0da812cd1a95a684b57fa868ac12fc7019992792
[linux-block.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include <linux/vmalloc.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "print-tree.h"
27 #include "locking.h"
28
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30                       *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
32                       *root, struct btrfs_key *ins_key,
33                       struct btrfs_path *path, int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35                           struct btrfs_root *root, struct extent_buffer *dst,
36                           struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38                               struct btrfs_root *root,
39                               struct extent_buffer *dst_buf,
40                               struct extent_buffer *src_buf);
41 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
42                     int level, int slot);
43 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44                                  struct extent_buffer *eb);
45
46 struct btrfs_path *btrfs_alloc_path(void)
47 {
48         return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
49 }
50
51 /*
52  * set all locked nodes in the path to blocking locks.  This should
53  * be done before scheduling
54  */
55 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
56 {
57         int i;
58         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
59                 if (!p->nodes[i] || !p->locks[i])
60                         continue;
61                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
62                 if (p->locks[i] == BTRFS_READ_LOCK)
63                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
64                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
65                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
66         }
67 }
68
69 /*
70  * reset all the locked nodes in the patch to spinning locks.
71  *
72  * held is used to keep lockdep happy, when lockdep is enabled
73  * we set held to a blocking lock before we go around and
74  * retake all the spinlocks in the path.  You can safely use NULL
75  * for held
76  */
77 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
78                                         struct extent_buffer *held, int held_rw)
79 {
80         int i;
81
82         if (held) {
83                 btrfs_set_lock_blocking_rw(held, held_rw);
84                 if (held_rw == BTRFS_WRITE_LOCK)
85                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
86                 else if (held_rw == BTRFS_READ_LOCK)
87                         held_rw = BTRFS_READ_LOCK_BLOCKING;
88         }
89         btrfs_set_path_blocking(p);
90
91         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
92                 if (p->nodes[i] && p->locks[i]) {
93                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
94                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
95                                 p->locks[i] = BTRFS_WRITE_LOCK;
96                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
97                                 p->locks[i] = BTRFS_READ_LOCK;
98                 }
99         }
100
101         if (held)
102                 btrfs_clear_lock_blocking_rw(held, held_rw);
103 }
104
105 /* this also releases the path */
106 void btrfs_free_path(struct btrfs_path *p)
107 {
108         if (!p)
109                 return;
110         btrfs_release_path(p);
111         kmem_cache_free(btrfs_path_cachep, p);
112 }
113
114 /*
115  * path release drops references on the extent buffers in the path
116  * and it drops any locks held by this path
117  *
118  * It is safe to call this on paths that no locks or extent buffers held.
119  */
120 noinline void btrfs_release_path(struct btrfs_path *p)
121 {
122         int i;
123
124         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
125                 p->slots[i] = 0;
126                 if (!p->nodes[i])
127                         continue;
128                 if (p->locks[i]) {
129                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
130                         p->locks[i] = 0;
131                 }
132                 free_extent_buffer(p->nodes[i]);
133                 p->nodes[i] = NULL;
134         }
135 }
136
137 /*
138  * safely gets a reference on the root node of a tree.  A lock
139  * is not taken, so a concurrent writer may put a different node
140  * at the root of the tree.  See btrfs_lock_root_node for the
141  * looping required.
142  *
143  * The extent buffer returned by this has a reference taken, so
144  * it won't disappear.  It may stop being the root of the tree
145  * at any time because there are no locks held.
146  */
147 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
148 {
149         struct extent_buffer *eb;
150
151         while (1) {
152                 rcu_read_lock();
153                 eb = rcu_dereference(root->node);
154
155                 /*
156                  * RCU really hurts here, we could free up the root node because
157                  * it was COWed but we may not get the new root node yet so do
158                  * the inc_not_zero dance and if it doesn't work then
159                  * synchronize_rcu and try again.
160                  */
161                 if (atomic_inc_not_zero(&eb->refs)) {
162                         rcu_read_unlock();
163                         break;
164                 }
165                 rcu_read_unlock();
166                 synchronize_rcu();
167         }
168         return eb;
169 }
170
171 /* loop around taking references on and locking the root node of the
172  * tree until you end up with a lock on the root.  A locked buffer
173  * is returned, with a reference held.
174  */
175 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
176 {
177         struct extent_buffer *eb;
178
179         while (1) {
180                 eb = btrfs_root_node(root);
181                 btrfs_tree_lock(eb);
182                 if (eb == root->node)
183                         break;
184                 btrfs_tree_unlock(eb);
185                 free_extent_buffer(eb);
186         }
187         return eb;
188 }
189
190 /* loop around taking references on and locking the root node of the
191  * tree until you end up with a lock on the root.  A locked buffer
192  * is returned, with a reference held.
193  */
194 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
195 {
196         struct extent_buffer *eb;
197
198         while (1) {
199                 eb = btrfs_root_node(root);
200                 btrfs_tree_read_lock(eb);
201                 if (eb == root->node)
202                         break;
203                 btrfs_tree_read_unlock(eb);
204                 free_extent_buffer(eb);
205         }
206         return eb;
207 }
208
209 /* cowonly root (everything not a reference counted cow subvolume), just get
210  * put onto a simple dirty list.  transaction.c walks this to make sure they
211  * get properly updated on disk.
212  */
213 static void add_root_to_dirty_list(struct btrfs_root *root)
214 {
215         if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
216             !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
217                 return;
218
219         spin_lock(&root->fs_info->trans_lock);
220         if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
221                 /* Want the extent tree to be the last on the list */
222                 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
223                         list_move_tail(&root->dirty_list,
224                                        &root->fs_info->dirty_cowonly_roots);
225                 else
226                         list_move(&root->dirty_list,
227                                   &root->fs_info->dirty_cowonly_roots);
228         }
229         spin_unlock(&root->fs_info->trans_lock);
230 }
231
232 /*
233  * used by snapshot creation to make a copy of a root for a tree with
234  * a given objectid.  The buffer with the new root node is returned in
235  * cow_ret, and this func returns zero on success or a negative error code.
236  */
237 int btrfs_copy_root(struct btrfs_trans_handle *trans,
238                       struct btrfs_root *root,
239                       struct extent_buffer *buf,
240                       struct extent_buffer **cow_ret, u64 new_root_objectid)
241 {
242         struct extent_buffer *cow;
243         int ret = 0;
244         int level;
245         struct btrfs_disk_key disk_key;
246
247         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
248                 trans->transid != root->fs_info->running_transaction->transid);
249         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
250                 trans->transid != root->last_trans);
251
252         level = btrfs_header_level(buf);
253         if (level == 0)
254                 btrfs_item_key(buf, &disk_key, 0);
255         else
256                 btrfs_node_key(buf, &disk_key, 0);
257
258         cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
259                         &disk_key, level, buf->start, 0);
260         if (IS_ERR(cow))
261                 return PTR_ERR(cow);
262
263         copy_extent_buffer(cow, buf, 0, 0, cow->len);
264         btrfs_set_header_bytenr(cow, cow->start);
265         btrfs_set_header_generation(cow, trans->transid);
266         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
267         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
268                                      BTRFS_HEADER_FLAG_RELOC);
269         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
270                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
271         else
272                 btrfs_set_header_owner(cow, new_root_objectid);
273
274         write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
275                             BTRFS_FSID_SIZE);
276
277         WARN_ON(btrfs_header_generation(buf) > trans->transid);
278         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
279                 ret = btrfs_inc_ref(trans, root, cow, 1);
280         else
281                 ret = btrfs_inc_ref(trans, root, cow, 0);
282
283         if (ret)
284                 return ret;
285
286         btrfs_mark_buffer_dirty(cow);
287         *cow_ret = cow;
288         return 0;
289 }
290
291 enum mod_log_op {
292         MOD_LOG_KEY_REPLACE,
293         MOD_LOG_KEY_ADD,
294         MOD_LOG_KEY_REMOVE,
295         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
296         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
297         MOD_LOG_MOVE_KEYS,
298         MOD_LOG_ROOT_REPLACE,
299 };
300
301 struct tree_mod_move {
302         int dst_slot;
303         int nr_items;
304 };
305
306 struct tree_mod_root {
307         u64 logical;
308         u8 level;
309 };
310
311 struct tree_mod_elem {
312         struct rb_node node;
313         u64 logical;
314         u64 seq;
315         enum mod_log_op op;
316
317         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
318         int slot;
319
320         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
321         u64 generation;
322
323         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
324         struct btrfs_disk_key key;
325         u64 blockptr;
326
327         /* this is used for op == MOD_LOG_MOVE_KEYS */
328         struct tree_mod_move move;
329
330         /* this is used for op == MOD_LOG_ROOT_REPLACE */
331         struct tree_mod_root old_root;
332 };
333
334 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
335 {
336         read_lock(&fs_info->tree_mod_log_lock);
337 }
338
339 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
340 {
341         read_unlock(&fs_info->tree_mod_log_lock);
342 }
343
344 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
345 {
346         write_lock(&fs_info->tree_mod_log_lock);
347 }
348
349 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
350 {
351         write_unlock(&fs_info->tree_mod_log_lock);
352 }
353
354 /*
355  * Pull a new tree mod seq number for our operation.
356  */
357 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
358 {
359         return atomic64_inc_return(&fs_info->tree_mod_seq);
360 }
361
362 /*
363  * This adds a new blocker to the tree mod log's blocker list if the @elem
364  * passed does not already have a sequence number set. So when a caller expects
365  * to record tree modifications, it should ensure to set elem->seq to zero
366  * before calling btrfs_get_tree_mod_seq.
367  * Returns a fresh, unused tree log modification sequence number, even if no new
368  * blocker was added.
369  */
370 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
371                            struct seq_list *elem)
372 {
373         tree_mod_log_write_lock(fs_info);
374         spin_lock(&fs_info->tree_mod_seq_lock);
375         if (!elem->seq) {
376                 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
377                 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
378         }
379         spin_unlock(&fs_info->tree_mod_seq_lock);
380         tree_mod_log_write_unlock(fs_info);
381
382         return elem->seq;
383 }
384
385 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
386                             struct seq_list *elem)
387 {
388         struct rb_root *tm_root;
389         struct rb_node *node;
390         struct rb_node *next;
391         struct seq_list *cur_elem;
392         struct tree_mod_elem *tm;
393         u64 min_seq = (u64)-1;
394         u64 seq_putting = elem->seq;
395
396         if (!seq_putting)
397                 return;
398
399         spin_lock(&fs_info->tree_mod_seq_lock);
400         list_del(&elem->list);
401         elem->seq = 0;
402
403         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
404                 if (cur_elem->seq < min_seq) {
405                         if (seq_putting > cur_elem->seq) {
406                                 /*
407                                  * blocker with lower sequence number exists, we
408                                  * cannot remove anything from the log
409                                  */
410                                 spin_unlock(&fs_info->tree_mod_seq_lock);
411                                 return;
412                         }
413                         min_seq = cur_elem->seq;
414                 }
415         }
416         spin_unlock(&fs_info->tree_mod_seq_lock);
417
418         /*
419          * anything that's lower than the lowest existing (read: blocked)
420          * sequence number can be removed from the tree.
421          */
422         tree_mod_log_write_lock(fs_info);
423         tm_root = &fs_info->tree_mod_log;
424         for (node = rb_first(tm_root); node; node = next) {
425                 next = rb_next(node);
426                 tm = container_of(node, struct tree_mod_elem, node);
427                 if (tm->seq > min_seq)
428                         continue;
429                 rb_erase(node, tm_root);
430                 kfree(tm);
431         }
432         tree_mod_log_write_unlock(fs_info);
433 }
434
435 /*
436  * key order of the log:
437  *       node/leaf start address -> sequence
438  *
439  * The 'start address' is the logical address of the *new* root node
440  * for root replace operations, or the logical address of the affected
441  * block for all other operations.
442  *
443  * Note: must be called with write lock (tree_mod_log_write_lock).
444  */
445 static noinline int
446 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
447 {
448         struct rb_root *tm_root;
449         struct rb_node **new;
450         struct rb_node *parent = NULL;
451         struct tree_mod_elem *cur;
452
453         BUG_ON(!tm);
454
455         tm->seq = btrfs_inc_tree_mod_seq(fs_info);
456
457         tm_root = &fs_info->tree_mod_log;
458         new = &tm_root->rb_node;
459         while (*new) {
460                 cur = container_of(*new, struct tree_mod_elem, node);
461                 parent = *new;
462                 if (cur->logical < tm->logical)
463                         new = &((*new)->rb_left);
464                 else if (cur->logical > tm->logical)
465                         new = &((*new)->rb_right);
466                 else if (cur->seq < tm->seq)
467                         new = &((*new)->rb_left);
468                 else if (cur->seq > tm->seq)
469                         new = &((*new)->rb_right);
470                 else
471                         return -EEXIST;
472         }
473
474         rb_link_node(&tm->node, parent, new);
475         rb_insert_color(&tm->node, tm_root);
476         return 0;
477 }
478
479 /*
480  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
481  * returns zero with the tree_mod_log_lock acquired. The caller must hold
482  * this until all tree mod log insertions are recorded in the rb tree and then
483  * call tree_mod_log_write_unlock() to release.
484  */
485 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
486                                     struct extent_buffer *eb) {
487         smp_mb();
488         if (list_empty(&(fs_info)->tree_mod_seq_list))
489                 return 1;
490         if (eb && btrfs_header_level(eb) == 0)
491                 return 1;
492
493         tree_mod_log_write_lock(fs_info);
494         if (list_empty(&(fs_info)->tree_mod_seq_list)) {
495                 tree_mod_log_write_unlock(fs_info);
496                 return 1;
497         }
498
499         return 0;
500 }
501
502 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
503 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
504                                     struct extent_buffer *eb)
505 {
506         smp_mb();
507         if (list_empty(&(fs_info)->tree_mod_seq_list))
508                 return 0;
509         if (eb && btrfs_header_level(eb) == 0)
510                 return 0;
511
512         return 1;
513 }
514
515 static struct tree_mod_elem *
516 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
517                     enum mod_log_op op, gfp_t flags)
518 {
519         struct tree_mod_elem *tm;
520
521         tm = kzalloc(sizeof(*tm), flags);
522         if (!tm)
523                 return NULL;
524
525         tm->logical = eb->start;
526         if (op != MOD_LOG_KEY_ADD) {
527                 btrfs_node_key(eb, &tm->key, slot);
528                 tm->blockptr = btrfs_node_blockptr(eb, slot);
529         }
530         tm->op = op;
531         tm->slot = slot;
532         tm->generation = btrfs_node_ptr_generation(eb, slot);
533         RB_CLEAR_NODE(&tm->node);
534
535         return tm;
536 }
537
538 static noinline int
539 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
540                         struct extent_buffer *eb, int slot,
541                         enum mod_log_op op, gfp_t flags)
542 {
543         struct tree_mod_elem *tm;
544         int ret;
545
546         if (!tree_mod_need_log(fs_info, eb))
547                 return 0;
548
549         tm = alloc_tree_mod_elem(eb, slot, op, flags);
550         if (!tm)
551                 return -ENOMEM;
552
553         if (tree_mod_dont_log(fs_info, eb)) {
554                 kfree(tm);
555                 return 0;
556         }
557
558         ret = __tree_mod_log_insert(fs_info, tm);
559         tree_mod_log_write_unlock(fs_info);
560         if (ret)
561                 kfree(tm);
562
563         return ret;
564 }
565
566 static noinline int
567 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
568                          struct extent_buffer *eb, int dst_slot, int src_slot,
569                          int nr_items, gfp_t flags)
570 {
571         struct tree_mod_elem *tm = NULL;
572         struct tree_mod_elem **tm_list = NULL;
573         int ret = 0;
574         int i;
575         int locked = 0;
576
577         if (!tree_mod_need_log(fs_info, eb))
578                 return 0;
579
580         tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
581         if (!tm_list)
582                 return -ENOMEM;
583
584         tm = kzalloc(sizeof(*tm), flags);
585         if (!tm) {
586                 ret = -ENOMEM;
587                 goto free_tms;
588         }
589
590         tm->logical = eb->start;
591         tm->slot = src_slot;
592         tm->move.dst_slot = dst_slot;
593         tm->move.nr_items = nr_items;
594         tm->op = MOD_LOG_MOVE_KEYS;
595
596         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
597                 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
598                     MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
599                 if (!tm_list[i]) {
600                         ret = -ENOMEM;
601                         goto free_tms;
602                 }
603         }
604
605         if (tree_mod_dont_log(fs_info, eb))
606                 goto free_tms;
607         locked = 1;
608
609         /*
610          * When we override something during the move, we log these removals.
611          * This can only happen when we move towards the beginning of the
612          * buffer, i.e. dst_slot < src_slot.
613          */
614         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
615                 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
616                 if (ret)
617                         goto free_tms;
618         }
619
620         ret = __tree_mod_log_insert(fs_info, tm);
621         if (ret)
622                 goto free_tms;
623         tree_mod_log_write_unlock(fs_info);
624         kfree(tm_list);
625
626         return 0;
627 free_tms:
628         for (i = 0; i < nr_items; i++) {
629                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
630                         rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
631                 kfree(tm_list[i]);
632         }
633         if (locked)
634                 tree_mod_log_write_unlock(fs_info);
635         kfree(tm_list);
636         kfree(tm);
637
638         return ret;
639 }
640
641 static inline int
642 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
643                        struct tree_mod_elem **tm_list,
644                        int nritems)
645 {
646         int i, j;
647         int ret;
648
649         for (i = nritems - 1; i >= 0; i--) {
650                 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
651                 if (ret) {
652                         for (j = nritems - 1; j > i; j--)
653                                 rb_erase(&tm_list[j]->node,
654                                          &fs_info->tree_mod_log);
655                         return ret;
656                 }
657         }
658
659         return 0;
660 }
661
662 static noinline int
663 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
664                          struct extent_buffer *old_root,
665                          struct extent_buffer *new_root, gfp_t flags,
666                          int log_removal)
667 {
668         struct tree_mod_elem *tm = NULL;
669         struct tree_mod_elem **tm_list = NULL;
670         int nritems = 0;
671         int ret = 0;
672         int i;
673
674         if (!tree_mod_need_log(fs_info, NULL))
675                 return 0;
676
677         if (log_removal && btrfs_header_level(old_root) > 0) {
678                 nritems = btrfs_header_nritems(old_root);
679                 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
680                                   flags);
681                 if (!tm_list) {
682                         ret = -ENOMEM;
683                         goto free_tms;
684                 }
685                 for (i = 0; i < nritems; i++) {
686                         tm_list[i] = alloc_tree_mod_elem(old_root, i,
687                             MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
688                         if (!tm_list[i]) {
689                                 ret = -ENOMEM;
690                                 goto free_tms;
691                         }
692                 }
693         }
694
695         tm = kzalloc(sizeof(*tm), flags);
696         if (!tm) {
697                 ret = -ENOMEM;
698                 goto free_tms;
699         }
700
701         tm->logical = new_root->start;
702         tm->old_root.logical = old_root->start;
703         tm->old_root.level = btrfs_header_level(old_root);
704         tm->generation = btrfs_header_generation(old_root);
705         tm->op = MOD_LOG_ROOT_REPLACE;
706
707         if (tree_mod_dont_log(fs_info, NULL))
708                 goto free_tms;
709
710         if (tm_list)
711                 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
712         if (!ret)
713                 ret = __tree_mod_log_insert(fs_info, tm);
714
715         tree_mod_log_write_unlock(fs_info);
716         if (ret)
717                 goto free_tms;
718         kfree(tm_list);
719
720         return ret;
721
722 free_tms:
723         if (tm_list) {
724                 for (i = 0; i < nritems; i++)
725                         kfree(tm_list[i]);
726                 kfree(tm_list);
727         }
728         kfree(tm);
729
730         return ret;
731 }
732
733 static struct tree_mod_elem *
734 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
735                       int smallest)
736 {
737         struct rb_root *tm_root;
738         struct rb_node *node;
739         struct tree_mod_elem *cur = NULL;
740         struct tree_mod_elem *found = NULL;
741
742         tree_mod_log_read_lock(fs_info);
743         tm_root = &fs_info->tree_mod_log;
744         node = tm_root->rb_node;
745         while (node) {
746                 cur = container_of(node, struct tree_mod_elem, node);
747                 if (cur->logical < start) {
748                         node = node->rb_left;
749                 } else if (cur->logical > start) {
750                         node = node->rb_right;
751                 } else if (cur->seq < min_seq) {
752                         node = node->rb_left;
753                 } else if (!smallest) {
754                         /* we want the node with the highest seq */
755                         if (found)
756                                 BUG_ON(found->seq > cur->seq);
757                         found = cur;
758                         node = node->rb_left;
759                 } else if (cur->seq > min_seq) {
760                         /* we want the node with the smallest seq */
761                         if (found)
762                                 BUG_ON(found->seq < cur->seq);
763                         found = cur;
764                         node = node->rb_right;
765                 } else {
766                         found = cur;
767                         break;
768                 }
769         }
770         tree_mod_log_read_unlock(fs_info);
771
772         return found;
773 }
774
775 /*
776  * this returns the element from the log with the smallest time sequence
777  * value that's in the log (the oldest log item). any element with a time
778  * sequence lower than min_seq will be ignored.
779  */
780 static struct tree_mod_elem *
781 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
782                            u64 min_seq)
783 {
784         return __tree_mod_log_search(fs_info, start, min_seq, 1);
785 }
786
787 /*
788  * this returns the element from the log with the largest time sequence
789  * value that's in the log (the most recent log item). any element with
790  * a time sequence lower than min_seq will be ignored.
