bcachefs: Erasure coding
[linux-block.git] / fs / bcachefs / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcachefs setup/teardown code, and some metadata io - read a superblock and
4  * figure out what to do with it.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9
10 #include "bcachefs.h"
11 #include "alloc_background.h"
12 #include "alloc_foreground.h"
13 #include "btree_cache.h"
14 #include "btree_gc.h"
15 #include "btree_update_interior.h"
16 #include "btree_io.h"
17 #include "chardev.h"
18 #include "checksum.h"
19 #include "clock.h"
20 #include "compress.h"
21 #include "debug.h"
22 #include "disk_groups.h"
23 #include "ec.h"
24 #include "error.h"
25 #include "fs.h"
26 #include "fs-io.h"
27 #include "fsck.h"
28 #include "inode.h"
29 #include "io.h"
30 #include "journal.h"
31 #include "journal_reclaim.h"
32 #include "move.h"
33 #include "migrate.h"
34 #include "movinggc.h"
35 #include "quota.h"
36 #include "rebalance.h"
37 #include "recovery.h"
38 #include "replicas.h"
39 #include "super.h"
40 #include "super-io.h"
41 #include "sysfs.h"
42 #include "trace.h"
43
44 #include <linux/backing-dev.h>
45 #include <linux/blkdev.h>
46 #include <linux/debugfs.h>
47 #include <linux/device.h>
48 #include <linux/idr.h>
49 #include <linux/kthread.h>
50 #include <linux/module.h>
51 #include <linux/percpu.h>
52 #include <linux/random.h>
53 #include <linux/sysfs.h>
54 #include <crypto/hash.h>
55
56 MODULE_LICENSE("GPL");
57 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
58
59 #define KTYPE(type)                                                     \
60 static const struct attribute_group type ## _group = {                  \
61         .attrs = type ## _files                                         \
62 };                                                                      \
63                                                                         \
64 static const struct attribute_group *type ## _groups[] = {              \
65         &type ## _group,                                                \
66         NULL                                                            \
67 };                                                                      \
68                                                                         \
69 static const struct kobj_type type ## _ktype = {                        \
70         .release        = type ## _release,                             \
71         .sysfs_ops      = &type ## _sysfs_ops,                          \
72         .default_groups = type ## _groups                               \
73 }
74
75 static void bch2_fs_release(struct kobject *);
76 static void bch2_dev_release(struct kobject *);
77
78 static void bch2_fs_internal_release(struct kobject *k)
79 {
80 }
81
82 static void bch2_fs_opts_dir_release(struct kobject *k)
83 {
84 }
85
86 static void bch2_fs_time_stats_release(struct kobject *k)
87 {
88 }
89
90 KTYPE(bch2_fs);
91 KTYPE(bch2_fs_internal);
92 KTYPE(bch2_fs_opts_dir);
93 KTYPE(bch2_fs_time_stats);
94 KTYPE(bch2_dev);
95
96 static struct kset *bcachefs_kset;
97 static LIST_HEAD(bch_fs_list);
98 static DEFINE_MUTEX(bch_fs_list_lock);
99
100 static DECLARE_WAIT_QUEUE_HEAD(bch_read_only_wait);
101
102 static void bch2_dev_free(struct bch_dev *);
103 static int bch2_dev_alloc(struct bch_fs *, unsigned);
104 static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *);
105 static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *);
106
107 struct bch_fs *bch2_dev_to_fs(dev_t dev)
108 {
109         struct bch_fs *c;
110         struct bch_dev *ca;
111         unsigned i;
112
113         mutex_lock(&bch_fs_list_lock);
114         rcu_read_lock();
115
116         list_for_each_entry(c, &bch_fs_list, list)
117                 for_each_member_device_rcu(ca, c, i, NULL)
118                         if (ca->disk_sb.bdev->bd_dev == dev) {
119                                 closure_get(&c->cl);
120                                 goto found;
121                         }
122         c = NULL;
123 found:
124         rcu_read_unlock();
125         mutex_unlock(&bch_fs_list_lock);
126
127         return c;
128 }
129
130 static struct bch_fs *__bch2_uuid_to_fs(__uuid_t uuid)
131 {
132         struct bch_fs *c;
133
134         lockdep_assert_held(&bch_fs_list_lock);
135
136         list_for_each_entry(c, &bch_fs_list, list)
137                 if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid)))
138                         return c;
139
140         return NULL;
141 }
142
143 struct bch_fs *bch2_uuid_to_fs(__uuid_t uuid)
144 {
145         struct bch_fs *c;
146
147         mutex_lock(&bch_fs_list_lock);
148         c = __bch2_uuid_to_fs(uuid);
149         if (c)
150                 closure_get(&c->cl);
151         mutex_unlock(&bch_fs_list_lock);
152
153         return c;
154 }
155
156 /* Filesystem RO/RW: */
157
158 /*
159  * For startup/shutdown of RW stuff, the dependencies are:
160  *
161  * - foreground writes depend on copygc and rebalance (to free up space)
162  *
163  * - copygc and rebalance depend on mark and sweep gc (they actually probably
164  *   don't because they either reserve ahead of time or don't block if
165  *   allocations fail, but allocations can require mark and sweep gc to run
166  *   because of generation number wraparound)
167  *
168  * - all of the above depends on the allocator threads
169  *
170  * - allocator depends on the journal (when it rewrites prios and gens)
171  */
172
173 static void __bch2_fs_read_only(struct bch_fs *c)
174 {
175         struct bch_dev *ca;
176         unsigned i;
177
178         bch2_rebalance_stop(c);
179
180         for_each_member_device(ca, c, i)
181                 bch2_copygc_stop(ca);
182
183         bch2_gc_thread_stop(c);
184
185         /*
186          * Flush journal before stopping allocators, because flushing journal
187          * blacklist entries involves allocating new btree nodes:
188          */
189         bch2_journal_flush_all_pins(&c->journal);
190
191         for_each_member_device(ca, c, i)
192                 bch2_dev_allocator_stop(ca);
193
194         bch2_journal_flush_all_pins(&c->journal);
195
196         /*
197          * We need to explicitly wait on btree interior updates to complete
198          * before stopping the journal, flushing all journal pins isn't
199          * sufficient, because in the BTREE_INTERIOR_UPDATING_ROOT case btree
200          * interior updates have to drop their journal pin before they're
201          * fully complete:
202          */
203         closure_wait_event(&c->btree_interior_update_wait,
204                            !bch2_btree_interior_updates_nr_pending(c));
205
206         bch2_fs_journal_stop(&c->journal);
207
208         /*
209          * the journal kicks off btree writes via reclaim - wait for in flight
210          * writes after stopping journal:
211          */
212         if (test_bit(BCH_FS_EMERGENCY_RO, &c->flags))
213                 bch2_btree_flush_all_writes(c);
214         else
215                 bch2_btree_verify_flushed(c);
216
217         /*
218          * After stopping journal:
219          */
220         for_each_member_device(ca, c, i)
221                 bch2_dev_allocator_remove(c, ca);
222 }
223
224 static void bch2_writes_disabled(struct percpu_ref *writes)
225 {
226         struct bch_fs *c = container_of(writes, struct bch_fs, writes);
227
228         set_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags);
229         wake_up(&bch_read_only_wait);
230 }
231
232 void bch2_fs_read_only(struct bch_fs *c)
233 {
234         if (c->state == BCH_FS_RO)
235                 return;
236
237         BUG_ON(test_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags));
238
239         /*
240          * Block new foreground-end write operations from starting - any new
241          * writes will return -EROFS:
242          *
243          * (This is really blocking new _allocations_, writes to previously
244          * allocated space can still happen until stopping the allocator in
245          * bch2_dev_allocator_stop()).
