Merge tag 'kbuild-v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy...
[linux-block.git] / fs / btrfs / ctree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include <linux/error-injection.h>
11 #include "messages.h"
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "print-tree.h"
16 #include "locking.h"
17 #include "volumes.h"
18 #include "qgroup.h"
19 #include "tree-mod-log.h"
20 #include "tree-checker.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 #include "relocation.h"
25 #include "file-item.h"
26
27 static struct kmem_cache *btrfs_path_cachep;
28
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30                       *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32                       const struct btrfs_key *ins_key, struct btrfs_path *path,
33                       int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35                           struct extent_buffer *dst,
36                           struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38                               struct extent_buffer *dst_buf,
39                               struct extent_buffer *src_buf);
40
41 static const struct btrfs_csums {
42         u16             size;
43         const char      name[10];
44         const char      driver[12];
45 } btrfs_csums[] = {
46         [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
47         [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
48         [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
49         [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
50                                      .driver = "blake2b-256" },
51 };
52
53 /*
54  * The leaf data grows from end-to-front in the node.  this returns the address
55  * of the start of the last item, which is the stop of the leaf data stack.
56  */
57 static unsigned int leaf_data_end(const struct extent_buffer *leaf)
58 {
59         u32 nr = btrfs_header_nritems(leaf);
60
61         if (nr == 0)
62                 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
63         return btrfs_item_offset(leaf, nr - 1);
64 }
65
66 /*
67  * Move data in a @leaf (using memmove, safe for overlapping ranges).
68  *
69  * @leaf:       leaf that we're doing a memmove on
70  * @dst_offset: item data offset we're moving to
71  * @src_offset: item data offset were' moving from
72  * @len:        length of the data we're moving
73  *
74  * Wrapper around memmove_extent_buffer() that takes into account the header on
75  * the leaf.  The btrfs_item offset's start directly after the header, so we
76  * have to adjust any offsets to account for the header in the leaf.  This
77  * handles that math to simplify the callers.
78  */
79 static inline void memmove_leaf_data(const struct extent_buffer *leaf,
80                                      unsigned long dst_offset,
81                                      unsigned long src_offset,
82                                      unsigned long len)
83 {
84         memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
85                               btrfs_item_nr_offset(leaf, 0) + src_offset, len);
86 }
87
88 /*
89  * Copy item data from @src into @dst at the given @offset.
90  *
91  * @dst:        destination leaf that we're copying into
92  * @src:        source leaf that we're copying from
93  * @dst_offset: item data offset we're copying to
94  * @src_offset: item data offset were' copying from
95  * @len:        length of the data we're copying
96  *
97  * Wrapper around copy_extent_buffer() that takes into account the header on
98  * the leaf.  The btrfs_item offset's start directly after the header, so we
99  * have to adjust any offsets to account for the header in the leaf.  This
100  * handles that math to simplify the callers.
101  */
102 static inline void copy_leaf_data(const struct extent_buffer *dst,
103                                   const struct extent_buffer *src,
104                                   unsigned long dst_offset,
105                                   unsigned long src_offset, unsigned long len)
106 {
107         copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
108                            btrfs_item_nr_offset(src, 0) + src_offset, len);
109 }
110
111 /*
112  * Move items in a @leaf (using memmove).
113  *
114  * @dst:        destination leaf for the items
115  * @dst_item:   the item nr we're copying into
116  * @src_item:   the item nr we're copying from
117  * @nr_items:   the number of items to copy
118  *
119  * Wrapper around memmove_extent_buffer() that does the math to get the
120  * appropriate offsets into the leaf from the item numbers.
121  */
122 static inline void memmove_leaf_items(const struct extent_buffer *leaf,
123                                       int dst_item, int src_item, int nr_items)
124 {
125         memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
126                               btrfs_item_nr_offset(leaf, src_item),
127                               nr_items * sizeof(struct btrfs_item));
128 }
129
130 /*
131  * Copy items from @src into @dst at the given @offset.
132  *
133  * @dst:        destination leaf for the items
134  * @src:        source leaf for the items
135  * @dst_item:   the item nr we're copying into
136  * @src_item:   the item nr we're copying from
137  * @nr_items:   the number of items to copy
138  *
139  * Wrapper around copy_extent_buffer() that does the math to get the
140  * appropriate offsets into the leaf from the item numbers.
141  */
142 static inline void copy_leaf_items(const struct extent_buffer *dst,
143                                    const struct extent_buffer *src,
144                                    int dst_item, int src_item, int nr_items)
145 {
146         copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
147                               btrfs_item_nr_offset(src, src_item),
148                               nr_items * sizeof(struct btrfs_item));
149 }
150
151 /* This exists for btrfs-progs usages. */
152 u16 btrfs_csum_type_size(u16 type)
153 {
154         return btrfs_csums[type].size;
155 }
156
157 int btrfs_super_csum_size(const struct btrfs_super_block *s)
158 {
159         u16 t = btrfs_super_csum_type(s);
160         /*
161          * csum type is validated at mount time
162          */
163         return btrfs_csum_type_size(t);
164 }
165
166 const char *btrfs_super_csum_name(u16 csum_type)
167 {
168         /* csum type is validated at mount time */
169         return btrfs_csums[csum_type].name;
170 }
171
172 /*
173  * Return driver name if defined, otherwise the name that's also a valid driver
174  * name
175  */
176 const char *btrfs_super_csum_driver(u16 csum_type)
177 {
178         /* csum type is validated at mount time */
179         return btrfs_csums[csum_type].driver[0] ?
180                 btrfs_csums[csum_type].driver :
181                 btrfs_csums[csum_type].name;
182 }
183
184 size_t __attribute_const__ btrfs_get_num_csums(void)
185 {
186         return ARRAY_SIZE(btrfs_csums);
187 }
188
189 struct btrfs_path *btrfs_alloc_path(void)
190 {
191         might_sleep();
192
193         return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
194 }
195
196 /* this also releases the path */
197 void btrfs_free_path(struct btrfs_path *p)
198 {
199         if (!p)
200                 return;
201         btrfs_release_path(p);
202         kmem_cache_free(btrfs_path_cachep, p);
203 }
204
205 /*
206  * path release drops references on the extent buffers in the path
207  * and it drops any locks held by this path
208  *
209  * It is safe to call this on paths that no locks or extent buffers held.
210  */
211 noinline void btrfs_release_path(struct btrfs_path *p)
212 {
213         int i;
214
215         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
216                 p->slots[i] = 0;
217                 if (!p->nodes[i])
218                         continue;
219                 if (p->locks[i]) {
220                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
221                         p->locks[i] = 0;
222                 }
223                 free_extent_buffer(p->nodes[i]);
224                 p->nodes[i] = NULL;
225         }
226 }
227
228 /*
229  * We want the transaction abort to print stack trace only for errors where the
230  * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
231  * caused by external factors.
232  */
233 bool __cold abort_should_print_stack(int errno)
234 {
235         switch (errno) {
236         case -EIO:
237         case -EROFS:
238         case -ENOMEM:
239                 return false;
240         }
241         return true;
242 }
243
244 /*
245  * safely gets a reference on the root node of a tree.  A lock
246  * is not taken, so a concurrent writer may put a different node
247  * at the root of the tree.  See btrfs_lock_root_node for the
248  * looping required.
249  *
250  * The extent buffer returned by this has a reference taken, so
251  * it won't disappear.  It may stop being the root of the tree
252  * at any time because there are no locks held.
253  */
254 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
255 {
256         struct extent_buffer *eb;
257
258         while (1) {
259                 rcu_read_lock();
260                 eb = rcu_dereference(root->node);
261
262                 /*
263                  * RCU really hurts here, we could free up the root node because
264                  * it was COWed but we may not get the new root node yet so do
265                  * the inc_not_zero dance and if it doesn't work then
266                  * synchronize_rcu and try again.
267                  */
268                 if (atomic_inc_not_zero(&eb->refs)) {
269                         rcu_read_unlock();
270                         break;
271                 }
272                 rcu_read_unlock();
273                 synchronize_rcu();
274         }
275         return eb;
276 }
277
278 /*
279  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
280  * just get put onto a simple dirty list.  Transaction walks this list to make
281  * sure they get properly updated on disk.
282  */
283 static void add_root_to_dirty_list(struct btrfs_root *root)
284 {
285         struct btrfs_fs_info *fs_info = root->fs_info;
286
287         if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
288             !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
289                 return;
290
291         spin_lock(&fs_info->trans_lock);
292         if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
293                 /* Want the extent tree to be the last on the list */
294                 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
295                         list_move_tail(&root->dirty_list,
296                                        &fs_info->dirty_cowonly_roots);
297                 else
298                         list_move(&root->dirty_list,
299                                   &fs_info->dirty_cowonly_roots);
300         }
301         spin_unlock(&fs_info->trans_lock);
302 }
303
304 /*
305  * used by snapshot creation to make a copy of a root for a tree with
306  * a given objectid.  The buffer with the new root node is returned in
307  * cow_ret, and this func returns zero on success or a negative error code.
308  */
309 int btrfs_copy_root(struct btrfs_trans_handle *trans,
310                       struct btrfs_root *root,
311                       struct extent_buffer *buf,
312                       struct extent_buffer **cow_ret, u64 new_root_objectid)
313 {
314         struct btrfs_fs_info *fs_info = root->fs_info;
315         struct extent_buffer *cow;
316         int ret = 0;
317         int level;
318         struct btrfs_disk_key disk_key;
319
320         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
321                 trans->transid != fs_info->running_transaction->transid);
322         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
323                 trans->transid != root->last_trans);
324
325         level = btrfs_header_level(buf);
326         if (level == 0)
327                 btrfs_item_key(buf, &disk_key, 0);
328         else
329                 btrfs_node_key(buf, &disk_key, 0);
330
331         cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
332                                      &disk_key, level, buf->start, 0,
333                                      BTRFS_NESTING_NEW_ROOT);
334         if (IS_ERR(cow))
335                 return PTR_ERR(cow);
336
337         copy_extent_buffer_full(cow, buf);
338         btrfs_set_header_bytenr(cow, cow->start);
339         btrfs_set_header_generation(cow, trans->transid);
340         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
341         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
342                                      BTRFS_HEADER_FLAG_RELOC);
343         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
344                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
345         else
346                 btrfs_set_header_owner(cow, new_root_objectid);
347
348         write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
349
350         WARN_ON(btrfs_header_generation(buf) > trans->transid);
351         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
352                 ret = btrfs_inc_ref(trans, root, cow, 1);
353         else
354                 ret = btrfs_inc_ref(trans, root, cow, 0);
355         if (ret) {
356                 btrfs_tree_unlock(cow);
357                 free_extent_buffer(cow);
358                 btrfs_abort_transaction(trans, ret);
359                 return ret;
360         }
361
362         btrfs_mark_buffer_dirty(cow);
363         *cow_ret = cow;
364         return 0;
365 }
366
367 /*
368  * check if the tree block can be shared by multiple trees
369  */
370 int btrfs_block_can_be_shared(struct btrfs_root *root,
371                               struct extent_buffer *buf)
372 {
373         /*
374          * Tree blocks not in shareable trees and tree roots are never shared.
375          * If a block was allocated after the last snapshot and the block was
376          * not allocated by tree relocation, we know the block is not shared.
377          */
378         if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
379             buf != root->node && buf != root->commit_root &&
380             (btrfs_header_generation(buf) <=
381              btrfs_root_last_snapshot(&root->root_item) ||
382              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
383                 return 1;
384
385         return 0;
386 }
387
388 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
389                                        struct btrfs_root *root,
390                                        struct extent_buffer *buf,
391                                        struct extent_buffer *cow,
392                                        int *last_ref)
393 {
394         struct btrfs_fs_info *fs_info = root->fs_info;
395         u64 refs;
396         u64 owner;
397         u64 flags;
398         u64 new_flags = 0;
399         int ret;
400
401         /*
402          * Backrefs update rules:
403          *
404          * Always use full backrefs for extent pointers in tree block
405          * allocated by tree relocation.
406          *
407          * If a shared tree block is no longer referenced by its owner
408          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
409          * use full backrefs for extent pointers in tree block.
410          *
411          * If a tree block is been relocating
412          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
413          * use full backrefs for extent pointers in tree block.
414          * The reason for this is some operations (such as drop tree)
415          * are only allowed for blocks use full backrefs.
416          */
417
418         if (btrfs_block_can_be_shared(root, buf)) {
419                 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
420                                                btrfs_header_level(buf), 1,
421                                                &refs, &flags);
422                 if (ret)
423                         return ret;
424                 if (unlikely(refs == 0)) {
425                         btrfs_crit(fs_info,
426                 "found 0 references for tree block at bytenr %llu level %d root %llu",
427                                    buf->start, btrfs_header_level(buf),
428                                    btrfs_root_id(root));
429                         ret = -EUCLEAN;
430                         btrfs_abort_transaction(trans, ret);
431                         return ret;
432                 }
433         } else {
434                 refs = 1;
435                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
436                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
437                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
438                 else
439                         flags = 0;
440         }
441
442         owner = btrfs_header_owner(buf);
443         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
444                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
445
446         if (refs > 1) {
447                 if ((owner == root->root_key.objectid ||
448                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
449                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
450                         ret = btrfs_inc_ref(trans, root, buf, 1);
451                         if (ret)
452                                 return ret;
453
454                         if (root->root_key.objectid ==
455                             BTRFS_TREE_RELOC_OBJECTID) {
456                                 ret = btrfs_dec_ref(trans, root, buf, 0);
457                                 if (ret)
458                                         return ret;
459                                 ret = btrfs_inc_ref(trans, root, cow, 1);
460                                 if (ret)
461                                         return ret;
462                         }
463                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
464                 } else {
465
466                         if (root->root_key.objectid ==
467                             BTRFS_TREE_RELOC_OBJECTID)
468                                 ret = btrfs_inc_ref(trans, root, cow, 1);
469                         else
470                                 ret = btrfs_inc_ref(trans, root, cow, 0);
471                         if (ret)
472                                 return ret;
473                 }
474                 if (new_flags != 0) {
475                         ret = btrfs_set_disk_extent_flags(trans, buf, new_flags);
476                         if (ret)
477                                 return ret;
478                 }
479         } else {
480                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
481                         if (root->root_key.objectid ==
482                             BTRFS_TREE_RELOC_OBJECTID)
483                                 ret = btrfs_inc_ref(trans, root, cow, 1);
484                         else
485                                 ret = btrfs_inc_ref(trans, root, cow, 0);
486                         if (ret)
487                                 return ret;
488                         ret = btrfs_dec_ref(trans, root, buf, 1);
489                         if (ret)
490                                 return ret;
491                 }
492                 btrfs_clear_buffer_dirty(trans, buf);
493                 *last_ref = 1;
494         }
495         return 0;
496 }
497
498 /*
499  * does the dirty work in cow of a single block.  The parent block (if
500  * supplied) is updated to point to the new cow copy.  The new buffer is marked
501  * dirty and returned locked.  If you modify the block it needs to be marked
502  * dirty again.
503  *
504  * search_start -- an allocation hint for the new block
505  *
506  * empty_size -- a hint that you plan on doing more cow.  This is the size in
507  * bytes the allocator should try to find free next to the block it returns.
508  * This is just a hint and may be ignored by the allocator.
509  */
510 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
511                              struct btrfs_root *root,
512                              struct extent_buffer *buf,
513                              struct extent_buffer *parent, int parent_slot,
514                              struct extent_buffer **cow_ret,
515                              u64 search_start, u64 empty_size,
516                              enum btrfs_lock_nesting nest)
517 {
518         struct btrfs_fs_info *fs_info = root->fs_info;
519         struct btrfs_disk_key disk_key;
520         struct extent_buffer *cow;
521         int level, ret;
522         int last_ref = 0;
523         int unlock_orig = 0;
524         u64 parent_start = 0;
525
526         if (*cow_ret == buf)
527                 unlock_orig = 1;
528
529         btrfs_assert_tree_write_locked(buf);
530
531         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
532                 trans->transid != fs_info->running_transaction->transid);
533         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
534                 trans->transid != root->last_trans);
535
536         level = btrfs_header_level(buf);
537
538         if (level == 0)
539                 btrfs_item_key(buf, &disk_key, 0);
540         else
541                 btrfs_node_key(buf, &disk_key, 0);
542
543         if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
544                 parent_start = parent->start;
545
546         cow = btrfs_alloc_tree_block(trans, root, parent_start,
547                                      root->root_key.objectid, &disk_key, level,
548                                      search_start, empty_size, nest);
549         if (IS_ERR(cow))
550                 return PTR_ERR(cow);
551
552         /* cow is set to blocking by btrfs_init_new_buffer */
553
554         copy_extent_buffer_full(cow, buf);
555         btrfs_set_header_bytenr(cow, cow->start);
556         btrfs_set_header_generation(cow, trans->transid);
557         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
558         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
559                                      BTRFS_HEADER_FLAG_RELOC);
560         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
561                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
562         else
563                 btrfs_set_header_owner(cow, root->root_key.objectid);
564
565         write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
566
567         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
568         if (ret) {
569                 btrfs_tree_unlock(cow);
570                 free_extent_buffer(cow);
571                 btrfs_abort_transaction(trans, ret);
572                 return ret;
573         }
574
575         if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
576                 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
577                 if (ret) {
578                         btrfs_tree_unlock(cow);
579                         free_extent_buffer(cow);
580                         btrfs_abort_transaction(trans, ret);
581                         return ret;
582                 }
583         }
584
585         if (buf == root->node) {
586                 WARN_ON(parent && parent != buf);
587                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
588                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
589                         parent_start = buf->start;
590
591                 ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
592                 if (ret < 0) {
593                         btrfs_tree_unlock(cow);
594                         free_extent_buffer(cow);
595                         btrfs_abort_transaction(trans, ret);
596                         return ret;
597                 }
598                 atomic_inc(&cow->refs);
599                 rcu_assign_pointer(root->node, cow);
600
601                 btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
602                                       parent_start, last_ref);
603                 free_extent_buffer(buf);
604                 add_root_to_dirty_list(root);
605         } else {
606                 WARN_ON(trans->transid != btrfs_header_generation(parent));
607                 ret = btrfs_tree_mod_log_insert_key(parent, parent_slot,
608                                                     BTRFS_MOD_LOG_KEY_REPLACE);
609                 if (ret) {
610                         btrfs_tree_unlock(cow);
611                         free_extent_buffer(cow);
612                         btrfs_abort_transaction(trans, ret);
613                         return ret;
614                 }
615                 btrfs_set_node_blockptr(parent, parent_slot,
616                                         cow->start);
617                 btrfs_set_node_ptr_generation(parent, parent_slot,
618                                               trans->transid);
619                 btrfs_mark_buffer_dirty(parent);
620                 if (last_ref) {
621                         ret = btrfs_tree_mod_log_free_eb(buf);
622                         if (ret) {
623                                 btrfs_tree_unlock(cow);
624                                 free_extent_buffer(cow);
625                                 btrfs_abort_transaction(trans, ret);
626                                 return ret;
627                         }
628                 }
629                 btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
630                                       parent_start, last_ref);
631         }
632         if (unlock_orig)
633                 btrfs_tree_unlock(buf);
634         free_extent_buffer_stale(buf);
635         btrfs_mark_buffer_dirty(cow);
636         *cow_ret = cow;
637         return 0;
638 }
639
640 static inline int should_cow_block(struct btrfs_trans_handle *trans,
641                                    struct btrfs_root *root,
642                                    struct extent_buffer *buf)
643 {
644         if (btrfs_is_testing(root->fs_info))
645                 return 0;
646
647         /* Ensure we can see the FORCE_COW bit */
648         smp_mb__before_atomic();
649
650         /*
651          * We do not need to cow a block if
652          * 1) this block is not created or changed in this transaction;
653          * 2) this block does not belong to TREE_RELOC tree;
654          * 3) the root is not forced COW.
655          *
656          * What is forced COW:
657          *    when we create snapshot during committing the transaction,
658          *    after we've finished copying src root, we must COW the shared
659          *    block to ensure the metadata consistency.
660          */
661         if (btrfs_header_generation(buf) == trans->transid &&
662             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
663             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
664               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
665             !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
666                 return 0;
667         return 1;
668 }
669
670 /*
671  * cows a single block, see __btrfs_cow_block for the real work.
