_ON(ret < 0);
2617         rcu_assign_pointer(root->node, c);
2618
2619         /* the super has an extra ref to root->node */
2620         free_extent_buffer(old);
2621
2622         add_root_to_dirty_list(root);
2623         atomic_inc(&c->refs);
2624         path->nodes[level] = c;
2625         path->locks[level] = BTRFS_WRITE_LOCK;
2626         path->slots[level] = 0;
2627         return 0;
2628 }
2629
2630 /*
2631  * worker function to insert a single pointer in a node.
2632  * the node should have enough room for the pointer already
2633  *
2634  * slot and level indicate where you want the key to go, and
2635  * blocknr is the block the key points to.
2636  */
2637 static void insert_ptr(struct btrfs_trans_handle *trans,
2638                        struct btrfs_path *path,
2639                        struct btrfs_disk_key *key, u64 bytenr,
2640                        int slot, int level)
2641 {
2642         struct extent_buffer *lower;
2643         int nritems;
2644         int ret;
2645
2646         BUG_ON(!path->nodes[level]);
2647         btrfs_assert_tree_write_locked(path->nodes[level]);
2648         lower = path->nodes[level];
2649         nritems = btrfs_header_nritems(lower);
2650         BUG_ON(slot > nritems);
2651         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2652         if (slot != nritems) {
2653                 if (level) {
2654                         ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2655                                         slot, nritems - slot);
2656                         BUG_ON(ret < 0);
2657                 }
2658                 memmove_extent_buffer(lower,
2659                               btrfs_node_key_ptr_offset(slot + 1),
2660                               btrfs_node_key_ptr_offset(slot),
2661                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
2662         }
2663         if (level) {
2664                 ret = btrfs_tree_mod_log_insert_key(lower, slot,
2665                                             BTRFS_MOD_LOG_KEY_ADD, GFP_NOFS);
2666                 BUG_ON(ret < 0);
2667         }
2668         btrfs_set_node_key(lower, key, slot);
2669         btrfs_set_node_blockptr(lower, slot, bytenr);
2670         WARN_ON(trans->transid == 0);
2671         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2672         btrfs_set_header_nritems(lower, nritems + 1);
2673         btrfs_mark_buffer_dirty(lower);
2674 }
2675
2676 /*
2677  * split the node at the specified level in path in two.
2678  * The path is corrected to point to the appropriate node after the split
2679  *
2680  * Before splitting this tries to make some room in the node by pushing
2681  * left and right, if either one works, it returns right away.
2682  *
2683  * returns 0 on success and < 0 on failure
2684  */
2685 static noinline int split_node(struct btrfs_trans_handle *trans,
2686                                struct btrfs_root *root,
2687                                struct btrfs_path *path, int level)
2688 {
2689         struct btrfs_fs_info *fs_info = root->fs_info;
2690         struct extent_buffer *c;
2691         struct extent_buffer *split;
2692         struct btrfs_disk_key disk_key;
2693         int mid;
2694         int ret;
2695         u32 c_nritems;
2696
2697         c = path->nodes[level];
2698         WARN_ON(btrfs_header_generation(c) != trans->transid);
2699         if (c == root->node) {
2700                 /*
2701                  * trying to split the root, lets make a new one
2702                  *
2703                  * tree mod log: We don't log_removal old root in
2704                  * insert_new_root, because that root buffer will be kept as a
2705                  * normal node. We are going to log removal of half of the
2706                  * elements below with btrfs_tree_mod_log_eb_copy(). We're
2707                  * holding a tree lock on the buffer, which is why we cannot
2708                  * race with other tree_mod_log users.
2709                  */
2710                 ret = insert_new_root(trans, root, path, level + 1);
2711                 if (ret)
2712                         return ret;
2713         } else {
2714                 ret = push_nodes_for_insert(trans, root, path, level);
2715                 c = path->nodes[level];
2716                 if (!ret && btrfs_header_nritems(c) <
2717                     BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
2718                         return 0;
2719                 if (ret < 0)
2720                         return ret;
2721         }
2722
2723         c_nritems = btrfs_header_nritems(c);
2724         mid = (c_nritems + 1) / 2;
2725         btrfs_node_key(c, &disk_key, mid);
2726
2727         split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2728                                        &disk_key, level, c->start, 0,
2729                                        BTRFS_NESTING_SPLIT);
2730         if (IS_ERR(split))
2731                 return PTR_ERR(split);
2732
2733         root_add_used(root, fs_info->nodesize);
2734         ASSERT(btrfs_header_level(c) == level);
2735
2736         ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
2737         if (ret) {
2738                 btrfs_abort_transaction(trans, ret);
2739                 return ret;
2740         }
2741         copy_extent_buffer(split, c,
2742                            btrfs_node_key_ptr_offset(0),
2743                            btrfs_node_key_ptr_offset(mid),
2744                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2745         btrfs_set_header_nritems(split, c_nritems - mid);
2746         btrfs_set_header_nritems(c, mid);
2747
2748         btrfs_mark_buffer_dirty(c);
2749         btrfs_mark_buffer_dirty(split);
2750
2751         insert_ptr(trans, path, &disk_key, split->start,
2752                    path->slots[level + 1] + 1, level + 1);
2753
2754         if (path->slots[level] >= mid) {
2755                 path->slots[level] -= mid;
2756                 btrfs_tree_unlock(c);
2757                 free_extent_buffer(c);
2758                 path->nodes[level] = split;
2759                 path->slots[level + 1] += 1;
2760         } else {
2761                 btrfs_tree_unlock(split);
2762                 free_extent_buffer(split);
2763         }
2764         return 0;
2765 }
2766
2767 /*
2768  * how many bytes are required to store the items in a leaf.  start
2769  * and nr indicate which items in the leaf to check.  This totals up the
2770  * space used both by the item structs and the item data
2771  */
2772 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2773 {
2774         int data_len;
2775         int nritems = btrfs_header_nritems(l);
2776         int end = min(nritems, start + nr) - 1;
2777
2778         if (!nr)
2779                 return 0;
2780         data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
2781         data_len = data_len - btrfs_item_offset(l, end);
2782         data_len += sizeof(struct btrfs_item) * nr;
2783         WARN_ON(data_len < 0);
2784         return data_len;
2785 }
2786
2787 /*
2788  * The space between the end of the leaf items and
2789  * the start of the leaf data.  IOW, how much room
2790  * the leaf has left for both items and data
2791  */
2792 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
2793 {
2794         struct btrfs_fs_info *fs_info = leaf->fs_info;
2795         int nritems = btrfs_header_nritems(leaf);
2796         int ret;
2797
2798         ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
2799         if (ret < 0) {
2800                 btrfs_crit(fs_info,
2801                            "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
2802                            ret,
2803                            (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
2804                            leaf_space_used(leaf, 0, nritems), nritems);
2805         }
2806         return ret;
2807 }
2808
2809 /*
2810  * min slot controls the lowest index we're willing to push to the
2811  * right.  We'll push up to and including min_slot, but no lower
2812  */
2813 static noinline int __push_leaf_right(struct btrfs_path *path,
2814                                       int data_size, int empty,
2815                                       struct extent_buffer *right,
2816                                       int free_space, u32 left_nritems,
2817                                       u32 min_slot)
2818 {
2819         struct btrfs_fs_info *fs_info = right->fs_info;
2820         struct extent_buffer *left = path->nodes[0];
2821         struct extent_buffer *upper = path->nodes[1];
2822         struct btrfs_map_token token;
2823         struct btrfs_disk_key disk_key;
2824         int slot;
2825         u32 i;
2826         int push_space = 0;
2827         int push_items = 0;
2828         u32 nr;
2829         u32 right_nritems;
2830         u32 data_end;
2831         u32 this_item_size;
2832
2833         if (empty)
2834                 nr = 0;
2835         else
2836                 nr = max_t(u32, 1, min_slot);
2837
2838         if (path->slots[0] >= left_nritems)
2839                 push_space += data_size;
2840
2841         slot = path->slots[1];
2842         i = left_nritems - 1;
2843         while (i >= nr) {
2844                 if (!empty && push_items > 0) {
2845                         if (path->slots[0] > i)
2846                                 break;
2847                         if (path->slots[0] == i) {
2848                                 int space = btrfs_leaf_free_space(left);
2849
2850                                 if (space + push_space * 2 > free_space)
2851                                         break;
2852                         }
2853                 }
2854
2855                 if (path->slots[0] == i)
2856                         push_space += data_size;
2857
2858                 this_item_size = btrfs_item_size(left, i);
2859                 if (this_item_size + sizeof(struct btrfs_item) +
2860                     push_space > free_space)
2861                         break;
2862
2863                 push_items++;
2864                 push_space += this_item_size + sizeof(struct btrfs_item);
2865                 if (i == 0)
2866                         break;
2867                 i--;
2868         }
2869
2870         if (push_items == 0)
2871                 goto out_unlock;
2872
2873         WARN_ON(!empty && push_items == left_nritems);
2874
2875         /* push left to right */
2876         right_nritems = btrfs_header_nritems(right);
2877
2878         push_space = btrfs_item_data_end(left, left_nritems - push_items);
2879         push_space -= leaf_data_end(left);
2880
2881         /* make room in the right data area */
2882         data_end = leaf_data_end(right);
2883         memmove_extent_buffer(right,
2884                               BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
2885                               BTRFS_LEAF_DATA_OFFSET + data_end,
2886                               BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
2887
2888         /* copy from the left data area */
2889         copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
2890                      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
2891                      BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
2892                      push_space);
2893
2894         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2895                               btrfs_item_nr_offset(0),
2896                               right_nritems * sizeof(struct btrfs_item));
2897
2898         /* copy the items from left to right */
2899         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2900                    btrfs_item_nr_offset(left_nritems - push_items),
2901                    push_items * sizeof(struct btrfs_item));
2902
2903         /* update the item pointers */
2904         btrfs_init_map_token(&token, right);
2905         right_nritems += push_items;
2906         btrfs_set_header_nritems(right, right_nritems);
2907         push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
2908         for (i = 0; i < right_nritems; i++) {