246          */
247         percpu_ref_kill(&c->writes);
248
249         cancel_delayed_work(&c->pd_controllers_update);
250
251         /*
252          * If we're not doing an emergency shutdown, we want to wait on
253          * outstanding writes to complete so they don't see spurious errors due
254          * to shutting down the allocator:
255          *
256          * If we are doing an emergency shutdown outstanding writes may
257          * hang until we shutdown the allocator so we don't want to wait
258          * on outstanding writes before shutting everything down - but
259          * we do need to wait on them before returning and signalling
260          * that going RO is complete:
261          */
262         wait_event(bch_read_only_wait,
263                    test_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags) ||
264                    test_bit(BCH_FS_EMERGENCY_RO, &c->flags));
265
266         __bch2_fs_read_only(c);
267
268         wait_event(bch_read_only_wait,
269                    test_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags));
270
271         clear_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags);
272
273         if (!bch2_journal_error(&c->journal) &&
274             !test_bit(BCH_FS_ERROR, &c->flags) &&
275             !test_bit(BCH_FS_EMERGENCY_RO, &c->flags))
276                 bch2_fs_mark_clean(c, true);
277
278         if (c->state != BCH_FS_STOPPING)
279                 c->state = BCH_FS_RO;
280 }
281
282 static void bch2_fs_read_only_work(struct work_struct *work)
283 {
284         struct bch_fs *c =
285                 container_of(work, struct bch_fs, read_only_work);
286
287         mutex_lock(&c->state_lock);
288         bch2_fs_read_only(c);
289         mutex_unlock(&c->state_lock);
290 }
291
292 static void bch2_fs_read_only_async(struct bch_fs *c)
293 {
294         queue_work(system_long_wq, &c->read_only_work);
295 }
296
297 bool bch2_fs_emergency_read_only(struct bch_fs *c)
298 {
299         bool ret = !test_and_set_bit(BCH_FS_EMERGENCY_RO, &c->flags);
300
301         bch2_fs_read_only_async(c);
302         bch2_journal_halt(&c->journal);
303
304         wake_up(&bch_read_only_wait);
305         return ret;
306 }
307
308 const char *bch2_fs_read_write(struct bch_fs *c)
309 {
310         struct bch_dev *ca;
311         const char *err = NULL;
312         unsigned i;
313
314         if (c->state == BCH_FS_RW)
315                 return NULL;
316
317         bch2_fs_mark_clean(c, false);
318
319         for_each_rw_member(ca, c, i)
320                 bch2_dev_allocator_add(c, ca);
321         bch2_recalc_capacity(c);
322
323         err = "error starting allocator thread";
324         for_each_rw_member(ca, c, i)
325                 if (bch2_dev_allocator_start(ca)) {
326                         percpu_ref_put(&ca->io_ref);
327                         goto err;
328                 }
329
330         err = "error starting btree GC thread";
331         if (bch2_gc_thread_start(c))
332                 goto err;
333
334         err = "error starting copygc thread";
335         for_each_rw_member(ca, c, i)
336                 if (bch2_copygc_start(c, ca)) {
337                         percpu_ref_put(&ca->io_ref);
338                         goto err;
339                 }
340
341         err = "error starting rebalance thread";
342         if (bch2_rebalance_start(c))
343                 goto err;
344
345         schedule_delayed_work(&c->pd_controllers_update, 5 * HZ);
346
347         if (c->state != BCH_FS_STARTING)
348                 percpu_ref_reinit(&c->writes);
349
350         c->state = BCH_FS_RW;
351         return NULL;
352 err:
353         __bch2_fs_read_only(c);
354         return err;
355 }
356
357 /* Filesystem startup/shutdown: */
358
359 static void bch2_fs_free(struct bch_fs *c)
360 {
361         unsigned i;
362
363         for (i = 0; i < BCH_TIME_STAT_NR; i++)
364                 bch2_time_stats_exit(&c->times[i]);
365
366         bch2_fs_quota_exit(c);
367         bch2_fs_fsio_exit(c);
368         bch2_fs_ec_exit(c);
369         bch2_fs_encryption_exit(c);
370         bch2_fs_io_exit(c);
371         bch2_fs_btree_cache_exit(c);
372         bch2_fs_journal_exit(&c->journal);
373         bch2_io_clock_exit(&c->io_clock[WRITE]);
374         bch2_io_clock_exit(&c->io_clock[READ]);
375         bch2_fs_compress_exit(c);
376         percpu_free_rwsem(&c->usage_lock);
377         free_percpu(c->usage_percpu);
378         mempool_exit(&c->btree_iters_pool);
379         mempool_exit(&c->btree_bounce_pool);
380         bioset_exit(&c->btree_bio);
381         mempool_exit(&c->btree_interior_update_pool);
382         mempool_exit(&c->btree_reserve_pool);
383         mempool_exit(&c->fill_iter);
384         percpu_ref_exit(&c->writes);
385         kfree(rcu_dereference_protected(c->replicas, 1));
386         kfree(rcu_dereference_protected(c->disk_groups, 1));
387
388         if (c->copygc_wq)
389                 destroy_workqueue(c->copygc_wq);
390         if (c->wq)
391                 destroy_workqueue(c->wq);
392
393         free_pages((unsigned long) c->disk_sb.sb,
394                    c->disk_sb.page_order);
395         kvpfree(c, sizeof(*c));
396         module_put(THIS_MODULE);
397 }
398
399 static void bch2_fs_release(struct kobject *kobj)
400 {
401         struct bch_fs *c = container_of(kobj, struct bch_fs, kobj);
402
403         bch2_fs_free(c);
404 }
405
406 void bch2_fs_stop(struct bch_fs *c)
407 {
408         struct bch_dev *ca;
409         unsigned i;
410
411         bch_verbose(c, "shutting down");
412
413         for_each_member_device(ca, c, i)
414                 if (ca->kobj.state_in_sysfs &&
415                     ca->disk_sb.bdev)
416                         sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs");
417
418         if (c->kobj.state_in_sysfs)
419                 kobject_del(&c->kobj);
420
421         bch2_fs_debug_exit(c);
422         bch2_fs_chardev_exit(c);
423
424         kobject_put(&c->time_stats);
425         kobject_put(&c->opts_dir);
426         kobject_put(&c->internal);
427
428         mutex_lock(&bch_fs_list_lock);
429         list_del(&c->list);
430         mutex_unlock(&bch_fs_list_lock);
431
432         closure_sync(&c->cl);
433         closure_debug_destroy(&c->cl);
434
435         mutex_lock(&c->state_lock);
436         bch2_fs_read_only(c);
437         mutex_unlock(&c->state_lock);
438
439         /* btree prefetch might have kicked off reads in the background: */
440         bch2_btree_flush_all_reads(c);
441
442         for_each_member_device(ca, c, i)
443                 cancel_work_sync(&ca->io_error_work);
444
445         cancel_work_sync(&c->btree_write_error_work);
446         cancel_delayed_work_sync(&c->pd_controllers_update);
447         cancel_work_sync(&c->read_only_work);
448
449         for (i = 0; i < c->sb.nr_devices; i++)
450                 if (c->devs[i])
