ed497f5f8d1bbf18ae2ec2b5dc52375b1211c4d4
[linux-2.6-block.git] / fs / btrfs / backref.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 STRATO.  All rights reserved.
4  */
5
6 #include <linux/mm.h>
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "backref.h"
12 #include "ulist.h"
13 #include "transaction.h"
14 #include "delayed-ref.h"
15 #include "locking.h"
16 #include "misc.h"
17 #include "tree-mod-log.h"
18 #include "fs.h"
19 #include "accessors.h"
20 #include "extent-tree.h"
21 #include "relocation.h"
22 #include "tree-checker.h"
23
24 /* Just arbitrary numbers so we can be sure one of these happened. */
25 #define BACKREF_FOUND_SHARED     6
26 #define BACKREF_FOUND_NOT_SHARED 7
27
28 struct extent_inode_elem {
29         u64 inum;
30         u64 offset;
31         u64 num_bytes;
32         struct extent_inode_elem *next;
33 };
34
35 static int check_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
36                               const struct btrfs_key *key,
37                               const struct extent_buffer *eb,
38                               const struct btrfs_file_extent_item *fi,
39                               struct extent_inode_elem **eie)
40 {
41         const u64 data_len = btrfs_file_extent_num_bytes(eb, fi);
42         u64 offset = key->offset;
43         struct extent_inode_elem *e;
44         const u64 *root_ids;
45         int root_count;
46         bool cached;
47
48         if (!ctx->ignore_extent_item_pos &&
49             !btrfs_file_extent_compression(eb, fi) &&
50             !btrfs_file_extent_encryption(eb, fi) &&
51             !btrfs_file_extent_other_encoding(eb, fi)) {
52                 u64 data_offset;
53
54                 data_offset = btrfs_file_extent_offset(eb, fi);
55
56                 if (ctx->extent_item_pos < data_offset ||
57                     ctx->extent_item_pos >= data_offset + data_len)
58                         return 1;
59                 offset += ctx->extent_item_pos - data_offset;
60         }
61
62         if (!ctx->indirect_ref_iterator || !ctx->cache_lookup)
63                 goto add_inode_elem;
64
65         cached = ctx->cache_lookup(eb->start, ctx->user_ctx, &root_ids,
66                                    &root_count);
67         if (!cached)
68                 goto add_inode_elem;
69
70         for (int i = 0; i < root_count; i++) {
71                 int ret;
72
73                 ret = ctx->indirect_ref_iterator(key->objectid, offset,
74                                                  data_len, root_ids[i],
75                                                  ctx->user_ctx);
76                 if (ret)
77                         return ret;
78         }
79
80 add_inode_elem:
81         e = kmalloc(sizeof(*e), GFP_NOFS);
82         if (!e)
83                 return -ENOMEM;
84
85         e->next = *eie;
86         e->inum = key->objectid;
87         e->offset = offset;
88         e->num_bytes = data_len;
89         *eie = e;
90
91         return 0;
92 }
93
94 static void free_inode_elem_list(struct extent_inode_elem *eie)
95 {
96         struct extent_inode_elem *eie_next;
97
98         for (; eie; eie = eie_next) {
99                 eie_next = eie->next;
100                 kfree(eie);
101         }
102 }
103
104 static int find_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
105                              const struct extent_buffer *eb,
106                              struct extent_inode_elem **eie)
107 {
108         u64 disk_byte;
109         struct btrfs_key key;
110         struct btrfs_file_extent_item *fi;
111         int slot;
112         int nritems;
113         int extent_type;
114         int ret;
115
116         /*
117          * from the shared data ref, we only have the leaf but we need
118          * the key. thus, we must look into all items and see that we
119          * find one (some) with a reference to our extent item.
120          */
121         nritems = btrfs_header_nritems(eb);
122         for (slot = 0; slot < nritems; ++slot) {
123                 btrfs_item_key_to_cpu(eb, &key, slot);
124                 if (key.type != BTRFS_EXTENT_DATA_KEY)
125                         continue;
126                 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
127                 extent_type = btrfs_file_extent_type(eb, fi);
128                 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
129                         continue;
130                 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
131                 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
132                 if (disk_byte != ctx->bytenr)
133                         continue;
134
135                 ret = check_extent_in_eb(ctx, &key, eb, fi, eie);
136                 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
137                         return ret;
138         }
139
140         return 0;
141 }
142
143 struct preftree {
144         struct rb_root_cached root;
145         unsigned int count;
146 };
147
148 #define PREFTREE_INIT   { .root = RB_ROOT_CACHED, .count = 0 }
149
150 struct preftrees {
151         struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
152         struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
153         struct preftree indirect_missing_keys;
154 };
155
156 /*
157  * Checks for a shared extent during backref search.
158  *
159  * The share_count tracks prelim_refs (direct and indirect) having a
160  * ref->count >0:
161  *  - incremented when a ref->count transitions to >0
162  *  - decremented when a ref->count transitions to <1
163  */
164 struct share_check {
165         struct btrfs_backref_share_check_ctx *ctx;
166         struct btrfs_root *root;
167         u64 inum;
168         u64 data_bytenr;
169         u64 data_extent_gen;
170         /*
171          * Counts number of inodes that refer to an extent (different inodes in
172          * the same root or different roots) that we could find. The sharedness
173          * check typically stops once this counter gets greater than 1, so it
174          * may not reflect the total number of inodes.
175          */
176         int share_count;
177         /*
178          * The number of times we found our inode refers to the data extent we
179          * are determining the sharedness. In other words, how many file extent
180          * items we could find for our inode that point to our target data
181          * extent. The value we get here after finishing the extent sharedness
182          * check may be smaller than reality, but if it ends up being greater
183          * than 1, then we know for sure the inode has multiple file extent
184          * items that point to our inode, and we can safely assume it's useful
185          * to cache the sharedness check result.
186          */
187         int self_ref_count;
188         bool have_delayed_delete_refs;
189 };
190
191 static inline int extent_is_shared(struct share_check *sc)
192 {
193         return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
194 }
195
196 static struct kmem_cache *btrfs_prelim_ref_cache;
197
198 int __init btrfs_prelim_ref_init(void)
199 {
200         btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
201                                         sizeof(struct prelim_ref), 0, 0, NULL);
202         if (!btrfs_prelim_ref_cache)
203                 return -ENOMEM;
204         return 0;
205 }
206
207 void __cold btrfs_prelim_ref_exit(void)
208 {
209         kmem_cache_destroy(btrfs_prelim_ref_cache);
210 }
211
212 static void free_pref(struct prelim_ref *ref)
213 {
214         kmem_cache_free(btrfs_prelim_ref_cache, ref);
215 }
216
217 /*
218  * Return 0 when both refs are for the same block (and can be merged).
219  * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
220  * indicates a 'higher' block.
221  */
222 static int prelim_ref_compare(const struct prelim_ref *ref1,
223                               const struct prelim_ref *ref2)
224 {
225         if (ref1->level < ref2->level)
226                 return -1;
227         if (ref1->level > ref2->level)
228                 return 1;
229         if (ref1->root_id < ref2->root_id)
230                 return -1;
231         if (ref1->root_id > ref2->root_id)
232                 return 1;
233         if (ref1->key_for_search.type < ref2->key_for_search.type)
234                 return -1;
235         if (ref1->key_for_search.type > ref2->key_for_search.type)
236                 return 1;
237         if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
238                 return -1;
239         if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
240                 return 1;
241         if (ref1->key_for_search.offset < ref2->key_for_search.offset)
242                 return -1;
243         if (ref1->key_for_search.offset > ref2->key_for_search.offset)
244                 return 1;
245         if (ref1->parent < ref2->parent)
246                 return -1;
247         if (ref1->parent > ref2->parent)
248                 return 1;
249
250         return 0;
251 }
252
253 static int prelim_ref_rb_add_cmp(const struct rb_node *new,
254                                  const struct rb_node *exist)
255 {
256         const struct prelim_ref *ref_new =
257                 rb_entry(new, struct prelim_ref, rbnode);
258         const struct prelim_ref *ref_exist =
259                 rb_entry(exist, struct prelim_ref, rbnode);
260
261         /*
262          * prelim_ref_compare() expects the first parameter as the existing one,
263          * different from the rb_find_add_cached() order.
264          */
265         return prelim_ref_compare(ref_exist, ref_new);
266 }
267
268 static void update_share_count(struct share_check *sc, int oldcount,
269                                int newcount, const struct prelim_ref *newref)
270 {
271         if ((!sc) || (oldcount == 0 && newcount < 1))
272                 return;
273
274         if (oldcount > 0 && newcount < 1)
275                 sc->share_count--;
276         else if (oldcount < 1 && newcount > 0)
277                 sc->share_count++;
278
279         if (newref->root_id == btrfs_root_id(sc->root) &&
280             newref->wanted_disk_byte == sc->data_bytenr &&
281             newref->key_for_search.objectid == sc->inum)
282                 sc->self_ref_count += newref->count;
283 }
284
285 /*
286  * Add @newref to the @root rbtree, merging identical refs.
287  *
288  * Callers should assume that newref has been freed after calling.
289  */
290 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
291                               struct preftree *preftree,
292                               struct prelim_ref *newref,
293                               struct share_check *sc)
294 {
295         struct rb_root_cached *root;
296         struct rb_node *exist;
297
298         root = &preftree->root;
299         exist = rb_find_add_cached(&newref->rbnode, root, prelim_ref_rb_add_cmp);
300         if (exist) {
301                 struct prelim_ref *ref = rb_entry(exist, struct prelim_ref, rbnode);
302                 /* Identical refs, merge them and free @newref */
303                 struct extent_inode_elem *eie = ref->inode_list;
304
305                 while (eie && eie->next)
306                         eie = eie->next;
307
308                 if (!eie)
309                         ref->inode_list = newref->inode_list;
310                 else
311                         eie->next = newref->inode_list;
312                 trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
313                                                         preftree->count);
314                 /*
315                  * A delayed ref can have newref->count < 0.
316                  * The ref->count is updated to follow any
317                  * BTRFS_[ADD|DROP]_DELAYED_REF actions.
318                  */
319                 update_share_count(sc, ref->count,
320                                         ref->count + newref->count, newref);
321                 ref->count += newref->count;
322                 free_pref(newref);
323                 return;
324         }
325
326         update_share_count(sc, 0, newref->count, newref);
327         preftree->count++;
328         trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
329 }
330
331 /*
332  * Release the entire tree.  We don't care about internal consistency so
333  * just free everything and then reset the tree root.
334  */
335 static void prelim_release(struct preftree *preftree)
336 {
337         struct prelim_ref *ref, *next_ref;
338
339         rbtree_postorder_for_each_entry_safe(ref, next_ref,
340                                              &preftree->root.rb_root, rbnode) {
341                 free_inode_elem_list(ref->inode_list);
342                 free_pref(ref);
343         }
344
345         preftree->root = RB_ROOT_CACHED;
346         preftree->count = 0;
347 }
348
349 /*
350  * the rules for all callers of this function are:
351  * - obtaining the parent is the goal
352  * - if you add a key, you must know that it is a correct key
353  * - if you cannot add the parent or a correct key, then we will look into the
354  *   block later to set a correct key
355  *
356  * delayed refs
357  * ============
358  *        backref type | shared | indirect | shared | indirect
359  * information         |   tree |     tree |   data |     data
360  * --------------------+--------+----------+--------+----------
361  *      parent logical |    y   |     -    |    -   |     -
362  *      key to resolve |    -   |     y    |    y   |     y
363  *  tree block logical |    -   |     -    |    -   |     -
364  *  root for resolving |    y   |     y    |    y   |     y
365  *
366  * - column 1:       we've the parent -> done
367  * - column 2, 3, 4: we use the key to find the parent
368  *
369  * on disk refs (inline or keyed)
370  * ==============================
371  *        backref type | shared | indirect | shared | indirect
372  * information         |   tree |     tree |   data |     data
373  * --------------------+--------+----------+--------+----------
374  *      parent logical |    y   |     -    |    y   |     -
375  *      key to resolve |    -   |     -    |    -   |     y
376  *  tree block logical |    y   |     y    |    y   |     y
377  *  root for resolving |    -   |     y    |    y   |     y
378  *
379  * - column 1, 3: we've the parent -> done
380  * - column 2:    we take the first key from the block to find the parent
381  *                (see add_missing_keys)
382  * - column 4:    we use the key to find the parent
383  *
384  * additional information that's available but not required to find the parent
385  * block might help in merging entries to gain some speed.
386  */
387 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
388                           struct preftree *preftree, u64 root_id,
389                           const struct btrfs_key *key, int level, u64 parent,
390                           u64 wanted_disk_byte, int count,
391                           struct share_check *sc, gfp_t gfp_mask)
392 {
393         struct prelim_ref *ref;
394
395         if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
396                 return 0;
397
398         ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
399         if (!ref)
400                 return -ENOMEM;
401
402         ref->root_id = root_id;
403         if (key)
404                 ref->key_for_search = *key;
405         else
406                 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
407
408         ref->inode_list = NULL;
409         ref->level = level;
410         ref->count = count;
411         ref->parent = parent;
412         ref->wanted_disk_byte = wanted_disk_byte;
413         prelim_ref_insert(fs_info, preftree, ref, sc);
414         return extent_is_shared(sc);
415 }
416
417 /* direct refs use root == 0, key == NULL */
418 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
419                           struct preftrees *preftrees, int level, u64 parent,
420                           u64 wanted_disk_byte, int count,
421                           struct share_check *sc, gfp_t gfp_mask)
422 {
423         return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
424                               parent, wanted_disk_byte, count, sc, gfp_mask);
425 }
426
427 /* indirect refs use parent == 0 */
428 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
429                             struct preftrees *preftrees, u64 root_id,
430                             const struct btrfs_key *key, int level,
431                             u64 wanted_disk_byte, int count,
432                             struct share_check *sc, gfp_t gfp_mask)
433 {
434         struct preftree *tree = &preftrees->indirect;
435
436         if (!key)
437                 tree = &preftrees->indirect_missing_keys;
438         return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
439                               wanted_disk_byte, count, sc, gfp_mask);
440 }
441
442 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
443 {
444         struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
445         struct rb_node *parent = NULL;
446         struct prelim_ref *ref = NULL;
447         struct prelim_ref target = {};
448         int result;
449
450         target.parent = bytenr;
451
452         while (*p) {
453                 parent = *p;
454                 ref = rb_entry(parent, struct prelim_ref, rbnode);
455                 result = prelim_ref_compare(ref, &target);
456
457                 if (result < 0)
458                         p = &(*p)->rb_left;
459                 else if (result > 0)
460                         p = &(*p)->rb_right;
461                 else
462                         return 1;
463         }
464         return 0;
465 }
466
467 static int add_all_parents(struct btrfs_backref_walk_ctx *ctx,
468                            struct btrfs_root *root, struct btrfs_path *path,
469                            struct ulist *parents,
470                            struct preftrees *preftrees, struct prelim_ref *ref,
471                            int level)
472 {
473         int ret = 0;
474         int slot;
475         struct extent_buffer *eb;
476         struct btrfs_key key;
477         struct btrfs_key *key_for_search = &ref->key_for_search;
478         struct btrfs_file_extent_item *fi;
479         struct extent_inode_elem *eie = NULL, *old = NULL;
480         u64 disk_byte;
481         u64 wanted_disk_byte = ref->wanted_disk_byte;
482         u64 count = 0;
483         u64 data_offset;
484         u8 type;
485
486         if (level != 0) {
487                 eb = path->nodes[level];
488                 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
489                 if (ret < 0)
490                         return ret;
491                 return 0;
492         }
493
494         /*
495          * 1. We normally enter this function with the path already pointing to
496          *    the first item to check. But sometimes, we may enter it with
497          *    slot == nritems.
498          * 2. We are searching for normal backref but bytenr of this leaf
499          *    matches shared data backref
500          * 3. The leaf owner is not equal to the root we are searching
501          *
502          * For these cases, go to the next leaf before we continue.
