Btrfs: log changed inodes based on the extent map tree
[linux-2.6-block.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29                       *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31                       *root, struct btrfs_key *ins_key,
32                       struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34                           struct btrfs_root *root, struct extent_buffer *dst,
35                           struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37                               struct btrfs_root *root,
38                               struct extent_buffer *dst_buf,
39                               struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
41                     struct btrfs_path *path, int level, int slot);
42 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43                                  struct extent_buffer *eb);
44 struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
45                                           u32 blocksize, u64 parent_transid,
46                                           u64 time_seq);
47 struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
48                                                 u64 bytenr, u32 blocksize,
49                                                 u64 time_seq);
50
51 struct btrfs_path *btrfs_alloc_path(void)
52 {
53         struct btrfs_path *path;
54         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
55         return path;
56 }
57
58 /*
59  * set all locked nodes in the path to blocking locks.  This should
60  * be done before scheduling
61  */
62 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
63 {
64         int i;
65         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
66                 if (!p->nodes[i] || !p->locks[i])
67                         continue;
68                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
69                 if (p->locks[i] == BTRFS_READ_LOCK)
70                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
71                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
72                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
73         }
74 }
75
76 /*
77  * reset all the locked nodes in the patch to spinning locks.
78  *
79  * held is used to keep lockdep happy, when lockdep is enabled
80  * we set held to a blocking lock before we go around and
81  * retake all the spinlocks in the path.  You can safely use NULL
82  * for held
83  */
84 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
85                                         struct extent_buffer *held, int held_rw)
86 {
87         int i;
88
89 #ifdef CONFIG_DEBUG_LOCK_ALLOC
90         /* lockdep really cares that we take all of these spinlocks
91          * in the right order.  If any of the locks in the path are not
92          * currently blocking, it is going to complain.  So, make really
93          * really sure by forcing the path to blocking before we clear
94          * the path blocking.
95          */
96         if (held) {
97                 btrfs_set_lock_blocking_rw(held, held_rw);
98                 if (held_rw == BTRFS_WRITE_LOCK)
99                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
100                 else if (held_rw == BTRFS_READ_LOCK)
101                         held_rw = BTRFS_READ_LOCK_BLOCKING;
102         }
103         btrfs_set_path_blocking(p);
104 #endif
105
106         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
107                 if (p->nodes[i] && p->locks[i]) {
108                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
109                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
110                                 p->locks[i] = BTRFS_WRITE_LOCK;
111                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
112                                 p->locks[i] = BTRFS_READ_LOCK;
113                 }
114         }
115
116 #ifdef CONFIG_DEBUG_LOCK_ALLOC
117         if (held)
118                 btrfs_clear_lock_blocking_rw(held, held_rw);
119 #endif
120 }
121
122 /* this also releases the path */
123 void btrfs_free_path(struct btrfs_path *p)
124 {
125         if (!p)
126                 return;
127         btrfs_release_path(p);
128         kmem_cache_free(btrfs_path_cachep, p);
129 }
130
131 /*
132  * path release drops references on the extent buffers in the path
133  * and it drops any locks held by this path
134  *
135  * It is safe to call this on paths that no locks or extent buffers held.
136  */
137 noinline void btrfs_release_path(struct btrfs_path *p)
138 {
139         int i;
140
141         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
142                 p->slots[i] = 0;
143                 if (!p->nodes[i])
144                         continue;
145                 if (p->locks[i]) {
146                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
147                         p->locks[i] = 0;
148                 }
149                 free_extent_buffer(p->nodes[i]);
150                 p->nodes[i] = NULL;
151         }
152 }
153
154 /*
155  * safely gets a reference on the root node of a tree.  A lock
156  * is not taken, so a concurrent writer may put a different node
157  * at the root of the tree.  See btrfs_lock_root_node for the
158  * looping required.
159  *
160  * The extent buffer returned by this has a reference taken, so
161  * it won't disappear.  It may stop being the root of the tree
162  * at any time because there are no locks held.
163  */
164 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
165 {
166         struct extent_buffer *eb;
167
168         while (1) {
169                 rcu_read_lock();
170                 eb = rcu_dereference(root->node);
171
172                 /*
173                  * RCU really hurts here, we could free up the root node because
174                  * it was cow'ed but we may not get the new root node yet so do
175                  * the inc_not_zero dance and if it doesn't work then
176                  * synchronize_rcu and try again.
177                  */
178                 if (atomic_inc_not_zero(&eb->refs)) {
179                         rcu_read_unlock();
180                         break;
181                 }
182                 rcu_read_unlock();
183                 synchronize_rcu();
184         }
185         return eb;
186 }
187
188 /* loop around taking references on and locking the root node of the
189  * tree until you end up with a lock on the root.  A locked buffer
190  * is returned, with a reference held.
191  */
192 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
193 {
194         struct extent_buffer *eb;
195
196         while (1) {
197                 eb = btrfs_root_node(root);
198                 btrfs_tree_lock(eb);
199                 if (eb == root->node)
200                         break;
201                 btrfs_tree_unlock(eb);
202                 free_extent_buffer(eb);
203         }
204         return eb;
205 }
206
207 /* loop around taking references on and locking the root node of the
208  * tree until you end up with a lock on the root.  A locked buffer
209  * is returned, with a reference held.
210  */
211 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
212 {
213         struct extent_buffer *eb;
214
215         while (1) {
216                 eb = btrfs_root_node(root);
217                 btrfs_tree_read_lock(eb);
218                 if (eb == root->node)
219                         break;
220                 btrfs_tree_read_unlock(eb);
221                 free_extent_buffer(eb);
222         }
223         return eb;
224 }
225
226 /* cowonly root (everything not a reference counted cow subvolume), just get
227  * put onto a simple dirty list.  transaction.c walks this to make sure they
228  * get properly updated on disk.
229  */
230 static void add_root_to_dirty_list(struct btrfs_root *root)
231 {
232         spin_lock(&root->fs_info->trans_lock);
233         if (root->track_dirty && list_empty(&root->dirty_list)) {
234                 list_add(&root->dirty_list,
235                          &root->fs_info->dirty_cowonly_roots);
236         }
237         spin_unlock(&root->fs_info->trans_lock);
238 }
239
240 /*
241  * used by snapshot creation to make a copy of a root for a tree with
242  * a given objectid.  The buffer with the new root node is returned in
243  * cow_ret, and this func returns zero on success or a negative error code.
244  */
245 int btrfs_copy_root(struct btrfs_trans_handle *trans,
246                       struct btrfs_root *root,
247                       struct extent_buffer *buf,
248                       struct extent_buffer **cow_ret, u64 new_root_objectid)
249 {
250         struct extent_buffer *cow;
251         int ret = 0;
252         int level;
253         struct btrfs_disk_key disk_key;
254
255         WARN_ON(root->ref_cows && trans->transid !=
256                 root->fs_info->running_transaction->transid);
257         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
258
259         level = btrfs_header_level(buf);
260         if (level == 0)
261                 btrfs_item_key(buf, &disk_key, 0);
262         else
263                 btrfs_node_key(buf, &disk_key, 0);
264
265         cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
266                                      new_root_objectid, &disk_key, level,
267                                      buf->start, 0);
268         if (IS_ERR(cow))
269                 return PTR_ERR(cow);
270
271         copy_extent_buffer(cow, buf, 0, 0, cow->len);
272         btrfs_set_header_bytenr(cow, cow->start);
273         btrfs_set_header_generation(cow, trans->transid);
274         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
275         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
276                                      BTRFS_HEADER_FLAG_RELOC);
277         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
278                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
279         else
280                 btrfs_set_header_owner(cow, new_root_objectid);
281
282         write_extent_buffer(cow, root->fs_info->fsid,
283                             (unsigned long)btrfs_header_fsid(cow),
284                             BTRFS_FSID_SIZE);
285
286         WARN_ON(btrfs_header_generation(buf) > trans->transid);
287         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
288                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
289         else
290                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
291
292         if (ret)
293                 return ret;
294
295         btrfs_mark_buffer_dirty(cow);
296         *cow_ret = cow;
297         return 0;
298 }
299
300 enum mod_log_op {
301         MOD_LOG_KEY_REPLACE,
302         MOD_LOG_KEY_ADD,
303         MOD_LOG_KEY_REMOVE,
304         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
305         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
306         MOD_LOG_MOVE_KEYS,
307         MOD_LOG_ROOT_REPLACE,
308 };
309
310 struct tree_mod_move {
311         int dst_slot;
312         int nr_items;
313 };
314
315 struct tree_mod_root {
316         u64 logical;
317         u8 level;
318 };
319
320 struct tree_mod_elem {
321         struct rb_node node;
322         u64 index;              /* shifted logical */
323         u64 seq;
324         enum mod_log_op op;
325
326         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
327         int slot;
328
329         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
330         u64 generation;
331
332         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
333         struct btrfs_disk_key key;
334         u64 blockptr;
335
336         /* this is used for op == MOD_LOG_MOVE_KEYS */
337         struct tree_mod_move move;
338
339         /* this is used for op == MOD_LOG_ROOT_REPLACE */
340         struct tree_mod_root old_root;
341 };
342
343 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
344 {
345         read_lock(&fs_info->tree_mod_log_lock);
346 }
347
348 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
349 {
350         read_unlock(&fs_info->tree_mod_log_lock);
351 }
352
353 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
354 {
355         write_lock(&fs_info->tree_mod_log_lock);
356 }
357
358 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
359 {
360         write_unlock(&fs_info->tree_mod_log_lock);
361 }
362
363 /*
364  * This adds a new blocker to the tree mod log's blocker list if the @elem
365  * passed does not already have a sequence number set. So when a caller expects
366  * to record tree modifications, it should ensure to set elem->seq to zero
367  * before calling btrfs_get_tree_mod_seq.
368  * Returns a fresh, unused tree log modification sequence number, even if no new
369  * blocker was added.
370  */
371 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
372                            struct seq_list *elem)
373 {
374         u64 seq;
375
376         tree_mod_log_write_lock(fs_info);
377         spin_lock(&fs_info->tree_mod_seq_lock);
378         if (!elem->seq) {
379                 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
380                 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
381         }
382         seq = btrfs_inc_tree_mod_seq(fs_info);
383         spin_unlock(&fs_info->tree_mod_seq_lock);
384         tree_mod_log_write_unlock(fs_info);
385
386         return seq;
387 }
388
389 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
390                             struct seq_list *elem)
391 {
392         struct rb_root *tm_root;
393         struct rb_node *node;
394         struct rb_node *next;
395         struct seq_list *cur_elem;
396         struct tree_mod_elem *tm;
397         u64 min_seq = (u64)-1;
398         u64 seq_putting = elem->seq;
399
400         if (!seq_putting)
401                 return;
402
403         spin_lock(&fs_info->tree_mod_seq_lock);
404         list_del(&elem->list);
405         elem->seq = 0;
406
407         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
408                 if (cur_elem->seq < min_seq) {
409                         if (seq_putting > cur_elem->seq) {
410                                 /*
411                                  * blocker with lower sequence number exists, we
412                                  * cannot remove anything from the log
413                                  */
414                                 spin_unlock(&fs_info->tree_mod_seq_lock);
415                                 return;
416                         }
417                         min_seq = cur_elem->seq;
418                 }
419         }
420         spin_unlock(&fs_info->tree_mod_seq_lock);
421
422         /*
423          * anything that's lower than the lowest existing (read: blocked)
424          * sequence number can be removed from the tree.
425          */
426         tree_mod_log_write_lock(fs_info);
427         tm_root = &fs_info->tree_mod_log;
428         for (node = rb_first(tm_root); node; node = next) {
429                 next = rb_next(node);
430                 tm = container_of(node, struct tree_mod_elem, node);
431                 if (tm->seq > min_seq)
432                         continue;
433                 rb_erase(node, tm_root);
434                 kfree(tm);
435         }
436         tree_mod_log_write_unlock(fs_info);
437 }
438
439 /*
440  * key order of the log:
441  *       index -> sequence
442  *
443  * the index is the shifted logical of the *new* root node for root replace
444  * operations, or the shifted logical of the affected block for all other
445  * operations.
446  */
447 static noinline int
448 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
449 {
450         struct rb_root *tm_root;
451         struct rb_node **new;
452         struct rb_node *parent = NULL;
453         struct tree_mod_elem *cur;
454
455         BUG_ON(!tm || !tm->seq);
456
457         tm_root = &fs_info->tree_mod_log;
458         new = &tm_root->rb_node;
459         while (*new) {
460                 cur = container_of(*new, struct tree_mod_elem, node);
461                 parent = *new;
462                 if (cur->index < tm->index)
463                         new = &((*new)->rb_left);
464                 else if (cur->index > tm->index)
465                         new = &((*new)->rb_right);
466                 else if (cur->seq < tm->seq)
467                         new = &((*new)->rb_left);
468                 else if (cur->seq > tm->seq)
469                         new = &((*new)->rb_right);
470                 else {
471                         kfree(tm);
472                         return -EEXIST;
473                 }
474         }
475
476         rb_link_node(&tm->node, parent, new);
477         rb_insert_color(&tm->node, tm_root);
478         return 0;
479 }
480
481 /*
482  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
483  * returns zero with the tree_mod_log_lock acquired. The caller must hold
484  * this until all tree mod log insertions are recorded in the rb tree and then
485  * call tree_mod_log_write_unlock() to release.
486  */
487 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
488                                     struct extent_buffer *eb) {
489         smp_mb();
490         if (list_empty(&(fs_info)->tree_mod_seq_list))
491                 return 1;
492         if (eb && btrfs_header_level(eb) == 0)
493                 return 1;
494
495         tree_mod_log_write_lock(fs_info);
496         if (list_empty(&fs_info->tree_mod_seq_list)) {
497                 /*
498                  * someone emptied the list while we were waiting for the lock.
499                  * we must not add to the list when no blocker exists.
500                  */
501                 tree_mod_log_write_unlock(fs_info);
502                 return 1;
503         }
504
505         return 0;
506 }
507
508 /*
509  * This allocates memory and gets a tree modification sequence number.
510  *
511  * Returns <0 on error.
512  * Returns >0 (the added sequence number) on success.
513  */
514 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
515                                  struct tree_mod_elem **tm_ret)
516 {
517         struct tree_mod_elem *tm;
518
519         /*
520          * once we switch from spin locks to something different, we should
521          * honor the flags parameter here.
522          */
523         tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
524         if (!tm)
525                 return -ENOMEM;
526
527         tm->seq = btrfs_inc_tree_mod_seq(fs_info);
528         return tm->seq;
529 }
530
531 static inline int
532 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
533                           struct extent_buffer *eb, int slot,
534                           enum mod_log_op op, gfp_t flags)
535 {
536         int ret;
537         struct tree_mod_elem *tm;
538
539         ret = tree_mod_alloc(fs_info, flags, &tm);
540         if (ret < 0)
541                 return ret;
542
543         tm->index = eb->start >> PAGE_CACHE_SHIFT;
544         if (op != MOD_LOG_KEY_ADD) {
545                 btrfs_node_key(eb, &tm->key, slot);
546                 tm->blockptr = btrfs_node_blockptr(eb, slot);
547         }
548         tm->op = op;
549         tm->slot = slot;
550         tm->generation = btrfs_node_ptr_generation(eb, slot);
551
552         return __tree_mod_log_insert(fs_info, tm);
553 }
554
555 static noinline int
556 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
557                              struct extent_buffer *eb, int slot,
558                              enum mod_log_op op, gfp_t flags)
559 {
560         int ret;
561
562         if (tree_mod_dont_log(fs_info, eb))
563                 return 0;
564
565         ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
566
567         tree_mod_log_write_unlock(fs_info);
568         return ret;
569 }
570
571 static noinline int
572 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
573                         int slot, enum mod_log_op op)
574 {
575         return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
576 }
577
578 static noinline int
579 tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
580                              struct extent_buffer *eb, int slot,
581                              enum mod_log_op op)
582 {
583         return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
584 }
585
586 static noinline int
587 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
588                          struct extent_buffer *eb, int dst_slot, int src_slot,
589                          int nr_items, gfp_t flags)
590 {
591         struct tree_mod_elem *tm;
592         int ret;
593         int i;
594
595         if (tree_mod_dont_log(fs_info, eb))
596                 return 0;
597
598         /*
599          * When we override something during the move, we log these removals.
600          * This can only happen when we move towards the beginning of the
601          * buffer, i.e. dst_slot < src_slot.
602          */
603         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
604                 ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
605                                               MOD_LOG_KEY_REMOVE_WHILE_MOVING);
606                 BUG_ON(ret < 0);
607         }
608
609         ret = tree_mod_alloc(fs_info, flags, &tm);
610         if (ret < 0)
611                 goto out;
612
613         tm->index = eb->start >> PAGE_CACHE_SHIFT;
614         tm->slot = src_slot;
615         tm->move.dst_slot = dst_slot;
616         tm->move.nr_items = nr_items;
617         tm->op = MOD_LOG_MOVE_KEYS;
618
619         ret = __tree_mod_log_insert(fs_info, tm);
620 out:
621         tree_mod_log_write_unlock(fs_info);
622         return ret;
623 }
624
625 static inline void
626 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
627 {
628         int i;
629         u32 nritems;
630         int ret;
631
632         if (btrfs_header_level(eb) == 0)
633                 return;
634
635         nritems = btrfs_header_nritems(eb);
636         for (i = nritems - 1; i >= 0; i--) {
637                 ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
638                                               MOD_LOG_KEY_REMOVE_WHILE_FREEING);
639                 BUG_ON(ret < 0);
640         }
641 }
642
643 static noinline int
644 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
645                          struct extent_buffer *old_root,
646                          struct extent_buffer *new_root, gfp_t flags)
647 {
648         struct tree_mod_elem *tm;
649         int ret;
650
651         if (tree_mod_dont_log(fs_info, NULL))
652                 return 0;
653
654         ret = tree_mod_alloc(fs_info, flags, &tm);
655         if (ret < 0)
656                 goto out;
657
658         tm->index = new_root->start >> PAGE_CACHE_SHIFT;
659         tm->old_root.logical = old_root->start;
660         tm->old_root.level = btrfs_header_level(old_root);
661         tm->generation = btrfs_header_generation(old_root);
662         tm->op = MOD_LOG_ROOT_REPLACE;
663
664         ret = __tree_mod_log_insert(fs_info, tm);
665 out:
666         tree_mod_log_write_unlock(fs_info);
667         return ret;
668 }
669
670 static struct tree_mod_elem *
671 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
672                       int smallest)
673 {
674         struct rb_root *tm_root;
675         struct rb_node *node;
676         struct tree_mod_elem *cur = NULL;
677         struct tree_mod_elem *found = NULL;
678         u64 index = start >> PAGE_CACHE_SHIFT;
679
680         tree_mod_log_read_lock(fs_info);
681         tm_root = &fs_info->tree_mod_log;
682         node = tm_root->rb_node;
683         while (node) {
684                 cur = container_of(node, struct tree_mod_elem, node);
685                 if (cur->index < index) {
686                         node = node->rb_left;
687                 } else if (cur->index > index) {
688                         node = node->rb_right;
689                 } else if (cur->seq < min_seq) {
690                         node = node->rb_left;
691                 } else if (!smallest) {
692                         /* we want the node with the highest seq */
693                         if (found)
694                                 BUG_ON(found->seq > cur->seq);
695                         found = cur;
696                         node = node->rb_left;
697                 } else if (cur->seq > min_seq) {
698                         /* we want the node with the smallest seq */
699                         if (found)
700                                 BUG_ON(found->seq < cur->seq);
701                         found = cur;
702                         node = node->rb_right;
703                 } else {
704                         found = cur;
705                         break;
706                 }
707         }
708         tree_mod_log_read_unlock(fs_info);
709
710         return found;
711 }
712
713 /*
714  * this returns the element from the log with the smallest time sequence
715  * value that's in the log (the oldest log item). any element with a time
716  * sequence lower than min_seq will be ignored.
717  */
718 static struct tree_mod_elem *
719 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
720                            u64 min_seq)
721 {
722         return __tree_mod_log_search(fs_info, start, min_seq, 1);
723 }
724
725 /*
726  * this returns the element from the log with the largest time sequence
727  * value that's in the log (the most recent log item). any element with
728  * a time sequence lower than min_seq will be ignored.
729  */
730 static struct tree_mod_elem *
731 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
732 {
733         return __tree_mod_log_search(fs_info, start, min_seq, 0);
734 }
735
736 static noinline void
737 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
738                      struct extent_buffer *src, unsigned long dst_offset,
739                      unsigned long src_offset, int nr_items)
740 {
741         int ret;
742         int i;
743
744         if (tree_mod_dont_log(fs_info, NULL))
745                 return;
746
747         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
748                 tree_mod_log_write_unlock(fs_info);
749                 return;
750         }
751
752         for (i = 0; i < nr_items; i++) {
753                 ret = tree_mod_log_insert_key_locked(fs_info, src,
754                                                      i + src_offset,
755                                                      MOD_LOG_KEY_REMOVE);
756                 BUG_ON(ret < 0);
757                 ret = tree_mod_log_insert_key_locked(fs_info, dst,
758                                                      i + dst_offset,
759                                                      MOD_LOG_KEY_ADD);
760                 BUG_ON(ret < 0);
761         }
762
763         tree_mod_log_write_unlock(fs_info);
764 }
765
766 static inline void
767 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
768                      int dst_offset, int src_offset, int nr_items)
769 {
770         int ret;
771         ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
772                                        nr_items, GFP_NOFS);
773         BUG_ON(ret < 0);
774 }
775
776 static noinline void
777 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
778                           struct extent_buffer *eb, int slot, int atomic)
779 {
780         int ret;
781
782         ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
783                                            MOD_LOG_KEY_REPLACE,
784                                            atomic ? GFP_ATOMIC : GFP_NOFS);
785         BUG_ON(ret < 0);
786 }
787
788 static noinline void
789 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
790 {
791         if (tree_mod_dont_log(fs_info, eb))
792                 return;
793
794         __tree_mod_log_free_eb(fs_info, eb);
795
796         tree_mod_log_write_unlock(fs_info);
797 }
798
799 static noinline void
800 tree_mod_log_set_root_pointer(struct btrfs_root *root,
801                               struct extent_buffer *new_root_node)
802 {
803         int ret;
804         ret = tree_mod_log_insert_root(root->fs_info, root->node,
805                                        new_root_node, GFP_NOFS);
806         BUG_ON(ret < 0);
807 }
808
809 /*
810  * check if the tree block can be shared by multiple trees
811  */
812 int btrfs_block_can_be_shared(struct btrfs_root *root,
813                               struct extent_buffer *buf)
814 {
815         /*
816          * Tree blocks not in refernece counted trees and tree roots
817          * are never shared. If a block was allocated after the last
818          * snapshot and the block was not allocated by tree relocation,
819          * we know the block is not shared.