672  * This version of it has extra checks so that a block isn't COWed more than
673  * once per transaction, as long as it hasn't been written yet
674  */
675 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
676                     struct btrfs_root *root, struct extent_buffer *buf,
677                     struct extent_buffer *parent, int parent_slot,
678                     struct extent_buffer **cow_ret,
679                     enum btrfs_lock_nesting nest)
680 {
681         struct btrfs_fs_info *fs_info = root->fs_info;
682         u64 search_start;
683         int ret;
684
685         if (test_bit(BTRFS_ROOT_DELETING, &root->state))
686                 btrfs_err(fs_info,
687                         "COW'ing blocks on a fs root that's being dropped");
688
689         if (trans->transaction != fs_info->running_transaction)
690                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
691                        trans->transid,
692                        fs_info->running_transaction->transid);
693
694         if (trans->transid != fs_info->generation)
695                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
696                        trans->transid, fs_info->generation);
697
698         if (!should_cow_block(trans, root, buf)) {
699                 *cow_ret = buf;
700                 return 0;
701         }
702
703         search_start = buf->start & ~((u64)SZ_1G - 1);
704
705         /*
706          * Before CoWing this block for later modification, check if it's
707          * the subtree root and do the delayed subtree trace if needed.
708          *
709          * Also We don't care about the error, as it's handled internally.
710          */
711         btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
712         ret = __btrfs_cow_block(trans, root, buf, parent,
713                                  parent_slot, cow_ret, search_start, 0, nest);
714
715         trace_btrfs_cow_block(root, buf, *cow_ret);
716
717         return ret;
718 }
719 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
720
721 /*
722  * helper function for defrag to decide if two blocks pointed to by a
723  * node are actually close by
724  */
725 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
726 {
727         if (blocknr < other && other - (blocknr + blocksize) < 32768)
728                 return 1;
729         if (blocknr > other && blocknr - (other + blocksize) < 32768)
730                 return 1;
731         return 0;
732 }
733
734 #ifdef __LITTLE_ENDIAN
735
736 /*
737  * Compare two keys, on little-endian the disk order is same as CPU order and
738  * we can avoid the conversion.
739  */
740 static int comp_keys(const struct btrfs_disk_key *disk_key,
741                      const struct btrfs_key *k2)
742 {
743         const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
744
745         return btrfs_comp_cpu_keys(k1, k2);
746 }
747
748 #else
749
750 /*
751  * compare two keys in a memcmp fashion
752  */
753 static int comp_keys(const struct btrfs_disk_key *disk,
754                      const struct btrfs_key *k2)
755 {
756         struct btrfs_key k1;
757
758         btrfs_disk_key_to_cpu(&k1, disk);
759
760         return btrfs_comp_cpu_keys(&k1, k2);
761 }
762 #endif
763
764 /*
765  * same as comp_keys only with two btrfs_key's
766  */
767 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
768 {
769         if (k1->objectid > k2->objectid)
770                 return 1;
771         if (k1->objectid < k2->objectid)
772                 return -1;
773         if (k1->type > k2->type)
774                 return 1;
775         if (k1->type < k2->type)
776                 return -1;
777         if (k1->offset > k2->offset)
778                 return 1;
779         if (k1->offset < k2->offset)
780                 return -1;
781         return 0;
782 }
783
784 /*
785  * this is used by the defrag code to go through all the
786  * leaves pointed to by a node and reallocate them so that
787  * disk order is close to key order
788  */
789 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
790                        struct btrfs_root *root, struct extent_buffer *parent,
791                        int start_slot, u64 *last_ret,
792                        struct btrfs_key *progress)
793 {
794         struct btrfs_fs_info *fs_info = root->fs_info;
795         struct extent_buffer *cur;
796         u64 blocknr;
797         u64 search_start = *last_ret;
798         u64 last_block = 0;
799         u64 other;
800         u32 parent_nritems;
801         int end_slot;
802         int i;
803         int err = 0;
804         u32 blocksize;
805         int progress_passed = 0;
806         struct btrfs_disk_key disk_key;
807
808         WARN_ON(trans->transaction != fs_info->running_transaction);
809         WARN_ON(trans->transid != fs_info->generation);
810
811         parent_nritems = btrfs_header_nritems(parent);
812         blocksize = fs_info->nodesize;
813         end_slot = parent_nritems - 1;
814
815         if (parent_nritems <= 1)
816                 return 0;
817
818         for (i = start_slot; i <= end_slot; i++) {
819                 int close = 1;
820
821                 btrfs_node_key(parent, &disk_key, i);
822                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
823                         continue;
824
825                 progress_passed = 1;
826                 blocknr = btrfs_node_blockptr(parent, i);
827                 if (last_block == 0)
828                         last_block = blocknr;
829
830                 if (i > 0) {
831                         other = btrfs_node_blockptr(parent, i - 1);
832                         close = close_blocks(blocknr, other, blocksize);
833                 }
834                 if (!close && i < end_slot) {
835                         other = btrfs_node_blockptr(parent, i + 1);
836                         close = close_blocks(blocknr, other, blocksize);
837                 }
838                 if (close) {
839                         last_block = blocknr;
840                         continue;
841                 }
842
843                 cur = btrfs_read_node_slot(parent, i);
844                 if (IS_ERR(cur))
845                         return PTR_ERR(cur);
846                 if (search_start == 0)
847                         search_start = last_block;
848
849                 btrfs_tree_lock(cur);
850                 err = __btrfs_cow_block(trans, root, cur, parent, i,
851                                         &cur, search_start,
852                                         min(16 * blocksize,
853                                             (end_slot - i) * blocksize),
854                                         BTRFS_NESTING_COW);
855                 if (err) {
856                         btrfs_tree_unlock(cur);
857                         free_extent_buffer(cur);
858                         break;
859                 }
860                 search_start = cur->start;
861                 last_block = cur->start;
862                 *last_ret = search_start;
863                 btrfs_tree_unlock(cur);
864                 free_extent_buffer(cur);
865         }
866         return err;
867 }
868
869 /*
870  * Search for a key in the given extent_buffer.
871  *
872  * The lower boundary for the search is specified by the slot number @first_slot.
873  * Use a value of 0 to search over the whole extent buffer. Works for both
874  * leaves and nodes.
875  *
876  * The slot in the extent buffer is returned via @slot. If the key exists in the
877  * extent buffer, then @slot will point to the slot where the key is, otherwise
878  * it points to the slot where you would insert the key.
879  *
880  * Slot may point to the total number of items (i.e. one position beyond the last
881  * key) if the key is bigger than the last key in the extent buffer.
882  */
883 int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
884                      const struct btrfs_key *key, int *slot)
885 {
886         unsigned long p;
887         int item_size;
888         /*
889          * Use unsigned types for the low and high slots, so that we get a more
890          * efficient division in the search loop below.
891          */
892         u32 low = first_slot;
893         u32 high = btrfs_header_nritems(eb);
894         int ret;
895         const int key_size = sizeof(struct btrfs_disk_key);
896
897         if (unlikely(low > high)) {
898                 btrfs_err(eb->fs_info,
899                  "%s: low (%u) > high (%u) eb %llu owner %llu level %d",
900                           __func__, low, high, eb->start,
901                           btrfs_header_owner(eb), btrfs_header_level(eb));
902                 return -EINVAL;
903         }
904
905         if (btrfs_header_level(eb) == 0) {
906                 p = offsetof(struct btrfs_leaf, items);
907                 item_size = sizeof(struct btrfs_item);
908         } else {
909                 p = offsetof(struct btrfs_node, ptrs);
910                 item_size = sizeof(struct btrfs_key_ptr);
911         }
912
913         while (low < high) {
914                 unsigned long oip;
915                 unsigned long offset;
916                 struct btrfs_disk_key *tmp;
917                 struct btrfs_disk_key unaligned;
918                 int mid;
919
920                 mid = (low + high) / 2;
921                 offset = p + mid * item_size;
922                 oip = offset_in_page(offset);
923
924                 if (oip + key_size <= PAGE_SIZE) {
925                         const unsigned long idx = get_eb_page_index(offset);
926                         char *kaddr = page_address(eb->pages[idx]);
927
928                         oip = get_eb_offset_in_page(eb, offset);
929                         tmp = (struct btrfs_disk_key *)(kaddr + oip);
930                 } else {
931                         read_extent_buffer(eb, &unaligned, offset, key_size);
932                         tmp = &unaligned;
933                 }
934
935                 ret = comp_keys(tmp, key);
936
937                 if (ret < 0)
938                         low = mid + 1;
939                 else if (ret > 0)
940                         high = mid;
941                 else {
942                         *slot = mid;
943                         return 0;
944                 }
945         }
946         *slot = low;
947         return 1;
948 }
949
950 static void root_add_used(struct btrfs_root *root, u32 size)
951 {
952         spin_lock(&root->accounting_lock);
953         btrfs_set_root_used(&root->root_item,
954                             btrfs_root_used(&root->root_item) + size);
955         spin_unlock(&root->accounting_lock);
956 }
957
958 static void root_sub_used(struct btrfs_root *root, u32 size)
959 {
960         spin_lock(&root->accounting_lock);
961         btrfs_set_root_used(&root->root_item,
962                             btrfs_root_used(&root->root_item) - size);
963         spin_unlock(&root->accounting_lock);
964 }
965
966 /* given a node and slot number, this reads the blocks it points to.  The
967  * extent buffer is returned with a reference taken (but unlocked).
968  */
969 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
970                                            int slot)
971 {
972         int level = btrfs_header_level(parent);
973         struct btrfs_tree_parent_check check = { 0 };
974         struct extent_buffer *eb;
975
976         if (slot < 0 || slot >= btrfs_header_nritems(parent))
977                 return ERR_PTR(-ENOENT);
978
979         ASSERT(level);
980
981         check.level = level - 1;
982         check.transid = btrfs_node_ptr_generation(parent, slot);
983         check.owner_root = btrfs_header_owner(parent);
984         check.has_first_key = true;
985         btrfs_node_key_to_cpu(parent, &check.first_key, slot);
986
987         eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
988                              &check);
989         if (IS_ERR(eb))
990                 return eb;
991         if (!extent_buffer_uptodate(eb)) {
992                 free_extent_buffer(eb);
993                 return ERR_PTR(-EIO);
994         }
995
996         return eb;
997 }
998
999 /*
1000  * node level balancing, used to make sure nodes are in proper order for
1001  * item deletion.  We balance from the top down, so we have to make sure
1002  * that a deletion won't leave an node completely empty later on.
1003  */
1004 static noinline int balance_level(struct btrfs_trans_handle *trans,
1005                          struct btrfs_root *root,
1006                          struct btrfs_path *path, int level)
1007 {
1008         struct btrfs_fs_info *fs_info = root->fs_info;
1009         struct extent_buffer *right = NULL;
1010         struct extent_buffer *mid;
1011         struct extent_buffer *left = NULL;
1012         struct extent_buffer *parent = NULL;
1013         int ret = 0;
1014         int wret;
1015         int pslot;
1016         int orig_slot = path->slots[level];
1017         u64 orig_ptr;
1018
1019         ASSERT(level > 0);
1020
1021         mid = path->nodes[level];
1022
1023         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
1024         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1025
1026         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1027
1028         if (level < BTRFS_MAX_LEVEL - 1) {
1029                 parent = path->nodes[level + 1];
1030                 pslot = path->slots[level + 1];
1031         }
1032
1033         /*
1034          * deal with the case where there is only one pointer in the root
1035          * by promoting the node below to a root
1036          */
1037         if (!parent) {
1038                 struct extent_buffer *child;
1039
1040                 if (btrfs_header_nritems(mid) != 1)
1041                         return 0;
1042
1043                 /* promote the child to a root */
1044                 child = btrfs_read_node_slot(mid, 0);
1045                 if (IS_ERR(child)) {
1046                         ret = PTR_ERR(child);
1047                         goto out;
1048                 }
1049
1050                 btrfs_tree_lock(child);
1051                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
1052                                       BTRFS_NESTING_COW);
1053                 if (ret) {
1054                         btrfs_tree_unlock(child);
1055                         free_extent_buffer(child);
1056                         goto out;
1057                 }
1058
1059                 ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
1060                 if (ret < 0) {
1061                         btrfs_tree_unlock(child);
1062                         free_extent_buffer(child);
1063                         btrfs_abort_transaction(trans, ret);
1064                         goto out;
1065                 }
1066                 rcu_assign_pointer(root->node, child);
1067
1068                 add_root_to_dirty_list(root);
1069                 btrfs_tree_unlock(child);
1070
1071                 path->locks[level] = 0;
1072                 path->nodes[level] = NULL;
1073                 btrfs_clear_buffer_dirty(trans, mid);
1074                 btrfs_tree_unlock(mid);
1075                 /* once for the path */
1076                 free_extent_buffer(mid);
1077
1078                 root_sub_used(root, mid->len);
1079                 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1080                 /* once for the root ptr */
1081                 free_extent_buffer_stale(mid);
1082                 return 0;
1083         }
1084         if (btrfs_header_nritems(mid) >
1085             BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1086                 return 0;
1087
1088         if (pslot) {
1089                 left = btrfs_read_node_slot(parent, pslot - 1);
1090                 if (IS_ERR(left)) {
1091                         ret = PTR_ERR(left);
1092                         left = NULL;
1093                         goto out;
1094                 }
1095
1096                 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1097                 wret = btrfs_cow_block(trans, root, left,
1098                                        parent, pslot - 1, &left,
1099                                        BTRFS_NESTING_LEFT_COW);
1100                 if (wret) {
1101                         ret = wret;
1102                         goto out;
1103                 }
1104         }
1105
1106         if (pslot + 1 < btrfs_header_nritems(parent)) {
1107                 right = btrfs_read_node_slot(parent, pslot + 1);
1108                 if (IS_ERR(right)) {
1109                         ret = PTR_ERR(right);
1110                         right = NULL;
1111                         goto out;
1112                 }
1113
1114                 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1115                 wret = btrfs_cow_block(trans, root, right,
1116                                        parent, pslot + 1, &right,
1117                                        BTRFS_NESTING_RIGHT_COW);
1118                 if (wret) {
1119                         ret = wret;
1120                         goto out;
1121                 }
1122         }
1123
1124         /* first, try to make some room in the middle buffer */
1125         if (left) {
1126                 orig_slot += btrfs_header_nritems(left);
1127                 wret = push_node_left(trans, left, mid, 1);
1128                 if (wret < 0)
1129                         ret = wret;
1130         }
1131
1132         /*
1133          * then try to empty the right most buffer into the middle
1134          */
1135         if (right) {
1136                 wret = push_node_left(trans, mid, right, 1);
1137                 if (wret < 0 && wret != -ENOSPC)
1138                         ret = wret;
1139                 if (btrfs_header_nritems(right) == 0) {
1140                         btrfs_clear_buffer_dirty(trans, right);
1141                         btrfs_tree_unlock(right);
1142                         ret = btrfs_del_ptr(trans, root, path, level + 1, pslot + 1);
1143                         if (ret < 0) {
1144                                 free_extent_buffer_stale(right);
1145                                 right = NULL;
1146                                 goto out;
1147                         }
1148                         root_sub_used(root, right->len);
1149                         btrfs_free_tree_block(trans, btrfs_root_id(root), right,
1150                                               0, 1);
1151                         free_extent_buffer_stale(right);
1152                         right = NULL;
1153                 } else {
1154                         struct btrfs_disk_key right_key;
1155                         btrfs_node_key(right, &right_key, 0);
1156                         ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1157                                         BTRFS_MOD_LOG_KEY_REPLACE);
1158                         if (ret < 0) {
1159                                 btrfs_abort_transaction(trans, ret);
1160                                 goto out;
1161                         }
1162                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1163                         btrfs_mark_buffer_dirty(parent);
1164                 }
1165         }
1166         if (btrfs_header_nritems(mid) == 1) {
1167                 /*
1168                  * we're not allowed to leave a node with one item in the
1169                  * tree during a delete.  A deletion from lower in the tree
1170                  * could try to delete the only pointer in this node.
1171                  * So, pull some keys from the left.
1172                  * There has to be a left pointer at this point because
1173                  * otherwise we would have pulled some pointers from the
1174                  * right
1175                  */
1176                 if (unlikely(!left)) {
1177                         btrfs_crit(fs_info,
1178 "missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu",
1179                                    parent->start, btrfs_header_level(parent),
1180                                    mid->start, btrfs_root_id(root));
1181                         ret = -EUCLEAN;
1182                         btrfs_abort_transaction(trans, ret);
1183                         goto out;
1184                 }
1185                 wret = balance_node_right(trans, mid, left);
1186                 if (wret < 0) {
1187                         ret = wret;
1188                         goto out;
1189                 }
1190                 if (wret == 1) {
1191                         wret = push_node_left(trans, left, mid, 1);
1192                         if (wret < 0)
1193                                 ret = wret;
1194                 }
1195                 BUG_ON(wret == 1);
1196         }
1197         if (btrfs_header_nritems(mid) == 0) {
1198                 btrfs_clear_buffer_dirty(trans, mid);
1199                 btrfs_tree_unlock(mid);
1200                 ret = btrfs_del_ptr(trans, root, path, level + 1, pslot);
1201                 if (ret < 0) {
1202                         free_extent_buffer_stale(mid);
1203                         mid = NULL;
1204                         goto out;
1205                 }
1206                 root_sub_used(root, mid->len);
1207                 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1208                 free_extent_buffer_stale(mid);
1209                 mid = NULL;
1210         } else {
1211                 /* update the parent key to reflect our changes */
1212                 struct btrfs_disk_key mid_key;
1213                 btrfs_node_key(mid, &mid_key, 0);
1214                 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1215                                                     BTRFS_MOD_LOG_KEY_REPLACE);
1216                 if (ret < 0) {
1217                         btrfs_abort_transaction(trans, ret);
1218                         goto out;
1219                 }
1220                 btrfs_set_node_key(parent, &mid_key, pslot);
1221                 btrfs_mark_buffer_dirty(parent);
1222         }
1223
1224         /* update the path */
1225         if (left) {
1226                 if (btrfs_header_nritems(left) > orig_slot) {
1227                         atomic_inc(&left->refs);
1228                         /* left was locked after cow */
1229                         path->nodes[level] = left;
1230                         path->slots[level + 1] -= 1;
1231                         path->slots[level] = orig_slot;
1232                         if (mid) {
1233                                 btrfs_tree_unlock(mid);
1234                                 free_extent_buffer(mid);
1235                         }
1236                 } else {
1237                         orig_slot -= btrfs_header_nritems(left);
1238                         path->slots[level] = orig_slot;
1239                 }
1240         }
1241         /* double check we haven't messed things up */
1242         if (orig_ptr !=
1243             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1244                 BUG();
1245 out:
1246         if (right) {
1247                 btrfs_tree_unlock(right);
1248                 free_extent_buffer(right);
1249         }
1250         if (left) {
1251                 if (path->nodes[level] != left)
1252                         btrfs_tree_unlock(left);
1253                 free_extent_buffer(left);
1254         }
1255         return ret;
1256 }
1257
1258 /* Node balancing for insertion.  Here we only split or push nodes around
1259  * when they are completely full.  This is also done top down, so we
1260  * have to be pessimistic.