503          */
504         eb = path->nodes[0];
505         if (path->slots[0] >= btrfs_header_nritems(eb) ||
506             is_shared_data_backref(preftrees, eb->start) ||
507             ref->root_id != btrfs_header_owner(eb)) {
508                 if (ctx->time_seq == BTRFS_SEQ_LAST)
509                         ret = btrfs_next_leaf(root, path);
510                 else
511                         ret = btrfs_next_old_leaf(root, path, ctx->time_seq);
512         }
513
514         while (!ret && count < ref->count) {
515                 eb = path->nodes[0];
516                 slot = path->slots[0];
517
518                 btrfs_item_key_to_cpu(eb, &key, slot);
519
520                 if (key.objectid != key_for_search->objectid ||
521                     key.type != BTRFS_EXTENT_DATA_KEY)
522                         break;
523
524                 /*
525                  * We are searching for normal backref but bytenr of this leaf
526                  * matches shared data backref, OR
527                  * the leaf owner is not equal to the root we are searching for
528                  */
529                 if (slot == 0 &&
530                     (is_shared_data_backref(preftrees, eb->start) ||
531                      ref->root_id != btrfs_header_owner(eb))) {
532                         if (ctx->time_seq == BTRFS_SEQ_LAST)
533                                 ret = btrfs_next_leaf(root, path);
534                         else
535                                 ret = btrfs_next_old_leaf(root, path, ctx->time_seq);
536                         continue;
537                 }
538                 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
539                 type = btrfs_file_extent_type(eb, fi);
540                 if (type == BTRFS_FILE_EXTENT_INLINE)
541                         goto next;
542                 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
543                 data_offset = btrfs_file_extent_offset(eb, fi);
544
545                 if (disk_byte == wanted_disk_byte) {
546                         eie = NULL;
547                         old = NULL;
548                         if (ref->key_for_search.offset == key.offset - data_offset)
549                                 count++;
550                         else
551                                 goto next;
552                         if (!ctx->skip_inode_ref_list) {
553                                 ret = check_extent_in_eb(ctx, &key, eb, fi, &eie);
554                                 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
555                                     ret < 0)
556                                         break;
557                         }
558                         if (ret > 0)
559                                 goto next;
560                         ret = ulist_add_merge_ptr(parents, eb->start,
561                                                   eie, (void **)&old, GFP_NOFS);
562                         if (ret < 0)
563                                 break;
564                         if (!ret && !ctx->skip_inode_ref_list) {
565                                 while (old->next)
566                                         old = old->next;
567                                 old->next = eie;
568                         }
569                         eie = NULL;
570                 }
571 next:
572                 if (ctx->time_seq == BTRFS_SEQ_LAST)
573                         ret = btrfs_next_item(root, path);
574                 else
575                         ret = btrfs_next_old_item(root, path, ctx->time_seq);
576         }
577
578         if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
579                 free_inode_elem_list(eie);
580         else if (ret > 0)
581                 ret = 0;
582
583         return ret;
584 }
585
586 /*
587  * resolve an indirect backref in the form (root_id, key, level)
588  * to a logical address
589  */
590 static int resolve_indirect_ref(struct btrfs_backref_walk_ctx *ctx,
591                                 struct btrfs_path *path,
592                                 struct preftrees *preftrees,
593                                 struct prelim_ref *ref, struct ulist *parents)
594 {
595         struct btrfs_root *root;
596         struct extent_buffer *eb;
597         int ret = 0;
598         int root_level;
599         int level = ref->level;
600         struct btrfs_key search_key = ref->key_for_search;
601
602         /*
603          * If we're search_commit_root we could possibly be holding locks on
604          * other tree nodes.  This happens when qgroups does backref walks when
605          * adding new delayed refs.  To deal with this we need to look in cache
606          * for the root, and if we don't find it then we need to search the
607          * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
608          * here.
609          */
610         if (path->search_commit_root)
611                 root = btrfs_get_fs_root_commit_root(ctx->fs_info, path, ref->root_id);
612         else
613                 root = btrfs_get_fs_root(ctx->fs_info, ref->root_id, false);
614         if (IS_ERR(root)) {
615                 ret = PTR_ERR(root);
616                 goto out_free;
617         }
618
619         if (!path->search_commit_root &&
620             test_bit(BTRFS_ROOT_DELETING, &root->state)) {
621                 ret = -ENOENT;
622                 goto out;
623         }
624
625         if (btrfs_is_testing(ctx->fs_info)) {
626                 ret = -ENOENT;
627                 goto out;
628         }
629
630         if (path->search_commit_root)
631                 root_level = btrfs_header_level(root->commit_root);
632         else if (ctx->time_seq == BTRFS_SEQ_LAST)
633                 root_level = btrfs_header_level(root->node);
634         else
635                 root_level = btrfs_old_root_level(root, ctx->time_seq);
636
637         if (root_level + 1 == level)
638                 goto out;
639
640         /*
641          * We can often find data backrefs with an offset that is too large
642          * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
643          * subtracting a file's offset with the data offset of its
644          * corresponding extent data item. This can happen for example in the
645          * clone ioctl.
646          *
647          * So if we detect such case we set the search key's offset to zero to
648          * make sure we will find the matching file extent item at
649          * add_all_parents(), otherwise we will miss it because the offset
650          * taken form the backref is much larger then the offset of the file
651          * extent item. This can make us scan a very large number of file
652          * extent items, but at least it will not make us miss any.
653          *
654          * This is an ugly workaround for a behaviour that should have never
655          * existed, but it does and a fix for the clone ioctl would touch a lot
656          * of places, cause backwards incompatibility and would not fix the
657          * problem for extents cloned with older kernels.
658          */
659         if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
660             search_key.offset >= LLONG_MAX)
661                 search_key.offset = 0;
662         path->lowest_level = level;
663         if (ctx->time_seq == BTRFS_SEQ_LAST)
664                 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
665         else
666                 ret = btrfs_search_old_slot(root, &search_key, path, ctx->time_seq);
667
668         btrfs_debug(ctx->fs_info,
669                 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
670                  ref->root_id, level, ref->count, ret,
671                  ref->key_for_search.objectid, ref->key_for_search.type,
672                  ref->key_for_search.offset);
673         if (ret < 0)
674                 goto out;
675
676         eb = path->nodes[level];
677         while (!eb) {
678                 if (WARN_ON(!level)) {
679                         ret = 1;
680                         goto out;
681                 }
682                 level--;
683                 eb = path->nodes[level];
684         }
685
686         ret = add_all_parents(ctx, root, path, parents, preftrees, ref, level);
687 out:
688         btrfs_put_root(root);
689 out_free:
690         path->lowest_level = 0;
691         btrfs_release_path(path);
692         return ret;
693 }
694
695 static struct extent_inode_elem *
696 unode_aux_to_inode_list(struct ulist_node *node)
697 {
698         if (!node)
699                 return NULL;
700         return (struct extent_inode_elem *)(uintptr_t)node->aux;
701 }
702
703 static void free_leaf_list(struct ulist *ulist)
704 {
705         struct ulist_node *node;
706         struct ulist_iterator uiter;
707
708         ULIST_ITER_INIT(&uiter);
709         while ((node = ulist_next(ulist, &uiter)))
710                 free_inode_elem_list(unode_aux_to_inode_list(node));
711
712         ulist_free(ulist);
713 }
714
715 /*
716  * We maintain three separate rbtrees: one for direct refs, one for
717  * indirect refs which have a key, and one for indirect refs which do not
718  * have a key. Each tree does merge on insertion.
719  *
720  * Once all of the references are located, we iterate over the tree of
721  * indirect refs with missing keys. An appropriate key is located and
722  * the ref is moved onto the tree for indirect refs. After all missing
723  * keys are thus located, we iterate over the indirect ref tree, resolve
724  * each reference, and then insert the resolved reference onto the
725  * direct tree (merging there too).
726  *
727  * New backrefs (i.e., for parent nodes) are added to the appropriate
728  * rbtree as they are encountered. The new backrefs are subsequently
729  * resolved as above.
730  */
731 static int resolve_indirect_refs(struct btrfs_backref_walk_ctx *ctx,
732                                  struct btrfs_path *path,
733                                  struct preftrees *preftrees,
734                                  struct share_check *sc)
735 {
736         int err;
737         int ret = 0;
738         struct ulist *parents;
739         struct ulist_node *node;
740         struct ulist_iterator uiter;
741         struct rb_node *rnode;
742
743         parents = ulist_alloc(GFP_NOFS);
744         if (!parents)
745                 return -ENOMEM;
746
747         /*
748          * We could trade memory usage for performance here by iterating
749          * the tree, allocating new refs for each insertion, and then
750          * freeing the entire indirect tree when we're done.  In some test
751          * cases, the tree can grow quite large (~200k objects).
752          */
753         while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
754                 struct prelim_ref *ref;
755
756                 ref = rb_entry(rnode, struct prelim_ref, rbnode);
757                 if (WARN(ref->parent,
758                          "BUG: direct ref found in indirect tree")) {
759                         ret = -EINVAL;
760                         goto out;
761                 }
762
763                 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
764                 preftrees->indirect.count--;
765
766                 if (ref->count == 0) {
767                         free_pref(ref);
768                         continue;
769                 }
770
771                 if (sc && ref->root_id != btrfs_root_id(sc->root)) {
772                         free_pref(ref);
773                         ret = BACKREF_FOUND_SHARED;
774                         goto out;
775                 }
776                 err = resolve_indirect_ref(ctx, path, preftrees, ref, parents);
777                 /*
778                  * we can only tolerate ENOENT,otherwise,we should catch error
779                  * and return directly.
780                  */
781                 if (err == -ENOENT) {
782                         prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref,
783                                           NULL);
784                         continue;
785                 } else if (err) {
786                         free_pref(ref);
787                         ret = err;
788                         goto out;
789                 }
790
791                 /* we put the first parent into the ref at hand */
792                 ULIST_ITER_INIT(&uiter);
793                 node = ulist_next(parents, &uiter);
794                 ref->parent = node ? node->val : 0;
795                 ref->inode_list = unode_aux_to_inode_list(node);
796
797                 /* Add a prelim_ref(s) for any other parent(s). */
798                 while ((node = ulist_next(parents, &uiter))) {
799                         struct prelim_ref *new_ref;
800
801                         new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
802                                                    GFP_NOFS);
803                         if (!new_ref) {
804                                 free_pref(ref);
805                                 ret = -ENOMEM;
806                                 goto out;
807                         }
808                         memcpy(new_ref, ref, sizeof(*ref));
809                         new_ref->parent = node->val;
810                         new_ref->inode_list = unode_aux_to_inode_list(node);
811                         prelim_ref_insert(ctx->fs_info, &preftrees->direct,
812                                           new_ref, NULL);
813                 }
814
815                 /*
816                  * Now it's a direct ref, put it in the direct tree. We must
817                  * do this last because the ref could be merged/freed here.
818                  */
819                 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, NULL);
820
821                 ulist_reinit(parents);
822                 cond_resched();
823         }
824 out:
825         /*
826          * We may have inode lists attached to refs in the parents ulist, so we
827          * must free them before freeing the ulist and its refs.
828          */
829         free_leaf_list(parents);
830         return ret;
831 }
832
833 /*
834  * read tree blocks and add keys where required.
835  */
836 static int add_missing_keys(struct btrfs_fs_info *fs_info,
837                             struct preftrees *preftrees, bool lock)
838 {
839         struct prelim_ref *ref;
840         struct extent_buffer *eb;
841         struct preftree *tree = &preftrees->indirect_missing_keys;
842         struct rb_node *node;
843
844         while ((node = rb_first_cached(&tree->root))) {
845                 struct btrfs_tree_parent_check check = { 0 };
846
847                 ref = rb_entry(node, struct prelim_ref, rbnode);
848                 rb_erase_cached(node, &tree->root);
849
850                 BUG_ON(ref->parent);    /* should not be a direct ref */
851                 BUG_ON(ref->key_for_search.type);
852                 BUG_ON(!ref->wanted_disk_byte);
853
854                 check.level = ref->level - 1;
855                 check.owner_root = ref->root_id;
856
857                 eb = read_tree_block(fs_info, ref->wanted_disk_byte, &check);
858                 if (IS_ERR(eb)) {
859                         free_pref(ref);
860                         return PTR_ERR(eb);
861                 }
862                 if (!extent_buffer_uptodate(eb)) {
863                         free_pref(ref);
864                         free_extent_buffer(eb);
865                         return -EIO;
866                 }
867
868                 if (lock)
869                         btrfs_tree_read_lock(eb);
870                 if (btrfs_header_level(eb) == 0)
871                         btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
872                 else
873                         btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
874                 if (lock)
875                         btrfs_tree_read_unlock(eb);
876                 free_extent_buffer(eb);
877                 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
878                 cond_resched();
879         }
880         return 0;
881 }
882
883 /*
884  * add all currently queued delayed refs from this head whose seq nr is
885  * smaller or equal that seq to the list
886  */
887 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
888                             struct btrfs_delayed_ref_head *head, u64 seq,
889                             struct preftrees *preftrees, struct share_check *sc)
890 {
891         struct btrfs_delayed_ref_node *node;
892         struct btrfs_key key;
893         struct rb_node *n;
894         int count;
895         int ret = 0;
896
897         spin_lock(&head->lock);
898         for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
899                 node = rb_entry(n, struct btrfs_delayed_ref_node,
900                                 ref_node);
901                 if (node->seq > seq)
902                         continue;
903
904                 switch (node->action) {
905                 case BTRFS_ADD_DELAYED_EXTENT:
906                 case BTRFS_UPDATE_DELAYED_HEAD:
907                         WARN_ON(1);
908                         continue;
909                 case BTRFS_ADD_DELAYED_REF:
910                         count = node->ref_mod;
911                         break;
912                 case BTRFS_DROP_DELAYED_REF:
913                         count = node->ref_mod * -1;
914                         break;
915                 default:
916                         BUG();
917                 }
918                 switch (node->type) {
919                 case BTRFS_TREE_BLOCK_REF_KEY: {
920                         /* NORMAL INDIRECT METADATA backref */
921                         struct btrfs_key *key_ptr = NULL;
922                         /* The owner of a tree block ref is the level. */
923                         int level = btrfs_delayed_ref_owner(node);
924
925                         if (head->extent_op && head->extent_op->update_key) {
926                                 btrfs_disk_key_to_cpu(&key, &head->extent_op->key);
927                                 key_ptr = &key;
928                         }
929
930                         ret = add_indirect_ref(fs_info, preftrees, node->ref_root,
931                                                key_ptr, level + 1, node->bytenr,
932                                                count, sc, GFP_ATOMIC);
933                         break;
934                 }
935                 case BTRFS_SHARED_BLOCK_REF_KEY: {
936                         /*
937                          * SHARED DIRECT METADATA backref
938                          *
939                          * The owner of a tree block ref is the level.
940                          */
941                         int level = btrfs_delayed_ref_owner(node);
942
943                         ret = add_direct_ref(fs_info, preftrees, level + 1,
944                                              node->parent, node->bytenr, count,
945                                              sc, GFP_ATOMIC);
946                         break;
947                 }
948                 case BTRFS_EXTENT_DATA_REF_KEY: {
949                         /* NORMAL INDIRECT DATA backref */
950                         key.objectid = btrfs_delayed_ref_owner(node);
951                         key.type = BTRFS_EXTENT_DATA_KEY;
952                         key.offset = btrfs_delayed_ref_offset(node);
953
954                         /*
955                          * If we have a share check context and a reference for
956                          * another inode, we can't exit immediately. This is
957                          * because even if this is a BTRFS_ADD_DELAYED_REF
958                          * reference we may find next a BTRFS_DROP_DELAYED_REF
959                          * which cancels out this ADD reference.
960                          *
961                          * If this is a DROP reference and there was no previous
962                          * ADD reference, then we need to signal that when we
963                          * process references from the extent tree (through
964                          * add_inline_refs() and add_keyed_refs()), we should
965                          * not exit early if we find a reference for another
966                          * inode, because one of the delayed DROP references
967                          * may cancel that reference in the extent tree.