820          */
821         if (root->ref_cows &&
822             buf != root->node && buf != root->commit_root &&
823             (btrfs_header_generation(buf) <=
824              btrfs_root_last_snapshot(&root->root_item) ||
825              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
826                 return 1;
827 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
828         if (root->ref_cows &&
829             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
830                 return 1;
831 #endif
832         return 0;
833 }
834
835 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
836                                        struct btrfs_root *root,
837                                        struct extent_buffer *buf,
838                                        struct extent_buffer *cow,
839                                        int *last_ref)
840 {
841         u64 refs;
842         u64 owner;
843         u64 flags;
844         u64 new_flags = 0;
845         int ret;
846
847         /*
848          * Backrefs update rules:
849          *
850          * Always use full backrefs for extent pointers in tree block
851          * allocated by tree relocation.
852          *
853          * If a shared tree block is no longer referenced by its owner
854          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
855          * use full backrefs for extent pointers in tree block.
856          *
857          * If a tree block is been relocating
858          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
859          * use full backrefs for extent pointers in tree block.
860          * The reason for this is some operations (such as drop tree)
861          * are only allowed for blocks use full backrefs.
862          */
863
864         if (btrfs_block_can_be_shared(root, buf)) {
865                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
866                                                buf->len, &refs, &flags);
867                 if (ret)
868                         return ret;
869                 if (refs == 0) {
870                         ret = -EROFS;
871                         btrfs_std_error(root->fs_info, ret);
872                         return ret;
873                 }
874         } else {
875                 refs = 1;
876                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
877                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
878                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
879                 else
880                         flags = 0;
881         }
882
883         owner = btrfs_header_owner(buf);
884         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
885                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
886
887         if (refs > 1) {
888                 if ((owner == root->root_key.objectid ||
889                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
890                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
891                         ret = btrfs_inc_ref(trans, root, buf, 1, 1);
892                         BUG_ON(ret); /* -ENOMEM */
893
894                         if (root->root_key.objectid ==
895                             BTRFS_TREE_RELOC_OBJECTID) {
896                                 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
897                                 BUG_ON(ret); /* -ENOMEM */
898                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
899                                 BUG_ON(ret); /* -ENOMEM */
900                         }
901                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
902                 } else {
903
904                         if (root->root_key.objectid ==
905                             BTRFS_TREE_RELOC_OBJECTID)
906                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
907                         else
908                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
909                         BUG_ON(ret); /* -ENOMEM */
910                 }
911                 if (new_flags != 0) {
912                         ret = btrfs_set_disk_extent_flags(trans, root,
913                                                           buf->start,
914                                                           buf->len,
915                                                           new_flags, 0);
916                         if (ret)
917                                 return ret;
918                 }
919         } else {
920                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
921                         if (root->root_key.objectid ==
922                             BTRFS_TREE_RELOC_OBJECTID)
923                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
924                         else
925                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
926                         BUG_ON(ret); /* -ENOMEM */
927                         ret = btrfs_dec_ref(trans, root, buf, 1, 1);
928                         BUG_ON(ret); /* -ENOMEM */
929                 }
930                 tree_mod_log_free_eb(root->fs_info, buf);
931                 clean_tree_block(trans, root, buf);
932                 *last_ref = 1;
933         }
934         return 0;
935 }
936
937 /*
938  * does the dirty work in cow of a single block.  The parent block (if
939  * supplied) is updated to point to the new cow copy.  The new buffer is marked
940  * dirty and returned locked.  If you modify the block it needs to be marked
941  * dirty again.
942  *
943  * search_start -- an allocation hint for the new block
944  *
945  * empty_size -- a hint that you plan on doing more cow.  This is the size in
946  * bytes the allocator should try to find free next to the block it returns.
947  * This is just a hint and may be ignored by the allocator.
948  */
949 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
950                              struct btrfs_root *root,
951                              struct extent_buffer *buf,
952                              struct extent_buffer *parent, int parent_slot,
953                              struct extent_buffer **cow_ret,
954                              u64 search_start, u64 empty_size)
955 {
956         struct btrfs_disk_key disk_key;
957         struct extent_buffer *cow;
958         int level, ret;
959         int last_ref = 0;
960         int unlock_orig = 0;
961         u64 parent_start;
962
963         if (*cow_ret == buf)
964                 unlock_orig = 1;
965
966         btrfs_assert_tree_locked(buf);
967
968         WARN_ON(root->ref_cows && trans->transid !=
969                 root->fs_info->running_transaction->transid);
970         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
971
972         level = btrfs_header_level(buf);
973
974         if (level == 0)
975                 btrfs_item_key(buf, &disk_key, 0);
976         else
977                 btrfs_node_key(buf, &disk_key, 0);
978
979         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
980                 if (parent)
981                         parent_start = parent->start;
982                 else
983                         parent_start = 0;
984         } else
985                 parent_start = 0;
986
987         cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
988                                      root->root_key.objectid, &disk_key,
989                                      level, search_start, empty_size);
990         if (IS_ERR(cow))
991                 return PTR_ERR(cow);
992
993         /* cow is set to blocking by btrfs_init_new_buffer */
994
995         copy_extent_buffer(cow, buf, 0, 0, cow->len);
996         btrfs_set_header_bytenr(cow, cow->start);
997         btrfs_set_header_generation(cow, trans->transid);
998         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
999         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1000                                      BTRFS_HEADER_FLAG_RELOC);
1001         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1002                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1003         else
1004                 btrfs_set_header_owner(cow, root->root_key.objectid);
1005
1006         write_extent_buffer(cow, root->fs_info->fsid,
1007                             (unsigned long)btrfs_header_fsid(cow),
1008                             BTRFS_FSID_SIZE);
1009
1010         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1011         if (ret) {
1012                 btrfs_abort_transaction(trans, root, ret);
1013                 return ret;
1014         }
1015
1016         if (root->ref_cows)
1017                 btrfs_reloc_cow_block(trans, root, buf, cow);
1018
1019         if (buf == root->node) {
1020                 WARN_ON(parent && parent != buf);
1021                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1022                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1023                         parent_start = buf->start;
1024                 else
1025                         parent_start = 0;
1026
1027                 extent_buffer_get(cow);
1028                 tree_mod_log_set_root_pointer(root, cow);
1029                 rcu_assign_pointer(root->node, cow);
1030
1031                 btrfs_free_tree_block(trans, root, buf, parent_start,
1032                                       last_ref);
1033                 free_extent_buffer(buf);
1034                 add_root_to_dirty_list(root);
1035         } else {
1036                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1037                         parent_start = parent->start;
1038                 else
1039                         parent_start = 0;
1040
1041                 WARN_ON(trans->transid != btrfs_header_generation(parent));
1042                 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1043                                         MOD_LOG_KEY_REPLACE);
1044                 btrfs_set_node_blockptr(parent, parent_slot,
1045                                         cow->start);
1046                 btrfs_set_node_ptr_generation(parent, parent_slot,
1047                                               trans->transid);
1048                 btrfs_mark_buffer_dirty(parent);
1049                 btrfs_free_tree_block(trans, root, buf, parent_start,
1050                                       last_ref);
1051         }
1052         if (unlock_orig)
1053                 btrfs_tree_unlock(buf);
1054         free_extent_buffer_stale(buf);
1055         btrfs_mark_buffer_dirty(cow);
1056         *cow_ret = cow;
1057         return 0;
1058 }
1059
1060 /*
1061  * returns the logical address of the oldest predecessor of the given root.
1062  * entries older than time_seq are ignored.
1063  */
1064 static struct tree_mod_elem *
1065 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1066                            struct btrfs_root *root, u64 time_seq)
1067 {
1068         struct tree_mod_elem *tm;
1069         struct tree_mod_elem *found = NULL;
1070         u64 root_logical = root->node->start;
1071         int looped = 0;
1072
1073         if (!time_seq)
1074                 return 0;
1075
1076         /*
1077          * the very last operation that's logged for a root is the replacement
1078          * operation (if it is replaced at all). this has the index of the *new*
1079          * root, making it the very first operation that's logged for this root.
1080          */
1081         while (1) {
1082                 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1083                                                 time_seq);
1084                 if (!looped && !tm)
1085                         return 0;
1086                 /*
1087                  * if there are no tree operation for the oldest root, we simply
1088                  * return it. this should only happen if that (old) root is at
1089                  * level 0.
1090                  */
1091                 if (!tm)
1092                         break;
1093
1094                 /*
1095                  * if there's an operation that's not a root replacement, we
1096                  * found the oldest version of our root. normally, we'll find a
1097                  * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1098                  */
1099                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1100                         break;
1101
1102                 found = tm;
1103                 root_logical = tm->old_root.logical;
1104                 BUG_ON(root_logical == root->node->start);
1105                 looped = 1;
1106         }
1107
1108         /* if there's no old root to return, return what we found instead */
1109         if (!found)
1110                 found = tm;
1111
1112         return found;
1113 }
1114
1115 /*
1116  * tm is a pointer to the first operation to rewind within eb. then, all
1117  * previous operations will be rewinded (until we reach something older than
1118  * time_seq).
1119  */
1120 static void
1121 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1122                       struct tree_mod_elem *first_tm)
1123 {
1124         u32 n;
1125         struct rb_node *next;
1126         struct tree_mod_elem *tm = first_tm;
1127         unsigned long o_dst;
1128         unsigned long o_src;
1129         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1130
1131         n = btrfs_header_nritems(eb);
1132         while (tm && tm->seq >= time_seq) {
1133                 /*
1134                  * all the operations are recorded with the operator used for
1135                  * the modification. as we're going backwards, we do the
1136                  * opposite of each operation here.
1137                  */
1138                 switch (tm->op) {
1139                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1140                         BUG_ON(tm->slot < n);
1141                 case MOD_LOG_KEY_REMOVE:
1142                         n++;
1143                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1144                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1145                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1146                         btrfs_set_node_ptr_generation(eb, tm->slot,
1147                                                       tm->generation);
1148                         break;
1149                 case MOD_LOG_KEY_REPLACE:
1150                         BUG_ON(tm->slot >= n);
1151                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1152                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1153                         btrfs_set_node_ptr_generation(eb, tm->slot,
1154                                                       tm->generation);
1155                         break;
1156                 case MOD_LOG_KEY_ADD:
1157                         /* if a move operation is needed it's in the log */
1158                         n--;
1159                         break;
1160                 case MOD_LOG_MOVE_KEYS:
1161                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1162                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1163                         memmove_extent_buffer(eb, o_dst, o_src,
1164                                               tm->move.nr_items * p_size);
1165                         break;
1166                 case MOD_LOG_ROOT_REPLACE:
1167                         /*
1168                          * this operation is special. for roots, this must be
1169                          * handled explicitly before rewinding.
1170                          * for non-roots, this operation may exist if the node
1171                          * was a root: root A -> child B; then A gets empty and
1172                          * B is promoted to the new root. in the mod log, we'll
1173                          * have a root-replace operation for B, a tree block
1174                          * that is no root. we simply ignore that operation.
1175                          */
1176                         break;
1177                 }
1178                 next = rb_next(&tm->node);
1179                 if (!next)
1180                         break;
1181                 tm = container_of(next, struct tree_mod_elem, node);
1182                 if (tm->index != first_tm->index)
1183                         break;
1184         }
1185         btrfs_set_header_nritems(eb, n);
1186 }
1187
1188 static struct extent_buffer *
1189 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1190                     u64 time_seq)
1191 {
1192         struct extent_buffer *eb_rewin;
1193         struct tree_mod_elem *tm;
1194
1195         if (!time_seq)
1196                 return eb;
1197
1198         if (btrfs_header_level(eb) == 0)
1199                 return eb;
1200
1201         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1202         if (!tm)
1203                 return eb;
1204
1205         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1206                 BUG_ON(tm->slot != 0);
1207                 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1208                                                 fs_info->tree_root->nodesize);
1209                 BUG_ON(!eb_rewin);
1210                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1211                 btrfs_set_header_backref_rev(eb_rewin,
1212                                              btrfs_header_backref_rev(eb));
1213                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1214                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1215         } else {
1216                 eb_rewin = btrfs_clone_extent_buffer(eb);
1217                 BUG_ON(!eb_rewin);
1218         }
1219
1220         extent_buffer_get(eb_rewin);
1221         free_extent_buffer(eb);
1222
1223         __tree_mod_log_rewind(eb_rewin, time_seq, tm);
1224         WARN_ON(btrfs_header_nritems(eb_rewin) >
1225                 BTRFS_NODEPTRS_PER_BLOCK(fs_info->fs_root));
1226
1227         return eb_rewin;
1228 }
1229
1230 /*
1231  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1232  * value. If there are no changes, the current root->root_node is returned. If
1233  * anything changed in between, there's a fresh buffer allocated on which the
1234  * rewind operations are done. In any case, the returned buffer is read locked.
1235  * Returns NULL on error (with no locks held).
1236  */
1237 static inline struct extent_buffer *
1238 get_old_root(struct btrfs_root *root, u64 time_seq)
1239 {
1240         struct tree_mod_elem *tm;
1241         struct extent_buffer *eb;
1242         struct extent_buffer *old;
1243         struct tree_mod_root *old_root = NULL;
1244         u64 old_generation = 0;
1245         u64 logical;
1246         u32 blocksize;
1247
1248         eb = btrfs_read_lock_root_node(root);
1249         tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1250         if (!tm)
1251                 return root->node;
1252
1253         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1254                 old_root = &tm->old_root;
1255                 old_generation = tm->generation;
1256                 logical = old_root->logical;
1257         } else {
1258                 logical = root->node->start;
1259         }
1260
1261         tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1262         if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1263                 btrfs_tree_read_unlock(root->node);
1264                 free_extent_buffer(root->node);
1265                 blocksize = btrfs_level_size(root, old_root->level);
1266                 old = read_tree_block(root, logical, blocksize, 0);
1267                 if (!old) {
1268                         pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1269                                 logical);
1270                         WARN_ON(1);
1271                 } else {
1272                         eb = btrfs_clone_extent_buffer(old);
1273                         free_extent_buffer(old);
1274                 }
1275         } else if (old_root) {
1276                 btrfs_tree_read_unlock(root->node);
1277                 free_extent_buffer(root->node);
1278                 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1279         } else {
1280                 eb = btrfs_clone_extent_buffer(root->node);
1281                 btrfs_tree_read_unlock(root->node);
1282                 free_extent_buffer(root->node);
1283         }
1284
1285         if (!eb)
1286                 return NULL;
1287         extent_buffer_get(eb);
1288         btrfs_tree_read_lock(eb);
1289         if (old_root) {
1290                 btrfs_set_header_bytenr(eb, eb->start);
1291                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1292                 btrfs_set_header_owner(eb, root->root_key.objectid);
1293                 btrfs_set_header_level(eb, old_root->level);
1294                 btrfs_set_header_generation(eb, old_generation);
1295         }
1296         if (tm)
1297                 __tree_mod_log_rewind(eb, time_seq, tm);
1298         else
1299                 WARN_ON(btrfs_header_level(eb) != 0);
1300         WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1301
1302         return eb;
1303 }
1304
1305 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1306 {
1307         struct tree_mod_elem *tm;
1308         int level;
1309
1310         tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1311         if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1312                 level = tm->old_root.level;
1313         } else {
1314                 rcu_read_lock();
1315                 level = btrfs_header_level(root->node);
1316                 rcu_read_unlock();
1317         }
1318
1319         return level;
1320 }
1321
1322 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1323                                    struct btrfs_root *root,
1324                                    struct extent_buffer *buf)
1325 {
1326         /* ensure we can see the force_cow */
1327         smp_rmb();
1328
1329         /*
1330          * We do not need to cow a block if
1331          * 1) this block is not created or changed in this transaction;
1332          * 2) this block does not belong to TREE_RELOC tree;
1333          * 3) the root is not forced COW.
1334          *
1335          * What is forced COW:
1336          *    when we create snapshot during commiting the transaction,
1337          *    after we've finished coping src root, we must COW the shared
1338          *    block to ensure the metadata consistency.
1339          */
1340         if (btrfs_header_generation(buf) == trans->transid &&
1341             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1342             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1343               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1344             !root->force_cow)
1345                 return 0;
1346         return 1;
1347 }
1348
1349 /*
1350  * cows a single block, see __btrfs_cow_block for the real work.
1351  * This version of it has extra checks so that a block isn't cow'd more than
1352  * once per transaction, as long as it hasn't been written yet
1353  */
1354 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1355                     struct btrfs_root *root, struct extent_buffer *buf,
1356                     struct extent_buffer *parent, int parent_slot,
1357                     struct extent_buffer **cow_ret)
1358 {
1359         u64 search_start;
1360         int ret;
1361
1362         if (trans->transaction != root->fs_info->running_transaction)
1363                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1364                        (unsigned long long)trans->transid,
1365                        (unsigned long long)
1366                        root->fs_info->running_transaction->transid);
1367
1368         if (trans->transid != root->fs_info->generation)
1369                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1370                        (unsigned long long)trans->transid,
1371                        (unsigned long long)root->fs_info->generation);
1372
1373         if (!should_cow_block(trans, root, buf)) {
1374                 *cow_ret = buf;
1375                 return 0;
1376         }
1377
1378         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1379
1380         if (parent)
1381                 btrfs_set_lock_blocking(parent);
1382         btrfs_set_lock_blocking(buf);
1383
1384         ret = __btrfs_cow_block(trans, root, buf, parent,
1385                                  parent_slot, cow_ret, search_start, 0);
1386
1387         trace_btrfs_cow_block(root, buf, *cow_ret);
1388
1389         return ret;
1390 }
1391
1392 /*
1393  * helper function for defrag to decide if two blocks pointed to by a
1394  * node are actually close by
1395  */
1396 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1397 {
1398         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1399                 return 1;
1400         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1401                 return 1;
1402         return 0;
1403 }
1404
1405 /*
1406  * compare two keys in a memcmp fashion
1407  */
1408 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1409 {
1410         struct btrfs_key k1;
1411
1412         btrfs_disk_key_to_cpu(&k1, disk);
1413
1414         return btrfs_comp_cpu_keys(&k1, k2);
1415 }
1416
1417 /*
1418  * same as comp_keys only with two btrfs_key's
1419  */
1420 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1421 {
1422         if (k1->objectid > k2->objectid)
1423                 return 1;
1424         if (k1->objectid < k2->objectid)
1425                 return -1;
1426         if (k1->type > k2->type)
1427                 return 1;
1428         if (k1->type < k2->type)
1429                 return -1;
1430         if (k1->offset > k2->offset)
1431                 return 1;
1432         if (k1->offset < k2->offset)
1433                 return -1;
1434         return 0;
1435 }
1436
1437 /*
1438  * this is used by the defrag code to go through all the
1439  * leaves pointed to by a node and reallocate them so that
1440  * disk order is close to key order
1441  */
1442 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1443                        struct btrfs_root *root, struct extent_buffer *parent,
1444                        int start_slot, int cache_only, u64 *last_ret,
1445                        struct btrfs_key *progress)
1446 {
1447         struct extent_buffer *cur;
1448         u64 blocknr;
1449         u64 gen;
1450         u64 search_start = *last_ret;
1451         u64 last_block = 0;
1452         u64 other;
1453         u32 parent_nritems;
1454         int end_slot;
1455         int i;
1456         int err = 0;
1457         int parent_level;
1458         int uptodate;
1459         u32 blocksize;
1460         int progress_passed = 0;
1461         struct btrfs_disk_key disk_key;
1462
1463         parent_level = btrfs_header_level(parent);
1464         if (cache_only && parent_level != 1)
1465                 return 0;
1466
1467         WARN_ON(trans->transaction != root->fs_info->running_transaction);
1468         WARN_ON(trans->transid != root->fs_info->generation);
1469
1470         parent_nritems = btrfs_header_nritems(parent);
1471         blocksize = btrfs_level_size(root, parent_level - 1);
1472         end_slot = parent_nritems;
1473
1474         if (parent_nritems == 1)
1475                 return 0;
1476
1477         btrfs_set_lock_blocking(parent);
1478
1479         for (i = start_slot; i < end_slot; i++) {
1480                 int close = 1;
1481
1482                 btrfs_node_key(parent, &disk_key, i);
1483                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1484                         continue;
1485
1486                 progress_passed = 1;
1487                 blocknr = btrfs_node_blockptr(parent, i);
1488                 gen = btrfs_node_ptr_generation(parent, i);
1489                 if (last_block == 0)
1490                         last_block = blocknr;
1491
1492                 if (i > 0) {
1493                         other = btrfs_node_blockptr(parent, i - 1);
1494                         close = close_blocks(blocknr, other, blocksize);
1495                 }
1496                 if (!close && i < end_slot - 2) {
1497                         other = btrfs_node_blockptr(parent, i + 1);
1498                         close = close_blocks(blocknr, other, blocksize);
1499                 }
1500                 if (close) {
1501                         last_block = blocknr;
1502                         continue;
1503                 }
1504
1505                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1506                 if (cur)
1507                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1508                 else
1509                         uptodate = 0;
1510                 if (!cur || !uptodate) {
1511                         if (cache_only) {
1512                                 free_extent_buffer(cur);
1513                                 continue;
1514                         }
1515                         if (!cur) {
1516                                 cur = read_tree_block(root, blocknr,
1517                                                          blocksize, gen);
1518                                 if (!cur)
1519                                         return -EIO;
1520                         } else if (!uptodate) {
1521                                 err = btrfs_read_buffer(cur, gen);
1522                                 if (err) {
1523                                         free_extent_buffer(cur);
1524                                         return err;
1525                                 }
1526                         }
1527                 }
1528                 if (search_start == 0)
1529                         search_start = last_block;
1530
1531                 btrfs_tree_lock(cur);
1532                 btrfs_set_lock_blocking(cur);
1533                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1534                                         &cur, search_start,
1535                                         min(16 * blocksize,
1536                                             (end_slot - i) * blocksize));
1537                 if (err) {
1538                         btrfs_tree_unlock(cur);
1539                         free_extent_buffer(cur);
1540                         break;
1541                 }
1542                 search_start = cur->start;
1543                 last_block = cur->start;
1544                 *last_ret = search_start;
1545                 btrfs_tree_unlock(cur);
1546                 free_extent_buffer(cur);
1547         }
1548         return err;
1549 }
1550
1551 /*
1552  * The leaf data grows from end-to-front in the node.
1553  * this returns the address of the start of the last item,
1554  * which is the stop of the leaf data stack
1555  */
1556 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1557                                          struct extent_buffer *leaf)
1558 {
1559         u32 nr = btrfs_header_nritems(leaf);
1560         if (nr == 0)
1561                 return BTRFS_LEAF_DATA_SIZE(root);
1562         return btrfs_item_offset_nr(leaf, nr - 1);
1563 }
1564
1565
1566 /*
1567  * search for key in the extent_buffer.  The items start at offset p,
1568  * and they are item_size apart.  There are 'max' items in p.
1569  *
1570  * the slot in the array is returned via slot, and it points to
1571  * the place where you would insert key if it is not found in
1572  * the array.
