Btrfs: remove call to btrfs_header_nritems with no effect
[linux-block.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29                       *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31                       *root, struct btrfs_key *ins_key,
32                       struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34                           struct btrfs_root *root, struct extent_buffer *dst,
35                           struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37                               struct btrfs_root *root,
38                               struct extent_buffer *dst_buf,
39                               struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
41                     struct btrfs_path *path, int level, int slot,
42                     int tree_mod_log);
43 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44                                  struct extent_buffer *eb);
45 struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
46                                           u32 blocksize, u64 parent_transid,
47                                           u64 time_seq);
48 struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
49                                                 u64 bytenr, u32 blocksize,
50                                                 u64 time_seq);
51
52 struct btrfs_path *btrfs_alloc_path(void)
53 {
54         struct btrfs_path *path;
55         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
56         return path;
57 }
58
59 /*
60  * set all locked nodes in the path to blocking locks.  This should
61  * be done before scheduling
62  */
63 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
64 {
65         int i;
66         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
67                 if (!p->nodes[i] || !p->locks[i])
68                         continue;
69                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
70                 if (p->locks[i] == BTRFS_READ_LOCK)
71                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
72                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
73                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
74         }
75 }
76
77 /*
78  * reset all the locked nodes in the patch to spinning locks.
79  *
80  * held is used to keep lockdep happy, when lockdep is enabled
81  * we set held to a blocking lock before we go around and
82  * retake all the spinlocks in the path.  You can safely use NULL
83  * for held
84  */
85 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
86                                         struct extent_buffer *held, int held_rw)
87 {
88         int i;
89
90 #ifdef CONFIG_DEBUG_LOCK_ALLOC
91         /* lockdep really cares that we take all of these spinlocks
92          * in the right order.  If any of the locks in the path are not
93          * currently blocking, it is going to complain.  So, make really
94          * really sure by forcing the path to blocking before we clear
95          * the path blocking.
96          */
97         if (held) {
98                 btrfs_set_lock_blocking_rw(held, held_rw);
99                 if (held_rw == BTRFS_WRITE_LOCK)
100                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
101                 else if (held_rw == BTRFS_READ_LOCK)
102                         held_rw = BTRFS_READ_LOCK_BLOCKING;
103         }
104         btrfs_set_path_blocking(p);
105 #endif
106
107         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
108                 if (p->nodes[i] && p->locks[i]) {
109                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
110                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
111                                 p->locks[i] = BTRFS_WRITE_LOCK;
112                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
113                                 p->locks[i] = BTRFS_READ_LOCK;
114                 }
115         }
116
117 #ifdef CONFIG_DEBUG_LOCK_ALLOC
118         if (held)
119                 btrfs_clear_lock_blocking_rw(held, held_rw);
120 #endif
121 }
122
123 /* this also releases the path */
124 void btrfs_free_path(struct btrfs_path *p)
125 {
126         if (!p)
127                 return;
128         btrfs_release_path(p);
129         kmem_cache_free(btrfs_path_cachep, p);
130 }
131
132 /*
133  * path release drops references on the extent buffers in the path
134  * and it drops any locks held by this path
135  *
136  * It is safe to call this on paths that no locks or extent buffers held.
137  */
138 noinline void btrfs_release_path(struct btrfs_path *p)
139 {
140         int i;
141
142         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
143                 p->slots[i] = 0;
144                 if (!p->nodes[i])
145                         continue;
146                 if (p->locks[i]) {
147                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
148                         p->locks[i] = 0;
149                 }
150                 free_extent_buffer(p->nodes[i]);
151                 p->nodes[i] = NULL;
152         }
153 }
154
155 /*
156  * safely gets a reference on the root node of a tree.  A lock
157  * is not taken, so a concurrent writer may put a different node
158  * at the root of the tree.  See btrfs_lock_root_node for the
159  * looping required.
160  *
161  * The extent buffer returned by this has a reference taken, so
162  * it won't disappear.  It may stop being the root of the tree
163  * at any time because there are no locks held.
164  */
165 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
166 {
167         struct extent_buffer *eb;
168
169         while (1) {
170                 rcu_read_lock();
171                 eb = rcu_dereference(root->node);
172
173                 /*
174                  * RCU really hurts here, we could free up the root node because
175                  * it was cow'ed but we may not get the new root node yet so do
176                  * the inc_not_zero dance and if it doesn't work then
177                  * synchronize_rcu and try again.
178                  */
179                 if (atomic_inc_not_zero(&eb->refs)) {
180                         rcu_read_unlock();
181                         break;
182                 }
183                 rcu_read_unlock();
184                 synchronize_rcu();
185         }
186         return eb;
187 }
188
189 /* loop around taking references on and locking the root node of the
190  * tree until you end up with a lock on the root.  A locked buffer
191  * is returned, with a reference held.
192  */
193 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
194 {
195         struct extent_buffer *eb;
196
197         while (1) {
198                 eb = btrfs_root_node(root);
199                 btrfs_tree_lock(eb);
200                 if (eb == root->node)
201                         break;
202                 btrfs_tree_unlock(eb);
203                 free_extent_buffer(eb);
204         }
205         return eb;
206 }
207
208 /* loop around taking references on and locking the root node of the
209  * tree until you end up with a lock on the root.  A locked buffer
210  * is returned, with a reference held.
211  */
212 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
213 {
214         struct extent_buffer *eb;
215
216         while (1) {
217                 eb = btrfs_root_node(root);
218                 btrfs_tree_read_lock(eb);
219                 if (eb == root->node)
220                         break;
221                 btrfs_tree_read_unlock(eb);
222                 free_extent_buffer(eb);
223         }
224         return eb;
225 }
226
227 /* cowonly root (everything not a reference counted cow subvolume), just get
228  * put onto a simple dirty list.  transaction.c walks this to make sure they
229  * get properly updated on disk.
230  */
231 static void add_root_to_dirty_list(struct btrfs_root *root)
232 {
233         spin_lock(&root->fs_info->trans_lock);
234         if (root->track_dirty && list_empty(&root->dirty_list)) {
235                 list_add(&root->dirty_list,
236                          &root->fs_info->dirty_cowonly_roots);
237         }
238         spin_unlock(&root->fs_info->trans_lock);
239 }
240
241 /*
242  * used by snapshot creation to make a copy of a root for a tree with
243  * a given objectid.  The buffer with the new root node is returned in
244  * cow_ret, and this func returns zero on success or a negative error code.
245  */
246 int btrfs_copy_root(struct btrfs_trans_handle *trans,
247                       struct btrfs_root *root,
248                       struct extent_buffer *buf,
249                       struct extent_buffer **cow_ret, u64 new_root_objectid)
250 {
251         struct extent_buffer *cow;
252         int ret = 0;
253         int level;
254         struct btrfs_disk_key disk_key;
255
256         WARN_ON(root->ref_cows && trans->transid !=
257                 root->fs_info->running_transaction->transid);
258         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
259
260         level = btrfs_header_level(buf);
261         if (level == 0)
262                 btrfs_item_key(buf, &disk_key, 0);
263         else
264                 btrfs_node_key(buf, &disk_key, 0);
265
266         cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
267                                      new_root_objectid, &disk_key, level,
268                                      buf->start, 0);
269         if (IS_ERR(cow))
270                 return PTR_ERR(cow);
271
272         copy_extent_buffer(cow, buf, 0, 0, cow->len);
273         btrfs_set_header_bytenr(cow, cow->start);
274         btrfs_set_header_generation(cow, trans->transid);
275         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
276         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
277                                      BTRFS_HEADER_FLAG_RELOC);
278         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
279                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
280         else
281                 btrfs_set_header_owner(cow, new_root_objectid);
282
283         write_extent_buffer(cow, root->fs_info->fsid,
284                             (unsigned long)btrfs_header_fsid(cow),
285                             BTRFS_FSID_SIZE);
286
287         WARN_ON(btrfs_header_generation(buf) > trans->transid);
288         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
289                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
290         else
291                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
292
293         if (ret)
294                 return ret;
295
296         btrfs_mark_buffer_dirty(cow);
297         *cow_ret = cow;
298         return 0;
299 }
300
301 enum mod_log_op {
302         MOD_LOG_KEY_REPLACE,
303         MOD_LOG_KEY_ADD,
304         MOD_LOG_KEY_REMOVE,
305         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
306         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
307         MOD_LOG_MOVE_KEYS,
308         MOD_LOG_ROOT_REPLACE,
309 };
310
311 struct tree_mod_move {
312         int dst_slot;
313         int nr_items;
314 };
315
316 struct tree_mod_root {
317         u64 logical;
318         u8 level;
319 };
320
321 struct tree_mod_elem {
322         struct rb_node node;
323         u64 index;              /* shifted logical */
324         struct seq_list elem;
325         enum mod_log_op op;
326
327         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
328         int slot;
329
330         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
331         u64 generation;
332
333         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
334         struct btrfs_disk_key key;
335         u64 blockptr;
336
337         /* this is used for op == MOD_LOG_MOVE_KEYS */
338         struct tree_mod_move move;
339
340         /* this is used for op == MOD_LOG_ROOT_REPLACE */
341         struct tree_mod_root old_root;
342 };
343
344 static inline void
345 __get_tree_mod_seq(struct btrfs_fs_info *fs_info, struct seq_list *elem)
346 {
347         elem->seq = atomic_inc_return(&fs_info->tree_mod_seq);
348         list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
349 }
350
351 void btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
352                             struct seq_list *elem)
353 {
354         elem->flags = 1;
355         spin_lock(&fs_info->tree_mod_seq_lock);
356         __get_tree_mod_seq(fs_info, elem);
357         spin_unlock(&fs_info->tree_mod_seq_lock);
358 }
359
360 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
361                             struct seq_list *elem)
362 {
363         struct rb_root *tm_root;
364         struct rb_node *node;
365         struct rb_node *next;
366         struct seq_list *cur_elem;
367         struct tree_mod_elem *tm;
368         u64 min_seq = (u64)-1;
369         u64 seq_putting = elem->seq;
370
371         if (!seq_putting)
372                 return;
373
374         BUG_ON(!(elem->flags & 1));
375         spin_lock(&fs_info->tree_mod_seq_lock);
376         list_del(&elem->list);
377
378         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
379                 if ((cur_elem->flags & 1) && cur_elem->seq < min_seq) {
380                         if (seq_putting > cur_elem->seq) {
381                                 /*
382                                  * blocker with lower sequence number exists, we
383                                  * cannot remove anything from the log
384                                  */
385                                 goto out;
386                         }
387                         min_seq = cur_elem->seq;
388                 }
389         }
390
391         /*
392          * anything that's lower than the lowest existing (read: blocked)
393          * sequence number can be removed from the tree.
394          */
395         write_lock(&fs_info->tree_mod_log_lock);
396         tm_root = &fs_info->tree_mod_log;
397         for (node = rb_first(tm_root); node; node = next) {
398                 next = rb_next(node);
399                 tm = container_of(node, struct tree_mod_elem, node);
400                 if (tm->elem.seq > min_seq)
401                         continue;
402                 rb_erase(node, tm_root);
403                 list_del(&tm->elem.list);
404                 kfree(tm);
405         }
406         write_unlock(&fs_info->tree_mod_log_lock);
407 out:
408         spin_unlock(&fs_info->tree_mod_seq_lock);
409 }
410
411 /*
412  * key order of the log:
413  *       index -> sequence
414  *
415  * the index is the shifted logical of the *new* root node for root replace
416  * operations, or the shifted logical of the affected block for all other
417  * operations.
418  */
419 static noinline int
420 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
421 {
422         struct rb_root *tm_root;
423         struct rb_node **new;
424         struct rb_node *parent = NULL;
425         struct tree_mod_elem *cur;
426         int ret = 0;
427
428         BUG_ON(!tm || !tm->elem.seq);
429
430         write_lock(&fs_info->tree_mod_log_lock);
431         tm_root = &fs_info->tree_mod_log;
432         new = &tm_root->rb_node;
433         while (*new) {
434                 cur = container_of(*new, struct tree_mod_elem, node);
435                 parent = *new;
436                 if (cur->index < tm->index)
437                         new = &((*new)->rb_left);
438                 else if (cur->index > tm->index)
439                         new = &((*new)->rb_right);
440                 else if (cur->elem.seq < tm->elem.seq)
441                         new = &((*new)->rb_left);
442                 else if (cur->elem.seq > tm->elem.seq)
443                         new = &((*new)->rb_right);
444                 else {
445                         kfree(tm);
446                         ret = -EEXIST;
447                         goto unlock;
448                 }
449         }
450
451         rb_link_node(&tm->node, parent, new);
452         rb_insert_color(&tm->node, tm_root);
453 unlock:
454         write_unlock(&fs_info->tree_mod_log_lock);
455         return ret;
456 }
457
458 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
459                                     struct extent_buffer *eb) {
460         smp_mb();
461         if (list_empty(&(fs_info)->tree_mod_seq_list))
462                 return 1;
463         if (!eb)
464                 return 0;
465         if (btrfs_header_level(eb) == 0)
466                 return 1;
467         return 0;
468 }
469
470 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
471                                  struct tree_mod_elem **tm_ret)
472 {
473         struct tree_mod_elem *tm;
474         int seq;
475
476         if (tree_mod_dont_log(fs_info, NULL))
477                 return 0;
478
479         tm = *tm_ret = kzalloc(sizeof(*tm), flags);
480         if (!tm)
481                 return -ENOMEM;
482
483         tm->elem.flags = 0;
484         spin_lock(&fs_info->tree_mod_seq_lock);
485         if (list_empty(&fs_info->tree_mod_seq_list)) {
486                 /*
487                  * someone emptied the list while we were waiting for the lock.
488                  * we must not add to the list, because no blocker exists. items
489                  * are removed from the list only when the existing blocker is
490                  * removed from the list.
491                  */
492                 kfree(tm);
493                 seq = 0;
494         } else {
495                 __get_tree_mod_seq(fs_info, &tm->elem);
496                 seq = tm->elem.seq;
497         }
498         spin_unlock(&fs_info->tree_mod_seq_lock);
499
500         return seq;
501 }
502
503 static noinline int
504 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
505                              struct extent_buffer *eb, int slot,
506                              enum mod_log_op op, gfp_t flags)
507 {
508         struct tree_mod_elem *tm;
509         int ret;
510
511         ret = tree_mod_alloc(fs_info, flags, &tm);
512         if (ret <= 0)
513                 return ret;
514
515         tm->index = eb->start >> PAGE_CACHE_SHIFT;
516         if (op != MOD_LOG_KEY_ADD) {
517                 btrfs_node_key(eb, &tm->key, slot);
518                 tm->blockptr = btrfs_node_blockptr(eb, slot);
519         }
520         tm->op = op;
521         tm->slot = slot;
522         tm->generation = btrfs_node_ptr_generation(eb, slot);
523
524         return __tree_mod_log_insert(fs_info, tm);
525 }
526
527 static noinline int
528 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
529                         int slot, enum mod_log_op op)
530 {
531         return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
532 }
533
534 static noinline int
535 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
536                          struct extent_buffer *eb, int dst_slot, int src_slot,
537                          int nr_items, gfp_t flags)
538 {
539         struct tree_mod_elem *tm;
540         int ret;
541         int i;
542
543         if (tree_mod_dont_log(fs_info, eb))
544                 return 0;
545
546         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
547                 ret = tree_mod_log_insert_key(fs_info, eb, i + dst_slot,
548                                               MOD_LOG_KEY_REMOVE_WHILE_MOVING);
549                 BUG_ON(ret < 0);
550         }
551
552         ret = tree_mod_alloc(fs_info, flags, &tm);
553         if (ret <= 0)
554                 return ret;
555
556         tm->index = eb->start >> PAGE_CACHE_SHIFT;
557         tm->slot = src_slot;
558         tm->move.dst_slot = dst_slot;
559         tm->move.nr_items = nr_items;
560         tm->op = MOD_LOG_MOVE_KEYS;
561
562         return __tree_mod_log_insert(fs_info, tm);
563 }
564
565 static noinline int
566 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
567                          struct extent_buffer *old_root,
568                          struct extent_buffer *new_root, gfp_t flags)
569 {
570         struct tree_mod_elem *tm;
571         int ret;
572
573         ret = tree_mod_alloc(fs_info, flags, &tm);
574         if (ret <= 0)
575                 return ret;
576
577         tm->index = new_root->start >> PAGE_CACHE_SHIFT;
578         tm->old_root.logical = old_root->start;
579         tm->old_root.level = btrfs_header_level(old_root);
580         tm->generation = btrfs_header_generation(old_root);
581         tm->op = MOD_LOG_ROOT_REPLACE;
582
583         return __tree_mod_log_insert(fs_info, tm);
584 }
585
586 static struct tree_mod_elem *
587 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
588                       int smallest)
589 {
590         struct rb_root *tm_root;
591         struct rb_node *node;
592         struct tree_mod_elem *cur = NULL;
593         struct tree_mod_elem *found = NULL;
594         u64 index = start >> PAGE_CACHE_SHIFT;
595
596         read_lock(&fs_info->tree_mod_log_lock);
597         tm_root = &fs_info->tree_mod_log;
598         node = tm_root->rb_node;
599         while (node) {
600                 cur = container_of(node, struct tree_mod_elem, node);
601                 if (cur->index < index) {
602                         node = node->rb_left;
603                 } else if (cur->index > index) {
604                         node = node->rb_right;
605                 } else if (cur->elem.seq < min_seq) {
606                         node = node->rb_left;
607                 } else if (!smallest) {
608                         /* we want the node with the highest seq */
609                         if (found)
610                                 BUG_ON(found->elem.seq > cur->elem.seq);
611                         found = cur;
612                         node = node->rb_left;
613                 } else if (cur->elem.seq > min_seq) {
614                         /* we want the node with the smallest seq */
615                         if (found)
616                                 BUG_ON(found->elem.seq < cur->elem.seq);
617                         found = cur;
618                         node = node->rb_right;
619                 } else {
620                         found = cur;
621                         break;
622                 }
623         }
624         read_unlock(&fs_info->tree_mod_log_lock);
625
626         return found;
627 }
628
629 /*
630  * this returns the element from the log with the smallest time sequence
631  * value that's in the log (the oldest log item). any element with a time
632  * sequence lower than min_seq will be ignored.
633  */
634 static struct tree_mod_elem *
635 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
636                            u64 min_seq)
637 {
638         return __tree_mod_log_search(fs_info, start, min_seq, 1);
639 }
640
641 /*
642  * this returns the element from the log with the largest time sequence
643  * value that's in the log (the most recent log item). any element with
644  * a time sequence lower than min_seq will be ignored.
645  */
646 static struct tree_mod_elem *
647 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
648 {
649         return __tree_mod_log_search(fs_info, start, min_seq, 0);
650 }
651
652 static inline void
653 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
654                      struct extent_buffer *src, unsigned long dst_offset,
655                      unsigned long src_offset, int nr_items)
656 {
657         int ret;
658         int i;
659
660         if (tree_mod_dont_log(fs_info, NULL))
661                 return;
662
663         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
664                 return;
665
666         /* speed this up by single seq for all operations? */
667         for (i = 0; i < nr_items; i++) {
668                 ret = tree_mod_log_insert_key(fs_info, src, i + src_offset,
669                                               MOD_LOG_KEY_REMOVE);
670                 BUG_ON(ret < 0);
671                 ret = tree_mod_log_insert_key(fs_info, dst, i + dst_offset,
672                                               MOD_LOG_KEY_ADD);
673                 BUG_ON(ret < 0);
674         }
675 }
676
677 static inline void
678 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
679                      int dst_offset, int src_offset, int nr_items)
680 {
681         int ret;
682         ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
683                                        nr_items, GFP_NOFS);
684         BUG_ON(ret < 0);
685 }
686
687 static inline void
688 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
689                           struct extent_buffer *eb,
690                           struct btrfs_disk_key *disk_key, int slot, int atomic)
691 {
692         int ret;
693
694         ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
695                                            MOD_LOG_KEY_REPLACE,
696                                            atomic ? GFP_ATOMIC : GFP_NOFS);
697         BUG_ON(ret < 0);
698 }
699
700 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
701                                  struct extent_buffer *eb)
702 {
703         int i;
704         int ret;
705         u32 nritems;
706
707         if (tree_mod_dont_log(fs_info, eb))
708                 return;
709
710         nritems = btrfs_header_nritems(eb);
711         for (i = nritems - 1; i >= 0; i--) {
712                 ret = tree_mod_log_insert_key(fs_info, eb, i,
713                                               MOD_LOG_KEY_REMOVE_WHILE_FREEING);
714                 BUG_ON(ret < 0);
715         }
716 }
717
718 static inline void
719 tree_mod_log_set_root_pointer(struct btrfs_root *root,
720                               struct extent_buffer *new_root_node)
721 {
722         int ret;
723         tree_mod_log_free_eb(root->fs_info, root->node);
724         ret = tree_mod_log_insert_root(root->fs_info, root->node,
725                                        new_root_node, GFP_NOFS);
726         BUG_ON(ret < 0);
727 }
728
729 /*
730  * check if the tree block can be shared by multiple trees
731  */
732 int btrfs_block_can_be_shared(struct btrfs_root *root,
733                               struct extent_buffer *buf)
734 {
735         /*
736          * Tree blocks not in refernece counted trees and tree roots
737          * are never shared. If a block was allocated after the last
738          * snapshot and the block was not allocated by tree relocation,
739          * we know the block is not shared.