968                          */
969                         if (sc && count < 0)
970                                 sc->have_delayed_delete_refs = true;
971
972                         ret = add_indirect_ref(fs_info, preftrees, node->ref_root,
973                                                &key, 0, node->bytenr, count, sc,
974                                                GFP_ATOMIC);
975                         break;
976                 }
977                 case BTRFS_SHARED_DATA_REF_KEY: {
978                         /* SHARED DIRECT FULL backref */
979                         ret = add_direct_ref(fs_info, preftrees, 0, node->parent,
980                                              node->bytenr, count, sc,
981                                              GFP_ATOMIC);
982                         break;
983                 }
984                 default:
985                         WARN_ON(1);
986                 }
987                 /*
988                  * We must ignore BACKREF_FOUND_SHARED until all delayed
989                  * refs have been checked.
990                  */
991                 if (ret && (ret != BACKREF_FOUND_SHARED))
992                         break;
993         }
994         if (!ret)
995                 ret = extent_is_shared(sc);
996
997         spin_unlock(&head->lock);
998         return ret;
999 }
1000
1001 /*
1002  * add all inline backrefs for bytenr to the list
1003  *
1004  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1005  */
1006 static int add_inline_refs(struct btrfs_backref_walk_ctx *ctx,
1007                            struct btrfs_path *path,
1008                            int *info_level, struct preftrees *preftrees,
1009                            struct share_check *sc)
1010 {
1011         int ret = 0;
1012         int slot;
1013         struct extent_buffer *leaf;
1014         struct btrfs_key key;
1015         struct btrfs_key found_key;
1016         unsigned long ptr;
1017         unsigned long end;
1018         struct btrfs_extent_item *ei;
1019         u64 flags;
1020         u64 item_size;
1021
1022         /*
1023          * enumerate all inline refs
1024          */
1025         leaf = path->nodes[0];
1026         slot = path->slots[0];
1027
1028         item_size = btrfs_item_size(leaf, slot);
1029         ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
1030
1031         if (ctx->check_extent_item) {
1032                 ret = ctx->check_extent_item(ctx->bytenr, ei, leaf, ctx->user_ctx);
1033                 if (ret)
1034                         return ret;
1035         }
1036
1037         flags = btrfs_extent_flags(leaf, ei);
1038         btrfs_item_key_to_cpu(leaf, &found_key, slot);
1039
1040         ptr = (unsigned long)(ei + 1);
1041         end = (unsigned long)ei + item_size;
1042
1043         if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
1044             flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1045                 struct btrfs_tree_block_info *info;
1046
1047                 info = (struct btrfs_tree_block_info *)ptr;
1048                 *info_level = btrfs_tree_block_level(leaf, info);
1049                 ptr += sizeof(struct btrfs_tree_block_info);
1050                 BUG_ON(ptr > end);
1051         } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
1052                 *info_level = found_key.offset;
1053         } else {
1054                 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1055         }
1056
1057         while (ptr < end) {
1058                 struct btrfs_extent_inline_ref *iref;
1059                 u64 offset;
1060                 int type;
1061
1062                 iref = (struct btrfs_extent_inline_ref *)ptr;
1063                 type = btrfs_get_extent_inline_ref_type(leaf, iref,
1064                                                         BTRFS_REF_TYPE_ANY);
1065                 if (type == BTRFS_REF_TYPE_INVALID)
1066                         return -EUCLEAN;
1067
1068                 offset = btrfs_extent_inline_ref_offset(leaf, iref);
1069
1070                 switch (type) {
1071                 case BTRFS_SHARED_BLOCK_REF_KEY:
1072                         ret = add_direct_ref(ctx->fs_info, preftrees,
1073                                              *info_level + 1, offset,
1074                                              ctx->bytenr, 1, NULL, GFP_NOFS);
1075                         break;
1076                 case BTRFS_SHARED_DATA_REF_KEY: {
1077                         struct btrfs_shared_data_ref *sdref;
1078                         int count;
1079
1080                         sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1081                         count = btrfs_shared_data_ref_count(leaf, sdref);
1082
1083                         ret = add_direct_ref(ctx->fs_info, preftrees, 0, offset,
1084                                              ctx->bytenr, count, sc, GFP_NOFS);
1085                         break;
1086                 }
1087                 case BTRFS_TREE_BLOCK_REF_KEY:
1088                         ret = add_indirect_ref(ctx->fs_info, preftrees, offset,
1089                                                NULL, *info_level + 1,
1090                                                ctx->bytenr, 1, NULL, GFP_NOFS);
1091                         break;
1092                 case BTRFS_EXTENT_DATA_REF_KEY: {
1093                         struct btrfs_extent_data_ref *dref;
1094                         int count;
1095                         u64 root;
1096
1097                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1098                         count = btrfs_extent_data_ref_count(leaf, dref);
1099                         key.objectid = btrfs_extent_data_ref_objectid(leaf,
1100                                                                       dref);
1101                         key.type = BTRFS_EXTENT_DATA_KEY;
1102                         key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1103
1104                         if (sc && key.objectid != sc->inum &&
1105                             !sc->have_delayed_delete_refs) {
1106                                 ret = BACKREF_FOUND_SHARED;
1107                                 break;
1108                         }
1109
1110                         root = btrfs_extent_data_ref_root(leaf, dref);
1111
1112                         if (!ctx->skip_data_ref ||
1113                             !ctx->skip_data_ref(root, key.objectid, key.offset,
1114                                                 ctx->user_ctx))
1115                                 ret = add_indirect_ref(ctx->fs_info, preftrees,
1116                                                        root, &key, 0, ctx->bytenr,
1117                                                        count, sc, GFP_NOFS);
1118                         break;
1119                 }
1120                 case BTRFS_EXTENT_OWNER_REF_KEY:
1121                         ASSERT(btrfs_fs_incompat(ctx->fs_info, SIMPLE_QUOTA));
1122                         break;
1123                 default:
1124                         WARN_ON(1);
1125                 }
1126                 if (ret)
1127                         return ret;
1128                 ptr += btrfs_extent_inline_ref_size(type);
1129         }
1130
1131         return 0;
1132 }
1133
1134 /*
1135  * add all non-inline backrefs for bytenr to the list
1136  *
1137  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1138  */
1139 static int add_keyed_refs(struct btrfs_backref_walk_ctx *ctx,
1140                           struct btrfs_root *extent_root,
1141                           struct btrfs_path *path,
1142                           int info_level, struct preftrees *preftrees,
1143                           struct share_check *sc)
1144 {
1145         struct btrfs_fs_info *fs_info = extent_root->fs_info;
1146         int ret;
1147         int slot;
1148         struct extent_buffer *leaf;
1149         struct btrfs_key key;
1150
1151         while (1) {
1152                 ret = btrfs_next_item(extent_root, path);
1153                 if (ret < 0)
1154                         break;
1155                 if (ret) {
1156                         ret = 0;
1157                         break;
1158                 }
1159
1160                 slot = path->slots[0];
1161                 leaf = path->nodes[0];
1162                 btrfs_item_key_to_cpu(leaf, &key, slot);
1163
1164                 if (key.objectid != ctx->bytenr)
1165                         break;
1166                 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1167                         continue;
1168                 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1169                         break;
1170
1171                 switch (key.type) {
1172                 case BTRFS_SHARED_BLOCK_REF_KEY:
1173                         /* SHARED DIRECT METADATA backref */
1174                         ret = add_direct_ref(fs_info, preftrees,
1175                                              info_level + 1, key.offset,
1176                                              ctx->bytenr, 1, NULL, GFP_NOFS);
1177                         break;
1178                 case BTRFS_SHARED_DATA_REF_KEY: {
1179                         /* SHARED DIRECT FULL backref */
1180                         struct btrfs_shared_data_ref *sdref;
1181                         int count;
1182
1183                         sdref = btrfs_item_ptr(leaf, slot,
1184                                               struct btrfs_shared_data_ref);
1185                         count = btrfs_shared_data_ref_count(leaf, sdref);
1186                         ret = add_direct_ref(fs_info, preftrees, 0,
1187                                              key.offset, ctx->bytenr, count,
1188                                              sc, GFP_NOFS);
1189                         break;
1190                 }
1191                 case BTRFS_TREE_BLOCK_REF_KEY:
1192                         /* NORMAL INDIRECT METADATA backref */
1193                         ret = add_indirect_ref(fs_info, preftrees, key.offset,
1194                                                NULL, info_level + 1, ctx->bytenr,
1195                                                1, NULL, GFP_NOFS);
1196                         break;
1197                 case BTRFS_EXTENT_DATA_REF_KEY: {
1198                         /* NORMAL INDIRECT DATA backref */
1199                         struct btrfs_extent_data_ref *dref;
1200                         int count;
1201                         u64 root;
1202
1203                         dref = btrfs_item_ptr(leaf, slot,
1204                                               struct btrfs_extent_data_ref);
1205                         count = btrfs_extent_data_ref_count(leaf, dref);
1206                         key.objectid = btrfs_extent_data_ref_objectid(leaf,
1207                                                                       dref);
1208                         key.type = BTRFS_EXTENT_DATA_KEY;
1209                         key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1210
1211                         if (sc && key.objectid != sc->inum &&
1212                             !sc->have_delayed_delete_refs) {
1213                                 ret = BACKREF_FOUND_SHARED;
1214                                 break;
1215                         }
1216
1217                         root = btrfs_extent_data_ref_root(leaf, dref);
1218
1219                         if (!ctx->skip_data_ref ||
1220                             !ctx->skip_data_ref(root, key.objectid, key.offset,
1221                                                 ctx->user_ctx))
1222                                 ret = add_indirect_ref(fs_info, preftrees, root,
1223                                                        &key, 0, ctx->bytenr,
1224                                                        count, sc, GFP_NOFS);
1225                         break;
1226                 }
1227                 default:
1228                         WARN_ON(1);
1229                 }
1230                 if (ret)
1231                         return ret;
1232
1233         }
1234
1235         return ret;
1236 }
1237
1238 /*
1239  * The caller has joined a transaction or is holding a read lock on the
1240  * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1241  * snapshot field changing while updating or checking the cache.
1242  */
1243 static bool lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1244                                         struct btrfs_root *root,
1245                                         u64 bytenr, int level, bool *is_shared)
1246 {
1247         const struct btrfs_fs_info *fs_info = root->fs_info;
1248         struct btrfs_backref_shared_cache_entry *entry;
1249
1250         if (!current->journal_info)
1251                 lockdep_assert_held(&fs_info->commit_root_sem);
1252
1253         if (!ctx->use_path_cache)
1254                 return false;
1255
1256         if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1257                 return false;
1258
1259         /*
1260          * Level -1 is used for the data extent, which is not reliable to cache
1261          * because its reference count can increase or decrease without us
1262          * realizing. We cache results only for extent buffers that lead from
1263          * the root node down to the leaf with the file extent item.
1264          */
1265         ASSERT(level >= 0);
1266
1267         entry = &ctx->path_cache_entries[level];
1268
1269         /* Unused cache entry or being used for some other extent buffer. */
1270         if (entry->bytenr != bytenr)
1271                 return false;
1272
1273         /*
1274          * We cached a false result, but the last snapshot generation of the
1275          * root changed, so we now have a snapshot. Don't trust the result.
1276          */
1277         if (!entry->is_shared &&
1278             entry->gen != btrfs_root_last_snapshot(&root->root_item))
1279                 return false;
1280
1281         /*
1282          * If we cached a true result and the last generation used for dropping
1283          * a root changed, we can not trust the result, because the dropped root
1284          * could be a snapshot sharing this extent buffer.
1285          */
1286         if (entry->is_shared &&
1287             entry->gen != btrfs_get_last_root_drop_gen(fs_info))
1288                 return false;
1289
1290         *is_shared = entry->is_shared;
1291         /*
1292          * If the node at this level is shared, than all nodes below are also
1293          * shared. Currently some of the nodes below may be marked as not shared
1294          * because we have just switched from one leaf to another, and switched
1295          * also other nodes above the leaf and below the current level, so mark
1296          * them as shared.
1297          */
1298         if (*is_shared) {
1299                 for (int i = 0; i < level; i++) {
1300                         ctx->path_cache_entries[i].is_shared = true;
1301                         ctx->path_cache_entries[i].gen = entry->gen;
1302                 }
1303         }
1304
1305         return true;
1306 }
1307
1308 /*
1309  * The caller has joined a transaction or is holding a read lock on the
1310  * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1311  * snapshot field changing while updating or checking the cache.
1312  */
1313 static void store_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1314                                        struct btrfs_root *root,
1315                                        u64 bytenr, int level, bool is_shared)
1316 {
1317         const struct btrfs_fs_info *fs_info = root->fs_info;
1318         struct btrfs_backref_shared_cache_entry *entry;
1319         u64 gen;
1320
1321         if (!current->journal_info)
1322                 lockdep_assert_held(&fs_info->commit_root_sem);
1323
1324         if (!ctx->use_path_cache)
1325                 return;
1326
1327         if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1328                 return;
1329
1330         /*
1331          * Level -1 is used for the data extent, which is not reliable to cache
1332          * because its reference count can increase or decrease without us
1333          * realizing. We cache results only for extent buffers that lead from
1334          * the root node down to the leaf with the file extent item.
1335          */
1336         ASSERT(level >= 0);
1337
1338         if (is_shared)
1339                 gen = btrfs_get_last_root_drop_gen(fs_info);
1340         else
1341                 gen = btrfs_root_last_snapshot(&root->root_item);
1342
1343         entry = &ctx->path_cache_entries[level];
1344         entry->bytenr = bytenr;
1345         entry->is_shared = is_shared;
1346         entry->gen = gen;
1347
1348         /*
1349          * If we found an extent buffer is shared, set the cache result for all
1350          * extent buffers below it to true. As nodes in the path are COWed,
1351          * their sharedness is moved to their children, and if a leaf is COWed,
1352          * then the sharedness of a data extent becomes direct, the refcount of
1353          * data extent is increased in the extent item at the extent tree.
1354          */
1355         if (is_shared) {
1356                 for (int i = 0; i < level; i++) {
1357                         entry = &ctx->path_cache_entries[i];
1358                         entry->is_shared = is_shared;
1359                         entry->gen = gen;
1360                 }
1361         }
1362 }
1363
1364 /*
1365  * this adds all existing backrefs (inline backrefs, backrefs and delayed
1366  * refs) for the given bytenr to the refs list, merges duplicates and resolves
1367  * indirect refs to their parent bytenr.
1368  * When roots are found, they're added to the roots list
1369  *
1370  * @ctx:     Backref walking context object, must be not NULL.
1371  * @sc:      If !NULL, then immediately return BACKREF_FOUND_SHARED when a
1372  *           shared extent is detected.
1373  *
1374  * Otherwise this returns 0 for success and <0 for an error.
1375  *
1376  * FIXME some caching might speed things up
1377  */
1378 static int find_parent_nodes(struct btrfs_backref_walk_ctx *ctx,
1379                              struct share_check *sc)
1380 {
1381         struct btrfs_root *root = btrfs_extent_root(ctx->fs_info, ctx->bytenr);
1382         struct btrfs_key key;
1383         struct btrfs_path *path;
1384         struct btrfs_delayed_ref_root *delayed_refs = NULL;
1385         struct btrfs_delayed_ref_head *head;
1386         int info_level = 0;
1387         int ret;
1388         struct prelim_ref *ref;
1389         struct rb_node *node;
1390         struct extent_inode_elem *eie = NULL;
1391         struct preftrees preftrees = {
1392                 .direct = PREFTREE_INIT,
1393                 .indirect = PREFTREE_INIT,
1394                 .indirect_missing_keys = PREFTREE_INIT
1395         };
1396
1397         /* Roots ulist is not needed when using a sharedness check context. */
1398         if (sc)
1399                 ASSERT(ctx->roots == NULL);
1400
1401         key.objectid = ctx->bytenr;
1402         if (btrfs_fs_incompat(ctx->fs_info, SKINNY_METADATA))
1403                 key.type = BTRFS_METADATA_ITEM_KEY;
1404         else
1405                 key.type = BTRFS_EXTENT_ITEM_KEY;
1406         key.offset = (u64)-1;
1407
1408         path = btrfs_alloc_path();
1409         if (!path)
1410                 return -ENOMEM;
1411         if (!ctx->trans) {
1412                 path->search_commit_root = 1;
1413                 path->skip_locking = 1;
1414         }
1415
1416         if (ctx->time_seq == BTRFS_SEQ_LAST)
1417                 path->skip_locking = 1;
1418
1419 again:
1420         head = NULL;
1421
1422         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1423         if (ret < 0)
1424                 goto out;
1425         if (ret == 0) {
1426                 /*
1427                  * Key with offset -1 found, there would have to exist an extent
1428                  * item with such offset, but this is out of the valid range.