1573  *
1574  * slot may point to max if the key is bigger than all of the keys
1575  */
1576 static noinline int generic_bin_search(struct extent_buffer *eb,
1577                                        unsigned long p,
1578                                        int item_size, struct btrfs_key *key,
1579                                        int max, int *slot)
1580 {
1581         int low = 0;
1582         int high = max;
1583         int mid;
1584         int ret;
1585         struct btrfs_disk_key *tmp = NULL;
1586         struct btrfs_disk_key unaligned;
1587         unsigned long offset;
1588         char *kaddr = NULL;
1589         unsigned long map_start = 0;
1590         unsigned long map_len = 0;
1591         int err;
1592
1593         while (low < high) {
1594                 mid = (low + high) / 2;
1595                 offset = p + mid * item_size;
1596
1597                 if (!kaddr || offset < map_start ||
1598                     (offset + sizeof(struct btrfs_disk_key)) >
1599                     map_start + map_len) {
1600
1601                         err = map_private_extent_buffer(eb, offset,
1602                                                 sizeof(struct btrfs_disk_key),
1603                                                 &kaddr, &map_start, &map_len);
1604
1605                         if (!err) {
1606                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1607                                                         map_start);
1608                         } else {
1609                                 read_extent_buffer(eb, &unaligned,
1610                                                    offset, sizeof(unaligned));
1611                                 tmp = &unaligned;
1612                         }
1613
1614                 } else {
1615                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1616                                                         map_start);
1617                 }
1618                 ret = comp_keys(tmp, key);
1619
1620                 if (ret < 0)
1621                         low = mid + 1;
1622                 else if (ret > 0)
1623                         high = mid;
1624                 else {
1625                         *slot = mid;
1626                         return 0;
1627                 }
1628         }
1629         *slot = low;
1630         return 1;
1631 }
1632
1633 /*
1634  * simple bin_search frontend that does the right thing for
1635  * leaves vs nodes
1636  */
1637 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1638                       int level, int *slot)
1639 {
1640         if (level == 0)
1641                 return generic_bin_search(eb,
1642                                           offsetof(struct btrfs_leaf, items),
1643                                           sizeof(struct btrfs_item),
1644                                           key, btrfs_header_nritems(eb),
1645                                           slot);
1646         else
1647                 return generic_bin_search(eb,
1648                                           offsetof(struct btrfs_node, ptrs),
1649                                           sizeof(struct btrfs_key_ptr),
1650                                           key, btrfs_header_nritems(eb),
1651                                           slot);
1652 }
1653
1654 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1655                      int level, int *slot)
1656 {
1657         return bin_search(eb, key, level, slot);
1658 }
1659
1660 static void root_add_used(struct btrfs_root *root, u32 size)
1661 {
1662         spin_lock(&root->accounting_lock);
1663         btrfs_set_root_used(&root->root_item,
1664                             btrfs_root_used(&root->root_item) + size);
1665         spin_unlock(&root->accounting_lock);
1666 }
1667
1668 static void root_sub_used(struct btrfs_root *root, u32 size)
1669 {
1670         spin_lock(&root->accounting_lock);
1671         btrfs_set_root_used(&root->root_item,
1672                             btrfs_root_used(&root->root_item) - size);
1673         spin_unlock(&root->accounting_lock);
1674 }
1675
1676 /* given a node and slot number, this reads the blocks it points to.  The
1677  * extent buffer is returned with a reference taken (but unlocked).
1678  * NULL is returned on error.
1679  */
1680 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1681                                    struct extent_buffer *parent, int slot)
1682 {
1683         int level = btrfs_header_level(parent);
1684         if (slot < 0)
1685                 return NULL;
1686         if (slot >= btrfs_header_nritems(parent))
1687                 return NULL;
1688
1689         BUG_ON(level == 0);
1690
1691         return read_tree_block(root, btrfs_node_blockptr(parent, slot),
1692                        btrfs_level_size(root, level - 1),
1693                        btrfs_node_ptr_generation(parent, slot));
1694 }
1695
1696 /*
1697  * node level balancing, used to make sure nodes are in proper order for
1698  * item deletion.  We balance from the top down, so we have to make sure
1699  * that a deletion won't leave an node completely empty later on.
1700  */
1701 static noinline int balance_level(struct btrfs_trans_handle *trans,
1702                          struct btrfs_root *root,
1703                          struct btrfs_path *path, int level)
1704 {
1705         struct extent_buffer *right = NULL;
1706         struct extent_buffer *mid;
1707         struct extent_buffer *left = NULL;
1708         struct extent_buffer *parent = NULL;
1709         int ret = 0;
1710         int wret;
1711         int pslot;
1712         int orig_slot = path->slots[level];
1713         u64 orig_ptr;
1714
1715         if (level == 0)
1716                 return 0;
1717
1718         mid = path->nodes[level];
1719
1720         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1721                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1722         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1723
1724         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1725
1726         if (level < BTRFS_MAX_LEVEL - 1) {
1727                 parent = path->nodes[level + 1];
1728                 pslot = path->slots[level + 1];
1729         }
1730
1731         /*
1732          * deal with the case where there is only one pointer in the root
1733          * by promoting the node below to a root
1734          */
1735         if (!parent) {
1736                 struct extent_buffer *child;
1737
1738                 if (btrfs_header_nritems(mid) != 1)
1739                         return 0;
1740
1741                 /* promote the child to a root */
1742                 child = read_node_slot(root, mid, 0);
1743                 if (!child) {
1744                         ret = -EROFS;
1745                         btrfs_std_error(root->fs_info, ret);
1746                         goto enospc;
1747                 }
1748
1749                 btrfs_tree_lock(child);
1750                 btrfs_set_lock_blocking(child);
1751                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1752                 if (ret) {
1753                         btrfs_tree_unlock(child);
1754                         free_extent_buffer(child);
1755                         goto enospc;
1756                 }
1757
1758                 tree_mod_log_free_eb(root->fs_info, root->node);
1759                 tree_mod_log_set_root_pointer(root, child);
1760                 rcu_assign_pointer(root->node, child);
1761
1762                 add_root_to_dirty_list(root);
1763                 btrfs_tree_unlock(child);
1764
1765                 path->locks[level] = 0;
1766                 path->nodes[level] = NULL;
1767                 clean_tree_block(trans, root, mid);
1768                 btrfs_tree_unlock(mid);
1769                 /* once for the path */
1770                 free_extent_buffer(mid);
1771
1772                 root_sub_used(root, mid->len);
1773                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1774                 /* once for the root ptr */
1775                 free_extent_buffer_stale(mid);
1776                 return 0;
1777         }
1778         if (btrfs_header_nritems(mid) >
1779             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1780                 return 0;
1781
1782         left = read_node_slot(root, parent, pslot - 1);
1783         if (left) {
1784                 btrfs_tree_lock(left);
1785                 btrfs_set_lock_blocking(left);
1786                 wret = btrfs_cow_block(trans, root, left,
1787                                        parent, pslot - 1, &left);
1788                 if (wret) {
1789                         ret = wret;
1790                         goto enospc;
1791                 }
1792         }
1793         right = read_node_slot(root, parent, pslot + 1);
1794         if (right) {
1795                 btrfs_tree_lock(right);
1796                 btrfs_set_lock_blocking(right);
1797                 wret = btrfs_cow_block(trans, root, right,
1798                                        parent, pslot + 1, &right);
1799                 if (wret) {
1800                         ret = wret;
1801                         goto enospc;
1802                 }
1803         }
1804
1805         /* first, try to make some room in the middle buffer */
1806         if (left) {
1807                 orig_slot += btrfs_header_nritems(left);
1808                 wret = push_node_left(trans, root, left, mid, 1);
1809                 if (wret < 0)
1810                         ret = wret;
1811         }
1812
1813         /*
1814          * then try to empty the right most buffer into the middle
1815          */
1816         if (right) {
1817                 wret = push_node_left(trans, root, mid, right, 1);
1818                 if (wret < 0 && wret != -ENOSPC)
1819                         ret = wret;
1820                 if (btrfs_header_nritems(right) == 0) {
1821                         clean_tree_block(trans, root, right);
1822                         btrfs_tree_unlock(right);
1823                         del_ptr(trans, root, path, level + 1, pslot + 1);
1824                         root_sub_used(root, right->len);
1825                         btrfs_free_tree_block(trans, root, right, 0, 1);
1826                         free_extent_buffer_stale(right);
1827                         right = NULL;
1828                 } else {
1829                         struct btrfs_disk_key right_key;
1830                         btrfs_node_key(right, &right_key, 0);
1831                         tree_mod_log_set_node_key(root->fs_info, parent,
1832                                                   pslot + 1, 0);
1833                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1834                         btrfs_mark_buffer_dirty(parent);
1835                 }
1836         }
1837         if (btrfs_header_nritems(mid) == 1) {
1838                 /*
1839                  * we're not allowed to leave a node with one item in the
1840                  * tree during a delete.  A deletion from lower in the tree
1841                  * could try to delete the only pointer in this node.
1842                  * So, pull some keys from the left.
1843                  * There has to be a left pointer at this point because
1844                  * otherwise we would have pulled some pointers from the
1845                  * right
1846                  */
1847                 if (!left) {
1848                         ret = -EROFS;
1849                         btrfs_std_error(root->fs_info, ret);
1850                         goto enospc;
1851                 }
1852                 wret = balance_node_right(trans, root, mid, left);
1853                 if (wret < 0) {
1854                         ret = wret;
1855                         goto enospc;
1856                 }
1857                 if (wret == 1) {
1858                         wret = push_node_left(trans, root, left, mid, 1);
1859                         if (wret < 0)
1860                                 ret = wret;
1861                 }
1862                 BUG_ON(wret == 1);
1863         }
1864         if (btrfs_header_nritems(mid) == 0) {
1865                 clean_tree_block(trans, root, mid);
1866                 btrfs_tree_unlock(mid);
1867                 del_ptr(trans, root, path, level + 1, pslot);
1868                 root_sub_used(root, mid->len);
1869                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1870                 free_extent_buffer_stale(mid);
1871                 mid = NULL;
1872         } else {
1873                 /* update the parent key to reflect our changes */
1874                 struct btrfs_disk_key mid_key;
1875                 btrfs_node_key(mid, &mid_key, 0);
1876                 tree_mod_log_set_node_key(root->fs_info, parent,
1877                                           pslot, 0);
1878                 btrfs_set_node_key(parent, &mid_key, pslot);
1879                 btrfs_mark_buffer_dirty(parent);
1880         }
1881
1882         /* update the path */
1883         if (left) {
1884                 if (btrfs_header_nritems(left) > orig_slot) {
1885                         extent_buffer_get(left);
1886                         /* left was locked after cow */
1887                         path->nodes[level] = left;
1888                         path->slots[level + 1] -= 1;
1889                         path->slots[level] = orig_slot;
1890                         if (mid) {
1891                                 btrfs_tree_unlock(mid);
1892                                 free_extent_buffer(mid);
1893                         }
1894                 } else {
1895                         orig_slot -= btrfs_header_nritems(left);
1896                         path->slots[level] = orig_slot;
1897                 }
1898         }
1899         /* double check we haven't messed things up */
1900         if (orig_ptr !=
1901             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1902                 BUG();
1903 enospc:
1904         if (right) {
1905                 btrfs_tree_unlock(right);
1906                 free_extent_buffer(right);
1907         }
1908         if (left) {
1909                 if (path->nodes[level] != left)
1910                         btrfs_tree_unlock(left);
1911                 free_extent_buffer(left);
1912         }
1913         return ret;
1914 }
1915
1916 /* Node balancing for insertion.  Here we only split or push nodes around
1917  * when they are completely full.  This is also done top down, so we
1918  * have to be pessimistic.
1919  */
1920 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1921                                           struct btrfs_root *root,
1922                                           struct btrfs_path *path, int level)
1923 {
1924         struct extent_buffer *right = NULL;
1925         struct extent_buffer *mid;
1926         struct extent_buffer *left = NULL;
1927         struct extent_buffer *parent = NULL;
1928         int ret = 0;
1929         int wret;
1930         int pslot;
1931         int orig_slot = path->slots[level];
1932
1933         if (level == 0)
1934                 return 1;
1935
1936         mid = path->nodes[level];
1937         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1938
1939         if (level < BTRFS_MAX_LEVEL - 1) {
1940                 parent = path->nodes[level + 1];
1941                 pslot = path->slots[level + 1];
1942         }
1943
1944         if (!parent)
1945                 return 1;
1946
1947         left = read_node_slot(root, parent, pslot - 1);
1948
1949         /* first, try to make some room in the middle buffer */
1950         if (left) {
1951                 u32 left_nr;
1952
1953                 btrfs_tree_lock(left);
1954                 btrfs_set_lock_blocking(left);
1955
1956                 left_nr = btrfs_header_nritems(left);
1957                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1958                         wret = 1;
1959                 } else {
1960                         ret = btrfs_cow_block(trans, root, left, parent,
1961                                               pslot - 1, &left);
1962                         if (ret)
1963                                 wret = 1;
1964                         else {
1965                                 wret = push_node_left(trans, root,
1966                                                       left, mid, 0);
1967                         }
1968                 }
1969                 if (wret < 0)
1970                         ret = wret;
1971                 if (wret == 0) {
1972                         struct btrfs_disk_key disk_key;
1973                         orig_slot += left_nr;
1974                         btrfs_node_key(mid, &disk_key, 0);
1975                         tree_mod_log_set_node_key(root->fs_info, parent,
1976                                                   pslot, 0);
1977                         btrfs_set_node_key(parent, &disk_key, pslot);
1978                         btrfs_mark_buffer_dirty(parent);
1979                         if (btrfs_header_nritems(left) > orig_slot) {
1980                                 path->nodes[level] = left;
1981                                 path->slots[level + 1] -= 1;
1982                                 path->slots[level] = orig_slot;
1983                                 btrfs_tree_unlock(mid);
1984                                 free_extent_buffer(mid);
1985                         } else {
1986                                 orig_slot -=
1987                                         btrfs_header_nritems(left);
1988                                 path->slots[level] = orig_slot;
1989                                 btrfs_tree_unlock(left);
1990                                 free_extent_buffer(left);
1991                         }
1992                         return 0;
1993                 }
1994                 btrfs_tree_unlock(left);
1995                 free_extent_buffer(left);
1996         }
1997         right = read_node_slot(root, parent, pslot + 1);
1998
1999         /*
2000          * then try to empty the right most buffer into the middle
2001          */
2002         if (right) {
2003                 u32 right_nr;
2004
2005                 btrfs_tree_lock(right);
2006                 btrfs_set_lock_blocking(right);
2007
2008                 right_nr = btrfs_header_nritems(right);
2009                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2010                         wret = 1;
2011                 } else {
2012                         ret = btrfs_cow_block(trans, root, right,
2013                                               parent, pslot + 1,
2014                                               &right);
2015                         if (ret)
2016                                 wret = 1;
2017                         else {
2018                                 wret = balance_node_right(trans, root,
2019                                                           right, mid);
2020                         }
2021                 }
2022                 if (wret < 0)
2023                         ret = wret;
2024                 if (wret == 0) {
2025                         struct btrfs_disk_key disk_key;
2026
2027                         btrfs_node_key(right, &disk_key, 0);
2028                         tree_mod_log_set_node_key(root->fs_info, parent,
2029                                                   pslot + 1, 0);
2030                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
2031                         btrfs_mark_buffer_dirty(parent);
2032
2033                         if (btrfs_header_nritems(mid) <= orig_slot) {
2034                                 path->nodes[level] = right;
2035                                 path->slots[level + 1] += 1;
2036                                 path->slots[level] = orig_slot -
2037                                         btrfs_header_nritems(mid);
2038                                 btrfs_tree_unlock(mid);
2039                                 free_extent_buffer(mid);
2040                         } else {
2041                                 btrfs_tree_unlock(right);
2042                                 free_extent_buffer(right);
2043                         }
2044                         return 0;
2045                 }
2046                 btrfs_tree_unlock(right);
2047                 free_extent_buffer(right);
2048         }
2049         return 1;
2050 }
2051
2052 /*
2053  * readahead one full node of leaves, finding things that are close
2054  * to the block in 'slot', and triggering ra on them.
2055  */
2056 static void reada_for_search(struct btrfs_root *root,
2057                              struct btrfs_path *path,
2058                              int level, int slot, u64 objectid)
2059 {
2060         struct extent_buffer *node;
2061         struct btrfs_disk_key disk_key;
2062         u32 nritems;
2063         u64 search;
2064         u64 target;
2065         u64 nread = 0;
2066         u64 gen;
2067         int direction = path->reada;
2068         struct extent_buffer *eb;
2069         u32 nr;
2070         u32 blocksize;
2071         u32 nscan = 0;
2072
2073         if (level != 1)
2074                 return;
2075
2076         if (!path->nodes[level])
2077                 return;
2078
2079         node = path->nodes[level];
2080
2081         search = btrfs_node_blockptr(node, slot);
2082         blocksize = btrfs_level_size(root, level - 1);
2083         eb = btrfs_find_tree_block(root, search, blocksize);
2084         if (eb) {
2085                 free_extent_buffer(eb);
2086                 return;
2087         }
2088
2089         target = search;
2090
2091         nritems = btrfs_header_nritems(node);
2092         nr = slot;
2093
2094         while (1) {
2095                 if (direction < 0) {
2096                         if (nr == 0)
2097                                 break;
2098                         nr--;
2099                 } else if (direction > 0) {
2100                         nr++;
2101                         if (nr >= nritems)
2102                                 break;
2103                 }
2104                 if (path->reada < 0 && objectid) {
2105                         btrfs_node_key(node, &disk_key, nr);
2106                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
2107                                 break;
2108                 }
2109                 search = btrfs_node_blockptr(node, nr);
2110                 if ((search <= target && target - search <= 65536) ||
2111                     (search > target && search - target <= 65536)) {
2112                         gen = btrfs_node_ptr_generation(node, nr);
2113                         readahead_tree_block(root, search, blocksize, gen);
2114                         nread += blocksize;
2115                 }
2116                 nscan++;
2117                 if ((nread > 65536 || nscan > 32))
2118                         break;
2119         }
2120 }
2121
2122 /*
2123  * returns -EAGAIN if it had to drop the path, or zero if everything was in
2124  * cache
2125  */
2126 static noinline int reada_for_balance(struct btrfs_root *root,
2127                                       struct btrfs_path *path, int level)
2128 {
2129         int slot;
2130         int nritems;
2131         struct extent_buffer *parent;
2132         struct extent_buffer *eb;
2133         u64 gen;
2134         u64 block1 = 0;
2135         u64 block2 = 0;
2136         int ret = 0;
2137         int blocksize;
2138
2139         parent = path->nodes[level + 1];
2140         if (!parent)
2141                 return 0;
2142
2143         nritems = btrfs_header_nritems(parent);
2144         slot = path->slots[level + 1];
2145         blocksize = btrfs_level_size(root, level);
2146
2147         if (slot > 0) {
2148                 block1 = btrfs_node_blockptr(parent, slot - 1);
2149                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2150                 eb = btrfs_find_tree_block(root, block1, blocksize);
2151                 /*
2152                  * if we get -eagain from btrfs_buffer_uptodate, we
2153                  * don't want to return eagain here.  That will loop
2154                  * forever
2155                  */
2156                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2157                         block1 = 0;
2158                 free_extent_buffer(eb);
2159         }
2160         if (slot + 1 < nritems) {
2161                 block2 = btrfs_node_blockptr(parent, slot + 1);
2162                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2163                 eb = btrfs_find_tree_block(root, block2, blocksize);
2164                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2165                         block2 = 0;
2166                 free_extent_buffer(eb);
2167         }
2168         if (block1 || block2) {
2169                 ret = -EAGAIN;
2170
2171                 /* release the whole path */
2172                 btrfs_release_path(path);
2173
2174                 /* read the blocks */
2175                 if (block1)
2176                         readahead_tree_block(root, block1, blocksize, 0);
2177                 if (block2)
2178                         readahead_tree_block(root, block2, blocksize, 0);
2179
2180                 if (block1) {
2181                         eb = read_tree_block(root, block1, blocksize, 0);
2182                         free_extent_buffer(eb);
2183                 }
2184                 if (block2) {
2185                         eb = read_tree_block(root, block2, blocksize, 0);
2186                         free_extent_buffer(eb);
2187                 }
2188         }
2189         return ret;
2190 }
2191
2192
2193 /*
2194  * when we walk down the tree, it is usually safe to unlock the higher layers
2195  * in the tree.  The exceptions are when our path goes through slot 0, because
2196  * operations on the tree might require changing key pointers higher up in the
2197  * tree.
2198  *
2199  * callers might also have set path->keep_locks, which tells this code to keep
2200  * the lock if the path points to the last slot in the block.  This is part of
2201  * walking through the tree, and selecting the next slot in the higher block.
2202  *
2203  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2204  * if lowest_unlock is 1, level 0 won't be unlocked
2205  */
2206 static noinline void unlock_up(struct btrfs_path *path, int level,
2207                                int lowest_unlock, int min_write_lock_level,
2208                                int *write_lock_level)
2209 {
2210         int i;
2211         int skip_level = level;
2212         int no_skips = 0;
2213         struct extent_buffer *t;
2214
2215         if (path->really_keep_locks)
2216                 return;
2217
2218         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2219                 if (!path->nodes[i])
2220                         break;
2221                 if (!path->locks[i])
2222                         break;
2223                 if (!no_skips && path->slots[i] == 0) {
2224                         skip_level = i + 1;
2225                         continue;
2226                 }
2227                 if (!no_skips && path->keep_locks) {
2228                         u32 nritems;
2229                         t = path->nodes[i];
2230                         nritems = btrfs_header_nritems(t);
2231                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2232                                 skip_level = i + 1;
2233                                 continue;
2234                         }
2235                 }
2236                 if (skip_level < i && i >= lowest_unlock)
2237                         no_skips = 1;
2238
2239                 t = path->nodes[i];
2240                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2241                         btrfs_tree_unlock_rw(t, path->locks[i]);
2242                         path->locks[i] = 0;
2243                         if (write_lock_level &&
2244                             i > min_write_lock_level &&
2245                             i <= *write_lock_level) {
2246                                 *write_lock_level = i - 1;
2247                         }
2248                 }
2249         }
2250 }
2251
2252 /*
2253  * This releases any locks held in the path starting at level and
2254  * going all the way up to the root.
2255  *
2256  * btrfs_search_slot will keep the lock held on higher nodes in a few
2257  * corner cases, such as COW of the block at slot zero in the node.  This
2258  * ignores those rules, and it should only be called when there are no
2259  * more updates to be done higher up in the tree.
2260  */
2261 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2262 {
2263         int i;
2264
2265         if (path->keep_locks || path->really_keep_locks)
2266                 return;
2267
2268         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2269                 if (!path->nodes[i])
2270                         continue;
2271                 if (!path->locks[i])
2272                         continue;
2273                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2274                 path->locks[i] = 0;
2275         }
2276 }
2277
2278 /*
2279  * helper function for btrfs_search_slot.  The goal is to find a block
2280  * in cache without setting the path to blocking.  If we find the block
2281  * we return zero and the path is unchanged.
2282  *
2283  * If we can't find the block, we set the path blocking and do some
2284  * reada.  -EAGAIN is returned and the search must be repeated.