2909                 push_space -= btrfs_token_item_size(&token, i);
2910                 btrfs_set_token_item_offset(&token, i, push_space);
2911         }
2912
2913         left_nritems -= push_items;
2914         btrfs_set_header_nritems(left, left_nritems);
2915
2916         if (left_nritems)
2917                 btrfs_mark_buffer_dirty(left);
2918         else
2919                 btrfs_clean_tree_block(left);
2920
2921         btrfs_mark_buffer_dirty(right);
2922
2923         btrfs_item_key(right, &disk_key, 0);
2924         btrfs_set_node_key(upper, &disk_key, slot + 1);
2925         btrfs_mark_buffer_dirty(upper);
2926
2927         /* then fixup the leaf pointer in the path */
2928         if (path->slots[0] >= left_nritems) {
2929                 path->slots[0] -= left_nritems;
2930                 if (btrfs_header_nritems(path->nodes[0]) == 0)
2931                         btrfs_clean_tree_block(path->nodes[0]);
2932                 btrfs_tree_unlock(path->nodes[0]);
2933                 free_extent_buffer(path->nodes[0]);
2934                 path->nodes[0] = right;
2935                 path->slots[1] += 1;
2936         } else {
2937                 btrfs_tree_unlock(right);
2938                 free_extent_buffer(right);
2939         }
2940         return 0;
2941
2942 out_unlock:
2943         btrfs_tree_unlock(right);
2944         free_extent_buffer(right);
2945         return 1;
2946 }
2947
2948 /*
2949  * push some data in the path leaf to the right, trying to free up at
2950  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2951  *
2952  * returns 1 if the push failed because the other node didn't have enough
2953  * room, 0 if everything worked out and < 0 if there were major errors.
2954  *
2955  * this will push starting from min_slot to the end of the leaf.  It won't
2956  * push any slot lower than min_slot
2957  */
2958 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2959                            *root, struct btrfs_path *path,
2960                            int min_data_size, int data_size,
2961                            int empty, u32 min_slot)
2962 {
2963         struct extent_buffer *left = path->nodes[0];
2964         struct extent_buffer *right;
2965         struct extent_buffer *upper;
2966         int slot;
2967         int free_space;
2968         u32 left_nritems;
2969         int ret;
2970
2971         if (!path->nodes[1])
2972                 return 1;
2973
2974         slot = path->slots[1];
2975         upper = path->nodes[1];
2976         if (slot >= btrfs_header_nritems(upper) - 1)
2977                 return 1;
2978
2979         btrfs_assert_tree_write_locked(path->nodes[1]);
2980
2981         right = btrfs_read_node_slot(upper, slot + 1);
2982         /*
2983          * slot + 1 is not valid or we fail to read the right node,
2984          * no big deal, just return.
2985          */
2986         if (IS_ERR(right))
2987                 return 1;
2988
2989         __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
2990
2991         free_space = btrfs_leaf_free_space(right);
2992         if (free_space < data_size)
2993                 goto out_unlock;
2994
2995         ret = btrfs_cow_block(trans, root, right, upper,
2996                               slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
2997         if (ret)
2998                 goto out_unlock;
2999
3000         left_nritems = btrfs_header_nritems(left);
3001         if (left_nritems == 0)
3002                 goto out_unlock;
3003
3004         if (check_sibling_keys(left, right)) {
3005                 ret = -EUCLEAN;
3006                 btrfs_tree_unlock(right);
3007                 free_extent_buffer(right);
3008                 return ret;
3009         }
3010         if (path->slots[0] == left_nritems && !empty) {
3011                 /* Key greater than all keys in the leaf, right neighbor has
3012                  * enough room for it and we're not emptying our leaf to delete
3013                  * it, therefore use right neighbor to insert the new item and
3014                  * no need to touch/dirty our left leaf. */
3015                 btrfs_tree_unlock(left);
3016                 free_extent_buffer(left);
3017                 path->nodes[0] = right;
3018                 path->slots[0] = 0;
3019                 path->slots[1]++;
3020                 return 0;
3021         }
3022
3023         return __push_leaf_right(path, min_data_size, empty,
3024                                 right, free_space, left_nritems, min_slot);
3025 out_unlock:
3026         btrfs_tree_unlock(right);
3027         free_extent_buffer(right);
3028         return 1;
3029 }
3030
3031 /*
3032  * push some data in the path leaf to the left, trying to free up at
3033  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3034  *
3035  * max_slot can put a limit on how far into the leaf we'll push items.  The
3036  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3037  * items
3038  */
3039 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3040                                      int empty, struct extent_buffer *left,
3041                                      int free_space, u32 right_nritems,
3042                                      u32 max_slot)
3043 {
3044         struct btrfs_fs_info *fs_info = left->fs_info;
3045         struct btrfs_disk_key disk_key;
3046         struct extent_buffer *right = path->nodes[0];
3047         int i;
3048         int push_space = 0;
3049         int push_items = 0;
3050         u32 old_left_nritems;
3051         u32 nr;
3052         int ret = 0;
3053         u32 this_item_size;
3054         u32 old_left_item_size;
3055         struct btrfs_map_token token;
3056
3057         if (empty)
3058                 nr = min(right_nritems, max_slot);
3059         else
3060                 nr = min(right_nritems - 1, max_slot);
3061
3062         for (i = 0; i < nr; i++) {
3063                 if (!empty && push_items > 0) {
3064                         if (path->slots[0] < i)
3065                                 break;
3066                         if (path->slots[0] == i) {
3067                                 int space = btrfs_leaf_free_space(right);
3068
3069                                 if (space + push_space * 2 > free_space)
3070                                         break;
3071                         }
3072                 }
3073
3074                 if (path->slots[0] == i)
3075                         push_space += data_size;
3076
3077                 this_item_size = btrfs_item_size(right, i);
3078                 if (this_item_size + sizeof(struct btrfs_item) + push_space >
3079                     free_space)
3080                         break;
3081
3082                 push_items++;
3083                 push_space += this_item_size + sizeof(struct btrfs_item);
3084         }
3085
3086         if (push_items == 0) {
3087                 ret = 1;
3088                 goto out;
3089         }
3090         WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3091
3092         /* push data from right to left */
3093         copy_extent_buffer(left, right,
3094                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3095                            btrfs_item_nr_offset(0),
3096                            push_items * sizeof(struct btrfs_item));
3097
3098         push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3099                      btrfs_item_offset(right, push_items - 1);
3100
3101         copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3102                      leaf_data_end(left) - push_space,
3103                      BTRFS_LEAF_DATA_OFFSET +
3104                      btrfs_item_offset(right, push_items - 1),
3105                      push_space);
3106         old_left_nritems = btrfs_header_nritems(left);
3107         BUG_ON(old_left_nritems <= 0);
3108
3109         btrfs_init_map_token(&token, left);
3110         old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3111         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3112                 u32 ioff;
3113
3114                 ioff = btrfs_token_item_offset(&token, i);
3115                 btrfs_set_token_item_offset(&token, i,
3116                       ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3117         }
3118         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3119
3120         /* fixup right node */
3121         if (push_items > right_nritems)
3122                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3123                        right_nritems);
3124
3125         if (push_items < right_nritems) {
3126                 push_space = btrfs_item_offset(right, push_items - 1) -
3127                                                   leaf_data_end(right);
3128                 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3129                                       BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3130                                       BTRFS_LEAF_DATA_OFFSET +
3131                                       leaf_data_end(right), push_space);
3132
3133                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3134                               btrfs_item_nr_offset(push_items),
3135                              (btrfs_header_nritems(right) - push_items) *
3136                              sizeof(struct btrfs_item));
3137         }
3138
3139         btrfs_init_map_token(&token, right);
3140         right_nritems -= push_items;
3141         btrfs_set_header_nritems(right, right_nritems);
3142         push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3143         for (i = 0; i < right_nritems; i++) {
3144                 push_space = push_space - btrfs_token_item_size(&token, i);
3145                 btrfs_set_token_item_offset(&token, i, push_space);
3146         }
3147
3148         btrfs_mark_buffer_dirty(left);
3149         if (right_nritems)
3150                 btrfs_mark_buffer_dirty(right);
3151         else
3152                 btrfs_clean_tree_block(right);
3153
3154         btrfs_item_key(right, &disk_key, 0);
3155         fixup_low_keys(path, &disk_key, 1);
3156
3157         /* then fixup the leaf pointer in the path */
3158         if (path->slots[0] < push_items) {
3159                 path->slots[0] += old_left_nritems;
3160                 btrfs_tree_unlock(path->nodes[0]);
3161                 free_extent_buffer(path->nodes[0]);
3162                 path->nodes[0] = left;
3163                 path->slots[1] -= 1;
3164         } else {
3165                 btrfs_tree_unlock(left);
3166                 free_extent_buffer(left);
3167                 path->slots[0] -= push_items;
3168         }
3169         BUG_ON(path->slots[0] < 0);
3170         return ret;
3171 out:
3172         btrfs_tree_unlock(left);
3173         free_extent_buffer(left);
3174         return ret;
3175 }
3176
3177 /*
3178  * push some data in the path leaf to the left, trying to free up at
3179  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3180  *
3181  * max_slot can put a limit on how far into the leaf we'll push items.  The
3182  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3183  * items
3184  */
3185 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3186                           *root, struct btrfs_path *path, int min_data_size,
3187                           int data_size, int empty, u32 max_slot)
3188 {
3189         struct extent_buffer *right = path->nodes[0];
3190         struct extent_buffer *left;
3191         int slot;
3192         int free_space;
3193         u32 right_nritems;
3194         int ret = 0;
3195
3196         slot = path->slots[1];
3197         if (slot == 0)
3198                 return 1;
3199         if (!path->nodes[1])
3200                 return 1;
3201
3202         right_nritems = btrfs_header_nritems(right);
3203         if (right_nritems == 0)
3204                 return 1;
3205
3206         btrfs_assert_tree_write_locked(path->nodes[1]);
3207
3208         left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3209         /*
3210          * slot - 1 is not valid or we fail to read the left node,
3211          * no big deal, just return.