451                         bch2_dev_free(rcu_dereference_protected(c->devs[i], 1));
452
453         bch_verbose(c, "shutdown complete");
454
455         kobject_put(&c->kobj);
456 }
457
458 static const char *bch2_fs_online(struct bch_fs *c)
459 {
460         struct bch_dev *ca;
461         const char *err = NULL;
462         unsigned i;
463         int ret;
464
465         lockdep_assert_held(&bch_fs_list_lock);
466
467         if (!list_empty(&c->list))
468                 return NULL;
469
470         if (__bch2_uuid_to_fs(c->sb.uuid))
471                 return "filesystem UUID already open";
472
473         ret = bch2_fs_chardev_init(c);
474         if (ret)
475                 return "error creating character device";
476
477         bch2_fs_debug_init(c);
478
479         if (kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) ||
480             kobject_add(&c->internal, &c->kobj, "internal") ||
481             kobject_add(&c->opts_dir, &c->kobj, "options") ||
482             kobject_add(&c->time_stats, &c->kobj, "time_stats") ||
483             bch2_opts_create_sysfs_files(&c->opts_dir))
484                 return "error creating sysfs objects";
485
486         mutex_lock(&c->state_lock);
487
488         err = "error creating sysfs objects";
489         __for_each_member_device(ca, c, i, NULL)
490                 if (bch2_dev_sysfs_online(c, ca))
491                         goto err;
492
493         list_add(&c->list, &bch_fs_list);
494         err = NULL;
495 err:
496         mutex_unlock(&c->state_lock);
497         return err;
498 }
499
500 static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts)
501 {
502         struct bch_sb_field_members *mi;
503         struct bch_fs *c;
504         unsigned i, iter_size;
505         const char *err;
506
507         pr_verbose_init(opts, "");
508
509         c = kvpmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO);
510         if (!c)
511                 goto out;
512
513         __module_get(THIS_MODULE);
514
515         c->minor                = -1;
516         c->disk_sb.fs_sb        = true;
517
518         mutex_init(&c->state_lock);
519         mutex_init(&c->sb_lock);
520         mutex_init(&c->replicas_gc_lock);
521         mutex_init(&c->btree_root_lock);
522         INIT_WORK(&c->read_only_work, bch2_fs_read_only_work);
523
524         init_rwsem(&c->gc_lock);
525
526         for (i = 0; i < BCH_TIME_STAT_NR; i++)
527                 bch2_time_stats_init(&c->times[i]);
528
529         bch2_fs_allocator_background_init(c);
530         bch2_fs_allocator_foreground_init(c);
531         bch2_fs_rebalance_init(c);
532         bch2_fs_quota_init(c);
533
534         INIT_LIST_HEAD(&c->list);
535
536         INIT_LIST_HEAD(&c->btree_interior_update_list);
537         mutex_init(&c->btree_reserve_cache_lock);
538         mutex_init(&c->btree_interior_update_lock);
539
540         mutex_init(&c->bio_bounce_pages_lock);
541
542         bio_list_init(&c->btree_write_error_list);
543         spin_lock_init(&c->btree_write_error_lock);
544         INIT_WORK(&c->btree_write_error_work, bch2_btree_write_error_work);
545
546         INIT_LIST_HEAD(&c->fsck_errors);
547         mutex_init(&c->fsck_error_lock);
548
549         INIT_LIST_HEAD(&c->ec_new_stripe_list);
550         mutex_init(&c->ec_new_stripe_lock);
551         mutex_init(&c->ec_stripes_lock);
552         spin_lock_init(&c->ec_stripes_heap_lock);
553
554         seqcount_init(&c->gc_pos_lock);
555
556         c->copy_gc_enabled              = 1;
557         c->rebalance.enabled            = 1;
558         c->promote_whole_extents        = true;
559
560         c->journal.write_time   = &c->times[BCH_TIME_journal_write];
561         c->journal.delay_time   = &c->times[BCH_TIME_journal_delay];
562         c->journal.blocked_time = &c->times[BCH_TIME_journal_blocked];
563         c->journal.flush_seq_time = &c->times[BCH_TIME_journal_flush_seq];
564
565         bch2_fs_btree_cache_init_early(&c->btree_cache);
566
567         mutex_lock(&c->sb_lock);
568
569         if (bch2_sb_to_fs(c, sb)) {
570                 mutex_unlock(&c->sb_lock);
571                 goto err;
572         }
573
574         mutex_unlock(&c->sb_lock);
575
576         scnprintf(c->name, sizeof(c->name), "%pU", &c->sb.user_uuid);
577
578         c->opts = bch2_opts_default;
579         bch2_opts_apply(&c->opts, bch2_opts_from_sb(sb));
580         bch2_opts_apply(&c->opts, opts);
581
582         c->block_bits           = ilog2(c->opts.block_size);
583         c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c);
584
585         c->opts.nochanges       |= c->opts.noreplay;
586         c->opts.read_only       |= c->opts.nochanges;
587
588         if (bch2_fs_init_fault("fs_alloc"))
589                 goto err;
590
591         iter_size = sizeof(struct btree_node_iter_large) +
592                 (btree_blocks(c) + 1) * 2 *
593                 sizeof(struct btree_node_iter_set);
594
595         if (!(c->wq = alloc_workqueue("bcachefs",
596                                 WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_HIGHPRI, 1)) ||
597             !(c->copygc_wq = alloc_workqueue("bcache_copygc",
598                                 WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_HIGHPRI, 1)) ||
599             percpu_ref_init(&c->writes, bch2_writes_disabled, 0, GFP_KERNEL) ||
600             mempool_init_kmalloc_pool(&c->btree_reserve_pool, 1,
601                                       sizeof(struct btree_reserve)) ||
602             mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1,
603                                       sizeof(struct btree_update)) ||
604             mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) ||
605             bioset_init(&c->btree_bio, 1,
606                         max(offsetof(struct btree_read_bio, bio),
607                             offsetof(struct btree_write_bio, wbio.bio)),
608                         BIOSET_NEED_BVECS) ||
609             !(c->usage_percpu = alloc_percpu(struct bch_fs_usage)) ||
610             percpu_init_rwsem(&c->usage_lock) ||
611             mempool_init_kvpmalloc_pool(&c->btree_bounce_pool, 1,
612                                         btree_bytes(c)) ||
613             mempool_init_kmalloc_pool(&c->btree_iters_pool, 1,
614                         sizeof(struct btree_iter) * BTREE_ITER_MAX) ||
615             bch2_io_clock_init(&c->io_clock[READ]) ||
616             bch2_io_clock_init(&c->io_clock[WRITE]) ||
617             bch2_fs_journal_init(&c->journal) ||
618             bch2_fs_btree_cache_init(c) ||
619             bch2_fs_io_init(c) ||
620             bch2_fs_encryption_init(c) ||
621             bch2_fs_compress_init(c) ||
622             bch2_fs_ec_init(c) ||
623             bch2_fs_fsio_init(c))
624                 goto err;
625
626         mi = bch2_sb_get_members(c->disk_sb.sb);
627         for (i = 0; i < c->sb.nr_devices; i++)
628                 if (bch2_dev_exists(c->disk_sb.sb, mi, i) &&