1261  */
1262 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1263                                           struct btrfs_root *root,
1264                                           struct btrfs_path *path, int level)
1265 {
1266         struct btrfs_fs_info *fs_info = root->fs_info;
1267         struct extent_buffer *right = NULL;
1268         struct extent_buffer *mid;
1269         struct extent_buffer *left = NULL;
1270         struct extent_buffer *parent = NULL;
1271         int ret = 0;
1272         int wret;
1273         int pslot;
1274         int orig_slot = path->slots[level];
1275
1276         if (level == 0)
1277                 return 1;
1278
1279         mid = path->nodes[level];
1280         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1281
1282         if (level < BTRFS_MAX_LEVEL - 1) {
1283                 parent = path->nodes[level + 1];
1284                 pslot = path->slots[level + 1];
1285         }
1286
1287         if (!parent)
1288                 return 1;
1289
1290         /* first, try to make some room in the middle buffer */
1291         if (pslot) {
1292                 u32 left_nr;
1293
1294                 left = btrfs_read_node_slot(parent, pslot - 1);
1295                 if (IS_ERR(left))
1296                         return PTR_ERR(left);
1297
1298                 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1299
1300                 left_nr = btrfs_header_nritems(left);
1301                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1302                         wret = 1;
1303                 } else {
1304                         ret = btrfs_cow_block(trans, root, left, parent,
1305                                               pslot - 1, &left,
1306                                               BTRFS_NESTING_LEFT_COW);
1307                         if (ret)
1308                                 wret = 1;
1309                         else {
1310                                 wret = push_node_left(trans, left, mid, 0);
1311                         }
1312                 }
1313                 if (wret < 0)
1314                         ret = wret;
1315                 if (wret == 0) {
1316                         struct btrfs_disk_key disk_key;
1317                         orig_slot += left_nr;
1318                         btrfs_node_key(mid, &disk_key, 0);
1319                         ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1320                                         BTRFS_MOD_LOG_KEY_REPLACE);
1321                         if (ret < 0) {
1322                                 btrfs_tree_unlock(left);
1323                                 free_extent_buffer(left);
1324                                 btrfs_abort_transaction(trans, ret);
1325                                 return ret;
1326                         }
1327                         btrfs_set_node_key(parent, &disk_key, pslot);
1328                         btrfs_mark_buffer_dirty(parent);
1329                         if (btrfs_header_nritems(left) > orig_slot) {
1330                                 path->nodes[level] = left;
1331                                 path->slots[level + 1] -= 1;
1332                                 path->slots[level] = orig_slot;
1333                                 btrfs_tree_unlock(mid);
1334                                 free_extent_buffer(mid);
1335                         } else {
1336                                 orig_slot -=
1337                                         btrfs_header_nritems(left);
1338                                 path->slots[level] = orig_slot;
1339                                 btrfs_tree_unlock(left);
1340                                 free_extent_buffer(left);
1341                         }
1342                         return 0;
1343                 }
1344                 btrfs_tree_unlock(left);
1345                 free_extent_buffer(left);
1346         }
1347
1348         /*
1349          * then try to empty the right most buffer into the middle
1350          */
1351         if (pslot + 1 < btrfs_header_nritems(parent)) {
1352                 u32 right_nr;
1353
1354                 right = btrfs_read_node_slot(parent, pslot + 1);
1355                 if (IS_ERR(right))
1356                         return PTR_ERR(right);
1357
1358                 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1359
1360                 right_nr = btrfs_header_nritems(right);
1361                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1362                         wret = 1;
1363                 } else {
1364                         ret = btrfs_cow_block(trans, root, right,
1365                                               parent, pslot + 1,
1366                                               &right, BTRFS_NESTING_RIGHT_COW);
1367                         if (ret)
1368                                 wret = 1;
1369                         else {
1370                                 wret = balance_node_right(trans, right, mid);
1371                         }
1372                 }
1373                 if (wret < 0)
1374                         ret = wret;
1375                 if (wret == 0) {
1376                         struct btrfs_disk_key disk_key;
1377
1378                         btrfs_node_key(right, &disk_key, 0);
1379                         ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1380                                         BTRFS_MOD_LOG_KEY_REPLACE);
1381                         if (ret < 0) {
1382                                 btrfs_tree_unlock(right);
1383                                 free_extent_buffer(right);
1384                                 btrfs_abort_transaction(trans, ret);
1385                                 return ret;
1386                         }
1387                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
1388                         btrfs_mark_buffer_dirty(parent);
1389
1390                         if (btrfs_header_nritems(mid) <= orig_slot) {
1391                                 path->nodes[level] = right;
1392                                 path->slots[level + 1] += 1;
1393                                 path->slots[level] = orig_slot -
1394                                         btrfs_header_nritems(mid);
1395                                 btrfs_tree_unlock(mid);
1396                                 free_extent_buffer(mid);
1397                         } else {
1398                                 btrfs_tree_unlock(right);
1399                                 free_extent_buffer(right);
1400                         }
1401                         return 0;
1402                 }
1403                 btrfs_tree_unlock(right);
1404                 free_extent_buffer(right);
1405         }
1406         return 1;
1407 }
1408
1409 /*
1410  * readahead one full node of leaves, finding things that are close
1411  * to the block in 'slot', and triggering ra on them.
1412  */
1413 static void reada_for_search(struct btrfs_fs_info *fs_info,
1414                              struct btrfs_path *path,
1415                              int level, int slot, u64 objectid)
1416 {
1417         struct extent_buffer *node;
1418         struct btrfs_disk_key disk_key;
1419         u32 nritems;
1420         u64 search;
1421         u64 target;
1422         u64 nread = 0;
1423         u64 nread_max;
1424         u32 nr;
1425         u32 blocksize;
1426         u32 nscan = 0;
1427
1428         if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1429                 return;
1430
1431         if (!path->nodes[level])
1432                 return;
1433
1434         node = path->nodes[level];
1435
1436         /*
1437          * Since the time between visiting leaves is much shorter than the time
1438          * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1439          * much IO at once (possibly random).
1440          */
1441         if (path->reada == READA_FORWARD_ALWAYS) {
1442                 if (level > 1)
1443                         nread_max = node->fs_info->nodesize;
1444                 else
1445                         nread_max = SZ_128K;
1446         } else {
1447                 nread_max = SZ_64K;
1448         }
1449
1450         search = btrfs_node_blockptr(node, slot);
1451         blocksize = fs_info->nodesize;
1452         if (path->reada != READA_FORWARD_ALWAYS) {
1453                 struct extent_buffer *eb;
1454
1455                 eb = find_extent_buffer(fs_info, search);
1456                 if (eb) {
1457                         free_extent_buffer(eb);
1458                         return;
1459                 }
1460         }
1461
1462         target = search;
1463
1464         nritems = btrfs_header_nritems(node);
1465         nr = slot;
1466
1467         while (1) {
1468                 if (path->reada == READA_BACK) {
1469                         if (nr == 0)
1470                                 break;
1471                         nr--;
1472                 } else if (path->reada == READA_FORWARD ||
1473                            path->reada == READA_FORWARD_ALWAYS) {
1474                         nr++;
1475                         if (nr >= nritems)
1476                                 break;
1477                 }
1478                 if (path->reada == READA_BACK && objectid) {
1479                         btrfs_node_key(node, &disk_key, nr);
1480                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
1481                                 break;
1482                 }
1483                 search = btrfs_node_blockptr(node, nr);
1484                 if (path->reada == READA_FORWARD_ALWAYS ||
1485                     (search <= target && target - search <= 65536) ||
1486                     (search > target && search - target <= 65536)) {
1487                         btrfs_readahead_node_child(node, nr);
1488                         nread += blocksize;
1489                 }
1490                 nscan++;
1491                 if (nread > nread_max || nscan > 32)
1492                         break;
1493         }
1494 }
1495
1496 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1497 {
1498         struct extent_buffer *parent;
1499         int slot;
1500         int nritems;
1501
1502         parent = path->nodes[level + 1];
1503         if (!parent)
1504                 return;
1505
1506         nritems = btrfs_header_nritems(parent);
1507         slot = path->slots[level + 1];
1508
1509         if (slot > 0)
1510                 btrfs_readahead_node_child(parent, slot - 1);
1511         if (slot + 1 < nritems)
1512                 btrfs_readahead_node_child(parent, slot + 1);
1513 }
1514
1515
1516 /*
1517  * when we walk down the tree, it is usually safe to unlock the higher layers
1518  * in the tree.  The exceptions are when our path goes through slot 0, because
1519  * operations on the tree might require changing key pointers higher up in the
1520  * tree.
1521  *
1522  * callers might also have set path->keep_locks, which tells this code to keep
1523  * the lock if the path points to the last slot in the block.  This is part of
1524  * walking through the tree, and selecting the next slot in the higher block.
1525  *
1526  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1527  * if lowest_unlock is 1, level 0 won't be unlocked
1528  */
1529 static noinline void unlock_up(struct btrfs_path *path, int level,
1530                                int lowest_unlock, int min_write_lock_level,
1531                                int *write_lock_level)
1532 {
1533         int i;
1534         int skip_level = level;
1535         bool check_skip = true;
1536
1537         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1538                 if (!path->nodes[i])
1539                         break;
1540                 if (!path->locks[i])
1541                         break;
1542
1543                 if (check_skip) {
1544                         if (path->slots[i] == 0) {
1545                                 skip_level = i + 1;
1546                                 continue;
1547                         }
1548
1549                         if (path->keep_locks) {
1550                                 u32 nritems;
1551
1552                                 nritems = btrfs_header_nritems(path->nodes[i]);
1553                                 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1554                                         skip_level = i + 1;
1555                                         continue;
1556                                 }
1557                         }
1558                 }
1559
1560                 if (i >= lowest_unlock && i > skip_level) {
1561                         check_skip = false;
1562                         btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1563                         path->locks[i] = 0;
1564                         if (write_lock_level &&
1565                             i > min_write_lock_level &&
1566                             i <= *write_lock_level) {
1567                                 *write_lock_level = i - 1;
1568                         }
1569                 }
1570         }
1571 }
1572
1573 /*
1574  * Helper function for btrfs_search_slot() and other functions that do a search
1575  * on a btree. The goal is to find a tree block in the cache (the radix tree at
1576  * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1577  * its pages from disk.
1578  *
1579  * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1580  * whole btree search, starting again from the current root node.
1581  */
1582 static int
1583 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1584                       struct extent_buffer **eb_ret, int level, int slot,
1585                       const struct btrfs_key *key)
1586 {
1587         struct btrfs_fs_info *fs_info = root->fs_info;
1588         struct btrfs_tree_parent_check check = { 0 };
1589         u64 blocknr;
1590         u64 gen;
1591         struct extent_buffer *tmp;
1592         int ret;
1593         int parent_level;
1594         bool unlock_up;
1595
1596         unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]);
1597         blocknr = btrfs_node_blockptr(*eb_ret, slot);
1598         gen = btrfs_node_ptr_generation(*eb_ret, slot);
1599         parent_level = btrfs_header_level(*eb_ret);
1600         btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1601         check.has_first_key = true;
1602         check.level = parent_level - 1;
1603         check.transid = gen;
1604         check.owner_root = root->root_key.objectid;
1605
1606         /*
1607          * If we need to read an extent buffer from disk and we are holding locks
1608          * on upper level nodes, we unlock all the upper nodes before reading the
1609          * extent buffer, and then return -EAGAIN to the caller as it needs to
1610          * restart the search. We don't release the lock on the current level
1611          * because we need to walk this node to figure out which blocks to read.
1612          */
1613         tmp = find_extent_buffer(fs_info, blocknr);
1614         if (tmp) {
1615                 if (p->reada == READA_FORWARD_ALWAYS)
1616                         reada_for_search(fs_info, p, level, slot, key->objectid);
1617
1618                 /* first we do an atomic uptodate check */
1619                 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1620                         /*
1621                          * Do extra check for first_key, eb can be stale due to
1622                          * being cached, read from scrub, or have multiple
1623                          * parents (shared tree blocks).
1624                          */
1625                         if (btrfs_verify_level_key(tmp,
1626                                         parent_level - 1, &check.first_key, gen)) {
1627                                 free_extent_buffer(tmp);
1628                                 return -EUCLEAN;
1629                         }
1630                         *eb_ret = tmp;
1631                         return 0;
1632                 }
1633
1634                 if (p->nowait) {
1635                         free_extent_buffer(tmp);
1636                         return -EAGAIN;
1637                 }
1638
1639                 if (unlock_up)
1640                         btrfs_unlock_up_safe(p, level + 1);
1641
1642                 /* now we're allowed to do a blocking uptodate check */
1643                 ret = btrfs_read_extent_buffer(tmp, &check);
1644                 if (ret) {
1645                         free_extent_buffer(tmp);
1646                         btrfs_release_path(p);
1647                         return -EIO;
1648                 }
1649                 if (btrfs_check_eb_owner(tmp, root->root_key.objectid)) {
1650                         free_extent_buffer(tmp);
1651                         btrfs_release_path(p);
1652                         return -EUCLEAN;
1653                 }
1654
1655                 if (unlock_up)
1656                         ret = -EAGAIN;
1657
1658                 goto out;
1659         } else if (p->nowait) {
1660                 return -EAGAIN;
1661         }
1662
1663         if (unlock_up) {
1664                 btrfs_unlock_up_safe(p, level + 1);
1665                 ret = -EAGAIN;
1666         } else {
1667                 ret = 0;
1668         }
1669
1670         if (p->reada != READA_NONE)
1671                 reada_for_search(fs_info, p, level, slot, key->objectid);
1672
1673         tmp = read_tree_block(fs_info, blocknr, &check);
1674         if (IS_ERR(tmp)) {
1675                 btrfs_release_path(p);
1676                 return PTR_ERR(tmp);
1677         }
1678         /*
1679          * If the read above didn't mark this buffer up to date,
1680          * it will never end up being up to date.  Set ret to EIO now
1681          * and give up so that our caller doesn't loop forever
1682          * on our EAGAINs.
1683          */
1684         if (!extent_buffer_uptodate(tmp))
1685                 ret = -EIO;
1686
1687 out:
1688         if (ret == 0) {
1689                 *eb_ret = tmp;
1690         } else {
1691                 free_extent_buffer(tmp);
1692                 btrfs_release_path(p);
1693         }
1694
1695         return ret;
1696 }
1697
1698 /*
1699  * helper function for btrfs_search_slot.  This does all of the checks
1700  * for node-level blocks and does any balancing required based on
1701  * the ins_len.
1702  *
1703  * If no extra work was required, zero is returned.  If we had to
1704  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1705  * start over
1706  */
1707 static int
1708 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1709                        struct btrfs_root *root, struct btrfs_path *p,
1710                        struct extent_buffer *b, int level, int ins_len,
1711                        int *write_lock_level)
1712 {
1713         struct btrfs_fs_info *fs_info = root->fs_info;
1714         int ret = 0;
1715
1716         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1717             BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1718
1719                 if (*write_lock_level < level + 1) {
1720                         *write_lock_level = level + 1;
1721                         btrfs_release_path(p);
1722                         return -EAGAIN;
1723                 }
1724
1725                 reada_for_balance(p, level);
1726                 ret = split_node(trans, root, p, level);
1727
1728                 b = p->nodes[level];
1729         } else if (ins_len < 0 && btrfs_header_nritems(b) <
1730                    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1731
1732                 if (*write_lock_level < level + 1) {
1733                         *write_lock_level = level + 1;
1734                         btrfs_release_path(p);
1735                         return -EAGAIN;
1736                 }
1737
1738                 reada_for_balance(p, level);
1739                 ret = balance_level(trans, root, p, level);
1740                 if (ret)
1741                         return ret;
1742
1743                 b = p->nodes[level];
1744                 if (!b) {
1745                         btrfs_release_path(p);
1746                         return -EAGAIN;
1747                 }
1748                 BUG_ON(btrfs_header_nritems(b) == 1);
1749         }
1750         return ret;
1751 }
1752
1753 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1754                 u64 iobjectid, u64 ioff, u8 key_type,
1755                 struct btrfs_key *found_key)
1756 {
1757         int ret;
1758         struct btrfs_key key;
1759         struct extent_buffer *eb;
1760
1761         ASSERT(path);
1762         ASSERT(found_key);
1763
1764         key.type = key_type;
1765         key.objectid = iobjectid;
1766         key.offset = ioff;
1767
1768         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1769         if (ret < 0)
1770                 return ret;
1771
1772         eb = path->nodes[0];
1773         if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1774                 ret = btrfs_next_leaf(fs_root, path);
1775                 if (ret)
1776                         return ret;
1777                 eb = path->nodes[0];
1778         }
1779
1780         btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1781         if (found_key->type != key.type ||
1782                         found_key->objectid != key.objectid)
1783                 return 1;
1784
1785         return 0;
1786 }
1787
1788 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1789                                                         struct btrfs_path *p,
1790                                                         int write_lock_level)
1791 {
1792         struct extent_buffer *b;
1793         int root_lock = 0;
1794         int level = 0;
1795
1796         if (p->search_commit_root) {
1797                 b = root->commit_root;
1798                 atomic_inc(&b->refs);
1799                 level = btrfs_header_level(b);
1800                 /*
1801                  * Ensure that all callers have set skip_locking when
1802                  * p->search_commit_root = 1.
1803                  */
1804                 ASSERT(p->skip_locking == 1);
1805
1806                 goto out;
1807         }
1808
1809         if (p->skip_locking) {
1810                 b = btrfs_root_node(root);
1811                 level = btrfs_header_level(b);
1812                 goto out;
1813         }
1814
1815         /* We try very hard to do read locks on the root */
1816         root_lock = BTRFS_READ_LOCK;
1817
1818         /*
1819          * If the level is set to maximum, we can skip trying to get the read
1820          * lock.
1821          */
1822         if (write_lock_level < BTRFS_MAX_LEVEL) {
1823                 /*
1824                  * We don't know the level of the root node until we actually
1825                  * have it read locked
1826                  */
1827                 if (p->nowait) {
1828                         b = btrfs_try_read_lock_root_node(root);
1829                         if (IS_ERR(b))
1830                                 return b;
1831                 } else {
1832                         b = btrfs_read_lock_root_node(root);
1833                 }
1834                 level = btrfs_header_level(b);
1835                 if (level > write_lock_level)
1836                         goto out;
1837
1838                 /* Whoops, must trade for write lock */
1839                 btrfs_tree_read_unlock(b);
1840                 free_extent_buffer(b);
1841         }
1842
1843         b = btrfs_lock_root_node(root);
1844         root_lock = BTRFS_WRITE_LOCK;
1845
1846         /* The level might have changed, check again */
1847         level = btrfs_header_level(b);
1848
1849 out:
1850         /*
1851          * The root may have failed to write out at some point, and thus is no
1852          * longer valid, return an error in this case.
1853          */
1854         if (!extent_buffer_uptodate(b)) {
1855                 if (root_lock)
1856                         btrfs_tree_unlock_rw(b, root_lock);
1857                 free_extent_buffer(b);
1858                 return ERR_PTR(-EIO);
1859         }
1860
1861         p->nodes[level] = b;
1862         if (!p->skip_locking)
1863                 p->locks[level] = root_lock;
1864         /*
1865          * Callers are responsible for dropping b's references.
1866          */
1867         return b;
1868 }
1869
1870 /*
1871  * Replace the extent buffer at the lowest level of the path with a cloned
1872  * version. The purpose is to be able to use it safely, after releasing the
1873  * commit root semaphore, even if relocation is happening in parallel, the
1874  * transaction used for relocation is committed and the extent buffer is
1875  * reallocated in the next transaction.
1876  *
1877  * This is used in a context where the caller does not prevent transaction
1878  * commits from happening, either by holding a transaction handle or holding
1879  * some lock, while it's doing searches through a commit root.
1880  * At the moment it's only used for send operations.
1881  */
1882 static int finish_need_commit_sem_search(struct btrfs_path *path)
1883 {
1884         const int i = path->lowest_level;
1885         const int slot = path->slots[i];
1886         struct extent_buffer *lowest = path->nodes[i];
1887         struct extent_buffer *clone;
1888
1889         ASSERT(path->need_commit_sem);
1890
1891         if (!lowest)
1892                 return 0;
1893
1894         lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1895
1896         clone = btrfs_clone_extent_buffer(lowest);
1897         if (!clone)
1898                 return -ENOMEM;
1899
1900         btrfs_release_path(path);
1901         path->nodes[i] = clone;
1902         path->slots[i] = slot;
1903
1904         return 0;
1905 }
1906
1907 static inline int search_for_key_slot(struct extent_buffer *eb,
1908                                       int search_low_slot,
1909                                       const struct btrfs_key *key,
1910                                       int prev_cmp,
1911                                       int *slot)
1912 {
1913         /*
1914          * If a previous call to btrfs_bin_search() on a parent node returned an
1915          * exact match (prev_cmp == 0), we can safely assume the target key will
1916          * always be at slot 0 on lower levels, since each key pointer
1917          * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1918          * subtree it points to. Thus we can skip searching lower levels.
1919          */
1920         if (prev_cmp == 0) {
1921                 *slot = 0;
1922                 return 0;
1923         }
1924
1925         return btrfs_bin_search(eb, search_low_slot, key, slot);
1926 }
1927
1928 static int search_leaf(struct btrfs_trans_handle *trans,
1929                        struct btrfs_root *root,
1930                        const struct btrfs_key *key,
1931                        struct btrfs_path *path,
1932                        int ins_len,
1933                        int prev_cmp)
1934 {
1935         struct extent_buffer *leaf = path->nodes[0];
1936         int leaf_free_space = -1;
1937         int search_low_slot = 0;
1938         int ret;
1939         bool do_bin_search = true;
1940
1941         /*
1942          * If we are doing an insertion, the leaf has enough free space and the
1943          * destination slot for the key is not slot 0, then we can unlock our
1944          * write lock on the parent, and any other upper nodes, before doing the
1945          * binary search on the leaf (with search_for_key_slot()), allowing other
1946          * tasks to lock the parent and any other upper nodes.
1947          */
1948         if (ins_len > 0) {
1949                 /*
1950                  * Cache the leaf free space, since we will need it later and it
1951                  * will not change until then.
1952                  */
1953                 leaf_free_space = btrfs_leaf_free_space(leaf);
1954
1955                 /*
1956                  * !path->locks[1] means we have a single node tree, the leaf is
1957                  * the root of the tree.
1958                  */
1959                 if (path->locks[1] && leaf_free_space >= ins_len) {
1960                         struct btrfs_disk_key first_key;
1961
1962                         ASSERT(btrfs_header_nritems(leaf) > 0);
1963                         btrfs_item_key(leaf, &first_key, 0);
1964
1965                         /*
1966                          * Doing the extra comparison with the first key is cheap,
1967                          * taking into account that the first key is very likely
1968                          * already in a cache line because it immediately follows
1969                          * the extent buffer's header and we have recently accessed
1970                          * the header's level field.
1971                          */
1972                         ret = comp_keys(&first_key, key);
1973                         if (ret < 0) {
1974                                 /*
1975                                  * The first key is smaller than the key we want
1976                                  * to insert, so we are safe to unlock all upper
1977                                  * nodes and we have to do the binary search.