3212          */
3213         if (IS_ERR(left))
3214                 return 1;
3215
3216         __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3217
3218         free_space = btrfs_leaf_free_space(left);
3219         if (free_space < data_size) {
3220                 ret = 1;
3221                 goto out;
3222         }
3223
3224         ret = btrfs_cow_block(trans, root, left,
3225                               path->nodes[1], slot - 1, &left,
3226                               BTRFS_NESTING_LEFT_COW);
3227         if (ret) {
3228                 /* we hit -ENOSPC, but it isn't fatal here */
3229                 if (ret == -ENOSPC)
3230                         ret = 1;
3231                 goto out;
3232         }
3233
3234         if (check_sibling_keys(left, right)) {
3235                 ret = -EUCLEAN;
3236                 goto out;
3237         }
3238         return __push_leaf_left(path, min_data_size,
3239                                empty, left, free_space, right_nritems,
3240                                max_slot);
3241 out:
3242         btrfs_tree_unlock(left);
3243         free_extent_buffer(left);
3244         return ret;
3245 }
3246
3247 /*
3248  * split the path's leaf in two, making sure there is at least data_size
3249  * available for the resulting leaf level of the path.
3250  */
3251 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3252                                     struct btrfs_path *path,
3253                                     struct extent_buffer *l,
3254                                     struct extent_buffer *right,
3255                                     int slot, int mid, int nritems)
3256 {
3257         struct btrfs_fs_info *fs_info = trans->fs_info;
3258         int data_copy_size;
3259         int rt_data_off;
3260         int i;
3261         struct btrfs_disk_key disk_key;
3262         struct btrfs_map_token token;
3263
3264         nritems = nritems - mid;
3265         btrfs_set_header_nritems(right, nritems);
3266         data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3267
3268         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3269                            btrfs_item_nr_offset(mid),
3270                            nritems * sizeof(struct btrfs_item));
3271
3272         copy_extent_buffer(right, l,
3273                      BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
3274                      data_copy_size, BTRFS_LEAF_DATA_OFFSET +
3275                      leaf_data_end(l), data_copy_size);
3276
3277         rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3278
3279         btrfs_init_map_token(&token, right);
3280         for (i = 0; i < nritems; i++) {
3281                 u32 ioff;
3282
3283                 ioff = btrfs_token_item_offset(&token, i);
3284                 btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3285         }
3286
3287         btrfs_set_header_nritems(l, mid);
3288         btrfs_item_key(right, &disk_key, 0);
3289         insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3290
3291         btrfs_mark_buffer_dirty(right);
3292         btrfs_mark_buffer_dirty(l);
3293         BUG_ON(path->slots[0] != slot);
3294
3295         if (mid <= slot) {
3296                 btrfs_tree_unlock(path->nodes[0]);
3297                 free_extent_buffer(path->nodes[0]);
3298                 path->nodes[0] = right;
3299                 path->slots[0] -= mid;
3300                 path->slots[1] += 1;
3301         } else {
3302                 btrfs_tree_unlock(right);
3303                 free_extent_buffer(right);
3304         }
3305
3306         BUG_ON(path->slots[0] < 0);
3307 }
3308
3309 /*
3310  * double splits happen when we need to insert a big item in the middle
3311  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3312  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3313  *          A                 B                 C
3314  *
3315  * We avoid this by trying to push the items on either side of our target
3316  * into the adjacent leaves.  If all goes well we can avoid the double split
3317  * completely.
3318  */
3319 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3320                                           struct btrfs_root *root,
3321                                           struct btrfs_path *path,
3322                                           int data_size)
3323 {
3324         int ret;
3325         int progress = 0;
3326         int slot;
3327         u32 nritems;
3328         int space_needed = data_size;
3329
3330         slot = path->slots[0];
3331         if (slot < btrfs_header_nritems(path->nodes[0]))
3332                 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3333
3334         /*
3335          * try to push all the items after our slot into the
3336          * right leaf
3337          */
3338         ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3339         if (ret < 0)
3340                 return ret;
3341
3342         if (ret == 0)
3343                 progress++;
3344
3345         nritems = btrfs_header_nritems(path->nodes[0]);
3346         /*
3347          * our goal is to get our slot at the start or end of a leaf.  If
3348          * we've done so we're done
3349          */
3350         if (path->slots[0] == 0 || path->slots[0] == nritems)
3351                 return 0;
3352
3353         if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3354                 return 0;
3355
3356         /* try to push all the items before our slot into the next leaf */
3357         slot = path->slots[0];
3358         space_needed = data_size;
3359         if (slot > 0)
3360                 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3361         ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3362         if (ret < 0)
3363                 return ret;
3364
3365         if (ret == 0)
3366                 progress++;
3367
3368         if (progress)
3369                 return 0;
3370         return 1;
3371 }
3372
3373 /*
3374  * split the path's leaf in two, making sure there is at least data_size
3375  * available for the resulting leaf level of the path.
3376  *
3377  * returns 0 if all went well and < 0 on failure.
3378  */
3379 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3380                                struct btrfs_root *root,
3381                                const struct btrfs_key *ins_key,
3382                                struct btrfs_path *path, int data_size,
3383                                int extend)
3384 {
3385         struct btrfs_disk_key disk_key;
3386         struct extent_buffer *l;
3387         u32 nritems;
3388         int mid;
3389         int slot;
3390         struct extent_buffer *right;
3391         struct btrfs_fs_info *fs_info = root->fs_info;
3392         int ret = 0;
3393         int wret;
3394         int split;
3395         int num_doubles = 0;
3396         int tried_avoid_double = 0;
3397
3398         l = path->nodes[0];
3399         slot = path->slots[0];
3400         if (extend && data_size + btrfs_item_size(l, slot) +
3401             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3402                 return -EOVERFLOW;
3403
3404         /* first try to make some room by pushing left and right */
3405         if (data_size && path->nodes[1]) {
3406                 int space_needed = data_size;
3407
3408                 if (slot < btrfs_header_nritems(l))
3409                         space_needed -= btrfs_leaf_free_space(l);
3410
3411                 wret = push_leaf_right(trans, root, path, space_needed,
3412                                        space_needed, 0, 0);
3413                 if (wret < 0)
3414                         return wret;
3415                 if (wret) {
3416                         space_needed = data_size;
3417                         if (slot > 0)
3418                                 space_needed -= btrfs_leaf_free_space(l);
3419                         wret = push_leaf_left(trans, root, path, space_needed,
3420                                               space_needed, 0, (u32)-1);
3421                         if (wret < 0)
3422                                 return wret;
3423                 }
3424                 l = path->nodes[0];
3425
3426                 /* did the pushes work? */
3427                 if (btrfs_leaf_free_space(l) >= data_size)
3428                         return 0;
3429         }
3430
3431         if (!path->nodes[1]) {
3432                 ret = insert_new_root(trans, root, path, 1);
3433                 if (ret)
3434                         return ret;
3435         }
3436 again:
3437         split = 1;
3438         l = path->nodes[0];
3439         slot = path->slots[0];
3440         nritems = btrfs_header_nritems(l);
3441         mid = (nritems + 1) / 2;
3442
3443         if (mid <= slot) {
3444                 if (nritems == 1 ||
3445                     leaf_space_used(l, mid, nritems - mid) + data_size >
3446                         BTRFS_LEAF_DATA_SIZE(fs_info)) {
3447                         if (slot >= nritems) {
3448                                 split = 0;
3449                         } else {
3450                                 mid = slot;
3451                                 if (mid != nritems &&
3452                                     leaf_space_used(l, mid, nritems - mid) +
3453                                     data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3454                                         if (data_size && !tried_avoid_double)
3455                                                 goto push_for_double;
3456                                         split = 2;
3457                                 }
3458                         }
3459                 }
3460         } else {
3461                 if (leaf_space_used(l, 0, mid) + data_size >
3462                         BTRFS_LEAF_DATA_SIZE(fs_info)) {
3463                         if (!extend && data_size && slot == 0) {
3464                                 split = 0;
3465                         } else if ((extend || !data_size) && slot == 0) {
3466                                 mid = 1;
3467                         } else {
3468                                 mid = slot;
3469                                 if (mid != nritems &&
3470                                     leaf_space_used(l, mid, nritems - mid) +
3471                                     data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3472                                         if (data_size && !tried_avoid_double)
3473                                                 goto push_for_double;
3474                                         split = 2;
3475                                 }
3476                         }
3477                 }
3478         }
3479
3480         if (split == 0)
3481                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3482         else
3483                 btrfs_item_key(l, &disk_key, mid);
3484
3485         /*
3486          * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3487          * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3488          * subclasses, which is 8 at the time of this patch, and we've maxed it
3489          * out.  In the future we could add a
3490          * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3491          * use BTRFS_NESTING_NEW_ROOT.