1429                  */
1430                 ret = -EUCLEAN;
1431                 goto out;
1432         }
1433
1434         if (ctx->trans && likely(ctx->trans->type != __TRANS_DUMMY) &&
1435             ctx->time_seq != BTRFS_SEQ_LAST) {
1436                 /*
1437                  * We have a specific time_seq we care about and trans which
1438                  * means we have the path lock, we need to grab the ref head and
1439                  * lock it so we have a consistent view of the refs at the given
1440                  * time.
1441                  */
1442                 delayed_refs = &ctx->trans->transaction->delayed_refs;
1443                 spin_lock(&delayed_refs->lock);
1444                 head = btrfs_find_delayed_ref_head(ctx->fs_info, delayed_refs,
1445                                                    ctx->bytenr);
1446                 if (head) {
1447                         if (!mutex_trylock(&head->mutex)) {
1448                                 refcount_inc(&head->refs);
1449                                 spin_unlock(&delayed_refs->lock);
1450
1451                                 btrfs_release_path(path);
1452
1453                                 /*
1454                                  * Mutex was contended, block until it's
1455                                  * released and try again
1456                                  */
1457                                 mutex_lock(&head->mutex);
1458                                 mutex_unlock(&head->mutex);
1459                                 btrfs_put_delayed_ref_head(head);
1460                                 goto again;
1461                         }
1462                         spin_unlock(&delayed_refs->lock);
1463                         ret = add_delayed_refs(ctx->fs_info, head, ctx->time_seq,
1464                                                &preftrees, sc);
1465                         mutex_unlock(&head->mutex);
1466                         if (ret)
1467                                 goto out;
1468                 } else {
1469                         spin_unlock(&delayed_refs->lock);
1470                 }
1471         }
1472
1473         if (path->slots[0]) {
1474                 struct extent_buffer *leaf;
1475                 int slot;
1476
1477                 path->slots[0]--;
1478                 leaf = path->nodes[0];
1479                 slot = path->slots[0];
1480                 btrfs_item_key_to_cpu(leaf, &key, slot);
1481                 if (key.objectid == ctx->bytenr &&
1482                     (key.type == BTRFS_EXTENT_ITEM_KEY ||
1483                      key.type == BTRFS_METADATA_ITEM_KEY)) {
1484                         ret = add_inline_refs(ctx, path, &info_level,
1485                                               &preftrees, sc);
1486                         if (ret)
1487                                 goto out;
1488                         ret = add_keyed_refs(ctx, root, path, info_level,
1489                                              &preftrees, sc);
1490                         if (ret)
1491                                 goto out;
1492                 }
1493         }
1494
1495         /*
1496          * If we have a share context and we reached here, it means the extent
1497          * is not directly shared (no multiple reference items for it),
1498          * otherwise we would have exited earlier with a return value of
1499          * BACKREF_FOUND_SHARED after processing delayed references or while
1500          * processing inline or keyed references from the extent tree.
1501          * The extent may however be indirectly shared through shared subtrees
1502          * as a result from creating snapshots, so we determine below what is
1503          * its parent node, in case we are dealing with a metadata extent, or
1504          * what's the leaf (or leaves), from a fs tree, that has a file extent
1505          * item pointing to it in case we are dealing with a data extent.
1506          */
1507         ASSERT(extent_is_shared(sc) == 0);
1508
1509         /*
1510          * If we are here for a data extent and we have a share_check structure
1511          * it means the data extent is not directly shared (does not have
1512          * multiple reference items), so we have to check if a path in the fs
1513          * tree (going from the root node down to the leaf that has the file
1514          * extent item pointing to the data extent) is shared, that is, if any
1515          * of the extent buffers in the path is referenced by other trees.
1516          */
1517         if (sc && ctx->bytenr == sc->data_bytenr) {
1518                 /*
1519                  * If our data extent is from a generation more recent than the
1520                  * last generation used to snapshot the root, then we know that
1521                  * it can not be shared through subtrees, so we can skip
1522                  * resolving indirect references, there's no point in
1523                  * determining the extent buffers for the path from the fs tree
1524                  * root node down to the leaf that has the file extent item that
1525                  * points to the data extent.
1526                  */
1527                 if (sc->data_extent_gen >
1528                     btrfs_root_last_snapshot(&sc->root->root_item)) {
1529                         ret = BACKREF_FOUND_NOT_SHARED;
1530                         goto out;
1531                 }
1532
1533                 /*
1534                  * If we are only determining if a data extent is shared or not
1535                  * and the corresponding file extent item is located in the same
1536                  * leaf as the previous file extent item, we can skip resolving
1537                  * indirect references for a data extent, since the fs tree path
1538                  * is the same (same leaf, so same path). We skip as long as the
1539                  * cached result for the leaf is valid and only if there's only
1540                  * one file extent item pointing to the data extent, because in
1541                  * the case of multiple file extent items, they may be located
1542                  * in different leaves and therefore we have multiple paths.
1543                  */
1544                 if (sc->ctx->curr_leaf_bytenr == sc->ctx->prev_leaf_bytenr &&
1545                     sc->self_ref_count == 1) {
1546                         bool cached;
1547                         bool is_shared;
1548
1549                         cached = lookup_backref_shared_cache(sc->ctx, sc->root,
1550                                                      sc->ctx->curr_leaf_bytenr,
1551                                                      0, &is_shared);
1552                         if (cached) {
1553                                 if (is_shared)
1554                                         ret = BACKREF_FOUND_SHARED;
1555                                 else
1556                                         ret = BACKREF_FOUND_NOT_SHARED;
1557                                 goto out;
1558                         }
1559                 }
1560         }
1561
1562         btrfs_release_path(path);
1563
1564         ret = add_missing_keys(ctx->fs_info, &preftrees, path->skip_locking == 0);
1565         if (ret)
1566                 goto out;
1567
1568         WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1569
1570         ret = resolve_indirect_refs(ctx, path, &preftrees, sc);
1571         if (ret)
1572                 goto out;
1573
1574         WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1575
1576         /*
1577          * This walks the tree of merged and resolved refs. Tree blocks are
1578          * read in as needed. Unique entries are added to the ulist, and
1579          * the list of found roots is updated.
1580          *
1581          * We release the entire tree in one go before returning.
1582          */
1583         node = rb_first_cached(&preftrees.direct.root);
1584         while (node) {
1585                 ref = rb_entry(node, struct prelim_ref, rbnode);
1586                 node = rb_next(&ref->rbnode);
1587                 /*
1588                  * ref->count < 0 can happen here if there are delayed
1589                  * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1590                  * prelim_ref_insert() relies on this when merging
1591                  * identical refs to keep the overall count correct.
1592                  * prelim_ref_insert() will merge only those refs
1593                  * which compare identically.  Any refs having
1594                  * e.g. different offsets would not be merged,
1595                  * and would retain their original ref->count < 0.
1596                  */
1597                 if (ctx->roots && ref->count && ref->root_id && ref->parent == 0) {
1598                         /* no parent == root of tree */
1599                         ret = ulist_add(ctx->roots, ref->root_id, 0, GFP_NOFS);
1600                         if (ret < 0)
1601                                 goto out;
1602                 }
1603                 if (ref->count && ref->parent) {
1604                         if (!ctx->skip_inode_ref_list && !ref->inode_list &&
1605                             ref->level == 0) {
1606                                 struct btrfs_tree_parent_check check = { 0 };
1607                                 struct extent_buffer *eb;
1608
1609                                 check.level = ref->level;
1610
1611                                 eb = read_tree_block(ctx->fs_info, ref->parent,
1612                                                      &check);
1613                                 if (IS_ERR(eb)) {
1614                                         ret = PTR_ERR(eb);
1615                                         goto out;
1616                                 }
1617                                 if (!extent_buffer_uptodate(eb)) {
1618                                         free_extent_buffer(eb);
1619                                         ret = -EIO;
1620                                         goto out;
1621                                 }
1622
1623                                 if (!path->skip_locking)
1624                                         btrfs_tree_read_lock(eb);
1625                                 ret = find_extent_in_eb(ctx, eb, &eie);
1626                                 if (!path->skip_locking)
1627                                         btrfs_tree_read_unlock(eb);
1628                                 free_extent_buffer(eb);
1629                                 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1630                                     ret < 0)
1631                                         goto out;
1632                                 ref->inode_list = eie;
1633                                 /*
1634                                  * We transferred the list ownership to the ref,
1635                                  * so set to NULL to avoid a double free in case
1636                                  * an error happens after this.
1637                                  */
1638                                 eie = NULL;
1639                         }
1640                         ret = ulist_add_merge_ptr(ctx->refs, ref->parent,
1641                                                   ref->inode_list,
1642                                                   (void **)&eie, GFP_NOFS);
1643                         if (ret < 0)
1644                                 goto out;
1645                         if (!ret && !ctx->skip_inode_ref_list) {
1646                                 /*
1647                                  * We've recorded that parent, so we must extend
1648                                  * its inode list here.
1649                                  *
1650                                  * However if there was corruption we may not
1651                                  * have found an eie, return an error in this
1652                                  * case.
1653                                  */
1654                                 ASSERT(eie);
1655                                 if (!eie) {
1656                                         ret = -EUCLEAN;
1657                                         goto out;
1658                                 }
1659                                 while (eie->next)
1660                                         eie = eie->next;
1661                                 eie->next = ref->inode_list;
1662                         }
1663                         eie = NULL;
1664                         /*
1665                          * We have transferred the inode list ownership from
1666                          * this ref to the ref we added to the 'refs' ulist.
1667                          * So set this ref's inode list to NULL to avoid
1668                          * use-after-free when our caller uses it or double
1669                          * frees in case an error happens before we return.
1670                          */
1671                         ref->inode_list = NULL;
1672                 }
1673                 cond_resched();
1674         }
1675
1676 out:
1677         btrfs_free_path(path);
1678
1679         prelim_release(&preftrees.direct);
1680         prelim_release(&preftrees.indirect);
1681         prelim_release(&preftrees.indirect_missing_keys);
1682
1683         if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
1684                 free_inode_elem_list(eie);
1685         return ret;
1686 }
1687
1688 /*
1689  * Finds all leaves with a reference to the specified combination of
1690  * @ctx->bytenr and @ctx->extent_item_pos. The bytenr of the found leaves are
1691  * added to the ulist at @ctx->refs, and that ulist is allocated by this
1692  * function. The caller should free the ulist with free_leaf_list() if
1693  * @ctx->ignore_extent_item_pos is false, otherwise a fimple ulist_free() is
1694  * enough.
1695  *
1696  * Returns 0 on success and < 0 on error. On error @ctx->refs is not allocated.
1697  */
1698 int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx)
1699 {
1700         int ret;
1701
1702         ASSERT(ctx->refs == NULL);
1703
1704         ctx->refs = ulist_alloc(GFP_NOFS);
1705         if (!ctx->refs)
1706                 return -ENOMEM;
1707
1708         ret = find_parent_nodes(ctx, NULL);
1709         if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1710             (ret < 0 && ret != -ENOENT)) {
1711                 free_leaf_list(ctx->refs);
1712                 ctx->refs = NULL;
1713                 return ret;
1714         }
1715
1716         return 0;
1717 }
1718
1719 /*
1720  * Walk all backrefs for a given extent to find all roots that reference this
1721  * extent. Walking a backref means finding all extents that reference this
1722  * extent and in turn walk the backrefs of those, too. Naturally this is a
1723  * recursive process, but here it is implemented in an iterative fashion: We
1724  * find all referencing extents for the extent in question and put them on a
1725  * list. In turn, we find all referencing extents for those, further appending
1726  * to the list. The way we iterate the list allows adding more elements after
1727  * the current while iterating. The process stops when we reach the end of the
1728  * list.
1729  *
1730  * Found roots are added to @ctx->roots, which is allocated by this function if
1731  * it points to NULL, in which case the caller is responsible for freeing it
1732  * after it's not needed anymore.
1733  * This function requires @ctx->refs to be NULL, as it uses it for allocating a
1734  * ulist to do temporary work, and frees it before returning.
1735  *
1736  * Returns 0 on success, < 0 on error.
1737  */
1738 static int btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx *ctx)
1739 {
1740         const u64 orig_bytenr = ctx->bytenr;
1741         const bool orig_skip_inode_ref_list = ctx->skip_inode_ref_list;
1742         bool roots_ulist_allocated = false;
1743         struct ulist_iterator uiter;
1744         int ret = 0;
1745
1746         ASSERT(ctx->refs == NULL);
1747
1748         ctx->refs = ulist_alloc(GFP_NOFS);
1749         if (!ctx->refs)
1750                 return -ENOMEM;
1751
1752         if (!ctx->roots) {
1753                 ctx->roots = ulist_alloc(GFP_NOFS);
1754                 if (!ctx->roots) {
1755                         ulist_free(ctx->refs);
1756                         ctx->refs = NULL;
1757                         return -ENOMEM;
1758                 }
1759                 roots_ulist_allocated = true;
1760         }
1761
1762         ctx->skip_inode_ref_list = true;
1763
1764         ULIST_ITER_INIT(&uiter);
1765         while (1) {
1766                 struct ulist_node *node;
1767
1768                 ret = find_parent_nodes(ctx, NULL);
1769                 if (ret < 0 && ret != -ENOENT) {
1770                         if (roots_ulist_allocated) {
1771                                 ulist_free(ctx->roots);
1772                                 ctx->roots = NULL;
1773                         }
1774                         break;
1775                 }
1776                 ret = 0;
1777                 node = ulist_next(ctx->refs, &uiter);
1778                 if (!node)
1779                         break;
1780                 ctx->bytenr = node->val;
1781                 cond_resched();
1782         }
1783
1784         ulist_free(ctx->refs);
1785         ctx->refs = NULL;
1786         ctx->bytenr = orig_bytenr;
1787         ctx->skip_inode_ref_list = orig_skip_inode_ref_list;
1788
1789         return ret;
1790 }
1791
1792 int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx,
1793                          bool skip_commit_root_sem)
1794 {
1795         int ret;
1796
1797         if (!ctx->trans && !skip_commit_root_sem)
1798                 down_read(&ctx->fs_info->commit_root_sem);
1799         ret = btrfs_find_all_roots_safe(ctx);
1800         if (!ctx->trans && !skip_commit_root_sem)
1801                 up_read(&ctx->fs_info->commit_root_sem);
1802         return ret;
1803 }
1804
1805 struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void)
1806 {
1807         struct btrfs_backref_share_check_ctx *ctx;
1808
1809         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1810         if (!ctx)
1811                 return NULL;
1812
1813         ulist_init(&ctx->refs);
1814
1815         return ctx;
1816 }
1817
1818 void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx)
1819 {
1820         if (!ctx)
1821                 return;
1822
1823         ulist_release(&ctx->refs);
1824         kfree(ctx);
1825 }
1826
1827 /*
1828  * Check if a data extent is shared or not.
1829  *
1830  * @inode:       The inode whose extent we are checking.
1831  * @bytenr:      Logical bytenr of the extent we are checking.
1832  * @extent_gen:  Generation of the extent (file extent item) or 0 if it is
1833  *               not known.
1834  * @ctx:         A backref sharedness check context.
1835  *
1836  * btrfs_is_data_extent_shared uses the backref walking code but will short
1837  * circuit as soon as it finds a root or inode that doesn't match the
1838  * one passed in. This provides a significant performance benefit for
1839  * callers (such as fiemap) which want to know whether the extent is
1840  * shared but do not need a ref count.