629                     bch2_dev_alloc(c, i))
630                         goto err;
631
632         /*
633          * Now that all allocations have succeeded, init various refcounty
634          * things that let us shutdown:
635          */
636         closure_init(&c->cl, NULL);
637
638         c->kobj.kset = bcachefs_kset;
639         kobject_init(&c->kobj, &bch2_fs_ktype);
640         kobject_init(&c->internal, &bch2_fs_internal_ktype);
641         kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype);
642         kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype);
643
644         mutex_lock(&bch_fs_list_lock);
645         err = bch2_fs_online(c);
646         mutex_unlock(&bch_fs_list_lock);
647         if (err) {
648                 bch_err(c, "bch2_fs_online() error: %s", err);
649                 goto err;
650         }
651 out:
652         pr_verbose_init(opts, "ret %i", c ? 0 : -ENOMEM);
653         return c;
654 err:
655         bch2_fs_free(c);
656         c = NULL;
657         goto out;
658 }
659
660 const char *bch2_fs_start(struct bch_fs *c)
661 {
662         const char *err = "cannot allocate memory";
663         struct bch_sb_field_members *mi;
664         struct bch_dev *ca;
665         time64_t now = ktime_get_real_seconds();
666         unsigned i;
667         int ret = -EINVAL;
668
669         mutex_lock(&c->state_lock);
670
671         BUG_ON(c->state != BCH_FS_STARTING);
672
673         mutex_lock(&c->sb_lock);
674
675         for_each_online_member(ca, c, i)
676                 bch2_sb_from_fs(c, ca);
677
678         mi = bch2_sb_get_members(c->disk_sb.sb);
679         for_each_online_member(ca, c, i)
680                 mi->members[ca->dev_idx].last_mount = cpu_to_le64(now);
681
682         mutex_unlock(&c->sb_lock);
683
684         for_each_rw_member(ca, c, i)
685                 bch2_dev_allocator_add(c, ca);
686         bch2_recalc_capacity(c);
687
688         ret = BCH_SB_INITIALIZED(c->disk_sb.sb)
689                 ? bch2_fs_recovery(c)
690                 : bch2_fs_initialize(c);
691         if (ret)
692                 goto err;
693
694         ret = bch2_opts_check_may_set(c);
695         if (ret)
696                 goto err;
697
698         err = "dynamic fault";
699         if (bch2_fs_init_fault("fs_start"))
700                 goto err;
701
702         if (c->opts.read_only) {
703                 bch2_fs_read_only(c);
704         } else {
705                 err = bch2_fs_read_write(c);
706                 if (err)
707                         goto err;
708         }
709
710         set_bit(BCH_FS_STARTED, &c->flags);
711
712         err = NULL;
713 out:
714         mutex_unlock(&c->state_lock);
715         return err;
716 err:
717         switch (ret) {
718         case BCH_FSCK_ERRORS_NOT_FIXED:
719                 bch_err(c, "filesystem contains errors: please report this to the developers");
720                 pr_cont("mount with -o fix_errors to repair\n");
721                 err = "fsck error";
722                 break;
723         case BCH_FSCK_REPAIR_UNIMPLEMENTED:
724                 bch_err(c, "filesystem contains errors: please report this to the developers");
725                 pr_cont("repair unimplemented: inform the developers so that it can be added\n");
726                 err = "fsck error";
727                 break;
728         case BCH_FSCK_REPAIR_IMPOSSIBLE:
729                 bch_err(c, "filesystem contains errors, but repair impossible");
730                 err = "fsck error";
731                 break;
732         case BCH_FSCK_UNKNOWN_VERSION:
733                 err = "unknown metadata version";;
734                 break;
735         case -ENOMEM:
736                 err = "cannot allocate memory";
737                 break;
738         case -EIO:
739                 err = "IO error";
740                 break;
741         }
742
743         BUG_ON(!err);
744         set_bit(BCH_FS_ERROR, &c->flags);
745         goto out;
746 }
747
748 static const char *bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c)
749 {
750         struct bch_sb_field_members *sb_mi;
751
752         sb_mi = bch2_sb_get_members(sb);
753         if (!sb_mi)
754                 return "Invalid superblock: member info area missing";
755
756         if (le16_to_cpu(sb->block_size) != c->opts.block_size)
757                 return "mismatched block size";
758
759         if (le16_to_cpu(sb_mi->members[sb->dev_idx].bucket_size) <
760             BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb))
761                 return "new cache bucket size is too small";
762
763         return NULL;
764 }
765
766 static const char *bch2_dev_in_fs(struct bch_sb *fs, struct bch_sb *sb)
767 {
768         struct bch_sb *newest =
769                 le64_to_cpu(fs->seq) > le64_to_cpu(sb->seq) ? fs : sb;
770         struct bch_sb_field_members *mi = bch2_sb_get_members(newest);
771
772         if (!uuid_equal(&fs->uuid, &sb->uuid))
773                 return "device not a member of filesystem";
774
775         if (!bch2_dev_exists(newest, mi, sb->dev_idx))
776                 return "device has been removed";
777
778         if (fs->block_size != sb->block_size)
779                 return "mismatched block size";
780
781         return NULL;
782 }
783
784 /* Device startup/shutdown: */
785
786 static void bch2_dev_release(struct kobject *kobj)
787 {
788         struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj);
789
790         kfree(ca);
791 }
792
793 static void bch2_dev_free(struct bch_dev *ca)
794 {
795         cancel_work_sync(&ca->io_error_work);
796
797         if (ca->kobj.state_in_sysfs &&
798             ca->disk_sb.bdev)
799                 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs");
800
801         if (ca->kobj.state_in_sysfs)
802                 kobject_del(&ca->kobj);
803
804         bch2_free_super(&ca->disk_sb);
805         bch2_dev_journal_exit(ca);
806
807         free_percpu(ca->io_done);
808         bioset_exit(&ca->replica_set);
809         bch2_dev_buckets_free(ca);
810
811         bch2_time_stats_exit(&ca->io_latency[WRITE]);
812         bch2_time_stats_exit(&ca->io_latency[READ]);
813
814         percpu_ref_exit(&ca->io_ref);
815         percpu_ref_exit(&ca->ref);
816         kobject_put(&ca->kobj);
817 }
818
819 static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca)
820 {
821
822         lockdep_assert_held(&c->state_lock);
823
824         if (percpu_ref_is_zero(&ca->io_ref))
825                 return;
826
827         __bch2_dev_read_only(c, ca);
828
829         reinit_completion(&ca->io_ref_completion);
830         percpu_ref_kill(&ca->io_ref);
831         wait_for_completion(&ca->io_ref_completion);
832
833         if (ca->kobj.state_in_sysfs) {
834                 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs");
835                 sysfs_remove_link(&ca->kobj, "block");
836         }
837
838         bch2_free_super(&ca->disk_sb);