791  */
792 static struct tree_mod_elem *
793 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
794 {
795         return __tree_mod_log_search(fs_info, start, min_seq, 0);
796 }
797
798 static noinline int
799 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
800                      struct extent_buffer *src, unsigned long dst_offset,
801                      unsigned long src_offset, int nr_items)
802 {
803         int ret = 0;
804         struct tree_mod_elem **tm_list = NULL;
805         struct tree_mod_elem **tm_list_add, **tm_list_rem;
806         int i;
807         int locked = 0;
808
809         if (!tree_mod_need_log(fs_info, NULL))
810                 return 0;
811
812         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
813                 return 0;
814
815         tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
816                           GFP_NOFS);
817         if (!tm_list)
818                 return -ENOMEM;
819
820         tm_list_add = tm_list;
821         tm_list_rem = tm_list + nr_items;
822         for (i = 0; i < nr_items; i++) {
823                 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
824                     MOD_LOG_KEY_REMOVE, GFP_NOFS);
825                 if (!tm_list_rem[i]) {
826                         ret = -ENOMEM;
827                         goto free_tms;
828                 }
829
830                 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
831                     MOD_LOG_KEY_ADD, GFP_NOFS);
832                 if (!tm_list_add[i]) {
833                         ret = -ENOMEM;
834                         goto free_tms;
835                 }
836         }
837
838         if (tree_mod_dont_log(fs_info, NULL))
839                 goto free_tms;
840         locked = 1;
841
842         for (i = 0; i < nr_items; i++) {
843                 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
844                 if (ret)
845                         goto free_tms;
846                 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
847                 if (ret)
848                         goto free_tms;
849         }
850
851         tree_mod_log_write_unlock(fs_info);
852         kfree(tm_list);
853
854         return 0;
855
856 free_tms:
857         for (i = 0; i < nr_items * 2; i++) {
858                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
859                         rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
860                 kfree(tm_list[i]);
861         }
862         if (locked)
863                 tree_mod_log_write_unlock(fs_info);
864         kfree(tm_list);
865
866         return ret;
867 }
868
869 static inline void
870 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
871                      int dst_offset, int src_offset, int nr_items)
872 {
873         int ret;
874         ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
875                                        nr_items, GFP_NOFS);
876         BUG_ON(ret < 0);
877 }
878
879 static noinline void
880 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
881                           struct extent_buffer *eb, int slot, int atomic)
882 {
883         int ret;
884
885         ret = tree_mod_log_insert_key(fs_info, eb, slot,
886                                         MOD_LOG_KEY_REPLACE,
887                                         atomic ? GFP_ATOMIC : GFP_NOFS);
888         BUG_ON(ret < 0);
889 }
890
891 static noinline int
892 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
893 {
894         struct tree_mod_elem **tm_list = NULL;
895         int nritems = 0;
896         int i;
897         int ret = 0;
898
899         if (btrfs_header_level(eb) == 0)
900                 return 0;
901
902         if (!tree_mod_need_log(fs_info, NULL))
903                 return 0;
904
905         nritems = btrfs_header_nritems(eb);
906         tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
907         if (!tm_list)
908                 return -ENOMEM;
909
910         for (i = 0; i < nritems; i++) {
911                 tm_list[i] = alloc_tree_mod_elem(eb, i,
912                     MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
913                 if (!tm_list[i]) {
914                         ret = -ENOMEM;
915                         goto free_tms;
916                 }
917         }
918
919         if (tree_mod_dont_log(fs_info, eb))
920                 goto free_tms;
921
922         ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
923         tree_mod_log_write_unlock(fs_info);
924         if (ret)
925                 goto free_tms;
926         kfree(tm_list);
927
928         return 0;
929
930 free_tms:
931         for (i = 0; i < nritems; i++)
932                 kfree(tm_list[i]);
933         kfree(tm_list);
934
935         return ret;
936 }
937
938 static noinline void
939 tree_mod_log_set_root_pointer(struct btrfs_root *root,
940                               struct extent_buffer *new_root_node,
941                               int log_removal)
942 {
943         int ret;
944         ret = tree_mod_log_insert_root(root->fs_info, root->node,
945                                        new_root_node, GFP_NOFS, log_removal);
946         BUG_ON(ret < 0);
947 }
948
949 /*
950  * check if the tree block can be shared by multiple trees
951  */
952 int btrfs_block_can_be_shared(struct btrfs_root *root,
953                               struct extent_buffer *buf)
954 {
955         /*
956          * Tree blocks not in reference counted trees and tree roots
957          * are never shared. If a block was allocated after the last
958          * snapshot and the block was not allocated by tree relocation,
959          * we know the block is not shared.
960          */
961         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
962             buf != root->node && buf != root->commit_root &&
963             (btrfs_header_generation(buf) <=
964              btrfs_root_last_snapshot(&root->root_item) ||
965              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
966                 return 1;
967 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
968         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
969             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
970                 return 1;
971 #endif
972         return 0;
973 }
974
975 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
976                                        struct btrfs_root *root,
977                                        struct extent_buffer *buf,
978                                        struct extent_buffer *cow,
979                                        int *last_ref)
980 {
981         u64 refs;
982         u64 owner;
983         u64 flags;
984         u64 new_flags = 0;
985         int ret;
986
987         /*
988          * Backrefs update rules:
989          *
990          * Always use full backrefs for extent pointers in tree block
991          * allocated by tree relocation.
992          *
993          * If a shared tree block is no longer referenced by its owner
994          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
995          * use full backrefs for extent pointers in tree block.
996          *
997          * If a tree block is been relocating
998          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
999          * use full backrefs for extent pointers in tree block.
1000          * The reason for this is some operations (such as drop tree)
1001          * are only allowed for blocks use full backrefs.
1002          */
1003
1004         if (btrfs_block_can_be_shared(root, buf)) {
1005                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
1006                                                btrfs_header_level(buf), 1,
1007                                                &refs, &flags);
1008                 if (ret)
1009                         return ret;
1010                 if (refs == 0) {
1011                         ret = -EROFS;
1012                         btrfs_handle_fs_error(root->fs_info, ret, NULL);
1013                         return ret;
1014                 }
1015         } else {
1016                 refs = 1;
1017                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1018                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1019                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1020                 else
1021                         flags = 0;
1022         }
1023
1024         owner = btrfs_header_owner(buf);
1025         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1026                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1027
1028         if (refs > 1) {
1029                 if ((owner == root->root_key.objectid ||
1030                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1031                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1032                         ret = btrfs_inc_ref(trans, root, buf, 1);
1033                         BUG_ON(ret); /* -ENOMEM */
1034
1035                         if (root->root_key.objectid ==
1036                             BTRFS_TREE_RELOC_OBJECTID) {
1037                                 ret = btrfs_dec_ref(trans, root, buf, 0);
1038                                 BUG_ON(ret); /* -ENOMEM */
1039                                 ret = btrfs_inc_ref(trans, root, cow, 1);
1040                                 BUG_ON(ret); /* -ENOMEM */
1041                         }
1042                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1043                 } else {
1044
1045                         if (root->root_key.objectid ==
1046                             BTRFS_TREE_RELOC_OBJECTID)
1047                                 ret = btrfs_inc_ref(trans, root, cow, 1);
1048                         else
1049                                 ret = btrfs_inc_ref(trans, root, cow, 0);
1050                         BUG_ON(ret); /* -ENOMEM */
1051                 }
1052                 if (new_flags != 0) {
1053                         int level = btrfs_header_level(buf);
1054
1055                         ret = btrfs_set_disk_extent_flags(trans, root,
1056                                                           buf->start,
1057                                                           buf->len,
1058                                                           new_flags, level, 0);
1059                         if (ret)
1060                                 return ret;
1061                 }
1062         } else {
1063                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1064                         if (root->root_key.objectid ==
1065                             BTRFS_TREE_RELOC_OBJECTID)
1066                                 ret = btrfs_inc_ref(trans, root, cow, 1);
1067                         else
1068                                 ret = btrfs_inc_ref(trans, root, cow, 0);
1069                         BUG_ON(ret); /* -ENOMEM */
1070                         ret = btrfs_dec_ref(trans, root, buf, 1);
1071                         BUG_ON(ret); /* -ENOMEM */
1072                 }
1073                 clean_tree_block(trans, root->fs_info, buf);
1074                 *last_ref = 1;
1075         }
1076         return 0;
1077 }
1078
1079 /*
1080  * does the dirty work in cow of a single block.  The parent block (if
1081  * supplied) is updated to point to the new cow copy.  The new buffer is marked
1082  * dirty and returned locked.  If you modify the block it needs to be marked
1083  * dirty again.
1084  *
1085  * search_start -- an allocation hint for the new block
1086  *
1087  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1088  * bytes the allocator should try to find free next to the block it returns.
1089  * This is just a hint and may be ignored by the allocator.
1090  */
1091 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1092                              struct btrfs_root *root,
1093                              struct extent_buffer *buf,
1094                              struct extent_buffer *parent, int parent_slot,
1095                              struct extent_buffer **cow_ret,
1096                              u64 search_start, u64 empty_size)
1097 {
1098         struct btrfs_disk_key disk_key;
1099         struct extent_buffer *cow;
1100         int level, ret;
1101         int last_ref = 0;
1102         int unlock_orig = 0;
1103         u64 parent_start;
1104
1105         if (*cow_ret == buf)
1106                 unlock_orig = 1;
1107
1108         btrfs_assert_tree_locked(buf);
1109
1110         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1111                 trans->transid != root->fs_info->running_transaction->transid);
1112         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1113                 trans->transid != root->last_trans);
1114
1115         level = btrfs_header_level(buf);
1116
1117         if (level == 0)
1118                 btrfs_item_key(buf, &disk_key, 0);
1119         else
1120                 btrfs_node_key(buf, &disk_key, 0);
1121
1122         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1123                 if (parent)
1124                         parent_start = parent->start;
1125                 else
1126                         parent_start = 0;
1127         } else
1128                 parent_start = 0;
1129
1130         cow = btrfs_alloc_tree_block(trans, root, parent_start,
1131                         root->root_key.objectid, &disk_key, level,
1132                         search_start, empty_size);
1133         if (IS_ERR(cow))
1134                 return PTR_ERR(cow);
1135
1136         /* cow is set to blocking by btrfs_init_new_buffer */
1137
1138         copy_extent_buffer(cow, buf, 0, 0, cow->len);
1139         btrfs_set_header_bytenr(cow, cow->start);
1140         btrfs_set_header_generation(cow, trans->transid);
1141         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1142         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1143                                      BTRFS_HEADER_FLAG_RELOC);
1144         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1145                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1146         else
1147                 btrfs_set_header_owner(cow, root->root_key.objectid);
1148
1149         write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1150                             BTRFS_FSID_SIZE);
1151
1152         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1153         if (ret) {
1154                 btrfs_abort_transaction(trans, ret);
1155                 return ret;
1156         }
1157
1158         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1159                 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1160                 if (ret) {
1161                         btrfs_abort_transaction(trans, ret);
1162                         return ret;
1163                 }
1164         }
1165
1166         if (buf == root->node) {
1167                 WARN_ON(parent && parent != buf);
1168                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1169                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1170                         parent_start = buf->start;
1171                 else
1172                         parent_start = 0;
1173
1174                 extent_buffer_get(cow);
1175                 tree_mod_log_set_root_pointer(root, cow, 1);
1176                 rcu_assign_pointer(root->node, cow);
1177
1178                 btrfs_free_tree_block(trans, root, buf, parent_start,
1179                                       last_ref);
1180                 free_extent_buffer(buf);
1181                 add_root_to_dirty_list(root);
1182         } else {
1183                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1184                         parent_start = parent->start;
1185                 else
1186                         parent_start = 0;
1187
1188                 WARN_ON(trans->transid != btrfs_header_generation(parent));
1189                 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1190                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
1191                 btrfs_set_node_blockptr(parent, parent_slot,
1192                                         cow->start);
1193                 btrfs_set_node_ptr_generation(parent, parent_slot,
1194                                               trans->transid);
1195                 btrfs_mark_buffer_dirty(parent);
1196                 if (last_ref) {
1197                         ret = tree_mod_log_free_eb(root->fs_info, buf);
1198                         if (ret) {
1199                                 btrfs_abort_transaction(trans, ret);
1200                                 return ret;
1201                         }
1202                 }
1203                 btrfs_free_tree_block(trans, root, buf, parent_start,
1204                                       last_ref);
1205         }
1206         if (unlock_orig)
1207                 btrfs_tree_unlock(buf);
1208         free_extent_buffer_stale(buf);
1209         btrfs_mark_buffer_dirty(cow);
1210         *cow_ret = cow;
1211         return 0;
1212 }
1213
1214 /*
1215  * returns the logical address of the oldest predecessor of the given root.
1216  * entries older than time_seq are ignored.
1217  */
1218 static struct tree_mod_elem *
1219 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1220                            struct extent_buffer *eb_root, u64 time_seq)
1221 {
1222         struct tree_mod_elem *tm;
1223         struct tree_mod_elem *found = NULL;
1224         u64 root_logical = eb_root->start;
1225         int looped = 0;
1226
1227         if (!time_seq)
1228                 return NULL;
1229
1230         /*
1231          * the very last operation that's logged for a root is the
1232          * replacement operation (if it is replaced at all). this has
1233          * the logical address of the *new* root, making it the very
1234          * first operation that's logged for this root.
1235          */
1236         while (1) {
1237                 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1238                                                 time_seq);
1239                 if (!looped && !tm)
1240                         return NULL;
1241                 /*
1242                  * if there are no tree operation for the oldest root, we simply
1243                  * return it. this should only happen if that (old) root is at
1244                  * level 0.
1245                  */
1246                 if (!tm)
1247                         break;
1248
1249                 /*
1250                  * if there's an operation that's not a root replacement, we
1251                  * found the oldest version of our root. normally, we'll find a
1252                  * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1253                  */
1254                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1255                         break;
1256
1257                 found = tm;
1258                 root_logical = tm->old_root.logical;
1259                 looped = 1;
1260         }
1261
1262         /* if there's no old root to return, return what we found instead */
1263         if (!found)
1264                 found = tm;
1265
1266         return found;
1267 }
1268
1269 /*
1270  * tm is a pointer to the first operation to rewind within eb. then, all
1271  * previous operations will be rewound (until we reach something older than
1272  * time_seq).
1273  */
1274 static void
1275 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1276                       u64 time_seq, struct tree_mod_elem *first_tm)
1277 {
1278         u32 n;
1279         struct rb_node *next;
1280         struct tree_mod_elem *tm = first_tm;
1281         unsigned long o_dst;
1282         unsigned long o_src;
1283         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1284
1285         n = btrfs_header_nritems(eb);
1286         tree_mod_log_read_lock(fs_info);
1287         while (tm && tm->seq >= time_seq) {
1288                 /*
1289                  * all the operations are recorded with the operator used for
1290                  * the modification. as we're going backwards, we do the
1291                  * opposite of each operation here.
1292                  */
1293                 switch (tm->op) {
1294                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1295                         BUG_ON(tm->slot < n);
1296                         /* Fallthrough */
1297                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1298                 case MOD_LOG_KEY_REMOVE:
1299                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1300                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1301                         btrfs_set_node_ptr_generation(eb, tm->slot,
1302                                                       tm->generation);
1303                         n++;
1304                         break;
1305                 case MOD_LOG_KEY_REPLACE:
1306                         BUG_ON(tm->slot >= n);
1307                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1308                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1309                         btrfs_set_node_ptr_generation(eb, tm->slot,
1310                                                       tm->generation);
1311                         break;
1312                 case MOD_LOG_KEY_ADD:
1313                         /* if a move operation is needed it's in the log */
1314                         n--;
1315                         break;
1316                 case MOD_LOG_MOVE_KEYS:
1317                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1318                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1319                         memmove_extent_buffer(eb, o_dst, o_src,
1320                                               tm->move.nr_items * p_size);
1321                         break;
1322                 case MOD_LOG_ROOT_REPLACE:
1323                         /*
1324                          * this operation is special. for roots, this must be
1325                          * handled explicitly before rewinding.
1326                          * for non-roots, this operation may exist if the node
1327                          * was a root: root A -> child B; then A gets empty and
1328                          * B is promoted to the new root. in the mod log, we'll
1329                          * have a root-replace operation for B, a tree block
1330                          * that is no root. we simply ignore that operation.
1331                          */
1332                         break;
1333                 }
1334                 next = rb_next(&tm->node);
1335                 if (!next)
1336                         break;
1337                 tm = container_of(next, struct tree_mod_elem, node);
1338                 if (tm->logical != first_tm->logical)
1339                         break;
1340         }
1341         tree_mod_log_read_unlock(fs_info);
1342         btrfs_set_header_nritems(eb, n);
1343 }
1344
1345 /*
1346  * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1347  * is returned. If rewind operations happen, a fresh buffer is returned. The
1348  * returned buffer is always read-locked. If the returned buffer is not the
1349  * input buffer, the lock on the input buffer is released and the input buffer
1350  * is freed (its refcount is decremented).
1351  */
1352 static struct extent_buffer *
1353 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1354                     struct extent_buffer *eb, u64 time_seq)
1355 {
1356         struct extent_buffer *eb_rewin;
1357         struct tree_mod_elem *tm;
1358
1359         if (!time_seq)
1360                 return eb;
1361
1362         if (btrfs_header_level(eb) == 0)
1363                 return eb;
1364
1365         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1366         if (!tm)
1367                 return eb;
1368
1369         btrfs_set_path_blocking(path);
1370         btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1371
1372         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1373                 BUG_ON(tm->slot != 0);
1374                 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start,
1375                                                 eb->len);
1376                 if (!eb_rewin) {
1377                         btrfs_tree_read_unlock_blocking(eb);
1378                         free_extent_buffer(eb);
1379                         return NULL;
1380                 }
1381                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1382                 btrfs_set_header_backref_rev(eb_rewin,
1383                                              btrfs_header_backref_rev(eb));
1384                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1385                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1386         } else {
1387                 eb_rewin = btrfs_clone_extent_buffer(eb);
1388                 if (!eb_rewin) {
1389                         btrfs_tree_read_unlock_blocking(eb);
1390                         free_extent_buffer(eb);
1391                         return NULL;
1392                 }
1393         }
1394
1395         btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1396         btrfs_tree_read_unlock_blocking(eb);
1397         free_extent_buffer(eb);
1398
1399         extent_buffer_get(eb_rewin);
1400         btrfs_tree_read_lock(eb_rewin);
1401         __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1402         WARN_ON(btrfs_header_nritems(eb_rewin) >
1403                 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1404
1405         return eb_rewin;
1406 }
1407
1408 /*
1409  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1410  * value. If there are no changes, the current root->root_node is returned. If
1411  * anything changed in between, there's a fresh buffer allocated on which the
1412  * rewind operations are done. In any case, the returned buffer is read locked.
1413  * Returns NULL on error (with no locks held).
1414  */
1415 static inline struct extent_buffer *
1416 get_old_root(struct btrfs_root *root, u64 time_seq)
1417 {
1418         struct tree_mod_elem *tm;
1419         struct extent_buffer *eb = NULL;
1420         struct extent_buffer *eb_root;
1421         struct extent_buffer *old;
1422         struct tree_mod_root *old_root = NULL;
1423         u64 old_generation = 0;
1424         u64 logical;
1425
1426         eb_root = btrfs_read_lock_root_node(root);
1427         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1428         if (!tm)
1429                 return eb_root;
1430
1431         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1432                 old_root = &tm->old_root;
1433                 old_generation = tm->generation;
1434                 logical = old_root->logical;
1435         } else {
1436                 logical = eb_root->start;
1437         }
1438
1439         tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1440         if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1441                 btrfs_tree_read_unlock(eb_root);
1442                 free_extent_buffer(eb_root);
1443                 old = read_tree_block(root, logical, 0);
1444                 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1445                         if (!IS_ERR(old))
1446                                 free_extent_buffer(old);
1447                         btrfs_warn(root->fs_info,
1448                                 "failed to read tree block %llu from get_old_root", logical);
1449                 } else {
1450                         eb = btrfs_clone_extent_buffer(old);
1451                         free_extent_buffer(old);
1452                 }
1453         } else if (old_root) {
1454                 btrfs_tree_read_unlock(eb_root);
1455                 free_extent_buffer(eb_root);
1456                 eb = alloc_dummy_extent_buffer(root->fs_info, logical,
1457                                         root->nodesize);
1458         } else {
1459                 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1460                 eb = btrfs_clone_extent_buffer(eb_root);
1461                 btrfs_tree_read_unlock_blocking(eb_root);
1462                 free_extent_buffer(eb_root);
1463         }
1464
1465         if (!eb)
1466                 return NULL;
1467         extent_buffer_get(eb);
1468         btrfs_tree_read_lock(eb);
1469         if (old_root) {
1470                 btrfs_set_header_bytenr(eb, eb->start);
1471                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1472                 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1473                 btrfs_set_header_level(eb, old_root->level);
1474                 btrfs_set_header_generation(eb, old_generation);
1475         }
1476         if (tm)
1477                 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1478         else
1479                 WARN_ON(btrfs_header_level(eb) != 0);
1480         WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1481
1482         return eb;
1483 }
1484
1485 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1486 {
1487         struct tree_mod_elem *tm;
1488         int level;
1489         struct extent_buffer *eb_root = btrfs_root_node(root);
1490
1491         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1492         if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1493                 level = tm->old_root.level;
1494         } else {
1495                 level = btrfs_header_level(eb_root);
1496         }
1497         free_extent_buffer(eb_root);
1498
1499         return level;
1500 }
1501
1502 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1503                                    struct btrfs_root *root,
1504                                    struct extent_buffer *buf)
1505 {
1506         if (btrfs_is_testing(root->fs_info))
1507                 return 0;
1508
1509         /* ensure we can see the force_cow */
1510         smp_rmb();
1511
1512         /*
1513          * We do not need to cow a block if
1514          * 1) this block is not created or changed in this transaction;
1515          * 2) this block does not belong to TREE_RELOC tree;
1516          * 3) the root is not forced COW.
1517          *
1518          * What is forced COW:
1519          *    when we create snapshot during committing the transaction,
1520          *    after we've finished coping src root, we must COW the shared
1521          *    block to ensure the metadata consistency.
1522          */
1523         if (btrfs_header_generation(buf) == trans->transid &&
1524             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1525             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1526               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1527             !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1528                 return 0;
1529         return 1;
1530 }
1531
1532 /*
1533  * cows a single block, see __btrfs_cow_block for the real work.