740          */
741         if (root->ref_cows &&
742             buf != root->node && buf != root->commit_root &&
743             (btrfs_header_generation(buf) <=
744              btrfs_root_last_snapshot(&root->root_item) ||
745              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
746                 return 1;
747 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
748         if (root->ref_cows &&
749             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
750                 return 1;
751 #endif
752         return 0;
753 }
754
755 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
756                                        struct btrfs_root *root,
757                                        struct extent_buffer *buf,
758                                        struct extent_buffer *cow,
759                                        int *last_ref)
760 {
761         u64 refs;
762         u64 owner;
763         u64 flags;
764         u64 new_flags = 0;
765         int ret;
766
767         /*
768          * Backrefs update rules:
769          *
770          * Always use full backrefs for extent pointers in tree block
771          * allocated by tree relocation.
772          *
773          * If a shared tree block is no longer referenced by its owner
774          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
775          * use full backrefs for extent pointers in tree block.
776          *
777          * If a tree block is been relocating
778          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
779          * use full backrefs for extent pointers in tree block.
780          * The reason for this is some operations (such as drop tree)
781          * are only allowed for blocks use full backrefs.
782          */
783
784         if (btrfs_block_can_be_shared(root, buf)) {
785                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
786                                                buf->len, &refs, &flags);
787                 if (ret)
788                         return ret;
789                 if (refs == 0) {
790                         ret = -EROFS;
791                         btrfs_std_error(root->fs_info, ret);
792                         return ret;
793                 }
794         } else {
795                 refs = 1;
796                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
797                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
798                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
799                 else
800                         flags = 0;
801         }
802
803         owner = btrfs_header_owner(buf);
804         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
805                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
806
807         if (refs > 1) {
808                 if ((owner == root->root_key.objectid ||
809                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
810                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
811                         ret = btrfs_inc_ref(trans, root, buf, 1, 1);
812                         BUG_ON(ret); /* -ENOMEM */
813
814                         if (root->root_key.objectid ==
815                             BTRFS_TREE_RELOC_OBJECTID) {
816                                 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
817                                 BUG_ON(ret); /* -ENOMEM */
818                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
819                                 BUG_ON(ret); /* -ENOMEM */
820                         }
821                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
822                 } else {
823
824                         if (root->root_key.objectid ==
825                             BTRFS_TREE_RELOC_OBJECTID)
826                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
827                         else
828                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
829                         BUG_ON(ret); /* -ENOMEM */
830                 }
831                 if (new_flags != 0) {
832                         ret = btrfs_set_disk_extent_flags(trans, root,
833                                                           buf->start,
834                                                           buf->len,
835                                                           new_flags, 0);
836                         if (ret)
837                                 return ret;
838                 }
839         } else {
840                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
841                         if (root->root_key.objectid ==
842                             BTRFS_TREE_RELOC_OBJECTID)
843                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
844                         else
845                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
846                         BUG_ON(ret); /* -ENOMEM */
847                         ret = btrfs_dec_ref(trans, root, buf, 1, 1);
848                         BUG_ON(ret); /* -ENOMEM */
849                 }
850                 /*
851                  * don't log freeing in case we're freeing the root node, this
852                  * is done by tree_mod_log_set_root_pointer later
853                  */
854                 if (buf != root->node && btrfs_header_level(buf) != 0)
855                         tree_mod_log_free_eb(root->fs_info, buf);
856                 clean_tree_block(trans, root, buf);
857                 *last_ref = 1;
858         }
859         return 0;
860 }
861
862 /*
863  * does the dirty work in cow of a single block.  The parent block (if
864  * supplied) is updated to point to the new cow copy.  The new buffer is marked
865  * dirty and returned locked.  If you modify the block it needs to be marked
866  * dirty again.
867  *
868  * search_start -- an allocation hint for the new block
869  *
870  * empty_size -- a hint that you plan on doing more cow.  This is the size in
871  * bytes the allocator should try to find free next to the block it returns.
872  * This is just a hint and may be ignored by the allocator.
873  */
874 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
875                              struct btrfs_root *root,
876                              struct extent_buffer *buf,
877                              struct extent_buffer *parent, int parent_slot,
878                              struct extent_buffer **cow_ret,
879                              u64 search_start, u64 empty_size)
880 {
881         struct btrfs_disk_key disk_key;
882         struct extent_buffer *cow;
883         int level, ret;
884         int last_ref = 0;
885         int unlock_orig = 0;
886         u64 parent_start;
887
888         if (*cow_ret == buf)
889                 unlock_orig = 1;
890
891         btrfs_assert_tree_locked(buf);
892
893         WARN_ON(root->ref_cows && trans->transid !=
894                 root->fs_info->running_transaction->transid);
895         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
896
897         level = btrfs_header_level(buf);
898
899         if (level == 0)
900                 btrfs_item_key(buf, &disk_key, 0);
901         else
902                 btrfs_node_key(buf, &disk_key, 0);
903
904         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
905                 if (parent)
906                         parent_start = parent->start;
907                 else
908                         parent_start = 0;
909         } else
910                 parent_start = 0;
911
912         cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
913                                      root->root_key.objectid, &disk_key,
914                                      level, search_start, empty_size);
915         if (IS_ERR(cow))
916                 return PTR_ERR(cow);
917
918         /* cow is set to blocking by btrfs_init_new_buffer */
919
920         copy_extent_buffer(cow, buf, 0, 0, cow->len);
921         btrfs_set_header_bytenr(cow, cow->start);
922         btrfs_set_header_generation(cow, trans->transid);
923         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
924         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
925                                      BTRFS_HEADER_FLAG_RELOC);
926         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
927                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
928         else
929                 btrfs_set_header_owner(cow, root->root_key.objectid);
930
931         write_extent_buffer(cow, root->fs_info->fsid,
932                             (unsigned long)btrfs_header_fsid(cow),
933                             BTRFS_FSID_SIZE);
934
935         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
936         if (ret) {
937                 btrfs_abort_transaction(trans, root, ret);
938                 return ret;
939         }
940
941         if (root->ref_cows)
942                 btrfs_reloc_cow_block(trans, root, buf, cow);
943
944         if (buf == root->node) {
945                 WARN_ON(parent && parent != buf);
946                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
947                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
948                         parent_start = buf->start;
949                 else
950                         parent_start = 0;
951
952                 extent_buffer_get(cow);
953                 tree_mod_log_set_root_pointer(root, cow);
954                 rcu_assign_pointer(root->node, cow);
955
956                 btrfs_free_tree_block(trans, root, buf, parent_start,
957                                       last_ref);
958                 free_extent_buffer(buf);
959                 add_root_to_dirty_list(root);
960         } else {
961                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
962                         parent_start = parent->start;
963                 else
964                         parent_start = 0;
965
966                 WARN_ON(trans->transid != btrfs_header_generation(parent));
967                 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
968                                         MOD_LOG_KEY_REPLACE);
969                 btrfs_set_node_blockptr(parent, parent_slot,
970                                         cow->start);
971                 btrfs_set_node_ptr_generation(parent, parent_slot,
972                                               trans->transid);
973                 btrfs_mark_buffer_dirty(parent);
974                 btrfs_free_tree_block(trans, root, buf, parent_start,
975                                       last_ref);
976         }
977         if (unlock_orig)
978                 btrfs_tree_unlock(buf);
979         free_extent_buffer_stale(buf);
980         btrfs_mark_buffer_dirty(cow);
981         *cow_ret = cow;
982         return 0;
983 }
984
985 /*
986  * returns the logical address of the oldest predecessor of the given root.
987  * entries older than time_seq are ignored.
988  */
989 static struct tree_mod_elem *
990 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
991                            struct btrfs_root *root, u64 time_seq)
992 {
993         struct tree_mod_elem *tm;
994         struct tree_mod_elem *found = NULL;
995         u64 root_logical = root->node->start;
996         int looped = 0;
997
998         if (!time_seq)
999                 return 0;
1000
1001         /*
1002          * the very last operation that's logged for a root is the replacement
1003          * operation (if it is replaced at all). this has the index of the *new*
1004          * root, making it the very first operation that's logged for this root.
1005          */
1006         while (1) {
1007                 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1008                                                 time_seq);
1009                 if (!looped && !tm)
1010                         return 0;
1011                 /*
1012                  * we must have key remove operations in the log before the
1013                  * replace operation.
1014                  */
1015                 BUG_ON(!tm);
1016
1017                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1018                         break;
1019
1020                 found = tm;
1021                 root_logical = tm->old_root.logical;
1022                 BUG_ON(root_logical == root->node->start);
1023                 looped = 1;
1024         }
1025
1026         return found;
1027 }
1028
1029 /*
1030  * tm is a pointer to the first operation to rewind within eb. then, all
1031  * previous operations will be rewinded (until we reach something older than
1032  * time_seq).
1033  */
1034 static void
1035 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1036                       struct tree_mod_elem *first_tm)
1037 {
1038         u32 n;
1039         struct rb_node *next;
1040         struct tree_mod_elem *tm = first_tm;
1041         unsigned long o_dst;
1042         unsigned long o_src;
1043         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1044
1045         n = btrfs_header_nritems(eb);
1046         while (tm && tm->elem.seq >= time_seq) {
1047                 /*
1048                  * all the operations are recorded with the operator used for
1049                  * the modification. as we're going backwards, we do the
1050                  * opposite of each operation here.
1051                  */
1052                 switch (tm->op) {
1053                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1054                         BUG_ON(tm->slot < n);
1055                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1056                 case MOD_LOG_KEY_REMOVE:
1057                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1058                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1059                         btrfs_set_node_ptr_generation(eb, tm->slot,
1060                                                       tm->generation);
1061                         n++;
1062                         break;
1063                 case MOD_LOG_KEY_REPLACE:
1064                         BUG_ON(tm->slot >= n);
1065                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1066                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1067                         btrfs_set_node_ptr_generation(eb, tm->slot,
1068                                                       tm->generation);
1069                         break;
1070                 case MOD_LOG_KEY_ADD:
1071                         if (tm->slot != n - 1) {
1072                                 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1073                                 o_src = btrfs_node_key_ptr_offset(tm->slot + 1);
1074                                 memmove_extent_buffer(eb, o_dst, o_src, p_size);
1075                         }
1076                         n--;
1077                         break;
1078                 case MOD_LOG_MOVE_KEYS:
1079                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1080                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1081                         memmove_extent_buffer(eb, o_dst, o_src,
1082                                               tm->move.nr_items * p_size);
1083                         break;
1084                 case MOD_LOG_ROOT_REPLACE:
1085                         /*
1086                          * this operation is special. for roots, this must be
1087                          * handled explicitly before rewinding.
1088                          * for non-roots, this operation may exist if the node
1089                          * was a root: root A -> child B; then A gets empty and
1090                          * B is promoted to the new root. in the mod log, we'll
1091                          * have a root-replace operation for B, a tree block
1092                          * that is no root. we simply ignore that operation.
1093                          */
1094                         break;
1095                 }
1096                 next = rb_next(&tm->node);
1097                 if (!next)
1098                         break;
1099                 tm = container_of(next, struct tree_mod_elem, node);
1100                 if (tm->index != first_tm->index)
1101                         break;
1102         }
1103         btrfs_set_header_nritems(eb, n);
1104 }
1105
1106 static struct extent_buffer *
1107 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1108                     u64 time_seq)
1109 {
1110         struct extent_buffer *eb_rewin;
1111         struct tree_mod_elem *tm;
1112
1113         if (!time_seq)
1114                 return eb;
1115
1116         if (btrfs_header_level(eb) == 0)
1117                 return eb;
1118
1119         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1120         if (!tm)
1121                 return eb;
1122
1123         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1124                 BUG_ON(tm->slot != 0);
1125                 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1126                                                 fs_info->tree_root->nodesize);
1127                 BUG_ON(!eb_rewin);
1128                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1129                 btrfs_set_header_backref_rev(eb_rewin,
1130                                              btrfs_header_backref_rev(eb));
1131                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1132                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1133         } else {
1134                 eb_rewin = btrfs_clone_extent_buffer(eb);
1135                 BUG_ON(!eb_rewin);
1136         }
1137
1138         extent_buffer_get(eb_rewin);
1139         free_extent_buffer(eb);
1140
1141         __tree_mod_log_rewind(eb_rewin, time_seq, tm);
1142
1143         return eb_rewin;
1144 }
1145
1146 static inline struct extent_buffer *
1147 get_old_root(struct btrfs_root *root, u64 time_seq)
1148 {
1149         struct tree_mod_elem *tm;
1150         struct extent_buffer *eb;
1151         struct tree_mod_root *old_root;
1152         u64 old_generation;
1153
1154         tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1155         if (!tm)
1156                 return root->node;
1157
1158         old_root = &tm->old_root;
1159         old_generation = tm->generation;
1160
1161         tm = tree_mod_log_search(root->fs_info, old_root->logical, time_seq);
1162         /*
1163          * there was an item in the log when __tree_mod_log_oldest_root
1164          * returned. this one must not go away, because the time_seq passed to
1165          * us must be blocking its removal.
1166          */
1167         BUG_ON(!tm);
1168
1169         if (old_root->logical == root->node->start) {
1170                 /* there are logged operations for the current root */
1171                 eb = btrfs_clone_extent_buffer(root->node);
1172         } else {
1173                 /* there's a root replace operation for the current root */
1174                 eb = alloc_dummy_extent_buffer(tm->index << PAGE_CACHE_SHIFT,
1175                                                root->nodesize);
1176                 btrfs_set_header_bytenr(eb, eb->start);
1177                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1178                 btrfs_set_header_owner(eb, root->root_key.objectid);
1179         }
1180         if (!eb)
1181                 return NULL;
1182         btrfs_set_header_level(eb, old_root->level);
1183         btrfs_set_header_generation(eb, old_generation);
1184         __tree_mod_log_rewind(eb, time_seq, tm);
1185
1186         return eb;
1187 }
1188
1189 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1190                                    struct btrfs_root *root,
1191                                    struct extent_buffer *buf)
1192 {
1193         /* ensure we can see the force_cow */
1194         smp_rmb();
1195
1196         /*
1197          * We do not need to cow a block if
1198          * 1) this block is not created or changed in this transaction;
1199          * 2) this block does not belong to TREE_RELOC tree;
1200          * 3) the root is not forced COW.
1201          *
1202          * What is forced COW:
1203          *    when we create snapshot during commiting the transaction,
1204          *    after we've finished coping src root, we must COW the shared
1205          *    block to ensure the metadata consistency.
1206          */
1207         if (btrfs_header_generation(buf) == trans->transid &&
1208             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1209             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1210               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1211             !root->force_cow)
1212                 return 0;
1213         return 1;
1214 }
1215
1216 /*
1217  * cows a single block, see __btrfs_cow_block for the real work.
1218  * This version of it has extra checks so that a block isn't cow'd more than
1219  * once per transaction, as long as it hasn't been written yet
1220  */
1221 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1222                     struct btrfs_root *root, struct extent_buffer *buf,
1223                     struct extent_buffer *parent, int parent_slot,
1224                     struct extent_buffer **cow_ret)
1225 {
1226         u64 search_start;
1227         int ret;
1228
1229         if (trans->transaction != root->fs_info->running_transaction) {
1230                 printk(KERN_CRIT "trans %llu running %llu\n",
1231                        (unsigned long long)trans->transid,
1232                        (unsigned long long)
1233                        root->fs_info->running_transaction->transid);
1234                 WARN_ON(1);
1235         }
1236         if (trans->transid != root->fs_info->generation) {
1237                 printk(KERN_CRIT "trans %llu running %llu\n",
1238                        (unsigned long long)trans->transid,
1239                        (unsigned long long)root->fs_info->generation);
1240                 WARN_ON(1);
1241         }
1242
1243         if (!should_cow_block(trans, root, buf)) {
1244                 *cow_ret = buf;
1245                 return 0;
1246         }
1247
1248         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1249
1250         if (parent)
1251                 btrfs_set_lock_blocking(parent);
1252         btrfs_set_lock_blocking(buf);
1253
1254         ret = __btrfs_cow_block(trans, root, buf, parent,
1255                                  parent_slot, cow_ret, search_start, 0);
1256
1257         trace_btrfs_cow_block(root, buf, *cow_ret);
1258
1259         return ret;
1260 }
1261
1262 /*
1263  * helper function for defrag to decide if two blocks pointed to by a
1264  * node are actually close by
1265  */
1266 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1267 {
1268         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1269                 return 1;
1270         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1271                 return 1;
1272         return 0;
1273 }
1274
1275 /*
1276  * compare two keys in a memcmp fashion
1277  */
1278 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1279 {
1280         struct btrfs_key k1;
1281
1282         btrfs_disk_key_to_cpu(&k1, disk);
1283
1284         return btrfs_comp_cpu_keys(&k1, k2);
1285 }
1286
1287 /*
1288  * same as comp_keys only with two btrfs_key's
1289  */
1290 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1291 {
1292         if (k1->objectid > k2->objectid)
1293                 return 1;
1294         if (k1->objectid < k2->objectid)
1295                 return -1;
1296         if (k1->type > k2->type)
1297                 return 1;
1298         if (k1->type < k2->type)
1299                 return -1;
1300         if (k1->offset > k2->offset)
1301                 return 1;
1302         if (k1->offset < k2->offset)
1303                 return -1;
1304         return 0;
1305 }
1306
1307 /*
1308  * this is used by the defrag code to go through all the
1309  * leaves pointed to by a node and reallocate them so that
1310  * disk order is close to key order
1311  */
1312 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1313                        struct btrfs_root *root, struct extent_buffer *parent,
1314                        int start_slot, int cache_only, u64 *last_ret,
1315                        struct btrfs_key *progress)
1316 {
1317         struct extent_buffer *cur;
1318         u64 blocknr;
1319         u64 gen;
1320         u64 search_start = *last_ret;
1321         u64 last_block = 0;
1322         u64 other;
1323         u32 parent_nritems;
1324         int end_slot;
1325         int i;
1326         int err = 0;
1327         int parent_level;
1328         int uptodate;
1329         u32 blocksize;
1330         int progress_passed = 0;
1331         struct btrfs_disk_key disk_key;
1332
1333         parent_level = btrfs_header_level(parent);
1334         if (cache_only && parent_level != 1)
1335                 return 0;
1336
1337         if (trans->transaction != root->fs_info->running_transaction)
1338                 WARN_ON(1);
1339         if (trans->transid != root->fs_info->generation)
1340                 WARN_ON(1);
1341
1342         parent_nritems = btrfs_header_nritems(parent);
1343         blocksize = btrfs_level_size(root, parent_level - 1);
1344         end_slot = parent_nritems;
1345
1346         if (parent_nritems == 1)
1347                 return 0;
1348
1349         btrfs_set_lock_blocking(parent);
1350
1351         for (i = start_slot; i < end_slot; i++) {
1352                 int close = 1;
1353
1354                 btrfs_node_key(parent, &disk_key, i);
1355                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1356                         continue;
1357
1358                 progress_passed = 1;
1359                 blocknr = btrfs_node_blockptr(parent, i);
1360                 gen = btrfs_node_ptr_generation(parent, i);
1361                 if (last_block == 0)
1362                         last_block = blocknr;
1363
1364                 if (i > 0) {
1365                         other = btrfs_node_blockptr(parent, i - 1);
1366                         close = close_blocks(blocknr, other, blocksize);
1367                 }
1368                 if (!close && i < end_slot - 2) {
1369                         other = btrfs_node_blockptr(parent, i + 1);
1370                         close = close_blocks(blocknr, other, blocksize);
1371                 }
1372                 if (close) {
1373                         last_block = blocknr;
1374                         continue;
1375                 }
1376
1377                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1378                 if (cur)
1379                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1380                 else
1381                         uptodate = 0;
1382                 if (!cur || !uptodate) {
1383                         if (cache_only) {
1384                                 free_extent_buffer(cur);
1385                                 continue;
1386                         }
1387                         if (!cur) {
1388                                 cur = read_tree_block(root, blocknr,
1389                                                          blocksize, gen);
1390                                 if (!cur)
1391                                         return -EIO;
1392                         } else if (!uptodate) {
1393                                 err = btrfs_read_buffer(cur, gen);
1394                                 if (err) {
1395                                         free_extent_buffer(cur);
1396                                         return err;
1397                                 }
1398                         }
1399                 }
1400                 if (search_start == 0)
1401                         search_start = last_block;
1402
1403                 btrfs_tree_lock(cur);
1404                 btrfs_set_lock_blocking(cur);
1405                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1406                                         &cur, search_start,
1407                                         min(16 * blocksize,
1408                                             (end_slot - i) * blocksize));
1409                 if (err) {
1410                         btrfs_tree_unlock(cur);
1411                         free_extent_buffer(cur);
1412                         break;
1413                 }
1414                 search_start = cur->start;
1415                 last_block = cur->start;
1416                 *last_ret = search_start;
1417                 btrfs_tree_unlock(cur);
1418                 free_extent_buffer(cur);
1419         }
1420         return err;
1421 }
1422
1423 /*
1424  * The leaf data grows from end-to-front in the node.