2285  */
2286 static int
2287 read_block_for_search(struct btrfs_trans_handle *trans,
2288                        struct btrfs_root *root, struct btrfs_path *p,
2289                        struct extent_buffer **eb_ret, int level, int slot,
2290                        struct btrfs_key *key, u64 time_seq)
2291 {
2292         u64 blocknr;
2293         u64 gen;
2294         u32 blocksize;
2295         struct extent_buffer *b = *eb_ret;
2296         struct extent_buffer *tmp;
2297         int ret;
2298
2299         blocknr = btrfs_node_blockptr(b, slot);
2300         gen = btrfs_node_ptr_generation(b, slot);
2301         blocksize = btrfs_level_size(root, level - 1);
2302
2303         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2304         if (tmp) {
2305                 /* first we do an atomic uptodate check */
2306                 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2307                         if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2308                                 /*
2309                                  * we found an up to date block without
2310                                  * sleeping, return
2311                                  * right away
2312                                  */
2313                                 *eb_ret = tmp;
2314                                 return 0;
2315                         }
2316                         /* the pages were up to date, but we failed
2317                          * the generation number check.  Do a full
2318                          * read for the generation number that is correct.
2319                          * We must do this without dropping locks so
2320                          * we can trust our generation number
2321                          */
2322                         free_extent_buffer(tmp);
2323                         btrfs_set_path_blocking(p);
2324
2325                         /* now we're allowed to do a blocking uptodate check */
2326                         tmp = read_tree_block(root, blocknr, blocksize, gen);
2327                         if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
2328                                 *eb_ret = tmp;
2329                                 return 0;
2330                         }
2331                         free_extent_buffer(tmp);
2332                         btrfs_release_path(p);
2333                         return -EIO;
2334                 }
2335         }
2336
2337         /*
2338          * reduce lock contention at high levels
2339          * of the btree by dropping locks before
2340          * we read.  Don't release the lock on the current
2341          * level because we need to walk this node to figure
2342          * out which blocks to read.
2343          */
2344         btrfs_unlock_up_safe(p, level + 1);
2345         btrfs_set_path_blocking(p);
2346
2347         free_extent_buffer(tmp);
2348         if (p->reada)
2349                 reada_for_search(root, p, level, slot, key->objectid);
2350
2351         btrfs_release_path(p);
2352
2353         ret = -EAGAIN;
2354         tmp = read_tree_block(root, blocknr, blocksize, 0);
2355         if (tmp) {
2356                 /*
2357                  * If the read above didn't mark this buffer up to date,
2358                  * it will never end up being up to date.  Set ret to EIO now
2359                  * and give up so that our caller doesn't loop forever
2360                  * on our EAGAINs.
2361                  */
2362                 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2363                         ret = -EIO;
2364                 free_extent_buffer(tmp);
2365         }
2366         return ret;
2367 }
2368
2369 /*
2370  * helper function for btrfs_search_slot.  This does all of the checks
2371  * for node-level blocks and does any balancing required based on
2372  * the ins_len.
2373  *
2374  * If no extra work was required, zero is returned.  If we had to
2375  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2376  * start over
2377  */
2378 static int
2379 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2380                        struct btrfs_root *root, struct btrfs_path *p,
2381                        struct extent_buffer *b, int level, int ins_len,
2382                        int *write_lock_level)
2383 {
2384         int ret;
2385         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2386             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2387                 int sret;
2388
2389                 if (*write_lock_level < level + 1) {
2390                         *write_lock_level = level + 1;
2391                         btrfs_release_path(p);
2392                         goto again;
2393                 }
2394
2395                 sret = reada_for_balance(root, p, level);
2396                 if (sret)
2397                         goto again;
2398
2399                 btrfs_set_path_blocking(p);
2400                 sret = split_node(trans, root, p, level);
2401                 btrfs_clear_path_blocking(p, NULL, 0);
2402
2403                 BUG_ON(sret > 0);
2404                 if (sret) {
2405                         ret = sret;
2406                         goto done;
2407                 }
2408                 b = p->nodes[level];
2409         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2410                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2411                 int sret;
2412
2413                 if (*write_lock_level < level + 1) {
2414                         *write_lock_level = level + 1;
2415                         btrfs_release_path(p);
2416                         goto again;
2417                 }
2418
2419                 sret = reada_for_balance(root, p, level);
2420                 if (sret)
2421                         goto again;
2422
2423                 btrfs_set_path_blocking(p);
2424                 sret = balance_level(trans, root, p, level);
2425                 btrfs_clear_path_blocking(p, NULL, 0);
2426
2427                 if (sret) {
2428                         ret = sret;
2429                         goto done;
2430                 }
2431                 b = p->nodes[level];
2432                 if (!b) {
2433                         btrfs_release_path(p);
2434                         goto again;
2435                 }
2436                 BUG_ON(btrfs_header_nritems(b) == 1);
2437         }
2438         return 0;
2439
2440 again:
2441         ret = -EAGAIN;
2442 done:
2443         return ret;
2444 }
2445
2446 /*
2447  * look for key in the tree.  path is filled in with nodes along the way
2448  * if key is found, we return zero and you can find the item in the leaf
2449  * level of the path (level 0)
2450  *
2451  * If the key isn't found, the path points to the slot where it should
2452  * be inserted, and 1 is returned.  If there are other errors during the
2453  * search a negative error number is returned.
2454  *
2455  * if ins_len > 0, nodes and leaves will be split as we walk down the
2456  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2457  * possible)
2458  */
2459 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2460                       *root, struct btrfs_key *key, struct btrfs_path *p, int
2461                       ins_len, int cow)
2462 {
2463         struct extent_buffer *b;
2464         int slot;
2465         int ret;
2466         int err;
2467         int level;
2468         int lowest_unlock = 1;
2469         int root_lock;
2470         /* everything at write_lock_level or lower must be write locked */
2471         int write_lock_level = 0;
2472         u8 lowest_level = 0;
2473         int min_write_lock_level;
2474
2475         lowest_level = p->lowest_level;
2476         WARN_ON(lowest_level && ins_len > 0);
2477         WARN_ON(p->nodes[0] != NULL);
2478
2479         if (ins_len < 0) {
2480                 lowest_unlock = 2;
2481
2482                 /* when we are removing items, we might have to go up to level
2483                  * two as we update tree pointers  Make sure we keep write
2484                  * for those levels as well
2485                  */
2486                 write_lock_level = 2;
2487         } else if (ins_len > 0) {
2488                 /*
2489                  * for inserting items, make sure we have a write lock on
2490                  * level 1 so we can update keys
2491                  */
2492                 write_lock_level = 1;
2493         }
2494
2495         if (!cow)
2496                 write_lock_level = -1;
2497
2498         if (cow && (p->really_keep_locks || p->keep_locks || p->lowest_level))
2499                 write_lock_level = BTRFS_MAX_LEVEL;
2500
2501         min_write_lock_level = write_lock_level;
2502
2503 again:
2504         /*
2505          * we try very hard to do read locks on the root
2506          */
2507         root_lock = BTRFS_READ_LOCK;
2508         level = 0;
2509         if (p->search_commit_root) {
2510                 /*
2511                  * the commit roots are read only
2512                  * so we always do read locks
2513                  */
2514                 b = root->commit_root;
2515                 extent_buffer_get(b);
2516                 level = btrfs_header_level(b);
2517                 if (!p->skip_locking)
2518                         btrfs_tree_read_lock(b);
2519         } else {
2520                 if (p->skip_locking) {
2521                         b = btrfs_root_node(root);
2522                         level = btrfs_header_level(b);
2523                 } else {
2524                         /* we don't know the level of the root node
2525                          * until we actually have it read locked
2526                          */
2527                         b = btrfs_read_lock_root_node(root);
2528                         level = btrfs_header_level(b);
2529                         if (level <= write_lock_level) {
2530                                 /* whoops, must trade for write lock */
2531                                 btrfs_tree_read_unlock(b);
2532                                 free_extent_buffer(b);
2533                                 b = btrfs_lock_root_node(root);
2534                                 root_lock = BTRFS_WRITE_LOCK;
2535
2536                                 /* the level might have changed, check again */
2537                                 level = btrfs_header_level(b);
2538                         }
2539                 }
2540         }
2541         p->nodes[level] = b;
2542         if (!p->skip_locking)
2543                 p->locks[level] = root_lock;
2544
2545         while (b) {
2546                 level = btrfs_header_level(b);
2547
2548                 /*
2549                  * setup the path here so we can release it under lock
2550                  * contention with the cow code
2551                  */
2552                 if (cow) {
2553                         /*
2554                          * if we don't really need to cow this block
2555                          * then we don't want to set the path blocking,
2556                          * so we test it here
2557                          */
2558                         if (!should_cow_block(trans, root, b))
2559                                 goto cow_done;
2560
2561                         btrfs_set_path_blocking(p);
2562
2563                         /*
2564                          * must have write locks on this node and the
2565                          * parent
2566                          */
2567                         if (level + 1 > write_lock_level) {
2568                                 write_lock_level = level + 1;
2569                                 btrfs_release_path(p);
2570                                 goto again;
2571                         }
2572
2573                         err = btrfs_cow_block(trans, root, b,
2574                                               p->nodes[level + 1],
2575                                               p->slots[level + 1], &b);
2576                         if (err) {
2577                                 ret = err;
2578                                 goto done;
2579                         }
2580                 }
2581 cow_done:
2582                 BUG_ON(!cow && ins_len);
2583
2584                 p->nodes[level] = b;
2585                 btrfs_clear_path_blocking(p, NULL, 0);
2586
2587                 /*
2588                  * we have a lock on b and as long as we aren't changing
2589                  * the tree, there is no way to for the items in b to change.
2590                  * It is safe to drop the lock on our parent before we
2591                  * go through the expensive btree search on b.
2592                  *
2593                  * If cow is true, then we might be changing slot zero,
2594                  * which may require changing the parent.  So, we can't
2595                  * drop the lock until after we know which slot we're
2596                  * operating on.
2597                  */
2598                 if (!cow)
2599                         btrfs_unlock_up_safe(p, level + 1);
2600
2601                 ret = bin_search(b, key, level, &slot);
2602
2603                 if (level != 0) {
2604                         int dec = 0;
2605                         if (ret && slot > 0) {
2606                                 dec = 1;
2607                                 slot -= 1;
2608                         }
2609                         p->slots[level] = slot;
2610                         err = setup_nodes_for_search(trans, root, p, b, level,
2611                                              ins_len, &write_lock_level);
2612                         if (err == -EAGAIN)
2613                                 goto again;
2614                         if (err) {
2615                                 ret = err;
2616                                 goto done;
2617                         }
2618                         b = p->nodes[level];
2619                         slot = p->slots[level];
2620
2621                         /*
2622                          * slot 0 is special, if we change the key
2623                          * we have to update the parent pointer
2624                          * which means we must have a write lock
2625                          * on the parent
2626                          */
2627                         if (slot == 0 && cow &&
2628                             write_lock_level < level + 1) {
2629                                 write_lock_level = level + 1;
2630                                 btrfs_release_path(p);
2631                                 goto again;
2632                         }
2633
2634                         unlock_up(p, level, lowest_unlock,
2635                                   min_write_lock_level, &write_lock_level);
2636
2637                         if (level == lowest_level) {
2638                                 if (dec)
2639                                         p->slots[level]++;
2640                                 goto done;
2641                         }
2642
2643                         err = read_block_for_search(trans, root, p,
2644                                                     &b, level, slot, key, 0);
2645                         if (err == -EAGAIN)
2646                                 goto again;
2647                         if (err) {
2648                                 ret = err;
2649                                 goto done;
2650                         }
2651
2652                         if (!p->skip_locking) {
2653                                 level = btrfs_header_level(b);
2654                                 if (level <= write_lock_level) {
2655                                         err = btrfs_try_tree_write_lock(b);
2656                                         if (!err) {
2657                                                 btrfs_set_path_blocking(p);
2658                                                 btrfs_tree_lock(b);
2659                                                 btrfs_clear_path_blocking(p, b,
2660                                                                   BTRFS_WRITE_LOCK);
2661                                         }
2662                                         p->locks[level] = BTRFS_WRITE_LOCK;
2663                                 } else {
2664                                         err = btrfs_try_tree_read_lock(b);
2665                                         if (!err) {
2666                                                 btrfs_set_path_blocking(p);
2667                                                 btrfs_tree_read_lock(b);
2668                                                 btrfs_clear_path_blocking(p, b,
2669                                                                   BTRFS_READ_LOCK);
2670                                         }
2671                                         p->locks[level] = BTRFS_READ_LOCK;
2672                                 }
2673                                 p->nodes[level] = b;
2674                         }
2675                 } else {
2676                         p->slots[level] = slot;
2677                         if (ins_len > 0 &&
2678                             btrfs_leaf_free_space(root, b) < ins_len) {
2679                                 if (write_lock_level < 1) {
2680                                         write_lock_level = 1;
2681                                         btrfs_release_path(p);
2682                                         goto again;
2683                                 }
2684
2685                                 btrfs_set_path_blocking(p);
2686                                 err = split_leaf(trans, root, key,
2687                                                  p, ins_len, ret == 0);
2688                                 btrfs_clear_path_blocking(p, NULL, 0);
2689
2690                                 BUG_ON(err > 0);
2691                                 if (err) {
2692                                         ret = err;
2693                                         goto done;
2694                                 }
2695                         }
2696                         if (!p->search_for_split)
2697                                 unlock_up(p, level, lowest_unlock,
2698                                           min_write_lock_level, &write_lock_level);
2699                         goto done;
2700                 }
2701         }
2702         ret = 1;
2703 done:
2704         /*
2705          * we don't really know what they plan on doing with the path
2706          * from here on, so for now just mark it as blocking
2707          */
2708         if (!p->leave_spinning)
2709                 btrfs_set_path_blocking(p);
2710         if (ret < 0)
2711                 btrfs_release_path(p);
2712         return ret;
2713 }
2714
2715 /*
2716  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2717  * current state of the tree together with the operations recorded in the tree
2718  * modification log to search for the key in a previous version of this tree, as
2719  * denoted by the time_seq parameter.
2720  *
2721  * Naturally, there is no support for insert, delete or cow operations.
2722  *
2723  * The resulting path and return value will be set up as if we called
2724  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2725  */
2726 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2727                           struct btrfs_path *p, u64 time_seq)
2728 {
2729         struct extent_buffer *b;
2730         int slot;
2731         int ret;
2732         int err;
2733         int level;
2734         int lowest_unlock = 1;
2735         u8 lowest_level = 0;
2736
2737         lowest_level = p->lowest_level;
2738         WARN_ON(p->nodes[0] != NULL);
2739
2740         if (p->search_commit_root) {
2741                 BUG_ON(time_seq);
2742                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2743         }
2744
2745 again:
2746         b = get_old_root(root, time_seq);
2747         level = btrfs_header_level(b);
2748         p->locks[level] = BTRFS_READ_LOCK;
2749
2750         while (b) {
2751                 level = btrfs_header_level(b);
2752                 p->nodes[level] = b;
2753                 btrfs_clear_path_blocking(p, NULL, 0);
2754
2755                 /*
2756                  * we have a lock on b and as long as we aren't changing
2757                  * the tree, there is no way to for the items in b to change.
2758                  * It is safe to drop the lock on our parent before we
2759                  * go through the expensive btree search on b.
2760                  */
2761                 btrfs_unlock_up_safe(p, level + 1);
2762
2763                 ret = bin_search(b, key, level, &slot);
2764
2765                 if (level != 0) {
2766                         int dec = 0;
2767                         if (ret && slot > 0) {
2768                                 dec = 1;
2769                                 slot -= 1;
2770                         }
2771                         p->slots[level] = slot;
2772                         unlock_up(p, level, lowest_unlock, 0, NULL);
2773
2774                         if (level == lowest_level) {
2775                                 if (dec)
2776                                         p->slots[level]++;
2777                                 goto done;
2778                         }
2779
2780                         err = read_block_for_search(NULL, root, p, &b, level,
2781                                                     slot, key, time_seq);
2782                         if (err == -EAGAIN)
2783                                 goto again;
2784                         if (err) {
2785                                 ret = err;
2786                                 goto done;
2787                         }
2788
2789                         level = btrfs_header_level(b);
2790                         err = btrfs_try_tree_read_lock(b);
2791                         if (!err) {
2792                                 btrfs_set_path_blocking(p);
2793                                 btrfs_tree_read_lock(b);
2794                                 btrfs_clear_path_blocking(p, b,
2795                                                           BTRFS_READ_LOCK);
2796                         }
2797                         p->locks[level] = BTRFS_READ_LOCK;
2798                         p->nodes[level] = b;
2799                         b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2800                         if (b != p->nodes[level]) {
2801                                 btrfs_tree_unlock_rw(p->nodes[level],
2802                                                      p->locks[level]);
2803                                 p->locks[level] = 0;
2804                                 p->nodes[level] = b;
2805                         }
2806                 } else {
2807                         p->slots[level] = slot;
2808                         unlock_up(p, level, lowest_unlock, 0, NULL);
2809                         goto done;
2810                 }
2811         }
2812         ret = 1;
2813 done:
2814         if (!p->leave_spinning)
2815                 btrfs_set_path_blocking(p);
2816         if (ret < 0)
2817                 btrfs_release_path(p);
2818
2819         return ret;
2820 }
2821
2822 /*
2823  * helper to use instead of search slot if no exact match is needed but
2824  * instead the next or previous item should be returned.
2825  * When find_higher is true, the next higher item is returned, the next lower
2826  * otherwise.
2827  * When return_any and find_higher are both true, and no higher item is found,
2828  * return the next lower instead.
2829  * When return_any is true and find_higher is false, and no lower item is found,
2830  * return the next higher instead.
2831  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2832  * < 0 on error
2833  */
2834 int btrfs_search_slot_for_read(struct btrfs_root *root,
2835                                struct btrfs_key *key, struct btrfs_path *p,
2836                                int find_higher, int return_any)
2837 {
2838         int ret;
2839         struct extent_buffer *leaf;
2840
2841 again:
2842         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2843         if (ret <= 0)
2844                 return ret;
2845         /*
2846          * a return value of 1 means the path is at the position where the
2847          * item should be inserted. Normally this is the next bigger item,
2848          * but in case the previous item is the last in a leaf, path points
2849          * to the first free slot in the previous leaf, i.e. at an invalid
2850          * item.
2851          */
2852         leaf = p->nodes[0];
2853
2854         if (find_higher) {
2855                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2856                         ret = btrfs_next_leaf(root, p);
2857                         if (ret <= 0)
2858                                 return ret;
2859                         if (!return_any)
2860                                 return 1;
2861                         /*
2862                          * no higher item found, return the next
2863                          * lower instead
2864                          */
2865                         return_any = 0;
2866                         find_higher = 0;
2867                         btrfs_release_path(p);
2868                         goto again;
2869                 }
2870         } else {
2871                 if (p->slots[0] == 0) {
2872                         ret = btrfs_prev_leaf(root, p);
2873                         if (ret < 0)
2874                                 return ret;
2875                         if (!ret) {
2876                                 p->slots[0] = btrfs_header_nritems(leaf) - 1;
2877                                 return 0;
2878                         }
2879                         if (!return_any)
2880                                 return 1;
2881                         /*
2882                          * no lower item found, return the next
2883                          * higher instead
2884                          */
2885                         return_any = 0;
2886                         find_higher = 1;
2887                         btrfs_release_path(p);
2888                         goto again;
2889                 } else {
2890                         --p->slots[0];
2891                 }
2892         }
2893         return 0;
2894 }
2895
2896 /*
2897  * adjust the pointers going up the tree, starting at level
2898  * making sure the right key of each node is points to 'key'.
2899  * This is used after shifting pointers to the left, so it stops
2900  * fixing up pointers when a given leaf/node is not in slot 0 of the
2901  * higher levels
2902  *
2903  */
2904 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2905                            struct btrfs_root *root, struct btrfs_path *path,
2906                            struct btrfs_disk_key *key, int level)
2907 {
2908         int i;
2909         struct extent_buffer *t;
2910
2911         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2912                 int tslot = path->slots[i];
2913                 if (!path->nodes[i])
2914                         break;
2915                 t = path->nodes[i];
2916                 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
2917                 btrfs_set_node_key(t, key, tslot);
2918                 btrfs_mark_buffer_dirty(path->nodes[i]);
2919                 if (tslot != 0)
2920                         break;
2921         }
2922 }
2923
2924 /*
2925  * update item key.
2926  *
2927  * This function isn't completely safe. It's the caller's responsibility
2928  * that the new key won't break the order
2929  */
2930 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2931                              struct btrfs_root *root, struct btrfs_path *path,
2932                              struct btrfs_key *new_key)
2933 {
2934         struct btrfs_disk_key disk_key;
2935         struct extent_buffer *eb;
2936         int slot;
2937
2938         eb = path->nodes[0];
2939         slot = path->slots[0];
2940         if (slot > 0) {
2941                 btrfs_item_key(eb, &disk_key, slot - 1);
2942                 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2943         }
2944         if (slot < btrfs_header_nritems(eb) - 1) {
2945                 btrfs_item_key(eb, &disk_key, slot + 1);
2946                 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2947         }
2948
2949         btrfs_cpu_key_to_disk(&disk_key, new_key);
2950         btrfs_set_item_key(eb, &disk_key, slot);
2951         btrfs_mark_buffer_dirty(eb);
2952         if (slot == 0)
2953                 fixup_low_keys(trans, root, path, &disk_key, 1);
2954 }
2955
2956 /*
2957  * try to push data from one node into the next node left in the
2958  * tree.
2959  *
2960  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2961  * error, and > 0 if there was no room in the left hand block.
2962  */
2963 static int push_node_left(struct btrfs_trans_handle *trans,
2964                           struct btrfs_root *root, struct extent_buffer *dst,
2965                           struct extent_buffer *src, int empty)
2966 {
2967         int push_items = 0;
2968         int src_nritems;
2969         int dst_nritems;
2970         int ret = 0;
2971
2972         src_nritems = btrfs_header_nritems(src);
2973         dst_nritems = btrfs_header_nritems(dst);
2974         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2975         WARN_ON(btrfs_header_generation(src) != trans->transid);
2976         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2977
2978         if (!empty && src_nritems <= 8)
2979                 return 1;
2980
2981         if (push_items <= 0)
2982                 return 1;
2983
2984         if (empty) {
2985                 push_items = min(src_nritems, push_items);
2986                 if (push_items < src_nritems) {
2987                         /* leave at least 8 pointers in the node if
2988                          * we aren't going to empty it
2989                          */
2990                         if (src_nritems - push_items < 8) {
2991                                 if (push_items <= 8)
2992                                         return 1;
2993                                 push_items -= 8;
2994                         }
2995                 }
2996         } else
2997                 push_items = min(src_nritems - 8, push_items);
2998
2999         tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3000                              push_items);
3001         copy_extent_buffer(dst, src,
3002                            btrfs_node_key_ptr_offset(dst_nritems),
3003                            btrfs_node_key_ptr_offset(0),
3004                            push_items * sizeof(struct btrfs_key_ptr));
3005
3006         if (push_items < src_nritems) {
3007                 /*
3008                  * don't call tree_mod_log_eb_move here, key removal was already
3009                  * fully logged by tree_mod_log_eb_copy above.