839         bch2_dev_journal_exit(ca);
840 }
841
842 static void bch2_dev_ref_complete(struct percpu_ref *ref)
843 {
844         struct bch_dev *ca = container_of(ref, struct bch_dev, ref);
845
846         complete(&ca->ref_completion);
847 }
848
849 static void bch2_dev_io_ref_complete(struct percpu_ref *ref)
850 {
851         struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref);
852
853         complete(&ca->io_ref_completion);
854 }
855
856 static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca)
857 {
858         int ret;
859
860         if (!c->kobj.state_in_sysfs)
861                 return 0;
862
863         if (!ca->kobj.state_in_sysfs) {
864                 ret = kobject_add(&ca->kobj, &c->kobj,
865                                   "dev-%u", ca->dev_idx);
866                 if (ret)
867                         return ret;
868         }
869
870         if (ca->disk_sb.bdev) {
871                 struct kobject *block = bdev_kobj(ca->disk_sb.bdev);
872
873                 ret = sysfs_create_link(block, &ca->kobj, "bcachefs");
874                 if (ret)
875                         return ret;
876
877                 ret = sysfs_create_link(&ca->kobj, block, "block");
878                 if (ret)
879                         return ret;
880         }
881
882         return 0;
883 }
884
885 static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c,
886                                         struct bch_member *member)
887 {
888         struct bch_dev *ca;
889
890         ca = kzalloc(sizeof(*ca), GFP_KERNEL);
891         if (!ca)
892                 return NULL;
893
894         kobject_init(&ca->kobj, &bch2_dev_ktype);
895         init_completion(&ca->ref_completion);
896         init_completion(&ca->io_ref_completion);
897
898         init_rwsem(&ca->bucket_lock);
899
900         writepoint_init(&ca->copygc_write_point, BCH_DATA_USER);
901
902         spin_lock_init(&ca->freelist_lock);
903         bch2_dev_copygc_init(ca);
904
905         INIT_WORK(&ca->io_error_work, bch2_io_error_work);
906
907         bch2_time_stats_init(&ca->io_latency[READ]);
908         bch2_time_stats_init(&ca->io_latency[WRITE]);
909
910         ca->mi = bch2_mi_to_cpu(member);
911         ca->uuid = member->uuid;
912
913         if (opt_defined(c->opts, discard))
914                 ca->mi.discard = opt_get(c->opts, discard);
915
916         if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete,
917                             0, GFP_KERNEL) ||
918             percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_complete,
919                             PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
920             bch2_dev_buckets_alloc(c, ca) ||
921             bioset_init(&ca->replica_set, 4,
922                         offsetof(struct bch_write_bio, bio), 0) ||
923             !(ca->io_done       = alloc_percpu(*ca->io_done)))
924                 goto err;
925
926         return ca;
927 err:
928         bch2_dev_free(ca);
929         return NULL;
930 }
931
932 static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca,
933                             unsigned dev_idx)
934 {
935         ca->dev_idx = dev_idx;
936         __set_bit(ca->dev_idx, ca->self.d);
937         scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx);
938
939         ca->fs = c;
940         rcu_assign_pointer(c->devs[ca->dev_idx], ca);
941
942         if (bch2_dev_sysfs_online(c, ca))
943                 pr_warn("error creating sysfs objects");
944 }
945
946 static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx)
947 {
948         struct bch_member *member =
949                 bch2_sb_get_members(c->disk_sb.sb)->members + dev_idx;
950         struct bch_dev *ca = NULL;
951         int ret = 0;
952
953         pr_verbose_init(c->opts, "");
954
955         if (bch2_fs_init_fault("dev_alloc"))
956                 goto err;
957
958         ca = __bch2_dev_alloc(c, member);
959         if (!ca)
960                 goto err;
961
962         bch2_dev_attach(c, ca, dev_idx);
963 out:
964         pr_verbose_init(c->opts, "ret %i", ret);
965         return ret;
966 err:
967         if (ca)
968                 bch2_dev_free(ca);
969         ret = -ENOMEM;
970         goto out;
971 }
972
973 static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb)
974 {
975         unsigned ret;
976
977         if (bch2_dev_is_online(ca)) {
978                 bch_err(ca, "already have device online in slot %u",
979                         sb->sb->dev_idx);
980                 return -EINVAL;
981         }
982
983         if (get_capacity(sb->bdev->bd_disk) <
984             ca->mi.bucket_size * ca->mi.nbuckets) {
985                 bch_err(ca, "cannot online: device too small");
986                 return -EINVAL;
987         }
988
989         BUG_ON(!percpu_ref_is_zero(&ca->io_ref));
990
991         if (get_capacity(sb->bdev->bd_disk) <
992             ca->mi.bucket_size * ca->mi.nbuckets) {
993                 bch_err(ca, "device too small");
994                 return -EINVAL;
995         }
996
997         ret = bch2_dev_journal_init(ca, sb->sb);
998         if (ret)
999                 return ret;
1000
1001         /* Commit: */
1002         ca->disk_sb = *sb;
1003         memset(sb, 0, sizeof(*sb));
1004
1005         percpu_ref_reinit(&ca->io_ref);
1006
1007         return 0;
1008 }
1009
1010 static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb)
1011 {
1012         struct bch_dev *ca;
1013         int ret;
1014
1015         lockdep_assert_held(&c->state_lock);
1016
1017         if (le64_to_cpu(sb->sb->seq) >
1018             le64_to_cpu(c->disk_sb.sb->seq))
1019                 bch2_sb_to_fs(c, sb->sb);
1020
1021         BUG_ON(sb->sb->dev_idx >= c->sb.nr_devices ||
1022                !c->devs[sb->sb->dev_idx]);
1023
1024         ca = bch_dev_locked(c, sb->sb->dev_idx);
1025
1026         ret = __bch2_dev_attach_bdev(ca, sb);
1027         if (ret)
1028                 return ret;
1029
1030         mutex_lock(&c->sb_lock);
1031         bch2_mark_dev_superblock(ca->fs, ca,
1032                         BCH_BUCKET_MARK_MAY_MAKE_UNAVAILABLE);
1033         mutex_unlock(&c->sb_lock);
1034
1035         bch2_dev_sysfs_online(c, ca);
1036
1037         if (c->sb.nr_devices == 1)
1038                 snprintf(c->name, sizeof(c->name), "%pg", ca->disk_sb.bdev);
1039         snprintf(ca->name, sizeof(ca->name), "%pg", ca->disk_sb.bdev);
1040
1041         rebalance_wakeup(c);
1042         return 0;
1043 }
1044
1045 /* Device management: */
1046
1047 /*
1048  * Note: this function is also used by the error paths - when a particular
1049  * device sees an error, we call it to determine whether we can just set the
1050  * device RO, or - if this function returns false - we'll set the whole
1051  * filesystem RO:
1052  *
1053  * XXX: maybe we should be more explicit about whether we're changing state
1054  * because we got an error or what have you?