1841  *
1842  * This attempts to attach to the running transaction in order to account for
1843  * delayed refs, but continues on even when no running transaction exists.
1844  *
1845  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1846  */
1847 int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr,
1848                                 u64 extent_gen,
1849                                 struct btrfs_backref_share_check_ctx *ctx)
1850 {
1851         struct btrfs_backref_walk_ctx walk_ctx = { 0 };
1852         struct btrfs_root *root = inode->root;
1853         struct btrfs_fs_info *fs_info = root->fs_info;
1854         struct btrfs_trans_handle *trans;
1855         struct ulist_iterator uiter;
1856         struct ulist_node *node;
1857         struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem);
1858         int ret = 0;
1859         struct share_check shared = {
1860                 .ctx = ctx,
1861                 .root = root,
1862                 .inum = btrfs_ino(inode),
1863                 .data_bytenr = bytenr,
1864                 .data_extent_gen = extent_gen,
1865                 .share_count = 0,
1866                 .self_ref_count = 0,
1867                 .have_delayed_delete_refs = false,
1868         };
1869         int level;
1870         bool leaf_cached;
1871         bool leaf_is_shared;
1872
1873         for (int i = 0; i < BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; i++) {
1874                 if (ctx->prev_extents_cache[i].bytenr == bytenr)
1875                         return ctx->prev_extents_cache[i].is_shared;
1876         }
1877
1878         ulist_init(&ctx->refs);
1879
1880         trans = btrfs_join_transaction_nostart(root);
1881         if (IS_ERR(trans)) {
1882                 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1883                         ret = PTR_ERR(trans);
1884                         goto out;
1885                 }
1886                 trans = NULL;
1887                 down_read(&fs_info->commit_root_sem);
1888         } else {
1889                 btrfs_get_tree_mod_seq(fs_info, &elem);
1890                 walk_ctx.time_seq = elem.seq;
1891         }
1892
1893         ctx->use_path_cache = true;
1894
1895         /*
1896          * We may have previously determined that the current leaf is shared.
1897          * If it is, then we have a data extent that is shared due to a shared
1898          * subtree (caused by snapshotting) and we don't need to check for data
1899          * backrefs. If the leaf is not shared, then we must do backref walking
1900          * to determine if the data extent is shared through reflinks.
1901          */
1902         leaf_cached = lookup_backref_shared_cache(ctx, root,
1903                                                   ctx->curr_leaf_bytenr, 0,
1904                                                   &leaf_is_shared);
1905         if (leaf_cached && leaf_is_shared) {
1906                 ret = 1;
1907                 goto out_trans;
1908         }
1909
1910         walk_ctx.skip_inode_ref_list = true;
1911         walk_ctx.trans = trans;
1912         walk_ctx.fs_info = fs_info;
1913         walk_ctx.refs = &ctx->refs;
1914
1915         /* -1 means we are in the bytenr of the data extent. */
1916         level = -1;
1917         ULIST_ITER_INIT(&uiter);
1918         while (1) {
1919                 const unsigned long prev_ref_count = ctx->refs.nnodes;
1920
1921                 walk_ctx.bytenr = bytenr;
1922                 ret = find_parent_nodes(&walk_ctx, &shared);
1923                 if (ret == BACKREF_FOUND_SHARED ||
1924                     ret == BACKREF_FOUND_NOT_SHARED) {
1925                         /* If shared must return 1, otherwise return 0. */
1926                         ret = (ret == BACKREF_FOUND_SHARED) ? 1 : 0;
1927                         if (level >= 0)
1928                                 store_backref_shared_cache(ctx, root, bytenr,
1929                                                            level, ret == 1);
1930                         break;
1931                 }
1932                 if (ret < 0 && ret != -ENOENT)
1933                         break;
1934                 ret = 0;
1935
1936                 /*
1937                  * More than one extent buffer (bytenr) may have been added to
1938                  * the ctx->refs ulist, in which case we have to check multiple
1939                  * tree paths in case the first one is not shared, so we can not
1940                  * use the path cache which is made for a single path. Multiple
1941                  * extent buffers at the current level happen when:
1942                  *
1943                  * 1) level -1, the data extent: If our data extent was not
1944                  *    directly shared (without multiple reference items), then
1945                  *    it might have a single reference item with a count > 1 for
1946                  *    the same offset, which means there are 2 (or more) file
1947                  *    extent items that point to the data extent - this happens
1948                  *    when a file extent item needs to be split and then one
1949                  *    item gets moved to another leaf due to a b+tree leaf split
1950                  *    when inserting some item. In this case the file extent
1951                  *    items may be located in different leaves and therefore
1952                  *    some of the leaves may be referenced through shared
1953                  *    subtrees while others are not. Since our extent buffer
1954                  *    cache only works for a single path (by far the most common
1955                  *    case and simpler to deal with), we can not use it if we
1956                  *    have multiple leaves (which implies multiple paths).
1957                  *
1958                  * 2) level >= 0, a tree node/leaf: We can have a mix of direct
1959                  *    and indirect references on a b+tree node/leaf, so we have
1960                  *    to check multiple paths, and the extent buffer (the
1961                  *    current bytenr) may be shared or not. One example is
1962                  *    during relocation as we may get a shared tree block ref
1963                  *    (direct ref) and a non-shared tree block ref (indirect
1964                  *    ref) for the same node/leaf.
1965                  */
1966                 if ((ctx->refs.nnodes - prev_ref_count) > 1)
1967                         ctx->use_path_cache = false;
1968
1969                 if (level >= 0)
1970                         store_backref_shared_cache(ctx, root, bytenr,
1971                                                    level, false);
1972                 node = ulist_next(&ctx->refs, &uiter);
1973                 if (!node)
1974                         break;
1975                 bytenr = node->val;
1976                 if (ctx->use_path_cache) {
1977                         bool is_shared;
1978                         bool cached;
1979
1980                         level++;
1981                         cached = lookup_backref_shared_cache(ctx, root, bytenr,
1982                                                              level, &is_shared);
1983                         if (cached) {
1984                                 ret = (is_shared ? 1 : 0);
1985                                 break;
1986                         }
1987                 }
1988                 shared.share_count = 0;
1989                 shared.have_delayed_delete_refs = false;
1990                 cond_resched();
1991         }
1992
1993         /*
1994          * If the path cache is disabled, then it means at some tree level we
1995          * got multiple parents due to a mix of direct and indirect backrefs or
1996          * multiple leaves with file extent items pointing to the same data
1997          * extent. We have to invalidate the cache and cache only the sharedness
1998          * result for the levels where we got only one node/reference.
1999          */
2000         if (!ctx->use_path_cache) {
2001                 int i = 0;
2002
2003                 level--;
2004                 if (ret >= 0 && level >= 0) {
2005                         bytenr = ctx->path_cache_entries[level].bytenr;
2006                         ctx->use_path_cache = true;
2007                         store_backref_shared_cache(ctx, root, bytenr, level, ret);
2008                         i = level + 1;
2009                 }
2010
2011                 for ( ; i < BTRFS_MAX_LEVEL; i++)
2012                         ctx->path_cache_entries[i].bytenr = 0;
2013         }
2014
2015         /*
2016          * Cache the sharedness result for the data extent if we know our inode
2017          * has more than 1 file extent item that refers to the data extent.
2018          */
2019         if (ret >= 0 && shared.self_ref_count > 1) {
2020                 int slot = ctx->prev_extents_cache_slot;
2021
2022                 ctx->prev_extents_cache[slot].bytenr = shared.data_bytenr;
2023                 ctx->prev_extents_cache[slot].is_shared = (ret == 1);
2024
2025                 slot = (slot + 1) % BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE;
2026                 ctx->prev_extents_cache_slot = slot;
2027         }
2028
2029 out_trans:
2030         if (trans) {
2031                 btrfs_put_tree_mod_seq(fs_info, &elem);
2032                 btrfs_end_transaction(trans);
2033         } else {
2034                 up_read(&fs_info->commit_root_sem);
2035         }
2036 out:
2037         ulist_release(&ctx->refs);
2038         ctx->prev_leaf_bytenr = ctx->curr_leaf_bytenr;
2039
2040         return ret;
2041 }
2042
2043 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
2044                           u64 start_off, struct btrfs_path *path,
2045                           struct btrfs_inode_extref **ret_extref,
2046                           u64 *found_off)
2047 {
2048         int ret, slot;
2049         struct btrfs_key key;
2050         struct btrfs_key found_key;
2051         struct btrfs_inode_extref *extref;
2052         const struct extent_buffer *leaf;
2053         unsigned long ptr;
2054
2055         key.objectid = inode_objectid;
2056         key.type = BTRFS_INODE_EXTREF_KEY;
2057         key.offset = start_off;
2058
2059         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2060         if (ret < 0)
2061                 return ret;
2062
2063         while (1) {
2064                 leaf = path->nodes[0];
2065                 slot = path->slots[0];
2066                 if (slot >= btrfs_header_nritems(leaf)) {
2067                         /*
2068                          * If the item at offset is not found,
2069                          * btrfs_search_slot will point us to the slot
2070                          * where it should be inserted. In our case
2071                          * that will be the slot directly before the
2072                          * next INODE_REF_KEY_V2 item. In the case
2073                          * that we're pointing to the last slot in a
2074                          * leaf, we must move one leaf over.
2075                          */
2076                         ret = btrfs_next_leaf(root, path);
2077                         if (ret) {
2078                                 if (ret >= 1)
2079                                         ret = -ENOENT;
2080                                 break;
2081                         }
2082                         continue;
2083                 }
2084
2085                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2086
2087                 /*
2088                  * Check that we're still looking at an extended ref key for
2089                  * this particular objectid. If we have different
2090                  * objectid or type then there are no more to be found
2091                  * in the tree and we can exit.
2092                  */
2093                 ret = -ENOENT;
2094                 if (found_key.objectid != inode_objectid)
2095                         break;
2096                 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
2097                         break;
2098
2099                 ret = 0;
2100                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2101                 extref = (struct btrfs_inode_extref *)ptr;
2102                 *ret_extref = extref;
2103                 if (found_off)
2104                         *found_off = found_key.offset;
2105                 break;
2106         }
2107
2108         return ret;
2109 }
2110
2111 /*
2112  * this iterates to turn a name (from iref/extref) into a full filesystem path.
2113  * Elements of the path are separated by '/' and the path is guaranteed to be
2114  * 0-terminated. the path is only given within the current file system.
2115  * Therefore, it never starts with a '/'. the caller is responsible to provide
2116  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
2117  * the start point of the resulting string is returned. this pointer is within
2118  * dest, normally.
2119  * in case the path buffer would overflow, the pointer is decremented further
2120  * as if output was written to the buffer, though no more output is actually
2121  * generated. that way, the caller can determine how much space would be
2122  * required for the path to fit into the buffer. in that case, the returned
2123  * value will be smaller than dest. callers must check this!
2124  */
2125 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
2126                         u32 name_len, unsigned long name_off,
2127                         struct extent_buffer *eb_in, u64 parent,
2128                         char *dest, u32 size)
2129 {
2130         int slot;
2131         u64 next_inum;
2132         int ret;
2133         s64 bytes_left = ((s64)size) - 1;
2134         struct extent_buffer *eb = eb_in;
2135         struct btrfs_key found_key;
2136         struct btrfs_inode_ref *iref;
2137
2138         if (bytes_left >= 0)
2139                 dest[bytes_left] = '\0';
2140
2141         while (1) {
2142                 bytes_left -= name_len;
2143                 if (bytes_left >= 0)
2144                         read_extent_buffer(eb, dest + bytes_left,
2145                                            name_off, name_len);
2146                 if (eb != eb_in) {
2147                         if (!path->skip_locking)
2148                                 btrfs_tree_read_unlock(eb);
2149                         free_extent_buffer(eb);
2150                 }
2151                 ret = btrfs_find_item(fs_root, path, parent, 0,
2152                                 BTRFS_INODE_REF_KEY, &found_key);
2153                 if (ret > 0)
2154                         ret = -ENOENT;
2155                 if (ret)
2156                         break;
2157
2158                 next_inum = found_key.offset;
2159
2160                 /* regular exit ahead */
2161                 if (parent == next_inum)
2162                         break;
2163
2164                 slot = path->slots[0];
2165                 eb = path->nodes[0];
2166                 /* make sure we can use eb after releasing the path */
2167                 if (eb != eb_in) {
2168                         path->nodes[0] = NULL;
2169                         path->locks[0] = 0;
2170                 }
2171                 btrfs_release_path(path);
2172                 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2173
2174                 name_len = btrfs_inode_ref_name_len(eb, iref);
2175                 name_off = (unsigned long)(iref + 1);
2176
2177                 parent = next_inum;
2178                 --bytes_left;
2179                 if (bytes_left >= 0)
2180                         dest[bytes_left] = '/';
2181         }
2182
2183         btrfs_release_path(path);
2184
2185         if (ret)
2186                 return ERR_PTR(ret);
2187
2188         return dest + bytes_left;
2189 }
2190
2191 /*
2192  * this makes the path point to (logical EXTENT_ITEM *)
2193  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
2194  * tree blocks and <0 on error.
2195  */
2196 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
2197                         struct btrfs_path *path, struct btrfs_key *found_key,
2198                         u64 *flags_ret)
2199 {
2200         struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
2201         int ret;
2202         u64 flags;
2203         u64 size = 0;
2204         u32 item_size;
2205         const struct extent_buffer *eb;
2206         struct btrfs_extent_item *ei;
2207         struct btrfs_key key;
2208
2209         key.objectid = logical;
2210         if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2211                 key.type = BTRFS_METADATA_ITEM_KEY;
2212         else
2213                 key.type = BTRFS_EXTENT_ITEM_KEY;
2214         key.offset = (u64)-1;
2215
2216         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2217         if (ret < 0)
2218                 return ret;
2219         if (ret == 0) {
2220                 /*
2221                  * Key with offset -1 found, there would have to exist an extent
2222                  * item with such offset, but this is out of the valid range.
2223                  */
2224                 return -EUCLEAN;
2225         }
2226
2227         ret = btrfs_previous_extent_item(extent_root, path, 0);
2228         if (ret) {
2229                 if (ret > 0)
2230                         ret = -ENOENT;
2231                 return ret;
2232         }
2233         btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
2234         if (found_key->type == BTRFS_METADATA_ITEM_KEY)
2235                 size = fs_info->nodesize;
2236         else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
2237                 size = found_key->offset;
2238
2239         if (found_key->objectid > logical ||
2240             found_key->objectid + size <= logical) {
2241                 btrfs_debug(fs_info,
2242                         "logical %llu is not within any extent", logical);
2243                 return -ENOENT;
2244         }
2245
2246         eb = path->nodes[0];
2247         item_size = btrfs_item_size(eb, path->slots[0]);
2248
2249         ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
2250         flags = btrfs_extent_flags(eb, ei);
2251
2252         btrfs_debug(fs_info,
2253                 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
2254                  logical, logical - found_key->objectid, found_key->objectid,
2255                  found_key->offset, flags, item_size);
2256
2257         WARN_ON(!flags_ret);
2258         if (flags_ret) {
2259                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2260                         *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
2261                 else if (flags & BTRFS_EXTENT_FLAG_DATA)
2262                         *flags_ret = BTRFS_EXTENT_FLAG_DATA;
2263                 else
2264                         BUG();
2265                 return 0;
2266         }
2267
2268         return -EIO;
2269 }
2270
2271 /*
2272  * helper function to iterate extent inline refs. ptr must point to a 0 value
2273  * for the first call and may be modified. it is used to track state.
2274  * if more refs exist, 0 is returned and the next call to
2275  * get_extent_inline_ref must pass the modified ptr parameter to get the
2276  * next ref. after the last ref was processed, 1 is returned.