3010                  */
3011                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3012                                       btrfs_node_key_ptr_offset(push_items),
3013                                       (src_nritems - push_items) *
3014                                       sizeof(struct btrfs_key_ptr));
3015         }
3016         btrfs_set_header_nritems(src, src_nritems - push_items);
3017         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3018         btrfs_mark_buffer_dirty(src);
3019         btrfs_mark_buffer_dirty(dst);
3020
3021         return ret;
3022 }
3023
3024 /*
3025  * try to push data from one node into the next node right in the
3026  * tree.
3027  *
3028  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3029  * error, and > 0 if there was no room in the right hand block.
3030  *
3031  * this will  only push up to 1/2 the contents of the left node over
3032  */
3033 static int balance_node_right(struct btrfs_trans_handle *trans,
3034                               struct btrfs_root *root,
3035                               struct extent_buffer *dst,
3036                               struct extent_buffer *src)
3037 {
3038         int push_items = 0;
3039         int max_push;
3040         int src_nritems;
3041         int dst_nritems;
3042         int ret = 0;
3043
3044         WARN_ON(btrfs_header_generation(src) != trans->transid);
3045         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3046
3047         src_nritems = btrfs_header_nritems(src);
3048         dst_nritems = btrfs_header_nritems(dst);
3049         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3050         if (push_items <= 0)
3051                 return 1;
3052
3053         if (src_nritems < 4)
3054                 return 1;
3055
3056         max_push = src_nritems / 2 + 1;
3057         /* don't try to empty the node */
3058         if (max_push >= src_nritems)
3059                 return 1;
3060
3061         if (max_push < push_items)
3062                 push_items = max_push;
3063
3064         tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3065         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3066                                       btrfs_node_key_ptr_offset(0),
3067                                       (dst_nritems) *
3068                                       sizeof(struct btrfs_key_ptr));
3069
3070         tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3071                              src_nritems - push_items, push_items);
3072         copy_extent_buffer(dst, src,
3073                            btrfs_node_key_ptr_offset(0),
3074                            btrfs_node_key_ptr_offset(src_nritems - push_items),
3075                            push_items * sizeof(struct btrfs_key_ptr));
3076
3077         btrfs_set_header_nritems(src, src_nritems - push_items);
3078         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3079
3080         btrfs_mark_buffer_dirty(src);
3081         btrfs_mark_buffer_dirty(dst);
3082
3083         return ret;
3084 }
3085
3086 /*
3087  * helper function to insert a new root level in the tree.
3088  * A new node is allocated, and a single item is inserted to
3089  * point to the existing root
3090  *
3091  * returns zero on success or < 0 on failure.
3092  */
3093 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3094                            struct btrfs_root *root,
3095                            struct btrfs_path *path, int level)
3096 {
3097         u64 lower_gen;
3098         struct extent_buffer *lower;
3099         struct extent_buffer *c;
3100         struct extent_buffer *old;
3101         struct btrfs_disk_key lower_key;
3102
3103         BUG_ON(path->nodes[level]);
3104         BUG_ON(path->nodes[level-1] != root->node);
3105
3106         lower = path->nodes[level-1];
3107         if (level == 1)
3108                 btrfs_item_key(lower, &lower_key, 0);
3109         else
3110                 btrfs_node_key(lower, &lower_key, 0);
3111
3112         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3113                                    root->root_key.objectid, &lower_key,
3114                                    level, root->node->start, 0);
3115         if (IS_ERR(c))
3116                 return PTR_ERR(c);
3117
3118         root_add_used(root, root->nodesize);
3119
3120         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3121         btrfs_set_header_nritems(c, 1);
3122         btrfs_set_header_level(c, level);
3123         btrfs_set_header_bytenr(c, c->start);
3124         btrfs_set_header_generation(c, trans->transid);
3125         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3126         btrfs_set_header_owner(c, root->root_key.objectid);
3127
3128         write_extent_buffer(c, root->fs_info->fsid,
3129                             (unsigned long)btrfs_header_fsid(c),
3130                             BTRFS_FSID_SIZE);
3131
3132         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3133                             (unsigned long)btrfs_header_chunk_tree_uuid(c),
3134                             BTRFS_UUID_SIZE);
3135
3136         btrfs_set_node_key(c, &lower_key, 0);
3137         btrfs_set_node_blockptr(c, 0, lower->start);
3138         lower_gen = btrfs_header_generation(lower);
3139         WARN_ON(lower_gen != trans->transid);
3140
3141         btrfs_set_node_ptr_generation(c, 0, lower_gen);
3142
3143         btrfs_mark_buffer_dirty(c);
3144
3145         old = root->node;
3146         tree_mod_log_set_root_pointer(root, c);
3147         rcu_assign_pointer(root->node, c);
3148
3149         /* the super has an extra ref to root->node */
3150         free_extent_buffer(old);
3151
3152         add_root_to_dirty_list(root);
3153         extent_buffer_get(c);
3154         path->nodes[level] = c;
3155         path->locks[level] = BTRFS_WRITE_LOCK;
3156         path->slots[level] = 0;
3157         return 0;
3158 }
3159
3160 /*
3161  * worker function to insert a single pointer in a node.
3162  * the node should have enough room for the pointer already
3163  *
3164  * slot and level indicate where you want the key to go, and
3165  * blocknr is the block the key points to.
3166  */
3167 static void insert_ptr(struct btrfs_trans_handle *trans,
3168                        struct btrfs_root *root, struct btrfs_path *path,
3169                        struct btrfs_disk_key *key, u64 bytenr,
3170                        int slot, int level)
3171 {
3172         struct extent_buffer *lower;
3173         int nritems;
3174         int ret;
3175
3176         BUG_ON(!path->nodes[level]);
3177         btrfs_assert_tree_locked(path->nodes[level]);
3178         lower = path->nodes[level];
3179         nritems = btrfs_header_nritems(lower);
3180         BUG_ON(slot > nritems);
3181         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3182         if (slot != nritems) {
3183                 if (level)
3184                         tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3185                                              slot, nritems - slot);
3186                 memmove_extent_buffer(lower,
3187                               btrfs_node_key_ptr_offset(slot + 1),
3188                               btrfs_node_key_ptr_offset(slot),
3189                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3190         }
3191         if (level) {
3192                 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3193                                               MOD_LOG_KEY_ADD);
3194                 BUG_ON(ret < 0);
3195         }
3196         btrfs_set_node_key(lower, key, slot);
3197         btrfs_set_node_blockptr(lower, slot, bytenr);
3198         WARN_ON(trans->transid == 0);
3199         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3200         btrfs_set_header_nritems(lower, nritems + 1);
3201         btrfs_mark_buffer_dirty(lower);
3202 }
3203
3204 /*
3205  * split the node at the specified level in path in two.
3206  * The path is corrected to point to the appropriate node after the split
3207  *
3208  * Before splitting this tries to make some room in the node by pushing
3209  * left and right, if either one works, it returns right away.
3210  *
3211  * returns 0 on success and < 0 on failure
3212  */
3213 static noinline int split_node(struct btrfs_trans_handle *trans,
3214                                struct btrfs_root *root,
3215                                struct btrfs_path *path, int level)
3216 {
3217         struct extent_buffer *c;
3218         struct extent_buffer *split;
3219         struct btrfs_disk_key disk_key;
3220         int mid;
3221         int ret;
3222         u32 c_nritems;
3223
3224         c = path->nodes[level];
3225         WARN_ON(btrfs_header_generation(c) != trans->transid);
3226         if (c == root->node) {
3227                 /* trying to split the root, lets make a new one */
3228                 ret = insert_new_root(trans, root, path, level + 1);
3229                 if (ret)
3230                         return ret;
3231         } else {
3232                 ret = push_nodes_for_insert(trans, root, path, level);
3233                 c = path->nodes[level];
3234                 if (!ret && btrfs_header_nritems(c) <
3235                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3236                         return 0;
3237                 if (ret < 0)
3238                         return ret;
3239         }
3240
3241         c_nritems = btrfs_header_nritems(c);
3242         mid = (c_nritems + 1) / 2;
3243         btrfs_node_key(c, &disk_key, mid);
3244
3245         split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3246                                         root->root_key.objectid,
3247                                         &disk_key, level, c->start, 0);
3248         if (IS_ERR(split))
3249                 return PTR_ERR(split);
3250
3251         root_add_used(root, root->nodesize);
3252
3253         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3254         btrfs_set_header_level(split, btrfs_header_level(c));
3255         btrfs_set_header_bytenr(split, split->start);
3256         btrfs_set_header_generation(split, trans->transid);
3257         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3258         btrfs_set_header_owner(split, root->root_key.objectid);
3259         write_extent_buffer(split, root->fs_info->fsid,
3260                             (unsigned long)btrfs_header_fsid(split),
3261                             BTRFS_FSID_SIZE);
3262         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3263                             (unsigned long)btrfs_header_chunk_tree_uuid(split),
3264                             BTRFS_UUID_SIZE);
3265
3266         tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3267         copy_extent_buffer(split, c,
3268                            btrfs_node_key_ptr_offset(0),
3269                            btrfs_node_key_ptr_offset(mid),
3270                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3271         btrfs_set_header_nritems(split, c_nritems - mid);
3272         btrfs_set_header_nritems(c, mid);
3273         ret = 0;
3274
3275         btrfs_mark_buffer_dirty(c);
3276         btrfs_mark_buffer_dirty(split);
3277
3278         insert_ptr(trans, root, path, &disk_key, split->start,
3279                    path->slots[level + 1] + 1, level + 1);
3280
3281         if (path->slots[level] >= mid) {
3282                 path->slots[level] -= mid;
3283                 btrfs_tree_unlock(c);
3284                 free_extent_buffer(c);
3285                 path->nodes[level] = split;
3286                 path->slots[level + 1] += 1;
3287         } else {
3288                 btrfs_tree_unlock(split);
3289                 free_extent_buffer(split);
3290         }
3291         return ret;
3292 }
3293
3294 /*
3295  * how many bytes are required to store the items in a leaf.  start
3296  * and nr indicate which items in the leaf to check.  This totals up the
3297  * space used both by the item structs and the item data
3298  */
3299 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3300 {
3301         int data_len;
3302         int nritems = btrfs_header_nritems(l);
3303         int end = min(nritems, start + nr) - 1;
3304
3305         if (!nr)
3306                 return 0;
3307         data_len = btrfs_item_end_nr(l, start);
3308         data_len = data_len - btrfs_item_offset_nr(l, end);
3309         data_len += sizeof(struct btrfs_item) * nr;
3310         WARN_ON(data_len < 0);
3311         return data_len;
3312 }
3313
3314 /*
3315  * The space between the end of the leaf items and
3316  * the start of the leaf data.  IOW, how much room
3317  * the leaf has left for both items and data
3318  */
3319 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3320                                    struct extent_buffer *leaf)
3321 {
3322         int nritems = btrfs_header_nritems(leaf);
3323         int ret;
3324         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3325         if (ret < 0) {
3326                 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3327                        "used %d nritems %d\n",
3328                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3329                        leaf_space_used(leaf, 0, nritems), nritems);
3330         }
3331         return ret;
3332 }
3333
3334 /*
3335  * min slot controls the lowest index we're willing to push to the
3336  * right.  We'll push up to and including min_slot, but no lower
3337  */
3338 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3339                                       struct btrfs_root *root,
3340                                       struct btrfs_path *path,
3341                                       int data_size, int empty,
3342                                       struct extent_buffer *right,
3343                                       int free_space, u32 left_nritems,
3344                                       u32 min_slot)
3345 {
3346         struct extent_buffer *left = path->nodes[0];
3347         struct extent_buffer *upper = path->nodes[1];
3348         struct btrfs_map_token token;
3349         struct btrfs_disk_key disk_key;
3350         int slot;
3351         u32 i;
3352         int push_space = 0;
3353         int push_items = 0;
3354         struct btrfs_item *item;
3355         u32 nr;
3356         u32 right_nritems;
3357         u32 data_end;
3358         u32 this_item_size;
3359
3360         btrfs_init_map_token(&token);
3361
3362         if (empty)
3363                 nr = 0;
3364         else
3365                 nr = max_t(u32, 1, min_slot);
3366
3367         if (path->slots[0] >= left_nritems)
3368                 push_space += data_size;
3369
3370         slot = path->slots[1];
3371         i = left_nritems - 1;
3372         while (i >= nr) {
3373                 item = btrfs_item_nr(left, i);
3374
3375                 if (!empty && push_items > 0) {
3376                         if (path->slots[0] > i)
3377                                 break;
3378                         if (path->slots[0] == i) {
3379                                 int space = btrfs_leaf_free_space(root, left);
3380                                 if (space + push_space * 2 > free_space)
3381                                         break;
3382                         }
3383                 }
3384
3385                 if (path->slots[0] == i)
3386                         push_space += data_size;
3387
3388                 this_item_size = btrfs_item_size(left, item);
3389                 if (this_item_size + sizeof(*item) + push_space > free_space)
3390                         break;
3391
3392                 push_items++;
3393                 push_space += this_item_size + sizeof(*item);
3394                 if (i == 0)
3395                         break;
3396                 i--;
3397         }
3398
3399         if (push_items == 0)
3400                 goto out_unlock;
3401
3402         WARN_ON(!empty && push_items == left_nritems);
3403
3404         /* push left to right */
3405         right_nritems = btrfs_header_nritems(right);
3406
3407         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3408         push_space -= leaf_data_end(root, left);
3409
3410         /* make room in the right data area */
3411         data_end = leaf_data_end(root, right);
3412         memmove_extent_buffer(right,
3413                               btrfs_leaf_data(right) + data_end - push_space,
3414                               btrfs_leaf_data(right) + data_end,
3415                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
3416
3417         /* copy from the left data area */
3418         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3419                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3420                      btrfs_leaf_data(left) + leaf_data_end(root, left),
3421                      push_space);
3422
3423         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3424                               btrfs_item_nr_offset(0),
3425                               right_nritems * sizeof(struct btrfs_item));
3426
3427         /* copy the items from left to right */
3428         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3429                    btrfs_item_nr_offset(left_nritems - push_items),
3430                    push_items * sizeof(struct btrfs_item));
3431
3432         /* update the item pointers */
3433         right_nritems += push_items;
3434         btrfs_set_header_nritems(right, right_nritems);
3435         push_space = BTRFS_LEAF_DATA_SIZE(root);
3436         for (i = 0; i < right_nritems; i++) {
3437                 item = btrfs_item_nr(right, i);
3438                 push_space -= btrfs_token_item_size(right, item, &token);
3439                 btrfs_set_token_item_offset(right, item, push_space, &token);
3440         }
3441
3442         left_nritems -= push_items;
3443         btrfs_set_header_nritems(left, left_nritems);
3444
3445         if (left_nritems)
3446                 btrfs_mark_buffer_dirty(left);
3447         else
3448                 clean_tree_block(trans, root, left);
3449
3450         btrfs_mark_buffer_dirty(right);
3451
3452         btrfs_item_key(right, &disk_key, 0);
3453         btrfs_set_node_key(upper, &disk_key, slot + 1);
3454         btrfs_mark_buffer_dirty(upper);
3455
3456         /* then fixup the leaf pointer in the path */
3457         if (path->slots[0] >= left_nritems) {
3458                 path->slots[0] -= left_nritems;
3459                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3460                         clean_tree_block(trans, root, path->nodes[0]);
3461                 btrfs_tree_unlock(path->nodes[0]);
3462                 free_extent_buffer(path->nodes[0]);
3463                 path->nodes[0] = right;
3464                 path->slots[1] += 1;
3465         } else {
3466                 btrfs_tree_unlock(right);
3467                 free_extent_buffer(right);
3468         }
3469         return 0;
3470
3471 out_unlock:
3472         btrfs_tree_unlock(right);
3473         free_extent_buffer(right);
3474         return 1;
3475 }
3476
3477 /*
3478  * push some data in the path leaf to the right, trying to free up at
3479  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3480  *
3481  * returns 1 if the push failed because the other node didn't have enough
3482  * room, 0 if everything worked out and < 0 if there were major errors.
3483  *
3484  * this will push starting from min_slot to the end of the leaf.  It won't
3485  * push any slot lower than min_slot
3486  */
3487 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3488                            *root, struct btrfs_path *path,
3489                            int min_data_size, int data_size,
3490                            int empty, u32 min_slot)
3491 {
3492         struct extent_buffer *left = path->nodes[0];
3493         struct extent_buffer *right;
3494         struct extent_buffer *upper;
3495         int slot;
3496         int free_space;
3497         u32 left_nritems;
3498         int ret;
3499
3500         if (!path->nodes[1])
3501                 return 1;
3502
3503         slot = path->slots[1];
3504         upper = path->nodes[1];
3505         if (slot >= btrfs_header_nritems(upper) - 1)
3506                 return 1;
3507
3508         btrfs_assert_tree_locked(path->nodes[1]);
3509
3510         right = read_node_slot(root, upper, slot + 1);
3511         if (right == NULL)
3512                 return 1;
3513
3514         btrfs_tree_lock(right);
3515         btrfs_set_lock_blocking(right);
3516
3517         free_space = btrfs_leaf_free_space(root, right);
3518         if (free_space < data_size)
3519                 goto out_unlock;
3520
3521         /* cow and double check */
3522         ret = btrfs_cow_block(trans, root, right, upper,
3523                               slot + 1, &right);
3524         if (ret)
3525                 goto out_unlock;
3526
3527         free_space = btrfs_leaf_free_space(root, right);
3528         if (free_space < data_size)
3529                 goto out_unlock;
3530
3531         left_nritems = btrfs_header_nritems(left);
3532         if (left_nritems == 0)
3533                 goto out_unlock;
3534
3535         return __push_leaf_right(trans, root, path, min_data_size, empty,
3536                                 right, free_space, left_nritems, min_slot);
3537 out_unlock:
3538         btrfs_tree_unlock(right);
3539         free_extent_buffer(right);
3540         return 1;
3541 }
3542
3543 /*
3544  * push some data in the path leaf to the left, trying to free up at
3545  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3546  *
3547  * max_slot can put a limit on how far into the leaf we'll push items.  The
3548  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3549  * items
3550  */
3551 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3552                                      struct btrfs_root *root,
3553                                      struct btrfs_path *path, int data_size,
3554                                      int empty, struct extent_buffer *left,
3555                                      int free_space, u32 right_nritems,
3556                                      u32 max_slot)
3557 {
3558         struct btrfs_disk_key disk_key;
3559         struct extent_buffer *right = path->nodes[0];
3560         int i;
3561         int push_space = 0;
3562         int push_items = 0;
3563         struct btrfs_item *item;
3564         u32 old_left_nritems;
3565         u32 nr;
3566         int ret = 0;
3567         u32 this_item_size;
3568         u32 old_left_item_size;
3569         struct btrfs_map_token token;
3570
3571         btrfs_init_map_token(&token);
3572
3573         if (empty)
3574                 nr = min(right_nritems, max_slot);
3575         else
3576                 nr = min(right_nritems - 1, max_slot);
3577
3578         for (i = 0; i < nr; i++) {
3579                 item = btrfs_item_nr(right, i);
3580
3581                 if (!empty && push_items > 0) {
3582                         if (path->slots[0] < i)
3583                                 break;
3584                         if (path->slots[0] == i) {
3585                                 int space = btrfs_leaf_free_space(root, right);
3586                                 if (space + push_space * 2 > free_space)
3587                                         break;
3588                         }
3589                 }
3590
3591                 if (path->slots[0] == i)
3592                         push_space += data_size;
3593
3594                 this_item_size = btrfs_item_size(right, item);
3595                 if (this_item_size + sizeof(*item) + push_space > free_space)
3596                         break;
3597
3598                 push_items++;
3599                 push_space += this_item_size + sizeof(*item);
3600         }
3601
3602         if (push_items == 0) {
3603                 ret = 1;
3604                 goto out;
3605         }
3606         if (!empty && push_items == btrfs_header_nritems(right))
3607                 WARN_ON(1);
3608
3609         /* push data from right to left */
3610         copy_extent_buffer(left, right,
3611                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3612                            btrfs_item_nr_offset(0),
3613                            push_items * sizeof(struct btrfs_item));
3614
3615         push_space = BTRFS_LEAF_DATA_SIZE(root) -
3616                      btrfs_item_offset_nr(right, push_items - 1);
3617
3618         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3619                      leaf_data_end(root, left) - push_space,
3620                      btrfs_leaf_data(right) +
3621                      btrfs_item_offset_nr(right, push_items - 1),
3622                      push_space);
3623         old_left_nritems = btrfs_header_nritems(left);
3624         BUG_ON(old_left_nritems <= 0);
3625
3626         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3627         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3628                 u32 ioff;
3629
3630                 item = btrfs_item_nr(left, i);
3631
3632                 ioff = btrfs_token_item_offset(left, item, &token);
3633                 btrfs_set_token_item_offset(left, item,
3634                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3635                       &token);
3636         }
3637         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3638
3639         /* fixup right node */
3640         if (push_items > right_nritems)
3641                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3642                        right_nritems);
3643
3644         if (push_items < right_nritems) {
3645                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3646                                                   leaf_data_end(root, right);
3647                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3648                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
3649                                       btrfs_leaf_data(right) +
3650                                       leaf_data_end(root, right), push_space);
3651
3652                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3653                               btrfs_item_nr_offset(push_items),
3654                              (btrfs_header_nritems(right) - push_items) *
3655                              sizeof(struct btrfs_item));
3656         }
3657         right_nritems -= push_items;
3658         btrfs_set_header_nritems(right, right_nritems);
3659         push_space = BTRFS_LEAF_DATA_SIZE(root);
3660         for (i = 0; i < right_nritems; i++) {
3661                 item = btrfs_item_nr(right, i);
3662
3663                 push_space = push_space - btrfs_token_item_size(right,
3664                                                                 item, &token);
3665                 btrfs_set_token_item_offset(right, item, push_space, &token);
3666         }
3667
3668         btrfs_mark_buffer_dirty(left);
3669         if (right_nritems)
3670                 btrfs_mark_buffer_dirty(right);
3671         else
3672                 clean_tree_block(trans, root, right);
3673
3674         btrfs_item_key(right, &disk_key, 0);
3675         fixup_low_keys(trans, root, path, &disk_key, 1);
3676
3677         /* then fixup the leaf pointer in the path */
3678         if (path->slots[0] < push_items) {
3679                 path->slots[0] += old_left_nritems;
3680                 btrfs_tree_unlock(path->nodes[0]);
3681                 free_extent_buffer(path->nodes[0]);
3682                 path->nodes[0] = left;
3683                 path->slots[1] -= 1;
3684         } else {
3685                 btrfs_tree_unlock(left);
3686                 free_extent_buffer(left);
3687                 path->slots[0] -= push_items;
3688         }
3689         BUG_ON(path->slots[0] < 0);
3690         return ret;
3691 out:
3692         btrfs_tree_unlock(left);
3693         free_extent_buffer(left);
3694         return ret;
3695 }
3696
3697 /*
3698  * push some data in the path leaf to the left, trying to free up at
3699  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3700  *
3701  * max_slot can put a limit on how far into the leaf we'll push items.  The
3702  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3703  * items
3704  */
3705 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3706                           *root, struct btrfs_path *path, int min_data_size,
3707                           int data_size, int empty, u32 max_slot)
3708 {
3709         struct extent_buffer *right = path->nodes[0];
3710         struct extent_buffer *left;
3711         int slot;
3712         int free_space;
3713         u32 right_nritems;
3714         int ret = 0;
3715
3716         slot = path->slots[1];
3717         if (slot == 0)
3718                 return 1;
3719         if (!path->nodes[1])
3720                 return 1;
3721
3722         right_nritems = btrfs_header_nritems(right);
3723         if (right_nritems == 0)
3724                 return 1;
3725
3726         btrfs_assert_tree_locked(path->nodes[1]);
3727
3728         left = read_node_slot(root, path->nodes[1], slot - 1);
3729         if (left == NULL)
3730                 return 1;
3731
3732         btrfs_tree_lock(left);
3733         btrfs_set_lock_blocking(left);
3734
3735         free_space = btrfs_leaf_free_space(root, left);
3736         if (free_space < data_size) {
3737                 ret = 1;
3738                 goto out;
3739         }
3740
3741         /* cow and double check */
3742         ret = btrfs_cow_block(trans, root, left,
3743                               path->nodes[1], slot - 1, &left);
3744         if (ret) {
3745                 /* we hit -ENOSPC, but it isn't fatal here */
3746                 if (ret == -ENOSPC)
3747                         ret = 1;
3748                 goto out;
3749         }
3750
3751         free_space = btrfs_leaf_free_space(root, left);
3752         if (free_space < data_size) {
3753                 ret = 1;
3754                 goto out;
3755         }
3756
3757         return __push_leaf_left(trans, root, path, min_data_size,
3758                                empty, left, free_space, right_nritems,
3759                                max_slot);
3760 out:
3761         btrfs_tree_unlock(left);
3762         free_extent_buffer(left);
3763         return ret;
3764 }
3765
3766 /*
3767  * split the path's leaf in two, making sure there is at least data_size
3768  * available for the resulting leaf level of the path.