1055  */
1056 bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca,
1057                             enum bch_member_state new_state, int flags)
1058 {
1059         struct bch_devs_mask new_online_devs;
1060         struct replicas_status s;
1061         struct bch_dev *ca2;
1062         int i, nr_rw = 0, required;
1063
1064         lockdep_assert_held(&c->state_lock);
1065
1066         switch (new_state) {
1067         case BCH_MEMBER_STATE_RW:
1068                 return true;
1069         case BCH_MEMBER_STATE_RO:
1070                 if (ca->mi.state != BCH_MEMBER_STATE_RW)
1071                         return true;
1072
1073                 /* do we have enough devices to write to?  */
1074                 for_each_member_device(ca2, c, i)
1075                         if (ca2 != ca)
1076                                 nr_rw += ca2->mi.state == BCH_MEMBER_STATE_RW;
1077
1078                 required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED)
1079                                ? c->opts.metadata_replicas
1080                                : c->opts.metadata_replicas_required,
1081                                !(flags & BCH_FORCE_IF_DATA_DEGRADED)
1082                                ? c->opts.data_replicas
1083                                : c->opts.data_replicas_required);
1084
1085                 return nr_rw >= required;
1086         case BCH_MEMBER_STATE_FAILED:
1087         case BCH_MEMBER_STATE_SPARE:
1088                 if (ca->mi.state != BCH_MEMBER_STATE_RW &&
1089                     ca->mi.state != BCH_MEMBER_STATE_RO)
1090                         return true;
1091
1092                 /* do we have enough devices to read from?  */
1093                 new_online_devs = bch2_online_devs(c);
1094                 __clear_bit(ca->dev_idx, new_online_devs.d);
1095
1096                 s = __bch2_replicas_status(c, new_online_devs);
1097
1098                 return bch2_have_enough_devs(s, flags);
1099         default:
1100                 BUG();
1101         }
1102 }
1103
1104 static bool bch2_fs_may_start(struct bch_fs *c)
1105 {
1106         struct replicas_status s;
1107         struct bch_sb_field_members *mi;
1108         struct bch_dev *ca;
1109         unsigned i, flags = c->opts.degraded
1110                 ? BCH_FORCE_IF_DEGRADED
1111                 : 0;
1112
1113         if (!c->opts.degraded) {
1114                 mutex_lock(&c->sb_lock);
1115                 mi = bch2_sb_get_members(c->disk_sb.sb);
1116
1117                 for (i = 0; i < c->disk_sb.sb->nr_devices; i++) {
1118                         if (!bch2_dev_exists(c->disk_sb.sb, mi, i))
1119                                 continue;
1120
1121                         ca = bch_dev_locked(c, i);
1122
1123                         if (!bch2_dev_is_online(ca) &&
1124                             (ca->mi.state == BCH_MEMBER_STATE_RW ||
1125                              ca->mi.state == BCH_MEMBER_STATE_RO)) {
1126                                 mutex_unlock(&c->sb_lock);
1127                                 return false;
1128                         }
1129                 }
1130                 mutex_unlock(&c->sb_lock);
1131         }
1132
1133         s = bch2_replicas_status(c);
1134
1135         return bch2_have_enough_devs(s, flags);
1136 }
1137
1138 static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca)
1139 {
1140         bch2_copygc_stop(ca);
1141
1142         /*
1143          * The allocator thread itself allocates btree nodes, so stop it first:
1144          */
1145         bch2_dev_allocator_stop(ca);
1146         bch2_dev_allocator_remove(c, ca);
1147         bch2_dev_journal_stop(&c->journal, ca);
1148 }
1149
1150 static const char *__bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca)
1151 {
1152         lockdep_assert_held(&c->state_lock);
1153
1154         BUG_ON(ca->mi.state != BCH_MEMBER_STATE_RW);
1155
1156         bch2_dev_allocator_add(c, ca);
1157         bch2_recalc_capacity(c);
1158
1159         if (bch2_dev_allocator_start(ca))
1160                 return "error starting allocator thread";
1161
1162         if (bch2_copygc_start(c, ca))
1163                 return "error starting copygc thread";
1164
1165         return NULL;
1166 }
1167
1168 int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
1169                          enum bch_member_state new_state, int flags)
1170 {
1171         struct bch_sb_field_members *mi;
1172         int ret = 0;
1173
1174         if (ca->mi.state == new_state)
1175                 return 0;
1176
1177         if (!bch2_dev_state_allowed(c, ca, new_state, flags))
1178                 return -EINVAL;
1179
1180         if (new_state != BCH_MEMBER_STATE_RW)
1181                 __bch2_dev_read_only(c, ca);
1182
1183         bch_notice(ca, "%s", bch2_dev_state[new_state]);
1184
1185         mutex_lock(&c->sb_lock);
1186         mi = bch2_sb_get_members(c->disk_sb.sb);
1187         SET_BCH_MEMBER_STATE(&mi->members[ca->dev_idx], new_state);
1188         bch2_write_super(c);
1189         mutex_unlock(&c->sb_lock);
1190
1191         if (new_state == BCH_MEMBER_STATE_RW &&
1192             __bch2_dev_read_write(c, ca))
1193                 ret = -ENOMEM;
1194
1195         rebalance_wakeup(c);
1196
1197         return ret;
1198 }
1199
1200 int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
1201                        enum bch_member_state new_state, int flags)
1202 {
1203         int ret;
1204
1205         mutex_lock(&c->state_lock);
1206         ret = __bch2_dev_set_state(c, ca, new_state, flags);
1207         mutex_unlock(&c->state_lock);
1208
1209         return ret;
1210 }
1211
1212 /* Device add/removal: */
1213
1214 int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags)
1215 {
1216         struct bch_sb_field_members *mi;