1534  * This version of it has extra checks so that a block isn't COWed more than
1535  * once per transaction, as long as it hasn't been written yet
1536  */
1537 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1538                     struct btrfs_root *root, struct extent_buffer *buf,
1539                     struct extent_buffer *parent, int parent_slot,
1540                     struct extent_buffer **cow_ret)
1541 {
1542         u64 search_start;
1543         int ret;
1544
1545         if (trans->transaction != root->fs_info->running_transaction)
1546                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1547                        trans->transid,
1548                        root->fs_info->running_transaction->transid);
1549
1550         if (trans->transid != root->fs_info->generation)
1551                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1552                        trans->transid, root->fs_info->generation);
1553
1554         if (!should_cow_block(trans, root, buf)) {
1555                 trans->dirty = true;
1556                 *cow_ret = buf;
1557                 return 0;
1558         }
1559
1560         search_start = buf->start & ~((u64)SZ_1G - 1);
1561
1562         if (parent)
1563                 btrfs_set_lock_blocking(parent);
1564         btrfs_set_lock_blocking(buf);
1565
1566         ret = __btrfs_cow_block(trans, root, buf, parent,
1567                                  parent_slot, cow_ret, search_start, 0);
1568
1569         trace_btrfs_cow_block(root, buf, *cow_ret);
1570
1571         return ret;
1572 }
1573
1574 /*
1575  * helper function for defrag to decide if two blocks pointed to by a
1576  * node are actually close by
1577  */
1578 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1579 {
1580         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1581                 return 1;
1582         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1583                 return 1;
1584         return 0;
1585 }
1586
1587 /*
1588  * compare two keys in a memcmp fashion
1589  */
1590 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1591 {
1592         struct btrfs_key k1;
1593
1594         btrfs_disk_key_to_cpu(&k1, disk);
1595
1596         return btrfs_comp_cpu_keys(&k1, k2);
1597 }
1598
1599 /*
1600  * same as comp_keys only with two btrfs_key's
1601  */
1602 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1603 {
1604         if (k1->objectid > k2->objectid)
1605                 return 1;
1606         if (k1->objectid < k2->objectid)
1607                 return -1;
1608         if (k1->type > k2->type)
1609                 return 1;
1610         if (k1->type < k2->type)
1611                 return -1;
1612         if (k1->offset > k2->offset)
1613                 return 1;
1614         if (k1->offset < k2->offset)
1615                 return -1;
1616         return 0;
1617 }
1618
1619 /*
1620  * this is used by the defrag code to go through all the
1621  * leaves pointed to by a node and reallocate them so that
1622  * disk order is close to key order
1623  */
1624 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1625                        struct btrfs_root *root, struct extent_buffer *parent,
1626                        int start_slot, u64 *last_ret,
1627                        struct btrfs_key *progress)
1628 {
1629         struct extent_buffer *cur;
1630         u64 blocknr;
1631         u64 gen;
1632         u64 search_start = *last_ret;
1633         u64 last_block = 0;
1634         u64 other;
1635         u32 parent_nritems;
1636         int end_slot;
1637         int i;
1638         int err = 0;
1639         int parent_level;
1640         int uptodate;
1641         u32 blocksize;
1642         int progress_passed = 0;
1643         struct btrfs_disk_key disk_key;
1644
1645         parent_level = btrfs_header_level(parent);
1646
1647         WARN_ON(trans->transaction != root->fs_info->running_transaction);
1648         WARN_ON(trans->transid != root->fs_info->generation);
1649
1650         parent_nritems = btrfs_header_nritems(parent);
1651         blocksize = root->nodesize;
1652         end_slot = parent_nritems - 1;
1653
1654         if (parent_nritems <= 1)
1655                 return 0;
1656
1657         btrfs_set_lock_blocking(parent);
1658
1659         for (i = start_slot; i <= end_slot; i++) {
1660                 int close = 1;
1661
1662                 btrfs_node_key(parent, &disk_key, i);
1663                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1664                         continue;
1665
1666                 progress_passed = 1;
1667                 blocknr = btrfs_node_blockptr(parent, i);
1668                 gen = btrfs_node_ptr_generation(parent, i);
1669                 if (last_block == 0)
1670                         last_block = blocknr;
1671
1672                 if (i > 0) {
1673                         other = btrfs_node_blockptr(parent, i - 1);
1674                         close = close_blocks(blocknr, other, blocksize);
1675                 }
1676                 if (!close && i < end_slot) {
1677                         other = btrfs_node_blockptr(parent, i + 1);
1678                         close = close_blocks(blocknr, other, blocksize);
1679                 }
1680                 if (close) {
1681                         last_block = blocknr;
1682                         continue;
1683                 }
1684
1685                 cur = btrfs_find_tree_block(root->fs_info, blocknr);
1686                 if (cur)
1687                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1688                 else
1689                         uptodate = 0;
1690                 if (!cur || !uptodate) {
1691                         if (!cur) {
1692                                 cur = read_tree_block(root, blocknr, gen);
1693                                 if (IS_ERR(cur)) {
1694                                         return PTR_ERR(cur);
1695                                 } else if (!extent_buffer_uptodate(cur)) {
1696                                         free_extent_buffer(cur);
1697                                         return -EIO;
1698                                 }
1699                         } else if (!uptodate) {
1700                                 err = btrfs_read_buffer(cur, gen);
1701                                 if (err) {
1702                                         free_extent_buffer(cur);
1703                                         return err;
1704                                 }
1705                         }
1706                 }
1707                 if (search_start == 0)
1708                         search_start = last_block;
1709
1710                 btrfs_tree_lock(cur);
1711                 btrfs_set_lock_blocking(cur);
1712                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1713                                         &cur, search_start,
1714                                         min(16 * blocksize,
1715                                             (end_slot - i) * blocksize));
1716                 if (err) {
1717                         btrfs_tree_unlock(cur);
1718                         free_extent_buffer(cur);
1719                         break;
1720                 }
1721                 search_start = cur->start;
1722                 last_block = cur->start;
1723                 *last_ret = search_start;
1724                 btrfs_tree_unlock(cur);
1725                 free_extent_buffer(cur);
1726         }
1727         return err;
1728 }
1729
1730 /*
1731  * The leaf data grows from end-to-front in the node.
1732  * this returns the address of the start of the last item,
1733  * which is the stop of the leaf data stack
1734  */
1735 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1736                                          struct extent_buffer *leaf)
1737 {
1738         u32 nr = btrfs_header_nritems(leaf);
1739         if (nr == 0)
1740                 return BTRFS_LEAF_DATA_SIZE(root);
1741         return btrfs_item_offset_nr(leaf, nr - 1);
1742 }
1743
1744
1745 /*
1746  * search for key in the extent_buffer.  The items start at offset p,
1747  * and they are item_size apart.  There are 'max' items in p.
1748  *
1749  * the slot in the array is returned via slot, and it points to
1750  * the place where you would insert key if it is not found in
1751  * the array.
1752  *
1753  * slot may point to max if the key is bigger than all of the keys
1754  */
1755 static noinline int generic_bin_search(struct extent_buffer *eb,
1756                                        unsigned long p,
1757                                        int item_size, struct btrfs_key *key,
1758                                        int max, int *slot)
1759 {
1760         int low = 0;
1761         int high = max;
1762         int mid;
1763         int ret;
1764         struct btrfs_disk_key *tmp = NULL;
1765         struct btrfs_disk_key unaligned;
1766         unsigned long offset;
1767         char *kaddr = NULL;
1768         unsigned long map_start = 0;
1769         unsigned long map_len = 0;
1770         int err;
1771
1772         if (low > high) {
1773                 btrfs_err(eb->fs_info,
1774                  "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1775                           __func__, low, high, eb->start,
1776                           btrfs_header_owner(eb), btrfs_header_level(eb));
1777                 return -EINVAL;
1778         }
1779
1780         while (low < high) {
1781                 mid = (low + high) / 2;
1782                 offset = p + mid * item_size;
1783
1784                 if (!kaddr || offset < map_start ||
1785                     (offset + sizeof(struct btrfs_disk_key)) >
1786                     map_start + map_len) {
1787
1788                         err = map_private_extent_buffer(eb, offset,
1789                                                 sizeof(struct btrfs_disk_key),
1790                                                 &kaddr, &map_start, &map_len);
1791
1792                         if (!err) {
1793                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1794                                                         map_start);
1795                         } else if (err == 1) {
1796                                 read_extent_buffer(eb, &unaligned,
1797                                                    offset, sizeof(unaligned));
1798                                 tmp = &unaligned;
1799                         } else {
1800                                 return err;
1801                         }
1802
1803                 } else {
1804                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1805                                                         map_start);
1806                 }
1807                 ret = comp_keys(tmp, key);
1808
1809                 if (ret < 0)
1810                         low = mid + 1;
1811                 else if (ret > 0)
1812                         high = mid;
1813                 else {
1814                         *slot = mid;
1815                         return 0;
1816                 }
1817         }
1818         *slot = low;
1819         return 1;
1820 }
1821
1822 /*
1823  * simple bin_search frontend that does the right thing for
1824  * leaves vs nodes
1825  */
1826 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1827                       int level, int *slot)
1828 {
1829         if (level == 0)
1830                 return generic_bin_search(eb,
1831                                           offsetof(struct btrfs_leaf, items),
1832                                           sizeof(struct btrfs_item),
1833                                           key, btrfs_header_nritems(eb),
1834                                           slot);
1835         else
1836                 return generic_bin_search(eb,
1837                                           offsetof(struct btrfs_node, ptrs),
1838                                           sizeof(struct btrfs_key_ptr),
1839                                           key, btrfs_header_nritems(eb),
1840                                           slot);
1841 }
1842
1843 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1844                      int level, int *slot)
1845 {
1846         return bin_search(eb, key, level, slot);
1847 }
1848
1849 static void root_add_used(struct btrfs_root *root, u32 size)
1850 {
1851         spin_lock(&root->accounting_lock);
1852         btrfs_set_root_used(&root->root_item,
1853                             btrfs_root_used(&root->root_item) + size);
1854         spin_unlock(&root->accounting_lock);
1855 }
1856
1857 static void root_sub_used(struct btrfs_root *root, u32 size)
1858 {
1859         spin_lock(&root->accounting_lock);
1860         btrfs_set_root_used(&root->root_item,
1861                             btrfs_root_used(&root->root_item) - size);
1862         spin_unlock(&root->accounting_lock);
1863 }
1864
1865 /* given a node and slot number, this reads the blocks it points to.  The
1866  * extent buffer is returned with a reference taken (but unlocked).
1867  */
1868 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1869                                    struct extent_buffer *parent, int slot)
1870 {
1871         int level = btrfs_header_level(parent);
1872         struct extent_buffer *eb;
1873
1874         if (slot < 0 || slot >= btrfs_header_nritems(parent))
1875                 return ERR_PTR(-ENOENT);
1876
1877         BUG_ON(level == 0);
1878
1879         eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1880                              btrfs_node_ptr_generation(parent, slot));
1881         if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1882                 free_extent_buffer(eb);
1883                 eb = ERR_PTR(-EIO);
1884         }
1885
1886         return eb;
1887 }
1888
1889 /*
1890  * node level balancing, used to make sure nodes are in proper order for
1891  * item deletion.  We balance from the top down, so we have to make sure
1892  * that a deletion won't leave an node completely empty later on.
1893  */
1894 static noinline int balance_level(struct btrfs_trans_handle *trans,
1895                          struct btrfs_root *root,
1896                          struct btrfs_path *path, int level)
1897 {
1898         struct extent_buffer *right = NULL;
1899         struct extent_buffer *mid;
1900         struct extent_buffer *left = NULL;
1901         struct extent_buffer *parent = NULL;
1902         int ret = 0;
1903         int wret;
1904         int pslot;
1905         int orig_slot = path->slots[level];
1906         u64 orig_ptr;
1907
1908         if (level == 0)
1909                 return 0;
1910
1911         mid = path->nodes[level];
1912
1913         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1914                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1915         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1916
1917         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1918
1919         if (level < BTRFS_MAX_LEVEL - 1) {
1920                 parent = path->nodes[level + 1];
1921                 pslot = path->slots[level + 1];
1922         }
1923
1924         /*
1925          * deal with the case where there is only one pointer in the root
1926          * by promoting the node below to a root
1927          */
1928         if (!parent) {
1929                 struct extent_buffer *child;
1930
1931                 if (btrfs_header_nritems(mid) != 1)
1932                         return 0;
1933
1934                 /* promote the child to a root */
1935                 child = read_node_slot(root, mid, 0);
1936                 if (IS_ERR(child)) {
1937                         ret = PTR_ERR(child);
1938                         btrfs_handle_fs_error(root->fs_info, ret, NULL);
1939                         goto enospc;
1940                 }
1941
1942                 btrfs_tree_lock(child);
1943                 btrfs_set_lock_blocking(child);
1944                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1945                 if (ret) {
1946                         btrfs_tree_unlock(child);
1947                         free_extent_buffer(child);
1948                         goto enospc;
1949                 }
1950
1951                 tree_mod_log_set_root_pointer(root, child, 1);
1952                 rcu_assign_pointer(root->node, child);
1953
1954                 add_root_to_dirty_list(root);
1955                 btrfs_tree_unlock(child);
1956
1957                 path->locks[level] = 0;
1958                 path->nodes[level] = NULL;
1959                 clean_tree_block(trans, root->fs_info, mid);
1960                 btrfs_tree_unlock(mid);
1961                 /* once for the path */
1962                 free_extent_buffer(mid);
1963
1964                 root_sub_used(root, mid->len);
1965                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1966                 /* once for the root ptr */
1967                 free_extent_buffer_stale(mid);
1968                 return 0;
1969         }
1970         if (btrfs_header_nritems(mid) >
1971             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1972                 return 0;
1973
1974         left = read_node_slot(root, parent, pslot - 1);
1975         if (IS_ERR(left))
1976                 left = NULL;
1977
1978         if (left) {
1979                 btrfs_tree_lock(left);
1980                 btrfs_set_lock_blocking(left);
1981                 wret = btrfs_cow_block(trans, root, left,
1982                                        parent, pslot - 1, &left);
1983                 if (wret) {
1984                         ret = wret;
1985                         goto enospc;
1986                 }
1987         }
1988
1989         right = read_node_slot(root, parent, pslot + 1);
1990         if (IS_ERR(right))
1991                 right = NULL;
1992
1993         if (right) {
1994                 btrfs_tree_lock(right);
1995                 btrfs_set_lock_blocking(right);
1996                 wret = btrfs_cow_block(trans, root, right,
1997                                        parent, pslot + 1, &right);
1998                 if (wret) {
1999                         ret = wret;
2000                         goto enospc;
2001                 }
2002         }
2003
2004         /* first, try to make some room in the middle buffer */
2005         if (left) {
2006                 orig_slot += btrfs_header_nritems(left);
2007                 wret = push_node_left(trans, root, left, mid, 1);
2008                 if (wret < 0)
2009                         ret = wret;
2010         }
2011
2012         /*
2013          * then try to empty the right most buffer into the middle
2014          */
2015         if (right) {
2016                 wret = push_node_left(trans, root, mid, right, 1);
2017                 if (wret < 0 && wret != -ENOSPC)
2018                         ret = wret;
2019                 if (btrfs_header_nritems(right) == 0) {
2020                         clean_tree_block(trans, root->fs_info, right);
2021                         btrfs_tree_unlock(right);
2022                         del_ptr(root, path, level + 1, pslot + 1);
2023                         root_sub_used(root, right->len);
2024                         btrfs_free_tree_block(trans, root, right, 0, 1);
2025                         free_extent_buffer_stale(right);
2026                         right = NULL;
2027                 } else {
2028                         struct btrfs_disk_key right_key;
2029                         btrfs_node_key(right, &right_key, 0);
2030                         tree_mod_log_set_node_key(root->fs_info, parent,
2031                                                   pslot + 1, 0);
2032                         btrfs_set_node_key(parent, &right_key, pslot + 1);
2033                         btrfs_mark_buffer_dirty(parent);
2034                 }
2035         }
2036         if (btrfs_header_nritems(mid) == 1) {
2037                 /*
2038                  * we're not allowed to leave a node with one item in the
2039                  * tree during a delete.  A deletion from lower in the tree
2040                  * could try to delete the only pointer in this node.
2041                  * So, pull some keys from the left.
2042                  * There has to be a left pointer at this point because
2043                  * otherwise we would have pulled some pointers from the
2044                  * right
2045                  */
2046                 if (!left) {
2047                         ret = -EROFS;
2048                         btrfs_handle_fs_error(root->fs_info, ret, NULL);
2049                         goto enospc;
2050                 }
2051                 wret = balance_node_right(trans, root, mid, left);
2052                 if (wret < 0) {
2053                         ret = wret;
2054                         goto enospc;
2055                 }
2056                 if (wret == 1) {
2057                         wret = push_node_left(trans, root, left, mid, 1);
2058                         if (wret < 0)
2059                                 ret = wret;
2060                 }
2061                 BUG_ON(wret == 1);
2062         }
2063         if (btrfs_header_nritems(mid) == 0) {
2064                 clean_tree_block(trans, root->fs_info, mid);
2065                 btrfs_tree_unlock(mid);
2066                 del_ptr(root, path, level + 1, pslot);
2067                 root_sub_used(root, mid->len);
2068                 btrfs_free_tree_block(trans, root, mid, 0, 1);
2069                 free_extent_buffer_stale(mid);
2070                 mid = NULL;
2071         } else {
2072                 /* update the parent key to reflect our changes */
2073                 struct btrfs_disk_key mid_key;
2074                 btrfs_node_key(mid, &mid_key, 0);
2075                 tree_mod_log_set_node_key(root->fs_info, parent,
2076                                           pslot, 0);
2077                 btrfs_set_node_key(parent, &mid_key, pslot);
2078                 btrfs_mark_buffer_dirty(parent);
2079         }
2080
2081         /* update the path */
2082         if (left) {
2083                 if (btrfs_header_nritems(left) > orig_slot) {
2084                         extent_buffer_get(left);
2085                         /* left was locked after cow */
2086                         path->nodes[level] = left;
2087                         path->slots[level + 1] -= 1;
2088                         path->slots[level] = orig_slot;
2089                         if (mid) {
2090                                 btrfs_tree_unlock(mid);
2091                                 free_extent_buffer(mid);
2092                         }
2093                 } else {
2094                         orig_slot -= btrfs_header_nritems(left);
2095                         path->slots[level] = orig_slot;
2096                 }
2097         }
2098         /* double check we haven't messed things up */
2099         if (orig_ptr !=
2100             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2101                 BUG();
2102 enospc:
2103         if (right) {
2104                 btrfs_tree_unlock(right);
2105                 free_extent_buffer(right);
2106         }
2107         if (left) {
2108                 if (path->nodes[level] != left)
2109                         btrfs_tree_unlock(left);
2110                 free_extent_buffer(left);
2111         }
2112         return ret;
2113 }
2114
2115 /* Node balancing for insertion.  Here we only split or push nodes around
2116  * when they are completely full.  This is also done top down, so we
2117  * have to be pessimistic.
2118  */
2119 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2120                                           struct btrfs_root *root,
2121                                           struct btrfs_path *path, int level)
2122 {
2123         struct extent_buffer *right = NULL;
2124         struct extent_buffer *mid;
2125         struct extent_buffer *left = NULL;
2126         struct extent_buffer *parent = NULL;
2127         int ret = 0;
2128         int wret;
2129         int pslot;
2130         int orig_slot = path->slots[level];
2131
2132         if (level == 0)
2133                 return 1;
2134
2135         mid = path->nodes[level];
2136         WARN_ON(btrfs_header_generation(mid) != trans->transid);
2137
2138         if (level < BTRFS_MAX_LEVEL - 1) {
2139                 parent = path->nodes[level + 1];
2140                 pslot = path->slots[level + 1];
2141         }
2142
2143         if (!parent)
2144                 return 1;
2145
2146         left = read_node_slot(root, parent, pslot - 1);
2147         if (IS_ERR(left))
2148                 left = NULL;
2149
2150         /* first, try to make some room in the middle buffer */
2151         if (left) {
2152                 u32 left_nr;
2153
2154                 btrfs_tree_lock(left);
2155                 btrfs_set_lock_blocking(left);
2156
2157                 left_nr = btrfs_header_nritems(left);
2158                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2159                         wret = 1;
2160                 } else {
2161                         ret = btrfs_cow_block(trans, root, left, parent,
2162                                               pslot - 1, &left);
2163                         if (ret)
2164                                 wret = 1;
2165                         else {
2166                                 wret = push_node_left(trans, root,
2167                                                       left, mid, 0);
2168                         }
2169                 }
2170                 if (wret < 0)
2171                         ret = wret;
2172                 if (wret == 0) {
2173                         struct btrfs_disk_key disk_key;
2174                         orig_slot += left_nr;
2175                         btrfs_node_key(mid, &disk_key, 0);
2176                         tree_mod_log_set_node_key(root->fs_info, parent,
2177                                                   pslot, 0);
2178                         btrfs_set_node_key(parent, &disk_key, pslot);
2179                         btrfs_mark_buffer_dirty(parent);
2180                         if (btrfs_header_nritems(left) > orig_slot) {
2181                                 path->nodes[level] = left;
2182                                 path->slots[level + 1] -= 1;
2183                                 path->slots[level] = orig_slot;
2184                                 btrfs_tree_unlock(mid);
2185                                 free_extent_buffer(mid);
2186                         } else {
2187                                 orig_slot -=
2188                                         btrfs_header_nritems(left);
2189                                 path->slots[level] = orig_slot;
2190                                 btrfs_tree_unlock(left);
2191                                 free_extent_buffer(left);
2192                         }
2193                         return 0;
2194                 }
2195                 btrfs_tree_unlock(left);
2196                 free_extent_buffer(left);
2197         }
2198         right = read_node_slot(root, parent, pslot + 1);
2199         if (IS_ERR(right))
2200                 right = NULL;
2201
2202         /*
2203          * then try to empty the right most buffer into the middle
2204          */
2205         if (right) {
2206                 u32 right_nr;
2207
2208                 btrfs_tree_lock(right);
2209                 btrfs_set_lock_blocking(right);
2210
2211                 right_nr = btrfs_header_nritems(right);
2212                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2213                         wret = 1;
2214                 } else {
2215                         ret = btrfs_cow_block(trans, root, right,
2216                                               parent, pslot + 1,
2217                                               &right);
2218                         if (ret)
2219                                 wret = 1;
2220                         else {
2221                                 wret = balance_node_right(trans, root,
2222                                                           right, mid);
2223                         }
2224                 }
2225                 if (wret < 0)
2226                         ret = wret;
2227                 if (wret == 0) {
2228                         struct btrfs_disk_key disk_key;
2229
2230                         btrfs_node_key(right, &disk_key, 0);
2231                         tree_mod_log_set_node_key(root->fs_info, parent,
2232                                                   pslot + 1, 0);
2233                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
2234                         btrfs_mark_buffer_dirty(parent);
2235
2236                         if (btrfs_header_nritems(mid) <= orig_slot) {
2237                                 path->nodes[level] = right;
2238                                 path->slots[level + 1] += 1;
2239                                 path->slots[level] = orig_slot -
2240                                         btrfs_header_nritems(mid);
2241                                 btrfs_tree_unlock(mid);
2242                                 free_extent_buffer(mid);
2243                         } else {
2244                                 btrfs_tree_unlock(right);
2245                                 free_extent_buffer(right);
2246                         }
2247                         return 0;
2248                 }
2249                 btrfs_tree_unlock(right);
2250                 free_extent_buffer(right);
2251         }
2252         return 1;
2253 }
2254
2255 /*
2256  * readahead one full node of leaves, finding things that are close
2257  * to the block in 'slot', and triggering ra on them.
2258  */
2259 static void reada_for_search(struct btrfs_root *root,
2260                              struct btrfs_path *path,
2261                              int level, int slot, u64 objectid)
2262 {
2263         struct extent_buffer *node;
2264         struct btrfs_disk_key disk_key;
2265         u32 nritems;
2266         u64 search;
2267         u64 target;
2268         u64 nread = 0;
2269         struct extent_buffer *eb;
2270         u32 nr;
2271         u32 blocksize;
2272         u32 nscan = 0;
2273
2274         if (level != 1)
2275                 return;
2276
2277         if (!path->nodes[level])
2278                 return;
2279
2280         node = path->nodes[level];
2281
2282         search = btrfs_node_blockptr(node, slot);
2283         blocksize = root->nodesize;
2284         eb = btrfs_find_tree_block(root->fs_info, search);
2285         if (eb) {
2286                 free_extent_buffer(eb);
2287                 return;
2288         }
2289
2290         target = search;
2291
2292         nritems = btrfs_header_nritems(node);
2293         nr = slot;
2294
2295         while (1) {
2296                 if (path->reada == READA_BACK) {
2297                         if (nr == 0)
2298                                 break;
2299                         nr--;
2300                 } else if (path->reada == READA_FORWARD) {
2301                         nr++;
2302                         if (nr >= nritems)
2303                                 break;
2304                 }
2305                 if (path->reada == READA_BACK && objectid) {
2306                         btrfs_node_key(node, &disk_key, nr);
2307                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
2308                                 break;
2309                 }
2310                 search = btrfs_node_blockptr(node, nr);
2311                 if ((search <= target && target - search <= 65536) ||
2312                     (search > target && search - target <= 65536)) {
2313                         readahead_tree_block(root, search);
2314                         nread += blocksize;
2315                 }
2316                 nscan++;
2317                 if ((nread > 65536 || nscan > 32))
2318                         break;
2319         }
2320 }
2321
2322 static noinline void reada_for_balance(struct btrfs_root *root,
2323                                        struct btrfs_path *path, int level)
2324 {
2325         int slot;
2326         int nritems;
2327         struct extent_buffer *parent;
2328         struct extent_buffer *eb;
2329         u64 gen;
2330         u64 block1 = 0;
2331         u64 block2 = 0;
2332
2333         parent = path->nodes[level + 1];
2334         if (!parent)
2335                 return;
2336
2337         nritems = btrfs_header_nritems(parent);
2338         slot = path->slots[level + 1];
2339
2340         if (slot > 0) {
2341                 block1 = btrfs_node_blockptr(parent, slot - 1);
2342                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2343                 eb = btrfs_find_tree_block(root->fs_info, block1);
2344                 /*
2345                  * if we get -eagain from btrfs_buffer_uptodate, we
2346                  * don't want to return eagain here.  That will loop
2347                  * forever
2348                  */
2349                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2350                         block1 = 0;
2351                 free_extent_buffer(eb);
2352         }
2353         if (slot + 1 < nritems) {
2354                 block2 = btrfs_node_blockptr(parent, slot + 1);
2355                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2356                 eb = btrfs_find_tree_block(root->fs_info, block2);
2357                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2358                         block2 = 0;
2359                 free_extent_buffer(eb);
2360         }
2361
2362         if (block1)
2363                 readahead_tree_block(root, block1);
2364         if (block2)
2365                 readahead_tree_block(root, block2);
2366 }
2367
2368
2369 /*
2370  * when we walk down the tree, it is usually safe to unlock the higher layers
2371  * in the tree.  The exceptions are when our path goes through slot 0, because
2372  * operations on the tree might require changing key pointers higher up in the
2373  * tree.