3769  */
3770 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3771                                     struct btrfs_root *root,
3772                                     struct btrfs_path *path,
3773                                     struct extent_buffer *l,
3774                                     struct extent_buffer *right,
3775                                     int slot, int mid, int nritems)
3776 {
3777         int data_copy_size;
3778         int rt_data_off;
3779         int i;
3780         struct btrfs_disk_key disk_key;
3781         struct btrfs_map_token token;
3782
3783         btrfs_init_map_token(&token);
3784
3785         nritems = nritems - mid;
3786         btrfs_set_header_nritems(right, nritems);
3787         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3788
3789         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3790                            btrfs_item_nr_offset(mid),
3791                            nritems * sizeof(struct btrfs_item));
3792
3793         copy_extent_buffer(right, l,
3794                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3795                      data_copy_size, btrfs_leaf_data(l) +
3796                      leaf_data_end(root, l), data_copy_size);
3797
3798         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3799                       btrfs_item_end_nr(l, mid);
3800
3801         for (i = 0; i < nritems; i++) {
3802                 struct btrfs_item *item = btrfs_item_nr(right, i);
3803                 u32 ioff;
3804
3805                 ioff = btrfs_token_item_offset(right, item, &token);
3806                 btrfs_set_token_item_offset(right, item,
3807                                             ioff + rt_data_off, &token);
3808         }
3809
3810         btrfs_set_header_nritems(l, mid);
3811         btrfs_item_key(right, &disk_key, 0);
3812         insert_ptr(trans, root, path, &disk_key, right->start,
3813                    path->slots[1] + 1, 1);
3814
3815         btrfs_mark_buffer_dirty(right);
3816         btrfs_mark_buffer_dirty(l);
3817         BUG_ON(path->slots[0] != slot);
3818
3819         if (mid <= slot) {
3820                 btrfs_tree_unlock(path->nodes[0]);
3821                 free_extent_buffer(path->nodes[0]);
3822                 path->nodes[0] = right;
3823                 path->slots[0] -= mid;
3824                 path->slots[1] += 1;
3825         } else {
3826                 btrfs_tree_unlock(right);
3827                 free_extent_buffer(right);
3828         }
3829
3830         BUG_ON(path->slots[0] < 0);
3831 }
3832
3833 /*
3834  * double splits happen when we need to insert a big item in the middle
3835  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3836  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3837  *          A                 B                 C
3838  *
3839  * We avoid this by trying to push the items on either side of our target
3840  * into the adjacent leaves.  If all goes well we can avoid the double split
3841  * completely.
3842  */
3843 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3844                                           struct btrfs_root *root,
3845                                           struct btrfs_path *path,
3846                                           int data_size)
3847 {
3848         int ret;
3849         int progress = 0;
3850         int slot;
3851         u32 nritems;
3852
3853         slot = path->slots[0];
3854
3855         /*
3856          * try to push all the items after our slot into the
3857          * right leaf
3858          */
3859         ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3860         if (ret < 0)
3861                 return ret;
3862
3863         if (ret == 0)
3864                 progress++;
3865
3866         nritems = btrfs_header_nritems(path->nodes[0]);
3867         /*
3868          * our goal is to get our slot at the start or end of a leaf.  If
3869          * we've done so we're done
3870          */
3871         if (path->slots[0] == 0 || path->slots[0] == nritems)
3872                 return 0;
3873
3874         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3875                 return 0;
3876
3877         /* try to push all the items before our slot into the next leaf */
3878         slot = path->slots[0];
3879         ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3880         if (ret < 0)
3881                 return ret;
3882
3883         if (ret == 0)
3884                 progress++;
3885
3886         if (progress)
3887                 return 0;
3888         return 1;
3889 }
3890
3891 /*
3892  * split the path's leaf in two, making sure there is at least data_size
3893  * available for the resulting leaf level of the path.
3894  *
3895  * returns 0 if all went well and < 0 on failure.
3896  */
3897 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3898                                struct btrfs_root *root,
3899                                struct btrfs_key *ins_key,
3900                                struct btrfs_path *path, int data_size,
3901                                int extend)
3902 {
3903         struct btrfs_disk_key disk_key;
3904         struct extent_buffer *l;
3905         u32 nritems;
3906         int mid;
3907         int slot;
3908         struct extent_buffer *right;
3909         int ret = 0;
3910         int wret;
3911         int split;
3912         int num_doubles = 0;
3913         int tried_avoid_double = 0;
3914
3915         l = path->nodes[0];
3916         slot = path->slots[0];
3917         if (extend && data_size + btrfs_item_size_nr(l, slot) +
3918             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3919                 return -EOVERFLOW;
3920
3921         /* first try to make some room by pushing left and right */
3922         if (data_size) {
3923                 wret = push_leaf_right(trans, root, path, data_size,
3924                                        data_size, 0, 0);
3925                 if (wret < 0)
3926                         return wret;
3927                 if (wret) {
3928                         wret = push_leaf_left(trans, root, path, data_size,
3929                                               data_size, 0, (u32)-1);
3930                         if (wret < 0)
3931                                 return wret;
3932                 }
3933                 l = path->nodes[0];
3934
3935                 /* did the pushes work? */
3936                 if (btrfs_leaf_free_space(root, l) >= data_size)
3937                         return 0;
3938         }
3939
3940         if (!path->nodes[1]) {
3941                 ret = insert_new_root(trans, root, path, 1);
3942                 if (ret)
3943                         return ret;
3944         }
3945 again:
3946         split = 1;
3947         l = path->nodes[0];
3948         slot = path->slots[0];
3949         nritems = btrfs_header_nritems(l);
3950         mid = (nritems + 1) / 2;
3951
3952         if (mid <= slot) {
3953                 if (nritems == 1 ||
3954                     leaf_space_used(l, mid, nritems - mid) + data_size >
3955                         BTRFS_LEAF_DATA_SIZE(root)) {
3956                         if (slot >= nritems) {
3957                                 split = 0;
3958                         } else {
3959                                 mid = slot;
3960                                 if (mid != nritems &&
3961                                     leaf_space_used(l, mid, nritems - mid) +
3962                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3963                                         if (data_size && !tried_avoid_double)
3964                                                 goto push_for_double;
3965                                         split = 2;
3966                                 }
3967                         }
3968                 }
3969         } else {
3970                 if (leaf_space_used(l, 0, mid) + data_size >
3971                         BTRFS_LEAF_DATA_SIZE(root)) {
3972                         if (!extend && data_size && slot == 0) {
3973                                 split = 0;
3974                         } else if ((extend || !data_size) && slot == 0) {
3975                                 mid = 1;
3976                         } else {
3977                                 mid = slot;
3978                                 if (mid != nritems &&
3979                                     leaf_space_used(l, mid, nritems - mid) +
3980                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3981                                         if (data_size && !tried_avoid_double)
3982                                                 goto push_for_double;
3983                                         split = 2 ;
3984                                 }
3985                         }
3986                 }
3987         }
3988
3989         if (split == 0)
3990                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3991         else
3992                 btrfs_item_key(l, &disk_key, mid);
3993
3994         right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
3995                                         root->root_key.objectid,
3996                                         &disk_key, 0, l->start, 0);
3997         if (IS_ERR(right))
3998                 return PTR_ERR(right);
3999
4000         root_add_used(root, root->leafsize);
4001
4002         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4003         btrfs_set_header_bytenr(right, right->start);
4004         btrfs_set_header_generation(right, trans->transid);
4005         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4006         btrfs_set_header_owner(right, root->root_key.objectid);
4007         btrfs_set_header_level(right, 0);
4008         write_extent_buffer(right, root->fs_info->fsid,
4009                             (unsigned long)btrfs_header_fsid(right),
4010                             BTRFS_FSID_SIZE);
4011
4012         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4013                             (unsigned long)btrfs_header_chunk_tree_uuid(right),
4014                             BTRFS_UUID_SIZE);
4015
4016         if (split == 0) {
4017                 if (mid <= slot) {
4018                         btrfs_set_header_nritems(right, 0);
4019                         insert_ptr(trans, root, path, &disk_key, right->start,
4020                                    path->slots[1] + 1, 1);
4021                         btrfs_tree_unlock(path->nodes[0]);
4022                         free_extent_buffer(path->nodes[0]);
4023                         path->nodes[0] = right;
4024                         path->slots[0] = 0;
4025                         path->slots[1] += 1;
4026                 } else {
4027                         btrfs_set_header_nritems(right, 0);
4028                         insert_ptr(trans, root, path, &disk_key, right->start,
4029                                           path->slots[1], 1);
4030                         btrfs_tree_unlock(path->nodes[0]);
4031                         free_extent_buffer(path->nodes[0]);
4032                         path->nodes[0] = right;
4033                         path->slots[0] = 0;
4034                         if (path->slots[1] == 0)
4035                                 fixup_low_keys(trans, root, path,
4036                                                &disk_key, 1);
4037                 }
4038                 btrfs_mark_buffer_dirty(right);
4039                 return ret;
4040         }
4041
4042         copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4043
4044         if (split == 2) {
4045                 BUG_ON(num_doubles != 0);
4046                 num_doubles++;
4047                 goto again;
4048         }
4049
4050         return 0;
4051
4052 push_for_double:
4053         push_for_double_split(trans, root, path, data_size);
4054         tried_avoid_double = 1;
4055         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4056                 return 0;
4057         goto again;
4058 }
4059
4060 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4061                                          struct btrfs_root *root,
4062                                          struct btrfs_path *path, int ins_len)
4063 {
4064         struct btrfs_key key;
4065         struct extent_buffer *leaf;
4066         struct btrfs_file_extent_item *fi;
4067         u64 extent_len = 0;
4068         u32 item_size;
4069         int ret;
4070
4071         leaf = path->nodes[0];
4072         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4073
4074         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4075                key.type != BTRFS_EXTENT_CSUM_KEY);
4076
4077         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4078                 return 0;
4079
4080         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4081         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4082                 fi = btrfs_item_ptr(leaf, path->slots[0],
4083                                     struct btrfs_file_extent_item);
4084                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4085         }
4086         btrfs_release_path(path);
4087
4088         path->keep_locks = 1;
4089         path->search_for_split = 1;
4090         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4091         path->search_for_split = 0;
4092         if (ret < 0)
4093                 goto err;
4094
4095         ret = -EAGAIN;
4096         leaf = path->nodes[0];
4097         /* if our item isn't there or got smaller, return now */
4098         if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4099                 goto err;
4100
4101         /* the leaf has  changed, it now has room.  return now */
4102         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4103                 goto err;
4104
4105         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4106                 fi = btrfs_item_ptr(leaf, path->slots[0],
4107                                     struct btrfs_file_extent_item);
4108                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4109                         goto err;
4110         }
4111
4112         btrfs_set_path_blocking(path);
4113         ret = split_leaf(trans, root, &key, path, ins_len, 1);
4114         if (ret)
4115                 goto err;
4116
4117         path->keep_locks = 0;
4118         btrfs_unlock_up_safe(path, 1);
4119         return 0;
4120 err:
4121         path->keep_locks = 0;
4122         return ret;
4123 }
4124
4125 static noinline int split_item(struct btrfs_trans_handle *trans,
4126                                struct btrfs_root *root,
4127                                struct btrfs_path *path,
4128                                struct btrfs_key *new_key,
4129                                unsigned long split_offset)
4130 {
4131         struct extent_buffer *leaf;
4132         struct btrfs_item *item;
4133         struct btrfs_item *new_item;
4134         int slot;
4135         char *buf;
4136         u32 nritems;
4137         u32 item_size;
4138         u32 orig_offset;
4139         struct btrfs_disk_key disk_key;
4140
4141         leaf = path->nodes[0];
4142         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4143
4144         btrfs_set_path_blocking(path);
4145
4146         item = btrfs_item_nr(leaf, path->slots[0]);
4147         orig_offset = btrfs_item_offset(leaf, item);
4148         item_size = btrfs_item_size(leaf, item);
4149
4150         buf = kmalloc(item_size, GFP_NOFS);
4151         if (!buf)
4152                 return -ENOMEM;
4153
4154         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4155                             path->slots[0]), item_size);
4156
4157         slot = path->slots[0] + 1;
4158         nritems = btrfs_header_nritems(leaf);
4159         if (slot != nritems) {
4160                 /* shift the items */
4161                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4162                                 btrfs_item_nr_offset(slot),
4163                                 (nritems - slot) * sizeof(struct btrfs_item));
4164         }
4165
4166         btrfs_cpu_key_to_disk(&disk_key, new_key);
4167         btrfs_set_item_key(leaf, &disk_key, slot);
4168
4169         new_item = btrfs_item_nr(leaf, slot);
4170
4171         btrfs_set_item_offset(leaf, new_item, orig_offset);
4172         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4173
4174         btrfs_set_item_offset(leaf, item,
4175                               orig_offset + item_size - split_offset);
4176         btrfs_set_item_size(leaf, item, split_offset);
4177
4178         btrfs_set_header_nritems(leaf, nritems + 1);
4179
4180         /* write the data for the start of the original item */
4181         write_extent_buffer(leaf, buf,
4182                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4183                             split_offset);
4184
4185         /* write the data for the new item */
4186         write_extent_buffer(leaf, buf + split_offset,
4187                             btrfs_item_ptr_offset(leaf, slot),
4188                             item_size - split_offset);
4189         btrfs_mark_buffer_dirty(leaf);
4190
4191         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4192         kfree(buf);
4193         return 0;
4194 }
4195
4196 /*
4197  * This function splits a single item into two items,
4198  * giving 'new_key' to the new item and splitting the
4199  * old one at split_offset (from the start of the item).
4200  *
4201  * The path may be released by this operation.  After
4202  * the split, the path is pointing to the old item.  The
4203  * new item is going to be in the same node as the old one.
4204  *
4205  * Note, the item being split must be smaller enough to live alone on
4206  * a tree block with room for one extra struct btrfs_item
4207  *
4208  * This allows us to split the item in place, keeping a lock on the
4209  * leaf the entire time.
4210  */
4211 int btrfs_split_item(struct btrfs_trans_handle *trans,
4212                      struct btrfs_root *root,
4213                      struct btrfs_path *path,
4214                      struct btrfs_key *new_key,
4215                      unsigned long split_offset)
4216 {
4217         int ret;
4218         ret = setup_leaf_for_split(trans, root, path,
4219                                    sizeof(struct btrfs_item));
4220         if (ret)
4221                 return ret;
4222
4223         ret = split_item(trans, root, path, new_key, split_offset);
4224         return ret;
4225 }
4226
4227 /*
4228  * This function duplicate a item, giving 'new_key' to the new item.
4229  * It guarantees both items live in the same tree leaf and the new item
4230  * is contiguous with the original item.
4231  *
4232  * This allows us to split file extent in place, keeping a lock on the
4233  * leaf the entire time.
4234  */
4235 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4236                          struct btrfs_root *root,
4237                          struct btrfs_path *path,
4238                          struct btrfs_key *new_key)
4239 {
4240         struct extent_buffer *leaf;
4241         int ret;
4242         u32 item_size;
4243
4244         leaf = path->nodes[0];
4245         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4246         ret = setup_leaf_for_split(trans, root, path,
4247                                    item_size + sizeof(struct btrfs_item));
4248         if (ret)
4249                 return ret;
4250
4251         path->slots[0]++;
4252         setup_items_for_insert(trans, root, path, new_key, &item_size,
4253                                item_size, item_size +
4254                                sizeof(struct btrfs_item), 1);
4255         leaf = path->nodes[0];
4256         memcpy_extent_buffer(leaf,
4257                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4258                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4259                              item_size);
4260         return 0;
4261 }
4262
4263 /*
4264  * make the item pointed to by the path smaller.  new_size indicates
4265  * how small to make it, and from_end tells us if we just chop bytes
4266  * off the end of the item or if we shift the item to chop bytes off
4267  * the front.
4268  */
4269 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4270                          struct btrfs_root *root,
4271                          struct btrfs_path *path,
4272                          u32 new_size, int from_end)
4273 {
4274         int slot;
4275         struct extent_buffer *leaf;
4276         struct btrfs_item *item;
4277         u32 nritems;
4278         unsigned int data_end;
4279         unsigned int old_data_start;
4280         unsigned int old_size;
4281         unsigned int size_diff;
4282         int i;
4283         struct btrfs_map_token token;
4284
4285         btrfs_init_map_token(&token);
4286
4287         leaf = path->nodes[0];
4288         slot = path->slots[0];
4289
4290         old_size = btrfs_item_size_nr(leaf, slot);
4291         if (old_size == new_size)
4292                 return;
4293
4294         nritems = btrfs_header_nritems(leaf);
4295         data_end = leaf_data_end(root, leaf);
4296
4297         old_data_start = btrfs_item_offset_nr(leaf, slot);
4298
4299         size_diff = old_size - new_size;
4300
4301         BUG_ON(slot < 0);
4302         BUG_ON(slot >= nritems);
4303
4304         /*
4305          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4306          */
4307         /* first correct the data pointers */
4308         for (i = slot; i < nritems; i++) {
4309                 u32 ioff;
4310                 item = btrfs_item_nr(leaf, i);
4311
4312                 ioff = btrfs_token_item_offset(leaf, item, &token);
4313                 btrfs_set_token_item_offset(leaf, item,
4314                                             ioff + size_diff, &token);
4315         }
4316
4317         /* shift the data */
4318         if (from_end) {
4319                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4320                               data_end + size_diff, btrfs_leaf_data(leaf) +
4321                               data_end, old_data_start + new_size - data_end);
4322         } else {
4323                 struct btrfs_disk_key disk_key;
4324                 u64 offset;
4325
4326                 btrfs_item_key(leaf, &disk_key, slot);
4327
4328                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4329                         unsigned long ptr;
4330                         struct btrfs_file_extent_item *fi;
4331
4332                         fi = btrfs_item_ptr(leaf, slot,
4333                                             struct btrfs_file_extent_item);
4334                         fi = (struct btrfs_file_extent_item *)(
4335                              (unsigned long)fi - size_diff);
4336
4337                         if (btrfs_file_extent_type(leaf, fi) ==
4338                             BTRFS_FILE_EXTENT_INLINE) {
4339                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4340                                 memmove_extent_buffer(leaf, ptr,
4341                                       (unsigned long)fi,
4342                                       offsetof(struct btrfs_file_extent_item,
4343                                                  disk_bytenr));
4344                         }
4345                 }
4346
4347                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4348                               data_end + size_diff, btrfs_leaf_data(leaf) +
4349                               data_end, old_data_start - data_end);
4350
4351                 offset = btrfs_disk_key_offset(&disk_key);
4352                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4353                 btrfs_set_item_key(leaf, &disk_key, slot);
4354                 if (slot == 0)
4355                         fixup_low_keys(trans, root, path, &disk_key, 1);
4356         }
4357
4358         item = btrfs_item_nr(leaf, slot);
4359         btrfs_set_item_size(leaf, item, new_size);
4360         btrfs_mark_buffer_dirty(leaf);
4361
4362         if (btrfs_leaf_free_space(root, leaf) < 0) {
4363                 btrfs_print_leaf(root, leaf);
4364                 BUG();
4365         }
4366 }
4367
4368 /*
4369  * make the item pointed to by the path bigger, data_size is the new size.