1425  * this returns the address of the start of the last item,
1426  * which is the stop of the leaf data stack
1427  */
1428 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1429                                          struct extent_buffer *leaf)
1430 {
1431         u32 nr = btrfs_header_nritems(leaf);
1432         if (nr == 0)
1433                 return BTRFS_LEAF_DATA_SIZE(root);
1434         return btrfs_item_offset_nr(leaf, nr - 1);
1435 }
1436
1437
1438 /*
1439  * search for key in the extent_buffer.  The items start at offset p,
1440  * and they are item_size apart.  There are 'max' items in p.
1441  *
1442  * the slot in the array is returned via slot, and it points to
1443  * the place where you would insert key if it is not found in
1444  * the array.
1445  *
1446  * slot may point to max if the key is bigger than all of the keys
1447  */
1448 static noinline int generic_bin_search(struct extent_buffer *eb,
1449                                        unsigned long p,
1450                                        int item_size, struct btrfs_key *key,
1451                                        int max, int *slot)
1452 {
1453         int low = 0;
1454         int high = max;
1455         int mid;
1456         int ret;
1457         struct btrfs_disk_key *tmp = NULL;
1458         struct btrfs_disk_key unaligned;
1459         unsigned long offset;
1460         char *kaddr = NULL;
1461         unsigned long map_start = 0;
1462         unsigned long map_len = 0;
1463         int err;
1464
1465         while (low < high) {
1466                 mid = (low + high) / 2;
1467                 offset = p + mid * item_size;
1468
1469                 if (!kaddr || offset < map_start ||
1470                     (offset + sizeof(struct btrfs_disk_key)) >
1471                     map_start + map_len) {
1472
1473                         err = map_private_extent_buffer(eb, offset,
1474                                                 sizeof(struct btrfs_disk_key),
1475                                                 &kaddr, &map_start, &map_len);
1476
1477                         if (!err) {
1478                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1479                                                         map_start);
1480                         } else {
1481                                 read_extent_buffer(eb, &unaligned,
1482                                                    offset, sizeof(unaligned));
1483                                 tmp = &unaligned;
1484                         }
1485
1486                 } else {
1487                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1488                                                         map_start);
1489                 }
1490                 ret = comp_keys(tmp, key);
1491
1492                 if (ret < 0)
1493                         low = mid + 1;
1494                 else if (ret > 0)
1495                         high = mid;
1496                 else {
1497                         *slot = mid;
1498                         return 0;
1499                 }
1500         }
1501         *slot = low;
1502         return 1;
1503 }
1504
1505 /*
1506  * simple bin_search frontend that does the right thing for
1507  * leaves vs nodes
1508  */
1509 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1510                       int level, int *slot)
1511 {
1512         if (level == 0)
1513                 return generic_bin_search(eb,
1514                                           offsetof(struct btrfs_leaf, items),
1515                                           sizeof(struct btrfs_item),
1516                                           key, btrfs_header_nritems(eb),
1517                                           slot);
1518         else
1519                 return generic_bin_search(eb,
1520                                           offsetof(struct btrfs_node, ptrs),
1521                                           sizeof(struct btrfs_key_ptr),
1522                                           key, btrfs_header_nritems(eb),
1523                                           slot);
1524 }
1525
1526 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1527                      int level, int *slot)
1528 {
1529         return bin_search(eb, key, level, slot);
1530 }
1531
1532 static void root_add_used(struct btrfs_root *root, u32 size)
1533 {
1534         spin_lock(&root->accounting_lock);
1535         btrfs_set_root_used(&root->root_item,
1536                             btrfs_root_used(&root->root_item) + size);
1537         spin_unlock(&root->accounting_lock);
1538 }
1539
1540 static void root_sub_used(struct btrfs_root *root, u32 size)
1541 {
1542         spin_lock(&root->accounting_lock);
1543         btrfs_set_root_used(&root->root_item,
1544                             btrfs_root_used(&root->root_item) - size);
1545         spin_unlock(&root->accounting_lock);
1546 }
1547
1548 /* given a node and slot number, this reads the blocks it points to.  The
1549  * extent buffer is returned with a reference taken (but unlocked).
1550  * NULL is returned on error.
1551  */
1552 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1553                                    struct extent_buffer *parent, int slot)
1554 {
1555         int level = btrfs_header_level(parent);
1556         if (slot < 0)
1557                 return NULL;
1558         if (slot >= btrfs_header_nritems(parent))
1559                 return NULL;
1560
1561         BUG_ON(level == 0);
1562
1563         return read_tree_block(root, btrfs_node_blockptr(parent, slot),
1564                        btrfs_level_size(root, level - 1),
1565                        btrfs_node_ptr_generation(parent, slot));
1566 }
1567
1568 /*
1569  * node level balancing, used to make sure nodes are in proper order for
1570  * item deletion.  We balance from the top down, so we have to make sure
1571  * that a deletion won't leave an node completely empty later on.
1572  */
1573 static noinline int balance_level(struct btrfs_trans_handle *trans,
1574                          struct btrfs_root *root,
1575                          struct btrfs_path *path, int level)
1576 {
1577         struct extent_buffer *right = NULL;
1578         struct extent_buffer *mid;
1579         struct extent_buffer *left = NULL;
1580         struct extent_buffer *parent = NULL;
1581         int ret = 0;
1582         int wret;
1583         int pslot;
1584         int orig_slot = path->slots[level];
1585         u64 orig_ptr;
1586
1587         if (level == 0)
1588                 return 0;
1589
1590         mid = path->nodes[level];
1591
1592         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1593                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1594         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1595
1596         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1597
1598         if (level < BTRFS_MAX_LEVEL - 1) {
1599                 parent = path->nodes[level + 1];
1600                 pslot = path->slots[level + 1];
1601         }
1602
1603         /*
1604          * deal with the case where there is only one pointer in the root
1605          * by promoting the node below to a root
1606          */
1607         if (!parent) {
1608                 struct extent_buffer *child;
1609
1610                 if (btrfs_header_nritems(mid) != 1)
1611                         return 0;
1612
1613                 /* promote the child to a root */
1614                 child = read_node_slot(root, mid, 0);
1615                 if (!child) {
1616                         ret = -EROFS;
1617                         btrfs_std_error(root->fs_info, ret);
1618                         goto enospc;
1619                 }
1620
1621                 btrfs_tree_lock(child);
1622                 btrfs_set_lock_blocking(child);
1623                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1624                 if (ret) {
1625                         btrfs_tree_unlock(child);
1626                         free_extent_buffer(child);
1627                         goto enospc;
1628                 }
1629
1630                 tree_mod_log_set_root_pointer(root, child);
1631                 rcu_assign_pointer(root->node, child);
1632
1633                 add_root_to_dirty_list(root);
1634                 btrfs_tree_unlock(child);
1635
1636                 path->locks[level] = 0;
1637                 path->nodes[level] = NULL;
1638                 clean_tree_block(trans, root, mid);
1639                 btrfs_tree_unlock(mid);
1640                 /* once for the path */
1641                 free_extent_buffer(mid);
1642
1643                 root_sub_used(root, mid->len);
1644                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1645                 /* once for the root ptr */
1646                 free_extent_buffer_stale(mid);
1647                 return 0;
1648         }
1649         if (btrfs_header_nritems(mid) >
1650             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1651                 return 0;
1652
1653         left = read_node_slot(root, parent, pslot - 1);
1654         if (left) {
1655                 btrfs_tree_lock(left);
1656                 btrfs_set_lock_blocking(left);
1657                 wret = btrfs_cow_block(trans, root, left,
1658                                        parent, pslot - 1, &left);
1659                 if (wret) {
1660                         ret = wret;
1661                         goto enospc;
1662                 }
1663         }
1664         right = read_node_slot(root, parent, pslot + 1);
1665         if (right) {
1666                 btrfs_tree_lock(right);
1667                 btrfs_set_lock_blocking(right);
1668                 wret = btrfs_cow_block(trans, root, right,
1669                                        parent, pslot + 1, &right);
1670                 if (wret) {
1671                         ret = wret;
1672                         goto enospc;
1673                 }
1674         }
1675
1676         /* first, try to make some room in the middle buffer */
1677         if (left) {
1678                 orig_slot += btrfs_header_nritems(left);
1679                 wret = push_node_left(trans, root, left, mid, 1);
1680                 if (wret < 0)
1681                         ret = wret;
1682         }
1683
1684         /*
1685          * then try to empty the right most buffer into the middle
1686          */
1687         if (right) {
1688                 wret = push_node_left(trans, root, mid, right, 1);
1689                 if (wret < 0 && wret != -ENOSPC)
1690                         ret = wret;
1691                 if (btrfs_header_nritems(right) == 0) {
1692                         clean_tree_block(trans, root, right);
1693                         btrfs_tree_unlock(right);
1694                         del_ptr(trans, root, path, level + 1, pslot + 1, 1);
1695                         root_sub_used(root, right->len);
1696                         btrfs_free_tree_block(trans, root, right, 0, 1);
1697                         free_extent_buffer_stale(right);
1698                         right = NULL;
1699                 } else {
1700                         struct btrfs_disk_key right_key;
1701                         btrfs_node_key(right, &right_key, 0);
1702                         tree_mod_log_set_node_key(root->fs_info, parent,
1703                                                   &right_key, pslot + 1, 0);
1704                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1705                         btrfs_mark_buffer_dirty(parent);
1706                 }
1707         }
1708         if (btrfs_header_nritems(mid) == 1) {
1709                 /*
1710                  * we're not allowed to leave a node with one item in the
1711                  * tree during a delete.  A deletion from lower in the tree
1712                  * could try to delete the only pointer in this node.
1713                  * So, pull some keys from the left.
1714                  * There has to be a left pointer at this point because
1715                  * otherwise we would have pulled some pointers from the
1716                  * right
1717                  */
1718                 if (!left) {
1719                         ret = -EROFS;
1720                         btrfs_std_error(root->fs_info, ret);
1721                         goto enospc;
1722                 }
1723                 wret = balance_node_right(trans, root, mid, left);
1724                 if (wret < 0) {
1725                         ret = wret;
1726                         goto enospc;
1727                 }
1728                 if (wret == 1) {
1729                         wret = push_node_left(trans, root, left, mid, 1);
1730                         if (wret < 0)
1731                                 ret = wret;
1732                 }
1733                 BUG_ON(wret == 1);
1734         }
1735         if (btrfs_header_nritems(mid) == 0) {
1736                 clean_tree_block(trans, root, mid);
1737                 btrfs_tree_unlock(mid);
1738                 del_ptr(trans, root, path, level + 1, pslot, 1);
1739                 root_sub_used(root, mid->len);
1740                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1741                 free_extent_buffer_stale(mid);
1742                 mid = NULL;
1743         } else {
1744                 /* update the parent key to reflect our changes */
1745                 struct btrfs_disk_key mid_key;
1746                 btrfs_node_key(mid, &mid_key, 0);
1747                 tree_mod_log_set_node_key(root->fs_info, parent, &mid_key,
1748                                           pslot, 0);
1749                 btrfs_set_node_key(parent, &mid_key, pslot);
1750                 btrfs_mark_buffer_dirty(parent);
1751         }
1752
1753         /* update the path */
1754         if (left) {
1755                 if (btrfs_header_nritems(left) > orig_slot) {
1756                         extent_buffer_get(left);
1757                         /* left was locked after cow */
1758                         path->nodes[level] = left;
1759                         path->slots[level + 1] -= 1;
1760                         path->slots[level] = orig_slot;
1761                         if (mid) {
1762                                 btrfs_tree_unlock(mid);
1763                                 free_extent_buffer(mid);
1764                         }
1765                 } else {
1766                         orig_slot -= btrfs_header_nritems(left);
1767                         path->slots[level] = orig_slot;
1768                 }
1769         }
1770         /* double check we haven't messed things up */
1771         if (orig_ptr !=
1772             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1773                 BUG();
1774 enospc:
1775         if (right) {
1776                 btrfs_tree_unlock(right);
1777                 free_extent_buffer(right);
1778         }
1779         if (left) {
1780                 if (path->nodes[level] != left)
1781                         btrfs_tree_unlock(left);
1782                 free_extent_buffer(left);
1783         }
1784         return ret;
1785 }
1786
1787 /* Node balancing for insertion.  Here we only split or push nodes around
1788  * when they are completely full.  This is also done top down, so we
1789  * have to be pessimistic.
1790  */
1791 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1792                                           struct btrfs_root *root,
1793                                           struct btrfs_path *path, int level)
1794 {
1795         struct extent_buffer *right = NULL;
1796         struct extent_buffer *mid;
1797         struct extent_buffer *left = NULL;
1798         struct extent_buffer *parent = NULL;
1799         int ret = 0;
1800         int wret;
1801         int pslot;
1802         int orig_slot = path->slots[level];
1803
1804         if (level == 0)
1805                 return 1;
1806
1807         mid = path->nodes[level];
1808         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1809
1810         if (level < BTRFS_MAX_LEVEL - 1) {
1811                 parent = path->nodes[level + 1];
1812                 pslot = path->slots[level + 1];
1813         }
1814
1815         if (!parent)
1816                 return 1;
1817
1818         left = read_node_slot(root, parent, pslot - 1);
1819
1820         /* first, try to make some room in the middle buffer */
1821         if (left) {
1822                 u32 left_nr;
1823
1824                 btrfs_tree_lock(left);
1825                 btrfs_set_lock_blocking(left);
1826
1827                 left_nr = btrfs_header_nritems(left);
1828                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1829                         wret = 1;
1830                 } else {
1831                         ret = btrfs_cow_block(trans, root, left, parent,
1832                                               pslot - 1, &left);
1833                         if (ret)
1834                                 wret = 1;
1835                         else {
1836                                 wret = push_node_left(trans, root,
1837                                                       left, mid, 0);
1838                         }
1839                 }
1840                 if (wret < 0)
1841                         ret = wret;
1842                 if (wret == 0) {
1843                         struct btrfs_disk_key disk_key;
1844                         orig_slot += left_nr;
1845                         btrfs_node_key(mid, &disk_key, 0);
1846                         tree_mod_log_set_node_key(root->fs_info, parent,
1847                                                   &disk_key, pslot, 0);
1848                         btrfs_set_node_key(parent, &disk_key, pslot);
1849                         btrfs_mark_buffer_dirty(parent);
1850                         if (btrfs_header_nritems(left) > orig_slot) {
1851                                 path->nodes[level] = left;
1852                                 path->slots[level + 1] -= 1;
1853                                 path->slots[level] = orig_slot;
1854                                 btrfs_tree_unlock(mid);
1855                                 free_extent_buffer(mid);
1856                         } else {
1857                                 orig_slot -=
1858                                         btrfs_header_nritems(left);
1859                                 path->slots[level] = orig_slot;
1860                                 btrfs_tree_unlock(left);
1861                                 free_extent_buffer(left);
1862                         }
1863                         return 0;
1864                 }
1865                 btrfs_tree_unlock(left);
1866                 free_extent_buffer(left);
1867         }
1868         right = read_node_slot(root, parent, pslot + 1);
1869
1870         /*
1871          * then try to empty the right most buffer into the middle
1872          */
1873         if (right) {
1874                 u32 right_nr;
1875
1876                 btrfs_tree_lock(right);
1877                 btrfs_set_lock_blocking(right);
1878
1879                 right_nr = btrfs_header_nritems(right);
1880                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1881                         wret = 1;
1882                 } else {
1883                         ret = btrfs_cow_block(trans, root, right,
1884                                               parent, pslot + 1,
1885                                               &right);
1886                         if (ret)
1887                                 wret = 1;
1888                         else {
1889                                 wret = balance_node_right(trans, root,
1890                                                           right, mid);
1891                         }
1892                 }
1893                 if (wret < 0)
1894                         ret = wret;
1895                 if (wret == 0) {
1896                         struct btrfs_disk_key disk_key;
1897
1898                         btrfs_node_key(right, &disk_key, 0);
1899                         tree_mod_log_set_node_key(root->fs_info, parent,
1900                                                   &disk_key, pslot + 1, 0);
1901                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
1902                         btrfs_mark_buffer_dirty(parent);
1903
1904                         if (btrfs_header_nritems(mid) <= orig_slot) {
1905                                 path->nodes[level] = right;
1906                                 path->slots[level + 1] += 1;
1907                                 path->slots[level] = orig_slot -
1908                                         btrfs_header_nritems(mid);
1909                                 btrfs_tree_unlock(mid);
1910                                 free_extent_buffer(mid);
1911                         } else {
1912                                 btrfs_tree_unlock(right);
1913                                 free_extent_buffer(right);
1914                         }
1915                         return 0;
1916                 }
1917                 btrfs_tree_unlock(right);
1918                 free_extent_buffer(right);
1919         }
1920         return 1;
1921 }
1922
1923 /*
1924  * readahead one full node of leaves, finding things that are close
1925  * to the block in 'slot', and triggering ra on them.
1926  */
1927 static void reada_for_search(struct btrfs_root *root,
1928                              struct btrfs_path *path,
1929                              int level, int slot, u64 objectid)
1930 {
1931         struct extent_buffer *node;
1932         struct btrfs_disk_key disk_key;
1933         u32 nritems;
1934         u64 search;
1935         u64 target;
1936         u64 nread = 0;
1937         u64 gen;
1938         int direction = path->reada;
1939         struct extent_buffer *eb;
1940         u32 nr;
1941         u32 blocksize;
1942         u32 nscan = 0;
1943
1944         if (level != 1)
1945                 return;
1946
1947         if (!path->nodes[level])
1948                 return;
1949
1950         node = path->nodes[level];
1951
1952         search = btrfs_node_blockptr(node, slot);
1953         blocksize = btrfs_level_size(root, level - 1);
1954         eb = btrfs_find_tree_block(root, search, blocksize);
1955         if (eb) {
1956                 free_extent_buffer(eb);
1957                 return;
1958         }
1959
1960         target = search;
1961
1962         nritems = btrfs_header_nritems(node);
1963         nr = slot;
1964
1965         while (1) {
1966                 if (direction < 0) {
1967                         if (nr == 0)
1968                                 break;
1969                         nr--;
1970                 } else if (direction > 0) {
1971                         nr++;
1972                         if (nr >= nritems)
1973                                 break;
1974                 }
1975                 if (path->reada < 0 && objectid) {
1976                         btrfs_node_key(node, &disk_key, nr);
1977                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
1978                                 break;
1979                 }
1980                 search = btrfs_node_blockptr(node, nr);
1981                 if ((search <= target && target - search <= 65536) ||
1982                     (search > target && search - target <= 65536)) {
1983                         gen = btrfs_node_ptr_generation(node, nr);
1984                         readahead_tree_block(root, search, blocksize, gen);
1985                         nread += blocksize;
1986                 }
1987                 nscan++;
1988                 if ((nread > 65536 || nscan > 32))
1989                         break;
1990         }
1991 }
1992
1993 /*
1994  * returns -EAGAIN if it had to drop the path, or zero if everything was in
1995  * cache
1996  */
1997 static noinline int reada_for_balance(struct btrfs_root *root,
1998                                       struct btrfs_path *path, int level)
1999 {
2000         int slot;
2001         int nritems;
2002         struct extent_buffer *parent;
2003         struct extent_buffer *eb;
2004         u64 gen;
2005         u64 block1 = 0;
2006         u64 block2 = 0;
2007         int ret = 0;
2008         int blocksize;
2009
2010         parent = path->nodes[level + 1];
2011         if (!parent)
2012                 return 0;
2013
2014         nritems = btrfs_header_nritems(parent);
2015         slot = path->slots[level + 1];
2016         blocksize = btrfs_level_size(root, level);
2017
2018         if (slot > 0) {
2019                 block1 = btrfs_node_blockptr(parent, slot - 1);
2020                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2021                 eb = btrfs_find_tree_block(root, block1, blocksize);
2022                 /*
2023                  * if we get -eagain from btrfs_buffer_uptodate, we
2024                  * don't want to return eagain here.  That will loop
2025                  * forever
2026                  */
2027                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2028                         block1 = 0;
2029                 free_extent_buffer(eb);
2030         }
2031         if (slot + 1 < nritems) {
2032                 block2 = btrfs_node_blockptr(parent, slot + 1);
2033                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2034                 eb = btrfs_find_tree_block(root, block2, blocksize);
2035                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2036                         block2 = 0;
2037                 free_extent_buffer(eb);
2038         }
2039         if (block1 || block2) {
2040                 ret = -EAGAIN;
2041
2042                 /* release the whole path */
2043                 btrfs_release_path(path);
2044
2045                 /* read the blocks */
2046                 if (block1)
2047                         readahead_tree_block(root, block1, blocksize, 0);
2048                 if (block2)
2049                         readahead_tree_block(root, block2, blocksize, 0);
2050
2051                 if (block1) {
2052                         eb = read_tree_block(root, block1, blocksize, 0);
2053                         free_extent_buffer(eb);
2054                 }
2055                 if (block2) {
2056                         eb = read_tree_block(root, block2, blocksize, 0);
2057                         free_extent_buffer(eb);
2058                 }
2059         }
2060         return ret;
2061 }
2062
2063
2064 /*
2065  * when we walk down the tree, it is usually safe to unlock the higher layers
2066  * in the tree.  The exceptions are when our path goes through slot 0, because
2067  * operations on the tree might require changing key pointers higher up in the
2068  * tree.