2374  *
2375  * callers might also have set path->keep_locks, which tells this code to keep
2376  * the lock if the path points to the last slot in the block.  This is part of
2377  * walking through the tree, and selecting the next slot in the higher block.
2378  *
2379  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2380  * if lowest_unlock is 1, level 0 won't be unlocked
2381  */
2382 static noinline void unlock_up(struct btrfs_path *path, int level,
2383                                int lowest_unlock, int min_write_lock_level,
2384                                int *write_lock_level)
2385 {
2386         int i;
2387         int skip_level = level;
2388         int no_skips = 0;
2389         struct extent_buffer *t;
2390
2391         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2392                 if (!path->nodes[i])
2393                         break;
2394                 if (!path->locks[i])
2395                         break;
2396                 if (!no_skips && path->slots[i] == 0) {
2397                         skip_level = i + 1;
2398                         continue;
2399                 }
2400                 if (!no_skips && path->keep_locks) {
2401                         u32 nritems;
2402                         t = path->nodes[i];
2403                         nritems = btrfs_header_nritems(t);
2404                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2405                                 skip_level = i + 1;
2406                                 continue;
2407                         }
2408                 }
2409                 if (skip_level < i && i >= lowest_unlock)
2410                         no_skips = 1;
2411
2412                 t = path->nodes[i];
2413                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2414                         btrfs_tree_unlock_rw(t, path->locks[i]);
2415                         path->locks[i] = 0;
2416                         if (write_lock_level &&
2417                             i > min_write_lock_level &&
2418                             i <= *write_lock_level) {
2419                                 *write_lock_level = i - 1;
2420                         }
2421                 }
2422         }
2423 }
2424
2425 /*
2426  * This releases any locks held in the path starting at level and
2427  * going all the way up to the root.
2428  *
2429  * btrfs_search_slot will keep the lock held on higher nodes in a few
2430  * corner cases, such as COW of the block at slot zero in the node.  This
2431  * ignores those rules, and it should only be called when there are no
2432  * more updates to be done higher up in the tree.
2433  */
2434 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2435 {
2436         int i;
2437
2438         if (path->keep_locks)
2439                 return;
2440
2441         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2442                 if (!path->nodes[i])
2443                         continue;
2444                 if (!path->locks[i])
2445                         continue;
2446                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2447                 path->locks[i] = 0;
2448         }
2449 }
2450
2451 /*
2452  * helper function for btrfs_search_slot.  The goal is to find a block
2453  * in cache without setting the path to blocking.  If we find the block
2454  * we return zero and the path is unchanged.
2455  *
2456  * If we can't find the block, we set the path blocking and do some
2457  * reada.  -EAGAIN is returned and the search must be repeated.
2458  */
2459 static int
2460 read_block_for_search(struct btrfs_trans_handle *trans,
2461                        struct btrfs_root *root, struct btrfs_path *p,
2462                        struct extent_buffer **eb_ret, int level, int slot,
2463                        struct btrfs_key *key, u64 time_seq)
2464 {
2465         u64 blocknr;
2466         u64 gen;
2467         struct extent_buffer *b = *eb_ret;
2468         struct extent_buffer *tmp;
2469         int ret;
2470
2471         blocknr = btrfs_node_blockptr(b, slot);
2472         gen = btrfs_node_ptr_generation(b, slot);
2473
2474         tmp = btrfs_find_tree_block(root->fs_info, blocknr);
2475         if (tmp) {
2476                 /* first we do an atomic uptodate check */
2477                 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2478                         *eb_ret = tmp;
2479                         return 0;
2480                 }
2481
2482                 /* the pages were up to date, but we failed
2483                  * the generation number check.  Do a full
2484                  * read for the generation number that is correct.
2485                  * We must do this without dropping locks so
2486                  * we can trust our generation number
2487                  */
2488                 btrfs_set_path_blocking(p);
2489
2490                 /* now we're allowed to do a blocking uptodate check */
2491                 ret = btrfs_read_buffer(tmp, gen);
2492                 if (!ret) {
2493                         *eb_ret = tmp;
2494                         return 0;
2495                 }
2496                 free_extent_buffer(tmp);
2497                 btrfs_release_path(p);
2498                 return -EIO;
2499         }
2500
2501         /*
2502          * reduce lock contention at high levels
2503          * of the btree by dropping locks before
2504          * we read.  Don't release the lock on the current
2505          * level because we need to walk this node to figure
2506          * out which blocks to read.
2507          */
2508         btrfs_unlock_up_safe(p, level + 1);
2509         btrfs_set_path_blocking(p);
2510
2511         free_extent_buffer(tmp);
2512         if (p->reada != READA_NONE)
2513                 reada_for_search(root, p, level, slot, key->objectid);
2514
2515         btrfs_release_path(p);
2516
2517         ret = -EAGAIN;
2518         tmp = read_tree_block(root, blocknr, 0);
2519         if (!IS_ERR(tmp)) {
2520                 /*
2521                  * If the read above didn't mark this buffer up to date,
2522                  * it will never end up being up to date.  Set ret to EIO now
2523                  * and give up so that our caller doesn't loop forever
2524                  * on our EAGAINs.
2525                  */
2526                 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2527                         ret = -EIO;
2528                 free_extent_buffer(tmp);
2529         } else {
2530                 ret = PTR_ERR(tmp);
2531         }
2532         return ret;
2533 }
2534
2535 /*
2536  * helper function for btrfs_search_slot.  This does all of the checks
2537  * for node-level blocks and does any balancing required based on
2538  * the ins_len.
2539  *
2540  * If no extra work was required, zero is returned.  If we had to
2541  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2542  * start over
2543  */
2544 static int
2545 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2546                        struct btrfs_root *root, struct btrfs_path *p,
2547                        struct extent_buffer *b, int level, int ins_len,
2548                        int *write_lock_level)
2549 {
2550         int ret;
2551         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2552             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2553                 int sret;
2554
2555                 if (*write_lock_level < level + 1) {
2556                         *write_lock_level = level + 1;
2557                         btrfs_release_path(p);
2558                         goto again;
2559                 }
2560
2561                 btrfs_set_path_blocking(p);
2562                 reada_for_balance(root, p, level);
2563                 sret = split_node(trans, root, p, level);
2564                 btrfs_clear_path_blocking(p, NULL, 0);
2565
2566                 BUG_ON(sret > 0);
2567                 if (sret) {
2568                         ret = sret;
2569                         goto done;
2570                 }
2571                 b = p->nodes[level];
2572         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2573                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2574                 int sret;
2575
2576                 if (*write_lock_level < level + 1) {
2577                         *write_lock_level = level + 1;
2578                         btrfs_release_path(p);
2579                         goto again;
2580                 }
2581
2582                 btrfs_set_path_blocking(p);
2583                 reada_for_balance(root, p, level);
2584                 sret = balance_level(trans, root, p, level);
2585                 btrfs_clear_path_blocking(p, NULL, 0);
2586
2587                 if (sret) {
2588                         ret = sret;
2589                         goto done;
2590                 }
2591                 b = p->nodes[level];
2592                 if (!b) {
2593                         btrfs_release_path(p);
2594                         goto again;
2595                 }
2596                 BUG_ON(btrfs_header_nritems(b) == 1);
2597         }
2598         return 0;
2599
2600 again:
2601         ret = -EAGAIN;
2602 done:
2603         return ret;
2604 }
2605
2606 static void key_search_validate(struct extent_buffer *b,
2607                                 struct btrfs_key *key,
2608                                 int level)
2609 {
2610 #ifdef CONFIG_BTRFS_ASSERT
2611         struct btrfs_disk_key disk_key;
2612
2613         btrfs_cpu_key_to_disk(&disk_key, key);
2614
2615         if (level == 0)
2616                 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2617                     offsetof(struct btrfs_leaf, items[0].key),
2618                     sizeof(disk_key)));
2619         else
2620                 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2621                     offsetof(struct btrfs_node, ptrs[0].key),
2622                     sizeof(disk_key)));
2623 #endif
2624 }
2625
2626 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2627                       int level, int *prev_cmp, int *slot)
2628 {
2629         if (*prev_cmp != 0) {
2630                 *prev_cmp = bin_search(b, key, level, slot);
2631                 return *prev_cmp;
2632         }
2633
2634         key_search_validate(b, key, level);
2635         *slot = 0;
2636
2637         return 0;
2638 }
2639
2640 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2641                 u64 iobjectid, u64 ioff, u8 key_type,
2642                 struct btrfs_key *found_key)
2643 {
2644         int ret;
2645         struct btrfs_key key;
2646         struct extent_buffer *eb;
2647
2648         ASSERT(path);
2649         ASSERT(found_key);
2650
2651         key.type = key_type;
2652         key.objectid = iobjectid;
2653         key.offset = ioff;
2654
2655         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2656         if (ret < 0)
2657                 return ret;
2658
2659         eb = path->nodes[0];
2660         if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2661                 ret = btrfs_next_leaf(fs_root, path);
2662                 if (ret)
2663                         return ret;
2664                 eb = path->nodes[0];
2665         }
2666
2667         btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2668         if (found_key->type != key.type ||
2669                         found_key->objectid != key.objectid)
2670                 return 1;
2671
2672         return 0;
2673 }
2674
2675 /*
2676  * look for key in the tree.  path is filled in with nodes along the way
2677  * if key is found, we return zero and you can find the item in the leaf
2678  * level of the path (level 0)
2679  *
2680  * If the key isn't found, the path points to the slot where it should
2681  * be inserted, and 1 is returned.  If there are other errors during the
2682  * search a negative error number is returned.
2683  *
2684  * if ins_len > 0, nodes and leaves will be split as we walk down the
2685  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2686  * possible)
2687  */
2688 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2689                       *root, struct btrfs_key *key, struct btrfs_path *p, int
2690                       ins_len, int cow)
2691 {
2692         struct extent_buffer *b;
2693         int slot;
2694         int ret;
2695         int err;
2696         int level;
2697         int lowest_unlock = 1;
2698         int root_lock;
2699         /* everything at write_lock_level or lower must be write locked */
2700         int write_lock_level = 0;
2701         u8 lowest_level = 0;
2702         int min_write_lock_level;
2703         int prev_cmp;
2704
2705         lowest_level = p->lowest_level;
2706         WARN_ON(lowest_level && ins_len > 0);
2707         WARN_ON(p->nodes[0] != NULL);
2708         BUG_ON(!cow && ins_len);
2709
2710         if (ins_len < 0) {
2711                 lowest_unlock = 2;
2712
2713                 /* when we are removing items, we might have to go up to level
2714                  * two as we update tree pointers  Make sure we keep write
2715                  * for those levels as well
2716                  */
2717                 write_lock_level = 2;
2718         } else if (ins_len > 0) {
2719                 /*
2720                  * for inserting items, make sure we have a write lock on
2721                  * level 1 so we can update keys
2722                  */
2723                 write_lock_level = 1;
2724         }
2725
2726         if (!cow)
2727                 write_lock_level = -1;
2728
2729         if (cow && (p->keep_locks || p->lowest_level))
2730                 write_lock_level = BTRFS_MAX_LEVEL;
2731
2732         min_write_lock_level = write_lock_level;
2733
2734 again:
2735         prev_cmp = -1;
2736         /*
2737          * we try very hard to do read locks on the root
2738          */
2739         root_lock = BTRFS_READ_LOCK;
2740         level = 0;
2741         if (p->search_commit_root) {
2742                 /*
2743                  * the commit roots are read only
2744                  * so we always do read locks
2745                  */
2746                 if (p->need_commit_sem)
2747                         down_read(&root->fs_info->commit_root_sem);
2748                 b = root->commit_root;
2749                 extent_buffer_get(b);
2750                 level = btrfs_header_level(b);
2751                 if (p->need_commit_sem)
2752                         up_read(&root->fs_info->commit_root_sem);
2753                 if (!p->skip_locking)
2754                         btrfs_tree_read_lock(b);
2755         } else {
2756                 if (p->skip_locking) {
2757                         b = btrfs_root_node(root);
2758                         level = btrfs_header_level(b);
2759                 } else {
2760                         /* we don't know the level of the root node
2761                          * until we actually have it read locked
2762                          */
2763                         b = btrfs_read_lock_root_node(root);
2764                         level = btrfs_header_level(b);
2765                         if (level <= write_lock_level) {
2766                                 /* whoops, must trade for write lock */
2767                                 btrfs_tree_read_unlock(b);
2768                                 free_extent_buffer(b);
2769                                 b = btrfs_lock_root_node(root);
2770                                 root_lock = BTRFS_WRITE_LOCK;
2771
2772                                 /* the level might have changed, check again */
2773                                 level = btrfs_header_level(b);
2774                         }
2775                 }
2776         }
2777         p->nodes[level] = b;
2778         if (!p->skip_locking)
2779                 p->locks[level] = root_lock;
2780
2781         while (b) {
2782                 level = btrfs_header_level(b);
2783
2784                 /*
2785                  * setup the path here so we can release it under lock
2786                  * contention with the cow code
2787                  */
2788                 if (cow) {
2789                         /*
2790                          * if we don't really need to cow this block
2791                          * then we don't want to set the path blocking,
2792                          * so we test it here
2793                          */
2794                         if (!should_cow_block(trans, root, b)) {
2795                                 trans->dirty = true;
2796                                 goto cow_done;
2797                         }
2798
2799                         /*
2800                          * must have write locks on this node and the
2801                          * parent
2802                          */
2803                         if (level > write_lock_level ||
2804                             (level + 1 > write_lock_level &&
2805                             level + 1 < BTRFS_MAX_LEVEL &&
2806                             p->nodes[level + 1])) {
2807                                 write_lock_level = level + 1;
2808                                 btrfs_release_path(p);
2809                                 goto again;
2810                         }
2811
2812                         btrfs_set_path_blocking(p);
2813                         err = btrfs_cow_block(trans, root, b,
2814                                               p->nodes[level + 1],
2815                                               p->slots[level + 1], &b);
2816                         if (err) {
2817                                 ret = err;
2818                                 goto done;
2819                         }
2820                 }
2821 cow_done:
2822                 p->nodes[level] = b;
2823                 btrfs_clear_path_blocking(p, NULL, 0);
2824
2825                 /*
2826                  * we have a lock on b and as long as we aren't changing
2827                  * the tree, there is no way to for the items in b to change.
2828                  * It is safe to drop the lock on our parent before we
2829                  * go through the expensive btree search on b.
2830                  *
2831                  * If we're inserting or deleting (ins_len != 0), then we might
2832                  * be changing slot zero, which may require changing the parent.
2833                  * So, we can't drop the lock until after we know which slot
2834                  * we're operating on.
2835                  */
2836                 if (!ins_len && !p->keep_locks) {
2837                         int u = level + 1;
2838
2839                         if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2840                                 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2841                                 p->locks[u] = 0;
2842                         }
2843                 }
2844
2845                 ret = key_search(b, key, level, &prev_cmp, &slot);
2846                 if (ret < 0)
2847                         goto done;
2848
2849                 if (level != 0) {
2850                         int dec = 0;
2851                         if (ret && slot > 0) {
2852                                 dec = 1;
2853                                 slot -= 1;
2854                         }
2855                         p->slots[level] = slot;
2856                         err = setup_nodes_for_search(trans, root, p, b, level,
2857                                              ins_len, &write_lock_level);
2858                         if (err == -EAGAIN)
2859                                 goto again;
2860                         if (err) {
2861                                 ret = err;
2862                                 goto done;
2863                         }
2864                         b = p->nodes[level];
2865                         slot = p->slots[level];
2866
2867                         /*
2868                          * slot 0 is special, if we change the key
2869                          * we have to update the parent pointer
2870                          * which means we must have a write lock
2871                          * on the parent
2872                          */
2873                         if (slot == 0 && ins_len &&
2874                             write_lock_level < level + 1) {
2875                                 write_lock_level = level + 1;
2876                                 btrfs_release_path(p);
2877                                 goto again;
2878                         }
2879
2880                         unlock_up(p, level, lowest_unlock,
2881                                   min_write_lock_level, &write_lock_level);
2882
2883                         if (level == lowest_level) {
2884                                 if (dec)
2885                                         p->slots[level]++;
2886                                 goto done;
2887                         }
2888
2889                         err = read_block_for_search(trans, root, p,
2890                                                     &b, level, slot, key, 0);
2891                         if (err == -EAGAIN)
2892                                 goto again;
2893                         if (err) {
2894                                 ret = err;
2895                                 goto done;
2896                         }
2897
2898                         if (!p->skip_locking) {
2899                                 level = btrfs_header_level(b);
2900                                 if (level <= write_lock_level) {
2901                                         err = btrfs_try_tree_write_lock(b);
2902                                         if (!err) {
2903                                                 btrfs_set_path_blocking(p);
2904                                                 btrfs_tree_lock(b);
2905                                                 btrfs_clear_path_blocking(p, b,
2906                                                                   BTRFS_WRITE_LOCK);
2907                                         }
2908                                         p->locks[level] = BTRFS_WRITE_LOCK;
2909                                 } else {
2910                                         err = btrfs_tree_read_lock_atomic(b);
2911                                         if (!err) {
2912                                                 btrfs_set_path_blocking(p);
2913                                                 btrfs_tree_read_lock(b);
2914                                                 btrfs_clear_path_blocking(p, b,
2915                                                                   BTRFS_READ_LOCK);
2916                                         }
2917                                         p->locks[level] = BTRFS_READ_LOCK;
2918                                 }
2919                                 p->nodes[level] = b;
2920                         }
2921                 } else {
2922                         p->slots[level] = slot;
2923                         if (ins_len > 0 &&
2924                             btrfs_leaf_free_space(root, b) < ins_len) {
2925                                 if (write_lock_level < 1) {
2926                                         write_lock_level = 1;
2927                                         btrfs_release_path(p);
2928                                         goto again;
2929                                 }
2930
2931                                 btrfs_set_path_blocking(p);
2932                                 err = split_leaf(trans, root, key,
2933                                                  p, ins_len, ret == 0);
2934                                 btrfs_clear_path_blocking(p, NULL, 0);
2935
2936                                 BUG_ON(err > 0);
2937                                 if (err) {
2938                                         ret = err;
2939                                         goto done;
2940                                 }
2941                         }
2942                         if (!p->search_for_split)
2943                                 unlock_up(p, level, lowest_unlock,
2944                                           min_write_lock_level, &write_lock_level);
2945                         goto done;
2946                 }
2947         }
2948         ret = 1;
2949 done:
2950         /*
2951          * we don't really know what they plan on doing with the path
2952          * from here on, so for now just mark it as blocking
2953          */
2954         if (!p->leave_spinning)
2955                 btrfs_set_path_blocking(p);
2956         if (ret < 0 && !p->skip_release_on_error)
2957                 btrfs_release_path(p);
2958         return ret;
2959 }
2960
2961 /*
2962  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2963  * current state of the tree together with the operations recorded in the tree
2964  * modification log to search for the key in a previous version of this tree, as
2965  * denoted by the time_seq parameter.
2966  *
2967  * Naturally, there is no support for insert, delete or cow operations.
2968  *
2969  * The resulting path and return value will be set up as if we called
2970  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2971  */
2972 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2973                           struct btrfs_path *p, u64 time_seq)
2974 {
2975         struct extent_buffer *b;
2976         int slot;
2977         int ret;
2978         int err;
2979         int level;
2980         int lowest_unlock = 1;
2981         u8 lowest_level = 0;
2982         int prev_cmp = -1;
2983
2984         lowest_level = p->lowest_level;
2985         WARN_ON(p->nodes[0] != NULL);
2986
2987         if (p->search_commit_root) {
2988                 BUG_ON(time_seq);
2989                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2990         }
2991
2992 again:
2993         b = get_old_root(root, time_seq);
2994         level = btrfs_header_level(b);
2995         p->locks[level] = BTRFS_READ_LOCK;
2996
2997         while (b) {
2998                 level = btrfs_header_level(b);
2999                 p->nodes[level] = b;
3000                 btrfs_clear_path_blocking(p, NULL, 0);
3001
3002                 /*
3003                  * we have a lock on b and as long as we aren't changing
3004                  * the tree, there is no way to for the items in b to change.
3005                  * It is safe to drop the lock on our parent before we
3006                  * go through the expensive btree search on b.
3007                  */
3008                 btrfs_unlock_up_safe(p, level + 1);
3009
3010                 /*
3011                  * Since we can unwind ebs we want to do a real search every
3012                  * time.
3013                  */
3014                 prev_cmp = -1;
3015                 ret = key_search(b, key, level, &prev_cmp, &slot);
3016
3017                 if (level != 0) {
3018                         int dec = 0;
3019                         if (ret && slot > 0) {
3020                                 dec = 1;
3021                                 slot -= 1;
3022                         }
3023                         p->slots[level] = slot;
3024                         unlock_up(p, level, lowest_unlock, 0, NULL);
3025
3026                         if (level == lowest_level) {
3027                                 if (dec)
3028                                         p->slots[level]++;
3029                                 goto done;
3030                         }
3031
3032                         err = read_block_for_search(NULL, root, p, &b, level,
3033                                                     slot, key, time_seq);
3034                         if (err == -EAGAIN)
3035                                 goto again;
3036                         if (err) {
3037                                 ret = err;
3038                                 goto done;
3039                         }
3040
3041                         level = btrfs_header_level(b);
3042                         err = btrfs_tree_read_lock_atomic(b);
3043                         if (!err) {
3044                                 btrfs_set_path_blocking(p);
3045                                 btrfs_tree_read_lock(b);
3046                                 btrfs_clear_path_blocking(p, b,
3047                                                           BTRFS_READ_LOCK);
3048                         }
3049                         b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3050                         if (!b) {
3051                                 ret = -ENOMEM;
3052                                 goto done;
3053                         }
3054                         p->locks[level] = BTRFS_READ_LOCK;
3055                         p->nodes[level] = b;
3056                 } else {
3057                         p->slots[level] = slot;
3058                         unlock_up(p, level, lowest_unlock, 0, NULL);
3059                         goto done;
3060                 }
3061         }
3062         ret = 1;
3063 done:
3064         if (!p->leave_spinning)
3065                 btrfs_set_path_blocking(p);
3066         if (ret < 0)
3067                 btrfs_release_path(p);
3068
3069         return ret;
3070 }
3071
3072 /*
3073  * helper to use instead of search slot if no exact match is needed but
3074  * instead the next or previous item should be returned.
3075  * When find_higher is true, the next higher item is returned, the next lower
3076  * otherwise.
3077  * When return_any and find_higher are both true, and no higher item is found,
3078  * return the next lower instead.
3079  * When return_any is true and find_higher is false, and no lower item is found,
3080  * return the next higher instead.