4370  */
4371 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4372                        struct btrfs_root *root, struct btrfs_path *path,
4373                        u32 data_size)
4374 {
4375         int slot;
4376         struct extent_buffer *leaf;
4377         struct btrfs_item *item;
4378         u32 nritems;
4379         unsigned int data_end;
4380         unsigned int old_data;
4381         unsigned int old_size;
4382         int i;
4383         struct btrfs_map_token token;
4384
4385         btrfs_init_map_token(&token);
4386
4387         leaf = path->nodes[0];
4388
4389         nritems = btrfs_header_nritems(leaf);
4390         data_end = leaf_data_end(root, leaf);
4391
4392         if (btrfs_leaf_free_space(root, leaf) < data_size) {
4393                 btrfs_print_leaf(root, leaf);
4394                 BUG();
4395         }
4396         slot = path->slots[0];
4397         old_data = btrfs_item_end_nr(leaf, slot);
4398
4399         BUG_ON(slot < 0);
4400         if (slot >= nritems) {
4401                 btrfs_print_leaf(root, leaf);
4402                 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4403                        slot, nritems);
4404                 BUG_ON(1);
4405         }
4406
4407         /*
4408          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4409          */
4410         /* first correct the data pointers */
4411         for (i = slot; i < nritems; i++) {
4412                 u32 ioff;
4413                 item = btrfs_item_nr(leaf, i);
4414
4415                 ioff = btrfs_token_item_offset(leaf, item, &token);
4416                 btrfs_set_token_item_offset(leaf, item,
4417                                             ioff - data_size, &token);
4418         }
4419
4420         /* shift the data */
4421         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4422                       data_end - data_size, btrfs_leaf_data(leaf) +
4423                       data_end, old_data - data_end);
4424
4425         data_end = old_data;
4426         old_size = btrfs_item_size_nr(leaf, slot);
4427         item = btrfs_item_nr(leaf, slot);
4428         btrfs_set_item_size(leaf, item, old_size + data_size);
4429         btrfs_mark_buffer_dirty(leaf);
4430
4431         if (btrfs_leaf_free_space(root, leaf) < 0) {
4432                 btrfs_print_leaf(root, leaf);
4433                 BUG();
4434         }
4435 }
4436
4437 /*
4438  * this is a helper for btrfs_insert_empty_items, the main goal here is
4439  * to save stack depth by doing the bulk of the work in a function
4440  * that doesn't call btrfs_search_slot
4441  */
4442 void setup_items_for_insert(struct btrfs_trans_handle *trans,
4443                             struct btrfs_root *root, struct btrfs_path *path,
4444                             struct btrfs_key *cpu_key, u32 *data_size,
4445                             u32 total_data, u32 total_size, int nr)
4446 {
4447         struct btrfs_item *item;
4448         int i;
4449         u32 nritems;
4450         unsigned int data_end;
4451         struct btrfs_disk_key disk_key;
4452         struct extent_buffer *leaf;
4453         int slot;
4454         struct btrfs_map_token token;
4455
4456         btrfs_init_map_token(&token);
4457
4458         leaf = path->nodes[0];
4459         slot = path->slots[0];
4460
4461         nritems = btrfs_header_nritems(leaf);
4462         data_end = leaf_data_end(root, leaf);
4463
4464         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4465                 btrfs_print_leaf(root, leaf);
4466                 printk(KERN_CRIT "not enough freespace need %u have %d\n",
4467                        total_size, btrfs_leaf_free_space(root, leaf));
4468                 BUG();
4469         }
4470
4471         if (slot != nritems) {
4472                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4473
4474                 if (old_data < data_end) {
4475                         btrfs_print_leaf(root, leaf);
4476                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4477                                slot, old_data, data_end);
4478                         BUG_ON(1);
4479                 }
4480                 /*
4481                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4482                  */
4483                 /* first correct the data pointers */
4484                 for (i = slot; i < nritems; i++) {
4485                         u32 ioff;
4486
4487                         item = btrfs_item_nr(leaf, i);
4488                         ioff = btrfs_token_item_offset(leaf, item, &token);
4489                         btrfs_set_token_item_offset(leaf, item,
4490                                                     ioff - total_data, &token);
4491                 }
4492                 /* shift the items */
4493                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4494                               btrfs_item_nr_offset(slot),
4495                               (nritems - slot) * sizeof(struct btrfs_item));
4496
4497                 /* shift the data */
4498                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4499                               data_end - total_data, btrfs_leaf_data(leaf) +
4500                               data_end, old_data - data_end);
4501                 data_end = old_data;
4502         }
4503
4504         /* setup the item for the new data */
4505         for (i = 0; i < nr; i++) {
4506                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4507                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4508                 item = btrfs_item_nr(leaf, slot + i);
4509                 btrfs_set_token_item_offset(leaf, item,
4510                                             data_end - data_size[i], &token);
4511                 data_end -= data_size[i];
4512                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4513         }
4514
4515         btrfs_set_header_nritems(leaf, nritems + nr);
4516
4517         if (slot == 0) {
4518                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4519                 fixup_low_keys(trans, root, path, &disk_key, 1);
4520         }
4521         btrfs_unlock_up_safe(path, 1);
4522         btrfs_mark_buffer_dirty(leaf);
4523
4524         if (btrfs_leaf_free_space(root, leaf) < 0) {
4525                 btrfs_print_leaf(root, leaf);
4526                 BUG();
4527         }
4528 }
4529
4530 /*
4531  * Given a key and some data, insert items into the tree.
4532  * This does all the path init required, making room in the tree if needed.
4533  */
4534 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4535                             struct btrfs_root *root,
4536                             struct btrfs_path *path,
4537                             struct btrfs_key *cpu_key, u32 *data_size,
4538                             int nr)
4539 {
4540         int ret = 0;
4541         int slot;
4542         int i;
4543         u32 total_size = 0;
4544         u32 total_data = 0;
4545
4546         for (i = 0; i < nr; i++)
4547                 total_data += data_size[i];
4548
4549         total_size = total_data + (nr * sizeof(struct btrfs_item));
4550         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4551         if (ret == 0)
4552                 return -EEXIST;
4553         if (ret < 0)
4554                 return ret;
4555
4556         slot = path->slots[0];
4557         BUG_ON(slot < 0);
4558
4559         setup_items_for_insert(trans, root, path, cpu_key, data_size,
4560                                total_data, total_size, nr);
4561         return 0;
4562 }
4563
4564 /*
4565  * Given a key and some data, insert an item into the tree.
4566  * This does all the path init required, making room in the tree if needed.
4567  */
4568 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4569                       *root, struct btrfs_key *cpu_key, void *data, u32
4570                       data_size)
4571 {
4572         int ret = 0;
4573         struct btrfs_path *path;
4574         struct extent_buffer *leaf;
4575         unsigned long ptr;
4576
4577         path = btrfs_alloc_path();
4578         if (!path)
4579                 return -ENOMEM;
4580         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4581         if (!ret) {
4582                 leaf = path->nodes[0];
4583                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4584                 write_extent_buffer(leaf, data, ptr, data_size);
4585                 btrfs_mark_buffer_dirty(leaf);
4586         }
4587         btrfs_free_path(path);
4588         return ret;
4589 }
4590
4591 /*
4592  * delete the pointer from a given node.
4593  *
4594  * the tree should have been previously balanced so the deletion does not
4595  * empty a node.
4596  */
4597 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4598                     struct btrfs_path *path, int level, int slot)
4599 {
4600         struct extent_buffer *parent = path->nodes[level];
4601         u32 nritems;
4602         int ret;
4603
4604         if (level) {
4605                 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4606                                               MOD_LOG_KEY_REMOVE);
4607                 BUG_ON(ret < 0);
4608         }
4609
4610         nritems = btrfs_header_nritems(parent);
4611         if (slot != nritems - 1) {
4612                 if (level)
4613                         tree_mod_log_eb_move(root->fs_info, parent, slot,
4614                                              slot + 1, nritems - slot - 1);
4615                 memmove_extent_buffer(parent,
4616                               btrfs_node_key_ptr_offset(slot),
4617                               btrfs_node_key_ptr_offset(slot + 1),
4618                               sizeof(struct btrfs_key_ptr) *
4619                               (nritems - slot - 1));
4620         }
4621
4622         nritems--;
4623         btrfs_set_header_nritems(parent, nritems);
4624         if (nritems == 0 && parent == root->node) {
4625                 BUG_ON(btrfs_header_level(root->node) != 1);
4626                 /* just turn the root into a leaf and break */
4627                 btrfs_set_header_level(root->node, 0);
4628         } else if (slot == 0) {
4629                 struct btrfs_disk_key disk_key;
4630
4631                 btrfs_node_key(parent, &disk_key, 0);
4632                 fixup_low_keys(trans, root, path, &disk_key, level + 1);
4633         }
4634         btrfs_mark_buffer_dirty(parent);
4635 }
4636
4637 /*
4638  * a helper function to delete the leaf pointed to by path->slots[1] and
4639  * path->nodes[1].
4640  *
4641  * This deletes the pointer in path->nodes[1] and frees the leaf
4642  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4643  *
4644  * The path must have already been setup for deleting the leaf, including
4645  * all the proper balancing.  path->nodes[1] must be locked.
4646  */
4647 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4648                                     struct btrfs_root *root,
4649                                     struct btrfs_path *path,
4650                                     struct extent_buffer *leaf)
4651 {
4652         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4653         del_ptr(trans, root, path, 1, path->slots[1]);
4654
4655         /*
4656          * btrfs_free_extent is expensive, we want to make sure we
4657          * aren't holding any locks when we call it
4658          */
4659         btrfs_unlock_up_safe(path, 0);
4660
4661         root_sub_used(root, leaf->len);
4662
4663         extent_buffer_get(leaf);
4664         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4665         free_extent_buffer_stale(leaf);
4666 }
4667 /*
4668  * delete the item at the leaf level in path.  If that empties
4669  * the leaf, remove it from the tree
4670  */
4671 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4672                     struct btrfs_path *path, int slot, int nr)
4673 {
4674         struct extent_buffer *leaf;
4675         struct btrfs_item *item;
4676         int last_off;
4677         int dsize = 0;
4678         int ret = 0;
4679         int wret;
4680         int i;
4681         u32 nritems;
4682         struct btrfs_map_token token;
4683
4684         btrfs_init_map_token(&token);
4685
4686         leaf = path->nodes[0];
4687         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4688
4689         for (i = 0; i < nr; i++)
4690                 dsize += btrfs_item_size_nr(leaf, slot + i);
4691
4692         nritems = btrfs_header_nritems(leaf);
4693
4694         if (slot + nr != nritems) {
4695                 int data_end = leaf_data_end(root, leaf);
4696
4697                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4698                               data_end + dsize,
4699                               btrfs_leaf_data(leaf) + data_end,
4700                               last_off - data_end);
4701
4702                 for (i = slot + nr; i < nritems; i++) {
4703                         u32 ioff;
4704
4705                         item = btrfs_item_nr(leaf, i);
4706                         ioff = btrfs_token_item_offset(leaf, item, &token);
4707                         btrfs_set_token_item_offset(leaf, item,
4708                                                     ioff + dsize, &token);
4709                 }
4710
4711                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4712                               btrfs_item_nr_offset(slot + nr),
4713                               sizeof(struct btrfs_item) *
4714                               (nritems - slot - nr));
4715         }
4716         btrfs_set_header_nritems(leaf, nritems - nr);
4717         nritems -= nr;
4718
4719         /* delete the leaf if we've emptied it */
4720         if (nritems == 0) {
4721                 if (leaf == root->node) {
4722                         btrfs_set_header_level(leaf, 0);
4723                 } else {
4724                         btrfs_set_path_blocking(path);
4725                         clean_tree_block(trans, root, leaf);
4726                         btrfs_del_leaf(trans, root, path, leaf);
4727                 }
4728         } else {
4729                 int used = leaf_space_used(leaf, 0, nritems);
4730                 if (slot == 0) {
4731                         struct btrfs_disk_key disk_key;
4732
4733                         btrfs_item_key(leaf, &disk_key, 0);
4734                         fixup_low_keys(trans, root, path, &disk_key, 1);
4735                 }
4736
4737                 /* delete the leaf if it is mostly empty */
4738                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4739                         /* push_leaf_left fixes the path.
4740                          * make sure the path still points to our leaf
4741                          * for possible call to del_ptr below
4742                          */
4743                         slot = path->slots[1];
4744                         extent_buffer_get(leaf);
4745
4746                         btrfs_set_path_blocking(path);
4747                         wret = push_leaf_left(trans, root, path, 1, 1,
4748                                               1, (u32)-1);
4749                         if (wret < 0 && wret != -ENOSPC)
4750                                 ret = wret;
4751
4752                         if (path->nodes[0] == leaf &&
4753                             btrfs_header_nritems(leaf)) {
4754                                 wret = push_leaf_right(trans, root, path, 1,
4755                                                        1, 1, 0);
4756                                 if (wret < 0 && wret != -ENOSPC)
4757                                         ret = wret;
4758                         }
4759
4760                         if (btrfs_header_nritems(leaf) == 0) {
4761                                 path->slots[1] = slot;
4762                                 btrfs_del_leaf(trans, root, path, leaf);
4763                                 free_extent_buffer(leaf);
4764                                 ret = 0;
4765                         } else {
4766                                 /* if we're still in the path, make sure
4767                                  * we're dirty.  Otherwise, one of the
4768                                  * push_leaf functions must have already
4769                                  * dirtied this buffer
4770                                  */
4771                                 if (path->nodes[0] == leaf)
4772                                         btrfs_mark_buffer_dirty(leaf);
4773                                 free_extent_buffer(leaf);
4774                         }
4775                 } else {
4776                         btrfs_mark_buffer_dirty(leaf);
4777                 }
4778         }
4779         return ret;
4780 }
4781
4782 /*
4783  * search the tree again to find a leaf with lesser keys
4784  * returns 0 if it found something or 1 if there are no lesser leaves.
4785  * returns < 0 on io errors.
4786  *
4787  * This may release the path, and so you may lose any locks held at the
4788  * time you call it.
4789  */
4790 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4791 {
4792         struct btrfs_key key;
4793         struct btrfs_disk_key found_key;
4794         int ret;
4795
4796         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4797
4798         if (key.offset > 0)
4799                 key.offset--;
4800         else if (key.type > 0)
4801                 key.type--;
4802         else if (key.objectid > 0)
4803                 key.objectid--;
4804         else
4805                 return 1;
4806
4807         btrfs_release_path(path);
4808         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4809         if (ret < 0)
4810                 return ret;
4811         btrfs_item_key(path->nodes[0], &found_key, 0);
4812         ret = comp_keys(&found_key, &key);
4813         if (ret < 0)
4814                 return 0;
4815         return 1;
4816 }
4817
4818 /*
4819  * A helper function to walk down the tree starting at min_key, and looking
4820  * for nodes or leaves that are either in cache or have a minimum
4821  * transaction id.  This is used by the btree defrag code, and tree logging
4822  *
4823  * This does not cow, but it does stuff the starting key it finds back
4824  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4825  * key and get a writable path.
4826  *
4827  * This does lock as it descends, and path->keep_locks should be set
4828  * to 1 by the caller.
4829  *
4830  * This honors path->lowest_level to prevent descent past a given level
4831  * of the tree.
4832  *
4833  * min_trans indicates the oldest transaction that you are interested
4834  * in walking through.  Any nodes or leaves older than min_trans are
4835  * skipped over (without reading them).
4836  *
4837  * returns zero if something useful was found, < 0 on error and 1 if there
4838  * was nothing in the tree that matched the search criteria.
4839  */
4840 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4841                          struct btrfs_key *max_key,
4842                          struct btrfs_path *path, int cache_only,
4843                          u64 min_trans)
4844 {
4845         struct extent_buffer *cur;
4846         struct btrfs_key found_key;
4847         int slot;
4848         int sret;
4849         u32 nritems;
4850         int level;
4851         int ret = 1;
4852
4853         WARN_ON(!path->keep_locks);
4854 again:
4855         cur = btrfs_read_lock_root_node(root);
4856         level = btrfs_header_level(cur);
4857         WARN_ON(path->nodes[level]);
4858         path->nodes[level] = cur;
4859         path->locks[level] = BTRFS_READ_LOCK;
4860
4861         if (btrfs_header_generation(cur) < min_trans) {
4862                 ret = 1;
4863                 goto out;
4864         }
4865         while (1) {
4866                 nritems = btrfs_header_nritems(cur);
4867                 level = btrfs_header_level(cur);
4868                 sret = bin_search(cur, min_key, level, &slot);
4869
4870                 /* at the lowest level, we're done, setup the path and exit */
4871                 if (level == path->lowest_level) {
4872                         if (slot >= nritems)
4873                                 goto find_next_key;
4874                         ret = 0;
4875                         path->slots[level] = slot;
4876                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4877                         goto out;
4878                 }
4879                 if (sret && slot > 0)
4880                         slot--;
4881                 /*
4882                  * check this node pointer against the cache_only and
4883                  * min_trans parameters.  If it isn't in cache or is too
4884                  * old, skip to the next one.
4885                  */
4886                 while (slot < nritems) {
4887                         u64 blockptr;
4888                         u64 gen;
4889                         struct extent_buffer *tmp;
4890                         struct btrfs_disk_key disk_key;
4891
4892                         blockptr = btrfs_node_blockptr(cur, slot);
4893                         gen = btrfs_node_ptr_generation(cur, slot);
4894                         if (gen < min_trans) {
4895                                 slot++;
4896                                 continue;
4897                         }
4898                         if (!cache_only)
4899                                 break;
4900
4901                         if (max_key) {
4902                                 btrfs_node_key(cur, &disk_key, slot);
4903                                 if (comp_keys(&disk_key, max_key) >= 0) {
4904                                         ret = 1;
4905                                         goto out;
4906                                 }
4907                         }
4908
4909                         tmp = btrfs_find_tree_block(root, blockptr,
4910                                             btrfs_level_size(root, level - 1));
4911
4912                         if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
4913                                 free_extent_buffer(tmp);
4914                                 break;
4915                         }
4916                         if (tmp)
4917                                 free_extent_buffer(tmp);
4918                         slot++;
4919                 }
4920 find_next_key:
4921                 /*
4922                  * we didn't find a candidate key in this node, walk forward
4923                  * and find another one
4924                  */
4925                 if (slot >= nritems) {
4926                         path->slots[level] = slot;
4927                         btrfs_set_path_blocking(path);
4928                         sret = btrfs_find_next_key(root, path, min_key, level,
4929                                                   cache_only, min_trans);
4930                         if (sret == 0) {
4931                                 btrfs_release_path(path);
4932                                 goto again;
4933                         } else {
4934                                 goto out;
4935                         }
4936                 }
4937                 /* save our key for returning back */
4938                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4939                 path->slots[level] = slot;
4940                 if (level == path->lowest_level) {
4941                         ret = 0;
4942                         unlock_up(path, level, 1, 0, NULL);
4943                         goto out;
4944                 }
4945                 btrfs_set_path_blocking(path);
4946                 cur = read_node_slot(root, cur, slot);
4947                 BUG_ON(!cur); /* -ENOMEM */
4948
4949                 btrfs_tree_read_lock(cur);
4950
4951                 path->locks[level - 1] = BTRFS_READ_LOCK;
4952                 path->nodes[level - 1] = cur;
4953                 unlock_up(path, level, 1, 0, NULL);
4954                 btrfs_clear_path_blocking(path, NULL, 0);
4955         }
4956 out:
4957         if (ret == 0)
4958                 memcpy(min_key, &found_key, sizeof(found_key));
4959         btrfs_set_path_blocking(path);
4960         return ret;
4961 }
4962
4963 static void tree_move_down(struct btrfs_root *root,
4964                            struct btrfs_path *path,
4965                            int *level, int root_level)
4966 {
4967         BUG_ON(*level == 0);
4968         path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4969                                         path->slots[*level]);
4970         path->slots[*level - 1] = 0;
4971         (*level)--;
4972 }
4973
4974 static int tree_move_next_or_upnext(struct btrfs_root *root,
4975                                     struct btrfs_path *path,
4976                                     int *level, int root_level)
4977 {
4978         int ret = 0;
4979         int nritems;
4980         nritems = btrfs_header_nritems(path->nodes[*level]);
4981
4982         path->slots[*level]++;
4983
4984         while (path->slots[*level] >= nritems) {
4985                 if (*level == root_level)
4986                         return -1;
4987
4988                 /* move upnext */
4989                 path->slots[*level] = 0;
4990                 free_extent_buffer(path->nodes[*level]);
4991                 path->nodes[*level] = NULL;
4992                 (*level)++;
4993                 path->slots[*level]++;
4994
4995                 nritems = btrfs_header_nritems(path->nodes[*level]);
4996                 ret = 1;
4997         }
4998         return ret;
4999 }
5000
5001 /*
5002  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5003  * or down.
5004  */
5005 static int tree_advance(struct btrfs_root *root,
5006                         struct btrfs_path *path,
5007                         int *level, int root_level,
5008                         int allow_down,
5009                         struct btrfs_key *key)
5010 {
5011         int ret;
5012
5013         if (*level == 0 || !allow_down) {
5014                 ret = tree_move_next_or_upnext(root, path, level, root_level);
5015         } else {
5016                 tree_move_down(root, path, level, root_level);
5017                 ret = 0;
5018         }
5019         if (ret >= 0) {
5020                 if (*level == 0)
5021                         btrfs_item_key_to_cpu(path->nodes[*level], key,
5022                                         path->slots[*level]);
5023                 else
5024                         btrfs_node_key_to_cpu(path->nodes[*level], key,
5025                                         path->slots[*level]);
5026         }
5027         return ret;
5028 }
5029
5030 static int tree_compare_item(struct btrfs_root *left_root,
5031                              struct btrfs_path *left_path,
5032                              struct btrfs_path *right_path,
5033                              char *tmp_buf)
5034 {
5035         int cmp;
5036         int len1, len2;
5037         unsigned long off1, off2;
5038
5039         len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5040         len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5041         if (len1 != len2)
5042                 return 1;
5043
5044         off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5045         off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5046                                 right_path->slots[0]);
5047
5048         read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5049
5050         cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5051         if (cmp)
5052                 return 1;
5053         return 0;
5054 }
5055
5056 #define ADVANCE 1
5057 #define ADVANCE_ONLY_NEXT -1
5058
5059 /*
5060  * This function compares two trees and calls the provided callback for
5061  * every changed/new/deleted item it finds.
5062  * If shared tree blocks are encountered, whole subtrees are skipped, making
5063  * the compare pretty fast on snapshotted subvolumes.
5064  *
5065  * This currently works on commit roots only. As commit roots are read only,
5066  * we don't do any locking. The commit roots are protected with transactions.
5067  * Transactions are ended and rejoined when a commit is tried in between.
5068  *
5069  * This function checks for modifications done to the trees while comparing.
5070  * If it detects a change, it aborts immediately.
5071  */
5072 int btrfs_compare_trees(struct btrfs_root *left_root,
5073                         struct btrfs_root *right_root,
5074                         btrfs_changed_cb_t changed_cb, void *ctx)
5075 {
5076         int ret;
5077         int cmp;
5078         struct btrfs_trans_handle *trans = NULL;
5079         struct btrfs_path *left_path = NULL;
5080         struct btrfs_path *right_path = NULL;
5081         struct btrfs_key left_key;
5082         struct btrfs_key right_key;
5083         char *tmp_buf = NULL;
5084         int left_root_level;
5085         int right_root_level;
5086         int left_level;
5087         int right_level;
5088         int left_end_reached;
5089         int right_end_reached;
5090         int advance_left;
5091         int advance_right;
5092         u64 left_blockptr;
5093         u64 right_blockptr;
5094         u64 left_start_ctransid;
5095         u64 right_start_ctransid;
5096         u64 ctransid;
5097
5098         left_path = btrfs_alloc_path();
5099         if (!left_path) {
5100                 ret = -ENOMEM;
5101                 goto out;
5102         }
5103         right_path = btrfs_alloc_path();
5104         if (!right_path) {
5105                 ret = -ENOMEM;
5106                 goto out;
5107         }
5108
5109         tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5110         if (!tmp_buf) {
5111                 ret = -ENOMEM;
5112                 goto out;
5113         }
5114
5115         left_path->search_commit_root = 1;
5116         left_path->skip_locking = 1;
5117         right_path->search_commit_root = 1;
5118         right_path->skip_locking = 1;
5119
5120         spin_lock(&left_root->root_item_lock);
5121         left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5122         spin_unlock(&left_root->root_item_lock);
5123
5124         spin_lock(&right_root->root_item_lock);
5125         right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5126         spin_unlock(&right_root->root_item_lock);
5127
5128         trans = btrfs_join_transaction(left_root);
5129         if (IS_ERR(trans)) {
5130                 ret = PTR_ERR(trans);
5131                 trans = NULL;
5132                 goto out;
5133         }
5134
5135         /*
5136          * Strategy: Go to the first items of both trees. Then do
5137          *
5138          * If both trees are at level 0
5139          *   Compare keys of current items
5140          *     If left < right treat left item as new, advance left tree
5141          *       and repeat
5142          *     If left > right treat right item as deleted, advance right tree
5143          *       and repeat
5144          *     If left == right do deep compare of items, treat as changed if
5145          *       needed, advance both trees and repeat
5146          * If both trees are at the same level but not at level 0
5147          *   Compare keys of current nodes/leafs
5148          *     If left < right advance left tree and repeat
5149          *     If left > right advance right tree and repeat
5150          *     If left == right compare blockptrs of the next nodes/leafs
5151          *       If they match advance both trees but stay at the same level
5152          *         and repeat
5153          *       If they don't match advance both trees while allowing to go
5154          *         deeper and repeat
5155          * If tree levels are different
5156          *   Advance the tree that needs it and repeat
5157          *
5158          * Advancing a tree means:
5159          *   If we are at level 0, try to go to the next slot. If that's not
5160          *   possible, go one level up and repeat. Stop when we found a level
5161          *   where we could go to the next slot. We may at this point be on a
5162          *   node or a leaf.