2069  *
2070  * callers might also have set path->keep_locks, which tells this code to keep
2071  * the lock if the path points to the last slot in the block.  This is part of
2072  * walking through the tree, and selecting the next slot in the higher block.
2073  *
2074  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2075  * if lowest_unlock is 1, level 0 won't be unlocked
2076  */
2077 static noinline void unlock_up(struct btrfs_path *path, int level,
2078                                int lowest_unlock, int min_write_lock_level,
2079                                int *write_lock_level)
2080 {
2081         int i;
2082         int skip_level = level;
2083         int no_skips = 0;
2084         struct extent_buffer *t;
2085
2086         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2087                 if (!path->nodes[i])
2088                         break;
2089                 if (!path->locks[i])
2090                         break;
2091                 if (!no_skips && path->slots[i] == 0) {
2092                         skip_level = i + 1;
2093                         continue;
2094                 }
2095                 if (!no_skips && path->keep_locks) {
2096                         u32 nritems;
2097                         t = path->nodes[i];
2098                         nritems = btrfs_header_nritems(t);
2099                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2100                                 skip_level = i + 1;
2101                                 continue;
2102                         }
2103                 }
2104                 if (skip_level < i && i >= lowest_unlock)
2105                         no_skips = 1;
2106
2107                 t = path->nodes[i];
2108                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2109                         btrfs_tree_unlock_rw(t, path->locks[i]);
2110                         path->locks[i] = 0;
2111                         if (write_lock_level &&
2112                             i > min_write_lock_level &&
2113                             i <= *write_lock_level) {
2114                                 *write_lock_level = i - 1;
2115                         }
2116                 }
2117         }
2118 }
2119
2120 /*
2121  * This releases any locks held in the path starting at level and
2122  * going all the way up to the root.
2123  *
2124  * btrfs_search_slot will keep the lock held on higher nodes in a few
2125  * corner cases, such as COW of the block at slot zero in the node.  This
2126  * ignores those rules, and it should only be called when there are no
2127  * more updates to be done higher up in the tree.
2128  */
2129 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2130 {
2131         int i;
2132
2133         if (path->keep_locks)
2134                 return;
2135
2136         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2137                 if (!path->nodes[i])
2138                         continue;
2139                 if (!path->locks[i])
2140                         continue;
2141                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2142                 path->locks[i] = 0;
2143         }
2144 }
2145
2146 /*
2147  * helper function for btrfs_search_slot.  The goal is to find a block
2148  * in cache without setting the path to blocking.  If we find the block
2149  * we return zero and the path is unchanged.
2150  *
2151  * If we can't find the block, we set the path blocking and do some
2152  * reada.  -EAGAIN is returned and the search must be repeated.
2153  */
2154 static int
2155 read_block_for_search(struct btrfs_trans_handle *trans,
2156                        struct btrfs_root *root, struct btrfs_path *p,
2157                        struct extent_buffer **eb_ret, int level, int slot,
2158                        struct btrfs_key *key, u64 time_seq)
2159 {
2160         u64 blocknr;
2161         u64 gen;
2162         u32 blocksize;
2163         struct extent_buffer *b = *eb_ret;
2164         struct extent_buffer *tmp;
2165         int ret;
2166
2167         blocknr = btrfs_node_blockptr(b, slot);
2168         gen = btrfs_node_ptr_generation(b, slot);
2169         blocksize = btrfs_level_size(root, level - 1);
2170
2171         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2172         if (tmp) {
2173                 /* first we do an atomic uptodate check */
2174                 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2175                         if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2176                                 /*
2177                                  * we found an up to date block without
2178                                  * sleeping, return
2179                                  * right away
2180                                  */
2181                                 *eb_ret = tmp;
2182                                 return 0;
2183                         }
2184                         /* the pages were up to date, but we failed
2185                          * the generation number check.  Do a full
2186                          * read for the generation number that is correct.
2187                          * We must do this without dropping locks so
2188                          * we can trust our generation number
2189                          */
2190                         free_extent_buffer(tmp);
2191                         btrfs_set_path_blocking(p);
2192
2193                         /* now we're allowed to do a blocking uptodate check */
2194                         tmp = read_tree_block(root, blocknr, blocksize, gen);
2195                         if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
2196                                 *eb_ret = tmp;
2197                                 return 0;
2198                         }
2199                         free_extent_buffer(tmp);
2200                         btrfs_release_path(p);
2201                         return -EIO;
2202                 }
2203         }
2204
2205         /*
2206          * reduce lock contention at high levels
2207          * of the btree by dropping locks before
2208          * we read.  Don't release the lock on the current
2209          * level because we need to walk this node to figure
2210          * out which blocks to read.
2211          */
2212         btrfs_unlock_up_safe(p, level + 1);
2213         btrfs_set_path_blocking(p);
2214
2215         free_extent_buffer(tmp);
2216         if (p->reada)
2217                 reada_for_search(root, p, level, slot, key->objectid);
2218
2219         btrfs_release_path(p);
2220
2221         ret = -EAGAIN;
2222         tmp = read_tree_block(root, blocknr, blocksize, 0);
2223         if (tmp) {
2224                 /*
2225                  * If the read above didn't mark this buffer up to date,
2226                  * it will never end up being up to date.  Set ret to EIO now
2227                  * and give up so that our caller doesn't loop forever
2228                  * on our EAGAINs.
2229                  */
2230                 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2231                         ret = -EIO;
2232                 free_extent_buffer(tmp);
2233         }
2234         return ret;
2235 }
2236
2237 /*
2238  * helper function for btrfs_search_slot.  This does all of the checks
2239  * for node-level blocks and does any balancing required based on
2240  * the ins_len.
2241  *
2242  * If no extra work was required, zero is returned.  If we had to
2243  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2244  * start over
2245  */
2246 static int
2247 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2248                        struct btrfs_root *root, struct btrfs_path *p,
2249                        struct extent_buffer *b, int level, int ins_len,
2250                        int *write_lock_level)
2251 {
2252         int ret;
2253         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2254             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2255                 int sret;
2256
2257                 if (*write_lock_level < level + 1) {
2258                         *write_lock_level = level + 1;
2259                         btrfs_release_path(p);
2260                         goto again;
2261                 }
2262
2263                 sret = reada_for_balance(root, p, level);
2264                 if (sret)
2265                         goto again;
2266
2267                 btrfs_set_path_blocking(p);
2268                 sret = split_node(trans, root, p, level);
2269                 btrfs_clear_path_blocking(p, NULL, 0);
2270
2271                 BUG_ON(sret > 0);
2272                 if (sret) {
2273                         ret = sret;
2274                         goto done;
2275                 }
2276                 b = p->nodes[level];
2277         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2278                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2279                 int sret;
2280
2281                 if (*write_lock_level < level + 1) {
2282                         *write_lock_level = level + 1;
2283                         btrfs_release_path(p);
2284                         goto again;
2285                 }
2286
2287                 sret = reada_for_balance(root, p, level);
2288                 if (sret)
2289                         goto again;
2290
2291                 btrfs_set_path_blocking(p);
2292                 sret = balance_level(trans, root, p, level);
2293                 btrfs_clear_path_blocking(p, NULL, 0);
2294
2295                 if (sret) {
2296                         ret = sret;
2297                         goto done;
2298                 }
2299                 b = p->nodes[level];
2300                 if (!b) {
2301                         btrfs_release_path(p);
2302                         goto again;
2303                 }
2304                 BUG_ON(btrfs_header_nritems(b) == 1);
2305         }
2306         return 0;
2307
2308 again:
2309         ret = -EAGAIN;
2310 done:
2311         return ret;
2312 }
2313
2314 /*
2315  * look for key in the tree.  path is filled in with nodes along the way
2316  * if key is found, we return zero and you can find the item in the leaf
2317  * level of the path (level 0)
2318  *
2319  * If the key isn't found, the path points to the slot where it should
2320  * be inserted, and 1 is returned.  If there are other errors during the
2321  * search a negative error number is returned.
2322  *
2323  * if ins_len > 0, nodes and leaves will be split as we walk down the
2324  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2325  * possible)
2326  */
2327 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2328                       *root, struct btrfs_key *key, struct btrfs_path *p, int
2329                       ins_len, int cow)
2330 {
2331         struct extent_buffer *b;
2332         int slot;
2333         int ret;
2334         int err;
2335         int level;
2336         int lowest_unlock = 1;
2337         int root_lock;
2338         /* everything at write_lock_level or lower must be write locked */
2339         int write_lock_level = 0;
2340         u8 lowest_level = 0;
2341         int min_write_lock_level;
2342
2343         lowest_level = p->lowest_level;
2344         WARN_ON(lowest_level && ins_len > 0);
2345         WARN_ON(p->nodes[0] != NULL);
2346
2347         if (ins_len < 0) {
2348                 lowest_unlock = 2;
2349
2350                 /* when we are removing items, we might have to go up to level
2351                  * two as we update tree pointers  Make sure we keep write
2352                  * for those levels as well
2353                  */
2354                 write_lock_level = 2;
2355         } else if (ins_len > 0) {
2356                 /*
2357                  * for inserting items, make sure we have a write lock on
2358                  * level 1 so we can update keys
2359                  */
2360                 write_lock_level = 1;
2361         }
2362
2363         if (!cow)
2364                 write_lock_level = -1;
2365
2366         if (cow && (p->keep_locks || p->lowest_level))
2367                 write_lock_level = BTRFS_MAX_LEVEL;
2368
2369         min_write_lock_level = write_lock_level;
2370
2371 again:
2372         /*
2373          * we try very hard to do read locks on the root
2374          */
2375         root_lock = BTRFS_READ_LOCK;
2376         level = 0;
2377         if (p->search_commit_root) {
2378                 /*
2379                  * the commit roots are read only
2380                  * so we always do read locks
2381                  */
2382                 b = root->commit_root;
2383                 extent_buffer_get(b);
2384                 level = btrfs_header_level(b);
2385                 if (!p->skip_locking)
2386                         btrfs_tree_read_lock(b);
2387         } else {
2388                 if (p->skip_locking) {
2389                         b = btrfs_root_node(root);
2390                         level = btrfs_header_level(b);
2391                 } else {
2392                         /* we don't know the level of the root node
2393                          * until we actually have it read locked
2394                          */
2395                         b = btrfs_read_lock_root_node(root);
2396                         level = btrfs_header_level(b);
2397                         if (level <= write_lock_level) {
2398                                 /* whoops, must trade for write lock */
2399                                 btrfs_tree_read_unlock(b);
2400                                 free_extent_buffer(b);
2401                                 b = btrfs_lock_root_node(root);
2402                                 root_lock = BTRFS_WRITE_LOCK;
2403
2404                                 /* the level might have changed, check again */
2405                                 level = btrfs_header_level(b);
2406                         }
2407                 }
2408         }
2409         p->nodes[level] = b;
2410         if (!p->skip_locking)
2411                 p->locks[level] = root_lock;
2412
2413         while (b) {
2414                 level = btrfs_header_level(b);
2415
2416                 /*
2417                  * setup the path here so we can release it under lock
2418                  * contention with the cow code
2419                  */
2420                 if (cow) {
2421                         /*
2422                          * if we don't really need to cow this block
2423                          * then we don't want to set the path blocking,
2424                          * so we test it here
2425                          */
2426                         if (!should_cow_block(trans, root, b))
2427                                 goto cow_done;
2428
2429                         btrfs_set_path_blocking(p);
2430
2431                         /*
2432                          * must have write locks on this node and the
2433                          * parent
2434                          */
2435                         if (level + 1 > write_lock_level) {
2436                                 write_lock_level = level + 1;
2437                                 btrfs_release_path(p);
2438                                 goto again;
2439                         }
2440
2441                         err = btrfs_cow_block(trans, root, b,
2442                                               p->nodes[level + 1],
2443                                               p->slots[level + 1], &b);
2444                         if (err) {
2445                                 ret = err;
2446                                 goto done;
2447                         }
2448                 }
2449 cow_done:
2450                 BUG_ON(!cow && ins_len);
2451
2452                 p->nodes[level] = b;
2453                 btrfs_clear_path_blocking(p, NULL, 0);
2454
2455                 /*
2456                  * we have a lock on b and as long as we aren't changing
2457                  * the tree, there is no way to for the items in b to change.
2458                  * It is safe to drop the lock on our parent before we
2459                  * go through the expensive btree search on b.
2460                  *
2461                  * If cow is true, then we might be changing slot zero,
2462                  * which may require changing the parent.  So, we can't
2463                  * drop the lock until after we know which slot we're
2464                  * operating on.
2465                  */
2466                 if (!cow)
2467                         btrfs_unlock_up_safe(p, level + 1);
2468
2469                 ret = bin_search(b, key, level, &slot);
2470
2471                 if (level != 0) {
2472                         int dec = 0;
2473                         if (ret && slot > 0) {
2474                                 dec = 1;
2475                                 slot -= 1;
2476                         }
2477                         p->slots[level] = slot;
2478                         err = setup_nodes_for_search(trans, root, p, b, level,
2479                                              ins_len, &write_lock_level);
2480                         if (err == -EAGAIN)
2481                                 goto again;
2482                         if (err) {
2483                                 ret = err;
2484                                 goto done;
2485                         }
2486                         b = p->nodes[level];
2487                         slot = p->slots[level];
2488
2489                         /*
2490                          * slot 0 is special, if we change the key
2491                          * we have to update the parent pointer
2492                          * which means we must have a write lock
2493                          * on the parent
2494                          */
2495                         if (slot == 0 && cow &&
2496                             write_lock_level < level + 1) {
2497                                 write_lock_level = level + 1;
2498                                 btrfs_release_path(p);
2499                                 goto again;
2500                         }
2501
2502                         unlock_up(p, level, lowest_unlock,
2503                                   min_write_lock_level, &write_lock_level);
2504
2505                         if (level == lowest_level) {
2506                                 if (dec)
2507                                         p->slots[level]++;
2508                                 goto done;
2509                         }
2510
2511                         err = read_block_for_search(trans, root, p,
2512                                                     &b, level, slot, key, 0);
2513                         if (err == -EAGAIN)
2514                                 goto again;
2515                         if (err) {
2516                                 ret = err;
2517                                 goto done;
2518                         }
2519
2520                         if (!p->skip_locking) {
2521                                 level = btrfs_header_level(b);
2522                                 if (level <= write_lock_level) {
2523                                         err = btrfs_try_tree_write_lock(b);
2524                                         if (!err) {
2525                                                 btrfs_set_path_blocking(p);
2526                                                 btrfs_tree_lock(b);
2527                                                 btrfs_clear_path_blocking(p, b,
2528                                                                   BTRFS_WRITE_LOCK);
2529                                         }
2530                                         p->locks[level] = BTRFS_WRITE_LOCK;
2531                                 } else {
2532                                         err = btrfs_try_tree_read_lock(b);
2533                                         if (!err) {
2534                                                 btrfs_set_path_blocking(p);
2535                                                 btrfs_tree_read_lock(b);
2536                                                 btrfs_clear_path_blocking(p, b,
2537                                                                   BTRFS_READ_LOCK);
2538                                         }
2539                                         p->locks[level] = BTRFS_READ_LOCK;
2540                                 }
2541                                 p->nodes[level] = b;
2542                         }
2543                 } else {
2544                         p->slots[level] = slot;
2545                         if (ins_len > 0 &&
2546                             btrfs_leaf_free_space(root, b) < ins_len) {
2547                                 if (write_lock_level < 1) {
2548                                         write_lock_level = 1;
2549                                         btrfs_release_path(p);
2550                                         goto again;
2551                                 }
2552
2553                                 btrfs_set_path_blocking(p);
2554                                 err = split_leaf(trans, root, key,
2555                                                  p, ins_len, ret == 0);
2556                                 btrfs_clear_path_blocking(p, NULL, 0);
2557
2558                                 BUG_ON(err > 0);
2559                                 if (err) {
2560                                         ret = err;
2561                                         goto done;
2562                                 }
2563                         }
2564                         if (!p->search_for_split)
2565                                 unlock_up(p, level, lowest_unlock,
2566                                           min_write_lock_level, &write_lock_level);
2567                         goto done;
2568                 }
2569         }
2570         ret = 1;
2571 done:
2572         /*
2573          * we don't really know what they plan on doing with the path
2574          * from here on, so for now just mark it as blocking
2575          */
2576         if (!p->leave_spinning)
2577                 btrfs_set_path_blocking(p);
2578         if (ret < 0)
2579                 btrfs_release_path(p);
2580         return ret;
2581 }
2582
2583 /*
2584  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2585  * current state of the tree together with the operations recorded in the tree
2586  * modification log to search for the key in a previous version of this tree, as
2587  * denoted by the time_seq parameter.
2588  *
2589  * Naturally, there is no support for insert, delete or cow operations.
2590  *
2591  * The resulting path and return value will be set up as if we called
2592  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2593  */
2594 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2595                           struct btrfs_path *p, u64 time_seq)
2596 {
2597         struct extent_buffer *b;
2598         int slot;
2599         int ret;
2600         int err;
2601         int level;
2602         int lowest_unlock = 1;
2603         u8 lowest_level = 0;
2604
2605         lowest_level = p->lowest_level;
2606         WARN_ON(p->nodes[0] != NULL);
2607
2608         if (p->search_commit_root) {
2609                 BUG_ON(time_seq);
2610                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2611         }
2612
2613 again:
2614         b = get_old_root(root, time_seq);
2615         extent_buffer_get(b);
2616         level = btrfs_header_level(b);
2617         btrfs_tree_read_lock(b);
2618         p->locks[level] = BTRFS_READ_LOCK;
2619
2620         while (b) {
2621                 level = btrfs_header_level(b);
2622                 p->nodes[level] = b;
2623                 btrfs_clear_path_blocking(p, NULL, 0);
2624
2625                 /*
2626                  * we have a lock on b and as long as we aren't changing
2627                  * the tree, there is no way to for the items in b to change.
2628                  * It is safe to drop the lock on our parent before we
2629                  * go through the expensive btree search on b.