1217         unsigned dev_idx = ca->dev_idx, data;
1218         int ret = -EINVAL;
1219
1220         mutex_lock(&c->state_lock);
1221
1222         percpu_ref_put(&ca->ref); /* XXX */
1223
1224         if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_FAILED, flags)) {
1225                 bch_err(ca, "Cannot remove without losing data");
1226                 goto err;
1227         }
1228
1229         __bch2_dev_read_only(c, ca);
1230
1231         /*
1232          * XXX: verify that dev_idx is really not in use anymore, anywhere
1233          *
1234          * flag_data_bad() does not check btree pointers
1235          */
1236         ret = bch2_dev_data_drop(c, ca->dev_idx, flags);
1237         if (ret) {
1238                 bch_err(ca, "Remove failed: error %i dropping data", ret);
1239                 goto err;
1240         }
1241
1242         ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx);
1243         if (ret) {
1244                 bch_err(ca, "Remove failed: error %i flushing journal", ret);
1245                 goto err;
1246         }
1247
1248         data = bch2_dev_has_data(c, ca);
1249         if (data) {
1250                 char data_has_str[100];
1251
1252                 bch2_string_opt_to_text(&PBUF(data_has_str),
1253                                         bch2_data_types, data);
1254                 bch_err(ca, "Remove failed, still has data (%s)", data_has_str);
1255                 ret = -EBUSY;
1256                 goto err;
1257         }
1258
1259         ret = bch2_btree_delete_range(c, BTREE_ID_ALLOC,
1260                                       POS(ca->dev_idx, 0),
1261                                       POS(ca->dev_idx + 1, 0),
1262                                       NULL);
1263         if (ret) {
1264                 bch_err(ca, "Remove failed, error deleting alloc info");
1265                 goto err;
1266         }
1267
1268         /*
1269          * must flush all existing journal entries, they might have
1270          * (overwritten) keys that point to the device we're removing:
1271          */
1272         bch2_journal_flush_all_pins(&c->journal);
1273         ret = bch2_journal_error(&c->journal);
1274         if (ret) {
1275                 bch_err(ca, "Remove failed, journal error");
1276                 goto err;
1277         }
1278
1279         __bch2_dev_offline(c, ca);
1280
1281         mutex_lock(&c->sb_lock);
1282         rcu_assign_pointer(c->devs[ca->dev_idx], NULL);
1283         mutex_unlock(&c->sb_lock);
1284
1285         percpu_ref_kill(&ca->ref);
1286         wait_for_completion(&ca->ref_completion);
1287
1288         bch2_dev_free(ca);
1289
1290         /*
1291          * Free this device's slot in the bch_member array - all pointers to
1292          * this device must be gone:
1293          */
1294         mutex_lock(&c->sb_lock);
1295         mi = bch2_sb_get_members(c->disk_sb.sb);
1296         memset(&mi->members[dev_idx].uuid, 0, sizeof(mi->members[dev_idx].uuid));
1297
1298         bch2_write_super(c);
1299
1300         mutex_unlock(&c->sb_lock);
1301         mutex_unlock(&c->state_lock);
1302         return 0;
1303 err:
1304         if (ca->mi.state == BCH_MEMBER_STATE_RW)
1305                 __bch2_dev_read_write(c, ca);
1306         mutex_unlock(&c->state_lock);
1307         return ret;
1308 }
1309
1310 static void dev_usage_clear(struct bch_dev *ca)
1311 {
1312         struct bucket_array *buckets;
1313         int cpu;
1314
1315         for_each_possible_cpu(cpu) {
1316                 struct bch_dev_usage *p =
1317                         per_cpu_ptr(ca->usage_percpu, cpu);
1318                 memset(p, 0, sizeof(*p));
1319         }
1320
1321         down_read(&ca->bucket_lock);
1322         buckets = bucket_array(ca);
1323
1324         memset(buckets->b, 0, sizeof(buckets->b[0]) * buckets->nbuckets);
1325         up_read(&ca->bucket_lock);
1326 }
1327
1328 /* Add new device to running filesystem: */
1329 int bch2_dev_add(struct bch_fs *c, const char *path)
1330 {
1331         struct bch_opts opts = bch2_opts_empty();
1332         struct bch_sb_handle sb;
1333         const char *err;
1334         struct bch_dev *ca = NULL;
1335         struct bch_sb_field_members *mi;
1336         struct bch_member dev_mi;
1337         unsigned dev_idx, nr_devices, u64s;
1338         int ret;
1339
1340         ret = bch2_read_super(path, &opts, &sb);
1341         if (ret)
1342                 return ret;
1343
1344         err = bch2_sb_validate(&sb);
1345         if (err)
1346                 return -EINVAL;
1347
1348         dev_mi = bch2_sb_get_members(sb.sb)->members[sb.sb->dev_idx];
1349
1350         err = bch2_dev_may_add(sb.sb, c);
1351         if (err)
1352                 return -EINVAL;
1353
1354         ca = __bch2_dev_alloc(c, &dev_mi);
1355         if (!ca) {
1356                 bch2_free_super(&sb);
1357                 return -ENOMEM;
1358         }
1359
1360         ret = __bch2_dev_attach_bdev(ca, &sb);
1361         if (ret) {
1362                 bch2_dev_free(ca);
1363                 return ret;
1364         }
1365
1366         /*
1367          * We want to allocate journal on the new device before adding the new
1368          * device to the filesystem because allocating after we attach requires
1369          * spinning up the allocator thread, and the allocator thread requires
1370          * doing btree writes, which if the existing devices are RO isn't going
1371          * to work
1372          *
1373          * So we have to mark where the superblocks are, but marking allocated
1374          * data normally updates the filesystem usage too, so we have to mark,
1375          * allocate the journal, reset all the marks, then remark after we
1376          * attach...