3492          */
3493         right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3494                                        &disk_key, 0, l->start, 0,
3495                                        num_doubles ? BTRFS_NESTING_NEW_ROOT :
3496                                        BTRFS_NESTING_SPLIT);
3497         if (IS_ERR(right))
3498                 return PTR_ERR(right);
3499
3500         root_add_used(root, fs_info->nodesize);
3501
3502         if (split == 0) {
3503                 if (mid <= slot) {
3504                         btrfs_set_header_nritems(right, 0);
3505                         insert_ptr(trans, path, &disk_key,
3506                                    right->start, path->slots[1] + 1, 1);
3507                         btrfs_tree_unlock(path->nodes[0]);
3508                         free_extent_buffer(path->nodes[0]);
3509                         path->nodes[0] = right;
3510                         path->slots[0] = 0;
3511                         path->slots[1] += 1;
3512                 } else {
3513                         btrfs_set_header_nritems(right, 0);
3514                         insert_ptr(trans, path, &disk_key,
3515                                    right->start, path->slots[1], 1);
3516                         btrfs_tree_unlock(path->nodes[0]);
3517                         free_extent_buffer(path->nodes[0]);
3518                         path->nodes[0] = right;
3519                         path->slots[0] = 0;
3520                         if (path->slots[1] == 0)
3521                                 fixup_low_keys(path, &disk_key, 1);
3522                 }
3523                 /*
3524                  * We create a new leaf 'right' for the required ins_len and
3525                  * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3526                  * the content of ins_len to 'right'.
3527                  */
3528                 return ret;
3529         }
3530
3531         copy_for_split(trans, path, l, right, slot, mid, nritems);
3532
3533         if (split == 2) {
3534                 BUG_ON(num_doubles != 0);
3535                 num_doubles++;
3536                 goto again;
3537         }
3538
3539         return 0;
3540
3541 push_for_double:
3542         push_for_double_split(trans, root, path, data_size);
3543         tried_avoid_double = 1;
3544         if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3545                 return 0;
3546         goto again;
3547 }
3548
3549 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3550                                          struct btrfs_root *root,
3551                                          struct btrfs_path *path, int ins_len)
3552 {
3553         struct btrfs_key key;
3554         struct extent_buffer *leaf;
3555         struct btrfs_file_extent_item *fi;
3556         u64 extent_len = 0;
3557         u32 item_size;
3558         int ret;
3559
3560         leaf = path->nodes[0];
3561         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3562
3563         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3564                key.type != BTRFS_EXTENT_CSUM_KEY);
3565
3566         if (btrfs_leaf_free_space(leaf) >= ins_len)
3567                 return 0;
3568
3569         item_size = btrfs_item_size(leaf, path->slots[0]);
3570         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3571                 fi = btrfs_item_ptr(leaf, path->slots[0],
3572                                     struct btrfs_file_extent_item);
3573                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3574         }
3575         btrfs_release_path(path);
3576
3577         path->keep_locks = 1;
3578         path->search_for_split = 1;
3579         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3580         path->search_for_split = 0;
3581         if (ret > 0)
3582                 ret = -EAGAIN;
3583         if (ret < 0)
3584                 goto err;
3585
3586         ret = -EAGAIN;
3587         leaf = path->nodes[0];
3588         /* if our item isn't there, return now */
3589         if (item_size != btrfs_item_size(leaf, path->slots[0]))
3590                 goto err;
3591
3592         /* the leaf has  changed, it now has room.  return now */
3593         if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3594                 goto err;
3595
3596         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3597                 fi = btrfs_item_ptr(leaf, path->slots[0],
3598                                     struct btrfs_file_extent_item);
3599                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3600                         goto err;
3601         }
3602
3603         ret = split_leaf(trans, root, &key, path, ins_len, 1);
3604         if (ret)
3605                 goto err;
3606
3607         path->keep_locks = 0;
3608         btrfs_unlock_up_safe(path, 1);
3609         return 0;
3610 err:
3611         path->keep_locks = 0;
3612         return ret;
3613 }
3614
3615 static noinline int split_item(struct btrfs_path *path,
3616                                const struct btrfs_key *new_key,
3617                                unsigned long split_offset)
3618 {
3619         struct extent_buffer *leaf;
3620         int orig_slot, slot;
3621         char *buf;
3622         u32 nritems;
3623         u32 item_size;
3624         u32 orig_offset;
3625         struct btrfs_disk_key disk_key;
3626
3627         leaf = path->nodes[0];
3628         BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
3629
3630         orig_slot = path->slots[0];
3631         orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3632         item_size = btrfs_item_size(leaf, path->slots[0]);
3633
3634         buf = kmalloc(item_size, GFP_NOFS);
3635         if (!buf)
3636                 return -ENOMEM;
3637
3638         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3639                             path->slots[0]), item_size);
3640
3641         slot = path->slots[0] + 1;
3642         nritems = btrfs_header_nritems(leaf);
3643         if (slot != nritems) {
3644                 /* shift the items */
3645                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3646                                 btrfs_item_nr_offset(slot),
3647                                 (nritems - slot) * sizeof(struct btrfs_item));
3648         }
3649
3650         btrfs_cpu_key_to_disk(&disk_key, new_key);
3651         btrfs_set_item_key(leaf, &disk_key, slot);
3652
3653         btrfs_set_item_offset(leaf, slot, orig_offset);
3654         btrfs_set_item_size(leaf, slot, item_size - split_offset);
3655
3656         btrfs_set_item_offset(leaf, orig_slot,
3657                                  orig_offset + item_size - split_offset);
3658         btrfs_set_item_size(leaf, orig_slot, split_offset);
3659
3660         btrfs_set_header_nritems(leaf, nritems + 1);
3661
3662         /* write the data for the start of the original item */
3663         write_extent_buffer(leaf, buf,
3664                             btrfs_item_ptr_offset(leaf, path->slots[0]),
3665                             split_offset);
3666
3667         /* write the data for the new item */
3668         write_extent_buffer(leaf, buf + split_offset,
3669                             btrfs_item_ptr_offset(leaf, slot),
3670                             item_size - split_offset);
3671         btrfs_mark_buffer_dirty(leaf);
3672
3673         BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3674         kfree(buf);
3675         return 0;
3676 }
3677
3678 /*
3679  * This function splits a single item into two items,
3680  * giving 'new_key' to the new item and splitting the
3681  * old one at split_offset (from the start of the item).
3682  *
3683  * The path may be released by this operation.  After
3684  * the split, the path is pointing to the old item.  The
3685  * new item is going to be in the same node as the old one.
3686  *
3687  * Note, the item being split must be smaller enough to live alone on
3688  * a tree block with room for one extra struct btrfs_item
3689  *
3690  * This allows us to split the item in place, keeping a lock on the
3691  * leaf the entire time.
3692  */
3693 int btrfs_split_item(struct btrfs_trans_handle *trans,
3694                      struct btrfs_root *root,
3695                      struct btrfs_path *path,
3696                      const struct btrfs_key *new_key,
3697                      unsigned long split_offset)
3698 {
3699         int ret;
3700         ret = setup_leaf_for_split(trans, root, path,
3701                                    sizeof(struct btrfs_item));
3702         if (ret)
3703                 return ret;
3704
3705         ret = split_item(path, new_key, split_offset);
3706         return ret;
3707 }
3708
3709 /*
3710  * make the item pointed to by the path smaller.  new_size indicates
3711  * how small to make it, and from_end tells us if we just chop bytes
3712  * off the end of the item or if we shift the item to chop bytes off
3713  * the front.