1978                                  *
1979                                  * We do use btrfs_unlock_up_safe() and not
1980                                  * unlock_up() because the later does not unlock
1981                                  * nodes with a slot of 0 - we can safely unlock
1982                                  * any node even if its slot is 0 since in this
1983                                  * case the key does not end up at slot 0 of the
1984                                  * leaf and there's no need to split the leaf.
1985                                  */
1986                                 btrfs_unlock_up_safe(path, 1);
1987                                 search_low_slot = 1;
1988                         } else {
1989                                 /*
1990                                  * The first key is >= then the key we want to
1991                                  * insert, so we can skip the binary search as
1992                                  * the target key will be at slot 0.
1993                                  *
1994                                  * We can not unlock upper nodes when the key is
1995                                  * less than the first key, because we will need
1996                                  * to update the key at slot 0 of the parent node
1997                                  * and possibly of other upper nodes too.
1998                                  * If the key matches the first key, then we can
1999                                  * unlock all the upper nodes, using
2000                                  * btrfs_unlock_up_safe() instead of unlock_up()
2001                                  * as stated above.
2002                                  */
2003                                 if (ret == 0)
2004                                         btrfs_unlock_up_safe(path, 1);
2005                                 /*
2006                                  * ret is already 0 or 1, matching the result of
2007                                  * a btrfs_bin_search() call, so there is no need
2008                                  * to adjust it.
2009                                  */
2010                                 do_bin_search = false;
2011                                 path->slots[0] = 0;
2012                         }
2013                 }
2014         }
2015
2016         if (do_bin_search) {
2017                 ret = search_for_key_slot(leaf, search_low_slot, key,
2018                                           prev_cmp, &path->slots[0]);
2019                 if (ret < 0)
2020                         return ret;
2021         }
2022
2023         if (ins_len > 0) {
2024                 /*
2025                  * Item key already exists. In this case, if we are allowed to
2026                  * insert the item (for example, in dir_item case, item key
2027                  * collision is allowed), it will be merged with the original
2028                  * item. Only the item size grows, no new btrfs item will be
2029                  * added. If search_for_extension is not set, ins_len already
2030                  * accounts the size btrfs_item, deduct it here so leaf space
2031                  * check will be correct.
2032                  */
2033                 if (ret == 0 && !path->search_for_extension) {
2034                         ASSERT(ins_len >= sizeof(struct btrfs_item));
2035                         ins_len -= sizeof(struct btrfs_item);
2036                 }
2037
2038                 ASSERT(leaf_free_space >= 0);
2039
2040                 if (leaf_free_space < ins_len) {
2041                         int err;
2042
2043                         err = split_leaf(trans, root, key, path, ins_len,
2044                                          (ret == 0));
2045                         ASSERT(err <= 0);
2046                         if (WARN_ON(err > 0))
2047                                 err = -EUCLEAN;
2048                         if (err)
2049                                 ret = err;
2050                 }
2051         }
2052
2053         return ret;
2054 }
2055
2056 /*
2057  * btrfs_search_slot - look for a key in a tree and perform necessary
2058  * modifications to preserve tree invariants.
2059  *
2060  * @trans:      Handle of transaction, used when modifying the tree
2061  * @p:          Holds all btree nodes along the search path
2062  * @root:       The root node of the tree
2063  * @key:        The key we are looking for
2064  * @ins_len:    Indicates purpose of search:
2065  *              >0  for inserts it's size of item inserted (*)
2066  *              <0  for deletions
2067  *               0  for plain searches, not modifying the tree
2068  *
2069  *              (*) If size of item inserted doesn't include
2070  *              sizeof(struct btrfs_item), then p->search_for_extension must
2071  *              be set.
2072  * @cow:        boolean should CoW operations be performed. Must always be 1
2073  *              when modifying the tree.
2074  *
2075  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2076  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2077  *
2078  * If @key is found, 0 is returned and you can find the item in the leaf level
2079  * of the path (level 0)
2080  *
2081  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2082  * points to the slot where it should be inserted
2083  *
2084  * If an error is encountered while searching the tree a negative error number
2085  * is returned
2086  */
2087 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2088                       const struct btrfs_key *key, struct btrfs_path *p,
2089                       int ins_len, int cow)
2090 {
2091         struct btrfs_fs_info *fs_info = root->fs_info;
2092         struct extent_buffer *b;
2093         int slot;
2094         int ret;
2095         int err;
2096         int level;
2097         int lowest_unlock = 1;
2098         /* everything at write_lock_level or lower must be write locked */
2099         int write_lock_level = 0;
2100         u8 lowest_level = 0;
2101         int min_write_lock_level;
2102         int prev_cmp;
2103
2104         might_sleep();
2105
2106         lowest_level = p->lowest_level;
2107         WARN_ON(lowest_level && ins_len > 0);
2108         WARN_ON(p->nodes[0] != NULL);
2109         BUG_ON(!cow && ins_len);
2110
2111         /*
2112          * For now only allow nowait for read only operations.  There's no
2113          * strict reason why we can't, we just only need it for reads so it's
2114          * only implemented for reads.
2115          */
2116         ASSERT(!p->nowait || !cow);
2117
2118         if (ins_len < 0) {
2119                 lowest_unlock = 2;
2120
2121                 /* when we are removing items, we might have to go up to level
2122                  * two as we update tree pointers  Make sure we keep write
2123                  * for those levels as well
2124                  */
2125                 write_lock_level = 2;
2126         } else if (ins_len > 0) {
2127                 /*
2128                  * for inserting items, make sure we have a write lock on
2129                  * level 1 so we can update keys
2130                  */
2131                 write_lock_level = 1;
2132         }
2133
2134         if (!cow)
2135                 write_lock_level = -1;
2136
2137         if (cow && (p->keep_locks || p->lowest_level))
2138                 write_lock_level = BTRFS_MAX_LEVEL;
2139
2140         min_write_lock_level = write_lock_level;
2141
2142         if (p->need_commit_sem) {
2143                 ASSERT(p->search_commit_root);
2144                 if (p->nowait) {
2145                         if (!down_read_trylock(&fs_info->commit_root_sem))
2146                                 return -EAGAIN;
2147                 } else {
2148                         down_read(&fs_info->commit_root_sem);
2149                 }
2150         }
2151
2152 again:
2153         prev_cmp = -1;
2154         b = btrfs_search_slot_get_root(root, p, write_lock_level);
2155         if (IS_ERR(b)) {
2156                 ret = PTR_ERR(b);
2157                 goto done;
2158         }
2159
2160         while (b) {
2161                 int dec = 0;
2162
2163                 level = btrfs_header_level(b);
2164
2165                 if (cow) {
2166                         bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2167
2168                         /*
2169                          * if we don't really need to cow this block
2170                          * then we don't want to set the path blocking,
2171                          * so we test it here
2172                          */
2173                         if (!should_cow_block(trans, root, b))
2174                                 goto cow_done;
2175
2176                         /*
2177                          * must have write locks on this node and the
2178                          * parent
2179                          */
2180                         if (level > write_lock_level ||
2181                             (level + 1 > write_lock_level &&
2182                             level + 1 < BTRFS_MAX_LEVEL &&
2183                             p->nodes[level + 1])) {
2184                                 write_lock_level = level + 1;
2185                                 btrfs_release_path(p);
2186                                 goto again;
2187                         }
2188
2189                         if (last_level)
2190                                 err = btrfs_cow_block(trans, root, b, NULL, 0,
2191                                                       &b,
2192                                                       BTRFS_NESTING_COW);
2193                         else
2194                                 err = btrfs_cow_block(trans, root, b,
2195                                                       p->nodes[level + 1],
2196                                                       p->slots[level + 1], &b,
2197                                                       BTRFS_NESTING_COW);
2198                         if (err) {
2199                                 ret = err;
2200                                 goto done;
2201                         }
2202                 }
2203 cow_done:
2204                 p->nodes[level] = b;
2205
2206                 /*
2207                  * we have a lock on b and as long as we aren't changing
2208                  * the tree, there is no way to for the items in b to change.
2209                  * It is safe to drop the lock on our parent before we
2210                  * go through the expensive btree search on b.
2211                  *
2212                  * If we're inserting or deleting (ins_len != 0), then we might
2213                  * be changing slot zero, which may require changing the parent.
2214                  * So, we can't drop the lock until after we know which slot
2215                  * we're operating on.
2216                  */
2217                 if (!ins_len && !p->keep_locks) {
2218                         int u = level + 1;
2219
2220                         if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2221                                 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2222                                 p->locks[u] = 0;
2223                         }
2224                 }
2225
2226                 if (level == 0) {
2227                         if (ins_len > 0)
2228                                 ASSERT(write_lock_level >= 1);
2229
2230                         ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2231                         if (!p->search_for_split)
2232                                 unlock_up(p, level, lowest_unlock,
2233                                           min_write_lock_level, NULL);
2234                         goto done;
2235                 }
2236
2237                 ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2238                 if (ret < 0)
2239                         goto done;
2240                 prev_cmp = ret;
2241
2242                 if (ret && slot > 0) {
2243                         dec = 1;
2244                         slot--;
2245                 }
2246                 p->slots[level] = slot;
2247                 err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2248                                              &write_lock_level);
2249                 if (err == -EAGAIN)
2250                         goto again;
2251                 if (err) {
2252                         ret = err;
2253                         goto done;
2254                 }
2255                 b = p->nodes[level];
2256                 slot = p->slots[level];
2257
2258                 /*
2259                  * Slot 0 is special, if we change the key we have to update
2260                  * the parent pointer which means we must have a write lock on
2261                  * the parent
2262                  */
2263                 if (slot == 0 && ins_len && write_lock_level < level + 1) {
2264                         write_lock_level = level + 1;
2265                         btrfs_release_path(p);
2266                         goto again;
2267                 }
2268
2269                 unlock_up(p, level, lowest_unlock, min_write_lock_level,
2270                           &write_lock_level);
2271
2272                 if (level == lowest_level) {
2273                         if (dec)
2274                                 p->slots[level]++;
2275                         goto done;
2276                 }
2277
2278                 err = read_block_for_search(root, p, &b, level, slot, key);
2279                 if (err == -EAGAIN)
2280                         goto again;
2281                 if (err) {
2282                         ret = err;
2283                         goto done;
2284                 }
2285
2286                 if (!p->skip_locking) {
2287                         level = btrfs_header_level(b);
2288
2289                         btrfs_maybe_reset_lockdep_class(root, b);
2290
2291                         if (level <= write_lock_level) {
2292                                 btrfs_tree_lock(b);
2293                                 p->locks[level] = BTRFS_WRITE_LOCK;
2294                         } else {
2295                                 if (p->nowait) {
2296                                         if (!btrfs_try_tree_read_lock(b)) {
2297                                                 free_extent_buffer(b);
2298                                                 ret = -EAGAIN;
2299                                                 goto done;
2300                                         }
2301                                 } else {
2302                                         btrfs_tree_read_lock(b);
2303                                 }
2304                                 p->locks[level] = BTRFS_READ_LOCK;
2305                         }
2306                         p->nodes[level] = b;
2307                 }
2308         }
2309         ret = 1;
2310 done:
2311         if (ret < 0 && !p->skip_release_on_error)
2312                 btrfs_release_path(p);
2313
2314         if (p->need_commit_sem) {
2315                 int ret2;
2316
2317                 ret2 = finish_need_commit_sem_search(p);
2318                 up_read(&fs_info->commit_root_sem);
2319                 if (ret2)
2320                         ret = ret2;
2321         }
2322
2323         return ret;
2324 }
2325 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2326
2327 /*
2328  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2329  * current state of the tree together with the operations recorded in the tree
2330  * modification log to search for the key in a previous version of this tree, as
2331  * denoted by the time_seq parameter.
2332  *
2333  * Naturally, there is no support for insert, delete or cow operations.
2334  *
2335  * The resulting path and return value will be set up as if we called
2336  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2337  */
2338 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2339                           struct btrfs_path *p, u64 time_seq)
2340 {
2341         struct btrfs_fs_info *fs_info = root->fs_info;
2342         struct extent_buffer *b;
2343         int slot;
2344         int ret;
2345         int err;
2346         int level;
2347         int lowest_unlock = 1;
2348         u8 lowest_level = 0;
2349
2350         lowest_level = p->lowest_level;
2351         WARN_ON(p->nodes[0] != NULL);
2352         ASSERT(!p->nowait);
2353
2354         if (p->search_commit_root) {
2355                 BUG_ON(time_seq);
2356                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2357         }
2358
2359 again:
2360         b = btrfs_get_old_root(root, time_seq);
2361         if (!b) {
2362                 ret = -EIO;
2363                 goto done;
2364         }
2365         level = btrfs_header_level(b);
2366         p->locks[level] = BTRFS_READ_LOCK;
2367
2368         while (b) {
2369                 int dec = 0;
2370
2371                 level = btrfs_header_level(b);
2372                 p->nodes[level] = b;
2373
2374                 /*
2375                  * we have a lock on b and as long as we aren't changing
2376                  * the tree, there is no way to for the items in b to change.
2377                  * It is safe to drop the lock on our parent before we
2378                  * go through the expensive btree search on b.
2379                  */
2380                 btrfs_unlock_up_safe(p, level + 1);
2381
2382                 ret = btrfs_bin_search(b, 0, key, &slot);
2383                 if (ret < 0)
2384                         goto done;
2385
2386                 if (level == 0) {
2387                         p->slots[level] = slot;
2388                         unlock_up(p, level, lowest_unlock, 0, NULL);
2389                         goto done;
2390                 }
2391
2392                 if (ret && slot > 0) {
2393                         dec = 1;
2394                         slot--;
2395                 }
2396                 p->slots[level] = slot;
2397                 unlock_up(p, level, lowest_unlock, 0, NULL);
2398
2399                 if (level == lowest_level) {
2400                         if (dec)
2401                                 p->slots[level]++;
2402                         goto done;
2403                 }
2404
2405                 err = read_block_for_search(root, p, &b, level, slot, key);
2406                 if (err == -EAGAIN)
2407                         goto again;
2408                 if (err) {
2409                         ret = err;
2410                         goto done;
2411                 }
2412
2413                 level = btrfs_header_level(b);
2414                 btrfs_tree_read_lock(b);
2415                 b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2416                 if (!b) {
2417                         ret = -ENOMEM;
2418                         goto done;
2419                 }
2420                 p->locks[level] = BTRFS_READ_LOCK;
2421                 p->nodes[level] = b;
2422         }
2423         ret = 1;
2424 done:
2425         if (ret < 0)
2426                 btrfs_release_path(p);
2427
2428         return ret;
2429 }
2430
2431 /*
2432  * Search the tree again to find a leaf with smaller keys.
2433  * Returns 0 if it found something.
2434  * Returns 1 if there are no smaller keys.
2435  * Returns < 0 on error.
2436  *
2437  * This may release the path, and so you may lose any locks held at the
2438  * time you call it.
2439  */
2440 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2441 {
2442         struct btrfs_key key;
2443         struct btrfs_key orig_key;
2444         struct btrfs_disk_key found_key;
2445         int ret;
2446
2447         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
2448         orig_key = key;
2449
2450         if (key.offset > 0) {
2451                 key.offset--;
2452         } else if (key.type > 0) {
2453                 key.type--;
2454                 key.offset = (u64)-1;
2455         } else if (key.objectid > 0) {
2456                 key.objectid--;
2457                 key.type = (u8)-1;
2458                 key.offset = (u64)-1;
2459         } else {
2460                 return 1;
2461         }
2462
2463         btrfs_release_path(path);
2464         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2465         if (ret <= 0)
2466                 return ret;
2467
2468         /*
2469          * Previous key not found. Even if we were at slot 0 of the leaf we had
2470          * before releasing the path and calling btrfs_search_slot(), we now may
2471          * be in a slot pointing to the same original key - this can happen if
2472          * after we released the path, one of more items were moved from a
2473          * sibling leaf into the front of the leaf we had due to an insertion
2474          * (see push_leaf_right()).
2475          * If we hit this case and our slot is > 0 and just decrement the slot
2476          * so that the caller does not process the same key again, which may or
2477          * may not break the caller, depending on its logic.
2478          */
2479         if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
2480                 btrfs_item_key(path->nodes[0], &found_key, path->slots[0]);
2481                 ret = comp_keys(&found_key, &orig_key);
2482                 if (ret == 0) {
2483                         if (path->slots[0] > 0) {
2484                                 path->slots[0]--;
2485                                 return 0;
2486                         }
2487                         /*
2488                          * At slot 0, same key as before, it means orig_key is
2489                          * the lowest, leftmost, key in the tree. We're done.
2490                          */
2491                         return 1;
2492                 }
2493         }
2494
2495         btrfs_item_key(path->nodes[0], &found_key, 0);
2496         ret = comp_keys(&found_key, &key);
2497         /*
2498          * We might have had an item with the previous key in the tree right
2499          * before we released our path. And after we released our path, that
2500          * item might have been pushed to the first slot (0) of the leaf we
2501          * were holding due to a tree balance. Alternatively, an item with the
2502          * previous key can exist as the only element of a leaf (big fat item).
2503          * Therefore account for these 2 cases, so that our callers (like
2504          * btrfs_previous_item) don't miss an existing item with a key matching
2505          * the previous key we computed above.
2506          */
2507         if (ret <= 0)
2508                 return 0;
2509         return 1;
2510 }
2511
2512 /*
2513  * helper to use instead of search slot if no exact match is needed but
2514  * instead the next or previous item should be returned.
2515  * When find_higher is true, the next higher item is returned, the next lower
2516  * otherwise.
2517  * When return_any and find_higher are both true, and no higher item is found,
2518  * return the next lower instead.
2519  * When return_any is true and find_higher is false, and no lower item is found,
2520  * return the next higher instead.
2521  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2522  * < 0 on error
2523  */
2524 int btrfs_search_slot_for_read(struct btrfs_root *root,
2525                                const struct btrfs_key *key,
2526                                struct btrfs_path *p, int find_higher,
2527                                int return_any)
2528 {
2529         int ret;
2530         struct extent_buffer *leaf;
2531
2532 again:
2533         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2534         if (ret <= 0)
2535                 return ret;
2536         /*
2537          * a return value of 1 means the path is at the position where the
2538          * item should be inserted. Normally this is the next bigger item,
2539          * but in case the previous item is the last in a leaf, path points
2540          * to the first free slot in the previous leaf, i.e. at an invalid
2541          * item.
2542          */
2543         leaf = p->nodes[0];
2544
2545         if (find_higher) {
2546                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2547                         ret = btrfs_next_leaf(root, p);
2548                         if (ret <= 0)
2549                                 return ret;
2550                         if (!return_any)
2551                                 return 1;
2552                         /*
2553                          * no higher item found, return the next
2554                          * lower instead
2555                          */
2556                         return_any = 0;
2557                         find_higher = 0;
2558                         btrfs_release_path(p);
2559                         goto again;
2560                 }
2561         } else {
2562                 if (p->slots[0] == 0) {
2563                         ret = btrfs_prev_leaf(root, p);
2564                         if (ret < 0)
2565                                 return ret;
2566                         if (!ret) {
2567                                 leaf = p->nodes[0];
2568                                 if (p->slots[0] == btrfs_header_nritems(leaf))
2569                                         p->slots[0]--;
2570                                 return 0;
2571                         }
2572                         if (!return_any)
2573                                 return 1;
2574                         /*
2575                          * no lower item found, return the next
2576                          * higher instead
2577                          */
2578                         return_any = 0;
2579                         find_higher = 1;
2580                         btrfs_release_path(p);
2581                         goto again;
2582                 } else {
2583                         --p->slots[0];
2584                 }
2585         }
2586         return 0;
2587 }
2588
2589 /*
2590  * Execute search and call btrfs_previous_item to traverse backwards if the item
2591  * was not found.
2592  *
2593  * Return 0 if found, 1 if not found and < 0 if error.
2594  */
2595 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2596                            struct btrfs_path *path)
2597 {
2598         int ret;
2599
2600         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2601         if (ret > 0)
2602                 ret = btrfs_previous_item(root, path, key->objectid, key->type);
2603
2604         if (ret == 0)
2605                 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2606
2607         return ret;
2608 }
2609
2610 /*
2611  * Search for a valid slot for the given path.
2612  *
2613  * @root:       The root node of the tree.
2614  * @key:        Will contain a valid item if found.
2615  * @path:       The starting point to validate the slot.
2616  *
2617  * Return: 0  if the item is valid
2618  *         1  if not found
2619  *         <0 if error.
2620  */
2621 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2622                               struct btrfs_path *path)
2623 {
2624         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2625                 int ret;
2626
2627                 ret = btrfs_next_leaf(root, path);
2628                 if (ret)
2629                         return ret;
2630         }
2631
2632         btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2633         return 0;
2634 }
2635
2636 /*
2637  * adjust the pointers going up the tree, starting at level
2638  * making sure the right key of each node is points to 'key'.