2630                  */
2631                 btrfs_unlock_up_safe(p, level + 1);
2632
2633                 ret = bin_search(b, key, level, &slot);
2634
2635                 if (level != 0) {
2636                         int dec = 0;
2637                         if (ret && slot > 0) {
2638                                 dec = 1;
2639                                 slot -= 1;
2640                         }
2641                         p->slots[level] = slot;
2642                         unlock_up(p, level, lowest_unlock, 0, NULL);
2643
2644                         if (level == lowest_level) {
2645                                 if (dec)
2646                                         p->slots[level]++;
2647                                 goto done;
2648                         }
2649
2650                         err = read_block_for_search(NULL, root, p, &b, level,
2651                                                     slot, key, time_seq);
2652                         if (err == -EAGAIN)
2653                                 goto again;
2654                         if (err) {
2655                                 ret = err;
2656                                 goto done;
2657                         }
2658
2659                         level = btrfs_header_level(b);
2660                         err = btrfs_try_tree_read_lock(b);
2661                         if (!err) {
2662                                 btrfs_set_path_blocking(p);
2663                                 btrfs_tree_read_lock(b);
2664                                 btrfs_clear_path_blocking(p, b,
2665                                                           BTRFS_READ_LOCK);
2666                         }
2667                         p->locks[level] = BTRFS_READ_LOCK;
2668                         p->nodes[level] = b;
2669                         b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2670                         if (b != p->nodes[level]) {
2671                                 btrfs_tree_unlock_rw(p->nodes[level],
2672                                                      p->locks[level]);
2673                                 p->locks[level] = 0;
2674                                 p->nodes[level] = b;
2675                         }
2676                 } else {
2677                         p->slots[level] = slot;
2678                         unlock_up(p, level, lowest_unlock, 0, NULL);
2679                         goto done;
2680                 }
2681         }
2682         ret = 1;
2683 done:
2684         if (!p->leave_spinning)
2685                 btrfs_set_path_blocking(p);
2686         if (ret < 0)
2687                 btrfs_release_path(p);
2688
2689         return ret;
2690 }
2691
2692 /*
2693  * adjust the pointers going up the tree, starting at level
2694  * making sure the right key of each node is points to 'key'.
2695  * This is used after shifting pointers to the left, so it stops
2696  * fixing up pointers when a given leaf/node is not in slot 0 of the
2697  * higher levels
2698  *
2699  */
2700 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2701                            struct btrfs_root *root, struct btrfs_path *path,
2702                            struct btrfs_disk_key *key, int level)
2703 {
2704         int i;
2705         struct extent_buffer *t;
2706
2707         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2708                 int tslot = path->slots[i];
2709                 if (!path->nodes[i])
2710                         break;
2711                 t = path->nodes[i];
2712                 tree_mod_log_set_node_key(root->fs_info, t, key, tslot, 1);
2713                 btrfs_set_node_key(t, key, tslot);
2714                 btrfs_mark_buffer_dirty(path->nodes[i]);
2715                 if (tslot != 0)
2716                         break;
2717         }
2718 }
2719
2720 /*
2721  * update item key.
2722  *
2723  * This function isn't completely safe. It's the caller's responsibility
2724  * that the new key won't break the order
2725  */
2726 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2727                              struct btrfs_root *root, struct btrfs_path *path,
2728                              struct btrfs_key *new_key)
2729 {
2730         struct btrfs_disk_key disk_key;
2731         struct extent_buffer *eb;
2732         int slot;
2733
2734         eb = path->nodes[0];
2735         slot = path->slots[0];
2736         if (slot > 0) {
2737                 btrfs_item_key(eb, &disk_key, slot - 1);
2738                 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2739         }
2740         if (slot < btrfs_header_nritems(eb) - 1) {
2741                 btrfs_item_key(eb, &disk_key, slot + 1);
2742                 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2743         }
2744
2745         btrfs_cpu_key_to_disk(&disk_key, new_key);
2746         btrfs_set_item_key(eb, &disk_key, slot);
2747         btrfs_mark_buffer_dirty(eb);
2748         if (slot == 0)
2749                 fixup_low_keys(trans, root, path, &disk_key, 1);
2750 }
2751
2752 /*
2753  * try to push data from one node into the next node left in the
2754  * tree.
2755  *
2756  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2757  * error, and > 0 if there was no room in the left hand block.
2758  */
2759 static int push_node_left(struct btrfs_trans_handle *trans,
2760                           struct btrfs_root *root, struct extent_buffer *dst,
2761                           struct extent_buffer *src, int empty)
2762 {
2763         int push_items = 0;
2764         int src_nritems;
2765         int dst_nritems;
2766         int ret = 0;
2767
2768         src_nritems = btrfs_header_nritems(src);
2769         dst_nritems = btrfs_header_nritems(dst);
2770         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2771         WARN_ON(btrfs_header_generation(src) != trans->transid);
2772         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2773
2774         if (!empty && src_nritems <= 8)
2775                 return 1;
2776
2777         if (push_items <= 0)
2778                 return 1;
2779
2780         if (empty) {
2781                 push_items = min(src_nritems, push_items);
2782                 if (push_items < src_nritems) {
2783                         /* leave at least 8 pointers in the node if
2784                          * we aren't going to empty it
2785                          */
2786                         if (src_nritems - push_items < 8) {
2787                                 if (push_items <= 8)
2788                                         return 1;
2789                                 push_items -= 8;
2790                         }
2791                 }
2792         } else
2793                 push_items = min(src_nritems - 8, push_items);
2794
2795         tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
2796                              push_items);
2797         copy_extent_buffer(dst, src,
2798                            btrfs_node_key_ptr_offset(dst_nritems),
2799                            btrfs_node_key_ptr_offset(0),
2800                            push_items * sizeof(struct btrfs_key_ptr));
2801
2802         if (push_items < src_nritems) {
2803                 tree_mod_log_eb_move(root->fs_info, src, 0, push_items,
2804                                      src_nritems - push_items);
2805                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2806                                       btrfs_node_key_ptr_offset(push_items),
2807                                       (src_nritems - push_items) *
2808                                       sizeof(struct btrfs_key_ptr));
2809         }
2810         btrfs_set_header_nritems(src, src_nritems - push_items);
2811         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2812         btrfs_mark_buffer_dirty(src);
2813         btrfs_mark_buffer_dirty(dst);
2814
2815         return ret;
2816 }
2817
2818 /*
2819  * try to push data from one node into the next node right in the
2820  * tree.
2821  *
2822  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2823  * error, and > 0 if there was no room in the right hand block.
2824  *
2825  * this will  only push up to 1/2 the contents of the left node over
2826  */
2827 static int balance_node_right(struct btrfs_trans_handle *trans,
2828                               struct btrfs_root *root,
2829                               struct extent_buffer *dst,
2830                               struct extent_buffer *src)
2831 {
2832         int push_items = 0;
2833         int max_push;
2834         int src_nritems;
2835         int dst_nritems;
2836         int ret = 0;
2837
2838         WARN_ON(btrfs_header_generation(src) != trans->transid);
2839         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2840
2841         src_nritems = btrfs_header_nritems(src);
2842         dst_nritems = btrfs_header_nritems(dst);
2843         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2844         if (push_items <= 0)
2845                 return 1;
2846
2847         if (src_nritems < 4)
2848                 return 1;
2849
2850         max_push = src_nritems / 2 + 1;
2851         /* don't try to empty the node */
2852         if (max_push >= src_nritems)
2853                 return 1;
2854
2855         if (max_push < push_items)
2856                 push_items = max_push;
2857
2858         tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
2859         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2860                                       btrfs_node_key_ptr_offset(0),
2861                                       (dst_nritems) *
2862                                       sizeof(struct btrfs_key_ptr));
2863
2864         tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
2865                              src_nritems - push_items, push_items);
2866         copy_extent_buffer(dst, src,
2867                            btrfs_node_key_ptr_offset(0),
2868                            btrfs_node_key_ptr_offset(src_nritems - push_items),
2869                            push_items * sizeof(struct btrfs_key_ptr));
2870
2871         btrfs_set_header_nritems(src, src_nritems - push_items);
2872         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2873
2874         btrfs_mark_buffer_dirty(src);
2875         btrfs_mark_buffer_dirty(dst);
2876
2877         return ret;
2878 }
2879
2880 /*
2881  * helper function to insert a new root level in the tree.
2882  * A new node is allocated, and a single item is inserted to
2883  * point to the existing root
2884  *
2885  * returns zero on success or < 0 on failure.
2886  */
2887 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2888                            struct btrfs_root *root,
2889                            struct btrfs_path *path, int level)
2890 {
2891         u64 lower_gen;
2892         struct extent_buffer *lower;
2893         struct extent_buffer *c;
2894         struct extent_buffer *old;
2895         struct btrfs_disk_key lower_key;
2896
2897         BUG_ON(path->nodes[level]);
2898         BUG_ON(path->nodes[level-1] != root->node);
2899
2900         lower = path->nodes[level-1];
2901         if (level == 1)
2902                 btrfs_item_key(lower, &lower_key, 0);
2903         else
2904                 btrfs_node_key(lower, &lower_key, 0);
2905
2906         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2907                                    root->root_key.objectid, &lower_key,
2908                                    level, root->node->start, 0);
2909         if (IS_ERR(c))
2910                 return PTR_ERR(c);
2911
2912         root_add_used(root, root->nodesize);
2913
2914         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2915         btrfs_set_header_nritems(c, 1);
2916         btrfs_set_header_level(c, level);
2917         btrfs_set_header_bytenr(c, c->start);
2918         btrfs_set_header_generation(c, trans->transid);
2919         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2920         btrfs_set_header_owner(c, root->root_key.objectid);
2921
2922         write_extent_buffer(c, root->fs_info->fsid,
2923                             (unsigned long)btrfs_header_fsid(c),
2924                             BTRFS_FSID_SIZE);
2925
2926         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2927                             (unsigned long)btrfs_header_chunk_tree_uuid(c),
2928                             BTRFS_UUID_SIZE);
2929
2930         btrfs_set_node_key(c, &lower_key, 0);
2931         btrfs_set_node_blockptr(c, 0, lower->start);
2932         lower_gen = btrfs_header_generation(lower);
2933         WARN_ON(lower_gen != trans->transid);
2934
2935         btrfs_set_node_ptr_generation(c, 0, lower_gen);
2936
2937         btrfs_mark_buffer_dirty(c);
2938
2939         old = root->node;
2940         tree_mod_log_set_root_pointer(root, c);
2941         rcu_assign_pointer(root->node, c);
2942
2943         /* the super has an extra ref to root->node */
2944         free_extent_buffer(old);
2945
2946         add_root_to_dirty_list(root);
2947         extent_buffer_get(c);
2948         path->nodes[level] = c;
2949         path->locks[level] = BTRFS_WRITE_LOCK;
2950         path->slots[level] = 0;
2951         return 0;
2952 }
2953
2954 /*
2955  * worker function to insert a single pointer in a node.
2956  * the node should have enough room for the pointer already
2957  *
2958  * slot and level indicate where you want the key to go, and
2959  * blocknr is the block the key points to.
2960  */
2961 static void insert_ptr(struct btrfs_trans_handle *trans,
2962                        struct btrfs_root *root, struct btrfs_path *path,
2963                        struct btrfs_disk_key *key, u64 bytenr,
2964                        int slot, int level, int tree_mod_log)
2965 {
2966         struct extent_buffer *lower;
2967         int nritems;
2968         int ret;
2969
2970         BUG_ON(!path->nodes[level]);
2971         btrfs_assert_tree_locked(path->nodes[level]);
2972         lower = path->nodes[level];
2973         nritems = btrfs_header_nritems(lower);
2974         BUG_ON(slot > nritems);
2975         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
2976         if (slot != nritems) {
2977                 if (tree_mod_log && level)
2978                         tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
2979                                              slot, nritems - slot);
2980                 memmove_extent_buffer(lower,
2981                               btrfs_node_key_ptr_offset(slot + 1),
2982                               btrfs_node_key_ptr_offset(slot),
2983                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
2984         }
2985         if (tree_mod_log && level) {
2986                 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
2987                                               MOD_LOG_KEY_ADD);
2988                 BUG_ON(ret < 0);
2989         }
2990         btrfs_set_node_key(lower, key, slot);
2991         btrfs_set_node_blockptr(lower, slot, bytenr);
2992         WARN_ON(trans->transid == 0);
2993         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2994         btrfs_set_header_nritems(lower, nritems + 1);
2995         btrfs_mark_buffer_dirty(lower);
2996 }
2997
2998 /*
2999  * split the node at the specified level in path in two.
3000  * The path is corrected to point to the appropriate node after the split
3001  *
3002  * Before splitting this tries to make some room in the node by pushing
3003  * left and right, if either one works, it returns right away.
3004  *
3005  * returns 0 on success and < 0 on failure
3006  */
3007 static noinline int split_node(struct btrfs_trans_handle *trans,
3008                                struct btrfs_root *root,
3009                                struct btrfs_path *path, int level)
3010 {
3011         struct extent_buffer *c;
3012         struct extent_buffer *split;
3013         struct btrfs_disk_key disk_key;
3014         int mid;
3015         int ret;
3016         u32 c_nritems;
3017
3018         c = path->nodes[level];
3019         WARN_ON(btrfs_header_generation(c) != trans->transid);
3020         if (c == root->node) {
3021                 /* trying to split the root, lets make a new one */
3022                 ret = insert_new_root(trans, root, path, level + 1);
3023                 if (ret)
3024                         return ret;
3025         } else {
3026                 ret = push_nodes_for_insert(trans, root, path, level);
3027                 c = path->nodes[level];
3028                 if (!ret && btrfs_header_nritems(c) <
3029                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3030                         return 0;
3031                 if (ret < 0)
3032                         return ret;
3033         }
3034
3035         c_nritems = btrfs_header_nritems(c);
3036         mid = (c_nritems + 1) / 2;
3037         btrfs_node_key(c, &disk_key, mid);
3038
3039         split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3040                                         root->root_key.objectid,
3041                                         &disk_key, level, c->start, 0);
3042         if (IS_ERR(split))
3043                 return PTR_ERR(split);
3044
3045         root_add_used(root, root->nodesize);
3046
3047         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3048         btrfs_set_header_level(split, btrfs_header_level(c));
3049         btrfs_set_header_bytenr(split, split->start);
3050         btrfs_set_header_generation(split, trans->transid);
3051         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3052         btrfs_set_header_owner(split, root->root_key.objectid);
3053         write_extent_buffer(split, root->fs_info->fsid,
3054                             (unsigned long)btrfs_header_fsid(split),
3055                             BTRFS_FSID_SIZE);
3056         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3057                             (unsigned long)btrfs_header_chunk_tree_uuid(split),
3058                             BTRFS_UUID_SIZE);
3059
3060         tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3061         copy_extent_buffer(split, c,
3062                            btrfs_node_key_ptr_offset(0),
3063                            btrfs_node_key_ptr_offset(mid),
3064                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3065         btrfs_set_header_nritems(split, c_nritems - mid);
3066         btrfs_set_header_nritems(c, mid);
3067         ret = 0;
3068
3069         btrfs_mark_buffer_dirty(c);
3070         btrfs_mark_buffer_dirty(split);
3071
3072         insert_ptr(trans, root, path, &disk_key, split->start,
3073                    path->slots[level + 1] + 1, level + 1, 1);
3074
3075         if (path->slots[level] >= mid) {
3076                 path->slots[level] -= mid;
3077                 btrfs_tree_unlock(c);
3078                 free_extent_buffer(c);
3079                 path->nodes[level] = split;
3080                 path->slots[level + 1] += 1;
3081         } else {
3082                 btrfs_tree_unlock(split);
3083                 free_extent_buffer(split);
3084         }
3085         return ret;
3086 }
3087
3088 /*
3089  * how many bytes are required to store the items in a leaf.  start
3090  * and nr indicate which items in the leaf to check.  This totals up the
3091  * space used both by the item structs and the item data
3092  */
3093 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3094 {
3095         int data_len;
3096         int nritems = btrfs_header_nritems(l);
3097         int end = min(nritems, start + nr) - 1;
3098
3099         if (!nr)
3100                 return 0;
3101         data_len = btrfs_item_end_nr(l, start);
3102         data_len = data_len - btrfs_item_offset_nr(l, end);
3103         data_len += sizeof(struct btrfs_item) * nr;
3104         WARN_ON(data_len < 0);
3105         return data_len;
3106 }
3107
3108 /*
3109  * The space between the end of the leaf items and
3110  * the start of the leaf data.  IOW, how much room
3111  * the leaf has left for both items and data
3112  */
3113 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3114                                    struct extent_buffer *leaf)
3115 {
3116         int nritems = btrfs_header_nritems(leaf);
3117         int ret;
3118         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3119         if (ret < 0) {
3120                 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3121                        "used %d nritems %d\n",
3122                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3123                        leaf_space_used(leaf, 0, nritems), nritems);
3124         }
3125         return ret;
3126 }
3127
3128 /*
3129  * min slot controls the lowest index we're willing to push to the
3130  * right.  We'll push up to and including min_slot, but no lower
3131  */
3132 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3133                                       struct btrfs_root *root,
3134                                       struct btrfs_path *path,
3135                                       int data_size, int empty,
3136                                       struct extent_buffer *right,
3137                                       int free_space, u32 left_nritems,
3138                                       u32 min_slot)
3139 {
3140         struct extent_buffer *left = path->nodes[0];
3141         struct extent_buffer *upper = path->nodes[1];
3142         struct btrfs_map_token token;
3143         struct btrfs_disk_key disk_key;
3144         int slot;
3145         u32 i;
3146         int push_space = 0;
3147         int push_items = 0;
3148         struct btrfs_item *item;
3149         u32 nr;
3150         u32 right_nritems;
3151         u32 data_end;
3152         u32 this_item_size;
3153
3154         btrfs_init_map_token(&token);
3155
3156         if (empty)
3157                 nr = 0;
3158         else
3159                 nr = max_t(u32, 1, min_slot);
3160
3161         if (path->slots[0] >= left_nritems)
3162                 push_space += data_size;
3163
3164         slot = path->slots[1];
3165         i = left_nritems - 1;
3166         while (i >= nr) {
3167                 item = btrfs_item_nr(left, i);
3168
3169                 if (!empty && push_items > 0) {
3170                         if (path->slots[0] > i)
3171                                 break;
3172                         if (path->slots[0] == i) {
3173                                 int space = btrfs_leaf_free_space(root, left);
3174                                 if (space + push_space * 2 > free_space)
3175                                         break;
3176                         }
3177                 }
3178
3179                 if (path->slots[0] == i)
3180                         push_space += data_size;
3181
3182                 this_item_size = btrfs_item_size(left, item);
3183                 if (this_item_size + sizeof(*item) + push_space > free_space)
3184                         break;
3185
3186                 push_items++;
3187                 push_space += this_item_size + sizeof(*item);
3188                 if (i == 0)
3189                         break;
3190                 i--;
3191         }
3192
3193         if (push_items == 0)
3194                 goto out_unlock;
3195
3196         if (!empty && push_items == left_nritems)
3197                 WARN_ON(1);
3198
3199         /* push left to right */
3200         right_nritems = btrfs_header_nritems(right);
3201
3202         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3203         push_space -= leaf_data_end(root, left);
3204
3205         /* make room in the right data area */
3206         data_end = leaf_data_end(root, right);
3207         memmove_extent_buffer(right,
3208                               btrfs_leaf_data(right) + data_end - push_space,
3209                               btrfs_leaf_data(right) + data_end,
3210                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
3211
3212         /* copy from the left data area */
3213         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3214                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3215                      btrfs_leaf_data(left) + leaf_data_end(root, left),
3216                      push_space);
3217
3218         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3219                               btrfs_item_nr_offset(0),
3220                               right_nritems * sizeof(struct btrfs_item));
3221
3222         /* copy the items from left to right */
3223         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3224                    btrfs_item_nr_offset(left_nritems - push_items),
3225                    push_items * sizeof(struct btrfs_item));
3226
3227         /* update the item pointers */
3228         right_nritems += push_items;
3229         btrfs_set_header_nritems(right, right_nritems);
3230         push_space = BTRFS_LEAF_DATA_SIZE(root);
3231         for (i = 0; i < right_nritems; i++) {
3232                 item = btrfs_item_nr(right, i);
3233                 push_space -= btrfs_token_item_size(right, item, &token);
3234                 btrfs_set_token_item_offset(right, item, push_space, &token);
3235         }
3236
3237         left_nritems -= push_items;
3238         btrfs_set_header_nritems(left, left_nritems);
3239
3240         if (left_nritems)
3241                 btrfs_mark_buffer_dirty(left);
3242         else
3243                 clean_tree_block(trans, root, left);
3244
3245         btrfs_mark_buffer_dirty(right);
3246
3247         btrfs_item_key(right, &disk_key, 0);
3248         btrfs_set_node_key(upper, &disk_key, slot + 1);
3249         btrfs_mark_buffer_dirty(upper);
3250
3251         /* then fixup the leaf pointer in the path */
3252         if (path->slots[0] >= left_nritems) {
3253                 path->slots[0] -= left_nritems;
3254                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3255                         clean_tree_block(trans, root, path->nodes[0]);
3256                 btrfs_tree_unlock(path->nodes[0]);
3257                 free_extent_buffer(path->nodes[0]);
3258                 path->nodes[0] = right;
3259                 path->slots[1] += 1;
3260         } else {
3261                 btrfs_tree_unlock(right);
3262                 free_extent_buffer(right);
3263         }
3264         return 0;
3265
3266 out_unlock:
3267         btrfs_tree_unlock(right);
3268         free_extent_buffer(right);
3269         return 1;
3270 }
3271
3272 /*
3273  * push some data in the path leaf to the right, trying to free up at
3274  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3275  *
3276  * returns 1 if the push failed because the other node didn't have enough
3277  * room, 0 if everything worked out and < 0 if there were major errors.