3081  * It returns 0 if any item is found, 1 if none is found (tree empty), and
3082  * < 0 on error
3083  */
3084 int btrfs_search_slot_for_read(struct btrfs_root *root,
3085                                struct btrfs_key *key, struct btrfs_path *p,
3086                                int find_higher, int return_any)
3087 {
3088         int ret;
3089         struct extent_buffer *leaf;
3090
3091 again:
3092         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3093         if (ret <= 0)
3094                 return ret;
3095         /*
3096          * a return value of 1 means the path is at the position where the
3097          * item should be inserted. Normally this is the next bigger item,
3098          * but in case the previous item is the last in a leaf, path points
3099          * to the first free slot in the previous leaf, i.e. at an invalid
3100          * item.
3101          */
3102         leaf = p->nodes[0];
3103
3104         if (find_higher) {
3105                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3106                         ret = btrfs_next_leaf(root, p);
3107                         if (ret <= 0)
3108                                 return ret;
3109                         if (!return_any)
3110                                 return 1;
3111                         /*
3112                          * no higher item found, return the next
3113                          * lower instead
3114                          */
3115                         return_any = 0;
3116                         find_higher = 0;
3117                         btrfs_release_path(p);
3118                         goto again;
3119                 }
3120         } else {
3121                 if (p->slots[0] == 0) {
3122                         ret = btrfs_prev_leaf(root, p);
3123                         if (ret < 0)
3124                                 return ret;
3125                         if (!ret) {
3126                                 leaf = p->nodes[0];
3127                                 if (p->slots[0] == btrfs_header_nritems(leaf))
3128                                         p->slots[0]--;
3129                                 return 0;
3130                         }
3131                         if (!return_any)
3132                                 return 1;
3133                         /*
3134                          * no lower item found, return the next
3135                          * higher instead
3136                          */
3137                         return_any = 0;
3138                         find_higher = 1;
3139                         btrfs_release_path(p);
3140                         goto again;
3141                 } else {
3142                         --p->slots[0];
3143                 }
3144         }
3145         return 0;
3146 }
3147
3148 /*
3149  * adjust the pointers going up the tree, starting at level
3150  * making sure the right key of each node is points to 'key'.
3151  * This is used after shifting pointers to the left, so it stops
3152  * fixing up pointers when a given leaf/node is not in slot 0 of the
3153  * higher levels
3154  *
3155  */
3156 static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3157                            struct btrfs_path *path,
3158                            struct btrfs_disk_key *key, int level)
3159 {
3160         int i;
3161         struct extent_buffer *t;
3162
3163         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3164                 int tslot = path->slots[i];
3165                 if (!path->nodes[i])
3166                         break;
3167                 t = path->nodes[i];
3168                 tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3169                 btrfs_set_node_key(t, key, tslot);
3170                 btrfs_mark_buffer_dirty(path->nodes[i]);
3171                 if (tslot != 0)
3172                         break;
3173         }
3174 }
3175
3176 /*
3177  * update item key.
3178  *
3179  * This function isn't completely safe. It's the caller's responsibility
3180  * that the new key won't break the order
3181  */
3182 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3183                              struct btrfs_path *path,
3184                              struct btrfs_key *new_key)
3185 {
3186         struct btrfs_disk_key disk_key;
3187         struct extent_buffer *eb;
3188         int slot;
3189
3190         eb = path->nodes[0];
3191         slot = path->slots[0];
3192         if (slot > 0) {
3193                 btrfs_item_key(eb, &disk_key, slot - 1);
3194                 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3195         }
3196         if (slot < btrfs_header_nritems(eb) - 1) {
3197                 btrfs_item_key(eb, &disk_key, slot + 1);
3198                 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3199         }
3200
3201         btrfs_cpu_key_to_disk(&disk_key, new_key);
3202         btrfs_set_item_key(eb, &disk_key, slot);
3203         btrfs_mark_buffer_dirty(eb);
3204         if (slot == 0)
3205                 fixup_low_keys(fs_info, path, &disk_key, 1);
3206 }
3207
3208 /*
3209  * try to push data from one node into the next node left in the
3210  * tree.
3211  *
3212  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3213  * error, and > 0 if there was no room in the left hand block.
3214  */
3215 static int push_node_left(struct btrfs_trans_handle *trans,
3216                           struct btrfs_root *root, struct extent_buffer *dst,
3217                           struct extent_buffer *src, int empty)
3218 {
3219         int push_items = 0;
3220         int src_nritems;
3221         int dst_nritems;
3222         int ret = 0;
3223
3224         src_nritems = btrfs_header_nritems(src);
3225         dst_nritems = btrfs_header_nritems(dst);
3226         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3227         WARN_ON(btrfs_header_generation(src) != trans->transid);
3228         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3229
3230         if (!empty && src_nritems <= 8)
3231                 return 1;
3232
3233         if (push_items <= 0)
3234                 return 1;
3235
3236         if (empty) {
3237                 push_items = min(src_nritems, push_items);
3238                 if (push_items < src_nritems) {
3239                         /* leave at least 8 pointers in the node if
3240                          * we aren't going to empty it
3241                          */
3242                         if (src_nritems - push_items < 8) {
3243                                 if (push_items <= 8)
3244                                         return 1;
3245                                 push_items -= 8;
3246                         }
3247                 }
3248         } else
3249                 push_items = min(src_nritems - 8, push_items);
3250
3251         ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3252                                    push_items);
3253         if (ret) {
3254                 btrfs_abort_transaction(trans, ret);
3255                 return ret;
3256         }
3257         copy_extent_buffer(dst, src,
3258                            btrfs_node_key_ptr_offset(dst_nritems),
3259                            btrfs_node_key_ptr_offset(0),
3260                            push_items * sizeof(struct btrfs_key_ptr));
3261
3262         if (push_items < src_nritems) {
3263                 /*
3264                  * don't call tree_mod_log_eb_move here, key removal was already
3265                  * fully logged by tree_mod_log_eb_copy above.
3266                  */
3267                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3268                                       btrfs_node_key_ptr_offset(push_items),
3269                                       (src_nritems - push_items) *
3270                                       sizeof(struct btrfs_key_ptr));
3271         }
3272         btrfs_set_header_nritems(src, src_nritems - push_items);
3273         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3274         btrfs_mark_buffer_dirty(src);
3275         btrfs_mark_buffer_dirty(dst);
3276
3277         return ret;
3278 }
3279
3280 /*
3281  * try to push data from one node into the next node right in the
3282  * tree.
3283  *
3284  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3285  * error, and > 0 if there was no room in the right hand block.
3286  *
3287  * this will  only push up to 1/2 the contents of the left node over
3288  */
3289 static int balance_node_right(struct btrfs_trans_handle *trans,
3290                               struct btrfs_root *root,
3291                               struct extent_buffer *dst,
3292                               struct extent_buffer *src)
3293 {
3294         int push_items = 0;
3295         int max_push;
3296         int src_nritems;
3297         int dst_nritems;
3298         int ret = 0;
3299
3300         WARN_ON(btrfs_header_generation(src) != trans->transid);
3301         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3302
3303         src_nritems = btrfs_header_nritems(src);
3304         dst_nritems = btrfs_header_nritems(dst);
3305         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3306         if (push_items <= 0)
3307                 return 1;
3308
3309         if (src_nritems < 4)
3310                 return 1;
3311
3312         max_push = src_nritems / 2 + 1;
3313         /* don't try to empty the node */
3314         if (max_push >= src_nritems)
3315                 return 1;
3316
3317         if (max_push < push_items)
3318                 push_items = max_push;
3319
3320         tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3321         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3322                                       btrfs_node_key_ptr_offset(0),
3323                                       (dst_nritems) *
3324                                       sizeof(struct btrfs_key_ptr));
3325
3326         ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3327                                    src_nritems - push_items, push_items);
3328         if (ret) {
3329                 btrfs_abort_transaction(trans, ret);
3330                 return ret;
3331         }
3332         copy_extent_buffer(dst, src,
3333                            btrfs_node_key_ptr_offset(0),
3334                            btrfs_node_key_ptr_offset(src_nritems - push_items),
3335                            push_items * sizeof(struct btrfs_key_ptr));
3336
3337         btrfs_set_header_nritems(src, src_nritems - push_items);
3338         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3339
3340         btrfs_mark_buffer_dirty(src);
3341         btrfs_mark_buffer_dirty(dst);
3342
3343         return ret;
3344 }
3345
3346 /*
3347  * helper function to insert a new root level in the tree.
3348  * A new node is allocated, and a single item is inserted to
3349  * point to the existing root
3350  *
3351  * returns zero on success or < 0 on failure.
3352  */
3353 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3354                            struct btrfs_root *root,
3355                            struct btrfs_path *path, int level)
3356 {
3357         u64 lower_gen;
3358         struct extent_buffer *lower;
3359         struct extent_buffer *c;
3360         struct extent_buffer *old;
3361         struct btrfs_disk_key lower_key;
3362
3363         BUG_ON(path->nodes[level]);
3364         BUG_ON(path->nodes[level-1] != root->node);
3365
3366         lower = path->nodes[level-1];
3367         if (level == 1)
3368                 btrfs_item_key(lower, &lower_key, 0);
3369         else
3370                 btrfs_node_key(lower, &lower_key, 0);
3371
3372         c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3373                                    &lower_key, level, root->node->start, 0);
3374         if (IS_ERR(c))
3375                 return PTR_ERR(c);
3376
3377         root_add_used(root, root->nodesize);
3378
3379         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3380         btrfs_set_header_nritems(c, 1);
3381         btrfs_set_header_level(c, level);
3382         btrfs_set_header_bytenr(c, c->start);
3383         btrfs_set_header_generation(c, trans->transid);
3384         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3385         btrfs_set_header_owner(c, root->root_key.objectid);
3386
3387         write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3388                             BTRFS_FSID_SIZE);
3389
3390         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3391                             btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3392
3393         btrfs_set_node_key(c, &lower_key, 0);
3394         btrfs_set_node_blockptr(c, 0, lower->start);
3395         lower_gen = btrfs_header_generation(lower);
3396         WARN_ON(lower_gen != trans->transid);
3397
3398         btrfs_set_node_ptr_generation(c, 0, lower_gen);
3399
3400         btrfs_mark_buffer_dirty(c);
3401
3402         old = root->node;
3403         tree_mod_log_set_root_pointer(root, c, 0);
3404         rcu_assign_pointer(root->node, c);
3405
3406         /* the super has an extra ref to root->node */
3407         free_extent_buffer(old);
3408
3409         add_root_to_dirty_list(root);
3410         extent_buffer_get(c);
3411         path->nodes[level] = c;
3412         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3413         path->slots[level] = 0;
3414         return 0;
3415 }
3416
3417 /*
3418  * worker function to insert a single pointer in a node.
3419  * the node should have enough room for the pointer already
3420  *
3421  * slot and level indicate where you want the key to go, and
3422  * blocknr is the block the key points to.
3423  */
3424 static void insert_ptr(struct btrfs_trans_handle *trans,
3425                        struct btrfs_root *root, struct btrfs_path *path,
3426                        struct btrfs_disk_key *key, u64 bytenr,
3427                        int slot, int level)
3428 {
3429         struct extent_buffer *lower;
3430         int nritems;
3431         int ret;
3432
3433         BUG_ON(!path->nodes[level]);
3434         btrfs_assert_tree_locked(path->nodes[level]);
3435         lower = path->nodes[level];
3436         nritems = btrfs_header_nritems(lower);
3437         BUG_ON(slot > nritems);
3438         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3439         if (slot != nritems) {
3440                 if (level)
3441                         tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3442                                              slot, nritems - slot);
3443                 memmove_extent_buffer(lower,
3444                               btrfs_node_key_ptr_offset(slot + 1),
3445                               btrfs_node_key_ptr_offset(slot),
3446                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3447         }
3448         if (level) {
3449                 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3450                                               MOD_LOG_KEY_ADD, GFP_NOFS);
3451                 BUG_ON(ret < 0);
3452         }
3453         btrfs_set_node_key(lower, key, slot);
3454         btrfs_set_node_blockptr(lower, slot, bytenr);
3455         WARN_ON(trans->transid == 0);
3456         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3457         btrfs_set_header_nritems(lower, nritems + 1);
3458         btrfs_mark_buffer_dirty(lower);
3459 }
3460
3461 /*
3462  * split the node at the specified level in path in two.
3463  * The path is corrected to point to the appropriate node after the split
3464  *
3465  * Before splitting this tries to make some room in the node by pushing
3466  * left and right, if either one works, it returns right away.
3467  *
3468  * returns 0 on success and < 0 on failure
3469  */
3470 static noinline int split_node(struct btrfs_trans_handle *trans,
3471                                struct btrfs_root *root,
3472                                struct btrfs_path *path, int level)
3473 {
3474         struct extent_buffer *c;
3475         struct extent_buffer *split;
3476         struct btrfs_disk_key disk_key;
3477         int mid;
3478         int ret;
3479         u32 c_nritems;
3480
3481         c = path->nodes[level];
3482         WARN_ON(btrfs_header_generation(c) != trans->transid);
3483         if (c == root->node) {
3484                 /*
3485                  * trying to split the root, lets make a new one
3486                  *
3487                  * tree mod log: We don't log_removal old root in
3488                  * insert_new_root, because that root buffer will be kept as a
3489                  * normal node. We are going to log removal of half of the
3490                  * elements below with tree_mod_log_eb_copy. We're holding a
3491                  * tree lock on the buffer, which is why we cannot race with
3492                  * other tree_mod_log users.
3493                  */
3494                 ret = insert_new_root(trans, root, path, level + 1);
3495                 if (ret)
3496                         return ret;
3497         } else {
3498                 ret = push_nodes_for_insert(trans, root, path, level);
3499                 c = path->nodes[level];
3500                 if (!ret && btrfs_header_nritems(c) <
3501                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3502                         return 0;
3503                 if (ret < 0)
3504                         return ret;
3505         }
3506
3507         c_nritems = btrfs_header_nritems(c);
3508         mid = (c_nritems + 1) / 2;
3509         btrfs_node_key(c, &disk_key, mid);
3510
3511         split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3512                         &disk_key, level, c->start, 0);
3513         if (IS_ERR(split))
3514                 return PTR_ERR(split);
3515
3516         root_add_used(root, root->nodesize);
3517
3518         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3519         btrfs_set_header_level(split, btrfs_header_level(c));
3520         btrfs_set_header_bytenr(split, split->start);
3521         btrfs_set_header_generation(split, trans->transid);
3522         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3523         btrfs_set_header_owner(split, root->root_key.objectid);
3524         write_extent_buffer(split, root->fs_info->fsid,
3525                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
3526         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3527                             btrfs_header_chunk_tree_uuid(split),
3528                             BTRFS_UUID_SIZE);
3529
3530         ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3531                                    mid, c_nritems - mid);
3532         if (ret) {
3533                 btrfs_abort_transaction(trans, ret);
3534                 return ret;
3535         }
3536         copy_extent_buffer(split, c,
3537                            btrfs_node_key_ptr_offset(0),
3538                            btrfs_node_key_ptr_offset(mid),
3539                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3540         btrfs_set_header_nritems(split, c_nritems - mid);
3541         btrfs_set_header_nritems(c, mid);
3542         ret = 0;
3543
3544         btrfs_mark_buffer_dirty(c);
3545         btrfs_mark_buffer_dirty(split);
3546
3547         insert_ptr(trans, root, path, &disk_key, split->start,
3548                    path->slots[level + 1] + 1, level + 1);
3549
3550         if (path->slots[level] >= mid) {
3551                 path->slots[level] -= mid;
3552                 btrfs_tree_unlock(c);
3553                 free_extent_buffer(c);
3554                 path->nodes[level] = split;
3555                 path->slots[level + 1] += 1;
3556         } else {
3557                 btrfs_tree_unlock(split);
3558                 free_extent_buffer(split);
3559         }
3560         return ret;
3561 }
3562
3563 /*
3564  * how many bytes are required to store the items in a leaf.  start
3565  * and nr indicate which items in the leaf to check.  This totals up the
3566  * space used both by the item structs and the item data
3567  */
3568 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3569 {
3570         struct btrfs_item *start_item;
3571         struct btrfs_item *end_item;
3572         struct btrfs_map_token token;
3573         int data_len;
3574         int nritems = btrfs_header_nritems(l);
3575         int end = min(nritems, start + nr) - 1;
3576
3577         if (!nr)
3578                 return 0;
3579         btrfs_init_map_token(&token);
3580         start_item = btrfs_item_nr(start);
3581         end_item = btrfs_item_nr(end);
3582         data_len = btrfs_token_item_offset(l, start_item, &token) +
3583                 btrfs_token_item_size(l, start_item, &token);
3584         data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3585         data_len += sizeof(struct btrfs_item) * nr;
3586         WARN_ON(data_len < 0);
3587         return data_len;
3588 }
3589
3590 /*
3591  * The space between the end of the leaf items and
3592  * the start of the leaf data.  IOW, how much room
3593  * the leaf has left for both items and data
3594  */
3595 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3596                                    struct extent_buffer *leaf)
3597 {
3598         int nritems = btrfs_header_nritems(leaf);
3599         int ret;
3600         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3601         if (ret < 0) {
3602                 btrfs_crit(root->fs_info,
3603                         "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3604                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3605                        leaf_space_used(leaf, 0, nritems), nritems);
3606         }
3607         return ret;
3608 }
3609
3610 /*
3611  * min slot controls the lowest index we're willing to push to the
3612  * right.  We'll push up to and including min_slot, but no lower
3613  */
3614 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3615                                       struct btrfs_root *root,
3616                                       struct btrfs_path *path,
3617                                       int data_size, int empty,
3618                                       struct extent_buffer *right,
3619                                       int free_space, u32 left_nritems,
3620                                       u32 min_slot)
3621 {
3622         struct extent_buffer *left = path->nodes[0];
3623         struct extent_buffer *upper = path->nodes[1];
3624         struct btrfs_map_token token;
3625         struct btrfs_disk_key disk_key;
3626         int slot;
3627         u32 i;
3628         int push_space = 0;
3629         int push_items = 0;
3630         struct btrfs_item *item;
3631         u32 nr;
3632         u32 right_nritems;
3633         u32 data_end;
3634         u32 this_item_size;
3635
3636         btrfs_init_map_token(&token);
3637
3638         if (empty)
3639                 nr = 0;
3640         else
3641                 nr = max_t(u32, 1, min_slot);
3642
3643         if (path->slots[0] >= left_nritems)
3644                 push_space += data_size;
3645
3646         slot = path->slots[1];
3647         i = left_nritems - 1;
3648         while (i >= nr) {
3649                 item = btrfs_item_nr(i);
3650
3651                 if (!empty && push_items > 0) {
3652                         if (path->slots[0] > i)
3653                                 break;
3654                         if (path->slots[0] == i) {
3655                                 int space = btrfs_leaf_free_space(root, left);
3656                                 if (space + push_space * 2 > free_space)
3657                                         break;
3658                         }
3659                 }
3660
3661                 if (path->slots[0] == i)
3662                         push_space += data_size;
3663
3664                 this_item_size = btrfs_item_size(left, item);
3665                 if (this_item_size + sizeof(*item) + push_space > free_space)
3666                         break;
3667
3668                 push_items++;
3669                 push_space += this_item_size + sizeof(*item);
3670                 if (i == 0)
3671                         break;
3672                 i--;
3673         }
3674
3675         if (push_items == 0)
3676                 goto out_unlock;
3677
3678         WARN_ON(!empty && push_items == left_nritems);
3679
3680         /* push left to right */
3681         right_nritems = btrfs_header_nritems(right);
3682
3683         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3684         push_space -= leaf_data_end(root, left);
3685
3686         /* make room in the right data area */
3687         data_end = leaf_data_end(root, right);
3688         memmove_extent_buffer(right,
3689                               btrfs_leaf_data(right) + data_end - push_space,
3690                               btrfs_leaf_data(right) + data_end,
3691                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
3692
3693         /* copy from the left data area */
3694         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3695                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3696                      btrfs_leaf_data(left) + leaf_data_end(root, left),
3697                      push_space);
3698
3699         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3700                               btrfs_item_nr_offset(0),
3701                               right_nritems * sizeof(struct btrfs_item));
3702
3703         /* copy the items from left to right */
3704         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3705                    btrfs_item_nr_offset(left_nritems - push_items),
3706                    push_items * sizeof(struct btrfs_item));
3707
3708         /* update the item pointers */
3709         right_nritems += push_items;
3710         btrfs_set_header_nritems(right, right_nritems);
3711         push_space = BTRFS_LEAF_DATA_SIZE(root);
3712         for (i = 0; i < right_nritems; i++) {
3713                 item = btrfs_item_nr(i);
3714                 push_space -= btrfs_token_item_size(right, item, &token);
3715                 btrfs_set_token_item_offset(right, item, push_space, &token);
3716         }
3717
3718         left_nritems -= push_items;
3719         btrfs_set_header_nritems(left, left_nritems);
3720
3721         if (left_nritems)
3722                 btrfs_mark_buffer_dirty(left);
3723         else
3724                 clean_tree_block(trans, root->fs_info, left);
3725
3726         btrfs_mark_buffer_dirty(right);
3727
3728         btrfs_item_key(right, &disk_key, 0);
3729         btrfs_set_node_key(upper, &disk_key, slot + 1);
3730         btrfs_mark_buffer_dirty(upper);
3731
3732         /* then fixup the leaf pointer in the path */
3733         if (path->slots[0] >= left_nritems) {
3734                 path->slots[0] -= left_nritems;
3735                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3736                         clean_tree_block(trans, root->fs_info, path->nodes[0]);
3737                 btrfs_tree_unlock(path->nodes[0]);
3738                 free_extent_buffer(path->nodes[0]);
3739                 path->nodes[0] = right;
3740                 path->slots[1] += 1;
3741         } else {
3742                 btrfs_tree_unlock(right);
3743                 free_extent_buffer(right);
3744         }
3745         return 0;
3746
3747 out_unlock:
3748         btrfs_tree_unlock(right);
3749         free_extent_buffer(right);
3750         return 1;
3751 }
3752
3753 /*
3754  * push some data in the path leaf to the right, trying to free up at
3755  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3756  *
3757  * returns 1 if the push failed because the other node didn't have enough
3758  * room, 0 if everything worked out and < 0 if there were major errors.
3759  *
3760  * this will push starting from min_slot to the end of the leaf.  It won't
3761  * push any slot lower than min_slot
3762  */
3763 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3764                            *root, struct btrfs_path *path,
3765                            int min_data_size, int data_size,
3766                            int empty, u32 min_slot)
3767 {
3768         struct extent_buffer *left = path->nodes[0];
3769         struct extent_buffer *right;
3770         struct extent_buffer *upper;
3771         int slot;
3772         int free_space;
3773         u32 left_nritems;
3774         int ret;
3775
3776         if (!path->nodes[1])
3777                 return 1;
3778
3779         slot = path->slots[1];
3780         upper = path->nodes[1];
3781         if (slot >= btrfs_header_nritems(upper) - 1)
3782                 return 1;
3783
3784         btrfs_assert_tree_locked(path->nodes[1]);
3785
3786         right = read_node_slot(root, upper, slot + 1);
3787         /*
3788          * slot + 1 is not valid or we fail to read the right node,
3789          * no big deal, just return.