2277  * returns <0 on error
2278  */
2279 static int get_extent_inline_ref(unsigned long *ptr,
2280                                  const struct extent_buffer *eb,
2281                                  const struct btrfs_key *key,
2282                                  const struct btrfs_extent_item *ei,
2283                                  u32 item_size,
2284                                  struct btrfs_extent_inline_ref **out_eiref,
2285                                  int *out_type)
2286 {
2287         unsigned long end;
2288         u64 flags;
2289         struct btrfs_tree_block_info *info;
2290
2291         if (!*ptr) {
2292                 /* first call */
2293                 flags = btrfs_extent_flags(eb, ei);
2294                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2295                         if (key->type == BTRFS_METADATA_ITEM_KEY) {
2296                                 /* a skinny metadata extent */
2297                                 *out_eiref =
2298                                      (struct btrfs_extent_inline_ref *)(ei + 1);
2299                         } else {
2300                                 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
2301                                 info = (struct btrfs_tree_block_info *)(ei + 1);
2302                                 *out_eiref =
2303                                    (struct btrfs_extent_inline_ref *)(info + 1);
2304                         }
2305                 } else {
2306                         *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
2307                 }
2308                 *ptr = (unsigned long)*out_eiref;
2309                 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
2310                         return -ENOENT;
2311         }
2312
2313         end = (unsigned long)ei + item_size;
2314         *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
2315         *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
2316                                                      BTRFS_REF_TYPE_ANY);
2317         if (*out_type == BTRFS_REF_TYPE_INVALID)
2318                 return -EUCLEAN;
2319
2320         *ptr += btrfs_extent_inline_ref_size(*out_type);
2321         WARN_ON(*ptr > end);
2322         if (*ptr == end)
2323                 return 1; /* last */
2324
2325         return 0;
2326 }
2327
2328 /*
2329  * reads the tree block backref for an extent. tree level and root are returned
2330  * through out_level and out_root. ptr must point to a 0 value for the first
2331  * call and may be modified (see get_extent_inline_ref comment).
2332  * returns 0 if data was provided, 1 if there was no more data to provide or
2333  * <0 on error.
2334  */
2335 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
2336                             struct btrfs_key *key, struct btrfs_extent_item *ei,
2337                             u32 item_size, u64 *out_root, u8 *out_level)
2338 {
2339         int ret;
2340         int type;
2341         struct btrfs_extent_inline_ref *eiref;
2342
2343         if (*ptr == (unsigned long)-1)
2344                 return 1;
2345
2346         while (1) {
2347                 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
2348                                               &eiref, &type);
2349                 if (ret < 0)
2350                         return ret;
2351
2352                 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2353                     type == BTRFS_SHARED_BLOCK_REF_KEY)
2354                         break;
2355
2356                 if (ret == 1)
2357                         return 1;
2358         }
2359
2360         /* we can treat both ref types equally here */
2361         *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
2362
2363         if (key->type == BTRFS_EXTENT_ITEM_KEY) {
2364                 struct btrfs_tree_block_info *info;
2365
2366                 info = (struct btrfs_tree_block_info *)(ei + 1);
2367                 *out_level = btrfs_tree_block_level(eb, info);
2368         } else {
2369                 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
2370                 *out_level = (u8)key->offset;
2371         }
2372
2373         if (ret == 1)
2374                 *ptr = (unsigned long)-1;
2375
2376         return 0;
2377 }
2378
2379 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
2380                              struct extent_inode_elem *inode_list,
2381                              u64 root, u64 extent_item_objectid,
2382                              iterate_extent_inodes_t *iterate, void *ctx)
2383 {
2384         struct extent_inode_elem *eie;
2385         int ret = 0;
2386
2387         for (eie = inode_list; eie; eie = eie->next) {
2388                 btrfs_debug(fs_info,
2389                             "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
2390                             extent_item_objectid, eie->inum,
2391                             eie->offset, root);
2392                 ret = iterate(eie->inum, eie->offset, eie->num_bytes, root, ctx);
2393                 if (ret) {
2394                         btrfs_debug(fs_info,
2395                                     "stopping iteration for %llu due to ret=%d",
2396                                     extent_item_objectid, ret);
2397                         break;
2398                 }
2399         }
2400
2401         return ret;
2402 }
2403
2404 /*
2405  * calls iterate() for every inode that references the extent identified by
2406  * the given parameters.
2407  * when the iterator function returns a non-zero value, iteration stops.
2408  */
2409 int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx,
2410                           bool search_commit_root,
2411                           iterate_extent_inodes_t *iterate, void *user_ctx)
2412 {
2413         int ret;
2414         struct ulist *refs;
2415         struct ulist_node *ref_node;
2416         struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem);
2417         struct ulist_iterator ref_uiter;
2418
2419         btrfs_debug(ctx->fs_info, "resolving all inodes for extent %llu",
2420                     ctx->bytenr);
2421
2422         ASSERT(ctx->trans == NULL);
2423         ASSERT(ctx->roots == NULL);
2424
2425         if (!search_commit_root) {
2426                 struct btrfs_trans_handle *trans;
2427
2428                 trans = btrfs_attach_transaction(ctx->fs_info->tree_root);
2429                 if (IS_ERR(trans)) {
2430                         if (PTR_ERR(trans) != -ENOENT &&
2431                             PTR_ERR(trans) != -EROFS)
2432                                 return PTR_ERR(trans);
2433                         trans = NULL;
2434                 }
2435                 ctx->trans = trans;
2436         }
2437
2438         if (ctx->trans) {
2439                 btrfs_get_tree_mod_seq(ctx->fs_info, &seq_elem);
2440                 ctx->time_seq = seq_elem.seq;
2441         } else {
2442                 down_read(&ctx->fs_info->commit_root_sem);
2443         }
2444
2445         ret = btrfs_find_all_leafs(ctx);
2446         if (ret)
2447                 goto out;
2448         refs = ctx->refs;
2449         ctx->refs = NULL;
2450
2451         ULIST_ITER_INIT(&ref_uiter);
2452         while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
2453                 const u64 leaf_bytenr = ref_node->val;
2454                 struct ulist_node *root_node;
2455                 struct ulist_iterator root_uiter;
2456                 struct extent_inode_elem *inode_list;
2457
2458                 inode_list = (struct extent_inode_elem *)(uintptr_t)ref_node->aux;
2459
2460                 if (ctx->cache_lookup) {
2461                         const u64 *root_ids;
2462                         int root_count;
2463                         bool cached;
2464
2465                         cached = ctx->cache_lookup(leaf_bytenr, ctx->user_ctx,
2466                                                    &root_ids, &root_count);
2467                         if (cached) {
2468                                 for (int i = 0; i < root_count; i++) {
2469                                         ret = iterate_leaf_refs(ctx->fs_info,
2470                                                                 inode_list,
2471                                                                 root_ids[i],
2472                                                                 leaf_bytenr,
2473                                                                 iterate,
2474                                                                 user_ctx);
2475                                         if (ret)
2476                                                 break;
2477                                 }
2478                                 continue;
2479                         }
2480                 }
2481
2482                 if (!ctx->roots) {
2483                         ctx->roots = ulist_alloc(GFP_NOFS);
2484                         if (!ctx->roots) {
2485                                 ret = -ENOMEM;
2486                                 break;
2487                         }
2488                 }
2489
2490                 ctx->bytenr = leaf_bytenr;
2491                 ret = btrfs_find_all_roots_safe(ctx);
2492                 if (ret)
2493                         break;
2494
2495                 if (ctx->cache_store)
2496                         ctx->cache_store(leaf_bytenr, ctx->roots, ctx->user_ctx);
2497
2498                 ULIST_ITER_INIT(&root_uiter);
2499                 while (!ret && (root_node = ulist_next(ctx->roots, &root_uiter))) {
2500                         btrfs_debug(ctx->fs_info,
2501                                     "root %llu references leaf %llu, data list %#llx",
2502                                     root_node->val, ref_node->val,
2503                                     ref_node->aux);
2504                         ret = iterate_leaf_refs(ctx->fs_info, inode_list,
2505                                                 root_node->val, ctx->bytenr,
2506                                                 iterate, user_ctx);
2507                 }
2508                 ulist_reinit(ctx->roots);
2509         }
2510
2511         free_leaf_list(refs);
2512 out:
2513         if (ctx->trans) {
2514                 btrfs_put_tree_mod_seq(ctx->fs_info, &seq_elem);
2515                 btrfs_end_transaction(ctx->trans);
2516                 ctx->trans = NULL;
2517         } else {
2518                 up_read(&ctx->fs_info->commit_root_sem);
2519         }
2520
2521         ulist_free(ctx->roots);
2522         ctx->roots = NULL;
2523
2524         if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP)
2525                 ret = 0;
2526
2527         return ret;
2528 }
2529
2530 static int build_ino_list(u64 inum, u64 offset, u64 num_bytes, u64 root, void *ctx)
2531 {
2532         struct btrfs_data_container *inodes = ctx;
2533         const size_t c = 3 * sizeof(u64);
2534
2535         if (inodes->bytes_left >= c) {
2536                 inodes->bytes_left -= c;
2537                 inodes->val[inodes->elem_cnt] = inum;
2538                 inodes->val[inodes->elem_cnt + 1] = offset;
2539                 inodes->val[inodes->elem_cnt + 2] = root;
2540                 inodes->elem_cnt += 3;
2541         } else {
2542                 inodes->bytes_missing += c - inodes->bytes_left;
2543                 inodes->bytes_left = 0;
2544                 inodes->elem_missed += 3;
2545         }
2546
2547         return 0;
2548 }
2549
2550 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2551                                 struct btrfs_path *path,
2552                                 void *ctx, bool ignore_offset)
2553 {
2554         struct btrfs_backref_walk_ctx walk_ctx = { 0 };
2555         int ret;
2556         u64 flags = 0;
2557         struct btrfs_key found_key;
2558         int search_commit_root = path->search_commit_root;
2559
2560         ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2561         btrfs_release_path(path);
2562         if (ret < 0)
2563                 return ret;
2564         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2565                 return -EINVAL;
2566
2567         walk_ctx.bytenr = found_key.objectid;
2568         if (ignore_offset)
2569                 walk_ctx.ignore_extent_item_pos = true;
2570         else
2571                 walk_ctx.extent_item_pos = logical - found_key.objectid;
2572         walk_ctx.fs_info = fs_info;
2573
2574         return iterate_extent_inodes(&walk_ctx, search_commit_root,
2575                                      build_ino_list, ctx);
2576 }
2577
2578 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2579                          struct extent_buffer *eb, struct inode_fs_paths *ipath);
2580
2581 static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath)
2582 {
2583         int ret = 0;
2584         int slot;
2585         u32 cur;
2586         u32 len;
2587         u32 name_len;
2588         u64 parent = 0;
2589         int found = 0;
2590         struct btrfs_root *fs_root = ipath->fs_root;
2591         struct btrfs_path *path = ipath->btrfs_path;
2592         struct extent_buffer *eb;
2593         struct btrfs_inode_ref *iref;
2594         struct btrfs_key found_key;
2595
2596         while (!ret) {
2597                 ret = btrfs_find_item(fs_root, path, inum,
2598                                 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2599                                 &found_key);
2600
2601                 if (ret < 0)
2602                         break;
2603                 if (ret) {
2604                         ret = found ? 0 : -ENOENT;
2605                         break;
2606                 }
2607                 ++found;
2608
2609                 parent = found_key.offset;
2610                 slot = path->slots[0];
2611                 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2612                 if (!eb) {
2613                         ret = -ENOMEM;
2614                         break;
2615                 }
2616                 btrfs_release_path(path);
2617
2618                 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2619
2620                 for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) {
2621                         name_len = btrfs_inode_ref_name_len(eb, iref);
2622                         /* path must be released before calling iterate()! */
2623                         btrfs_debug(fs_root->fs_info,
2624                                 "following ref at offset %u for inode %llu in tree %llu",
2625                                 cur, found_key.objectid,
2626                                 btrfs_root_id(fs_root));
2627                         ret = inode_to_path(parent, name_len,
2628                                       (unsigned long)(iref + 1), eb, ipath);
2629                         if (ret)
2630                                 break;
2631                         len = sizeof(*iref) + name_len;
2632                         iref = (struct btrfs_inode_ref *)((char *)iref + len);
2633                 }
2634                 free_extent_buffer(eb);
2635         }
2636
2637         btrfs_release_path(path);
2638
2639         return ret;
2640 }
2641
2642 static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath)
2643 {
2644         int ret;
2645         int slot;
2646         u64 offset = 0;
2647         u64 parent;
2648         int found = 0;
2649         struct btrfs_root *fs_root = ipath->fs_root;
2650         struct btrfs_path *path = ipath->btrfs_path;
2651         struct extent_buffer *eb;
2652         struct btrfs_inode_extref *extref;
2653         u32 item_size;
2654         u32 cur_offset;
2655         unsigned long ptr;
2656
2657         while (1) {
2658                 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2659                                             &offset);
2660                 if (ret < 0)
2661                         break;
2662                 if (ret) {
2663                         ret = found ? 0 : -ENOENT;
2664                         break;
2665                 }
2666                 ++found;
2667
2668                 slot = path->slots[0];
2669                 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2670                 if (!eb) {
2671                         ret = -ENOMEM;
2672                         break;
2673                 }
2674                 btrfs_release_path(path);
2675
2676                 item_size = btrfs_item_size(eb, slot);
2677                 ptr = btrfs_item_ptr_offset(eb, slot);
2678                 cur_offset = 0;
2679
2680                 while (cur_offset < item_size) {
2681                         u32 name_len;
2682
2683                         extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2684                         parent = btrfs_inode_extref_parent(eb, extref);
2685                         name_len = btrfs_inode_extref_name_len(eb, extref);
2686                         ret = inode_to_path(parent, name_len,
2687                                       (unsigned long)&extref->name, eb, ipath);
2688                         if (ret)
2689                                 break;
2690
2691                         cur_offset += btrfs_inode_extref_name_len(eb, extref);
2692                         cur_offset += sizeof(*extref);
2693                 }
2694                 free_extent_buffer(eb);
2695
2696                 offset++;
2697         }
2698
2699         btrfs_release_path(path);
2700
2701         return ret;
2702 }
2703
2704 /*
2705  * returns 0 if the path could be dumped (probably truncated)
2706  * returns <0 in case of an error
2707  */
2708 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2709                          struct extent_buffer *eb, struct inode_fs_paths *ipath)
2710 {
2711         char *fspath;
2712         char *fspath_min;
2713         int i = ipath->fspath->elem_cnt;
2714         const int s_ptr = sizeof(char *);
2715         u32 bytes_left;
2716
2717         bytes_left = ipath->fspath->bytes_left > s_ptr ?
2718                                         ipath->fspath->bytes_left - s_ptr : 0;
2719
2720         fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2721         fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2722                                    name_off, eb, inum, fspath_min, bytes_left);
2723         if (IS_ERR(fspath))
2724                 return PTR_ERR(fspath);
2725
2726         if (fspath > fspath_min) {
2727                 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2728                 ++ipath->fspath->elem_cnt;
2729                 ipath->fspath->bytes_left = fspath - fspath_min;
2730         } else {
2731                 ++ipath->fspath->elem_missed;
2732                 ipath->fspath->bytes_missing += fspath_min - fspath;
2733                 ipath->fspath->bytes_left = 0;
2734         }
2735
2736         return 0;
2737 }
2738
2739 /*
2740  * this dumps all file system paths to the inode into the ipath struct, provided
2741  * is has been created large enough. each path is zero-terminated and accessed
2742  * from ipath->fspath->val[i].
2743  * when it returns, there are ipath->fspath->elem_cnt number of paths available
2744  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2745  * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2746  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2747  * have been needed to return all paths.
2748  */
2749 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2750 {
2751         int ret;
2752         int found_refs = 0;
2753
2754         ret = iterate_inode_refs(inum, ipath);
2755         if (!ret)
2756                 ++found_refs;
2757         else if (ret != -ENOENT)
2758                 return ret;
2759
2760         ret = iterate_inode_extrefs(inum, ipath);
2761         if (ret == -ENOENT && found_refs)
2762                 return 0;
2763
2764         return ret;
2765 }
2766
2767 struct btrfs_data_container *init_data_container(u32 total_bytes)
2768 {
2769         struct btrfs_data_container *data;
2770         size_t alloc_bytes;
2771
2772         alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2773         data = kvzalloc(alloc_bytes, GFP_KERNEL);
2774         if (!data)
2775                 return ERR_PTR(-ENOMEM);
2776
2777         if (total_bytes >= sizeof(*data))
2778                 data->bytes_left = total_bytes - sizeof(*data);
2779         else
2780                 data->bytes_missing = sizeof(*data) - total_bytes;
2781
2782         return data;
2783 }
2784
2785 /*
2786  * allocates space to return multiple file system paths for an inode.