2639  * This is used after shifting pointers to the left, so it stops
2640  * fixing up pointers when a given leaf/node is not in slot 0 of the
2641  * higher levels
2642  *
2643  */
2644 static void fixup_low_keys(struct btrfs_path *path,
2645                            struct btrfs_disk_key *key, int level)
2646 {
2647         int i;
2648         struct extent_buffer *t;
2649         int ret;
2650
2651         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2652                 int tslot = path->slots[i];
2653
2654                 if (!path->nodes[i])
2655                         break;
2656                 t = path->nodes[i];
2657                 ret = btrfs_tree_mod_log_insert_key(t, tslot,
2658                                                     BTRFS_MOD_LOG_KEY_REPLACE);
2659                 BUG_ON(ret < 0);
2660                 btrfs_set_node_key(t, key, tslot);
2661                 btrfs_mark_buffer_dirty(path->nodes[i]);
2662                 if (tslot != 0)
2663                         break;
2664         }
2665 }
2666
2667 /*
2668  * update item key.
2669  *
2670  * This function isn't completely safe. It's the caller's responsibility
2671  * that the new key won't break the order
2672  */
2673 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2674                              struct btrfs_path *path,
2675                              const struct btrfs_key *new_key)
2676 {
2677         struct btrfs_disk_key disk_key;
2678         struct extent_buffer *eb;
2679         int slot;
2680
2681         eb = path->nodes[0];
2682         slot = path->slots[0];
2683         if (slot > 0) {
2684                 btrfs_item_key(eb, &disk_key, slot - 1);
2685                 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2686                         btrfs_print_leaf(eb);
2687                         btrfs_crit(fs_info,
2688                 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2689                                    slot, btrfs_disk_key_objectid(&disk_key),
2690                                    btrfs_disk_key_type(&disk_key),
2691                                    btrfs_disk_key_offset(&disk_key),
2692                                    new_key->objectid, new_key->type,
2693                                    new_key->offset);
2694                         BUG();
2695                 }
2696         }
2697         if (slot < btrfs_header_nritems(eb) - 1) {
2698                 btrfs_item_key(eb, &disk_key, slot + 1);
2699                 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2700                         btrfs_print_leaf(eb);
2701                         btrfs_crit(fs_info,
2702                 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2703                                    slot, btrfs_disk_key_objectid(&disk_key),
2704                                    btrfs_disk_key_type(&disk_key),
2705                                    btrfs_disk_key_offset(&disk_key),
2706                                    new_key->objectid, new_key->type,
2707                                    new_key->offset);
2708                         BUG();
2709                 }
2710         }
2711
2712         btrfs_cpu_key_to_disk(&disk_key, new_key);
2713         btrfs_set_item_key(eb, &disk_key, slot);
2714         btrfs_mark_buffer_dirty(eb);
2715         if (slot == 0)
2716                 fixup_low_keys(path, &disk_key, 1);
2717 }
2718
2719 /*
2720  * Check key order of two sibling extent buffers.
2721  *
2722  * Return true if something is wrong.
2723  * Return false if everything is fine.
2724  *
2725  * Tree-checker only works inside one tree block, thus the following
2726  * corruption can not be detected by tree-checker:
2727  *
2728  * Leaf @left                   | Leaf @right
2729  * --------------------------------------------------------------
2730  * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2731  *
2732  * Key f6 in leaf @left itself is valid, but not valid when the next
2733  * key in leaf @right is 7.
2734  * This can only be checked at tree block merge time.
2735  * And since tree checker has ensured all key order in each tree block
2736  * is correct, we only need to bother the last key of @left and the first
2737  * key of @right.
2738  */
2739 static bool check_sibling_keys(struct extent_buffer *left,
2740                                struct extent_buffer *right)
2741 {
2742         struct btrfs_key left_last;
2743         struct btrfs_key right_first;
2744         int level = btrfs_header_level(left);
2745         int nr_left = btrfs_header_nritems(left);
2746         int nr_right = btrfs_header_nritems(right);
2747
2748         /* No key to check in one of the tree blocks */
2749         if (!nr_left || !nr_right)
2750                 return false;
2751
2752         if (level) {
2753                 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2754                 btrfs_node_key_to_cpu(right, &right_first, 0);
2755         } else {
2756                 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2757                 btrfs_item_key_to_cpu(right, &right_first, 0);
2758         }
2759
2760         if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) {
2761                 btrfs_crit(left->fs_info, "left extent buffer:");
2762                 btrfs_print_tree(left, false);
2763                 btrfs_crit(left->fs_info, "right extent buffer:");
2764                 btrfs_print_tree(right, false);
2765                 btrfs_crit(left->fs_info,
2766 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2767                            left_last.objectid, left_last.type,
2768                            left_last.offset, right_first.objectid,
2769                            right_first.type, right_first.offset);
2770                 return true;
2771         }
2772         return false;
2773 }
2774
2775 /*
2776  * try to push data from one node into the next node left in the
2777  * tree.
2778  *
2779  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2780  * error, and > 0 if there was no room in the left hand block.
2781  */
2782 static int push_node_left(struct btrfs_trans_handle *trans,
2783                           struct extent_buffer *dst,
2784                           struct extent_buffer *src, int empty)
2785 {
2786         struct btrfs_fs_info *fs_info = trans->fs_info;
2787         int push_items = 0;
2788         int src_nritems;
2789         int dst_nritems;
2790         int ret = 0;
2791
2792         src_nritems = btrfs_header_nritems(src);
2793         dst_nritems = btrfs_header_nritems(dst);
2794         push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2795         WARN_ON(btrfs_header_generation(src) != trans->transid);
2796         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2797
2798         if (!empty && src_nritems <= 8)
2799                 return 1;
2800
2801         if (push_items <= 0)
2802                 return 1;
2803
2804         if (empty) {
2805                 push_items = min(src_nritems, push_items);
2806                 if (push_items < src_nritems) {
2807                         /* leave at least 8 pointers in the node if
2808                          * we aren't going to empty it
2809                          */
2810                         if (src_nritems - push_items < 8) {
2811                                 if (push_items <= 8)
2812                                         return 1;
2813                                 push_items -= 8;
2814                         }
2815                 }
2816         } else
2817                 push_items = min(src_nritems - 8, push_items);
2818
2819         /* dst is the left eb, src is the middle eb */
2820         if (check_sibling_keys(dst, src)) {
2821                 ret = -EUCLEAN;
2822                 btrfs_abort_transaction(trans, ret);
2823                 return ret;
2824         }
2825         ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2826         if (ret) {
2827                 btrfs_abort_transaction(trans, ret);
2828                 return ret;
2829         }
2830         copy_extent_buffer(dst, src,
2831                            btrfs_node_key_ptr_offset(dst, dst_nritems),
2832                            btrfs_node_key_ptr_offset(src, 0),
2833                            push_items * sizeof(struct btrfs_key_ptr));
2834
2835         if (push_items < src_nritems) {
2836                 /*
2837                  * btrfs_tree_mod_log_eb_copy handles logging the move, so we
2838                  * don't need to do an explicit tree mod log operation for it.
2839                  */
2840                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2841                                       btrfs_node_key_ptr_offset(src, push_items),
2842                                       (src_nritems - push_items) *
2843                                       sizeof(struct btrfs_key_ptr));
2844         }
2845         btrfs_set_header_nritems(src, src_nritems - push_items);
2846         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2847         btrfs_mark_buffer_dirty(src);
2848         btrfs_mark_buffer_dirty(dst);
2849
2850         return ret;
2851 }
2852
2853 /*
2854  * try to push data from one node into the next node right in the
2855  * tree.
2856  *
2857  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2858  * error, and > 0 if there was no room in the right hand block.
2859  *
2860  * this will  only push up to 1/2 the contents of the left node over
2861  */
2862 static int balance_node_right(struct btrfs_trans_handle *trans,
2863                               struct extent_buffer *dst,
2864                               struct extent_buffer *src)
2865 {
2866         struct btrfs_fs_info *fs_info = trans->fs_info;
2867         int push_items = 0;
2868         int max_push;
2869         int src_nritems;
2870         int dst_nritems;
2871         int ret = 0;
2872
2873         WARN_ON(btrfs_header_generation(src) != trans->transid);
2874         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2875
2876         src_nritems = btrfs_header_nritems(src);
2877         dst_nritems = btrfs_header_nritems(dst);
2878         push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2879         if (push_items <= 0)
2880                 return 1;
2881
2882         if (src_nritems < 4)
2883                 return 1;
2884
2885         max_push = src_nritems / 2 + 1;
2886         /* don't try to empty the node */
2887         if (max_push >= src_nritems)
2888                 return 1;
2889
2890         if (max_push < push_items)
2891                 push_items = max_push;
2892
2893         /* dst is the right eb, src is the middle eb */
2894         if (check_sibling_keys(src, dst)) {
2895                 ret = -EUCLEAN;
2896                 btrfs_abort_transaction(trans, ret);
2897                 return ret;
2898         }
2899
2900         /*
2901          * btrfs_tree_mod_log_eb_copy handles logging the move, so we don't
2902          * need to do an explicit tree mod log operation for it.
2903          */
2904         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2905                                       btrfs_node_key_ptr_offset(dst, 0),
2906                                       (dst_nritems) *
2907                                       sizeof(struct btrfs_key_ptr));
2908
2909         ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2910                                          push_items);
2911         if (ret) {
2912                 btrfs_abort_transaction(trans, ret);
2913                 return ret;
2914         }
2915         copy_extent_buffer(dst, src,
2916                            btrfs_node_key_ptr_offset(dst, 0),
2917                            btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2918                            push_items * sizeof(struct btrfs_key_ptr));
2919
2920         btrfs_set_header_nritems(src, src_nritems - push_items);
2921         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2922
2923         btrfs_mark_buffer_dirty(src);
2924         btrfs_mark_buffer_dirty(dst);
2925
2926         return ret;
2927 }
2928
2929 /*
2930  * helper function to insert a new root level in the tree.
2931  * A new node is allocated, and a single item is inserted to
2932  * point to the existing root
2933  *
2934  * returns zero on success or < 0 on failure.
2935  */
2936 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2937                            struct btrfs_root *root,
2938                            struct btrfs_path *path, int level)
2939 {
2940         struct btrfs_fs_info *fs_info = root->fs_info;
2941         u64 lower_gen;
2942         struct extent_buffer *lower;
2943         struct extent_buffer *c;
2944         struct extent_buffer *old;
2945         struct btrfs_disk_key lower_key;
2946         int ret;
2947
2948         BUG_ON(path->nodes[level]);
2949         BUG_ON(path->nodes[level-1] != root->node);
2950
2951         lower = path->nodes[level-1];
2952         if (level == 1)
2953                 btrfs_item_key(lower, &lower_key, 0);
2954         else
2955                 btrfs_node_key(lower, &lower_key, 0);
2956
2957         c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2958                                    &lower_key, level, root->node->start, 0,
2959                                    BTRFS_NESTING_NEW_ROOT);
2960         if (IS_ERR(c))
2961                 return PTR_ERR(c);
2962
2963         root_add_used(root, fs_info->nodesize);
2964
2965         btrfs_set_header_nritems(c, 1);
2966         btrfs_set_node_key(c, &lower_key, 0);
2967         btrfs_set_node_blockptr(c, 0, lower->start);
2968         lower_gen = btrfs_header_generation(lower);
2969         WARN_ON(lower_gen != trans->transid);
2970
2971         btrfs_set_node_ptr_generation(c, 0, lower_gen);
2972
2973         btrfs_mark_buffer_dirty(c);
2974
2975         old = root->node;
2976         ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2977         if (ret < 0) {
2978                 btrfs_free_tree_block(trans, btrfs_root_id(root), c, 0, 1);
2979                 btrfs_tree_unlock(c);
2980                 free_extent_buffer(c);
2981                 return ret;
2982         }
2983         rcu_assign_pointer(root->node, c);
2984
2985         /* the super has an extra ref to root->node */
2986         free_extent_buffer(old);
2987
2988         add_root_to_dirty_list(root);
2989         atomic_inc(&c->refs);
2990         path->nodes[level] = c;
2991         path->locks[level] = BTRFS_WRITE_LOCK;
2992         path->slots[level] = 0;
2993         return 0;
2994 }
2995
2996 /*
2997  * worker function to insert a single pointer in a node.
2998  * the node should have enough room for the pointer already
2999  *
3000  * slot and level indicate where you want the key to go, and
3001  * blocknr is the block the key points to.
3002  */
3003 static int insert_ptr(struct btrfs_trans_handle *trans,
3004                       struct btrfs_path *path,
3005                       struct btrfs_disk_key *key, u64 bytenr,
3006                       int slot, int level)
3007 {
3008         struct extent_buffer *lower;
3009         int nritems;
3010         int ret;
3011
3012         BUG_ON(!path->nodes[level]);
3013         btrfs_assert_tree_write_locked(path->nodes[level]);
3014         lower = path->nodes[level];
3015         nritems = btrfs_header_nritems(lower);
3016         BUG_ON(slot > nritems);
3017         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3018         if (slot != nritems) {
3019                 if (level) {
3020                         ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
3021                                         slot, nritems - slot);
3022                         if (ret < 0) {
3023                                 btrfs_abort_transaction(trans, ret);
3024                                 return ret;
3025                         }
3026                 }
3027                 memmove_extent_buffer(lower,
3028                               btrfs_node_key_ptr_offset(lower, slot + 1),
3029                               btrfs_node_key_ptr_offset(lower, slot),
3030                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3031         }
3032         if (level) {
3033                 ret = btrfs_tree_mod_log_insert_key(lower, slot,
3034                                                     BTRFS_MOD_LOG_KEY_ADD);
3035                 if (ret < 0) {
3036                         btrfs_abort_transaction(trans, ret);
3037                         return ret;
3038                 }
3039         }
3040         btrfs_set_node_key(lower, key, slot);
3041         btrfs_set_node_blockptr(lower, slot, bytenr);
3042         WARN_ON(trans->transid == 0);
3043         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3044         btrfs_set_header_nritems(lower, nritems + 1);
3045         btrfs_mark_buffer_dirty(lower);
3046
3047         return 0;
3048 }
3049
3050 /*
3051  * split the node at the specified level in path in two.
3052  * The path is corrected to point to the appropriate node after the split
3053  *
3054  * Before splitting this tries to make some room in the node by pushing
3055  * left and right, if either one works, it returns right away.
3056  *
3057  * returns 0 on success and < 0 on failure
3058  */
3059 static noinline int split_node(struct btrfs_trans_handle *trans,
3060                                struct btrfs_root *root,
3061                                struct btrfs_path *path, int level)
3062 {
3063         struct btrfs_fs_info *fs_info = root->fs_info;
3064         struct extent_buffer *c;
3065         struct extent_buffer *split;
3066         struct btrfs_disk_key disk_key;
3067         int mid;
3068         int ret;
3069         u32 c_nritems;
3070
3071         c = path->nodes[level];
3072         WARN_ON(btrfs_header_generation(c) != trans->transid);
3073         if (c == root->node) {
3074                 /*
3075                  * trying to split the root, lets make a new one
3076                  *
3077                  * tree mod log: We don't log_removal old root in
3078                  * insert_new_root, because that root buffer will be kept as a
3079                  * normal node. We are going to log removal of half of the
3080                  * elements below with btrfs_tree_mod_log_eb_copy(). We're
3081                  * holding a tree lock on the buffer, which is why we cannot
3082                  * race with other tree_mod_log users.
3083                  */
3084                 ret = insert_new_root(trans, root, path, level + 1);
3085                 if (ret)
3086                         return ret;
3087         } else {
3088                 ret = push_nodes_for_insert(trans, root, path, level);
3089                 c = path->nodes[level];
3090                 if (!ret && btrfs_header_nritems(c) <
3091                     BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3092                         return 0;
3093                 if (ret < 0)
3094                         return ret;
3095         }
3096
3097         c_nritems = btrfs_header_nritems(c);
3098         mid = (c_nritems + 1) / 2;
3099         btrfs_node_key(c, &disk_key, mid);
3100
3101         split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3102                                        &disk_key, level, c->start, 0,
3103                                        BTRFS_NESTING_SPLIT);
3104         if (IS_ERR(split))
3105                 return PTR_ERR(split);
3106
3107         root_add_used(root, fs_info->nodesize);
3108         ASSERT(btrfs_header_level(c) == level);
3109
3110         ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3111         if (ret) {
3112                 btrfs_tree_unlock(split);
3113                 free_extent_buffer(split);
3114                 btrfs_abort_transaction(trans, ret);
3115                 return ret;
3116         }
3117         copy_extent_buffer(split, c,
3118                            btrfs_node_key_ptr_offset(split, 0),
3119                            btrfs_node_key_ptr_offset(c, mid),
3120                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3121         btrfs_set_header_nritems(split, c_nritems - mid);
3122         btrfs_set_header_nritems(c, mid);
3123
3124         btrfs_mark_buffer_dirty(c);
3125         btrfs_mark_buffer_dirty(split);
3126
3127         ret = insert_ptr(trans, path, &disk_key, split->start,
3128                          path->slots[level + 1] + 1, level + 1);
3129         if (ret < 0) {
3130                 btrfs_tree_unlock(split);
3131                 free_extent_buffer(split);
3132                 return ret;
3133         }
3134
3135         if (path->slots[level] >= mid) {
3136                 path->slots[level] -= mid;
3137                 btrfs_tree_unlock(c);
3138                 free_extent_buffer(c);
3139                 path->nodes[level] = split;
3140                 path->slots[level + 1] += 1;
3141         } else {
3142                 btrfs_tree_unlock(split);
3143                 free_extent_buffer(split);
3144         }
3145         return 0;
3146 }
3147
3148 /*
3149  * how many bytes are required to store the items in a leaf.  start
3150  * and nr indicate which items in the leaf to check.  This totals up the
3151  * space used both by the item structs and the item data
3152  */
3153 static int leaf_space_used(const struct extent_buffer *l, int start, int nr)
3154 {
3155         int data_len;
3156         int nritems = btrfs_header_nritems(l);
3157         int end = min(nritems, start + nr) - 1;
3158
3159         if (!nr)
3160                 return 0;
3161         data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3162         data_len = data_len - btrfs_item_offset(l, end);
3163         data_len += sizeof(struct btrfs_item) * nr;
3164         WARN_ON(data_len < 0);
3165         return data_len;
3166 }
3167
3168 /*
3169  * The space between the end of the leaf items and
3170  * the start of the leaf data.  IOW, how much room
3171  * the leaf has left for both items and data
3172  */
3173 int btrfs_leaf_free_space(const struct extent_buffer *leaf)
3174 {
3175         struct btrfs_fs_info *fs_info = leaf->fs_info;
3176         int nritems = btrfs_header_nritems(leaf);
3177         int ret;
3178
3179         ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3180         if (ret < 0) {
3181                 btrfs_crit(fs_info,
3182                            "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3183                            ret,
3184                            (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3185                            leaf_space_used(leaf, 0, nritems), nritems);
3186         }
3187         return ret;
3188 }
3189
3190 /*
3191  * min slot controls the lowest index we're willing to push to the
3192  * right.  We'll push up to and including min_slot, but no lower
3193  */
3194 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3195                                       struct btrfs_path *path,
3196                                       int data_size, int empty,
3197                                       struct extent_buffer *right,
3198                                       int free_space, u32 left_nritems,
3199                                       u32 min_slot)
3200 {
3201         struct btrfs_fs_info *fs_info = right->fs_info;
3202         struct extent_buffer *left = path->nodes[0];
3203         struct extent_buffer *upper = path->nodes[1];
3204         struct btrfs_map_token token;
3205         struct btrfs_disk_key disk_key;
3206         int slot;
3207         u32 i;
3208         int push_space = 0;
3209         int push_items = 0;
3210         u32 nr;
3211         u32 right_nritems;
3212         u32 data_end;
3213         u32 this_item_size;
3214
3215         if (empty)
3216                 nr = 0;
3217         else
3218                 nr = max_t(u32, 1, min_slot);
3219
3220         if (path->slots[0] >= left_nritems)
3221                 push_space += data_size;
3222
3223         slot = path->slots[1];
3224         i = left_nritems - 1;
3225         while (i >= nr) {
3226                 if (!empty && push_items > 0) {
3227                         if (path->slots[0] > i)
3228                                 break;
3229                         if (path->slots[0] == i) {
3230                                 int space = btrfs_leaf_free_space(left);
3231
3232                                 if (space + push_space * 2 > free_space)
3233                                         break;
3234                         }
3235                 }
3236
3237                 if (path->slots[0] == i)
3238                         push_space += data_size;
3239
3240                 this_item_size = btrfs_item_size(left, i);
3241                 if (this_item_size + sizeof(struct btrfs_item) +
3242                     push_space > free_space)
3243                         break;
3244
3245                 push_items++;
3246                 push_space += this_item_size + sizeof(struct btrfs_item);
3247                 if (i == 0)
3248                         break;
3249                 i--;
3250         }
3251
3252         if (push_items == 0)
3253                 goto out_unlock;
3254
3255         WARN_ON(!empty && push_items == left_nritems);
3256
3257         /* push left to right */
3258         right_nritems = btrfs_header_nritems(right);
3259
3260         push_space = btrfs_item_data_end(left, left_nritems - push_items);
3261         push_space -= leaf_data_end(left);
3262
3263         /* make room in the right data area */
3264         data_end = leaf_data_end(right);
3265         memmove_leaf_data(right, data_end - push_space, data_end,
3266                           BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3267
3268         /* copy from the left data area */
3269         copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3270                        leaf_data_end(left), push_space);
3271
3272         memmove_leaf_items(right, push_items, 0, right_nritems);
3273
3274         /* copy the items from left to right */
3275         copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
3276
3277         /* update the item pointers */
3278         btrfs_init_map_token(&token, right);
3279         right_nritems += push_items;
3280         btrfs_set_header_nritems(right, right_nritems);
3281         push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3282         for (i = 0; i < right_nritems; i++) {
3283                 push_space -= btrfs_token_item_size(&token, i);
3284                 btrfs_set_token_item_offset(&token, i, push_space);
3285         }
3286
3287         left_nritems -= push_items;
3288         btrfs_set_header_nritems(left, left_nritems);
3289
3290         if (left_nritems)
3291                 btrfs_mark_buffer_dirty(left);
3292         else
3293                 btrfs_clear_buffer_dirty(trans, left);
3294
3295         btrfs_mark_buffer_dirty(right);
3296
3297         btrfs_item_key(right, &disk_key, 0);
3298         btrfs_set_node_key(upper, &disk_key, slot + 1);
3299         btrfs_mark_buffer_dirty(upper);
3300
3301         /* then fixup the leaf pointer in the path */
3302         if (path->slots[0] >= left_nritems) {
3303                 path->slots[0] -= left_nritems;
3304                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3305                         btrfs_clear_buffer_dirty(trans, path->nodes[0]);
3306                 btrfs_tree_unlock(path->nodes[0]);
3307                 free_extent_buffer(path->nodes[0]);
3308                 path->nodes[0] = right;
3309                 path->slots[1] += 1;
3310         } else {
3311                 btrfs_tree_unlock(right);
3312                 free_extent_buffer(right);
3313         }
3314         return 0;
3315
3316 out_unlock:
3317         btrfs_tree_unlock(right);
3318         free_extent_buffer(right);
3319         return 1;
3320 }
3321
3322 /*
3323  * push some data in the path leaf to the right, trying to free up at
3324  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3325  *
3326  * returns 1 if the push failed because the other node didn't have enough
3327  * room, 0 if everything worked out and < 0 if there were major errors.