3790          */
3791         if (IS_ERR(right))
3792                 return 1;
3793
3794         btrfs_tree_lock(right);
3795         btrfs_set_lock_blocking(right);
3796
3797         free_space = btrfs_leaf_free_space(root, right);
3798         if (free_space < data_size)
3799                 goto out_unlock;
3800
3801         /* cow and double check */
3802         ret = btrfs_cow_block(trans, root, right, upper,
3803                               slot + 1, &right);
3804         if (ret)
3805                 goto out_unlock;
3806
3807         free_space = btrfs_leaf_free_space(root, right);
3808         if (free_space < data_size)
3809                 goto out_unlock;
3810
3811         left_nritems = btrfs_header_nritems(left);
3812         if (left_nritems == 0)
3813                 goto out_unlock;
3814
3815         if (path->slots[0] == left_nritems && !empty) {
3816                 /* Key greater than all keys in the leaf, right neighbor has
3817                  * enough room for it and we're not emptying our leaf to delete
3818                  * it, therefore use right neighbor to insert the new item and
3819                  * no need to touch/dirty our left leaft. */
3820                 btrfs_tree_unlock(left);
3821                 free_extent_buffer(left);
3822                 path->nodes[0] = right;
3823                 path->slots[0] = 0;
3824                 path->slots[1]++;
3825                 return 0;
3826         }
3827
3828         return __push_leaf_right(trans, root, path, min_data_size, empty,
3829                                 right, free_space, left_nritems, min_slot);
3830 out_unlock:
3831         btrfs_tree_unlock(right);
3832         free_extent_buffer(right);
3833         return 1;
3834 }
3835
3836 /*
3837  * push some data in the path leaf to the left, trying to free up at
3838  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3839  *
3840  * max_slot can put a limit on how far into the leaf we'll push items.  The
3841  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3842  * items
3843  */
3844 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3845                                      struct btrfs_root *root,
3846                                      struct btrfs_path *path, int data_size,
3847                                      int empty, struct extent_buffer *left,
3848                                      int free_space, u32 right_nritems,
3849                                      u32 max_slot)
3850 {
3851         struct btrfs_disk_key disk_key;
3852         struct extent_buffer *right = path->nodes[0];
3853         int i;
3854         int push_space = 0;
3855         int push_items = 0;
3856         struct btrfs_item *item;
3857         u32 old_left_nritems;
3858         u32 nr;
3859         int ret = 0;
3860         u32 this_item_size;
3861         u32 old_left_item_size;
3862         struct btrfs_map_token token;
3863
3864         btrfs_init_map_token(&token);
3865
3866         if (empty)
3867                 nr = min(right_nritems, max_slot);
3868         else
3869                 nr = min(right_nritems - 1, max_slot);
3870
3871         for (i = 0; i < nr; i++) {
3872                 item = btrfs_item_nr(i);
3873
3874                 if (!empty && push_items > 0) {
3875                         if (path->slots[0] < i)
3876                                 break;
3877                         if (path->slots[0] == i) {
3878                                 int space = btrfs_leaf_free_space(root, right);
3879                                 if (space + push_space * 2 > free_space)
3880                                         break;
3881                         }
3882                 }
3883
3884                 if (path->slots[0] == i)
3885                         push_space += data_size;
3886
3887                 this_item_size = btrfs_item_size(right, item);
3888                 if (this_item_size + sizeof(*item) + push_space > free_space)
3889                         break;
3890
3891                 push_items++;
3892                 push_space += this_item_size + sizeof(*item);
3893         }
3894
3895         if (push_items == 0) {
3896                 ret = 1;
3897                 goto out;
3898         }
3899         WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3900
3901         /* push data from right to left */
3902         copy_extent_buffer(left, right,
3903                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3904                            btrfs_item_nr_offset(0),
3905                            push_items * sizeof(struct btrfs_item));
3906
3907         push_space = BTRFS_LEAF_DATA_SIZE(root) -
3908                      btrfs_item_offset_nr(right, push_items - 1);
3909
3910         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3911                      leaf_data_end(root, left) - push_space,
3912                      btrfs_leaf_data(right) +
3913                      btrfs_item_offset_nr(right, push_items - 1),
3914                      push_space);
3915         old_left_nritems = btrfs_header_nritems(left);
3916         BUG_ON(old_left_nritems <= 0);
3917
3918         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3919         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3920                 u32 ioff;
3921
3922                 item = btrfs_item_nr(i);
3923
3924                 ioff = btrfs_token_item_offset(left, item, &token);
3925                 btrfs_set_token_item_offset(left, item,
3926                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3927                       &token);
3928         }
3929         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3930
3931         /* fixup right node */
3932         if (push_items > right_nritems)
3933                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3934                        right_nritems);
3935
3936         if (push_items < right_nritems) {
3937                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3938                                                   leaf_data_end(root, right);
3939                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3940                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
3941                                       btrfs_leaf_data(right) +
3942                                       leaf_data_end(root, right), push_space);
3943
3944                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3945                               btrfs_item_nr_offset(push_items),
3946                              (btrfs_header_nritems(right) - push_items) *
3947                              sizeof(struct btrfs_item));
3948         }
3949         right_nritems -= push_items;
3950         btrfs_set_header_nritems(right, right_nritems);
3951         push_space = BTRFS_LEAF_DATA_SIZE(root);
3952         for (i = 0; i < right_nritems; i++) {
3953                 item = btrfs_item_nr(i);
3954
3955                 push_space = push_space - btrfs_token_item_size(right,
3956                                                                 item, &token);
3957                 btrfs_set_token_item_offset(right, item, push_space, &token);
3958         }
3959
3960         btrfs_mark_buffer_dirty(left);
3961         if (right_nritems)
3962                 btrfs_mark_buffer_dirty(right);
3963         else
3964                 clean_tree_block(trans, root->fs_info, right);
3965
3966         btrfs_item_key(right, &disk_key, 0);
3967         fixup_low_keys(root->fs_info, path, &disk_key, 1);
3968
3969         /* then fixup the leaf pointer in the path */
3970         if (path->slots[0] < push_items) {
3971                 path->slots[0] += old_left_nritems;
3972                 btrfs_tree_unlock(path->nodes[0]);
3973                 free_extent_buffer(path->nodes[0]);
3974                 path->nodes[0] = left;
3975                 path->slots[1] -= 1;
3976         } else {
3977                 btrfs_tree_unlock(left);
3978                 free_extent_buffer(left);
3979                 path->slots[0] -= push_items;
3980         }
3981         BUG_ON(path->slots[0] < 0);
3982         return ret;
3983 out:
3984         btrfs_tree_unlock(left);
3985         free_extent_buffer(left);
3986         return ret;
3987 }
3988
3989 /*
3990  * push some data in the path leaf to the left, trying to free up at
3991  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3992  *
3993  * max_slot can put a limit on how far into the leaf we'll push items.  The
3994  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3995  * items
3996  */
3997 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3998                           *root, struct btrfs_path *path, int min_data_size,
3999                           int data_size, int empty, u32 max_slot)
4000 {
4001         struct extent_buffer *right = path->nodes[0];
4002         struct extent_buffer *left;
4003         int slot;
4004         int free_space;
4005         u32 right_nritems;
4006         int ret = 0;
4007
4008         slot = path->slots[1];
4009         if (slot == 0)
4010                 return 1;
4011         if (!path->nodes[1])
4012                 return 1;
4013
4014         right_nritems = btrfs_header_nritems(right);
4015         if (right_nritems == 0)
4016                 return 1;
4017
4018         btrfs_assert_tree_locked(path->nodes[1]);
4019
4020         left = read_node_slot(root, path->nodes[1], slot - 1);
4021         /*
4022          * slot - 1 is not valid or we fail to read the left node,
4023          * no big deal, just return.
4024          */
4025         if (IS_ERR(left))
4026                 return 1;
4027
4028         btrfs_tree_lock(left);
4029         btrfs_set_lock_blocking(left);
4030
4031         free_space = btrfs_leaf_free_space(root, left);
4032         if (free_space < data_size) {
4033                 ret = 1;
4034                 goto out;
4035         }
4036
4037         /* cow and double check */
4038         ret = btrfs_cow_block(trans, root, left,
4039                               path->nodes[1], slot - 1, &left);
4040         if (ret) {
4041                 /* we hit -ENOSPC, but it isn't fatal here */
4042                 if (ret == -ENOSPC)
4043                         ret = 1;
4044                 goto out;
4045         }
4046
4047         free_space = btrfs_leaf_free_space(root, left);
4048         if (free_space < data_size) {
4049                 ret = 1;
4050                 goto out;
4051         }
4052
4053         return __push_leaf_left(trans, root, path, min_data_size,
4054                                empty, left, free_space, right_nritems,
4055                                max_slot);
4056 out:
4057         btrfs_tree_unlock(left);
4058         free_extent_buffer(left);
4059         return ret;
4060 }
4061
4062 /*
4063  * split the path's leaf in two, making sure there is at least data_size
4064  * available for the resulting leaf level of the path.
4065  */
4066 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4067                                     struct btrfs_root *root,
4068                                     struct btrfs_path *path,
4069                                     struct extent_buffer *l,
4070                                     struct extent_buffer *right,
4071                                     int slot, int mid, int nritems)
4072 {
4073         int data_copy_size;
4074         int rt_data_off;
4075         int i;
4076         struct btrfs_disk_key disk_key;
4077         struct btrfs_map_token token;
4078
4079         btrfs_init_map_token(&token);
4080
4081         nritems = nritems - mid;
4082         btrfs_set_header_nritems(right, nritems);
4083         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4084
4085         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4086                            btrfs_item_nr_offset(mid),
4087                            nritems * sizeof(struct btrfs_item));
4088
4089         copy_extent_buffer(right, l,
4090                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4091                      data_copy_size, btrfs_leaf_data(l) +
4092                      leaf_data_end(root, l), data_copy_size);
4093
4094         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4095                       btrfs_item_end_nr(l, mid);
4096
4097         for (i = 0; i < nritems; i++) {
4098                 struct btrfs_item *item = btrfs_item_nr(i);
4099                 u32 ioff;
4100
4101                 ioff = btrfs_token_item_offset(right, item, &token);
4102                 btrfs_set_token_item_offset(right, item,
4103                                             ioff + rt_data_off, &token);
4104         }
4105
4106         btrfs_set_header_nritems(l, mid);
4107         btrfs_item_key(right, &disk_key, 0);
4108         insert_ptr(trans, root, path, &disk_key, right->start,
4109                    path->slots[1] + 1, 1);
4110
4111         btrfs_mark_buffer_dirty(right);
4112         btrfs_mark_buffer_dirty(l);
4113         BUG_ON(path->slots[0] != slot);
4114
4115         if (mid <= slot) {
4116                 btrfs_tree_unlock(path->nodes[0]);
4117                 free_extent_buffer(path->nodes[0]);
4118                 path->nodes[0] = right;
4119                 path->slots[0] -= mid;
4120                 path->slots[1] += 1;
4121         } else {
4122                 btrfs_tree_unlock(right);
4123                 free_extent_buffer(right);
4124         }
4125
4126         BUG_ON(path->slots[0] < 0);
4127 }
4128
4129 /*
4130  * double splits happen when we need to insert a big item in the middle
4131  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4132  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4133  *          A                 B                 C
4134  *
4135  * We avoid this by trying to push the items on either side of our target
4136  * into the adjacent leaves.  If all goes well we can avoid the double split
4137  * completely.
4138  */
4139 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4140                                           struct btrfs_root *root,
4141                                           struct btrfs_path *path,
4142                                           int data_size)
4143 {
4144         int ret;
4145         int progress = 0;
4146         int slot;
4147         u32 nritems;
4148         int space_needed = data_size;
4149
4150         slot = path->slots[0];
4151         if (slot < btrfs_header_nritems(path->nodes[0]))
4152                 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4153
4154         /*
4155          * try to push all the items after our slot into the
4156          * right leaf
4157          */
4158         ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4159         if (ret < 0)
4160                 return ret;
4161
4162         if (ret == 0)
4163                 progress++;
4164
4165         nritems = btrfs_header_nritems(path->nodes[0]);
4166         /*
4167          * our goal is to get our slot at the start or end of a leaf.  If
4168          * we've done so we're done
4169          */
4170         if (path->slots[0] == 0 || path->slots[0] == nritems)
4171                 return 0;
4172
4173         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4174                 return 0;
4175
4176         /* try to push all the items before our slot into the next leaf */
4177         slot = path->slots[0];
4178         ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4179         if (ret < 0)
4180                 return ret;
4181
4182         if (ret == 0)
4183                 progress++;
4184
4185         if (progress)
4186                 return 0;
4187         return 1;
4188 }
4189
4190 /*
4191  * split the path's leaf in two, making sure there is at least data_size
4192  * available for the resulting leaf level of the path.
4193  *
4194  * returns 0 if all went well and < 0 on failure.
4195  */
4196 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4197                                struct btrfs_root *root,
4198                                struct btrfs_key *ins_key,
4199                                struct btrfs_path *path, int data_size,
4200                                int extend)
4201 {
4202         struct btrfs_disk_key disk_key;
4203         struct extent_buffer *l;
4204         u32 nritems;
4205         int mid;
4206         int slot;
4207         struct extent_buffer *right;
4208         struct btrfs_fs_info *fs_info = root->fs_info;
4209         int ret = 0;
4210         int wret;
4211         int split;
4212         int num_doubles = 0;
4213         int tried_avoid_double = 0;
4214
4215         l = path->nodes[0];
4216         slot = path->slots[0];
4217         if (extend && data_size + btrfs_item_size_nr(l, slot) +
4218             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4219                 return -EOVERFLOW;
4220
4221         /* first try to make some room by pushing left and right */
4222         if (data_size && path->nodes[1]) {
4223                 int space_needed = data_size;
4224
4225                 if (slot < btrfs_header_nritems(l))
4226                         space_needed -= btrfs_leaf_free_space(root, l);
4227
4228                 wret = push_leaf_right(trans, root, path, space_needed,
4229                                        space_needed, 0, 0);
4230                 if (wret < 0)
4231                         return wret;
4232                 if (wret) {
4233                         wret = push_leaf_left(trans, root, path, space_needed,
4234                                               space_needed, 0, (u32)-1);
4235                         if (wret < 0)
4236                                 return wret;
4237                 }
4238                 l = path->nodes[0];
4239
4240                 /* did the pushes work? */
4241                 if (btrfs_leaf_free_space(root, l) >= data_size)
4242                         return 0;
4243         }
4244
4245         if (!path->nodes[1]) {
4246                 ret = insert_new_root(trans, root, path, 1);
4247                 if (ret)
4248                         return ret;
4249         }
4250 again:
4251         split = 1;
4252         l = path->nodes[0];
4253         slot = path->slots[0];
4254         nritems = btrfs_header_nritems(l);
4255         mid = (nritems + 1) / 2;
4256
4257         if (mid <= slot) {
4258                 if (nritems == 1 ||
4259                     leaf_space_used(l, mid, nritems - mid) + data_size >
4260                         BTRFS_LEAF_DATA_SIZE(root)) {
4261                         if (slot >= nritems) {
4262                                 split = 0;
4263                         } else {
4264                                 mid = slot;
4265                                 if (mid != nritems &&
4266                                     leaf_space_used(l, mid, nritems - mid) +
4267                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4268                                         if (data_size && !tried_avoid_double)
4269                                                 goto push_for_double;
4270                                         split = 2;
4271                                 }
4272                         }
4273                 }
4274         } else {
4275                 if (leaf_space_used(l, 0, mid) + data_size >
4276                         BTRFS_LEAF_DATA_SIZE(root)) {
4277                         if (!extend && data_size && slot == 0) {
4278                                 split = 0;
4279                         } else if ((extend || !data_size) && slot == 0) {
4280                                 mid = 1;
4281                         } else {
4282                                 mid = slot;
4283                                 if (mid != nritems &&
4284                                     leaf_space_used(l, mid, nritems - mid) +
4285                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4286                                         if (data_size && !tried_avoid_double)
4287                                                 goto push_for_double;
4288                                         split = 2;
4289                                 }
4290                         }
4291                 }
4292         }
4293
4294         if (split == 0)
4295                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4296         else
4297                 btrfs_item_key(l, &disk_key, mid);
4298
4299         right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4300                         &disk_key, 0, l->start, 0);
4301         if (IS_ERR(right))
4302                 return PTR_ERR(right);
4303
4304         root_add_used(root, root->nodesize);
4305
4306         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4307         btrfs_set_header_bytenr(right, right->start);
4308         btrfs_set_header_generation(right, trans->transid);
4309         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4310         btrfs_set_header_owner(right, root->root_key.objectid);
4311         btrfs_set_header_level(right, 0);
4312         write_extent_buffer(right, fs_info->fsid,
4313                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
4314
4315         write_extent_buffer(right, fs_info->chunk_tree_uuid,
4316                             btrfs_header_chunk_tree_uuid(right),
4317                             BTRFS_UUID_SIZE);
4318
4319         if (split == 0) {
4320                 if (mid <= slot) {
4321                         btrfs_set_header_nritems(right, 0);
4322                         insert_ptr(trans, root, path, &disk_key, right->start,
4323                                    path->slots[1] + 1, 1);
4324                         btrfs_tree_unlock(path->nodes[0]);
4325                         free_extent_buffer(path->nodes[0]);
4326                         path->nodes[0] = right;
4327                         path->slots[0] = 0;
4328                         path->slots[1] += 1;
4329                 } else {
4330                         btrfs_set_header_nritems(right, 0);
4331                         insert_ptr(trans, root, path, &disk_key, right->start,
4332                                           path->slots[1], 1);
4333                         btrfs_tree_unlock(path->nodes[0]);
4334                         free_extent_buffer(path->nodes[0]);
4335                         path->nodes[0] = right;
4336                         path->slots[0] = 0;
4337                         if (path->slots[1] == 0)
4338                                 fixup_low_keys(fs_info, path, &disk_key, 1);
4339                 }
4340                 btrfs_mark_buffer_dirty(right);
4341                 return ret;
4342         }
4343
4344         copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4345
4346         if (split == 2) {
4347                 BUG_ON(num_doubles != 0);
4348                 num_doubles++;
4349                 goto again;
4350         }
4351
4352         return 0;
4353
4354 push_for_double:
4355         push_for_double_split(trans, root, path, data_size);
4356         tried_avoid_double = 1;
4357         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4358                 return 0;
4359         goto again;
4360 }
4361
4362 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4363                                          struct btrfs_root *root,
4364                                          struct btrfs_path *path, int ins_len)
4365 {
4366         struct btrfs_key key;
4367         struct extent_buffer *leaf;
4368         struct btrfs_file_extent_item *fi;
4369         u64 extent_len = 0;
4370         u32 item_size;
4371         int ret;
4372
4373         leaf = path->nodes[0];
4374         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4375
4376         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4377                key.type != BTRFS_EXTENT_CSUM_KEY);
4378
4379         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4380                 return 0;
4381
4382         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4383         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4384                 fi = btrfs_item_ptr(leaf, path->slots[0],
4385                                     struct btrfs_file_extent_item);
4386                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4387         }
4388         btrfs_release_path(path);
4389
4390         path->keep_locks = 1;
4391         path->search_for_split = 1;
4392         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4393         path->search_for_split = 0;
4394         if (ret > 0)
4395                 ret = -EAGAIN;
4396         if (ret < 0)
4397                 goto err;
4398
4399         ret = -EAGAIN;
4400         leaf = path->nodes[0];
4401         /* if our item isn't there, return now */
4402         if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4403                 goto err;
4404
4405         /* the leaf has  changed, it now has room.  return now */
4406         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4407                 goto err;
4408
4409         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4410                 fi = btrfs_item_ptr(leaf, path->slots[0],
4411                                     struct btrfs_file_extent_item);
4412                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4413                         goto err;
4414         }
4415
4416         btrfs_set_path_blocking(path);
4417         ret = split_leaf(trans, root, &key, path, ins_len, 1);
4418         if (ret)
4419                 goto err;
4420
4421         path->keep_locks = 0;
4422         btrfs_unlock_up_safe(path, 1);
4423         return 0;
4424 err:
4425         path->keep_locks = 0;
4426         return ret;
4427 }
4428
4429 static noinline int split_item(struct btrfs_trans_handle *trans,
4430                                struct btrfs_root *root,
4431                                struct btrfs_path *path,
4432                                struct btrfs_key *new_key,
4433                                unsigned long split_offset)
4434 {
4435         struct extent_buffer *leaf;
4436         struct btrfs_item *item;
4437         struct btrfs_item *new_item;
4438         int slot;
4439         char *buf;
4440         u32 nritems;
4441         u32 item_size;
4442         u32 orig_offset;
4443         struct btrfs_disk_key disk_key;
4444
4445         leaf = path->nodes[0];
4446         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4447
4448         btrfs_set_path_blocking(path);
4449
4450         item = btrfs_item_nr(path->slots[0]);
4451         orig_offset = btrfs_item_offset(leaf, item);
4452         item_size = btrfs_item_size(leaf, item);
4453
4454         buf = kmalloc(item_size, GFP_NOFS);
4455         if (!buf)
4456                 return -ENOMEM;
4457
4458         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4459                             path->slots[0]), item_size);
4460
4461         slot = path->slots[0] + 1;
4462         nritems = btrfs_header_nritems(leaf);
4463         if (slot != nritems) {
4464                 /* shift the items */
4465                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4466                                 btrfs_item_nr_offset(slot),
4467                                 (nritems - slot) * sizeof(struct btrfs_item));
4468         }
4469
4470         btrfs_cpu_key_to_disk(&disk_key, new_key);
4471         btrfs_set_item_key(leaf, &disk_key, slot);
4472
4473         new_item = btrfs_item_nr(slot);
4474
4475         btrfs_set_item_offset(leaf, new_item, orig_offset);
4476         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4477
4478         btrfs_set_item_offset(leaf, item,
4479                               orig_offset + item_size - split_offset);
4480         btrfs_set_item_size(leaf, item, split_offset);
4481
4482         btrfs_set_header_nritems(leaf, nritems + 1);
4483
4484         /* write the data for the start of the original item */
4485         write_extent_buffer(leaf, buf,
4486                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4487                             split_offset);
4488
4489         /* write the data for the new item */
4490         write_extent_buffer(leaf, buf + split_offset,
4491                             btrfs_item_ptr_offset(leaf, slot),
4492                             item_size - split_offset);
4493         btrfs_mark_buffer_dirty(leaf);
4494
4495         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4496         kfree(buf);
4497         return 0;
4498 }
4499
4500 /*
4501  * This function splits a single item into two items,
4502  * giving 'new_key' to the new item and splitting the
4503  * old one at split_offset (from the start of the item).
4504  *
4505  * The path may be released by this operation.  After
4506  * the split, the path is pointing to the old item.  The
4507  * new item is going to be in the same node as the old one.
4508  *
4509  * Note, the item being split must be smaller enough to live alone on
4510  * a tree block with room for one extra struct btrfs_item
4511  *
4512  * This allows us to split the item in place, keeping a lock on the
4513  * leaf the entire time.
4514  */
4515 int btrfs_split_item(struct btrfs_trans_handle *trans,
4516                      struct btrfs_root *root,
4517                      struct btrfs_path *path,
4518                      struct btrfs_key *new_key,
4519                      unsigned long split_offset)
4520 {
4521         int ret;
4522         ret = setup_leaf_for_split(trans, root, path,
4523                                    sizeof(struct btrfs_item));
4524         if (ret)
4525                 return ret;
4526
4527         ret = split_item(trans, root, path, new_key, split_offset);
4528         return ret;
4529 }
4530
4531 /*
4532  * This function duplicate a item, giving 'new_key' to the new item.
4533  * It guarantees both items live in the same tree leaf and the new item
4534  * is contiguous with the original item.
4535  *
4536  * This allows us to split file extent in place, keeping a lock on the
4537  * leaf the entire time.