3714  */
3715 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
3716 {
3717         int slot;
3718         struct extent_buffer *leaf;
3719         u32 nritems;
3720         unsigned int data_end;
3721         unsigned int old_data_start;
3722         unsigned int old_size;
3723         unsigned int size_diff;
3724         int i;
3725         struct btrfs_map_token token;
3726
3727         leaf = path->nodes[0];
3728         slot = path->slots[0];
3729
3730         old_size = btrfs_item_size(leaf, slot);
3731         if (old_size == new_size)
3732                 return;
3733
3734         nritems = btrfs_header_nritems(leaf);
3735         data_end = leaf_data_end(leaf);
3736
3737         old_data_start = btrfs_item_offset(leaf, slot);
3738
3739         size_diff = old_size - new_size;
3740
3741         BUG_ON(slot < 0);
3742         BUG_ON(slot >= nritems);
3743
3744         /*
3745          * item0..itemN ... dataN.offset..dataN.size .. data0.size
3746          */
3747         /* first correct the data pointers */
3748         btrfs_init_map_token(&token, leaf);
3749         for (i = slot; i < nritems; i++) {
3750                 u32 ioff;
3751
3752                 ioff = btrfs_token_item_offset(&token, i);
3753                 btrfs_set_token_item_offset(&token, i, ioff + size_diff);
3754         }
3755
3756         /* shift the data */
3757         if (from_end) {
3758                 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3759                               data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3760                               data_end, old_data_start + new_size - data_end);
3761         } else {
3762                 struct btrfs_disk_key disk_key;
3763                 u64 offset;
3764
3765                 btrfs_item_key(leaf, &disk_key, slot);
3766
3767                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3768                         unsigned long ptr;
3769                         struct btrfs_file_extent_item *fi;
3770
3771                         fi = btrfs_item_ptr(leaf, slot,
3772                                             struct btrfs_file_extent_item);
3773                         fi = (struct btrfs_file_extent_item *)(
3774                              (unsigned long)fi - size_diff);
3775
3776                         if (btrfs_file_extent_type(leaf, fi) ==
3777                             BTRFS_FILE_EXTENT_INLINE) {
3778                                 ptr = btrfs_item_ptr_offset(leaf, slot);
3779                                 memmove_extent_buffer(leaf, ptr,
3780                                       (unsigned long)fi,
3781                                       BTRFS_FILE_EXTENT_INLINE_DATA_START);
3782                         }
3783                 }
3784
3785                 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3786                               data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3787                               data_end, old_data_start - data_end);
3788
3789                 offset = btrfs_disk_key_offset(&disk_key);
3790                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3791                 btrfs_set_item_key(leaf, &disk_key, slot);
3792                 if (slot == 0)
3793                         fixup_low_keys(path, &disk_key, 1);
3794         }
3795
3796         btrfs_set_item_size(leaf, slot, new_size);
3797         btrfs_mark_buffer_dirty(leaf);
3798
3799         if (btrfs_leaf_free_space(leaf) < 0) {
3800                 btrfs_print_leaf(leaf);
3801                 BUG();
3802         }
3803 }
3804
3805 /*
3806  * make the item pointed to by the path bigger, data_size is the added size.
3807  */
3808 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
3809 {
3810         int slot;
3811         struct extent_buffer *leaf;
3812         u32 nritems;
3813         unsigned int data_end;
3814         unsigned int old_data;
3815         unsigned int old_size;
3816         int i;
3817         struct btrfs_map_token token;
3818
3819         leaf = path->nodes[0];
3820
3821         nritems = btrfs_header_nritems(leaf);
3822         data_end = leaf_data_end(leaf);
3823
3824         if (btrfs_leaf_free_space(leaf) < data_size) {
3825                 btrfs_print_leaf(leaf);
3826                 BUG();
3827         }
3828         slot = path->slots[0];
3829         old_data = btrfs_item_data_end(leaf, slot);
3830
3831         BUG_ON(slot < 0);
3832         if (slot >= nritems) {
3833                 btrfs_print_leaf(leaf);
3834                 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
3835                            slot, nritems);
3836                 BUG();
3837         }
3838
3839         /*
3840          * item0..itemN ... dataN.offset..dataN.size .. data0.size
3841          */
3842         /* first correct the data pointers */
3843         btrfs_init_map_token(&token, leaf);
3844         for (i = slot; i < nritems; i++) {
3845                 u32 ioff;
3846
3847                 ioff = btrfs_token_item_offset(&token, i);
3848                 btrfs_set_token_item_offset(&token, i, ioff - data_size);
3849         }
3850
3851         /* shift the data */
3852         memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3853                       data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
3854                       data_end, old_data - data_end);
3855
3856         data_end = old_data;
3857         old_size = btrfs_item_size(leaf, slot);
3858         btrfs_set_item_size(leaf, slot, old_size + data_size);
3859         btrfs_mark_buffer_dirty(leaf);
3860
3861         if (btrfs_leaf_free_space(leaf) < 0) {
3862                 btrfs_print_leaf(leaf);
3863                 BUG();
3864         }
3865 }
3866
3867 /**
3868  * setup_items_for_insert - Helper called before inserting one or more items
3869  * to a leaf. Main purpose is to save stack depth by doing the bulk of the work
3870  * in a function that doesn't call btrfs_search_slot
3871  *
3872  * @root:       root we are inserting items to
3873  * @path:       points to the leaf/slot where we are going to insert new items
3874  * @batch:      information about the batch of items to insert
3875  */
3876 static void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
3877                                    const struct btrfs_item_batch *batch)
3878 {
3879         struct btrfs_fs_info *fs_info = root->fs_info;
3880         int i;
3881         u32 nritems;
3882         unsigned int data_end;
3883         struct btrfs_disk_key disk_key;
3884         struct extent_buffer *leaf;
3885         int slot;
3886         struct btrfs_map_token token;
3887         u32 total_size;
3888
3889         /*
3890          * Before anything else, update keys in the parent and other ancestors
3891          * if needed, then release the write locks on them, so that other tasks
3892          * can use them while we modify the leaf.
3893          */
3894         if (path->slots[0] == 0) {
3895                 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
3896                 fixup_low_keys(path, &disk_key, 1);
3897         }
3898         btrfs_unlock_up_safe(path, 1);
3899
3900         leaf = path->nodes[0];
3901         slot = path->slots[0];
3902
3903         nritems = btrfs_header_nritems(leaf);
3904         data_end = leaf_data_end(leaf);
3905         total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
3906
3907         if (btrfs_leaf_free_space(leaf) < total_size) {
3908                 btrfs_print_leaf(leaf);
3909                 btrfs_crit(fs_info, "not enough freespace need %u have %d",
3910                            total_size, btrfs_leaf_free_space(leaf));
3911                 BUG();
3912         }
3913
3914         btrfs_init_map_token(&token, leaf);
3915         if (slot != nritems) {
3916                 unsigned int old_data = btrfs_item_data_end(leaf, slot);
3917
3918                 if (old_data < data_end) {
3919                         btrfs_print_leaf(leaf);
3920                         btrfs_crit(fs_info,
3921                 "item at slot %d with data offset %u beyond data end of leaf %u",
3922                                    slot, old_data, data_end);
3923                         BUG();
3924                 }
3925                 /*
3926                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
3927                  */
3928                 /* first correct the data pointers */
3929                 for (i = slot; i < nritems; i++) {
3930                         u32 ioff;
3931
3932                         ioff = btrfs_token_item_offset(&token, i);
3933                         btrfs_set_token_item_offset(&token, i,
3934                                                        ioff - batch->total_data_size);
3935                 }
3936                 /* shift the items */
3937                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + batch->nr),
3938                               btrfs_item_nr_offset(slot),
3939                               (nritems - slot) * sizeof(struct btrfs_item));
3940
3941                 /* shift the data */
3942                 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3943                                       data_end - batch->total_data_size,
3944                                       BTRFS_LEAF_DATA_OFFSET + data_end,
3945                                       old_data - data_end);
3946                 data_end = old_data;
3947         }
3948
3949         /* setup the item for the new data */
3950         for (i = 0; i < batch->nr; i++) {
3951                 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
3952                 btrfs_set_item_key(leaf, &disk_key, slot + i);
3953                 data_end -= batch->data_sizes[i];
3954                 btrfs_set_token_item_offset(&token, slot + i, data_end);
3955                 btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
3956         }
3957
3958         btrfs_set_header_nritems(leaf, nritems + batch->nr);
3959         btrfs_mark_buffer_dirty(leaf);
3960
3961         if (btrfs_leaf_free_space(leaf) < 0) {
3962                 btrfs_print_leaf(leaf);
3963                 BUG();
3964         }
3965 }
3966
3967 /*
3968  * Insert a new item into a leaf.
3969  *
3970  * @root:      The root of the btree.
3971  * @path:      A path pointing to the target leaf and slot.