3278  *
3279  * this will push starting from min_slot to the end of the leaf.  It won't
3280  * push any slot lower than min_slot
3281  */
3282 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3283                            *root, struct btrfs_path *path,
3284                            int min_data_size, int data_size,
3285                            int empty, u32 min_slot)
3286 {
3287         struct extent_buffer *left = path->nodes[0];
3288         struct extent_buffer *right;
3289         struct extent_buffer *upper;
3290         int slot;
3291         int free_space;
3292         u32 left_nritems;
3293         int ret;
3294
3295         if (!path->nodes[1])
3296                 return 1;
3297
3298         slot = path->slots[1];
3299         upper = path->nodes[1];
3300         if (slot >= btrfs_header_nritems(upper) - 1)
3301                 return 1;
3302
3303         btrfs_assert_tree_locked(path->nodes[1]);
3304
3305         right = read_node_slot(root, upper, slot + 1);
3306         if (right == NULL)
3307                 return 1;
3308
3309         btrfs_tree_lock(right);
3310         btrfs_set_lock_blocking(right);
3311
3312         free_space = btrfs_leaf_free_space(root, right);
3313         if (free_space < data_size)
3314                 goto out_unlock;
3315
3316         /* cow and double check */
3317         ret = btrfs_cow_block(trans, root, right, upper,
3318                               slot + 1, &right);
3319         if (ret)
3320                 goto out_unlock;
3321
3322         free_space = btrfs_leaf_free_space(root, right);
3323         if (free_space < data_size)
3324                 goto out_unlock;
3325
3326         left_nritems = btrfs_header_nritems(left);
3327         if (left_nritems == 0)
3328                 goto out_unlock;
3329
3330         return __push_leaf_right(trans, root, path, min_data_size, empty,
3331                                 right, free_space, left_nritems, min_slot);
3332 out_unlock:
3333         btrfs_tree_unlock(right);
3334         free_extent_buffer(right);
3335         return 1;
3336 }
3337
3338 /*
3339  * push some data in the path leaf to the left, trying to free up at
3340  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3341  *
3342  * max_slot can put a limit on how far into the leaf we'll push items.  The
3343  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3344  * items
3345  */
3346 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3347                                      struct btrfs_root *root,
3348                                      struct btrfs_path *path, int data_size,
3349                                      int empty, struct extent_buffer *left,
3350                                      int free_space, u32 right_nritems,
3351                                      u32 max_slot)
3352 {
3353         struct btrfs_disk_key disk_key;
3354         struct extent_buffer *right = path->nodes[0];
3355         int i;
3356         int push_space = 0;
3357         int push_items = 0;
3358         struct btrfs_item *item;
3359         u32 old_left_nritems;
3360         u32 nr;
3361         int ret = 0;
3362         u32 this_item_size;
3363         u32 old_left_item_size;
3364         struct btrfs_map_token token;
3365
3366         btrfs_init_map_token(&token);
3367
3368         if (empty)
3369                 nr = min(right_nritems, max_slot);
3370         else
3371                 nr = min(right_nritems - 1, max_slot);
3372
3373         for (i = 0; i < nr; i++) {
3374                 item = btrfs_item_nr(right, i);
3375
3376                 if (!empty && push_items > 0) {
3377                         if (path->slots[0] < i)
3378                                 break;
3379                         if (path->slots[0] == i) {
3380                                 int space = btrfs_leaf_free_space(root, right);
3381                                 if (space + push_space * 2 > free_space)
3382                                         break;
3383                         }
3384                 }
3385
3386                 if (path->slots[0] == i)
3387                         push_space += data_size;
3388
3389                 this_item_size = btrfs_item_size(right, item);
3390                 if (this_item_size + sizeof(*item) + push_space > free_space)
3391                         break;
3392
3393                 push_items++;
3394                 push_space += this_item_size + sizeof(*item);
3395         }
3396
3397         if (push_items == 0) {
3398                 ret = 1;
3399                 goto out;
3400         }
3401         if (!empty && push_items == btrfs_header_nritems(right))
3402                 WARN_ON(1);
3403
3404         /* push data from right to left */
3405         copy_extent_buffer(left, right,
3406                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3407                            btrfs_item_nr_offset(0),
3408                            push_items * sizeof(struct btrfs_item));
3409
3410         push_space = BTRFS_LEAF_DATA_SIZE(root) -
3411                      btrfs_item_offset_nr(right, push_items - 1);
3412
3413         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3414                      leaf_data_end(root, left) - push_space,
3415                      btrfs_leaf_data(right) +
3416                      btrfs_item_offset_nr(right, push_items - 1),
3417                      push_space);
3418         old_left_nritems = btrfs_header_nritems(left);
3419         BUG_ON(old_left_nritems <= 0);
3420
3421         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3422         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3423                 u32 ioff;
3424
3425                 item = btrfs_item_nr(left, i);
3426
3427                 ioff = btrfs_token_item_offset(left, item, &token);
3428                 btrfs_set_token_item_offset(left, item,
3429                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3430                       &token);
3431         }
3432         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3433
3434         /* fixup right node */
3435         if (push_items > right_nritems) {
3436                 printk(KERN_CRIT "push items %d nr %u\n", push_items,
3437                        right_nritems);
3438                 WARN_ON(1);
3439         }
3440
3441         if (push_items < right_nritems) {
3442                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3443                                                   leaf_data_end(root, right);
3444                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3445                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
3446                                       btrfs_leaf_data(right) +
3447                                       leaf_data_end(root, right), push_space);
3448
3449                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3450                               btrfs_item_nr_offset(push_items),
3451                              (btrfs_header_nritems(right) - push_items) *
3452                              sizeof(struct btrfs_item));
3453         }
3454         right_nritems -= push_items;
3455         btrfs_set_header_nritems(right, right_nritems);
3456         push_space = BTRFS_LEAF_DATA_SIZE(root);
3457         for (i = 0; i < right_nritems; i++) {
3458                 item = btrfs_item_nr(right, i);
3459
3460                 push_space = push_space - btrfs_token_item_size(right,
3461                                                                 item, &token);
3462                 btrfs_set_token_item_offset(right, item, push_space, &token);
3463         }
3464
3465         btrfs_mark_buffer_dirty(left);
3466         if (right_nritems)
3467                 btrfs_mark_buffer_dirty(right);
3468         else
3469                 clean_tree_block(trans, root, right);
3470
3471         btrfs_item_key(right, &disk_key, 0);
3472         fixup_low_keys(trans, root, path, &disk_key, 1);
3473
3474         /* then fixup the leaf pointer in the path */
3475         if (path->slots[0] < push_items) {
3476                 path->slots[0] += old_left_nritems;
3477                 btrfs_tree_unlock(path->nodes[0]);
3478                 free_extent_buffer(path->nodes[0]);
3479                 path->nodes[0] = left;
3480                 path->slots[1] -= 1;
3481         } else {
3482                 btrfs_tree_unlock(left);
3483                 free_extent_buffer(left);
3484                 path->slots[0] -= push_items;
3485         }
3486         BUG_ON(path->slots[0] < 0);
3487         return ret;
3488 out:
3489         btrfs_tree_unlock(left);
3490         free_extent_buffer(left);
3491         return ret;
3492 }
3493
3494 /*
3495  * push some data in the path leaf to the left, trying to free up at
3496  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3497  *
3498  * max_slot can put a limit on how far into the leaf we'll push items.  The
3499  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3500  * items
3501  */
3502 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3503                           *root, struct btrfs_path *path, int min_data_size,
3504                           int data_size, int empty, u32 max_slot)
3505 {
3506         struct extent_buffer *right = path->nodes[0];
3507         struct extent_buffer *left;
3508         int slot;
3509         int free_space;
3510         u32 right_nritems;
3511         int ret = 0;
3512
3513         slot = path->slots[1];
3514         if (slot == 0)
3515                 return 1;
3516         if (!path->nodes[1])
3517                 return 1;
3518
3519         right_nritems = btrfs_header_nritems(right);
3520         if (right_nritems == 0)
3521                 return 1;
3522
3523         btrfs_assert_tree_locked(path->nodes[1]);
3524
3525         left = read_node_slot(root, path->nodes[1], slot - 1);
3526         if (left == NULL)
3527                 return 1;
3528
3529         btrfs_tree_lock(left);
3530         btrfs_set_lock_blocking(left);
3531
3532         free_space = btrfs_leaf_free_space(root, left);
3533         if (free_space < data_size) {
3534                 ret = 1;
3535                 goto out;
3536         }
3537
3538         /* cow and double check */
3539         ret = btrfs_cow_block(trans, root, left,
3540                               path->nodes[1], slot - 1, &left);
3541         if (ret) {
3542                 /* we hit -ENOSPC, but it isn't fatal here */
3543                 if (ret == -ENOSPC)
3544                         ret = 1;
3545                 goto out;
3546         }
3547
3548         free_space = btrfs_leaf_free_space(root, left);
3549         if (free_space < data_size) {
3550                 ret = 1;
3551                 goto out;
3552         }
3553
3554         return __push_leaf_left(trans, root, path, min_data_size,
3555                                empty, left, free_space, right_nritems,
3556                                max_slot);
3557 out:
3558         btrfs_tree_unlock(left);
3559         free_extent_buffer(left);
3560         return ret;
3561 }
3562
3563 /*
3564  * split the path's leaf in two, making sure there is at least data_size
3565  * available for the resulting leaf level of the path.
3566  */
3567 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3568                                     struct btrfs_root *root,
3569                                     struct btrfs_path *path,
3570                                     struct extent_buffer *l,
3571                                     struct extent_buffer *right,
3572                                     int slot, int mid, int nritems)
3573 {
3574         int data_copy_size;
3575         int rt_data_off;
3576         int i;
3577         struct btrfs_disk_key disk_key;
3578         struct btrfs_map_token token;
3579
3580         btrfs_init_map_token(&token);
3581
3582         nritems = nritems - mid;
3583         btrfs_set_header_nritems(right, nritems);
3584         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3585
3586         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3587                            btrfs_item_nr_offset(mid),
3588                            nritems * sizeof(struct btrfs_item));
3589
3590         copy_extent_buffer(right, l,
3591                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3592                      data_copy_size, btrfs_leaf_data(l) +
3593                      leaf_data_end(root, l), data_copy_size);
3594
3595         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3596                       btrfs_item_end_nr(l, mid);
3597
3598         for (i = 0; i < nritems; i++) {
3599                 struct btrfs_item *item = btrfs_item_nr(right, i);
3600                 u32 ioff;
3601
3602                 ioff = btrfs_token_item_offset(right, item, &token);
3603                 btrfs_set_token_item_offset(right, item,
3604                                             ioff + rt_data_off, &token);
3605         }
3606
3607         btrfs_set_header_nritems(l, mid);
3608         btrfs_item_key(right, &disk_key, 0);
3609         insert_ptr(trans, root, path, &disk_key, right->start,
3610                    path->slots[1] + 1, 1, 0);
3611
3612         btrfs_mark_buffer_dirty(right);
3613         btrfs_mark_buffer_dirty(l);
3614         BUG_ON(path->slots[0] != slot);
3615
3616         if (mid <= slot) {
3617                 btrfs_tree_unlock(path->nodes[0]);
3618                 free_extent_buffer(path->nodes[0]);
3619                 path->nodes[0] = right;
3620                 path->slots[0] -= mid;
3621                 path->slots[1] += 1;
3622         } else {
3623                 btrfs_tree_unlock(right);
3624                 free_extent_buffer(right);
3625         }
3626
3627         BUG_ON(path->slots[0] < 0);
3628 }
3629
3630 /*
3631  * double splits happen when we need to insert a big item in the middle
3632  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3633  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3634  *          A                 B                 C
3635  *
3636  * We avoid this by trying to push the items on either side of our target
3637  * into the adjacent leaves.  If all goes well we can avoid the double split
3638  * completely.
3639  */
3640 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3641                                           struct btrfs_root *root,
3642                                           struct btrfs_path *path,
3643                                           int data_size)
3644 {
3645         int ret;
3646         int progress = 0;
3647         int slot;
3648         u32 nritems;
3649
3650         slot = path->slots[0];
3651
3652         /*
3653          * try to push all the items after our slot into the
3654          * right leaf
3655          */
3656         ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3657         if (ret < 0)
3658                 return ret;
3659
3660         if (ret == 0)
3661                 progress++;
3662
3663         nritems = btrfs_header_nritems(path->nodes[0]);
3664         /*
3665          * our goal is to get our slot at the start or end of a leaf.  If
3666          * we've done so we're done
3667          */
3668         if (path->slots[0] == 0 || path->slots[0] == nritems)
3669                 return 0;
3670
3671         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3672                 return 0;
3673
3674         /* try to push all the items before our slot into the next leaf */
3675         slot = path->slots[0];
3676         ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3677         if (ret < 0)
3678                 return ret;
3679
3680         if (ret == 0)
3681                 progress++;
3682
3683         if (progress)
3684                 return 0;
3685         return 1;
3686 }
3687
3688 /*
3689  * split the path's leaf in two, making sure there is at least data_size
3690  * available for the resulting leaf level of the path.
3691  *
3692  * returns 0 if all went well and < 0 on failure.
3693  */
3694 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3695                                struct btrfs_root *root,
3696                                struct btrfs_key *ins_key,
3697                                struct btrfs_path *path, int data_size,
3698                                int extend)
3699 {
3700         struct btrfs_disk_key disk_key;
3701         struct extent_buffer *l;
3702         u32 nritems;
3703         int mid;
3704         int slot;
3705         struct extent_buffer *right;
3706         int ret = 0;
3707         int wret;
3708         int split;
3709         int num_doubles = 0;
3710         int tried_avoid_double = 0;
3711
3712         l = path->nodes[0];
3713         slot = path->slots[0];
3714         if (extend && data_size + btrfs_item_size_nr(l, slot) +
3715             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3716                 return -EOVERFLOW;
3717
3718         /* first try to make some room by pushing left and right */
3719         if (data_size) {
3720                 wret = push_leaf_right(trans, root, path, data_size,
3721                                        data_size, 0, 0);
3722                 if (wret < 0)
3723                         return wret;
3724                 if (wret) {
3725                         wret = push_leaf_left(trans, root, path, data_size,
3726                                               data_size, 0, (u32)-1);
3727                         if (wret < 0)
3728                                 return wret;
3729                 }
3730                 l = path->nodes[0];
3731
3732                 /* did the pushes work? */
3733                 if (btrfs_leaf_free_space(root, l) >= data_size)
3734                         return 0;
3735         }
3736
3737         if (!path->nodes[1]) {
3738                 ret = insert_new_root(trans, root, path, 1);
3739                 if (ret)
3740                         return ret;
3741         }
3742 again:
3743         split = 1;
3744         l = path->nodes[0];
3745         slot = path->slots[0];
3746         nritems = btrfs_header_nritems(l);
3747         mid = (nritems + 1) / 2;
3748
3749         if (mid <= slot) {
3750                 if (nritems == 1 ||
3751                     leaf_space_used(l, mid, nritems - mid) + data_size >
3752                         BTRFS_LEAF_DATA_SIZE(root)) {
3753                         if (slot >= nritems) {
3754                                 split = 0;
3755                         } else {
3756                                 mid = slot;
3757                                 if (mid != nritems &&
3758                                     leaf_space_used(l, mid, nritems - mid) +
3759                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3760                                         if (data_size && !tried_avoid_double)
3761                                                 goto push_for_double;
3762                                         split = 2;
3763                                 }
3764                         }
3765                 }
3766         } else {
3767                 if (leaf_space_used(l, 0, mid) + data_size >
3768                         BTRFS_LEAF_DATA_SIZE(root)) {
3769                         if (!extend && data_size && slot == 0) {
3770                                 split = 0;
3771                         } else if ((extend || !data_size) && slot == 0) {
3772                                 mid = 1;
3773                         } else {
3774                                 mid = slot;
3775                                 if (mid != nritems &&
3776                                     leaf_space_used(l, mid, nritems - mid) +
3777                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3778                                         if (data_size && !tried_avoid_double)
3779                                                 goto push_for_double;
3780                                         split = 2 ;
3781                                 }
3782                         }
3783                 }
3784         }
3785
3786         if (split == 0)
3787                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3788         else
3789                 btrfs_item_key(l, &disk_key, mid);
3790
3791         right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
3792                                         root->root_key.objectid,
3793                                         &disk_key, 0, l->start, 0);
3794         if (IS_ERR(right))
3795                 return PTR_ERR(right);
3796
3797         root_add_used(root, root->leafsize);
3798
3799         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
3800         btrfs_set_header_bytenr(right, right->start);
3801         btrfs_set_header_generation(right, trans->transid);
3802         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
3803         btrfs_set_header_owner(right, root->root_key.objectid);
3804         btrfs_set_header_level(right, 0);
3805         write_extent_buffer(right, root->fs_info->fsid,
3806                             (unsigned long)btrfs_header_fsid(right),
3807                             BTRFS_FSID_SIZE);
3808
3809         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
3810                             (unsigned long)btrfs_header_chunk_tree_uuid(right),
3811                             BTRFS_UUID_SIZE);
3812
3813         if (split == 0) {
3814                 if (mid <= slot) {
3815                         btrfs_set_header_nritems(right, 0);
3816                         insert_ptr(trans, root, path, &disk_key, right->start,
3817                                    path->slots[1] + 1, 1, 0);
3818                         btrfs_tree_unlock(path->nodes[0]);
3819                         free_extent_buffer(path->nodes[0]);
3820                         path->nodes[0] = right;
3821                         path->slots[0] = 0;
3822                         path->slots[1] += 1;
3823                 } else {
3824                         btrfs_set_header_nritems(right, 0);
3825                         insert_ptr(trans, root, path, &disk_key, right->start,
3826                                           path->slots[1], 1, 0);
3827                         btrfs_tree_unlock(path->nodes[0]);
3828                         free_extent_buffer(path->nodes[0]);
3829                         path->nodes[0] = right;
3830                         path->slots[0] = 0;
3831                         if (path->slots[1] == 0)
3832                                 fixup_low_keys(trans, root, path,
3833                                                &disk_key, 1);
3834                 }
3835                 btrfs_mark_buffer_dirty(right);
3836                 return ret;
3837         }
3838
3839         copy_for_split(trans, root, path, l, right, slot, mid, nritems);
3840
3841         if (split == 2) {
3842                 BUG_ON(num_doubles != 0);
3843                 num_doubles++;
3844                 goto again;
3845         }
3846
3847         return 0;
3848
3849 push_for_double:
3850         push_for_double_split(trans, root, path, data_size);
3851         tried_avoid_double = 1;
3852         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3853                 return 0;
3854         goto again;
3855 }
3856
3857 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3858                                          struct btrfs_root *root,
3859                                          struct btrfs_path *path, int ins_len)
3860 {
3861         struct btrfs_key key;
3862         struct extent_buffer *leaf;
3863         struct btrfs_file_extent_item *fi;
3864         u64 extent_len = 0;
3865         u32 item_size;
3866         int ret;
3867
3868         leaf = path->nodes[0];
3869         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3870
3871         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3872                key.type != BTRFS_EXTENT_CSUM_KEY);
3873
3874         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3875                 return 0;
3876
3877         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3878         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3879                 fi = btrfs_item_ptr(leaf, path->slots[0],
3880                                     struct btrfs_file_extent_item);
3881                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3882         }
3883         btrfs_release_path(path);
3884
3885         path->keep_locks = 1;
3886         path->search_for_split = 1;
3887         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3888         path->search_for_split = 0;
3889         if (ret < 0)
3890                 goto err;
3891
3892         ret = -EAGAIN;
3893         leaf = path->nodes[0];
3894         /* if our item isn't there or got smaller, return now */
3895         if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3896                 goto err;
3897
3898         /* the leaf has  changed, it now has room.  return now */
3899         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
3900                 goto err;
3901
3902         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3903                 fi = btrfs_item_ptr(leaf, path->slots[0],
3904                                     struct btrfs_file_extent_item);
3905                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3906                         goto err;
3907         }
3908
3909         btrfs_set_path_blocking(path);
3910         ret = split_leaf(trans, root, &key, path, ins_len, 1);
3911         if (ret)
3912                 goto err;
3913
3914         path->keep_locks = 0;
3915         btrfs_unlock_up_safe(path, 1);
3916         return 0;
3917 err:
3918         path->keep_locks = 0;
3919         return ret;
3920 }
3921
3922 static noinline int split_item(struct btrfs_trans_handle *trans,
3923                                struct btrfs_root *root,
3924                                struct btrfs_path *path,
3925                                struct btrfs_key *new_key,
3926                                unsigned long split_offset)
3927 {
3928         struct extent_buffer *leaf;
3929         struct btrfs_item *item;
3930         struct btrfs_item *new_item;
3931         int slot;
3932         char *buf;
3933         u32 nritems;
3934         u32 item_size;
3935         u32 orig_offset;
3936         struct btrfs_disk_key disk_key;
3937
3938         leaf = path->nodes[0];
3939         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3940
3941         btrfs_set_path_blocking(path);
3942
3943         item = btrfs_item_nr(leaf, path->slots[0]);
3944         orig_offset = btrfs_item_offset(leaf, item);
3945         item_size = btrfs_item_size(leaf, item);
3946
3947         buf = kmalloc(item_size, GFP_NOFS);
3948         if (!buf)
3949                 return -ENOMEM;
3950
3951         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3952                             path->slots[0]), item_size);
3953
3954         slot = path->slots[0] + 1;
3955         nritems = btrfs_header_nritems(leaf);
3956         if (slot != nritems) {
3957                 /* shift the items */
3958                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3959                                 btrfs_item_nr_offset(slot),
3960                                 (nritems - slot) * sizeof(struct btrfs_item));
3961         }
3962
3963         btrfs_cpu_key_to_disk(&disk_key, new_key);
3964         btrfs_set_item_key(leaf, &disk_key, slot);
3965
3966         new_item = btrfs_item_nr(leaf, slot);
3967
3968         btrfs_set_item_offset(leaf, new_item, orig_offset);
3969         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3970
3971         btrfs_set_item_offset(leaf, item,
3972                               orig_offset + item_size - split_offset);
3973         btrfs_set_item_size(leaf, item, split_offset);
3974
3975         btrfs_set_header_nritems(leaf, nritems + 1);
3976
3977         /* write the data for the start of the original item */
3978         write_extent_buffer(leaf, buf,
3979                             btrfs_item_ptr_offset(leaf, path->slots[0]),
3980                             split_offset);
3981
3982         /* write the data for the new item */
3983         write_extent_buffer(leaf, buf + split_offset,
3984                             btrfs_item_ptr_offset(leaf, slot),
3985                             item_size - split_offset);
3986         btrfs_mark_buffer_dirty(leaf);
3987
3988         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
3989         kfree(buf);
3990         return 0;
3991 }
3992
3993 /*
3994  * This function splits a single item into two items,
3995  * giving 'new_key' to the new item and splitting the
3996  * old one at split_offset (from the start of the item).