2787  * total_bytes to allocate are passed, note that space usable for actual path
2788  * information will be total_bytes - sizeof(struct inode_fs_paths).
2789  * the returned pointer must be freed with free_ipath() in the end.
2790  */
2791 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2792                                         struct btrfs_path *path)
2793 {
2794         struct inode_fs_paths *ifp;
2795         struct btrfs_data_container *fspath;
2796
2797         fspath = init_data_container(total_bytes);
2798         if (IS_ERR(fspath))
2799                 return ERR_CAST(fspath);
2800
2801         ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2802         if (!ifp) {
2803                 kvfree(fspath);
2804                 return ERR_PTR(-ENOMEM);
2805         }
2806
2807         ifp->btrfs_path = path;
2808         ifp->fspath = fspath;
2809         ifp->fs_root = fs_root;
2810
2811         return ifp;
2812 }
2813
2814 void free_ipath(struct inode_fs_paths *ipath)
2815 {
2816         if (!ipath)
2817                 return;
2818         kvfree(ipath->fspath);
2819         kfree(ipath);
2820 }
2821
2822 struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info)
2823 {
2824         struct btrfs_backref_iter *ret;
2825
2826         ret = kzalloc(sizeof(*ret), GFP_NOFS);
2827         if (!ret)
2828                 return NULL;
2829
2830         ret->path = btrfs_alloc_path();
2831         if (!ret->path) {
2832                 kfree(ret);
2833                 return NULL;
2834         }
2835
2836         /* Current backref iterator only supports iteration in commit root */
2837         ret->path->search_commit_root = 1;
2838         ret->path->skip_locking = 1;
2839         ret->fs_info = fs_info;
2840
2841         return ret;
2842 }
2843
2844 static void btrfs_backref_iter_release(struct btrfs_backref_iter *iter)
2845 {
2846         iter->bytenr = 0;
2847         iter->item_ptr = 0;
2848         iter->cur_ptr = 0;
2849         iter->end_ptr = 0;
2850         btrfs_release_path(iter->path);
2851         memset(&iter->cur_key, 0, sizeof(iter->cur_key));
2852 }
2853
2854 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2855 {
2856         struct btrfs_fs_info *fs_info = iter->fs_info;
2857         struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2858         struct btrfs_path *path = iter->path;
2859         struct btrfs_extent_item *ei;
2860         struct btrfs_key key;
2861         int ret;
2862
2863         key.objectid = bytenr;
2864         key.type = BTRFS_METADATA_ITEM_KEY;
2865         key.offset = (u64)-1;
2866         iter->bytenr = bytenr;
2867
2868         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2869         if (ret < 0)
2870                 return ret;
2871         if (ret == 0) {
2872                 /*
2873                  * Key with offset -1 found, there would have to exist an extent
2874                  * item with such offset, but this is out of the valid range.
2875                  */
2876                 ret = -EUCLEAN;
2877                 goto release;
2878         }
2879         if (path->slots[0] == 0) {
2880                 DEBUG_WARN();
2881                 ret = -EUCLEAN;
2882                 goto release;
2883         }
2884         path->slots[0]--;
2885
2886         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2887         if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2888              key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2889                 ret = -ENOENT;
2890                 goto release;
2891         }
2892         memcpy(&iter->cur_key, &key, sizeof(key));
2893         iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2894                                                     path->slots[0]);
2895         iter->end_ptr = (u32)(iter->item_ptr +
2896                         btrfs_item_size(path->nodes[0], path->slots[0]));
2897         ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2898                             struct btrfs_extent_item);
2899
2900         /*
2901          * Only support iteration on tree backref yet.
2902          *
2903          * This is an extra precaution for non skinny-metadata, where
2904          * EXTENT_ITEM is also used for tree blocks, that we can only use
2905          * extent flags to determine if it's a tree block.
2906          */
2907         if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2908                 ret = -ENOTSUPP;
2909                 goto release;
2910         }
2911         iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2912
2913         /* If there is no inline backref, go search for keyed backref */
2914         if (iter->cur_ptr >= iter->end_ptr) {
2915                 ret = btrfs_next_item(extent_root, path);
2916
2917                 /* No inline nor keyed ref */
2918                 if (ret > 0) {
2919                         ret = -ENOENT;
2920                         goto release;
2921                 }
2922                 if (ret < 0)
2923                         goto release;
2924
2925                 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2926                                 path->slots[0]);
2927                 if (iter->cur_key.objectid != bytenr ||
2928                     (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2929                      iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2930                         ret = -ENOENT;
2931                         goto release;
2932                 }
2933                 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2934                                                            path->slots[0]);
2935                 iter->item_ptr = iter->cur_ptr;
2936                 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size(
2937                                       path->nodes[0], path->slots[0]));
2938         }
2939
2940         return 0;
2941 release:
2942         btrfs_backref_iter_release(iter);
2943         return ret;
2944 }
2945
2946 static bool btrfs_backref_iter_is_inline_ref(struct btrfs_backref_iter *iter)
2947 {
2948         if (iter->cur_key.type == BTRFS_EXTENT_ITEM_KEY ||
2949             iter->cur_key.type == BTRFS_METADATA_ITEM_KEY)
2950                 return true;
2951         return false;
2952 }
2953
2954 /*
2955  * Go to the next backref item of current bytenr, can be either inlined or
2956  * keyed.
2957  *
2958  * Caller needs to check whether it's inline ref or not by iter->cur_key.
2959  *
2960  * Return 0 if we get next backref without problem.
2961  * Return >0 if there is no extra backref for this bytenr.
2962  * Return <0 if there is something wrong happened.
2963  */
2964 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2965 {
2966         struct extent_buffer *eb = iter->path->nodes[0];
2967         struct btrfs_root *extent_root;
2968         struct btrfs_path *path = iter->path;
2969         struct btrfs_extent_inline_ref *iref;
2970         int ret;
2971         u32 size;
2972
2973         if (btrfs_backref_iter_is_inline_ref(iter)) {
2974                 /* We're still inside the inline refs */
2975                 ASSERT(iter->cur_ptr < iter->end_ptr);
2976
2977                 if (btrfs_backref_has_tree_block_info(iter)) {
2978                         /* First tree block info */
2979                         size = sizeof(struct btrfs_tree_block_info);
2980                 } else {
2981                         /* Use inline ref type to determine the size */
2982                         int type;
2983
2984                         iref = (struct btrfs_extent_inline_ref *)
2985                                 ((unsigned long)iter->cur_ptr);
2986                         type = btrfs_extent_inline_ref_type(eb, iref);
2987
2988                         size = btrfs_extent_inline_ref_size(type);
2989                 }
2990                 iter->cur_ptr += size;
2991                 if (iter->cur_ptr < iter->end_ptr)
2992                         return 0;
2993
2994                 /* All inline items iterated, fall through */
2995         }
2996
2997         /* We're at keyed items, there is no inline item, go to the next one */
2998         extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr);
2999         ret = btrfs_next_item(extent_root, iter->path);
3000         if (ret)
3001                 return ret;
3002
3003         btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
3004         if (iter->cur_key.objectid != iter->bytenr ||
3005             (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
3006              iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
3007                 return 1;
3008         iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
3009                                         path->slots[0]);
3010         iter->cur_ptr = iter->item_ptr;
3011         iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0],
3012                                                 path->slots[0]);
3013         return 0;
3014 }
3015
3016 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
3017                               struct btrfs_backref_cache *cache, bool is_reloc)
3018 {
3019         int i;
3020
3021         cache->rb_root = RB_ROOT;
3022         for (i = 0; i < BTRFS_MAX_LEVEL; i++)
3023                 INIT_LIST_HEAD(&cache->pending[i]);
3024         INIT_LIST_HEAD(&cache->pending_edge);
3025         INIT_LIST_HEAD(&cache->useless_node);
3026         cache->fs_info = fs_info;
3027         cache->is_reloc = is_reloc;
3028 }
3029
3030 struct btrfs_backref_node *btrfs_backref_alloc_node(
3031                 struct btrfs_backref_cache *cache, u64 bytenr, int level)
3032 {
3033         struct btrfs_backref_node *node;
3034
3035         ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
3036         node = kzalloc(sizeof(*node), GFP_NOFS);
3037         if (!node)
3038                 return node;
3039
3040         INIT_LIST_HEAD(&node->list);
3041         INIT_LIST_HEAD(&node->upper);
3042         INIT_LIST_HEAD(&node->lower);
3043         RB_CLEAR_NODE(&node->rb_node);
3044         cache->nr_nodes++;
3045         node->level = level;
3046         node->bytenr = bytenr;
3047
3048         return node;
3049 }
3050
3051 void btrfs_backref_free_node(struct btrfs_backref_cache *cache,
3052                              struct btrfs_backref_node *node)
3053 {
3054         if (node) {
3055                 ASSERT(list_empty(&node->list));
3056                 ASSERT(list_empty(&node->lower));
3057                 ASSERT(node->eb == NULL);
3058                 cache->nr_nodes--;
3059                 btrfs_put_root(node->root);
3060                 kfree(node);
3061         }
3062 }
3063
3064 struct btrfs_backref_edge *btrfs_backref_alloc_edge(
3065                 struct btrfs_backref_cache *cache)
3066 {
3067         struct btrfs_backref_edge *edge;
3068
3069         edge = kzalloc(sizeof(*edge), GFP_NOFS);
3070         if (edge)
3071                 cache->nr_edges++;
3072         return edge;
3073 }
3074
3075 void btrfs_backref_free_edge(struct btrfs_backref_cache *cache,
3076                              struct btrfs_backref_edge *edge)
3077 {
3078         if (edge) {
3079                 cache->nr_edges--;
3080                 kfree(edge);
3081         }
3082 }
3083
3084 void btrfs_backref_unlock_node_buffer(struct btrfs_backref_node *node)
3085 {
3086         if (node->locked) {
3087                 btrfs_tree_unlock(node->eb);
3088                 node->locked = 0;
3089         }
3090 }
3091
3092 void btrfs_backref_drop_node_buffer(struct btrfs_backref_node *node)
3093 {
3094         if (node->eb) {
3095                 btrfs_backref_unlock_node_buffer(node);
3096                 free_extent_buffer(node->eb);
3097                 node->eb = NULL;
3098         }
3099 }
3100
3101 /*
3102  * Drop the backref node from cache without cleaning up its children
3103  * edges.
3104  *
3105  * This can only be called on node without parent edges.
3106  * The children edges are still kept as is.
3107  */
3108 void btrfs_backref_drop_node(struct btrfs_backref_cache *tree,
3109                              struct btrfs_backref_node *node)
3110 {
3111         ASSERT(list_empty(&node->upper));
3112
3113         btrfs_backref_drop_node_buffer(node);
3114         list_del_init(&node->list);
3115         list_del_init(&node->lower);
3116         if (!RB_EMPTY_NODE(&node->rb_node))
3117                 rb_erase(&node->rb_node, &tree->rb_root);
3118         btrfs_backref_free_node(tree, node);
3119 }
3120
3121 /*
3122  * Drop the backref node from cache, also cleaning up all its
3123  * upper edges and any uncached nodes in the path.
3124  *
3125  * This cleanup happens bottom up, thus the node should either
3126  * be the lowest node in the cache or a detached node.
3127  */
3128 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
3129                                 struct btrfs_backref_node *node)
3130 {
3131         struct btrfs_backref_edge *edge;
3132
3133         if (!node)
3134                 return;
3135
3136         while (!list_empty(&node->upper)) {
3137                 edge = list_first_entry(&node->upper, struct btrfs_backref_edge,
3138                                         list[LOWER]);
3139                 list_del(&edge->list[LOWER]);
3140                 list_del(&edge->list[UPPER]);
3141                 btrfs_backref_free_edge(cache, edge);
3142         }
3143
3144         btrfs_backref_drop_node(cache, node);
3145 }
3146
3147 /*
3148  * Release all nodes/edges from current cache
3149  */
3150 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
3151 {
3152         struct btrfs_backref_node *node;
3153
3154         while ((node = rb_entry_safe(rb_first(&cache->rb_root),
3155                                      struct btrfs_backref_node, rb_node)))
3156                 btrfs_backref_cleanup_node(cache, node);
3157
3158         ASSERT(list_empty(&cache->pending_edge));
3159         ASSERT(list_empty(&cache->useless_node));
3160         ASSERT(!cache->nr_nodes);
3161         ASSERT(!cache->nr_edges);
3162 }
3163
3164 void btrfs_backref_link_edge(struct btrfs_backref_edge *edge,
3165                              struct btrfs_backref_node *lower,
3166                              struct btrfs_backref_node *upper,
3167                              int link_which)
3168 {
3169         ASSERT(upper && lower && upper->level == lower->level + 1);
3170         edge->node[LOWER] = lower;
3171         edge->node[UPPER] = upper;
3172         if (link_which & LINK_LOWER)
3173                 list_add_tail(&edge->list[LOWER], &lower->upper);
3174         if (link_which & LINK_UPPER)
3175                 list_add_tail(&edge->list[UPPER], &upper->lower);
3176 }
3177 /*
3178  * Handle direct tree backref
3179  *
3180  * Direct tree backref means, the backref item shows its parent bytenr
3181  * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
3182  *
3183  * @ref_key:    The converted backref key.
3184  *              For keyed backref, it's the item key.
3185  *              For inlined backref, objectid is the bytenr,
3186  *              type is btrfs_inline_ref_type, offset is
3187  *              btrfs_inline_ref_offset.
3188  */
3189 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
3190                                       struct btrfs_key *ref_key,
3191                                       struct btrfs_backref_node *cur)
3192 {
3193         struct btrfs_backref_edge *edge;
3194         struct btrfs_backref_node *upper;
3195         struct rb_node *rb_node;
3196
3197         ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
3198
3199         /* Only reloc root uses backref pointing to itself */
3200         if (ref_key->objectid == ref_key->offset) {
3201                 struct btrfs_root *root;
3202
3203                 cur->is_reloc_root = 1;
3204                 /* Only reloc backref cache cares about a specific root */
3205                 if (cache->is_reloc) {
3206                         root = find_reloc_root(cache->fs_info, cur->bytenr);
3207                         if (!root)
3208                                 return -ENOENT;
3209                         cur->root = root;
3210                 } else {
3211                         /*
3212                          * For generic purpose backref cache, reloc root node
3213                          * is useless.
3214                          */
3215                         list_add(&cur->list, &cache->useless_node);
3216                 }
3217                 return 0;
3218         }
3219
3220         edge = btrfs_backref_alloc_edge(cache);
3221         if (!edge)
3222                 return -ENOMEM;
3223
3224         rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
3225         if (!rb_node) {
3226                 /* Parent node not yet cached */
3227                 upper = btrfs_backref_alloc_node(cache, ref_key->offset,
3228                                            cur->level + 1);
3229                 if (!upper) {
3230                         btrfs_backref_free_edge(cache, edge);
3231                         return -ENOMEM;
3232                 }
3233
3234                 /*
3235                  *  Backrefs for the upper level block isn't cached, add the
3236                  *  block to pending list
3237                  */
3238                 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3239         } else {
3240                 /* Parent node already cached */
3241                 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
3242                 ASSERT(upper->checked);
3243                 INIT_LIST_HEAD(&edge->list[UPPER]);
3244         }
3245         btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
3246         return 0;
3247 }
3248
3249 /*
3250  * Handle indirect tree backref
3251  *
3252  * Indirect tree backref means, we only know which tree the node belongs to.
3253  * We still need to do a tree search to find out the parents. This is for
3254  * TREE_BLOCK_REF backref (keyed or inlined).
3255  *
3256  * @trans:      Transaction handle.