3972  * @key:       The key of the new item.
3973  * @data_size: The size of the data associated with the new key.
3974  */
3975 void btrfs_setup_item_for_insert(struct btrfs_root *root,
3976                                  struct btrfs_path *path,
3977                                  const struct btrfs_key *key,
3978                                  u32 data_size)
3979 {
3980         struct btrfs_item_batch batch;
3981
3982         batch.keys = key;
3983         batch.data_sizes = &data_size;
3984         batch.total_data_size = data_size;
3985         batch.nr = 1;
3986
3987         setup_items_for_insert(root, path, &batch);
3988 }
3989
3990 /*
3991  * Given a key and some data, insert items into the tree.
3992  * This does all the path init required, making room in the tree if needed.
3993  */
3994 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3995                             struct btrfs_root *root,
3996                             struct btrfs_path *path,
3997                             const struct btrfs_item_batch *batch)
3998 {
3999         int ret = 0;
4000         int slot;
4001         u32 total_size;
4002
4003         total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4004         ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4005         if (ret == 0)
4006                 return -EEXIST;
4007         if (ret < 0)
4008                 return ret;
4009
4010         slot = path->slots[0];
4011         BUG_ON(slot < 0);
4012
4013         setup_items_for_insert(root, path, batch);
4014         return 0;
4015 }
4016
4017 /*
4018  * Given a key and some data, insert an item into the tree.
4019  * This does all the path init required, making room in the tree if needed.
4020  */
4021 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4022                       const struct btrfs_key *cpu_key, void *data,
4023                       u32 data_size)
4024 {
4025         int ret = 0;
4026         struct btrfs_path *path;
4027         struct extent_buffer *leaf;
4028         unsigned long ptr;
4029
4030         path = btrfs_alloc_path();
4031         if (!path)
4032                 return -ENOMEM;
4033         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4034         if (!ret) {
4035                 leaf = path->nodes[0];
4036                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4037                 write_extent_buffer(leaf, data, ptr, data_size);
4038                 btrfs_mark_buffer_dirty(leaf);
4039         }
4040         btrfs_free_path(path);
4041         return ret;
4042 }
4043
4044 /*
4045  * This function duplicates an item, giving 'new_key' to the new item.
4046  * It guarantees both items live in the same tree leaf and the new item is
4047  * contiguous with the original item.
4048  *
4049  * This allows us to split a file extent in place, keeping a lock on the leaf
4050  * the entire time.
4051  */
4052 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4053                          struct btrfs_root *root,
4054                          struct btrfs_path *path,
4055                          const struct btrfs_key *new_key)
4056 {
4057         struct extent_buffer *leaf;
4058         int ret;
4059         u32 item_size;
4060
4061         leaf = path->nodes[0];
4062         item_size = btrfs_item_size(leaf, path->slots[0]);
4063         ret = setup_leaf_for_split(trans, root, path,
4064                                    item_size + sizeof(struct btrfs_item));
4065         if (ret)
4066                 return ret;
4067
4068         path->slots[0]++;
4069         btrfs_setup_item_for_insert(root, path, new_key, item_size);
4070         leaf = path->nodes[0];
4071         memcpy_extent_buffer(leaf,
4072                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4073                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4074                              item_size);
4075         return 0;
4076 }
4077
4078 /*
4079  * delete the pointer from a given node.
4080  *
4081  * the tree should have been previously balanced so the deletion does not
4082  * empty a node.
4083  */
4084 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4085                     int level, int slot)
4086 {
4087         struct extent_buffer *parent = path->nodes[level];
4088         u32 nritems;
4089         int ret;
4090
4091         nritems = btrfs_header_nritems(parent);
4092         if (slot != nritems - 1) {
4093                 if (level) {
4094                         ret = btrfs_tree_mod_log_insert_move(parent, slot,
4095                                         slot + 1, nritems - slot - 1);
4096                         BUG_ON(ret < 0);
4097                 }
4098                 memmove_extent_buffer(parent,
4099                               btrfs_node_key_ptr_offset(slot),
4100                               btrfs_node_key_ptr_offset(slot + 1),
4101                               sizeof(struct btrfs_key_ptr) *
4102                               (nritems - slot - 1));
4103         } else if (level) {
4104                 ret = btrfs_tree_mod_log_insert_key(parent, slot,
4105                                 BTRFS_MOD_LOG_KEY_REMOVE, GFP_NOFS);
4106                 BUG_ON(ret < 0);
4107         }
4108
4109         nritems--;
4110         btrfs_set_header_nritems(parent, nritems);
4111         if (nritems == 0 && parent == root->node) {
4112                 BUG_ON(btrfs_header_level(root->node) != 1);
4113                 /* just turn the root into a leaf and break */
4114                 btrfs_set_header_level(root->node, 0);
4115         } else if (slot == 0) {
4116                 struct btrfs_disk_key disk_key;
4117
4118                 btrfs_node_key(parent, &disk_key, 0);
4119                 fixup_low_keys(path, &disk_key, level + 1);
4120         }
4121         btrfs_mark_buffer_dirty(parent);
4122 }
4123
4124 /*
4125  * a helper function to delete the leaf pointed to by path->slots[1] and
4126  * path->nodes[1].
4127  *
4128  * This deletes the pointer in path->nodes[1] and frees the leaf
4129  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4130  *
4131  * The path must have already been setup for deleting the leaf, including
4132  * all the proper balancing.  path->nodes[1] must be locked.
4133  */
4134 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4135                                     struct btrfs_root *root,
4136                                     struct btrfs_path *path,
4137                                     struct extent_buffer *leaf)
4138 {
4139         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4140         del_ptr(root, path, 1, path->slots[1]);
4141
4142         /*
4143          * btrfs_free_extent is expensive, we want to make sure we
4144          * aren't holding any locks when we call it
4145          */
4146         btrfs_unlock_up_safe(path, 0);
4147
4148         root_sub_used(root, leaf->len);
4149
4150         atomic_inc(&leaf->refs);
4151         btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4152         free_extent_buffer_stale(leaf);
4153 }
4154 /*
4155  * delete the item at the leaf level in path.  If that empties
4156  * the leaf, remove it from the tree
4157  */
4158 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4159                     struct btrfs_path *path, int slot, int nr)
4160 {
4161         struct btrfs_fs_info *fs_info = root->fs_info;
4162         struct extent_buffer *leaf;
4163         int ret = 0;
4164         int wret;
4165         u32 nritems;
4166
4167         leaf = path->nodes[0];
4168         nritems = btrfs_header_nritems(leaf);
4169
4170         if (slot + nr != nritems) {
4171                 const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4172                 const int data_end = leaf_data_end(leaf);
4173                 struct btrfs_map_token token;
4174                 u32 dsize = 0;
4175                 int i;
4176
4177                 for (i = 0; i < nr; i++)
4178                         dsize += btrfs_item_size(leaf, slot + i);
4179
4180                 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4181                               data_end + dsize,
4182                               BTRFS_LEAF_DATA_OFFSET + data_end,
4183                               last_off - data_end);
4184
4185                 btrfs_init_map_token(&token, leaf);
4186                 for (i = slot + nr; i < nritems; i++) {
4187                         u32 ioff;
4188
4189                         ioff = btrfs_token_item_offset(&token, i);
4190                         btrfs_set_token_item_offset(&token, i, ioff + dsize);
4191                 }
4192
4193                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4194                               btrfs_item_nr_offset(slot + nr),
4195                               sizeof(struct btrfs_item) *
4196                               (nritems - slot - nr));
4197         }
4198         btrfs_set_header_nritems(leaf, nritems - nr);
4199         nritems -= nr;
4200
4201         /* delete the leaf if we've emptied it */
4202         if (nritems == 0) {
4203                 if (leaf == root->node) {
4204                         btrfs_set_header_level(leaf, 0);
4205                 } else {
4206                         btrfs_clean_tree_block(leaf);
4207                         btrfs_del_leaf(trans, root, path, leaf);
4208                 }
4209         } else {
4210                 int used = leaf_space_used(leaf, 0, nritems);
4211                 if (slot == 0) {
4212                         struct btrfs_disk_key disk_key;
4213
4214                         btrfs_item_key(leaf, &disk_key, 0);
4215                         fixup_low_keys(path, &disk_key, 1);
4216                 }
4217
4218                 /*
4219                  * Try to delete the leaf if it is mostly empty. We do this by
4220                  * trying to move all its items into its left and right neighbours.
4221                  * If we can't move all the items, then we don't delete it - it's
4222                  * not ideal, but future insertions might fill the leaf with more
4223                  * items, or items from other leaves might be moved later into our
4224                  * leaf due to deletions on those leaves.
4225                  */
4226                 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4227                         u32 min_push_space;
4228
4229                         /* push_leaf_left fixes the path.
4230                          * make sure the path still points to our leaf
4231                          * for possible call to del_ptr below
4232                          */
4233                         slot = path->slots[1];
4234                         atomic_inc(&leaf->refs);
4235                         /*
4236                          * We want to be able to at least push one item to the
4237                          * left neighbour leaf, and that's the first item.