4538  */
4539 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4540                          struct btrfs_root *root,
4541                          struct btrfs_path *path,
4542                          struct btrfs_key *new_key)
4543 {
4544         struct extent_buffer *leaf;
4545         int ret;
4546         u32 item_size;
4547
4548         leaf = path->nodes[0];
4549         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4550         ret = setup_leaf_for_split(trans, root, path,
4551                                    item_size + sizeof(struct btrfs_item));
4552         if (ret)
4553                 return ret;
4554
4555         path->slots[0]++;
4556         setup_items_for_insert(root, path, new_key, &item_size,
4557                                item_size, item_size +
4558                                sizeof(struct btrfs_item), 1);
4559         leaf = path->nodes[0];
4560         memcpy_extent_buffer(leaf,
4561                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4562                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4563                              item_size);
4564         return 0;
4565 }
4566
4567 /*
4568  * make the item pointed to by the path smaller.  new_size indicates
4569  * how small to make it, and from_end tells us if we just chop bytes
4570  * off the end of the item or if we shift the item to chop bytes off
4571  * the front.
4572  */
4573 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4574                          u32 new_size, int from_end)
4575 {
4576         int slot;
4577         struct extent_buffer *leaf;
4578         struct btrfs_item *item;
4579         u32 nritems;
4580         unsigned int data_end;
4581         unsigned int old_data_start;
4582         unsigned int old_size;
4583         unsigned int size_diff;
4584         int i;
4585         struct btrfs_map_token token;
4586
4587         btrfs_init_map_token(&token);
4588
4589         leaf = path->nodes[0];
4590         slot = path->slots[0];
4591
4592         old_size = btrfs_item_size_nr(leaf, slot);
4593         if (old_size == new_size)
4594                 return;
4595
4596         nritems = btrfs_header_nritems(leaf);
4597         data_end = leaf_data_end(root, leaf);
4598
4599         old_data_start = btrfs_item_offset_nr(leaf, slot);
4600
4601         size_diff = old_size - new_size;
4602
4603         BUG_ON(slot < 0);
4604         BUG_ON(slot >= nritems);
4605
4606         /*
4607          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4608          */
4609         /* first correct the data pointers */
4610         for (i = slot; i < nritems; i++) {
4611                 u32 ioff;
4612                 item = btrfs_item_nr(i);
4613
4614                 ioff = btrfs_token_item_offset(leaf, item, &token);
4615                 btrfs_set_token_item_offset(leaf, item,
4616                                             ioff + size_diff, &token);
4617         }
4618
4619         /* shift the data */
4620         if (from_end) {
4621                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4622                               data_end + size_diff, btrfs_leaf_data(leaf) +
4623                               data_end, old_data_start + new_size - data_end);
4624         } else {
4625                 struct btrfs_disk_key disk_key;
4626                 u64 offset;
4627
4628                 btrfs_item_key(leaf, &disk_key, slot);
4629
4630                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4631                         unsigned long ptr;
4632                         struct btrfs_file_extent_item *fi;
4633
4634                         fi = btrfs_item_ptr(leaf, slot,
4635                                             struct btrfs_file_extent_item);
4636                         fi = (struct btrfs_file_extent_item *)(
4637                              (unsigned long)fi - size_diff);
4638
4639                         if (btrfs_file_extent_type(leaf, fi) ==
4640                             BTRFS_FILE_EXTENT_INLINE) {
4641                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4642                                 memmove_extent_buffer(leaf, ptr,
4643                                       (unsigned long)fi,
4644                                       BTRFS_FILE_EXTENT_INLINE_DATA_START);
4645                         }
4646                 }
4647
4648                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4649                               data_end + size_diff, btrfs_leaf_data(leaf) +
4650                               data_end, old_data_start - data_end);
4651
4652                 offset = btrfs_disk_key_offset(&disk_key);
4653                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4654                 btrfs_set_item_key(leaf, &disk_key, slot);
4655                 if (slot == 0)
4656                         fixup_low_keys(root->fs_info, path, &disk_key, 1);
4657         }
4658
4659         item = btrfs_item_nr(slot);
4660         btrfs_set_item_size(leaf, item, new_size);
4661         btrfs_mark_buffer_dirty(leaf);
4662
4663         if (btrfs_leaf_free_space(root, leaf) < 0) {
4664                 btrfs_print_leaf(root, leaf);
4665                 BUG();
4666         }
4667 }
4668
4669 /*
4670  * make the item pointed to by the path bigger, data_size is the added size.
4671  */
4672 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4673                        u32 data_size)
4674 {
4675         int slot;
4676         struct extent_buffer *leaf;
4677         struct btrfs_item *item;
4678         u32 nritems;
4679         unsigned int data_end;
4680         unsigned int old_data;
4681         unsigned int old_size;
4682         int i;
4683         struct btrfs_map_token token;
4684
4685         btrfs_init_map_token(&token);
4686
4687         leaf = path->nodes[0];
4688
4689         nritems = btrfs_header_nritems(leaf);
4690         data_end = leaf_data_end(root, leaf);
4691
4692         if (btrfs_leaf_free_space(root, leaf) < data_size) {
4693                 btrfs_print_leaf(root, leaf);
4694                 BUG();
4695         }
4696         slot = path->slots[0];
4697         old_data = btrfs_item_end_nr(leaf, slot);
4698
4699         BUG_ON(slot < 0);
4700         if (slot >= nritems) {
4701                 btrfs_print_leaf(root, leaf);
4702                 btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4703                        slot, nritems);
4704                 BUG_ON(1);
4705         }
4706
4707         /*
4708          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4709          */
4710         /* first correct the data pointers */
4711         for (i = slot; i < nritems; i++) {
4712                 u32 ioff;
4713                 item = btrfs_item_nr(i);
4714
4715                 ioff = btrfs_token_item_offset(leaf, item, &token);
4716                 btrfs_set_token_item_offset(leaf, item,
4717                                             ioff - data_size, &token);
4718         }
4719
4720         /* shift the data */
4721         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4722                       data_end - data_size, btrfs_leaf_data(leaf) +
4723                       data_end, old_data - data_end);
4724
4725         data_end = old_data;
4726         old_size = btrfs_item_size_nr(leaf, slot);
4727         item = btrfs_item_nr(slot);
4728         btrfs_set_item_size(leaf, item, old_size + data_size);
4729         btrfs_mark_buffer_dirty(leaf);
4730
4731         if (btrfs_leaf_free_space(root, leaf) < 0) {
4732                 btrfs_print_leaf(root, leaf);
4733                 BUG();
4734         }
4735 }
4736
4737 /*
4738  * this is a helper for btrfs_insert_empty_items, the main goal here is
4739  * to save stack depth by doing the bulk of the work in a function
4740  * that doesn't call btrfs_search_slot
4741  */
4742 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4743                             struct btrfs_key *cpu_key, u32 *data_size,
4744                             u32 total_data, u32 total_size, int nr)
4745 {
4746         struct btrfs_item *item;
4747         int i;
4748         u32 nritems;
4749         unsigned int data_end;
4750         struct btrfs_disk_key disk_key;
4751         struct extent_buffer *leaf;
4752         int slot;
4753         struct btrfs_map_token token;
4754
4755         if (path->slots[0] == 0) {
4756                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4757                 fixup_low_keys(root->fs_info, path, &disk_key, 1);
4758         }
4759         btrfs_unlock_up_safe(path, 1);
4760
4761         btrfs_init_map_token(&token);
4762
4763         leaf = path->nodes[0];
4764         slot = path->slots[0];
4765
4766         nritems = btrfs_header_nritems(leaf);
4767         data_end = leaf_data_end(root, leaf);
4768
4769         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4770                 btrfs_print_leaf(root, leaf);
4771                 btrfs_crit(root->fs_info,
4772                            "not enough freespace need %u have %d",
4773                            total_size, btrfs_leaf_free_space(root, leaf));
4774                 BUG();
4775         }
4776
4777         if (slot != nritems) {
4778                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4779
4780                 if (old_data < data_end) {
4781                         btrfs_print_leaf(root, leaf);
4782                         btrfs_crit(root->fs_info,
4783                                    "slot %d old_data %d data_end %d",
4784                                    slot, old_data, data_end);
4785                         BUG_ON(1);
4786                 }
4787                 /*
4788                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4789                  */
4790                 /* first correct the data pointers */
4791                 for (i = slot; i < nritems; i++) {
4792                         u32 ioff;
4793
4794                         item = btrfs_item_nr( i);
4795                         ioff = btrfs_token_item_offset(leaf, item, &token);
4796                         btrfs_set_token_item_offset(leaf, item,
4797                                                     ioff - total_data, &token);
4798                 }
4799                 /* shift the items */
4800                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4801                               btrfs_item_nr_offset(slot),
4802                               (nritems - slot) * sizeof(struct btrfs_item));
4803
4804                 /* shift the data */
4805                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4806                               data_end - total_data, btrfs_leaf_data(leaf) +
4807                               data_end, old_data - data_end);
4808                 data_end = old_data;
4809         }
4810
4811         /* setup the item for the new data */
4812         for (i = 0; i < nr; i++) {
4813                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4814                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4815                 item = btrfs_item_nr(slot + i);
4816                 btrfs_set_token_item_offset(leaf, item,
4817                                             data_end - data_size[i], &token);
4818                 data_end -= data_size[i];
4819                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4820         }
4821
4822         btrfs_set_header_nritems(leaf, nritems + nr);
4823         btrfs_mark_buffer_dirty(leaf);
4824
4825         if (btrfs_leaf_free_space(root, leaf) < 0) {
4826                 btrfs_print_leaf(root, leaf);
4827                 BUG();
4828         }
4829 }
4830
4831 /*
4832  * Given a key and some data, insert items into the tree.
4833  * This does all the path init required, making room in the tree if needed.
4834  */
4835 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4836                             struct btrfs_root *root,
4837                             struct btrfs_path *path,
4838                             struct btrfs_key *cpu_key, u32 *data_size,
4839                             int nr)
4840 {
4841         int ret = 0;
4842         int slot;
4843         int i;
4844         u32 total_size = 0;
4845         u32 total_data = 0;
4846
4847         for (i = 0; i < nr; i++)
4848                 total_data += data_size[i];
4849
4850         total_size = total_data + (nr * sizeof(struct btrfs_item));
4851         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4852         if (ret == 0)
4853                 return -EEXIST;
4854         if (ret < 0)
4855                 return ret;
4856
4857         slot = path->slots[0];
4858         BUG_ON(slot < 0);
4859
4860         setup_items_for_insert(root, path, cpu_key, data_size,
4861                                total_data, total_size, nr);
4862         return 0;
4863 }
4864
4865 /*
4866  * Given a key and some data, insert an item into the tree.
4867  * This does all the path init required, making room in the tree if needed.
4868  */
4869 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4870                       *root, struct btrfs_key *cpu_key, void *data, u32
4871                       data_size)
4872 {
4873         int ret = 0;
4874         struct btrfs_path *path;
4875         struct extent_buffer *leaf;
4876         unsigned long ptr;
4877
4878         path = btrfs_alloc_path();
4879         if (!path)
4880                 return -ENOMEM;
4881         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4882         if (!ret) {
4883                 leaf = path->nodes[0];
4884                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4885                 write_extent_buffer(leaf, data, ptr, data_size);
4886                 btrfs_mark_buffer_dirty(leaf);
4887         }
4888         btrfs_free_path(path);
4889         return ret;
4890 }
4891
4892 /*
4893  * delete the pointer from a given node.
4894  *
4895  * the tree should have been previously balanced so the deletion does not
4896  * empty a node.
4897  */
4898 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4899                     int level, int slot)
4900 {
4901         struct extent_buffer *parent = path->nodes[level];
4902         u32 nritems;
4903         int ret;
4904
4905         nritems = btrfs_header_nritems(parent);
4906         if (slot != nritems - 1) {
4907                 if (level)
4908                         tree_mod_log_eb_move(root->fs_info, parent, slot,
4909                                              slot + 1, nritems - slot - 1);
4910                 memmove_extent_buffer(parent,
4911                               btrfs_node_key_ptr_offset(slot),
4912                               btrfs_node_key_ptr_offset(slot + 1),
4913                               sizeof(struct btrfs_key_ptr) *
4914                               (nritems - slot - 1));
4915         } else if (level) {
4916                 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4917                                               MOD_LOG_KEY_REMOVE, GFP_NOFS);
4918                 BUG_ON(ret < 0);
4919         }
4920
4921         nritems--;
4922         btrfs_set_header_nritems(parent, nritems);
4923         if (nritems == 0 && parent == root->node) {
4924                 BUG_ON(btrfs_header_level(root->node) != 1);
4925                 /* just turn the root into a leaf and break */
4926                 btrfs_set_header_level(root->node, 0);
4927         } else if (slot == 0) {
4928                 struct btrfs_disk_key disk_key;
4929
4930                 btrfs_node_key(parent, &disk_key, 0);
4931                 fixup_low_keys(root->fs_info, path, &disk_key, level + 1);
4932         }
4933         btrfs_mark_buffer_dirty(parent);
4934 }
4935
4936 /*
4937  * a helper function to delete the leaf pointed to by path->slots[1] and
4938  * path->nodes[1].
4939  *
4940  * This deletes the pointer in path->nodes[1] and frees the leaf
4941  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4942  *
4943  * The path must have already been setup for deleting the leaf, including
4944  * all the proper balancing.  path->nodes[1] must be locked.
4945  */
4946 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4947                                     struct btrfs_root *root,
4948                                     struct btrfs_path *path,
4949                                     struct extent_buffer *leaf)
4950 {
4951         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4952         del_ptr(root, path, 1, path->slots[1]);
4953
4954         /*
4955          * btrfs_free_extent is expensive, we want to make sure we
4956          * aren't holding any locks when we call it
4957          */
4958         btrfs_unlock_up_safe(path, 0);
4959
4960         root_sub_used(root, leaf->len);
4961
4962         extent_buffer_get(leaf);
4963         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4964         free_extent_buffer_stale(leaf);
4965 }
4966 /*
4967  * delete the item at the leaf level in path.  If that empties
4968  * the leaf, remove it from the tree
4969  */
4970 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4971                     struct btrfs_path *path, int slot, int nr)
4972 {
4973         struct extent_buffer *leaf;
4974         struct btrfs_item *item;
4975         u32 last_off;
4976         u32 dsize = 0;
4977         int ret = 0;
4978         int wret;
4979         int i;
4980         u32 nritems;
4981         struct btrfs_map_token token;
4982
4983         btrfs_init_map_token(&token);
4984
4985         leaf = path->nodes[0];
4986         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4987
4988         for (i = 0; i < nr; i++)
4989                 dsize += btrfs_item_size_nr(leaf, slot + i);
4990
4991         nritems = btrfs_header_nritems(leaf);
4992
4993         if (slot + nr != nritems) {
4994                 int data_end = leaf_data_end(root, leaf);
4995
4996                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4997                               data_end + dsize,
4998                               btrfs_leaf_data(leaf) + data_end,
4999                               last_off - data_end);
5000
5001                 for (i = slot + nr; i < nritems; i++) {
5002                         u32 ioff;
5003
5004                         item = btrfs_item_nr(i);
5005                         ioff = btrfs_token_item_offset(leaf, item, &token);
5006                         btrfs_set_token_item_offset(leaf, item,
5007                                                     ioff + dsize, &token);
5008                 }
5009
5010                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
5011                               btrfs_item_nr_offset(slot + nr),
5012                               sizeof(struct btrfs_item) *
5013                               (nritems - slot - nr));
5014         }
5015         btrfs_set_header_nritems(leaf, nritems - nr);
5016         nritems -= nr;
5017
5018         /* delete the leaf if we've emptied it */
5019         if (nritems == 0) {
5020                 if (leaf == root->node) {
5021                         btrfs_set_header_level(leaf, 0);
5022                 } else {
5023                         btrfs_set_path_blocking(path);
5024                         clean_tree_block(trans, root->fs_info, leaf);
5025                         btrfs_del_leaf(trans, root, path, leaf);
5026                 }
5027         } else {
5028                 int used = leaf_space_used(leaf, 0, nritems);
5029                 if (slot == 0) {
5030                         struct btrfs_disk_key disk_key;
5031
5032                         btrfs_item_key(leaf, &disk_key, 0);
5033                         fixup_low_keys(root->fs_info, path, &disk_key, 1);
5034                 }
5035
5036                 /* delete the leaf if it is mostly empty */
5037                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5038                         /* push_leaf_left fixes the path.
5039                          * make sure the path still points to our leaf
5040                          * for possible call to del_ptr below
5041                          */
5042                         slot = path->slots[1];
5043                         extent_buffer_get(leaf);
5044
5045                         btrfs_set_path_blocking(path);
5046                         wret = push_leaf_left(trans, root, path, 1, 1,
5047                                               1, (u32)-1);
5048                         if (wret < 0 && wret != -ENOSPC)
5049                                 ret = wret;
5050
5051                         if (path->nodes[0] == leaf &&
5052                             btrfs_header_nritems(leaf)) {
5053                                 wret = push_leaf_right(trans, root, path, 1,
5054                                                        1, 1, 0);
5055                                 if (wret < 0 && wret != -ENOSPC)
5056                                         ret = wret;
5057                         }
5058
5059                         if (btrfs_header_nritems(leaf) == 0) {
5060                                 path->slots[1] = slot;
5061                                 btrfs_del_leaf(trans, root, path, leaf);
5062                                 free_extent_buffer(leaf);
5063                                 ret = 0;
5064                         } else {
5065                                 /* if we're still in the path, make sure
5066                                  * we're dirty.  Otherwise, one of the
5067                                  * push_leaf functions must have already
5068                                  * dirtied this buffer
5069                                  */
5070                                 if (path->nodes[0] == leaf)
5071                                         btrfs_mark_buffer_dirty(leaf);
5072                                 free_extent_buffer(leaf);
5073                         }
5074                 } else {
5075                         btrfs_mark_buffer_dirty(leaf);
5076                 }
5077         }
5078         return ret;
5079 }
5080
5081 /*
5082  * search the tree again to find a leaf with lesser keys
5083  * returns 0 if it found something or 1 if there are no lesser leaves.
5084  * returns < 0 on io errors.
5085  *
5086  * This may release the path, and so you may lose any locks held at the
5087  * time you call it.
5088  */
5089 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5090 {
5091         struct btrfs_key key;
5092         struct btrfs_disk_key found_key;
5093         int ret;
5094
5095         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5096
5097         if (key.offset > 0) {
5098                 key.offset--;
5099         } else if (key.type > 0) {
5100                 key.type--;
5101                 key.offset = (u64)-1;
5102         } else if (key.objectid > 0) {
5103                 key.objectid--;
5104                 key.type = (u8)-1;
5105                 key.offset = (u64)-1;
5106         } else {
5107                 return 1;
5108         }
5109
5110         btrfs_release_path(path);
5111         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5112         if (ret < 0)
5113                 return ret;
5114         btrfs_item_key(path->nodes[0], &found_key, 0);
5115         ret = comp_keys(&found_key, &key);
5116         /*
5117          * We might have had an item with the previous key in the tree right
5118          * before we released our path. And after we released our path, that
5119          * item might have been pushed to the first slot (0) of the leaf we
5120          * were holding due to a tree balance. Alternatively, an item with the
5121          * previous key can exist as the only element of a leaf (big fat item).
5122          * Therefore account for these 2 cases, so that our callers (like
5123          * btrfs_previous_item) don't miss an existing item with a key matching
5124          * the previous key we computed above.
5125          */
5126         if (ret <= 0)
5127                 return 0;
5128         return 1;
5129 }
5130
5131 /*
5132  * A helper function to walk down the tree starting at min_key, and looking
5133  * for nodes or leaves that are have a minimum transaction id.
5134  * This is used by the btree defrag code, and tree logging
5135  *
5136  * This does not cow, but it does stuff the starting key it finds back
5137  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5138  * key and get a writable path.
5139  *
5140  * This does lock as it descends, and path->keep_locks should be set
5141  * to 1 by the caller.
5142  *
5143  * This honors path->lowest_level to prevent descent past a given level
5144  * of the tree.
5145  *
5146  * min_trans indicates the oldest transaction that you are interested
5147  * in walking through.  Any nodes or leaves older than min_trans are
5148  * skipped over (without reading them).
5149  *
5150  * returns zero if something useful was found, < 0 on error and 1 if there
5151  * was nothing in the tree that matched the search criteria.
5152  */
5153 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5154                          struct btrfs_path *path,
5155                          u64 min_trans)
5156 {
5157         struct extent_buffer *cur;
5158         struct btrfs_key found_key;
5159         int slot;
5160         int sret;
5161         u32 nritems;
5162         int level;
5163         int ret = 1;
5164         int keep_locks = path->keep_locks;
5165
5166         path->keep_locks = 1;
5167 again:
5168         cur = btrfs_read_lock_root_node(root);
5169         level = btrfs_header_level(cur);
5170         WARN_ON(path->nodes[level]);
5171         path->nodes[level] = cur;
5172         path->locks[level] = BTRFS_READ_LOCK;
5173
5174         if (btrfs_header_generation(cur) < min_trans) {
5175                 ret = 1;
5176                 goto out;
5177         }
5178         while (1) {
5179                 nritems = btrfs_header_nritems(cur);
5180                 level = btrfs_header_level(cur);
5181                 sret = bin_search(cur, min_key, level, &slot);
5182
5183                 /* at the lowest level, we're done, setup the path and exit */
5184                 if (level == path->lowest_level) {
5185                         if (slot >= nritems)
5186                                 goto find_next_key;
5187                         ret = 0;
5188                         path->slots[level] = slot;
5189                         btrfs_item_key_to_cpu(cur, &found_key, slot);
5190                         goto out;
5191                 }
5192                 if (sret && slot > 0)
5193                         slot--;
5194                 /*
5195                  * check this node pointer against the min_trans parameters.
5196                  * If it is too old, old, skip to the next one.
5197                  */
5198                 while (slot < nritems) {
5199                         u64 gen;
5200
5201                         gen = btrfs_node_ptr_generation(cur, slot);
5202                         if (gen < min_trans) {
5203                                 slot++;
5204                                 continue;
5205                         }
5206                         break;
5207                 }
5208 find_next_key:
5209                 /*
5210                  * we didn't find a candidate key in this node, walk forward
5211                  * and find another one
5212                  */
5213                 if (slot >= nritems) {
5214                         path->slots[level] = slot;
5215                         btrfs_set_path_blocking(path);
5216                         sret = btrfs_find_next_key(root, path, min_key, level,
5217                                                   min_trans);
5218                         if (sret == 0) {
5219                                 btrfs_release_path(path);
5220                                 goto again;
5221                         } else {
5222                                 goto out;
5223                         }
5224                 }
5225                 /* save our key for returning back */
5226                 btrfs_node_key_to_cpu(cur, &found_key, slot);
5227                 path->slots[level] = slot;
5228                 if (level == path->lowest_level) {
5229                         ret = 0;
5230                         goto out;
5231                 }
5232                 btrfs_set_path_blocking(path);
5233                 cur = read_node_slot(root, cur, slot);
5234                 if (IS_ERR(cur)) {
5235                         ret = PTR_ERR(cur);
5236                         goto out;
5237                 }
5238
5239                 btrfs_tree_read_lock(cur);
5240
5241                 path->locks[level - 1] = BTRFS_READ_LOCK;
5242                 path->nodes[level - 1] = cur;
5243                 unlock_up(path, level, 1, 0, NULL);
5244                 btrfs_clear_path_blocking(path, NULL, 0);
5245         }
5246 out:
5247         path->keep_locks = keep_locks;
5248         if (ret == 0) {
5249                 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5250                 btrfs_set_path_blocking(path);
5251                 memcpy(min_key, &found_key, sizeof(found_key));
5252         }
5253         return ret;
5254 }
5255
5256 static int tree_move_down(struct btrfs_root *root,
5257                            struct btrfs_path *path,
5258                            int *level, int root_level)
5259 {
5260         struct extent_buffer *eb;
5261
5262         BUG_ON(*level == 0);
5263         eb = read_node_slot(root, path->nodes[*level], path->slots[*level]);
5264         if (IS_ERR(eb))
5265                 return PTR_ERR(eb);
5266
5267         path->nodes[*level - 1] = eb;
5268         path->slots[*level - 1] = 0;
5269         (*level)--;
5270         return 0;
5271 }
5272
5273 static int tree_move_next_or_upnext(struct btrfs_root *root,
5274                                     struct btrfs_path *path,
5275                                     int *level, int root_level)
5276 {
5277         int ret = 0;
5278         int nritems;
5279         nritems = btrfs_header_nritems(path->nodes[*level]);
5280
5281         path->slots[*level]++;
5282
5283         while (path->slots[*level] >= nritems) {
5284                 if (*level == root_level)
5285                         return -1;
5286
5287                 /* move upnext */
5288                 path->slots[*level] = 0;
5289                 free_extent_buffer(path->nodes[*level]);
5290                 path->nodes[*level] = NULL;
5291                 (*level)++;
5292                 path->slots[*level]++;
5293
5294                 nritems = btrfs_header_nritems(path->nodes[*level]);
5295                 ret = 1;
5296         }
5297         return ret;
5298 }
5299
5300 /*
5301  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5302  * or down.