3997  *
3998  * The path may be released by this operation.  After
3999  * the split, the path is pointing to the old item.  The
4000  * new item is going to be in the same node as the old one.
4001  *
4002  * Note, the item being split must be smaller enough to live alone on
4003  * a tree block with room for one extra struct btrfs_item
4004  *
4005  * This allows us to split the item in place, keeping a lock on the
4006  * leaf the entire time.
4007  */
4008 int btrfs_split_item(struct btrfs_trans_handle *trans,
4009                      struct btrfs_root *root,
4010                      struct btrfs_path *path,
4011                      struct btrfs_key *new_key,
4012                      unsigned long split_offset)
4013 {
4014         int ret;
4015         ret = setup_leaf_for_split(trans, root, path,
4016                                    sizeof(struct btrfs_item));
4017         if (ret)
4018                 return ret;
4019
4020         ret = split_item(trans, root, path, new_key, split_offset);
4021         return ret;
4022 }
4023
4024 /*
4025  * This function duplicate a item, giving 'new_key' to the new item.
4026  * It guarantees both items live in the same tree leaf and the new item
4027  * is contiguous with the original item.
4028  *
4029  * This allows us to split file extent in place, keeping a lock on the
4030  * leaf the entire time.
4031  */
4032 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4033                          struct btrfs_root *root,
4034                          struct btrfs_path *path,
4035                          struct btrfs_key *new_key)
4036 {
4037         struct extent_buffer *leaf;
4038         int ret;
4039         u32 item_size;
4040
4041         leaf = path->nodes[0];
4042         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4043         ret = setup_leaf_for_split(trans, root, path,
4044                                    item_size + sizeof(struct btrfs_item));
4045         if (ret)
4046                 return ret;
4047
4048         path->slots[0]++;
4049         setup_items_for_insert(trans, root, path, new_key, &item_size,
4050                                item_size, item_size +
4051                                sizeof(struct btrfs_item), 1);
4052         leaf = path->nodes[0];
4053         memcpy_extent_buffer(leaf,
4054                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4055                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4056                              item_size);
4057         return 0;
4058 }
4059
4060 /*
4061  * make the item pointed to by the path smaller.  new_size indicates
4062  * how small to make it, and from_end tells us if we just chop bytes
4063  * off the end of the item or if we shift the item to chop bytes off
4064  * the front.
4065  */
4066 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4067                          struct btrfs_root *root,
4068                          struct btrfs_path *path,
4069                          u32 new_size, int from_end)
4070 {
4071         int slot;
4072         struct extent_buffer *leaf;
4073         struct btrfs_item *item;
4074         u32 nritems;
4075         unsigned int data_end;
4076         unsigned int old_data_start;
4077         unsigned int old_size;
4078         unsigned int size_diff;
4079         int i;
4080         struct btrfs_map_token token;
4081
4082         btrfs_init_map_token(&token);
4083
4084         leaf = path->nodes[0];
4085         slot = path->slots[0];
4086
4087         old_size = btrfs_item_size_nr(leaf, slot);
4088         if (old_size == new_size)
4089                 return;
4090
4091         nritems = btrfs_header_nritems(leaf);
4092         data_end = leaf_data_end(root, leaf);
4093
4094         old_data_start = btrfs_item_offset_nr(leaf, slot);
4095
4096         size_diff = old_size - new_size;
4097
4098         BUG_ON(slot < 0);
4099         BUG_ON(slot >= nritems);
4100
4101         /*
4102          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4103          */
4104         /* first correct the data pointers */
4105         for (i = slot; i < nritems; i++) {
4106                 u32 ioff;
4107                 item = btrfs_item_nr(leaf, i);
4108
4109                 ioff = btrfs_token_item_offset(leaf, item, &token);
4110                 btrfs_set_token_item_offset(leaf, item,
4111                                             ioff + size_diff, &token);
4112         }
4113
4114         /* shift the data */
4115         if (from_end) {
4116                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4117                               data_end + size_diff, btrfs_leaf_data(leaf) +
4118                               data_end, old_data_start + new_size - data_end);
4119         } else {
4120                 struct btrfs_disk_key disk_key;
4121                 u64 offset;
4122
4123                 btrfs_item_key(leaf, &disk_key, slot);
4124
4125                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4126                         unsigned long ptr;
4127                         struct btrfs_file_extent_item *fi;
4128
4129                         fi = btrfs_item_ptr(leaf, slot,
4130                                             struct btrfs_file_extent_item);
4131                         fi = (struct btrfs_file_extent_item *)(
4132                              (unsigned long)fi - size_diff);
4133
4134                         if (btrfs_file_extent_type(leaf, fi) ==
4135                             BTRFS_FILE_EXTENT_INLINE) {
4136                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4137                                 memmove_extent_buffer(leaf, ptr,
4138                                       (unsigned long)fi,
4139                                       offsetof(struct btrfs_file_extent_item,
4140                                                  disk_bytenr));
4141                         }
4142                 }
4143
4144                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4145                               data_end + size_diff, btrfs_leaf_data(leaf) +
4146                               data_end, old_data_start - data_end);
4147
4148                 offset = btrfs_disk_key_offset(&disk_key);
4149                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4150                 btrfs_set_item_key(leaf, &disk_key, slot);
4151                 if (slot == 0)
4152                         fixup_low_keys(trans, root, path, &disk_key, 1);
4153         }
4154
4155         item = btrfs_item_nr(leaf, slot);
4156         btrfs_set_item_size(leaf, item, new_size);
4157         btrfs_mark_buffer_dirty(leaf);
4158
4159         if (btrfs_leaf_free_space(root, leaf) < 0) {
4160                 btrfs_print_leaf(root, leaf);
4161                 BUG();
4162         }
4163 }
4164
4165 /*
4166  * make the item pointed to by the path bigger, data_size is the new size.
4167  */
4168 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4169                        struct btrfs_root *root, struct btrfs_path *path,
4170                        u32 data_size)
4171 {
4172         int slot;
4173         struct extent_buffer *leaf;
4174         struct btrfs_item *item;
4175         u32 nritems;
4176         unsigned int data_end;
4177         unsigned int old_data;
4178         unsigned int old_size;
4179         int i;
4180         struct btrfs_map_token token;
4181
4182         btrfs_init_map_token(&token);
4183
4184         leaf = path->nodes[0];
4185
4186         nritems = btrfs_header_nritems(leaf);
4187         data_end = leaf_data_end(root, leaf);
4188
4189         if (btrfs_leaf_free_space(root, leaf) < data_size) {
4190                 btrfs_print_leaf(root, leaf);
4191                 BUG();
4192         }
4193         slot = path->slots[0];
4194         old_data = btrfs_item_end_nr(leaf, slot);
4195
4196         BUG_ON(slot < 0);
4197         if (slot >= nritems) {
4198                 btrfs_print_leaf(root, leaf);
4199                 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4200                        slot, nritems);
4201                 BUG_ON(1);
4202         }
4203
4204         /*
4205          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4206          */
4207         /* first correct the data pointers */
4208         for (i = slot; i < nritems; i++) {
4209                 u32 ioff;
4210                 item = btrfs_item_nr(leaf, i);
4211
4212                 ioff = btrfs_token_item_offset(leaf, item, &token);
4213                 btrfs_set_token_item_offset(leaf, item,
4214                                             ioff - data_size, &token);
4215         }
4216
4217         /* shift the data */
4218         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4219                       data_end - data_size, btrfs_leaf_data(leaf) +
4220                       data_end, old_data - data_end);
4221
4222         data_end = old_data;
4223         old_size = btrfs_item_size_nr(leaf, slot);
4224         item = btrfs_item_nr(leaf, slot);
4225         btrfs_set_item_size(leaf, item, old_size + data_size);
4226         btrfs_mark_buffer_dirty(leaf);
4227
4228         if (btrfs_leaf_free_space(root, leaf) < 0) {
4229                 btrfs_print_leaf(root, leaf);
4230                 BUG();
4231         }
4232 }
4233
4234 /*
4235  * Given a key and some data, insert items into the tree.
4236  * This does all the path init required, making room in the tree if needed.
4237  * Returns the number of keys that were inserted.
4238  */
4239 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
4240                             struct btrfs_root *root,
4241                             struct btrfs_path *path,
4242                             struct btrfs_key *cpu_key, u32 *data_size,
4243                             int nr)
4244 {
4245         struct extent_buffer *leaf;
4246         struct btrfs_item *item;
4247         int ret = 0;
4248         int slot;
4249         int i;
4250         u32 nritems;
4251         u32 total_data = 0;
4252         u32 total_size = 0;
4253         unsigned int data_end;
4254         struct btrfs_disk_key disk_key;
4255         struct btrfs_key found_key;
4256         struct btrfs_map_token token;
4257
4258         btrfs_init_map_token(&token);
4259
4260         for (i = 0; i < nr; i++) {
4261                 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
4262                     BTRFS_LEAF_DATA_SIZE(root)) {
4263                         break;
4264                         nr = i;
4265                 }
4266                 total_data += data_size[i];
4267                 total_size += data_size[i] + sizeof(struct btrfs_item);
4268         }
4269         BUG_ON(nr == 0);
4270
4271         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4272         if (ret == 0)
4273                 return -EEXIST;
4274         if (ret < 0)
4275                 goto out;
4276
4277         leaf = path->nodes[0];
4278
4279         nritems = btrfs_header_nritems(leaf);
4280         data_end = leaf_data_end(root, leaf);
4281
4282         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4283                 for (i = nr; i >= 0; i--) {
4284                         total_data -= data_size[i];
4285                         total_size -= data_size[i] + sizeof(struct btrfs_item);
4286                         if (total_size < btrfs_leaf_free_space(root, leaf))
4287                                 break;
4288                 }
4289                 nr = i;
4290         }
4291
4292         slot = path->slots[0];
4293         BUG_ON(slot < 0);
4294
4295         if (slot != nritems) {
4296                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4297
4298                 item = btrfs_item_nr(leaf, slot);
4299                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4300
4301                 /* figure out how many keys we can insert in here */
4302                 total_data = data_size[0];
4303                 for (i = 1; i < nr; i++) {
4304                         if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
4305                                 break;
4306                         total_data += data_size[i];
4307                 }
4308                 nr = i;
4309
4310                 if (old_data < data_end) {
4311                         btrfs_print_leaf(root, leaf);
4312                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4313                                slot, old_data, data_end);
4314                         BUG_ON(1);
4315                 }
4316                 /*
4317                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4318                  */
4319                 /* first correct the data pointers */
4320                 for (i = slot; i < nritems; i++) {
4321                         u32 ioff;
4322
4323                         item = btrfs_item_nr(leaf, i);
4324                         ioff = btrfs_token_item_offset(leaf, item, &token);
4325                         btrfs_set_token_item_offset(leaf, item,
4326                                                     ioff - total_data, &token);
4327                 }
4328                 /* shift the items */
4329                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4330                               btrfs_item_nr_offset(slot),
4331                               (nritems - slot) * sizeof(struct btrfs_item));
4332
4333                 /* shift the data */
4334                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4335                               data_end - total_data, btrfs_leaf_data(leaf) +
4336                               data_end, old_data - data_end);
4337                 data_end = old_data;
4338         } else {
4339                 /*
4340                  * this sucks but it has to be done, if we are inserting at
4341                  * the end of the leaf only insert 1 of the items, since we
4342                  * have no way of knowing whats on the next leaf and we'd have
4343                  * to drop our current locks to figure it out
4344                  */
4345                 nr = 1;
4346         }
4347
4348         /* setup the item for the new data */
4349         for (i = 0; i < nr; i++) {
4350                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4351                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4352                 item = btrfs_item_nr(leaf, slot + i);
4353                 btrfs_set_token_item_offset(leaf, item,
4354                                             data_end - data_size[i], &token);
4355                 data_end -= data_size[i];
4356                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4357         }
4358         btrfs_set_header_nritems(leaf, nritems + nr);
4359         btrfs_mark_buffer_dirty(leaf);
4360
4361         ret = 0;
4362         if (slot == 0) {
4363                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4364                 fixup_low_keys(trans, root, path, &disk_key, 1);
4365         }
4366
4367         if (btrfs_leaf_free_space(root, leaf) < 0) {
4368                 btrfs_print_leaf(root, leaf);
4369                 BUG();
4370         }
4371 out:
4372         if (!ret)
4373                 ret = nr;
4374         return ret;
4375 }
4376
4377 /*
4378  * this is a helper for btrfs_insert_empty_items, the main goal here is
4379  * to save stack depth by doing the bulk of the work in a function
4380  * that doesn't call btrfs_search_slot
4381  */
4382 void setup_items_for_insert(struct btrfs_trans_handle *trans,
4383                             struct btrfs_root *root, struct btrfs_path *path,
4384                             struct btrfs_key *cpu_key, u32 *data_size,
4385                             u32 total_data, u32 total_size, int nr)
4386 {
4387         struct btrfs_item *item;
4388         int i;
4389         u32 nritems;
4390         unsigned int data_end;
4391         struct btrfs_disk_key disk_key;
4392         struct extent_buffer *leaf;
4393         int slot;
4394         struct btrfs_map_token token;
4395
4396         btrfs_init_map_token(&token);
4397
4398         leaf = path->nodes[0];
4399         slot = path->slots[0];
4400
4401         nritems = btrfs_header_nritems(leaf);
4402         data_end = leaf_data_end(root, leaf);
4403
4404         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4405                 btrfs_print_leaf(root, leaf);
4406                 printk(KERN_CRIT "not enough freespace need %u have %d\n",
4407                        total_size, btrfs_leaf_free_space(root, leaf));
4408                 BUG();
4409         }
4410
4411         if (slot != nritems) {
4412                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4413
4414                 if (old_data < data_end) {
4415                         btrfs_print_leaf(root, leaf);
4416                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4417                                slot, old_data, data_end);
4418                         BUG_ON(1);
4419                 }
4420                 /*
4421                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4422                  */
4423                 /* first correct the data pointers */
4424                 for (i = slot; i < nritems; i++) {
4425                         u32 ioff;
4426
4427                         item = btrfs_item_nr(leaf, i);
4428                         ioff = btrfs_token_item_offset(leaf, item, &token);
4429                         btrfs_set_token_item_offset(leaf, item,
4430                                                     ioff - total_data, &token);
4431                 }
4432                 /* shift the items */
4433                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4434                               btrfs_item_nr_offset(slot),
4435                               (nritems - slot) * sizeof(struct btrfs_item));
4436
4437                 /* shift the data */
4438                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4439                               data_end - total_data, btrfs_leaf_data(leaf) +
4440                               data_end, old_data - data_end);
4441                 data_end = old_data;
4442         }
4443
4444         /* setup the item for the new data */
4445         for (i = 0; i < nr; i++) {
4446                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4447                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4448                 item = btrfs_item_nr(leaf, slot + i);
4449                 btrfs_set_token_item_offset(leaf, item,
4450                                             data_end - data_size[i], &token);
4451                 data_end -= data_size[i];
4452                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4453         }
4454
4455         btrfs_set_header_nritems(leaf, nritems + nr);
4456
4457         if (slot == 0) {
4458                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4459                 fixup_low_keys(trans, root, path, &disk_key, 1);
4460         }
4461         btrfs_unlock_up_safe(path, 1);
4462         btrfs_mark_buffer_dirty(leaf);
4463
4464         if (btrfs_leaf_free_space(root, leaf) < 0) {
4465                 btrfs_print_leaf(root, leaf);
4466                 BUG();
4467         }
4468 }
4469
4470 /*
4471  * Given a key and some data, insert items into the tree.
4472  * This does all the path init required, making room in the tree if needed.
4473  */
4474 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4475                             struct btrfs_root *root,
4476                             struct btrfs_path *path,
4477                             struct btrfs_key *cpu_key, u32 *data_size,
4478                             int nr)
4479 {
4480         int ret = 0;
4481         int slot;
4482         int i;
4483         u32 total_size = 0;
4484         u32 total_data = 0;
4485
4486         for (i = 0; i < nr; i++)
4487                 total_data += data_size[i];
4488
4489         total_size = total_data + (nr * sizeof(struct btrfs_item));
4490         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4491         if (ret == 0)
4492                 return -EEXIST;
4493         if (ret < 0)
4494                 return ret;
4495
4496         slot = path->slots[0];
4497         BUG_ON(slot < 0);
4498
4499         setup_items_for_insert(trans, root, path, cpu_key, data_size,
4500                                total_data, total_size, nr);
4501         return 0;
4502 }
4503
4504 /*
4505  * Given a key and some data, insert an item into the tree.
4506  * This does all the path init required, making room in the tree if needed.
4507  */
4508 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4509                       *root, struct btrfs_key *cpu_key, void *data, u32
4510                       data_size)
4511 {
4512         int ret = 0;
4513         struct btrfs_path *path;
4514         struct extent_buffer *leaf;
4515         unsigned long ptr;
4516
4517         path = btrfs_alloc_path();
4518         if (!path)
4519                 return -ENOMEM;
4520         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4521         if (!ret) {
4522                 leaf = path->nodes[0];
4523                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4524                 write_extent_buffer(leaf, data, ptr, data_size);
4525                 btrfs_mark_buffer_dirty(leaf);
4526         }
4527         btrfs_free_path(path);
4528         return ret;
4529 }
4530
4531 /*
4532  * delete the pointer from a given node.
4533  *
4534  * the tree should have been previously balanced so the deletion does not
4535  * empty a node.