4238                          */
4239                         min_push_space = sizeof(struct btrfs_item) +
4240                                 btrfs_item_size(leaf, 0);
4241                         wret = push_leaf_left(trans, root, path, 0,
4242                                               min_push_space, 1, (u32)-1);
4243                         if (wret < 0 && wret != -ENOSPC)
4244                                 ret = wret;
4245
4246                         if (path->nodes[0] == leaf &&
4247                             btrfs_header_nritems(leaf)) {
4248                                 /*
4249                                  * If we were not able to push all items from our
4250                                  * leaf to its left neighbour, then attempt to
4251                                  * either push all the remaining items to the
4252                                  * right neighbour or none. There's no advantage
4253                                  * in pushing only some items, instead of all, as
4254                                  * it's pointless to end up with a leaf having
4255                                  * too few items while the neighbours can be full
4256                                  * or nearly full.
4257                                  */
4258                                 nritems = btrfs_header_nritems(leaf);
4259                                 min_push_space = leaf_space_used(leaf, 0, nritems);
4260                                 wret = push_leaf_right(trans, root, path, 0,
4261                                                        min_push_space, 1, 0);
4262                                 if (wret < 0 && wret != -ENOSPC)
4263                                         ret = wret;
4264                         }
4265
4266                         if (btrfs_header_nritems(leaf) == 0) {
4267                                 path->slots[1] = slot;
4268                                 btrfs_del_leaf(trans, root, path, leaf);
4269                                 free_extent_buffer(leaf);
4270                                 ret = 0;
4271                         } else {
4272                                 /* if we're still in the path, make sure
4273                                  * we're dirty.  Otherwise, one of the
4274                                  * push_leaf functions must have already
4275                                  * dirtied this buffer
4276                                  */
4277                                 if (path->nodes[0] == leaf)
4278                                         btrfs_mark_buffer_dirty(leaf);
4279                                 free_extent_buffer(leaf);
4280                         }
4281                 } else {
4282                         btrfs_mark_buffer_dirty(leaf);
4283                 }
4284         }
4285         return ret;
4286 }
4287
4288 /*
4289  * search the tree again to find a leaf with lesser keys
4290  * returns 0 if it found something or 1 if there are no lesser leaves.
4291  * returns < 0 on io errors.
4292  *
4293  * This may release the path, and so you may lose any locks held at the
4294  * time you call it.
4295  */
4296 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4297 {
4298         struct btrfs_key key;
4299         struct btrfs_disk_key found_key;
4300         int ret;
4301
4302         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4303
4304         if (key.offset > 0) {
4305                 key.offset--;
4306         } else if (key.type > 0) {
4307                 key.type--;
4308                 key.offset = (u64)-1;
4309         } else if (key.objectid > 0) {
4310                 key.objectid--;
4311                 key.type = (u8)-1;
4312                 key.offset = (u64)-1;
4313         } else {
4314                 return 1;
4315         }
4316
4317         btrfs_release_path(path);
4318         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4319         if (ret < 0)
4320                 return ret;
4321         btrfs_item_key(path->nodes[0], &found_key, 0);
4322         ret = comp_keys(&found_key, &key);
4323         /*
4324          * We might have had an item with the previous key in the tree right
4325          * before we released our path. And after we released our path, that
4326          * item might have been pushed to the first slot (0) of the leaf we
4327          * were holding due to a tree balance. Alternatively, an item with the
4328          * previous key can exist as the only element of a leaf (big fat item).
4329          * Therefore account for these 2 cases, so that our callers (like
4330          * btrfs_previous_item) don't miss an existing item with a key matching
4331          * the previous key we computed above.
4332          */
4333         if (ret <= 0)
4334                 return 0;
4335         return 1;
4336 }
4337
4338 /*
4339  * A helper function to walk down the tree starting at min_key, and looking
4340  * for nodes or leaves that are have a minimum transaction id.
4341  * This is used by the btree defrag code, and tree logging
4342  *
4343  * This does not cow, but it does stuff the starting key it finds back
4344  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4345  * key and get a writable path.
4346  *
4347  * This honors path->lowest_level to prevent descent past a given level
4348  * of the tree.
4349  *
4350  * min_trans indicates the oldest transaction that you are interested
4351  * in walking through.  Any nodes or leaves older than min_trans are
4352  * skipped over (without reading them).
4353  *
4354  * returns zero if something useful was found, < 0 on error and 1 if there
4355  * was nothing in the tree that matched the search criteria.
4356  */
4357 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4358                          struct btrfs_path *path,
4359                          u64 min_trans)
4360 {
4361         struct extent_buffer *cur;
4362         struct btrfs_key found_key;
4363         int slot;
4364         int sret;
4365         u32 nritems;
4366         int level;
4367         int ret = 1;
4368         int keep_locks = path->keep_locks;
4369
4370         path->keep_locks = 1;
4371 again:
4372         cur = btrfs_read_lock_root_node(root);
4373         level = btrfs_header_level(cur);
4374         WARN_ON(path->nodes[level]);
4375         path->nodes[level] = cur;
4376         path->locks[level] = BTRFS_READ_LOCK;
4377
4378         if (btrfs_header_generation(cur) < min_trans) {
4379                 ret = 1;
4380                 goto out;
4381         }
4382         while (1) {
4383                 nritems = btrfs_header_nritems(cur);
4384                 level = btrfs_header_level(cur);
4385                 sret = btrfs_bin_search(cur, min_key, &slot);
4386                 if (sret < 0) {
4387                         ret = sret;
4388                         goto out;
4389                 }
4390
4391                 /* at the lowest level, we're done, setup the path and exit */
4392                 if (level == path->lowest_level) {
4393                         if (slot >= nritems)
4394                                 goto find_next_key;
4395                         ret = 0;
4396                         path->slots[level] = slot;
4397                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4398                         goto out;
4399                 }
4400                 if (sret && slot > 0)
4401                         slot--;
4402                 /*
4403                  * check this node pointer against the min_trans parameters.
4404                  * If it is too old, skip to the next one.
4405                  */
4406                 while (slot < nritems) {
4407                         u64 gen;
4408
4409                         gen = btrfs_node_ptr_generation(cur, slot);
4410                         if (gen < min_trans) {
4411                                 slot++;
4412                                 continue;
4413                         }
4414                         break;
4415                 }
4416 find_next_key:
4417                 /*
4418                  * we didn't find a candidate key in this node, walk forward
4419                  * and find another one
4420                  */
4421                 if (slot >= nritems) {
4422                         path->slots[level] = slot;
4423                         sret = btrfs_find_next_key(root, path, min_key, level,
4424                                                   min_trans);
4425                         if (sret == 0) {
4426                                 btrfs_release_path(path);
4427                                 goto again;
4428                         } else {
4429                                 goto out;
4430                         }
4431                 }
4432                 /* save our key for returning back */
4433                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4434                 path->slots[level] = slot;
4435                 if (level == path->lowest_level) {
4436                         ret = 0;
4437                         goto out;
4438                 }
4439                 cur = btrfs_read_node_slot(cur, slot);
4440                 if (IS_ERR(cur)) {
4441                         ret = PTR_ERR(cur);
4442                         goto out;
4443                 }
4444
4445                 btrfs_tree_read_lock(cur);
4446
4447                 path->locks[level - 1] = BTRFS_READ_LOCK;
4448                 path->nodes[level - 1] = cur;
4449                 unlock_up(path, level, 1, 0, NULL);
4450         }
4451 out:
4452         path->keep_locks = keep_locks;
4453         if (ret == 0) {
4454                 btrfs_unlock_up_safe(path, path->lowest_level + 1);
4455                 memcpy(min_key, &found_key, sizeof(found_key));
4456         }
4457         return ret;
4458 }
4459
4460 /*
4461  * this is similar to btrfs_next_leaf, but does not try to preserve
4462  * and fixup the path.  It looks for and returns the next key in the
4463  * tree based on the current path and the min_trans parameters.
4464  *
4465  * 0 is returned if another key is found, < 0 if there are any errors
4466  * and 1 is returned if there are no higher keys in the tree
4467  *
4468  * path->keep_locks should be set to 1 on the search made before
4469  * calling this function.