5163          *
5164          *   If we are not at level 0 and not on shared tree blocks, go one
5165          *   level deeper.
5166          *
5167          *   If we are not at level 0 and on shared tree blocks, go one slot to
5168          *   the right if possible or go up and right.
5169          */
5170
5171         left_level = btrfs_header_level(left_root->commit_root);
5172         left_root_level = left_level;
5173         left_path->nodes[left_level] = left_root->commit_root;
5174         extent_buffer_get(left_path->nodes[left_level]);
5175
5176         right_level = btrfs_header_level(right_root->commit_root);
5177         right_root_level = right_level;
5178         right_path->nodes[right_level] = right_root->commit_root;
5179         extent_buffer_get(right_path->nodes[right_level]);
5180
5181         if (left_level == 0)
5182                 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5183                                 &left_key, left_path->slots[left_level]);
5184         else
5185                 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5186                                 &left_key, left_path->slots[left_level]);
5187         if (right_level == 0)
5188                 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5189                                 &right_key, right_path->slots[right_level]);
5190         else
5191                 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5192                                 &right_key, right_path->slots[right_level]);
5193
5194         left_end_reached = right_end_reached = 0;
5195         advance_left = advance_right = 0;
5196
5197         while (1) {
5198                 /*
5199                  * We need to make sure the transaction does not get committed
5200                  * while we do anything on commit roots. This means, we need to
5201                  * join and leave transactions for every item that we process.
5202                  */
5203                 if (trans && btrfs_should_end_transaction(trans, left_root)) {
5204                         btrfs_release_path(left_path);
5205                         btrfs_release_path(right_path);
5206
5207                         ret = btrfs_end_transaction(trans, left_root);
5208                         trans = NULL;
5209                         if (ret < 0)
5210                                 goto out;
5211                 }
5212                 /* now rejoin the transaction */
5213                 if (!trans) {
5214                         trans = btrfs_join_transaction(left_root);
5215                         if (IS_ERR(trans)) {
5216                                 ret = PTR_ERR(trans);
5217                                 trans = NULL;
5218                                 goto out;
5219                         }
5220
5221                         spin_lock(&left_root->root_item_lock);
5222                         ctransid = btrfs_root_ctransid(&left_root->root_item);
5223                         spin_unlock(&left_root->root_item_lock);
5224                         if (ctransid != left_start_ctransid)
5225                                 left_start_ctransid = 0;
5226
5227                         spin_lock(&right_root->root_item_lock);
5228                         ctransid = btrfs_root_ctransid(&right_root->root_item);
5229                         spin_unlock(&right_root->root_item_lock);
5230                         if (ctransid != right_start_ctransid)
5231                                 right_start_ctransid = 0;
5232
5233                         if (!left_start_ctransid || !right_start_ctransid) {
5234                                 WARN(1, KERN_WARNING
5235                                         "btrfs: btrfs_compare_tree detected "
5236                                         "a change in one of the trees while "
5237                                         "iterating. This is probably a "
5238                                         "bug.\n");
5239                                 ret = -EIO;
5240                                 goto out;
5241                         }
5242
5243                         /*
5244                          * the commit root may have changed, so start again
5245                          * where we stopped
5246                          */
5247                         left_path->lowest_level = left_level;
5248                         right_path->lowest_level = right_level;
5249                         ret = btrfs_search_slot(NULL, left_root,
5250                                         &left_key, left_path, 0, 0);
5251                         if (ret < 0)
5252                                 goto out;
5253                         ret = btrfs_search_slot(NULL, right_root,
5254                                         &right_key, right_path, 0, 0);
5255                         if (ret < 0)
5256                                 goto out;
5257                 }
5258
5259                 if (advance_left && !left_end_reached) {
5260                         ret = tree_advance(left_root, left_path, &left_level,
5261                                         left_root_level,
5262                                         advance_left != ADVANCE_ONLY_NEXT,
5263                                         &left_key);
5264                         if (ret < 0)
5265                                 left_end_reached = ADVANCE;
5266                         advance_left = 0;
5267                 }
5268                 if (advance_right && !right_end_reached) {
5269                         ret = tree_advance(right_root, right_path, &right_level,
5270                                         right_root_level,
5271                                         advance_right != ADVANCE_ONLY_NEXT,
5272                                         &right_key);
5273                         if (ret < 0)
5274                                 right_end_reached = ADVANCE;
5275                         advance_right = 0;
5276                 }
5277
5278                 if (left_end_reached && right_end_reached) {
5279                         ret = 0;
5280                         goto out;
5281                 } else if (left_end_reached) {
5282                         if (right_level == 0) {
5283                                 ret = changed_cb(left_root, right_root,
5284                                                 left_path, right_path,
5285                                                 &right_key,
5286                                                 BTRFS_COMPARE_TREE_DELETED,
5287                                                 ctx);
5288                                 if (ret < 0)
5289                                         goto out;
5290                         }
5291                         advance_right = ADVANCE;
5292                         continue;
5293                 } else if (right_end_reached) {
5294                         if (left_level == 0) {
5295                                 ret = changed_cb(left_root, right_root,
5296                                                 left_path, right_path,
5297                                                 &left_key,
5298                                                 BTRFS_COMPARE_TREE_NEW,
5299                                                 ctx);
5300                                 if (ret < 0)
5301                                         goto out;
5302                         }
5303                         advance_left = ADVANCE;
5304                         continue;
5305                 }
5306
5307                 if (left_level == 0 && right_level == 0) {
5308                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5309                         if (cmp < 0) {
5310                                 ret = changed_cb(left_root, right_root,
5311                                                 left_path, right_path,
5312                                                 &left_key,
5313                                                 BTRFS_COMPARE_TREE_NEW,
5314                                                 ctx);
5315                                 if (ret < 0)
5316                                         goto out;
5317                                 advance_left = ADVANCE;
5318                         } else if (cmp > 0) {
5319                                 ret = changed_cb(left_root, right_root,
5320                                                 left_path, right_path,
5321                                                 &right_key,
5322                                                 BTRFS_COMPARE_TREE_DELETED,
5323                                                 ctx);
5324                                 if (ret < 0)
5325                                         goto out;
5326                                 advance_right = ADVANCE;
5327                         } else {
5328                                 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5329                                 ret = tree_compare_item(left_root, left_path,
5330                                                 right_path, tmp_buf);
5331                                 if (ret) {
5332                                         WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5333                                         ret = changed_cb(left_root, right_root,
5334                                                 left_path, right_path,
5335                                                 &left_key,
5336                                                 BTRFS_COMPARE_TREE_CHANGED,
5337                                                 ctx);
5338                                         if (ret < 0)
5339                                                 goto out;
5340                                 }
5341                                 advance_left = ADVANCE;
5342                                 advance_right = ADVANCE;
5343                         }
5344                 } else if (left_level == right_level) {
5345                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5346                         if (cmp < 0) {
5347                                 advance_left = ADVANCE;
5348                         } else if (cmp > 0) {
5349                                 advance_right = ADVANCE;
5350                         } else {
5351                                 left_blockptr = btrfs_node_blockptr(
5352                                                 left_path->nodes[left_level],
5353                                                 left_path->slots[left_level]);
5354                                 right_blockptr = btrfs_node_blockptr(
5355                                                 right_path->nodes[right_level],
5356                                                 right_path->slots[right_level]);
5357                                 if (left_blockptr == right_blockptr) {
5358                                         /*
5359                                          * As we're on a shared block, don't
5360                                          * allow to go deeper.
5361                                          */
5362                                         advance_left = ADVANCE_ONLY_NEXT;
5363                                         advance_right = ADVANCE_ONLY_NEXT;
5364                                 } else {
5365                                         advance_left = ADVANCE;
5366                                         advance_right = ADVANCE;
5367                                 }
5368                         }
5369                 } else if (left_level < right_level) {
5370                         advance_right = ADVANCE;
5371                 } else {
5372                         advance_left = ADVANCE;
5373                 }
5374         }
5375
5376 out:
5377         btrfs_free_path(left_path);
5378         btrfs_free_path(right_path);
5379         kfree(tmp_buf);
5380
5381         if (trans) {
5382                 if (!ret)
5383                         ret = btrfs_end_transaction(trans, left_root);
5384                 else
5385                         btrfs_end_transaction(trans, left_root);
5386         }
5387
5388         return ret;
5389 }
5390
5391 /*
5392  * this is similar to btrfs_next_leaf, but does not try to preserve
5393  * and fixup the path.  It looks for and returns the next key in the
5394  * tree based on the current path and the cache_only and min_trans
5395  * parameters.
5396  *
5397  * 0 is returned if another key is found, < 0 if there are any errors
5398  * and 1 is returned if there are no higher keys in the tree
5399  *
5400  * path->keep_locks should be set to 1 on the search made before
5401  * calling this function.
5402  */
5403 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5404                         struct btrfs_key *key, int level,
5405                         int cache_only, u64 min_trans)
5406 {
5407         int slot;
5408         struct extent_buffer *c;
5409
5410         WARN_ON(!path->keep_locks);
5411         while (level < BTRFS_MAX_LEVEL) {
5412                 if (!path->nodes[level])
5413                         return 1;
5414
5415                 slot = path->slots[level] + 1;
5416                 c = path->nodes[level];
5417 next:
5418                 if (slot >= btrfs_header_nritems(c)) {
5419                         int ret;
5420                         int orig_lowest;
5421                         struct btrfs_key cur_key;
5422                         if (level + 1 >= BTRFS_MAX_LEVEL ||
5423                             !path->nodes[level + 1])
5424                                 return 1;
5425
5426                         if (path->locks[level + 1]) {
5427                                 level++;
5428                                 continue;
5429                         }
5430
5431                         slot = btrfs_header_nritems(c) - 1;
5432                         if (level == 0)
5433                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
5434                         else
5435                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
5436
5437                         orig_lowest = path->lowest_level;
5438                         btrfs_release_path(path);
5439                         path->lowest_level = level;
5440                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
5441                                                 0, 0);
5442                         path->lowest_level = orig_lowest;
5443                         if (ret < 0)
5444                                 return ret;
5445
5446                         c = path->nodes[level];
5447                         slot = path->slots[level];
5448                         if (ret == 0)
5449                                 slot++;
5450                         goto next;
5451                 }
5452
5453                 if (level == 0)
5454                         btrfs_item_key_to_cpu(c, key, slot);
5455                 else {
5456                         u64 blockptr = btrfs_node_blockptr(c, slot);
5457                         u64 gen = btrfs_node_ptr_generation(c, slot);
5458
5459                         if (cache_only) {
5460                                 struct extent_buffer *cur;
5461                                 cur = btrfs_find_tree_block(root, blockptr,
5462                                             btrfs_level_size(root, level - 1));
5463                                 if (!cur ||
5464                                     btrfs_buffer_uptodate(cur, gen, 1) <= 0) {
5465                                         slot++;
5466                                         if (cur)
5467                                                 free_extent_buffer(cur);
5468                                         goto next;
5469                                 }
5470                                 free_extent_buffer(cur);
5471                         }
5472                         if (gen < min_trans) {
5473                                 slot++;
5474                                 goto next;
5475                         }
5476                         btrfs_node_key_to_cpu(c, key, slot);
5477                 }
5478                 return 0;
5479         }
5480         return 1;
5481 }
5482
5483 /*
5484  * search the tree again to find a leaf with greater keys
5485  * returns 0 if it found something or 1 if there are no greater leaves.
5486  * returns < 0 on io errors.
5487  */
5488 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5489 {
5490         return btrfs_next_old_leaf(root, path, 0);
5491 }
5492
5493 /* Release the path up to but not including the given level */
5494 static void btrfs_release_level(struct btrfs_path *path, int level)
5495 {
5496         int i;
5497
5498         for (i = 0; i < level; i++) {
5499                 path->slots[i] = 0;
5500                 if (!path->nodes[i])
5501                         continue;
5502                 if (path->locks[i]) {
5503                         btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
5504                         path->locks[i] = 0;
5505                 }
5506                 free_extent_buffer(path->nodes[i]);
5507                 path->nodes[i] = NULL;
5508         }
5509 }
5510
5511 /*
5512  * This function assumes 2 things
5513  *
5514  * 1) You are using path->keep_locks
5515  * 2) You are not inserting items.
5516  *
5517  * If either of these are not true do not use this function. If you need a next
5518  * leaf with either of these not being true then this function can be easily
5519  * adapted to do that, but at the moment these are the limitations.
5520  */
5521 int btrfs_next_leaf_write(struct btrfs_trans_handle *trans,
5522                           struct btrfs_root *root, struct btrfs_path *path,
5523                           int del)
5524 {
5525         struct extent_buffer *b;
5526         struct btrfs_key key;
5527         u32 nritems;
5528         int level = 1;
5529         int slot;
5530         int ret = 1;
5531         int write_lock_level = BTRFS_MAX_LEVEL;
5532         int ins_len = del ? -1 : 0;
5533
5534         WARN_ON(!(path->keep_locks || path->really_keep_locks));
5535
5536         nritems = btrfs_header_nritems(path->nodes[0]);
5537         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5538
5539         while (path->nodes[level]) {
5540                 nritems = btrfs_header_nritems(path->nodes[level]);
5541                 if (!(path->locks[level] & BTRFS_WRITE_LOCK)) {
5542 search:
5543                         btrfs_release_path(path);
5544                         ret = btrfs_search_slot(trans, root, &key, path,
5545                                                 ins_len, 1);
5546                         if (ret < 0)
5547                                 goto out;
5548                         level = 1;
5549                         continue;
5550                 }
5551
5552                 if (path->slots[level] >= nritems - 1) {
5553                         level++;
5554                         continue;
5555                 }
5556
5557                 btrfs_release_level(path, level);
5558                 break;
5559         }
5560
5561         if (!path->nodes[level]) {
5562                 ret = 1;
5563                 goto out;
5564         }
5565
5566         path->slots[level]++;
5567         b = path->nodes[level];
5568
5569         while (b) {
5570                 level = btrfs_header_level(b);
5571
5572                 if (!should_cow_block(trans, root, b))
5573                         goto cow_done;
5574
5575                 btrfs_set_path_blocking(path);
5576                 ret = btrfs_cow_block(trans, root, b,
5577                                       path->nodes[level + 1],
5578                                       path->slots[level + 1], &b);
5579                 if (ret)
5580                         goto out;
5581 cow_done:
5582                 path->nodes[level] = b;
5583                 btrfs_clear_path_blocking(path, NULL, 0);
5584                 if (level != 0) {
5585                         ret = setup_nodes_for_search(trans, root, path, b,
5586                                                      level, ins_len,
5587                                                      &write_lock_level);
5588                         if (ret == -EAGAIN)
5589                                 goto search;
5590                         if (ret)
5591                                 goto out;
5592
5593                         b = path->nodes[level];
5594                         slot = path->slots[level];
5595
5596                         ret = read_block_for_search(trans, root, path,
5597                                                     &b, level, slot, &key, 0);
5598                         if (ret == -EAGAIN)
5599                                 goto search;
5600                         if (ret)
5601                                 goto out;
5602                         level = btrfs_header_level(b);
5603                         if (!btrfs_try_tree_write_lock(b)) {
5604                                 btrfs_set_path_blocking(path);
5605                                 btrfs_tree_lock(b);
5606                                 btrfs_clear_path_blocking(path, b,
5607                                                           BTRFS_WRITE_LOCK);
5608                         }
5609                         path->locks[level] = BTRFS_WRITE_LOCK;
5610                         path->nodes[level] = b;
5611                         path->slots[level] = 0;
5612                 } else {
5613                         path->slots[level] = 0;
5614                         ret = 0;
5615                         break;
5616                 }
5617         }
5618
5619 out:
5620         if (ret)
5621                 btrfs_release_path(path);
5622
5623         return ret;
5624 }
5625
5626 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5627                         u64 time_seq)
5628 {
5629         int slot;
5630         int level;
5631         struct extent_buffer *c;
5632         struct extent_buffer *next;
5633         struct btrfs_key key;
5634         u32 nritems;
5635         int ret;
5636         int old_spinning = path->leave_spinning;
5637         int next_rw_lock = 0;
5638
5639         nritems = btrfs_header_nritems(path->nodes[0]);
5640         if (nritems == 0)
5641                 return 1;
5642
5643         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5644 again:
5645         level = 1;
5646         next = NULL;
5647         next_rw_lock = 0;
5648         btrfs_release_path(path);
5649
5650         path->keep_locks = 1;
5651         path->leave_spinning = 1;
5652
5653         if (time_seq)
5654                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5655         else
5656                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5657         path->keep_locks = 0;
5658
5659         if (ret < 0)
5660                 return ret;
5661
5662         nritems = btrfs_header_nritems(path->nodes[0]);
5663         /*
5664          * by releasing the path above we dropped all our locks.  A balance
5665          * could have added more items next to the key that used to be
5666          * at the very end of the block.  So, check again here and
5667          * advance the path if there are now more items available.
5668          */
5669         if (nritems > 0 && path->slots[0] < nritems - 1) {
5670                 if (ret == 0)
5671                         path->slots[0]++;
5672                 ret = 0;
5673                 goto done;
5674         }
5675
5676         while (level < BTRFS_MAX_LEVEL) {
5677                 if (!path->nodes[level]) {
5678                         ret = 1;
5679                         goto done;
5680                 }
5681
5682                 slot = path->slots[level] + 1;
5683                 c = path->nodes[level];
5684                 if (slot >= btrfs_header_nritems(c)) {
5685                         level++;
5686                         if (level == BTRFS_MAX_LEVEL) {
5687                                 ret = 1;
5688                                 goto done;
5689                         }
5690                         continue;
5691                 }
5692
5693                 if (next) {
5694                         btrfs_tree_unlock_rw(next, next_rw_lock);
5695                         free_extent_buffer(next);
5696                 }
5697
5698                 next = c;
5699                 next_rw_lock = path->locks[level];
5700                 ret = read_block_for_search(NULL, root, path, &next, level,
5701                                             slot, &key, 0);
5702                 if (ret == -EAGAIN)
5703                         goto again;
5704
5705                 if (ret < 0) {
5706                         btrfs_release_path(path);
5707                         goto done;
5708                 }
5709
5710                 if (!path->skip_locking) {
5711                         ret = btrfs_try_tree_read_lock(next);
5712                         if (!ret && time_seq) {
5713                                 /*
5714                                  * If we don't get the lock, we may be racing
5715                                  * with push_leaf_left, holding that lock while
5716                                  * itself waiting for the leaf we've currently
5717                                  * locked. To solve this situation, we give up
5718                                  * on our lock and cycle.
5719                                  */
5720                                 free_extent_buffer(next);
5721                                 btrfs_release_path(path);
5722                                 cond_resched();
5723                                 goto again;
5724                         }
5725                         if (!ret) {
5726                                 btrfs_set_path_blocking(path);
5727                                 btrfs_tree_read_lock(next);
5728                                 btrfs_clear_path_blocking(path, next,
5729                                                           BTRFS_READ_LOCK);
5730                         }
5731                         next_rw_lock = BTRFS_READ_LOCK;
5732                 }
5733                 break;
5734         }
5735         path->slots[level] = slot;
5736         while (1) {
5737                 level--;
5738                 c = path->nodes[level];
5739                 if (path->locks[level])
5740                         btrfs_tree_unlock_rw(c, path->locks[level]);
5741
5742                 free_extent_buffer(c);
5743                 path->nodes[level] = next;
5744                 path->slots[level] = 0;
5745                 if (!path->skip_locking)
5746                         path->locks[level] = next_rw_lock;
5747                 if (!level)
5748                         break;
5749
5750                 ret = read_block_for_search(NULL, root, path, &next, level,
5751                                             0, &key, 0);
5752                 if (ret == -EAGAIN)
5753                         goto again;
5754
5755                 if (ret < 0) {
5756                         btrfs_release_path(path);
5757                         goto done;
5758                 }
5759
5760                 if (!path->skip_locking) {
5761                         ret = btrfs_try_tree_read_lock(next);
5762                         if (!ret) {
5763                                 btrfs_set_path_blocking(path);
5764                                 btrfs_tree_read_lock(next);
5765                                 btrfs_clear_path_blocking(path, next,
5766                                                           BTRFS_READ_LOCK);
5767                         }
5768                         next_rw_lock = BTRFS_READ_LOCK;
5769                 }
5770         }
5771         ret = 0;
5772 done:
5773         unlock_up(path, 0, 1, 0, NULL);
5774         path->leave_spinning = old_spinning;
5775         if (!old_spinning)
5776                 btrfs_set_path_blocking(path);
5777
5778         return ret;
5779 }
5780
5781 /*
5782  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5783  * searching until it gets past min_objectid or finds an item of 'type'
5784  *
5785  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5786  */
5787 int btrfs_previous_item(struct btrfs_root *root,
5788                         struct btrfs_path *path, u64 min_objectid,
5789                         int type)
5790 {
5791         struct btrfs_key found_key;
5792         struct extent_buffer *leaf;
5793         u32 nritems;
5794         int ret;
5795
5796         while (1) {
5797                 if (path->slots[0] == 0) {
5798                         btrfs_set_path_blocking(path);
5799                         ret = btrfs_prev_leaf(root, path);
5800                         if (ret != 0)
5801                                 return ret;
5802                 } else {
5803                         path->slots[0]--;
5804                 }
5805                 leaf = path->nodes[0];
5806                 nritems = btrfs_header_nritems(leaf);
5807                 if (nritems == 0)
5808                         return 1;
5809                 if (path->slots[0] == nritems)
5810                         path->slots[0]--;
5811
5812                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5813                 if (found_key.objectid < min_objectid)
5814                         break;
5815                 if (found_key.type == type)
5816                         return 0;
5817                 if (found_key.objectid == min_objectid &&
5818                     found_key.type < type)
5819                         break;
5820         }
5821         return 1;
5822 }