3257  * @ref_key:    The same as @ref_key in  handle_direct_tree_backref()
3258  * @tree_key:   The first key of this tree block.
3259  * @path:       A clean (released) path, to avoid allocating path every time
3260  *              the function get called.
3261  */
3262 static int handle_indirect_tree_backref(struct btrfs_trans_handle *trans,
3263                                         struct btrfs_backref_cache *cache,
3264                                         struct btrfs_path *path,
3265                                         struct btrfs_key *ref_key,
3266                                         struct btrfs_key *tree_key,
3267                                         struct btrfs_backref_node *cur)
3268 {
3269         struct btrfs_fs_info *fs_info = cache->fs_info;
3270         struct btrfs_backref_node *upper;
3271         struct btrfs_backref_node *lower;
3272         struct btrfs_backref_edge *edge;
3273         struct extent_buffer *eb;
3274         struct btrfs_root *root;
3275         struct rb_node *rb_node;
3276         int level;
3277         bool need_check = true;
3278         int ret;
3279
3280         root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
3281         if (IS_ERR(root))
3282                 return PTR_ERR(root);
3283
3284         /* We shouldn't be using backref cache for non-shareable roots. */
3285         if (unlikely(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))) {
3286                 btrfs_put_root(root);
3287                 return -EUCLEAN;
3288         }
3289
3290         if (btrfs_root_level(&root->root_item) == cur->level) {
3291                 /* Tree root */
3292                 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
3293                 /*
3294                  * For reloc backref cache, we may ignore reloc root.  But for
3295                  * general purpose backref cache, we can't rely on
3296                  * btrfs_should_ignore_reloc_root() as it may conflict with
3297                  * current running relocation and lead to missing root.
3298                  *
3299                  * For general purpose backref cache, reloc root detection is
3300                  * completely relying on direct backref (key->offset is parent
3301                  * bytenr), thus only do such check for reloc cache.
3302                  */
3303                 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
3304                         btrfs_put_root(root);
3305                         list_add(&cur->list, &cache->useless_node);
3306                 } else {
3307                         cur->root = root;
3308                 }
3309                 return 0;
3310         }
3311
3312         level = cur->level + 1;
3313
3314         /* Search the tree to find parent blocks referring to the block */
3315         path->search_commit_root = 1;
3316         path->skip_locking = 1;
3317         path->lowest_level = level;
3318         ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
3319         path->lowest_level = 0;
3320         if (ret < 0) {
3321                 btrfs_put_root(root);
3322                 return ret;
3323         }
3324         if (ret > 0 && path->slots[level] > 0)
3325                 path->slots[level]--;
3326
3327         eb = path->nodes[level];
3328         if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
3329                 btrfs_err(fs_info,
3330 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
3331                           cur->bytenr, level - 1, btrfs_root_id(root),
3332                           tree_key->objectid, tree_key->type, tree_key->offset);
3333                 btrfs_put_root(root);
3334                 ret = -ENOENT;
3335                 goto out;
3336         }
3337         lower = cur;
3338
3339         /* Add all nodes and edges in the path */
3340         for (; level < BTRFS_MAX_LEVEL; level++) {
3341                 if (!path->nodes[level]) {
3342                         ASSERT(btrfs_root_bytenr(&root->root_item) ==
3343                                lower->bytenr);
3344                         /* Same as previous should_ignore_reloc_root() call */
3345                         if (btrfs_should_ignore_reloc_root(root) &&
3346                             cache->is_reloc) {
3347                                 btrfs_put_root(root);
3348                                 list_add(&lower->list, &cache->useless_node);
3349                         } else {
3350                                 lower->root = root;
3351                         }
3352                         break;
3353                 }
3354
3355                 edge = btrfs_backref_alloc_edge(cache);
3356                 if (!edge) {
3357                         btrfs_put_root(root);
3358                         ret = -ENOMEM;
3359                         goto out;
3360                 }
3361
3362                 eb = path->nodes[level];
3363                 rb_node = rb_simple_search(&cache->rb_root, eb->start);
3364                 if (!rb_node) {
3365                         upper = btrfs_backref_alloc_node(cache, eb->start,
3366                                                          lower->level + 1);
3367                         if (!upper) {
3368                                 btrfs_put_root(root);
3369                                 btrfs_backref_free_edge(cache, edge);
3370                                 ret = -ENOMEM;
3371                                 goto out;
3372                         }
3373                         upper->owner = btrfs_header_owner(eb);
3374
3375                         /* We shouldn't be using backref cache for non shareable roots. */
3376                         if (unlikely(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))) {
3377                                 btrfs_put_root(root);
3378                                 btrfs_backref_free_edge(cache, edge);
3379                                 btrfs_backref_free_node(cache, upper);
3380                                 ret = -EUCLEAN;
3381                                 goto out;
3382                         }
3383
3384                         /*
3385                          * If we know the block isn't shared we can avoid
3386                          * checking its backrefs.
3387                          */
3388                         if (btrfs_block_can_be_shared(trans, root, eb))
3389                                 upper->checked = 0;
3390                         else
3391                                 upper->checked = 1;
3392
3393                         /*
3394                          * Add the block to pending list if we need to check its
3395                          * backrefs, we only do this once while walking up a
3396                          * tree as we will catch anything else later on.
3397                          */
3398                         if (!upper->checked && need_check) {
3399                                 need_check = false;
3400                                 list_add_tail(&edge->list[UPPER],
3401                                               &cache->pending_edge);
3402                         } else {
3403                                 if (upper->checked)
3404                                         need_check = true;
3405                                 INIT_LIST_HEAD(&edge->list[UPPER]);
3406                         }
3407                 } else {
3408                         upper = rb_entry(rb_node, struct btrfs_backref_node,
3409                                          rb_node);
3410                         ASSERT(upper->checked);
3411                         INIT_LIST_HEAD(&edge->list[UPPER]);
3412                         if (!upper->owner)
3413                                 upper->owner = btrfs_header_owner(eb);
3414                 }
3415                 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
3416
3417                 if (rb_node) {
3418                         btrfs_put_root(root);
3419                         break;
3420                 }
3421                 lower = upper;
3422                 upper = NULL;
3423         }
3424 out:
3425         btrfs_release_path(path);
3426         return ret;
3427 }
3428
3429 /*
3430  * Add backref node @cur into @cache.
3431  *
3432  * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
3433  *       links aren't yet bi-directional. Needs to finish such links.
3434  *       Use btrfs_backref_finish_upper_links() to finish such linkage.
3435  *
3436  * @trans:      Transaction handle.
3437  * @path:       Released path for indirect tree backref lookup
3438  * @iter:       Released backref iter for extent tree search
3439  * @node_key:   The first key of the tree block
3440  */
3441 int btrfs_backref_add_tree_node(struct btrfs_trans_handle *trans,
3442                                 struct btrfs_backref_cache *cache,
3443                                 struct btrfs_path *path,
3444                                 struct btrfs_backref_iter *iter,
3445                                 struct btrfs_key *node_key,
3446                                 struct btrfs_backref_node *cur)
3447 {
3448         struct btrfs_backref_edge *edge;
3449         struct btrfs_backref_node *exist;
3450         int ret;
3451
3452         ret = btrfs_backref_iter_start(iter, cur->bytenr);
3453         if (ret < 0)
3454                 return ret;
3455         /*
3456          * We skip the first btrfs_tree_block_info, as we don't use the key
3457          * stored in it, but fetch it from the tree block
3458          */
3459         if (btrfs_backref_has_tree_block_info(iter)) {
3460                 ret = btrfs_backref_iter_next(iter);
3461                 if (ret < 0)
3462                         goto out;
3463                 /* No extra backref? This means the tree block is corrupted */
3464                 if (ret > 0) {
3465                         ret = -EUCLEAN;
3466                         goto out;
3467                 }
3468         }
3469         WARN_ON(cur->checked);
3470         if (!list_empty(&cur->upper)) {
3471                 /*
3472                  * The backref was added previously when processing backref of
3473                  * type BTRFS_TREE_BLOCK_REF_KEY
3474                  */
3475                 ASSERT(list_is_singular(&cur->upper));
3476                 edge = list_first_entry(&cur->upper, struct btrfs_backref_edge,
3477                                         list[LOWER]);
3478                 ASSERT(list_empty(&edge->list[UPPER]));
3479                 exist = edge->node[UPPER];
3480                 /*
3481                  * Add the upper level block to pending list if we need check
3482                  * its backrefs
3483                  */
3484                 if (!exist->checked)
3485                         list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3486         } else {
3487                 exist = NULL;
3488         }
3489
3490         for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
3491                 struct extent_buffer *eb;
3492                 struct btrfs_key key;
3493                 int type;
3494
3495                 cond_resched();
3496                 eb = iter->path->nodes[0];
3497
3498                 key.objectid = iter->bytenr;
3499                 if (btrfs_backref_iter_is_inline_ref(iter)) {
3500                         struct btrfs_extent_inline_ref *iref;
3501
3502                         /* Update key for inline backref */
3503                         iref = (struct btrfs_extent_inline_ref *)
3504                                 ((unsigned long)iter->cur_ptr);
3505                         type = btrfs_get_extent_inline_ref_type(eb, iref,
3506                                                         BTRFS_REF_TYPE_BLOCK);
3507                         if (type == BTRFS_REF_TYPE_INVALID) {
3508                                 ret = -EUCLEAN;
3509                                 goto out;
3510                         }
3511                         key.type = type;
3512                         key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3513                 } else {
3514                         key.type = iter->cur_key.type;
3515                         key.offset = iter->cur_key.offset;
3516                 }
3517
3518                 /*
3519                  * Parent node found and matches current inline ref, no need to
3520                  * rebuild this node for this inline ref
3521                  */
3522                 if (exist &&
3523                     ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
3524                       exist->owner == key.offset) ||
3525                      (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
3526                       exist->bytenr == key.offset))) {
3527                         exist = NULL;
3528                         continue;
3529                 }
3530
3531                 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */
3532                 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
3533                         ret = handle_direct_tree_backref(cache, &key, cur);
3534                         if (ret < 0)
3535                                 goto out;
3536                 } else if (key.type == BTRFS_TREE_BLOCK_REF_KEY) {
3537                         /*
3538                          * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref
3539                          * offset means the root objectid. We need to search
3540                          * the tree to get its parent bytenr.
3541                          */
3542                         ret = handle_indirect_tree_backref(trans, cache, path,
3543                                                            &key, node_key, cur);
3544                         if (ret < 0)
3545                                 goto out;
3546                 }
3547                 /*
3548                  * Unrecognized tree backref items (if it can pass tree-checker)
3549                  * would be ignored.
3550                  */
3551         }
3552         ret = 0;
3553         cur->checked = 1;
3554         WARN_ON(exist);
3555 out:
3556         btrfs_backref_iter_release(iter);
3557         return ret;
3558 }
3559
3560 /*
3561  * Finish the upwards linkage created by btrfs_backref_add_tree_node()
3562  */
3563 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
3564                                      struct btrfs_backref_node *start)
3565 {
3566         struct list_head *useless_node = &cache->useless_node;
3567         struct btrfs_backref_edge *edge;
3568         struct rb_node *rb_node;
3569         LIST_HEAD(pending_edge);
3570
3571         ASSERT(start->checked);
3572
3573         rb_node = rb_simple_insert(&cache->rb_root, start->bytenr, &start->rb_node);
3574         if (rb_node)
3575                 btrfs_backref_panic(cache->fs_info, start->bytenr, -EEXIST);
3576
3577         /*
3578          * Use breadth first search to iterate all related edges.
3579          *
3580          * The starting points are all the edges of this node
3581          */
3582         list_for_each_entry(edge, &start->upper, list[LOWER])
3583                 list_add_tail(&edge->list[UPPER], &pending_edge);
3584
3585         while (!list_empty(&pending_edge)) {
3586                 struct btrfs_backref_node *upper;
3587                 struct btrfs_backref_node *lower;
3588
3589                 edge = list_first_entry(&pending_edge,
3590                                 struct btrfs_backref_edge, list[UPPER]);
3591                 list_del_init(&edge->list[UPPER]);
3592                 upper = edge->node[UPPER];
3593                 lower = edge->node[LOWER];
3594
3595                 /* Parent is detached, no need to keep any edges */
3596                 if (upper->detached) {
3597                         list_del(&edge->list[LOWER]);
3598                         btrfs_backref_free_edge(cache, edge);
3599
3600                         /* Lower node is orphan, queue for cleanup */
3601                         if (list_empty(&lower->upper))
3602                                 list_add(&lower->list, useless_node);
3603                         continue;
3604                 }
3605
3606                 /*
3607                  * All new nodes added in current build_backref_tree() haven't
3608                  * been linked to the cache rb tree.
3609                  * So if we have upper->rb_node populated, this means a cache
3610                  * hit. We only need to link the edge, as @upper and all its
3611                  * parents have already been linked.
3612                  */
3613                 if (!RB_EMPTY_NODE(&upper->rb_node)) {
3614                         list_add_tail(&edge->list[UPPER], &upper->lower);
3615                         continue;
3616                 }
3617
3618                 /* Sanity check, we shouldn't have any unchecked nodes */
3619                 if (!upper->checked) {
3620                         DEBUG_WARN("we should not have any unchecked nodes");
3621                         return -EUCLEAN;
3622                 }
3623
3624                 rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3625                                            &upper->rb_node);
3626                 if (unlikely(rb_node)) {
3627                         btrfs_backref_panic(cache->fs_info, upper->bytenr, -EEXIST);
3628                         return -EUCLEAN;
3629                 }
3630
3631                 list_add_tail(&edge->list[UPPER], &upper->lower);
3632
3633                 /*
3634                  * Also queue all the parent edges of this uncached node
3635                  * to finish the upper linkage
3636                  */
3637                 list_for_each_entry(edge, &upper->upper, list[LOWER])
3638                         list_add_tail(&edge->list[UPPER], &pending_edge);
3639         }
3640         return 0;
3641 }
3642
3643 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3644                                  struct btrfs_backref_node *node)
3645 {
3646         struct btrfs_backref_node *lower;
3647         struct btrfs_backref_node *upper;
3648         struct btrfs_backref_edge *edge;
3649
3650         while (!list_empty(&cache->useless_node)) {
3651                 lower = list_first_entry(&cache->useless_node,
3652                                    struct btrfs_backref_node, list);
3653                 list_del_init(&lower->list);
3654         }
3655         while (!list_empty(&cache->pending_edge)) {
3656                 edge = list_first_entry(&cache->pending_edge,
3657                                 struct btrfs_backref_edge, list[UPPER]);
3658                 list_del(&edge->list[UPPER]);
3659                 list_del(&edge->list[LOWER]);
3660                 lower = edge->node[LOWER];
3661                 upper = edge->node[UPPER];
3662                 btrfs_backref_free_edge(cache, edge);
3663
3664                 /*
3665                  * Lower is no longer linked to any upper backref nodes and
3666                  * isn't in the cache, we can free it ourselves.
3667                  */
3668                 if (list_empty(&lower->upper) &&
3669                     RB_EMPTY_NODE(&lower->rb_node))
3670                         list_add(&lower->list, &cache->useless_node);
3671
3672                 if (!RB_EMPTY_NODE(&upper->rb_node))
3673                         continue;
3674
3675                 /* Add this guy's upper edges to the list to process */
3676                 list_for_each_entry(edge, &upper->upper, list[LOWER])
3677                         list_add_tail(&edge->list[UPPER],
3678                                       &cache->pending_edge);
3679                 if (list_empty(&upper->upper))
3680                         list_add(&upper->list, &cache->useless_node);
3681         }
3682
3683         while (!list_empty(&cache->useless_node)) {
3684                 lower = list_first_entry(&cache->useless_node,
3685                                    struct btrfs_backref_node, list);
3686                 list_del_init(&lower->list);
3687                 if (lower == node)
3688                         node = NULL;
3689                 btrfs_backref_drop_node(cache, lower);
3690         }
3691
3692         btrfs_backref_cleanup_node(cache, node);
3693         ASSERT(list_empty(&cache->useless_node) &&
3694                list_empty(&cache->pending_edge));
3695 }