4536  */
4537 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4538                     struct btrfs_path *path, int level, int slot,
4539                     int tree_mod_log)
4540 {
4541         struct extent_buffer *parent = path->nodes[level];
4542         u32 nritems;
4543         int ret;
4544
4545         nritems = btrfs_header_nritems(parent);
4546         if (slot != nritems - 1) {
4547                 if (tree_mod_log && level)
4548                         tree_mod_log_eb_move(root->fs_info, parent, slot,
4549                                              slot + 1, nritems - slot - 1);
4550                 memmove_extent_buffer(parent,
4551                               btrfs_node_key_ptr_offset(slot),
4552                               btrfs_node_key_ptr_offset(slot + 1),
4553                               sizeof(struct btrfs_key_ptr) *
4554                               (nritems - slot - 1));
4555         } else if (tree_mod_log && level) {
4556                 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4557                                               MOD_LOG_KEY_REMOVE);
4558                 BUG_ON(ret < 0);
4559         }
4560
4561         nritems--;
4562         btrfs_set_header_nritems(parent, nritems);
4563         if (nritems == 0 && parent == root->node) {
4564                 BUG_ON(btrfs_header_level(root->node) != 1);
4565                 /* just turn the root into a leaf and break */
4566                 btrfs_set_header_level(root->node, 0);
4567         } else if (slot == 0) {
4568                 struct btrfs_disk_key disk_key;
4569
4570                 btrfs_node_key(parent, &disk_key, 0);
4571                 fixup_low_keys(trans, root, path, &disk_key, level + 1);
4572         }
4573         btrfs_mark_buffer_dirty(parent);
4574 }
4575
4576 /*
4577  * a helper function to delete the leaf pointed to by path->slots[1] and
4578  * path->nodes[1].
4579  *
4580  * This deletes the pointer in path->nodes[1] and frees the leaf
4581  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4582  *
4583  * The path must have already been setup for deleting the leaf, including
4584  * all the proper balancing.  path->nodes[1] must be locked.
4585  */
4586 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4587                                     struct btrfs_root *root,
4588                                     struct btrfs_path *path,
4589                                     struct extent_buffer *leaf)
4590 {
4591         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4592         del_ptr(trans, root, path, 1, path->slots[1], 1);
4593
4594         /*
4595          * btrfs_free_extent is expensive, we want to make sure we
4596          * aren't holding any locks when we call it
4597          */
4598         btrfs_unlock_up_safe(path, 0);
4599
4600         root_sub_used(root, leaf->len);
4601
4602         extent_buffer_get(leaf);
4603         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4604         free_extent_buffer_stale(leaf);
4605 }
4606 /*
4607  * delete the item at the leaf level in path.  If that empties
4608  * the leaf, remove it from the tree
4609  */
4610 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4611                     struct btrfs_path *path, int slot, int nr)
4612 {
4613         struct extent_buffer *leaf;
4614         struct btrfs_item *item;
4615         int last_off;
4616         int dsize = 0;
4617         int ret = 0;
4618         int wret;
4619         int i;
4620         u32 nritems;
4621         struct btrfs_map_token token;
4622
4623         btrfs_init_map_token(&token);
4624
4625         leaf = path->nodes[0];
4626         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4627
4628         for (i = 0; i < nr; i++)
4629                 dsize += btrfs_item_size_nr(leaf, slot + i);
4630
4631         nritems = btrfs_header_nritems(leaf);
4632
4633         if (slot + nr != nritems) {
4634                 int data_end = leaf_data_end(root, leaf);
4635
4636                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4637                               data_end + dsize,
4638                               btrfs_leaf_data(leaf) + data_end,
4639                               last_off - data_end);
4640
4641                 for (i = slot + nr; i < nritems; i++) {
4642                         u32 ioff;
4643
4644                         item = btrfs_item_nr(leaf, i);
4645                         ioff = btrfs_token_item_offset(leaf, item, &token);
4646                         btrfs_set_token_item_offset(leaf, item,
4647                                                     ioff + dsize, &token);
4648                 }
4649
4650                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4651                               btrfs_item_nr_offset(slot + nr),
4652                               sizeof(struct btrfs_item) *
4653                               (nritems - slot - nr));
4654         }
4655         btrfs_set_header_nritems(leaf, nritems - nr);
4656         nritems -= nr;
4657
4658         /* delete the leaf if we've emptied it */
4659         if (nritems == 0) {
4660                 if (leaf == root->node) {
4661                         btrfs_set_header_level(leaf, 0);
4662                 } else {
4663                         btrfs_set_path_blocking(path);
4664                         clean_tree_block(trans, root, leaf);
4665                         btrfs_del_leaf(trans, root, path, leaf);
4666                 }
4667         } else {
4668                 int used = leaf_space_used(leaf, 0, nritems);
4669                 if (slot == 0) {
4670                         struct btrfs_disk_key disk_key;
4671
4672                         btrfs_item_key(leaf, &disk_key, 0);
4673                         fixup_low_keys(trans, root, path, &disk_key, 1);
4674                 }
4675
4676                 /* delete the leaf if it is mostly empty */
4677                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4678                         /* push_leaf_left fixes the path.
4679                          * make sure the path still points to our leaf
4680                          * for possible call to del_ptr below
4681                          */
4682                         slot = path->slots[1];
4683                         extent_buffer_get(leaf);
4684
4685                         btrfs_set_path_blocking(path);
4686                         wret = push_leaf_left(trans, root, path, 1, 1,
4687                                               1, (u32)-1);
4688                         if (wret < 0 && wret != -ENOSPC)
4689                                 ret = wret;
4690
4691                         if (path->nodes[0] == leaf &&
4692                             btrfs_header_nritems(leaf)) {
4693                                 wret = push_leaf_right(trans, root, path, 1,
4694                                                        1, 1, 0);
4695                                 if (wret < 0 && wret != -ENOSPC)
4696                                         ret = wret;
4697                         }
4698
4699                         if (btrfs_header_nritems(leaf) == 0) {
4700                                 path->slots[1] = slot;
4701                                 btrfs_del_leaf(trans, root, path, leaf);
4702                                 free_extent_buffer(leaf);
4703                                 ret = 0;
4704                         } else {
4705                                 /* if we're still in the path, make sure
4706                                  * we're dirty.  Otherwise, one of the
4707                                  * push_leaf functions must have already
4708                                  * dirtied this buffer
4709                                  */
4710                                 if (path->nodes[0] == leaf)
4711                                         btrfs_mark_buffer_dirty(leaf);
4712                                 free_extent_buffer(leaf);
4713                         }
4714                 } else {
4715                         btrfs_mark_buffer_dirty(leaf);
4716                 }
4717         }
4718         return ret;
4719 }
4720
4721 /*
4722  * search the tree again to find a leaf with lesser keys
4723  * returns 0 if it found something or 1 if there are no lesser leaves.
4724  * returns < 0 on io errors.
4725  *
4726  * This may release the path, and so you may lose any locks held at the
4727  * time you call it.
4728  */
4729 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4730 {
4731         struct btrfs_key key;
4732         struct btrfs_disk_key found_key;
4733         int ret;
4734
4735         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4736
4737         if (key.offset > 0)
4738                 key.offset--;
4739         else if (key.type > 0)
4740                 key.type--;
4741         else if (key.objectid > 0)
4742                 key.objectid--;
4743         else
4744                 return 1;
4745
4746         btrfs_release_path(path);
4747         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4748         if (ret < 0)
4749                 return ret;
4750         btrfs_item_key(path->nodes[0], &found_key, 0);
4751         ret = comp_keys(&found_key, &key);
4752         if (ret < 0)
4753                 return 0;
4754         return 1;
4755 }
4756
4757 /*
4758  * A helper function to walk down the tree starting at min_key, and looking
4759  * for nodes or leaves that are either in cache or have a minimum
4760  * transaction id.  This is used by the btree defrag code, and tree logging
4761  *
4762  * This does not cow, but it does stuff the starting key it finds back
4763  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4764  * key and get a writable path.
4765  *
4766  * This does lock as it descends, and path->keep_locks should be set
4767  * to 1 by the caller.
4768  *
4769  * This honors path->lowest_level to prevent descent past a given level
4770  * of the tree.
4771  *
4772  * min_trans indicates the oldest transaction that you are interested
4773  * in walking through.  Any nodes or leaves older than min_trans are
4774  * skipped over (without reading them).
4775  *
4776  * returns zero if something useful was found, < 0 on error and 1 if there
4777  * was nothing in the tree that matched the search criteria.
4778  */
4779 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4780                          struct btrfs_key *max_key,
4781                          struct btrfs_path *path, int cache_only,
4782                          u64 min_trans)
4783 {
4784         struct extent_buffer *cur;
4785         struct btrfs_key found_key;
4786         int slot;
4787         int sret;
4788         u32 nritems;
4789         int level;
4790         int ret = 1;
4791
4792         WARN_ON(!path->keep_locks);
4793 again:
4794         cur = btrfs_read_lock_root_node(root);
4795         level = btrfs_header_level(cur);
4796         WARN_ON(path->nodes[level]);
4797         path->nodes[level] = cur;
4798         path->locks[level] = BTRFS_READ_LOCK;
4799
4800         if (btrfs_header_generation(cur) < min_trans) {
4801                 ret = 1;
4802                 goto out;
4803         }
4804         while (1) {
4805                 nritems = btrfs_header_nritems(cur);
4806                 level = btrfs_header_level(cur);
4807                 sret = bin_search(cur, min_key, level, &slot);
4808
4809                 /* at the lowest level, we're done, setup the path and exit */
4810                 if (level == path->lowest_level) {
4811                         if (slot >= nritems)
4812                                 goto find_next_key;
4813                         ret = 0;
4814                         path->slots[level] = slot;
4815                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4816                         goto out;
4817                 }
4818                 if (sret && slot > 0)
4819                         slot--;
4820                 /*
4821                  * check this node pointer against the cache_only and
4822                  * min_trans parameters.  If it isn't in cache or is too
4823                  * old, skip to the next one.
4824                  */
4825                 while (slot < nritems) {
4826                         u64 blockptr;
4827                         u64 gen;
4828                         struct extent_buffer *tmp;
4829                         struct btrfs_disk_key disk_key;
4830
4831                         blockptr = btrfs_node_blockptr(cur, slot);
4832                         gen = btrfs_node_ptr_generation(cur, slot);
4833                         if (gen < min_trans) {
4834                                 slot++;
4835                                 continue;
4836                         }
4837                         if (!cache_only)
4838                                 break;
4839
4840                         if (max_key) {
4841                                 btrfs_node_key(cur, &disk_key, slot);
4842                                 if (comp_keys(&disk_key, max_key) >= 0) {
4843                                         ret = 1;
4844                                         goto out;
4845                                 }
4846                         }
4847
4848                         tmp = btrfs_find_tree_block(root, blockptr,
4849                                             btrfs_level_size(root, level - 1));
4850
4851                         if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
4852                                 free_extent_buffer(tmp);
4853                                 break;
4854                         }
4855                         if (tmp)
4856                                 free_extent_buffer(tmp);
4857                         slot++;
4858                 }
4859 find_next_key:
4860                 /*
4861                  * we didn't find a candidate key in this node, walk forward
4862                  * and find another one
4863                  */
4864                 if (slot >= nritems) {
4865                         path->slots[level] = slot;
4866                         btrfs_set_path_blocking(path);
4867                         sret = btrfs_find_next_key(root, path, min_key, level,
4868                                                   cache_only, min_trans);
4869                         if (sret == 0) {
4870                                 btrfs_release_path(path);
4871                                 goto again;
4872                         } else {
4873                                 goto out;
4874                         }
4875                 }
4876                 /* save our key for returning back */
4877                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4878                 path->slots[level] = slot;
4879                 if (level == path->lowest_level) {
4880                         ret = 0;
4881                         unlock_up(path, level, 1, 0, NULL);
4882                         goto out;
4883                 }
4884                 btrfs_set_path_blocking(path);
4885                 cur = read_node_slot(root, cur, slot);
4886                 BUG_ON(!cur); /* -ENOMEM */
4887
4888                 btrfs_tree_read_lock(cur);
4889
4890                 path->locks[level - 1] = BTRFS_READ_LOCK;
4891                 path->nodes[level - 1] = cur;
4892                 unlock_up(path, level, 1, 0, NULL);
4893                 btrfs_clear_path_blocking(path, NULL, 0);
4894         }
4895 out:
4896         if (ret == 0)
4897                 memcpy(min_key, &found_key, sizeof(found_key));
4898         btrfs_set_path_blocking(path);
4899         return ret;
4900 }
4901
4902 /*
4903  * this is similar to btrfs_next_leaf, but does not try to preserve
4904  * and fixup the path.  It looks for and returns the next key in the
4905  * tree based on the current path and the cache_only and min_trans
4906  * parameters.
4907  *
4908  * 0 is returned if another key is found, < 0 if there are any errors
4909  * and 1 is returned if there are no higher keys in the tree
4910  *
4911  * path->keep_locks should be set to 1 on the search made before
4912  * calling this function.
4913  */
4914 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4915                         struct btrfs_key *key, int level,
4916                         int cache_only, u64 min_trans)
4917 {
4918         int slot;
4919         struct extent_buffer *c;
4920
4921         WARN_ON(!path->keep_locks);
4922         while (level < BTRFS_MAX_LEVEL) {
4923                 if (!path->nodes[level])
4924                         return 1;
4925
4926                 slot = path->slots[level] + 1;
4927                 c = path->nodes[level];
4928 next:
4929                 if (slot >= btrfs_header_nritems(c)) {
4930                         int ret;
4931                         int orig_lowest;
4932                         struct btrfs_key cur_key;
4933                         if (level + 1 >= BTRFS_MAX_LEVEL ||
4934                             !path->nodes[level + 1])
4935                                 return 1;
4936
4937                         if (path->locks[level + 1]) {
4938                                 level++;
4939                                 continue;
4940                         }
4941
4942                         slot = btrfs_header_nritems(c) - 1;
4943                         if (level == 0)
4944                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
4945                         else
4946                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
4947
4948                         orig_lowest = path->lowest_level;
4949                         btrfs_release_path(path);
4950                         path->lowest_level = level;
4951                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
4952                                                 0, 0);
4953                         path->lowest_level = orig_lowest;
4954                         if (ret < 0)
4955                                 return ret;
4956
4957                         c = path->nodes[level];
4958                         slot = path->slots[level];
4959                         if (ret == 0)
4960                                 slot++;
4961                         goto next;
4962                 }
4963
4964                 if (level == 0)
4965                         btrfs_item_key_to_cpu(c, key, slot);
4966                 else {
4967                         u64 blockptr = btrfs_node_blockptr(c, slot);
4968                         u64 gen = btrfs_node_ptr_generation(c, slot);
4969
4970                         if (cache_only) {
4971                                 struct extent_buffer *cur;
4972                                 cur = btrfs_find_tree_block(root, blockptr,
4973                                             btrfs_level_size(root, level - 1));
4974                                 if (!cur ||
4975                                     btrfs_buffer_uptodate(cur, gen, 1) <= 0) {
4976                                         slot++;
4977                                         if (cur)
4978                                                 free_extent_buffer(cur);
4979                                         goto next;
4980                                 }
4981                                 free_extent_buffer(cur);
4982                         }
4983                         if (gen < min_trans) {
4984                                 slot++;
4985                                 goto next;
4986                         }
4987                         btrfs_node_key_to_cpu(c, key, slot);
4988                 }
4989                 return 0;
4990         }
4991         return 1;
4992 }
4993
4994 /*
4995  * search the tree again to find a leaf with greater keys
4996  * returns 0 if it found something or 1 if there are no greater leaves.
4997  * returns < 0 on io errors.
4998  */
4999 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5000 {
5001         int slot;
5002         int level;
5003         struct extent_buffer *c;
5004         struct extent_buffer *next;
5005         struct btrfs_key key;
5006         u32 nritems;
5007         int ret;
5008         int old_spinning = path->leave_spinning;
5009         int next_rw_lock = 0;
5010
5011         nritems = btrfs_header_nritems(path->nodes[0]);
5012         if (nritems == 0)
5013                 return 1;
5014
5015         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5016 again:
5017         level = 1;
5018         next = NULL;
5019         next_rw_lock = 0;
5020         btrfs_release_path(path);
5021
5022         path->keep_locks = 1;
5023         path->leave_spinning = 1;
5024
5025         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5026         path->keep_locks = 0;
5027
5028         if (ret < 0)
5029                 return ret;
5030
5031         nritems = btrfs_header_nritems(path->nodes[0]);
5032         /*
5033          * by releasing the path above we dropped all our locks.  A balance
5034          * could have added more items next to the key that used to be
5035          * at the very end of the block.  So, check again here and
5036          * advance the path if there are now more items available.
5037          */
5038         if (nritems > 0 && path->slots[0] < nritems - 1) {
5039                 if (ret == 0)
5040                         path->slots[0]++;
5041                 ret = 0;
5042                 goto done;
5043         }
5044
5045         while (level < BTRFS_MAX_LEVEL) {
5046                 if (!path->nodes[level]) {
5047                         ret = 1;
5048                         goto done;
5049                 }
5050
5051                 slot = path->slots[level] + 1;
5052                 c = path->nodes[level];
5053                 if (slot >= btrfs_header_nritems(c)) {
5054                         level++;
5055                         if (level == BTRFS_MAX_LEVEL) {
5056                                 ret = 1;
5057                                 goto done;
5058                         }
5059                         continue;
5060                 }
5061
5062                 if (next) {
5063                         btrfs_tree_unlock_rw(next, next_rw_lock);
5064                         free_extent_buffer(next);
5065                 }
5066
5067                 next = c;
5068                 next_rw_lock = path->locks[level];
5069                 ret = read_block_for_search(NULL, root, path, &next, level,
5070                                             slot, &key, 0);
5071                 if (ret == -EAGAIN)
5072                         goto again;
5073
5074                 if (ret < 0) {
5075                         btrfs_release_path(path);
5076                         goto done;
5077                 }
5078
5079                 if (!path->skip_locking) {
5080                         ret = btrfs_try_tree_read_lock(next);
5081                         if (!ret) {
5082                                 btrfs_set_path_blocking(path);
5083                                 btrfs_tree_read_lock(next);
5084                                 btrfs_clear_path_blocking(path, next,
5085                                                           BTRFS_READ_LOCK);
5086                         }
5087                         next_rw_lock = BTRFS_READ_LOCK;
5088                 }
5089                 break;
5090         }
5091         path->slots[level] = slot;
5092         while (1) {
5093                 level--;
5094                 c = path->nodes[level];
5095                 if (path->locks[level])
5096                         btrfs_tree_unlock_rw(c, path->locks[level]);
5097
5098                 free_extent_buffer(c);
5099                 path->nodes[level] = next;
5100                 path->slots[level] = 0;
5101                 if (!path->skip_locking)
5102                         path->locks[level] = next_rw_lock;
5103                 if (!level)
5104                         break;
5105
5106                 ret = read_block_for_search(NULL, root, path, &next, level,
5107                                             0, &key, 0);
5108                 if (ret == -EAGAIN)
5109                         goto again;
5110
5111                 if (ret < 0) {
5112                         btrfs_release_path(path);
5113                         goto done;
5114                 }
5115
5116                 if (!path->skip_locking) {
5117                         ret = btrfs_try_tree_read_lock(next);
5118                         if (!ret) {
5119                                 btrfs_set_path_blocking(path);
5120                                 btrfs_tree_read_lock(next);
5121                                 btrfs_clear_path_blocking(path, next,
5122                                                           BTRFS_READ_LOCK);
5123                         }
5124                         next_rw_lock = BTRFS_READ_LOCK;
5125                 }
5126         }
5127         ret = 0;
5128 done:
5129         unlock_up(path, 0, 1, 0, NULL);
5130         path->leave_spinning = old_spinning;
5131         if (!old_spinning)
5132                 btrfs_set_path_blocking(path);
5133
5134         return ret;
5135 }
5136
5137 /*
5138  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5139  * searching until it gets past min_objectid or finds an item of 'type'
5140  *
5141  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5142  */
5143 int btrfs_previous_item(struct btrfs_root *root,
5144                         struct btrfs_path *path, u64 min_objectid,
5145                         int type)
5146 {
5147         struct btrfs_key found_key;
5148         struct extent_buffer *leaf;
5149         u32 nritems;
5150         int ret;
5151
5152         while (1) {
5153                 if (path->slots[0] == 0) {
5154                         btrfs_set_path_blocking(path);
5155                         ret = btrfs_prev_leaf(root, path);
5156                         if (ret != 0)
5157                                 return ret;
5158                 } else {
5159                         path->slots[0]--;
5160                 }
5161                 leaf = path->nodes[0];
5162                 nritems = btrfs_header_nritems(leaf);
5163                 if (nritems == 0)
5164                         return 1;
5165                 if (path->slots[0] == nritems)
5166                         path->slots[0]--;
5167
5168                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5169                 if (found_key.objectid < min_objectid)
5170                         break;
5171                 if (found_key.type == type)
5172                         return 0;
5173                 if (found_key.objectid == min_objectid &&
5174                     found_key.type < type)
5175                         break;
5176         }
5177         return 1;
5178 }