3328  *
3329  * this will push starting from min_slot to the end of the leaf.  It won't
3330  * push any slot lower than min_slot
3331  */
3332 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3333                            *root, struct btrfs_path *path,
3334                            int min_data_size, int data_size,
3335                            int empty, u32 min_slot)
3336 {
3337         struct extent_buffer *left = path->nodes[0];
3338         struct extent_buffer *right;
3339         struct extent_buffer *upper;
3340         int slot;
3341         int free_space;
3342         u32 left_nritems;
3343         int ret;
3344
3345         if (!path->nodes[1])
3346                 return 1;
3347
3348         slot = path->slots[1];
3349         upper = path->nodes[1];
3350         if (slot >= btrfs_header_nritems(upper) - 1)
3351                 return 1;
3352
3353         btrfs_assert_tree_write_locked(path->nodes[1]);
3354
3355         right = btrfs_read_node_slot(upper, slot + 1);
3356         if (IS_ERR(right))
3357                 return PTR_ERR(right);
3358
3359         __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
3360
3361         free_space = btrfs_leaf_free_space(right);
3362         if (free_space < data_size)
3363                 goto out_unlock;
3364
3365         ret = btrfs_cow_block(trans, root, right, upper,
3366                               slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3367         if (ret)
3368                 goto out_unlock;
3369
3370         left_nritems = btrfs_header_nritems(left);
3371         if (left_nritems == 0)
3372                 goto out_unlock;
3373
3374         if (check_sibling_keys(left, right)) {
3375                 ret = -EUCLEAN;
3376                 btrfs_abort_transaction(trans, ret);
3377                 btrfs_tree_unlock(right);
3378                 free_extent_buffer(right);
3379                 return ret;
3380         }
3381         if (path->slots[0] == left_nritems && !empty) {
3382                 /* Key greater than all keys in the leaf, right neighbor has
3383                  * enough room for it and we're not emptying our leaf to delete
3384                  * it, therefore use right neighbor to insert the new item and
3385                  * no need to touch/dirty our left leaf. */
3386                 btrfs_tree_unlock(left);
3387                 free_extent_buffer(left);
3388                 path->nodes[0] = right;
3389                 path->slots[0] = 0;
3390                 path->slots[1]++;
3391                 return 0;
3392         }
3393
3394         return __push_leaf_right(trans, path, min_data_size, empty, right,
3395                                  free_space, left_nritems, min_slot);
3396 out_unlock:
3397         btrfs_tree_unlock(right);
3398         free_extent_buffer(right);
3399         return 1;
3400 }
3401
3402 /*
3403  * push some data in the path leaf to the left, trying to free up at
3404  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3405  *
3406  * max_slot can put a limit on how far into the leaf we'll push items.  The
3407  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3408  * items
3409  */
3410 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3411                                      struct btrfs_path *path, int data_size,
3412                                      int empty, struct extent_buffer *left,
3413                                      int free_space, u32 right_nritems,
3414                                      u32 max_slot)
3415 {
3416         struct btrfs_fs_info *fs_info = left->fs_info;
3417         struct btrfs_disk_key disk_key;
3418         struct extent_buffer *right = path->nodes[0];
3419         int i;
3420         int push_space = 0;
3421         int push_items = 0;
3422         u32 old_left_nritems;
3423         u32 nr;
3424         int ret = 0;
3425         u32 this_item_size;
3426         u32 old_left_item_size;
3427         struct btrfs_map_token token;
3428
3429         if (empty)
3430                 nr = min(right_nritems, max_slot);
3431         else
3432                 nr = min(right_nritems - 1, max_slot);
3433
3434         for (i = 0; i < nr; i++) {
3435                 if (!empty && push_items > 0) {
3436                         if (path->slots[0] < i)
3437                                 break;
3438                         if (path->slots[0] == i) {
3439                                 int space = btrfs_leaf_free_space(right);
3440
3441                                 if (space + push_space * 2 > free_space)
3442                                         break;
3443                         }
3444                 }
3445
3446                 if (path->slots[0] == i)
3447                         push_space += data_size;
3448
3449                 this_item_size = btrfs_item_size(right, i);
3450                 if (this_item_size + sizeof(struct btrfs_item) + push_space >
3451                     free_space)
3452                         break;
3453
3454                 push_items++;
3455                 push_space += this_item_size + sizeof(struct btrfs_item);
3456         }
3457
3458         if (push_items == 0) {
3459                 ret = 1;
3460                 goto out;
3461         }
3462         WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3463
3464         /* push data from right to left */
3465         copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3466
3467         push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3468                      btrfs_item_offset(right, push_items - 1);
3469
3470         copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3471                        btrfs_item_offset(right, push_items - 1), push_space);
3472         old_left_nritems = btrfs_header_nritems(left);
3473         BUG_ON(old_left_nritems <= 0);
3474
3475         btrfs_init_map_token(&token, left);
3476         old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3477         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3478                 u32 ioff;
3479
3480                 ioff = btrfs_token_item_offset(&token, i);
3481                 btrfs_set_token_item_offset(&token, i,
3482                       ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3483         }
3484         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3485
3486         /* fixup right node */
3487         if (push_items > right_nritems)
3488                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3489                        right_nritems);
3490
3491         if (push_items < right_nritems) {
3492                 push_space = btrfs_item_offset(right, push_items - 1) -
3493                                                   leaf_data_end(right);
3494                 memmove_leaf_data(right,
3495                                   BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3496                                   leaf_data_end(right), push_space);
3497
3498                 memmove_leaf_items(right, 0, push_items,
3499                                    btrfs_header_nritems(right) - push_items);
3500         }
3501
3502         btrfs_init_map_token(&token, right);
3503         right_nritems -= push_items;
3504         btrfs_set_header_nritems(right, right_nritems);
3505         push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3506         for (i = 0; i < right_nritems; i++) {
3507                 push_space = push_space - btrfs_token_item_size(&token, i);
3508                 btrfs_set_token_item_offset(&token, i, push_space);
3509         }
3510
3511         btrfs_mark_buffer_dirty(left);
3512         if (right_nritems)
3513                 btrfs_mark_buffer_dirty(right);
3514         else
3515                 btrfs_clear_buffer_dirty(trans, right);
3516
3517         btrfs_item_key(right, &disk_key, 0);
3518         fixup_low_keys(path, &disk_key, 1);
3519
3520         /* then fixup the leaf pointer in the path */
3521         if (path->slots[0] < push_items) {
3522                 path->slots[0] += old_left_nritems;
3523                 btrfs_tree_unlock(path->nodes[0]);
3524                 free_extent_buffer(path->nodes[0]);
3525                 path->nodes[0] = left;
3526                 path->slots[1] -= 1;
3527         } else {
3528                 btrfs_tree_unlock(left);
3529                 free_extent_buffer(left);
3530                 path->slots[0] -= push_items;
3531         }
3532         BUG_ON(path->slots[0] < 0);
3533         return ret;
3534 out:
3535         btrfs_tree_unlock(left);
3536         free_extent_buffer(left);
3537         return ret;
3538 }
3539
3540 /*
3541  * push some data in the path leaf to the left, trying to free up at
3542  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3543  *
3544  * max_slot can put a limit on how far into the leaf we'll push items.  The
3545  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3546  * items
3547  */
3548 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3549                           *root, struct btrfs_path *path, int min_data_size,
3550                           int data_size, int empty, u32 max_slot)
3551 {
3552         struct extent_buffer *right = path->nodes[0];
3553         struct extent_buffer *left;
3554         int slot;
3555         int free_space;
3556         u32 right_nritems;
3557         int ret = 0;
3558
3559         slot = path->slots[1];
3560         if (slot == 0)
3561                 return 1;
3562         if (!path->nodes[1])
3563                 return 1;
3564
3565         right_nritems = btrfs_header_nritems(right);
3566         if (right_nritems == 0)
3567                 return 1;
3568
3569         btrfs_assert_tree_write_locked(path->nodes[1]);
3570
3571         left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3572         if (IS_ERR(left))
3573                 return PTR_ERR(left);
3574
3575         __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3576
3577         free_space = btrfs_leaf_free_space(left);
3578         if (free_space < data_size) {
3579                 ret = 1;
3580                 goto out;
3581         }
3582
3583         ret = btrfs_cow_block(trans, root, left,
3584                               path->nodes[1], slot - 1, &left,
3585                               BTRFS_NESTING_LEFT_COW);
3586         if (ret) {
3587                 /* we hit -ENOSPC, but it isn't fatal here */
3588                 if (ret == -ENOSPC)
3589                         ret = 1;
3590                 goto out;
3591         }
3592
3593         if (check_sibling_keys(left, right)) {
3594                 ret = -EUCLEAN;
3595                 btrfs_abort_transaction(trans, ret);
3596                 goto out;
3597         }
3598         return __push_leaf_left(trans, path, min_data_size, empty, left,
3599                                 free_space, right_nritems, max_slot);
3600 out:
3601         btrfs_tree_unlock(left);
3602         free_extent_buffer(left);
3603         return ret;
3604 }
3605
3606 /*
3607  * split the path's leaf in two, making sure there is at least data_size
3608  * available for the resulting leaf level of the path.
3609  */
3610 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
3611                                    struct btrfs_path *path,
3612                                    struct extent_buffer *l,
3613                                    struct extent_buffer *right,
3614                                    int slot, int mid, int nritems)
3615 {
3616         struct btrfs_fs_info *fs_info = trans->fs_info;
3617         int data_copy_size;
3618         int rt_data_off;
3619         int i;
3620         int ret;
3621         struct btrfs_disk_key disk_key;
3622         struct btrfs_map_token token;
3623
3624         nritems = nritems - mid;
3625         btrfs_set_header_nritems(right, nritems);
3626         data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3627
3628         copy_leaf_items(right, l, 0, mid, nritems);
3629
3630         copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3631                        leaf_data_end(l), data_copy_size);
3632
3633         rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3634
3635         btrfs_init_map_token(&token, right);
3636         for (i = 0; i < nritems; i++) {
3637                 u32 ioff;
3638
3639                 ioff = btrfs_token_item_offset(&token, i);
3640                 btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3641         }
3642
3643         btrfs_set_header_nritems(l, mid);
3644         btrfs_item_key(right, &disk_key, 0);
3645         ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3646         if (ret < 0)
3647                 return ret;
3648
3649         btrfs_mark_buffer_dirty(right);
3650         btrfs_mark_buffer_dirty(l);
3651         BUG_ON(path->slots[0] != slot);
3652
3653         if (mid <= slot) {
3654                 btrfs_tree_unlock(path->nodes[0]);
3655                 free_extent_buffer(path->nodes[0]);
3656                 path->nodes[0] = right;
3657                 path->slots[0] -= mid;
3658                 path->slots[1] += 1;
3659         } else {
3660                 btrfs_tree_unlock(right);
3661                 free_extent_buffer(right);
3662         }
3663
3664         BUG_ON(path->slots[0] < 0);
3665
3666         return 0;
3667 }
3668
3669 /*
3670  * double splits happen when we need to insert a big item in the middle
3671  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3672  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3673  *          A                 B                 C
3674  *
3675  * We avoid this by trying to push the items on either side of our target
3676  * into the adjacent leaves.  If all goes well we can avoid the double split
3677  * completely.
3678  */
3679 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3680                                           struct btrfs_root *root,
3681                                           struct btrfs_path *path,
3682                                           int data_size)
3683 {
3684         int ret;
3685         int progress = 0;
3686         int slot;
3687         u32 nritems;
3688         int space_needed = data_size;
3689
3690         slot = path->slots[0];
3691         if (slot < btrfs_header_nritems(path->nodes[0]))
3692                 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3693
3694         /*
3695          * try to push all the items after our slot into the
3696          * right leaf
3697          */
3698         ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3699         if (ret < 0)
3700                 return ret;
3701
3702         if (ret == 0)
3703                 progress++;
3704
3705         nritems = btrfs_header_nritems(path->nodes[0]);
3706         /*
3707          * our goal is to get our slot at the start or end of a leaf.  If
3708          * we've done so we're done
3709          */
3710         if (path->slots[0] == 0 || path->slots[0] == nritems)
3711                 return 0;
3712
3713         if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3714                 return 0;
3715
3716         /* try to push all the items before our slot into the next leaf */
3717         slot = path->slots[0];
3718         space_needed = data_size;
3719         if (slot > 0)
3720                 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3721         ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3722         if (ret < 0)
3723                 return ret;
3724
3725         if (ret == 0)
3726                 progress++;
3727
3728         if (progress)
3729                 return 0;
3730         return 1;
3731 }
3732
3733 /*
3734  * split the path's leaf in two, making sure there is at least data_size
3735  * available for the resulting leaf level of the path.
3736  *
3737  * returns 0 if all went well and < 0 on failure.
3738  */
3739 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3740                                struct btrfs_root *root,
3741                                const struct btrfs_key *ins_key,
3742                                struct btrfs_path *path, int data_size,
3743                                int extend)
3744 {
3745         struct btrfs_disk_key disk_key;
3746         struct extent_buffer *l;
3747         u32 nritems;
3748         int mid;
3749         int slot;
3750         struct extent_buffer *right;
3751         struct btrfs_fs_info *fs_info = root->fs_info;
3752         int ret = 0;
3753         int wret;
3754         int split;
3755         int num_doubles = 0;
3756         int tried_avoid_double = 0;
3757
3758         l = path->nodes[0];
3759         slot = path->slots[0];
3760         if (extend && data_size + btrfs_item_size(l, slot) +
3761             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3762                 return -EOVERFLOW;
3763
3764         /* first try to make some room by pushing left and right */
3765         if (data_size && path->nodes[1]) {
3766                 int space_needed = data_size;
3767
3768                 if (slot < btrfs_header_nritems(l))
3769                         space_needed -= btrfs_leaf_free_space(l);
3770
3771                 wret = push_leaf_right(trans, root, path, space_needed,
3772                                        space_needed, 0, 0);
3773                 if (wret < 0)
3774                         return wret;
3775                 if (wret) {
3776                         space_needed = data_size;
3777                         if (slot > 0)
3778                                 space_needed -= btrfs_leaf_free_space(l);
3779                         wret = push_leaf_left(trans, root, path, space_needed,
3780                                               space_needed, 0, (u32)-1);
3781                         if (wret < 0)
3782                                 return wret;
3783                 }
3784                 l = path->nodes[0];
3785
3786                 /* did the pushes work? */
3787                 if (btrfs_leaf_free_space(l) >= data_size)
3788                         return 0;
3789         }
3790
3791         if (!path->nodes[1]) {
3792                 ret = insert_new_root(trans, root, path, 1);
3793                 if (ret)
3794                         return ret;
3795         }
3796 again:
3797         split = 1;
3798         l = path->nodes[0];
3799         slot = path->slots[0];
3800         nritems = btrfs_header_nritems(l);
3801         mid = (nritems + 1) / 2;
3802
3803         if (mid <= slot) {
3804                 if (nritems == 1 ||
3805                     leaf_space_used(l, mid, nritems - mid) + data_size >
3806                         BTRFS_LEAF_DATA_SIZE(fs_info)) {
3807                         if (slot >= nritems) {
3808                                 split = 0;
3809                         } else {
3810                                 mid = slot;
3811                                 if (mid != nritems &&
3812                                     leaf_space_used(l, mid, nritems - mid) +
3813                                     data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3814                                         if (data_size && !tried_avoid_double)
3815                                                 goto push_for_double;
3816                                         split = 2;
3817                                 }
3818                         }
3819                 }
3820         } else {
3821                 if (leaf_space_used(l, 0, mid) + data_size >
3822                         BTRFS_LEAF_DATA_SIZE(fs_info)) {
3823                         if (!extend && data_size && slot == 0) {
3824                                 split = 0;
3825                         } else if ((extend || !data_size) && slot == 0) {
3826                                 mid = 1;
3827                         } else {
3828                                 mid = slot;
3829                                 if (mid != nritems &&
3830                                     leaf_space_used(l, mid, nritems - mid) +
3831                                     data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3832                                         if (data_size && !tried_avoid_double)
3833                                                 goto push_for_double;
3834                                         split = 2;
3835                                 }
3836                         }
3837                 }
3838         }
3839
3840         if (split == 0)
3841                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3842         else
3843                 btrfs_item_key(l, &disk_key, mid);
3844
3845         /*
3846          * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3847          * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3848          * subclasses, which is 8 at the time of this patch, and we've maxed it
3849          * out.  In the future we could add a
3850          * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3851          * use BTRFS_NESTING_NEW_ROOT.
3852          */
3853         right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3854                                        &disk_key, 0, l->start, 0,
3855                                        num_doubles ? BTRFS_NESTING_NEW_ROOT :
3856                                        BTRFS_NESTING_SPLIT);
3857         if (IS_ERR(right))
3858                 return PTR_ERR(right);
3859
3860         root_add_used(root, fs_info->nodesize);
3861
3862         if (split == 0) {
3863                 if (mid <= slot) {
3864                         btrfs_set_header_nritems(right, 0);
3865                         ret = insert_ptr(trans, path, &disk_key,
3866                                          right->start, path->slots[1] + 1, 1);
3867                         if (ret < 0) {
3868                                 btrfs_tree_unlock(right);
3869                                 free_extent_buffer(right);
3870                                 return ret;
3871                         }
3872                         btrfs_tree_unlock(path->nodes[0]);
3873                         free_extent_buffer(path->nodes[0]);
3874                         path->nodes[0] = right;
3875                         path->slots[0] = 0;
3876                         path->slots[1] += 1;
3877                 } else {
3878                         btrfs_set_header_nritems(right, 0);
3879                         ret = insert_ptr(trans, path, &disk_key,
3880                                          right->start, path->slots[1], 1);
3881                         if (ret < 0) {
3882                                 btrfs_tree_unlock(right);
3883                                 free_extent_buffer(right);
3884                                 return ret;
3885                         }
3886                         btrfs_tree_unlock(path->nodes[0]);
3887                         free_extent_buffer(path->nodes[0]);
3888                         path->nodes[0] = right;
3889                         path->slots[0] = 0;
3890                         if (path->slots[1] == 0)
3891                                 fixup_low_keys(path, &disk_key, 1);
3892                 }
3893                 /*
3894                  * We create a new leaf 'right' for the required ins_len and
3895                  * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3896                  * the content of ins_len to 'right'.