5303  */
5304 static int tree_advance(struct btrfs_root *root,
5305                         struct btrfs_path *path,
5306                         int *level, int root_level,
5307                         int allow_down,
5308                         struct btrfs_key *key)
5309 {
5310         int ret;
5311
5312         if (*level == 0 || !allow_down) {
5313                 ret = tree_move_next_or_upnext(root, path, level, root_level);
5314         } else {
5315                 ret = tree_move_down(root, path, level, root_level);
5316         }
5317         if (ret >= 0) {
5318                 if (*level == 0)
5319                         btrfs_item_key_to_cpu(path->nodes[*level], key,
5320                                         path->slots[*level]);
5321                 else
5322                         btrfs_node_key_to_cpu(path->nodes[*level], key,
5323                                         path->slots[*level]);
5324         }
5325         return ret;
5326 }
5327
5328 static int tree_compare_item(struct btrfs_root *left_root,
5329                              struct btrfs_path *left_path,
5330                              struct btrfs_path *right_path,
5331                              char *tmp_buf)
5332 {
5333         int cmp;
5334         int len1, len2;
5335         unsigned long off1, off2;
5336
5337         len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5338         len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5339         if (len1 != len2)
5340                 return 1;
5341
5342         off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5343         off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5344                                 right_path->slots[0]);
5345
5346         read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5347
5348         cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5349         if (cmp)
5350                 return 1;
5351         return 0;
5352 }
5353
5354 #define ADVANCE 1
5355 #define ADVANCE_ONLY_NEXT -1
5356
5357 /*
5358  * This function compares two trees and calls the provided callback for
5359  * every changed/new/deleted item it finds.
5360  * If shared tree blocks are encountered, whole subtrees are skipped, making
5361  * the compare pretty fast on snapshotted subvolumes.
5362  *
5363  * This currently works on commit roots only. As commit roots are read only,
5364  * we don't do any locking. The commit roots are protected with transactions.
5365  * Transactions are ended and rejoined when a commit is tried in between.
5366  *
5367  * This function checks for modifications done to the trees while comparing.
5368  * If it detects a change, it aborts immediately.
5369  */
5370 int btrfs_compare_trees(struct btrfs_root *left_root,
5371                         struct btrfs_root *right_root,
5372                         btrfs_changed_cb_t changed_cb, void *ctx)
5373 {
5374         int ret;
5375         int cmp;
5376         struct btrfs_path *left_path = NULL;
5377         struct btrfs_path *right_path = NULL;
5378         struct btrfs_key left_key;
5379         struct btrfs_key right_key;
5380         char *tmp_buf = NULL;
5381         int left_root_level;
5382         int right_root_level;
5383         int left_level;
5384         int right_level;
5385         int left_end_reached;
5386         int right_end_reached;
5387         int advance_left;
5388         int advance_right;
5389         u64 left_blockptr;
5390         u64 right_blockptr;
5391         u64 left_gen;
5392         u64 right_gen;
5393
5394         left_path = btrfs_alloc_path();
5395         if (!left_path) {
5396                 ret = -ENOMEM;
5397                 goto out;
5398         }
5399         right_path = btrfs_alloc_path();
5400         if (!right_path) {
5401                 ret = -ENOMEM;
5402                 goto out;
5403         }
5404
5405         tmp_buf = kmalloc(left_root->nodesize, GFP_KERNEL | __GFP_NOWARN);
5406         if (!tmp_buf) {
5407                 tmp_buf = vmalloc(left_root->nodesize);
5408                 if (!tmp_buf) {
5409                         ret = -ENOMEM;
5410                         goto out;
5411                 }
5412         }
5413
5414         left_path->search_commit_root = 1;
5415         left_path->skip_locking = 1;
5416         right_path->search_commit_root = 1;
5417         right_path->skip_locking = 1;
5418
5419         /*
5420          * Strategy: Go to the first items of both trees. Then do
5421          *
5422          * If both trees are at level 0
5423          *   Compare keys of current items
5424          *     If left < right treat left item as new, advance left tree
5425          *       and repeat
5426          *     If left > right treat right item as deleted, advance right tree
5427          *       and repeat
5428          *     If left == right do deep compare of items, treat as changed if
5429          *       needed, advance both trees and repeat
5430          * If both trees are at the same level but not at level 0
5431          *   Compare keys of current nodes/leafs
5432          *     If left < right advance left tree and repeat
5433          *     If left > right advance right tree and repeat
5434          *     If left == right compare blockptrs of the next nodes/leafs
5435          *       If they match advance both trees but stay at the same level
5436          *         and repeat
5437          *       If they don't match advance both trees while allowing to go
5438          *         deeper and repeat
5439          * If tree levels are different
5440          *   Advance the tree that needs it and repeat
5441          *
5442          * Advancing a tree means:
5443          *   If we are at level 0, try to go to the next slot. If that's not
5444          *   possible, go one level up and repeat. Stop when we found a level
5445          *   where we could go to the next slot. We may at this point be on a
5446          *   node or a leaf.
5447          *
5448          *   If we are not at level 0 and not on shared tree blocks, go one
5449          *   level deeper.
5450          *
5451          *   If we are not at level 0 and on shared tree blocks, go one slot to
5452          *   the right if possible or go up and right.
5453          */
5454
5455         down_read(&left_root->fs_info->commit_root_sem);
5456         left_level = btrfs_header_level(left_root->commit_root);
5457         left_root_level = left_level;
5458         left_path->nodes[left_level] = left_root->commit_root;
5459         extent_buffer_get(left_path->nodes[left_level]);
5460
5461         right_level = btrfs_header_level(right_root->commit_root);
5462         right_root_level = right_level;
5463         right_path->nodes[right_level] = right_root->commit_root;
5464         extent_buffer_get(right_path->nodes[right_level]);
5465         up_read(&left_root->fs_info->commit_root_sem);
5466
5467         if (left_level == 0)
5468                 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5469                                 &left_key, left_path->slots[left_level]);
5470         else
5471                 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5472                                 &left_key, left_path->slots[left_level]);
5473         if (right_level == 0)
5474                 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5475                                 &right_key, right_path->slots[right_level]);
5476         else
5477                 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5478                                 &right_key, right_path->slots[right_level]);
5479
5480         left_end_reached = right_end_reached = 0;
5481         advance_left = advance_right = 0;
5482
5483         while (1) {
5484                 if (advance_left && !left_end_reached) {
5485                         ret = tree_advance(left_root, left_path, &left_level,
5486                                         left_root_level,
5487                                         advance_left != ADVANCE_ONLY_NEXT,
5488                                         &left_key);
5489                         if (ret == -1)
5490                                 left_end_reached = ADVANCE;
5491                         else if (ret < 0)
5492                                 goto out;
5493                         advance_left = 0;
5494                 }
5495                 if (advance_right && !right_end_reached) {
5496                         ret = tree_advance(right_root, right_path, &right_level,
5497                                         right_root_level,
5498                                         advance_right != ADVANCE_ONLY_NEXT,
5499                                         &right_key);
5500                         if (ret == -1)
5501                                 right_end_reached = ADVANCE;
5502                         else if (ret < 0)
5503                                 goto out;
5504                         advance_right = 0;
5505                 }
5506
5507                 if (left_end_reached && right_end_reached) {
5508                         ret = 0;
5509                         goto out;
5510                 } else if (left_end_reached) {
5511                         if (right_level == 0) {
5512                                 ret = changed_cb(left_root, right_root,
5513                                                 left_path, right_path,
5514                                                 &right_key,
5515                                                 BTRFS_COMPARE_TREE_DELETED,
5516                                                 ctx);
5517                                 if (ret < 0)
5518                                         goto out;
5519                         }
5520                         advance_right = ADVANCE;
5521                         continue;
5522                 } else if (right_end_reached) {
5523                         if (left_level == 0) {
5524                                 ret = changed_cb(left_root, right_root,
5525                                                 left_path, right_path,
5526                                                 &left_key,
5527                                                 BTRFS_COMPARE_TREE_NEW,
5528                                                 ctx);
5529                                 if (ret < 0)
5530                                         goto out;
5531                         }
5532                         advance_left = ADVANCE;
5533                         continue;
5534                 }
5535
5536                 if (left_level == 0 && right_level == 0) {
5537                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5538                         if (cmp < 0) {
5539                                 ret = changed_cb(left_root, right_root,
5540                                                 left_path, right_path,
5541                                                 &left_key,
5542                                                 BTRFS_COMPARE_TREE_NEW,
5543                                                 ctx);
5544                                 if (ret < 0)
5545                                         goto out;
5546                                 advance_left = ADVANCE;
5547                         } else if (cmp > 0) {
5548                                 ret = changed_cb(left_root, right_root,
5549                                                 left_path, right_path,
5550                                                 &right_key,
5551                                                 BTRFS_COMPARE_TREE_DELETED,
5552                                                 ctx);
5553                                 if (ret < 0)
5554                                         goto out;
5555                                 advance_right = ADVANCE;
5556                         } else {
5557                                 enum btrfs_compare_tree_result result;
5558
5559                                 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5560                                 ret = tree_compare_item(left_root, left_path,
5561                                                 right_path, tmp_buf);
5562                                 if (ret)
5563                                         result = BTRFS_COMPARE_TREE_CHANGED;
5564                                 else
5565                                         result = BTRFS_COMPARE_TREE_SAME;
5566                                 ret = changed_cb(left_root, right_root,
5567                                                  left_path, right_path,
5568                                                  &left_key, result, ctx);
5569                                 if (ret < 0)
5570                                         goto out;
5571                                 advance_left = ADVANCE;
5572                                 advance_right = ADVANCE;
5573                         }
5574                 } else if (left_level == right_level) {
5575                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5576                         if (cmp < 0) {
5577                                 advance_left = ADVANCE;
5578                         } else if (cmp > 0) {
5579                                 advance_right = ADVANCE;
5580                         } else {
5581                                 left_blockptr = btrfs_node_blockptr(
5582                                                 left_path->nodes[left_level],
5583                                                 left_path->slots[left_level]);
5584                                 right_blockptr = btrfs_node_blockptr(
5585                                                 right_path->nodes[right_level],
5586                                                 right_path->slots[right_level]);
5587                                 left_gen = btrfs_node_ptr_generation(
5588                                                 left_path->nodes[left_level],
5589                                                 left_path->slots[left_level]);
5590                                 right_gen = btrfs_node_ptr_generation(
5591                                                 right_path->nodes[right_level],
5592                                                 right_path->slots[right_level]);
5593                                 if (left_blockptr == right_blockptr &&
5594                                     left_gen == right_gen) {
5595                                         /*
5596                                          * As we're on a shared block, don't
5597                                          * allow to go deeper.
5598                                          */
5599                                         advance_left = ADVANCE_ONLY_NEXT;
5600                                         advance_right = ADVANCE_ONLY_NEXT;
5601                                 } else {
5602                                         advance_left = ADVANCE;
5603                                         advance_right = ADVANCE;
5604                                 }
5605                         }
5606                 } else if (left_level < right_level) {
5607                         advance_right = ADVANCE;
5608                 } else {
5609                         advance_left = ADVANCE;
5610                 }
5611         }
5612
5613 out:
5614         btrfs_free_path(left_path);
5615         btrfs_free_path(right_path);
5616         kvfree(tmp_buf);
5617         return ret;
5618 }
5619
5620 /*
5621  * this is similar to btrfs_next_leaf, but does not try to preserve
5622  * and fixup the path.  It looks for and returns the next key in the
5623  * tree based on the current path and the min_trans parameters.
5624  *
5625  * 0 is returned if another key is found, < 0 if there are any errors
5626  * and 1 is returned if there are no higher keys in the tree
5627  *
5628  * path->keep_locks should be set to 1 on the search made before
5629  * calling this function.
5630  */
5631 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5632                         struct btrfs_key *key, int level, u64 min_trans)
5633 {
5634         int slot;
5635         struct extent_buffer *c;
5636
5637         WARN_ON(!path->keep_locks);
5638         while (level < BTRFS_MAX_LEVEL) {
5639                 if (!path->nodes[level])
5640                         return 1;
5641
5642                 slot = path->slots[level] + 1;
5643                 c = path->nodes[level];
5644 next:
5645                 if (slot >= btrfs_header_nritems(c)) {
5646                         int ret;
5647                         int orig_lowest;
5648                         struct btrfs_key cur_key;
5649                         if (level + 1 >= BTRFS_MAX_LEVEL ||
5650                             !path->nodes[level + 1])
5651                                 return 1;
5652
5653                         if (path->locks[level + 1]) {
5654                                 level++;
5655                                 continue;
5656                         }
5657
5658                         slot = btrfs_header_nritems(c) - 1;
5659                         if (level == 0)
5660                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
5661                         else
5662                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
5663
5664                         orig_lowest = path->lowest_level;
5665                         btrfs_release_path(path);
5666                         path->lowest_level = level;
5667                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
5668                                                 0, 0);
5669                         path->lowest_level = orig_lowest;
5670                         if (ret < 0)
5671                                 return ret;
5672
5673                         c = path->nodes[level];
5674                         slot = path->slots[level];
5675                         if (ret == 0)
5676                                 slot++;
5677                         goto next;
5678                 }
5679
5680                 if (level == 0)
5681                         btrfs_item_key_to_cpu(c, key, slot);
5682                 else {
5683                         u64 gen = btrfs_node_ptr_generation(c, slot);
5684
5685                         if (gen < min_trans) {
5686                                 slot++;
5687                                 goto next;
5688                         }
5689                         btrfs_node_key_to_cpu(c, key, slot);
5690                 }
5691                 return 0;
5692         }
5693         return 1;
5694 }
5695
5696 /*
5697  * search the tree again to find a leaf with greater keys
5698  * returns 0 if it found something or 1 if there are no greater leaves.
5699  * returns < 0 on io errors.
5700  */
5701 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5702 {
5703         return btrfs_next_old_leaf(root, path, 0);
5704 }
5705
5706 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5707                         u64 time_seq)
5708 {
5709         int slot;
5710         int level;
5711         struct extent_buffer *c;
5712         struct extent_buffer *next;
5713         struct btrfs_key key;
5714         u32 nritems;
5715         int ret;
5716         int old_spinning = path->leave_spinning;
5717         int next_rw_lock = 0;
5718
5719         nritems = btrfs_header_nritems(path->nodes[0]);
5720         if (nritems == 0)
5721                 return 1;
5722
5723         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5724 again:
5725         level = 1;
5726         next = NULL;
5727         next_rw_lock = 0;
5728         btrfs_release_path(path);
5729
5730         path->keep_locks = 1;
5731         path->leave_spinning = 1;
5732
5733         if (time_seq)
5734                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5735         else
5736                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5737         path->keep_locks = 0;
5738
5739         if (ret < 0)
5740                 return ret;
5741
5742         nritems = btrfs_header_nritems(path->nodes[0]);
5743         /*
5744          * by releasing the path above we dropped all our locks.  A balance
5745          * could have added more items next to the key that used to be
5746          * at the very end of the block.  So, check again here and
5747          * advance the path if there are now more items available.
5748          */
5749         if (nritems > 0 && path->slots[0] < nritems - 1) {
5750                 if (ret == 0)
5751                         path->slots[0]++;
5752                 ret = 0;
5753                 goto done;
5754         }
5755         /*
5756          * So the above check misses one case:
5757          * - after releasing the path above, someone has removed the item that
5758          *   used to be at the very end of the block, and balance between leafs
5759          *   gets another one with bigger key.offset to replace it.
5760          *
5761          * This one should be returned as well, or we can get leaf corruption
5762          * later(esp. in __btrfs_drop_extents()).
5763          *
5764          * And a bit more explanation about this check,
5765          * with ret > 0, the key isn't found, the path points to the slot
5766          * where it should be inserted, so the path->slots[0] item must be the
5767          * bigger one.
5768          */
5769         if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5770                 ret = 0;
5771                 goto done;
5772         }
5773
5774         while (level < BTRFS_MAX_LEVEL) {
5775                 if (!path->nodes[level]) {
5776                         ret = 1;
5777                         goto done;
5778                 }
5779
5780                 slot = path->slots[level] + 1;
5781                 c = path->nodes[level];
5782                 if (slot >= btrfs_header_nritems(c)) {
5783                         level++;
5784                         if (level == BTRFS_MAX_LEVEL) {
5785                                 ret = 1;
5786                                 goto done;
5787                         }
5788                         continue;
5789                 }
5790
5791                 if (next) {
5792                         btrfs_tree_unlock_rw(next, next_rw_lock);
5793                         free_extent_buffer(next);
5794                 }
5795
5796                 next = c;
5797                 next_rw_lock = path->locks[level];
5798                 ret = read_block_for_search(NULL, root, path, &next, level,
5799                                             slot, &key, 0);
5800                 if (ret == -EAGAIN)
5801                         goto again;
5802
5803                 if (ret < 0) {
5804                         btrfs_release_path(path);
5805                         goto done;
5806                 }
5807
5808                 if (!path->skip_locking) {
5809                         ret = btrfs_try_tree_read_lock(next);
5810                         if (!ret && time_seq) {
5811                                 /*
5812                                  * If we don't get the lock, we may be racing
5813                                  * with push_leaf_left, holding that lock while
5814                                  * itself waiting for the leaf we've currently
5815                                  * locked. To solve this situation, we give up
5816                                  * on our lock and cycle.
5817                                  */
5818                                 free_extent_buffer(next);
5819                                 btrfs_release_path(path);
5820                                 cond_resched();
5821                                 goto again;
5822                         }
5823                         if (!ret) {
5824                                 btrfs_set_path_blocking(path);
5825                                 btrfs_tree_read_lock(next);
5826                                 btrfs_clear_path_blocking(path, next,
5827                                                           BTRFS_READ_LOCK);
5828                         }
5829                         next_rw_lock = BTRFS_READ_LOCK;
5830                 }
5831                 break;
5832         }
5833         path->slots[level] = slot;
5834         while (1) {
5835                 level--;
5836                 c = path->nodes[level];
5837                 if (path->locks[level])
5838                         btrfs_tree_unlock_rw(c, path->locks[level]);
5839
5840                 free_extent_buffer(c);
5841                 path->nodes[level] = next;
5842                 path->slots[level] = 0;
5843                 if (!path->skip_locking)
5844                         path->locks[level] = next_rw_lock;
5845                 if (!level)
5846                         break;
5847
5848                 ret = read_block_for_search(NULL, root, path, &next, level,
5849                                             0, &key, 0);
5850                 if (ret == -EAGAIN)
5851                         goto again;
5852
5853                 if (ret < 0) {
5854                         btrfs_release_path(path);
5855                         goto done;
5856                 }
5857
5858                 if (!path->skip_locking) {
5859                         ret = btrfs_try_tree_read_lock(next);
5860                         if (!ret) {
5861                                 btrfs_set_path_blocking(path);
5862                                 btrfs_tree_read_lock(next);
5863                                 btrfs_clear_path_blocking(path, next,
5864                                                           BTRFS_READ_LOCK);
5865                         }
5866                         next_rw_lock = BTRFS_READ_LOCK;
5867                 }
5868         }
5869         ret = 0;
5870 done:
5871         unlock_up(path, 0, 1, 0, NULL);
5872         path->leave_spinning = old_spinning;
5873         if (!old_spinning)
5874                 btrfs_set_path_blocking(path);
5875
5876         return ret;
5877 }
5878
5879 /*
5880  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5881  * searching until it gets past min_objectid or finds an item of 'type'
5882  *
5883  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5884  */
5885 int btrfs_previous_item(struct btrfs_root *root,
5886                         struct btrfs_path *path, u64 min_objectid,
5887                         int type)
5888 {
5889         struct btrfs_key found_key;
5890         struct extent_buffer *leaf;
5891         u32 nritems;
5892         int ret;
5893
5894         while (1) {
5895                 if (path->slots[0] == 0) {
5896                         btrfs_set_path_blocking(path);
5897                         ret = btrfs_prev_leaf(root, path);
5898                         if (ret != 0)
5899                                 return ret;
5900                 } else {
5901                         path->slots[0]--;
5902                 }
5903                 leaf = path->nodes[0];
5904                 nritems = btrfs_header_nritems(leaf);
5905                 if (nritems == 0)
5906                         return 1;
5907                 if (path->slots[0] == nritems)
5908                         path->slots[0]--;
5909
5910                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5911                 if (found_key.objectid < min_objectid)
5912                         break;
5913                 if (found_key.type == type)
5914                         return 0;
5915                 if (found_key.objectid == min_objectid &&
5916                     found_key.type < type)
5917                         break;
5918         }
5919         return 1;
5920 }
5921
5922 /*
5923  * search in extent tree to find a previous Metadata/Data extent item with
5924  * min objecitd.
5925  *
5926  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5927  */
5928 int btrfs_previous_extent_item(struct btrfs_root *root,
5929                         struct btrfs_path *path, u64 min_objectid)
5930 {
5931         struct btrfs_key found_key;
5932         struct extent_buffer *leaf;
5933         u32 nritems;
5934         int ret;
5935
5936         while (1) {
5937                 if (path->slots[0] == 0) {
5938                         btrfs_set_path_blocking(path);
5939                         ret = btrfs_prev_leaf(root, path);
5940                         if (ret != 0)
5941                                 return ret;
5942                 } else {
5943                         path->slots[0]--;
5944                 }
5945                 leaf = path->nodes[0];
5946                 nritems = btrfs_header_nritems(leaf);
5947                 if (nritems == 0)
5948                         return 1;
5949                 if (path->slots[0] == nritems)
5950                         path->slots[0]--;
5951
5952                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5953                 if (found_key.objectid < min_objectid)
5954                         break;
5955                 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5956                     found_key.type == BTRFS_METADATA_ITEM_KEY)
5957                         return 0;
5958                 if (found_key.objectid == min_objectid &&
5959                     found_key.type < BTRFS_EXTENT_ITEM_KEY)
5960                         break;
5961         }
5962         return 1;
5963 }