4470  */
4471 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4472                         struct btrfs_key *key, int level, u64 min_trans)
4473 {
4474         int slot;
4475         struct extent_buffer *c;
4476
4477         WARN_ON(!path->keep_locks && !path->skip_locking);
4478         while (level < BTRFS_MAX_LEVEL) {
4479                 if (!path->nodes[level])
4480                         return 1;
4481
4482                 slot = path->slots[level] + 1;
4483                 c = path->nodes[level];
4484 next:
4485                 if (slot >= btrfs_header_nritems(c)) {
4486                         int ret;
4487                         int orig_lowest;
4488                         struct btrfs_key cur_key;
4489                         if (level + 1 >= BTRFS_MAX_LEVEL ||
4490                             !path->nodes[level + 1])
4491                                 return 1;
4492
4493                         if (path->locks[level + 1] || path->skip_locking) {
4494                                 level++;
4495                                 continue;
4496                         }
4497
4498                         slot = btrfs_header_nritems(c) - 1;
4499                         if (level == 0)
4500                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
4501                         else
4502                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
4503
4504                         orig_lowest = path->lowest_level;
4505                         btrfs_release_path(path);
4506                         path->lowest_level = level;
4507                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
4508                                                 0, 0);
4509                         path->lowest_level = orig_lowest;
4510                         if (ret < 0)
4511                                 return ret;
4512
4513                         c = path->nodes[level];
4514                         slot = path->slots[level];
4515                         if (ret == 0)
4516                                 slot++;
4517                         goto next;
4518                 }
4519
4520                 if (level == 0)
4521                         btrfs_item_key_to_cpu(c, key, slot);
4522                 else {
4523                         u64 gen = btrfs_node_ptr_generation(c, slot);
4524
4525                         if (gen < min_trans) {
4526                                 slot++;
4527                                 goto next;
4528                         }
4529                         btrfs_node_key_to_cpu(c, key, slot);
4530                 }
4531                 return 0;
4532         }
4533         return 1;
4534 }
4535
4536 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4537                         u64 time_seq)
4538 {
4539         int slot;
4540         int level;
4541         struct extent_buffer *c;
4542         struct extent_buffer *next;
4543         struct btrfs_fs_info *fs_info = root->fs_info;
4544         struct btrfs_key key;
4545         bool need_commit_sem = false;
4546         u32 nritems;
4547         int ret;
4548         int i;
4549
4550         nritems = btrfs_header_nritems(path->nodes[0]);
4551         if (nritems == 0)
4552                 return 1;
4553
4554         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4555 again:
4556         level = 1;
4557         next = NULL;
4558         btrfs_release_path(path);
4559
4560         path->keep_locks = 1;
4561
4562         if (time_seq) {
4563                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
4564         } else {
4565                 if (path->need_commit_sem) {
4566                         path->need_commit_sem = 0;
4567                         need_commit_sem = true;
4568                         down_read(&fs_info->commit_root_sem);
4569                 }
4570                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4571         }
4572         path->keep_locks = 0;
4573
4574         if (ret < 0)
4575                 goto done;
4576
4577         nritems = btrfs_header_nritems(path->nodes[0]);
4578         /*
4579          * by releasing the path above we dropped all our locks.  A balance
4580          * could have added more items next to the key that used to be
4581          * at the very end of the block.  So, check again here and
4582          * advance the path if there are now more items available.
4583          */
4584         if (nritems > 0 && path->slots[0] < nritems - 1) {
4585                 if (ret == 0)
4586                         path->slots[0]++;
4587                 ret = 0;
4588                 goto done;
4589         }
4590         /*
4591          * So the above check misses one case:
4592          * - after releasing the path above, someone has removed the item that
4593          *   used to be at the very end of the block, and balance between leafs
4594          *   gets another one with bigger key.offset to replace it.
4595          *
4596          * This one should be returned as well, or we can get leaf corruption
4597          * later(esp. in __btrfs_drop_extents()).
4598          *
4599          * And a bit more explanation about this check,
4600          * with ret > 0, the key isn't found, the path points to the slot
4601          * where it should be inserted, so the path->slots[0] item must be the
4602          * bigger one.
4603          */
4604         if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4605                 ret = 0;
4606                 goto done;
4607         }
4608
4609         while (level < BTRFS_MAX_LEVEL) {
4610                 if (!path->nodes[level]) {
4611                         ret = 1;
4612                         goto done;
4613                 }
4614
4615                 slot = path->slots[level] + 1;
4616                 c = path->nodes[level];
4617                 if (slot >= btrfs_header_nritems(c)) {
4618                         level++;
4619                         if (level == BTRFS_MAX_LEVEL) {
4620                                 ret = 1;
4621                                 goto done;
4622                         }
4623                         continue;
4624                 }
4625
4626
4627                 /*
4628                  * Our current level is where we're going to start from, and to
4629                  * make sure lockdep doesn't complain we need to drop our locks
4630                  * and nodes from 0 to our current level.
4631                  */
4632                 for (i = 0; i < level; i++) {
4633                         if (path->locks[level]) {
4634                                 btrfs_tree_read_unlock(path->nodes[i]);
4635                                 path->locks[i] = 0;
4636                         }
4637                         free_extent_buffer(path->nodes[i]);
4638                         path->nodes[i] = NULL;
4639                 }
4640
4641                 next = c;
4642                 ret = read_block_for_search(root, path, &next, level,
4643                                             slot, &key);
4644                 if (ret == -EAGAIN)
4645                         goto again;
4646
4647                 if (ret < 0) {
4648                         btrfs_release_path(path);
4649                         goto done;
4650                 }
4651
4652                 if (!path->skip_locking) {
4653                         ret = btrfs_try_tree_read_lock(next);
4654                         if (!ret && time_seq) {
4655                                 /*
4656                                  * If we don't get the lock, we may be racing
4657                                  * with push_leaf_left, holding that lock while
4658                                  * itself waiting for the leaf we've currently
4659                                  * locked. To solve this situation, we give up
4660                                  * on our lock and cycle.
4661                                  */
4662                                 free_extent_buffer(next);
4663                                 btrfs_release_path(path);
4664                                 cond_resched();
4665                                 goto again;
4666                         }
4667                         if (!ret)
4668                                 btrfs_tree_read_lock(next);
4669                 }
4670                 break;
4671         }
4672         path->slots[level] = slot;
4673         while (1) {
4674                 level--;
4675                 path->nodes[level] = next;
4676                 path->slots[level] = 0;
4677                 if (!path->skip_locking)
4678                         path->locks[level] = BTRFS_READ_LOCK;
4679                 if (!level)
4680                         break;
4681
4682                 ret = read_block_for_search(root, path, &next, level,
4683                                             0, &key);
4684                 if (ret == -EAGAIN)
4685                         goto again;
4686
4687                 if (ret < 0) {
4688                         btrfs_release_path(path);
4689                         goto done;
4690                 }
4691
4692                 if (!path->skip_locking)
4693                         btrfs_tree_read_lock(next);
4694         }
4695         ret = 0;
4696 done:
4697         unlock_up(path, 0, 1, 0, NULL);
4698         if (need_commit_sem) {
4699                 int ret2;
4700
4701                 path->need_commit_sem = 1;
4702                 ret2 = finish_need_commit_sem_search(path);
4703                 up_read(&fs_info->commit_root_sem);
4704                 if (ret2)
4705                         ret = ret2;
4706         }
4707
4708         return ret;
4709 }
4710
4711 /*
4712  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4713  * searching until it gets past min_objectid or finds an item of 'type'
4714  *
4715  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4716  */
4717 int btrfs_previous_item(struct btrfs_root *root,
4718                         struct btrfs_path *path, u64 min_objectid,
4719                         int type)
4720 {
4721         struct btrfs_key found_key;
4722         struct extent_buffer *leaf;
4723         u32 nritems;
4724         int ret;
4725
4726         while (1) {
4727                 if (path->slots[0] == 0) {
4728                         ret = btrfs_prev_leaf(root, path);
4729                         if (ret != 0)
4730                                 return ret;
4731                 } else {
4732                         path->slots[0]--;
4733                 }
4734                 leaf = path->nodes[0];
4735                 nritems = btrfs_header_nritems(leaf);
4736                 if (nritems == 0)
4737                         return 1;
4738                 if (path->slots[0] == nritems)
4739                         path->slots[0]--;
4740
4741                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4742                 if (found_key.objectid < min_objectid)
4743                         break;
4744                 if (found_key.type == type)
4745                         return 0;
4746                 if (found_key.objectid == min_objectid &&
4747                     found_key.type < type)
4748                         break;
4749         }
4750         return 1;
4751 }
4752
4753 /*
4754  * search in extent tree to find a previous Metadata/Data extent item with
4755  * min objecitd.
4756  *
4757  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4758  */
4759 int btrfs_previous_extent_item(struct btrfs_root *root,
4760                         struct btrfs_path *path, u64 min_objectid)
4761 {
4762         struct btrfs_key found_key;
4763         struct extent_buffer *leaf;
4764         u32 nritems;
4765         int ret;
4766
4767         while (1) {
4768                 if (path->slots[0] == 0) {
4769                         ret = btrfs_prev_leaf(root, path);
4770                         if (ret != 0)
4771                                 return ret;
4772                 } else {
4773                         path->slots[0]--;
4774                 }
4775                 leaf = path->nodes[0];
4776                 nritems = btrfs_header_nritems(leaf);
4777                 if (nritems == 0)
4778                         return 1;
4779                 if (path->slots[0] == nritems)
4780                         path->slots[0]--;
4781
4782                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4783                 if (found_key.objectid < min_objectid)
4784                         break;
4785                 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
4786                     found_key.type == BTRFS_METADATA_ITEM_KEY)
4787                         return 0;
4788                 if (found_key.objectid == min_objectid &&
4789                     found_key.type < BTRFS_EXTENT_ITEM_KEY)
4790                         break;
4791         }
4792         return 1;
4793 }