3897                  */
3898                 return ret;
3899         }
3900
3901         ret = copy_for_split(trans, path, l, right, slot, mid, nritems);
3902         if (ret < 0) {
3903                 btrfs_tree_unlock(right);
3904                 free_extent_buffer(right);
3905                 return ret;
3906         }
3907
3908         if (split == 2) {
3909                 BUG_ON(num_doubles != 0);
3910                 num_doubles++;
3911                 goto again;
3912         }
3913
3914         return 0;
3915
3916 push_for_double:
3917         push_for_double_split(trans, root, path, data_size);
3918         tried_avoid_double = 1;
3919         if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3920                 return 0;
3921         goto again;
3922 }
3923
3924 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3925                                          struct btrfs_root *root,
3926                                          struct btrfs_path *path, int ins_len)
3927 {
3928         struct btrfs_key key;
3929         struct extent_buffer *leaf;
3930         struct btrfs_file_extent_item *fi;
3931         u64 extent_len = 0;
3932         u32 item_size;
3933         int ret;
3934
3935         leaf = path->nodes[0];
3936         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3937
3938         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3939                key.type != BTRFS_EXTENT_CSUM_KEY);
3940
3941         if (btrfs_leaf_free_space(leaf) >= ins_len)
3942                 return 0;
3943
3944         item_size = btrfs_item_size(leaf, path->slots[0]);
3945         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3946                 fi = btrfs_item_ptr(leaf, path->slots[0],
3947                                     struct btrfs_file_extent_item);
3948                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3949         }
3950         btrfs_release_path(path);
3951
3952         path->keep_locks = 1;
3953         path->search_for_split = 1;
3954         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3955         path->search_for_split = 0;
3956         if (ret > 0)
3957                 ret = -EAGAIN;
3958         if (ret < 0)
3959                 goto err;
3960
3961         ret = -EAGAIN;
3962         leaf = path->nodes[0];
3963         /* if our item isn't there, return now */
3964         if (item_size != btrfs_item_size(leaf, path->slots[0]))
3965                 goto err;
3966
3967         /* the leaf has  changed, it now has room.  return now */
3968         if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3969                 goto err;
3970
3971         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3972                 fi = btrfs_item_ptr(leaf, path->slots[0],
3973                                     struct btrfs_file_extent_item);
3974                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3975                         goto err;
3976         }
3977
3978         ret = split_leaf(trans, root, &key, path, ins_len, 1);
3979         if (ret)
3980                 goto err;
3981
3982         path->keep_locks = 0;
3983         btrfs_unlock_up_safe(path, 1);
3984         return 0;
3985 err:
3986         path->keep_locks = 0;
3987         return ret;
3988 }
3989
3990 static noinline int split_item(struct btrfs_path *path,
3991                                const struct btrfs_key *new_key,
3992                                unsigned long split_offset)
3993 {
3994         struct extent_buffer *leaf;
3995         int orig_slot, slot;
3996         char *buf;
3997         u32 nritems;
3998         u32 item_size;
3999         u32 orig_offset;
4000         struct btrfs_disk_key disk_key;
4001
4002         leaf = path->nodes[0];
4003         /*
4004          * Shouldn't happen because the caller must have previously called
4005          * setup_leaf_for_split() to make room for the new item in the leaf.
4006          */
4007         if (WARN_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)))
4008                 return -ENOSPC;
4009
4010         orig_slot = path->slots[0];
4011         orig_offset = btrfs_item_offset(leaf, path->slots[0]);
4012         item_size = btrfs_item_size(leaf, path->slots[0]);
4013
4014         buf = kmalloc(item_size, GFP_NOFS);
4015         if (!buf)
4016                 return -ENOMEM;
4017
4018         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4019                             path->slots[0]), item_size);
4020
4021         slot = path->slots[0] + 1;
4022         nritems = btrfs_header_nritems(leaf);
4023         if (slot != nritems) {
4024                 /* shift the items */
4025                 memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
4026         }
4027
4028         btrfs_cpu_key_to_disk(&disk_key, new_key);
4029         btrfs_set_item_key(leaf, &disk_key, slot);
4030
4031         btrfs_set_item_offset(leaf, slot, orig_offset);
4032         btrfs_set_item_size(leaf, slot, item_size - split_offset);
4033
4034         btrfs_set_item_offset(leaf, orig_slot,
4035                                  orig_offset + item_size - split_offset);
4036         btrfs_set_item_size(leaf, orig_slot, split_offset);
4037
4038         btrfs_set_header_nritems(leaf, nritems + 1);
4039
4040         /* write the data for the start of the original item */
4041         write_extent_buffer(leaf, buf,
4042                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4043                             split_offset);
4044
4045         /* write the data for the new item */
4046         write_extent_buffer(leaf, buf + split_offset,
4047                             btrfs_item_ptr_offset(leaf, slot),
4048                             item_size - split_offset);
4049         btrfs_mark_buffer_dirty(leaf);
4050
4051         BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4052         kfree(buf);
4053         return 0;
4054 }
4055
4056 /*
4057  * This function splits a single item into two items,
4058  * giving 'new_key' to the new item and splitting the
4059  * old one at split_offset (from the start of the item).
4060  *
4061  * The path may be released by this operation.  After
4062  * the split, the path is pointing to the old item.  The
4063  * new item is going to be in the same node as the old one.
4064  *
4065  * Note, the item being split must be smaller enough to live alone on
4066  * a tree block with room for one extra struct btrfs_item
4067  *
4068  * This allows us to split the item in place, keeping a lock on the
4069  * leaf the entire time.
4070  */
4071 int btrfs_split_item(struct btrfs_trans_handle *trans,
4072                      struct btrfs_root *root,
4073                      struct btrfs_path *path,
4074                      const struct btrfs_key *new_key,
4075                      unsigned long split_offset)
4076 {
4077         int ret;
4078         ret = setup_leaf_for_split(trans, root, path,
4079                                    sizeof(struct btrfs_item));
4080         if (ret)
4081                 return ret;
4082
4083         ret = split_item(path, new_key, split_offset);
4084         return ret;
4085 }
4086
4087 /*
4088  * make the item pointed to by the path smaller.  new_size indicates
4089  * how small to make it, and from_end tells us if we just chop bytes
4090  * off the end of the item or if we shift the item to chop bytes off
4091  * the front.
4092  */
4093 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
4094 {
4095         int slot;
4096         struct extent_buffer *leaf;
4097         u32 nritems;
4098         unsigned int data_end;
4099         unsigned int old_data_start;
4100         unsigned int old_size;
4101         unsigned int size_diff;
4102         int i;
4103         struct btrfs_map_token token;
4104
4105         leaf = path->nodes[0];
4106         slot = path->slots[0];
4107
4108         old_size = btrfs_item_size(leaf, slot);
4109         if (old_size == new_size)
4110                 return;
4111
4112         nritems = btrfs_header_nritems(leaf);
4113         data_end = leaf_data_end(leaf);
4114
4115         old_data_start = btrfs_item_offset(leaf, slot);
4116
4117         size_diff = old_size - new_size;
4118
4119         BUG_ON(slot < 0);
4120         BUG_ON(slot >= nritems);
4121
4122         /*
4123          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4124          */
4125         /* first correct the data pointers */
4126         btrfs_init_map_token(&token, leaf);
4127         for (i = slot; i < nritems; i++) {
4128                 u32 ioff;
4129
4130                 ioff = btrfs_token_item_offset(&token, i);
4131                 btrfs_set_token_item_offset(&token, i, ioff + size_diff);
4132         }
4133
4134         /* shift the data */
4135         if (from_end) {
4136                 memmove_leaf_data(leaf, data_end + size_diff, data_end,
4137                                   old_data_start + new_size - data_end);
4138         } else {
4139                 struct btrfs_disk_key disk_key;
4140                 u64 offset;
4141
4142                 btrfs_item_key(leaf, &disk_key, slot);
4143
4144                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4145                         unsigned long ptr;
4146                         struct btrfs_file_extent_item *fi;
4147
4148                         fi = btrfs_item_ptr(leaf, slot,
4149                                             struct btrfs_file_extent_item);
4150                         fi = (struct btrfs_file_extent_item *)(
4151                              (unsigned long)fi - size_diff);
4152
4153                         if (btrfs_file_extent_type(leaf, fi) ==
4154                             BTRFS_FILE_EXTENT_INLINE) {
4155                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4156                                 memmove_extent_buffer(leaf, ptr,
4157                                       (unsigned long)fi,
4158                                       BTRFS_FILE_EXTENT_INLINE_DATA_START);
4159                         }
4160                 }
4161
4162                 memmove_leaf_data(leaf, data_end + size_diff, data_end,
4163                                   old_data_start - data_end);
4164
4165                 offset = btrfs_disk_key_offset(&disk_key);
4166                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4167                 btrfs_set_item_key(leaf, &disk_key, slot);
4168                 if (slot == 0)
4169                         fixup_low_keys(path, &disk_key, 1);
4170         }
4171
4172         btrfs_set_item_size(leaf, slot, new_size);
4173         btrfs_mark_buffer_dirty(leaf);
4174
4175         if (btrfs_leaf_free_space(leaf) < 0) {
4176                 btrfs_print_leaf(leaf);
4177                 BUG();
4178         }
4179 }
4180
4181 /*
4182  * make the item pointed to by the path bigger, data_size is the added size.
4183  */
4184 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4185 {
4186         int slot;
4187         struct extent_buffer *leaf;
4188         u32 nritems;
4189         unsigned int data_end;
4190         unsigned int old_data;
4191         unsigned int old_size;
4192         int i;
4193         struct btrfs_map_token token;
4194
4195         leaf = path->nodes[0];
4196
4197         nritems = btrfs_header_nritems(leaf);
4198         data_end = leaf_data_end(leaf);
4199
4200         if (btrfs_leaf_free_space(leaf) < data_size) {
4201                 btrfs_print_leaf(leaf);
4202                 BUG();
4203         }
4204         slot = path->slots[0];
4205         old_data = btrfs_item_data_end(leaf, slot);
4206
4207         BUG_ON(slot < 0);
4208         if (slot >= nritems) {
4209                 btrfs_print_leaf(leaf);
4210                 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4211                            slot, nritems);
4212                 BUG();
4213         }
4214
4215         /*
4216          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4217          */
4218         /* first correct the data pointers */
4219         btrfs_init_map_token(&token, leaf);
4220         for (i = slot; i < nritems; i++) {
4221                 u32 ioff;
4222
4223                 ioff = btrfs_token_item_offset(&token, i);
4224                 btrfs_set_token_item_offset(&token, i, ioff - data_size);
4225         }
4226
4227         /* shift the data */
4228         memmove_leaf_data(leaf, data_end - data_size, data_end,
4229                           old_data - data_end);
4230
4231         data_end = old_data;
4232         old_size = btrfs_item_size(leaf, slot);
4233         btrfs_set_item_size(leaf, slot, old_size + data_size);
4234         btrfs_mark_buffer_dirty(leaf);
4235
4236         if (btrfs_leaf_free_space(leaf) < 0) {
4237                 btrfs_print_leaf(leaf);
4238                 BUG();
4239         }
4240 }
4241
4242 /*
4243  * Make space in the node before inserting one or more items.
4244  *
4245  * @root:       root we are inserting items to
4246  * @path:       points to the leaf/slot where we are going to insert new items
4247  * @batch:      information about the batch of items to insert
4248  *
4249  * Main purpose is to save stack depth by doing the bulk of the work in a
4250  * function that doesn't call btrfs_search_slot
4251  */
4252 static void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4253                                    const struct btrfs_item_batch *batch)
4254 {
4255         struct btrfs_fs_info *fs_info = root->fs_info;
4256         int i;
4257         u32 nritems;
4258         unsigned int data_end;
4259         struct btrfs_disk_key disk_key;
4260         struct extent_buffer *leaf;
4261         int slot;
4262         struct btrfs_map_token token;
4263         u32 total_size;
4264
4265         /*
4266          * Before anything else, update keys in the parent and other ancestors
4267          * if needed, then release the write locks on them, so that other tasks
4268          * can use them while we modify the leaf.
4269          */
4270         if (path->slots[0] == 0) {
4271                 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4272                 fixup_low_keys(path, &disk_key, 1);
4273         }
4274         btrfs_unlock_up_safe(path, 1);
4275
4276         leaf = path->nodes[0];
4277         slot = path->slots[0];
4278
4279         nritems = btrfs_header_nritems(leaf);
4280         data_end = leaf_data_end(leaf);
4281         total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4282
4283         if (btrfs_leaf_free_space(leaf) < total_size) {
4284                 btrfs_print_leaf(leaf);
4285                 btrfs_crit(fs_info, "not enough freespace need %u have %d",
4286                            total_size, btrfs_leaf_free_space(leaf));
4287                 BUG();
4288         }
4289
4290         btrfs_init_map_token(&token, leaf);
4291         if (slot != nritems) {
4292                 unsigned int old_data = btrfs_item_data_end(leaf, slot);
4293
4294                 if (old_data < data_end) {
4295                         btrfs_print_leaf(leaf);
4296                         btrfs_crit(fs_info,
4297                 "item at slot %d with data offset %u beyond data end of leaf %u",
4298                                    slot, old_data, data_end);
4299                         BUG();
4300                 }
4301                 /*
4302                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4303                  */
4304                 /* first correct the data pointers */
4305                 for (i = slot; i < nritems; i++) {
4306                         u32 ioff;
4307
4308                         ioff = btrfs_token_item_offset(&token, i);
4309                         btrfs_set_token_item_offset(&token, i,
4310                                                        ioff - batch->total_data_size);
4311                 }
4312                 /* shift the items */
4313                 memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
4314
4315                 /* shift the data */
4316                 memmove_leaf_data(leaf, data_end - batch->total_data_size,
4317                                   data_end, old_data - data_end);
4318                 data_end = old_data;
4319         }
4320
4321         /* setup the item for the new data */
4322         for (i = 0; i < batch->nr; i++) {
4323                 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4324                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4325                 data_end -= batch->data_sizes[i];
4326                 btrfs_set_token_item_offset(&token, slot + i, data_end);
4327                 btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
4328         }
4329
4330         btrfs_set_header_nritems(leaf, nritems + batch->nr);
4331         btrfs_mark_buffer_dirty(leaf);
4332
4333         if (btrfs_leaf_free_space(leaf) < 0) {
4334                 btrfs_print_leaf(leaf);
4335                 BUG();
4336         }
4337 }
4338
4339 /*
4340  * Insert a new item into a leaf.
4341  *
4342  * @root:      The root of the btree.
4343  * @path:      A path pointing to the target leaf and slot.
4344  * @key:       The key of the new item.
4345  * @data_size: The size of the data associated with the new key.
4346  */
4347 void btrfs_setup_item_for_insert(struct btrfs_root *root,
4348                                  struct btrfs_path *path,
4349                                  const struct btrfs_key *key,
4350                                  u32 data_size)
4351 {
4352         struct btrfs_item_batch batch;
4353
4354         batch.keys = key;
4355         batch.data_sizes = &data_size;
4356         batch.total_data_size = data_size;
4357         batch.nr = 1;
4358
4359         setup_items_for_insert(root, path, &batch);
4360 }
4361
4362 /*
4363  * Given a key and some data, insert items into the tree.
4364  * This does all the path init required, making room in the tree if needed.
4365  */
4366 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4367                             struct btrfs_root *root,
4368                             struct btrfs_path *path,
4369                             const struct btrfs_item_batch *batch)
4370 {
4371         int ret = 0;
4372         int slot;
4373         u32 total_size;
4374
4375         total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4376         ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4377         if (ret == 0)
4378                 return -EEXIST;
4379         if (ret < 0)
4380                 return ret;
4381
4382         slot = path->slots[0];
4383         BUG_ON(slot < 0);
4384
4385         setup_items_for_insert(root, path, batch);
4386         return 0;
4387 }
4388
4389 /*
4390  * Given a key and some data, insert an item into the tree.
4391  * This does all the path init required, making room in the tree if needed.
4392  */
4393 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4394                       const struct btrfs_key *cpu_key, void *data,
4395                       u32 data_size)
4396 {
4397         int ret = 0;
4398         struct btrfs_path *path;
4399         struct extent_buffer *leaf;
4400         unsigned long ptr;
4401
4402         path = btrfs_alloc_path();
4403         if (!path)
4404                 return -ENOMEM;
4405         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4406         if (!ret) {
4407                 leaf = path->nodes[0];
4408                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4409                 write_extent_buffer(leaf, data, ptr, data_size);
4410                 btrfs_mark_buffer_dirty(leaf);
4411         }
4412         btrfs_free_path(path);
4413         return ret;
4414 }
4415
4416 /*
4417  * This function duplicates an item, giving 'new_key' to the new item.
4418  * It guarantees both items live in the same tree leaf and the new item is
4419  * contiguous with the original item.
4420  *
4421  * This allows us to split a file extent in place, keeping a lock on the leaf
4422  * the entire time.
4423  */
4424 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4425                          struct btrfs_root *root,
4426                          struct btrfs_path *path,
4427                          const struct btrfs_key *new_key)
4428 {
4429         struct extent_buffer *leaf;
4430         int ret;
4431         u32 item_size;
4432
4433         leaf = path->nodes[0];
4434         item_size = btrfs_item_size(leaf, path->slots[0]);
4435         ret = setup_leaf_for_split(trans, root, path,
4436                                    item_size + sizeof(struct btrfs_item));
4437         if (ret)
4438                 return ret;
4439
4440         path->slots[0]++;
4441         btrfs_setup_item_for_insert(root, path, new_key, item_size);
4442         leaf = path->nodes[0];
4443         memcpy_extent_buffer(leaf,
4444                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4445                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4446                              item_size);
4447         return 0;
4448 }
4449
4450 /*
4451  * delete the pointer from a given node.
4452  *
4453  * the tree should have been previously balanced so the deletion does not
4454  * empty a node.
4455  *
4456  * This is exported for use inside btrfs-progs, don't un-export it.
4457  */
4458 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4459                   struct btrfs_path *path, int level, int slot)
4460 {
4461         struct extent_buffer *parent = path->nodes[level];
4462         u32 nritems;
4463         int ret;
4464
4465         nritems = btrfs_header_nritems(parent);
4466         if (slot != nritems - 1) {
4467                 if (level) {
4468                         ret = btrfs_tree_mod_log_insert_move(parent, slot,
4469                                         slot + 1, nritems - slot - 1);
4470                         if (ret < 0) {
4471                                 btrfs_abort_transaction(trans, ret);
4472                                 return ret;
4473                         }
4474                 }
4475                 memmove_extent_buffer(parent,
4476                               btrfs_node_key_ptr_offset(parent, slot),
4477                               btrfs_node_key_ptr_offset(parent, slot + 1),
4478                               sizeof(struct btrfs_key_ptr) *
4479                               (nritems - slot - 1));
4480         } else if (level) {
4481                 ret = btrfs_tree_mod_log_insert_key(parent, slot,
4482                                                     BTRFS_MOD_LOG_KEY_REMOVE);
4483                 if (ret < 0) {
4484                         btrfs_abort_transaction(trans, ret);
4485                         return ret;
4486                 }
4487         }
4488
4489         nritems--;
4490         btrfs_set_header_nritems(parent, nritems);
4491         if (nritems == 0 && parent == root->node) {
4492                 BUG_ON(btrfs_header_level(root->node) != 1);
4493                 /* just turn the root into a leaf and break */
4494                 btrfs_set_header_level(root->node, 0);
4495         } else if (slot == 0) {
4496                 struct btrfs_disk_key disk_key;
4497
4498                 btrfs_node_key(parent, &disk_key, 0);
4499                 fixup_low_keys(path, &disk_key, level + 1);
4500         }
4501         btrfs_mark_buffer_dirty(parent);
4502         return 0;
4503 }
4504
4505 /*
4506  * a helper function to delete the leaf pointed to by path->slots[1] and
4507  * path->nodes[1].
4508  *
4509  * This deletes the pointer in path->nodes[1] and frees the leaf
4510  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4511  *
4512  * The path must have already been setup for deleting the leaf, including
4513  * all the proper balancing.  path->nodes[1] must be locked.
4514  */
4515 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
4516                                    struct btrfs_root *root,
4517                                    struct btrfs_path *path,
4518                                    struct extent_buffer *leaf)
4519 {
4520         int ret;
4521
4522         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4523         ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]);
4524         if (ret < 0)
4525                 return ret;
4526
4527         /*
4528          * btrfs_free_extent is expensive, we want to make sure we
4529          * aren't holding any locks when we call it
4530          */
4531         btrfs_unlock_up_safe(path, 0);
4532
4533         root_sub_used(root, leaf->len);
4534
4535         atomic_inc(&leaf->refs);
4536         btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4537         free_extent_buffer_stale(leaf);
4538         return 0;
4539 }
4540 /*
4541  * delete the item at the leaf level in path.  If that empties
4542  * the leaf, remove it from the tree
4543  */
4544 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4545                     struct btrfs_path *path, int slot, int nr)
4546 {
4547         struct btrfs_fs_info *fs_info = root->fs_info;
4548         struct extent_buffer *leaf;
4549         int ret = 0;
4550         int wret;
4551         u32 nritems;
4552
4553         leaf = path->nodes[0];
4554         nritems = btrfs_header_nritems(leaf);
4555
4556         if (slot + nr != nritems) {
4557                 const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4558                 const int data_end = leaf_data_end(leaf);
4559                 struct btrfs_map_token token;
4560                 u32 dsize = 0;
4561                 int i;
4562
4563                 for (i = 0; i < nr; i++)
4564                         dsize += btrfs_item_size(leaf, slot + i);
4565
4566                 memmove_leaf_data(leaf, data_end + dsize, data_end,
4567                                   last_off - data_end);
4568
4569                 btrfs_init_map_token(&token, leaf);
4570                 for (i = slot + nr; i < nritems; i++) {
4571                         u32 ioff;
4572
4573                         ioff = btrfs_token_item_offset(&token, i);
4574                         btrfs_set_token_item_offset(&token, i, ioff + dsize);
4575                 }
4576
4577                 memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
4578         }
4579         btrfs_set_header_nritems(leaf, nritems - nr);
4580         nritems -= nr;
4581
4582         /* delete the leaf if we've emptied it */
4583         if (nritems == 0) {
4584                 if (leaf == root->node) {
4585                         btrfs_set_header_level(leaf, 0);
4586                 } else {
4587                         btrfs_clear_buffer_dirty(trans, leaf);
4588                         ret = btrfs_del_leaf(trans, root, path, leaf);
4589                         if (ret < 0)
4590                                 return ret;
4591                 }
4592         } else {
4593                 int used = leaf_space_used(leaf, 0, nritems);
4594                 if (slot == 0) {
4595                         struct btrfs_disk_key disk_key;
4596
4597                         btrfs_item_key(leaf, &disk_key, 0);
4598                         fixup_low_keys(path, &disk_key, 1);
4599                 }
4600
4601                 /*
4602                  * Try to delete the leaf if it is mostly empty. We do this by
4603                  * trying to move all its items into its left and right neighbours.
4604                  * If we can't move all the items, then we don't delete it - it's
4605                  * not ideal, but future insertions might fill the leaf with more
4606                  * items, or items from other leaves might be moved later into our
4607                  * leaf due to deletions on those leaves.
4608                  */
4609                 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4610                         u32 min_push_space;
4611
4612                         /* push_leaf_left fixes the path.
4613                          * make sure the path still points to our leaf
4614                          * for possible call to btrfs_del_ptr below
4615                          */
4616                         slot = path->slots[1];
4617                         atomic_inc(&leaf->refs);
4618                         /*
4619                          * We want to be able to at least push one item to the
4620                          * left neighbour leaf, and that's the first item.
4621                          */
4622                         min_push_space = sizeof(struct btrfs_item) +
4623                                 btrfs_item_size(leaf, 0);
4624                         wret = push_leaf_left(trans, root, path, 0,
4625                                               min_push_space, 1, (u32)-1);
4626                         if (wret < 0 && wret != -ENOSPC)
4627                                 ret = wret;
4628
4629                         if (path->nodes[0] == leaf &&
4630                             btrfs_header_nritems(leaf)) {
4631                                 /*
4632                                  * If we were not able to push all items from our
4633                                  * leaf to its left neighbour, then attempt to
4634                                  * either push all the remaining items to the
4635                                  * right neighbour or none. There's no advantage
4636                                  * in pushing only some items, instead of all, as
4637                                  * it's pointless to end up with a leaf having
4638                                  * too few items while the neighbours can be full
4639                                  * or nearly full.
4640                                  */
4641                                 nritems = btrfs_header_nritems(leaf);
4642                                 min_push_space = leaf_space_used(leaf, 0, nritems);
4643                                 wret = push_leaf_right(trans, root, path, 0,
4644                                                        min_push_space, 1, 0);
4645                                 if (wret < 0 && wret != -ENOSPC)
4646                                         ret = wret;
4647                         }
4648
4649                         if (btrfs_header_nritems(leaf) == 0) {
4650                                 path->slots[1] = slot;
4651                                 ret = btrfs_del_leaf(trans, root, path, leaf);
4652                                 if (ret < 0)
4653                                         return ret;
4654                                 free_extent_buffer(leaf);
4655                                 ret = 0;
4656                         } else {
4657                                 /* if we're still in the path, make sure
4658                                  * we're dirty.  Otherwise, one of the
4659                                  * push_leaf functions must have already
4660                                  * dirtied this buffer
4661                                  */
4662                                 if (path->nodes[0] == leaf)
4663                                         btrfs_mark_buffer_dirty(leaf);
4664                                 free_extent_buffer(leaf);
4665                         }
4666                 } else {
4667                         btrfs_mark_buffer_dirty(leaf);
4668                 }
4669         }
4670         return ret;
4671 }
4672
4673 /*
4674  * A helper function to walk down the tree starting at min_key, and looking
4675  * for nodes or leaves that are have a minimum transaction id.
4676  * This is used by the btree defrag code, and tree logging
4677  *
4678  * This does not cow, but it does stuff the starting key it finds back
4679  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4680  * key and get a writable path.
4681  *
4682  * This honors path->lowest_level to prevent descent past a given level
4683  * of the tree.
4684  *
4685  * min_trans indicates the oldest transaction that you are interested
4686  * in walking through.  Any nodes or leaves older than min_trans are
4687  * skipped over (without reading them).
4688  *
4689  * returns zero if something useful was found, < 0 on error and 1 if there
4690  * was nothing in the tree that matched the search criteria.
4691  */
4692 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4693                          struct btrfs_path *path,
4694                          u64 min_trans)
4695 {
4696         struct extent_buffer *cur;
4697         struct btrfs_key found_key;
4698         int slot;
4699         int sret;
4700         u32 nritems;
4701         int level;
4702         int ret = 1;
4703         int keep_locks = path->keep_locks;
4704
4705         ASSERT(!path->nowait);
4706         path->keep_locks = 1;
4707 again:
4708         cur = btrfs_read_lock_root_node(root);
4709         level = btrfs_header_level(cur);
4710         WARN_ON(path->nodes[level]);
4711         path->nodes[level] = cur;
4712         path->locks[level] = BTRFS_READ_LOCK;
4713
4714         if (btrfs_header_generation(cur) < min_trans) {
4715                 ret = 1;
4716                 goto out;
4717         }
4718         while (1) {
4719                 nritems = btrfs_header_nritems(cur);
4720                 level = btrfs_header_level(cur);
4721                 sret = btrfs_bin_search(cur, 0, min_key, &slot);
4722                 if (sret < 0) {
4723                         ret = sret;
4724                         goto out;
4725                 }
4726
4727                 /* at the lowest level, we're done, setup the path and exit */
4728                 if (level == path->lowest_level) {
4729                         if (slot >= nritems)
4730                                 goto find_next_key;
4731                         ret = 0;
4732                         path->slots[level] = slot;
4733                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4734                         goto out;
4735                 }
4736                 if (sret && slot > 0)
4737                         slot--;
4738                 /*
4739                  * check this node pointer against the min_trans parameters.
4740                  * If it is too old, skip to the next one.
4741                  */
4742                 while (slot < nritems) {
4743                         u64 gen;
4744
4745                         gen = btrfs_node_ptr_generation(cur, slot);
4746                         if (gen < min_trans) {
4747                                 slot++;
4748                                 continue;
4749                         }
4750                         break;
4751                 }
4752 find_next_key:
4753                 /*
4754                  * we didn't find a candidate key in this node, walk forward
4755                  * and find another one
4756                  */
4757                 if (slot >= nritems) {
4758                         path->slots[level] = slot;
4759                         sret = btrfs_find_next_key(root, path, min_key, level,
4760                                                   min_trans);
4761                         if (sret == 0) {
4762                                 btrfs_release_path(path);
4763                                 goto again;
4764                         } else {
4765                                 goto out;
4766                         }
4767                 }
4768                 /* save our key for returning back */
4769                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4770                 path->slots[level] = slot;
4771                 if (level == path->lowest_level) {
4772                         ret = 0;
4773                         goto out;
4774                 }
4775                 cur = btrfs_read_node_slot(cur, slot);
4776                 if (IS_ERR(cur)) {
4777                         ret = PTR_ERR(cur);
4778                         goto out;
4779                 }
4780
4781                 btrfs_tree_read_lock(cur);
4782
4783                 path->locks[level - 1] = BTRFS_READ_LOCK;
4784                 path->nodes[level - 1] = cur;
4785                 unlock_up(path, level, 1, 0, NULL);
4786         }
4787 out:
4788         path->keep_locks = keep_locks;
4789         if (ret == 0) {
4790                 btrfs_unlock_up_safe(path, path->lowest_level + 1);
4791                 memcpy(min_key, &found_key, sizeof(found_key));
4792         }
4793         return ret;
4794 }
4795
4796 /*
4797  * this is similar to btrfs_next_leaf, but does not try to preserve
4798  * and fixup the path.  It looks for and returns the next key in the
4799  * tree based on the current path and the min_trans parameters.
4800  *
4801  * 0 is returned if another key is found, < 0 if there are any errors
4802  * and 1 is returned if there are no higher keys in the tree
4803  *
4804  * path->keep_locks should be set to 1 on the search made before
4805  * calling this function.
4806  */
4807 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4808                         struct btrfs_key *key, int level, u64 min_trans)
4809 {
4810         int slot;
4811         struct extent_buffer *c;
4812
4813         WARN_ON(!path->keep_locks && !path->skip_locking);
4814         while (level < BTRFS_MAX_LEVEL) {
4815                 if (!path->nodes[level])
4816                         return 1;
4817
4818                 slot = path->slots[level] + 1;
4819                 c = path->nodes[level];
4820 next:
4821                 if (slot >= btrfs_header_nritems(c)) {
4822                         int ret;
4823                         int orig_lowest;
4824                         struct btrfs_key cur_key;
4825                         if (level + 1 >= BTRFS_MAX_LEVEL ||
4826                             !path->nodes[level + 1])
4827                                 return 1;
4828
4829                         if (path->locks[level + 1] || path->skip_locking) {
4830                                 level++;
4831                                 continue;
4832                         }
4833
4834                         slot = btrfs_header_nritems(c) - 1;
4835                         if (level == 0)
4836                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
4837                         else
4838                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
4839
4840                         orig_lowest = path->lowest_level;
4841                         btrfs_release_path(path);
4842                         path->lowest_level = level;
4843                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
4844                                                 0, 0);
4845                         path->lowest_level = orig_lowest;
4846                         if (ret < 0)
4847                                 return ret;
4848
4849                         c = path->nodes[level];
4850                         slot = path->slots[level];
4851                         if (ret == 0)
4852                                 slot++;
4853                         goto next;
4854                 }
4855
4856                 if (level == 0)
4857                         btrfs_item_key_to_cpu(c, key, slot);
4858                 else {
4859                         u64 gen = btrfs_node_ptr_generation(c, slot);
4860
4861                         if (gen < min_trans) {
4862                                 slot++;
4863                                 goto next;
4864                         }
4865                         btrfs_node_key_to_cpu(c, key, slot);
4866                 }
4867                 return 0;
4868         }
4869         return 1;
4870 }
4871
4872 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4873                         u64 time_seq)
4874 {
4875         int slot;
4876         int level;
4877         struct extent_buffer *c;
4878         struct extent_buffer *next;
4879         struct btrfs_fs_info *fs_info = root->fs_info;
4880         struct btrfs_key key;
4881         bool need_commit_sem = false;
4882         u32 nritems;
4883         int ret;
4884         int i;
4885
4886         /*
4887          * The nowait semantics are used only for write paths, where we don't
4888          * use the tree mod log and sequence numbers.
4889          */
4890         if (time_seq)
4891                 ASSERT(!path->nowait);
4892
4893         nritems = btrfs_header_nritems(path->nodes[0]);
4894         if (nritems == 0)
4895                 return 1;
4896
4897         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4898 again:
4899         level = 1;
4900         next = NULL;
4901         btrfs_release_path(path);
4902
4903         path->keep_locks = 1;
4904
4905         if (time_seq) {
4906                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
4907         } else {
4908                 if (path->need_commit_sem) {
4909                         path->need_commit_sem = 0;
4910                         need_commit_sem = true;
4911                         if (path->nowait) {
4912                                 if (!down_read_trylock(&fs_info->commit_root_sem)) {
4913                                         ret = -EAGAIN;
4914                                         goto done;
4915                                 }
4916                         } else {
4917                                 down_read(&fs_info->commit_root_sem);
4918                         }
4919                 }
4920                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4921         }
4922         path->keep_locks = 0;
4923
4924         if (ret < 0)
4925                 goto done;
4926
4927         nritems = btrfs_header_nritems(path->nodes[0]);
4928         /*
4929          * by releasing the path above we dropped all our locks.  A balance
4930          * could have added more items next to the key that used to be
4931          * at the very end of the block.  So, check again here and
4932          * advance the path if there are now more items available.
4933          */
4934         if (nritems > 0 && path->slots[0] < nritems - 1) {
4935                 if (ret == 0)
4936                         path->slots[0]++;
4937                 ret = 0;
4938                 goto done;
4939         }
4940         /*
4941          * So the above check misses one case:
4942          * - after releasing the path above, someone has removed the item that
4943          *   used to be at the very end of the block, and balance between leafs
4944          *   gets another one with bigger key.offset to replace it.
4945          *
4946          * This one should be returned as well, or we can get leaf corruption
4947          * later(esp. in __btrfs_drop_extents()).
4948          *
4949          * And a bit more explanation about this check,
4950          * with ret > 0, the key isn't found, the path points to the slot
4951          * where it should be inserted, so the path->slots[0] item must be the
4952          * bigger one.
4953          */
4954         if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4955                 ret = 0;
4956                 goto done;
4957         }
4958
4959         while (level < BTRFS_MAX_LEVEL) {
4960                 if (!path->nodes[level]) {
4961                         ret = 1;
4962                         goto done;
4963                 }
4964
4965                 slot = path->slots[level] + 1;
4966                 c = path->nodes[level];
4967                 if (slot >= btrfs_header_nritems(c)) {
4968                         level++;
4969                         if (level == BTRFS_MAX_LEVEL) {
4970                                 ret = 1;
4971                                 goto done;
4972                         }
4973                         continue;
4974                 }
4975
4976
4977                 /*
4978                  * Our current level is where we're going to start from, and to
4979                  * make sure lockdep doesn't complain we need to drop our locks
4980                  * and nodes from 0 to our current level.
4981                  */
4982                 for (i = 0; i < level; i++) {
4983                         if (path->locks[level]) {
4984                                 btrfs_tree_read_unlock(path->nodes[i]);
4985                                 path->locks[i] = 0;
4986                         }
4987                         free_extent_buffer(path->nodes[i]);
4988                         path->nodes[i] = NULL;
4989                 }
4990
4991                 next = c;
4992                 ret = read_block_for_search(root, path, &next, level,
4993                                             slot, &key);
4994                 if (ret == -EAGAIN && !path->nowait)
4995                         goto again;
4996
4997                 if (ret < 0) {
4998                         btrfs_release_path(path);
4999                         goto done;
5000                 }
5001
5002                 if (!path->skip_locking) {
5003                         ret = btrfs_try_tree_read_lock(next);
5004                         if (!ret && path->nowait) {
5005                                 ret = -EAGAIN;
5006                                 goto done;
5007                         }
5008                         if (!ret && time_seq) {
5009                                 /*
5010                                  * If we don't get the lock, we may be racing
5011                                  * with push_leaf_left, holding that lock while
5012                                  * itself waiting for the leaf we've currently
5013                                  * locked. To solve this situation, we give up
5014                                  * on our lock and cycle.
5015                                  */
5016                                 free_extent_buffer(next);
5017                                 btrfs_release_path(path);
5018                                 cond_resched();
5019                                 goto again;
5020                         }
5021                         if (!ret)
5022                                 btrfs_tree_read_lock(next);
5023                 }
5024                 break;
5025         }
5026         path->slots[level] = slot;
5027         while (1) {
5028                 level--;
5029                 path->nodes[level] = next;
5030                 path->slots[level] = 0;
5031                 if (!path->skip_locking)
5032                         path->locks[level] = BTRFS_READ_LOCK;
5033                 if (!level)
5034                         break;
5035
5036                 ret = read_block_for_search(root, path, &next, level,
5037                                             0, &key);
5038                 if (ret == -EAGAIN && !path->nowait)
5039                         goto again;
5040
5041                 if (ret < 0) {
5042                         btrfs_release_path(path);
5043                         goto done;
5044                 }
5045
5046                 if (!path->skip_locking) {
5047                         if (path->nowait) {
5048                                 if (!btrfs_try_tree_read_lock(next)) {
5049                                         ret = -EAGAIN;
5050                                         goto done;
5051                                 }
5052                         } else {
5053                                 btrfs_tree_read_lock(next);
5054                         }
5055                 }
5056         }
5057         ret = 0;
5058 done:
5059         unlock_up(path, 0, 1, 0, NULL);
5060         if (need_commit_sem) {
5061                 int ret2;
5062
5063                 path->need_commit_sem = 1;
5064                 ret2 = finish_need_commit_sem_search(path);
5065                 up_read(&fs_info->commit_root_sem);
5066                 if (ret2)
5067                         ret = ret2;
5068         }
5069
5070         return ret;
5071 }
5072
5073 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
5074 {
5075         path->slots[0]++;
5076         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
5077                 return btrfs_next_old_leaf(root, path, time_seq);
5078         return 0;
5079 }
5080
5081 /*
5082  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5083  * searching until it gets past min_objectid or finds an item of 'type'
5084  *
5085  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5086  */
5087 int btrfs_previous_item(struct btrfs_root *root,
5088                         struct btrfs_path *path, u64 min_objectid,
5089                         int type)
5090 {
5091         struct btrfs_key found_key;
5092         struct extent_buffer *leaf;
5093         u32 nritems;
5094         int ret;
5095
5096         while (1) {
5097                 if (path->slots[0] == 0) {
5098                         ret = btrfs_prev_leaf(root, path);
5099                         if (ret != 0)
5100                                 return ret;
5101                 } else {
5102                         path->slots[0]--;
5103                 }
5104                 leaf = path->nodes[0];
5105                 nritems = btrfs_header_nritems(leaf);
5106                 if (nritems == 0)
5107                         return 1;
5108                 if (path->slots[0] == nritems)
5109                         path->slots[0]--;
5110
5111                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5112                 if (found_key.objectid < min_objectid)
5113                         break;
5114                 if (found_key.type == type)
5115                         return 0;
5116                 if (found_key.objectid == min_objectid &&
5117                     found_key.type < type)
5118                         break;
5119         }
5120         return 1;
5121 }
5122
5123 /*
5124  * search in extent tree to find a previous Metadata/Data extent item with
5125  * min objecitd.
5126  *
5127  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5128  */
5129 int btrfs_previous_extent_item(struct btrfs_root *root,
5130                         struct btrfs_path *path, u64 min_objectid)
5131 {
5132         struct btrfs_key found_key;
5133         struct extent_buffer *leaf;
5134         u32 nritems;
5135         int ret;
5136
5137         while (1) {
5138                 if (path->slots[0] == 0) {
5139                         ret = btrfs_prev_leaf(root, path);
5140                         if (ret != 0)
5141                                 return ret;
5142                 } else {
5143                         path->slots[0]--;
5144                 }
5145                 leaf = path->nodes[0];
5146                 nritems = btrfs_header_nritems(leaf);
5147                 if (nritems == 0)
5148                         return 1;
5149                 if (path->slots[0] == nritems)
5150                         path->slots[0]--;
5151
5152                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5153                 if (found_key.objectid < min_objectid)
5154                         break;
5155                 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5156                     found_key.type == BTRFS_METADATA_ITEM_KEY)
5157                         return 0;
5158                 if (found_key.objectid == min_objectid &&
5159                     found_key.type < BTRFS_EXTENT_ITEM_KEY)
5160                         break;
5161         }
5162         return 1;
5163 }
5164
5165 int __init btrfs_ctree_init(void)
5166 {
5167         btrfs_path_cachep = kmem_cache_create("btrfs_path",
5168                         sizeof(struct btrfs_path), 0,
5169                         SLAB_MEM_SPREAD, NULL);
5170         if (!btrfs_path_cachep)
5171                 return -ENOMEM;
5172         return 0;
5173 }
5174
5175 void __cold btrfs_ctree_exit(void)
5176 {
5177         kmem_cache_destroy(btrfs_path_cachep);
5178 }