1377          */
1378         bch2_mark_dev_superblock(ca->fs, ca,
1379                         BCH_BUCKET_MARK_MAY_MAKE_UNAVAILABLE);
1380
1381         err = "journal alloc failed";
1382         ret = bch2_dev_journal_alloc(ca);
1383         if (ret)
1384                 goto err;
1385
1386         dev_usage_clear(ca);
1387
1388         mutex_lock(&c->state_lock);
1389         mutex_lock(&c->sb_lock);
1390
1391         err = "insufficient space in new superblock";
1392         ret = bch2_sb_from_fs(c, ca);
1393         if (ret)
1394                 goto err_unlock;
1395
1396         mi = bch2_sb_get_members(ca->disk_sb.sb);
1397
1398         if (!bch2_sb_resize_members(&ca->disk_sb,
1399                                 le32_to_cpu(mi->field.u64s) +
1400                                 sizeof(dev_mi) / sizeof(u64))) {
1401                 ret = -ENOSPC;
1402                 goto err_unlock;
1403         }
1404
1405         if (dynamic_fault("bcachefs:add:no_slot"))
1406                 goto no_slot;
1407
1408         mi = bch2_sb_get_members(c->disk_sb.sb);
1409         for (dev_idx = 0; dev_idx < BCH_SB_MEMBERS_MAX; dev_idx++)
1410                 if (!bch2_dev_exists(c->disk_sb.sb, mi, dev_idx))
1411                         goto have_slot;
1412 no_slot:
1413         err = "no slots available in superblock";
1414         ret = -ENOSPC;
1415         goto err_unlock;
1416
1417 have_slot:
1418         nr_devices = max_t(unsigned, dev_idx + 1, c->sb.nr_devices);
1419         u64s = (sizeof(struct bch_sb_field_members) +
1420                 sizeof(struct bch_member) * nr_devices) / sizeof(u64);
1421
1422         err = "no space in superblock for member info";
1423         ret = -ENOSPC;
1424
1425         mi = bch2_sb_resize_members(&c->disk_sb, u64s);
1426         if (!mi)
1427                 goto err_unlock;
1428
1429         /* success: */
1430
1431         mi->members[dev_idx] = dev_mi;
1432         mi->members[dev_idx].last_mount = cpu_to_le64(ktime_get_real_seconds());
1433         c->disk_sb.sb->nr_devices       = nr_devices;
1434
1435         ca->disk_sb.sb->dev_idx = dev_idx;
1436         bch2_dev_attach(c, ca, dev_idx);
1437
1438         bch2_mark_dev_superblock(c, ca,
1439                         BCH_BUCKET_MARK_MAY_MAKE_UNAVAILABLE);
1440
1441         bch2_write_super(c);
1442         mutex_unlock(&c->sb_lock);
1443
1444         if (ca->mi.state == BCH_MEMBER_STATE_RW) {
1445                 err = __bch2_dev_read_write(c, ca);
1446                 if (err)
1447                         goto err_late;
1448         }
1449
1450         mutex_unlock(&c->state_lock);
1451         return 0;
1452
1453 err_unlock:
1454         mutex_unlock(&c->sb_lock);
1455         mutex_unlock(&c->state_lock);
1456 err:
1457         if (ca)
1458                 bch2_dev_free(ca);
1459         bch2_free_super(&sb);
1460         bch_err(c, "Unable to add device: %s", err);
1461         return ret;
1462 err_late:
1463         bch_err(c, "Error going rw after adding device: %s", err);
1464         return -EINVAL;
1465 }
1466
1467 /* Hot add existing device to running filesystem: */
1468 int bch2_dev_online(struct bch_fs *c, const char *path)
1469 {
1470         struct bch_opts opts = bch2_opts_empty();
1471         struct bch_sb_handle sb = { NULL };
1472         struct bch_sb_field_members *mi;
1473         struct bch_dev *ca;
1474         unsigned dev_idx;
1475         const char *err;
1476         int ret;
1477
1478         mutex_lock(&c->state_lock);
1479
1480         ret = bch2_read_super(path, &opts, &sb);
1481         if (ret) {
1482                 mutex_unlock(&c->state_lock);
1483                 return ret;
1484         }
1485
1486         dev_idx = sb.sb->dev_idx;
1487
1488         err = bch2_dev_in_fs(c->disk_sb.sb, sb.sb);
1489         if (err)
1490                 goto err;
1491
1492         if (bch2_dev_attach_bdev(c, &sb)) {
1493                 err = "bch2_dev_attach_bdev() error";
1494                 goto err;
1495         }
1496
1497         ca = bch_dev_locked(c, dev_idx);
1498         if (ca->mi.state == BCH_MEMBER_STATE_RW) {
1499                 err = __bch2_dev_read_write(c, ca);
1500                 if (err)
1501                         goto err;
1502         }
1503
1504         mutex_lock(&c->sb_lock);
1505         mi = bch2_sb_get_members(c->disk_sb.sb);
1506
1507         mi->members[ca->dev_idx].last_mount =
1508                 cpu_to_le64(ktime_get_real_seconds());
1509
1510         bch2_write_super(c);
1511         mutex_unlock(&c->sb_lock);
1512
1513         mutex_unlock(&c->state_lock);
1514         return 0;
1515 err:
1516         mutex_unlock(&c->state_lock);
1517         bch2_free_super(&sb);
1518         bch_err(c, "error bringing %s online: %s", path, err);
1519         return -EINVAL;
1520 }
1521
1522 int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags)
1523 {
1524         mutex_lock(&c->state_lock);
1525
1526         if (!bch2_dev_is_online(ca)) {
1527                 bch_err(ca, "Already offline");
1528                 mutex_unlock(&c->state_lock);
1529                 return 0;
1530         }
1531
1532         if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_FAILED, flags)) {
1533                 bch_err(ca, "Cannot offline required disk");
1534                 mutex_unlock(&c->state_lock);
1535                 return -EINVAL;
1536         }
1537
1538         __bch2_dev_offline(c, ca);
1539
1540         mutex_unlock(&c->state_lock);
1541         return 0;
1542 }
1543
1544 int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets)
1545 {
1546         struct bch_member *mi;
1547         int ret = 0;
1548
1549         mutex_lock(&c->state_lock);
1550
1551         if (nbuckets < ca->mi.nbuckets) {
1552                 bch_err(ca, "Cannot shrink yet");
1553                 ret = -EINVAL;
1554                 goto err;
1555         }
1556
1557         if (bch2_dev_is_online(ca) &&
1558             get_capacity(ca->disk_sb.bdev->bd_disk) <
1559             ca->mi.bucket_size * nbuckets) {
1560                 bch_err(ca, "New size larger than device");
1561                 ret = -EINVAL;
1562                 goto err;
1563         }
1564
1565         ret = bch2_dev_buckets_resize(c, ca, nbuckets);
1566         if (ret) {
1567                 bch_err(ca, "Resize error: %i", ret);
1568                 goto err;
1569         }
1570
1571         mutex_lock(&c->sb_lock);
1572         mi = &bch2_sb_get_members(c->disk_sb.sb)->members[ca->dev_idx];
1573         mi->nbuckets = cpu_to_le64(nbuckets);
1574
1575         bch2_write_super(c);
1576         mutex_unlock(&c->sb_lock);
1577
1578         bch2_recalc_capacity(c);
1579 err:
1580         mutex_unlock(&c->state_lock);
1581         return ret;
1582 }
1583
1584 /* return with ref on ca->ref: */
1585 struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *path)
1586 {
1587
1588         struct bch_dev *ca;
1589         dev_t dev;
1590         unsigned i;
1591         int ret;
1592
1593         ret = lookup_bdev(path, &dev);
1594         if (ret)
1595                 return ERR_PTR(ret);
1596
1597         for_each_member_device(ca, c, i)
1598                 if (ca->disk_sb.bdev->bd_dev == dev)
1599                         goto found;
1600
1601         ca = ERR_PTR(-ENOENT);
1602 found:
1603         return ca;
1604 }
1605
1606 /* Filesystem open: */
1607
1608 struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices,
1609                             struct bch_opts opts)
1610 {
1611         struct bch_sb_handle *sb = NULL;
1612         struct bch_fs *c = NULL;
1613         unsigned i, best_sb = 0;
1614         const char *err;
1615         int ret = -ENOMEM;
1616
1617         pr_verbose_init(opts, "");
1618
1619         if (!nr_devices) {
1620                 c = ERR_PTR(-EINVAL);
1621                 goto out2;
1622         }
1623
1624         if (!try_module_get(THIS_MODULE)) {
1625                 c = ERR_PTR(-ENODEV);
1626                 goto out2;
1627         }
1628
1629         sb = kcalloc(nr_devices, sizeof(*sb), GFP_KERNEL);
1630         if (!sb)
1631                 goto err;
1632
1633         for (i = 0; i < nr_devices; i++) {
1634                 ret = bch2_read_super(devices[i], &opts, &sb[i]);
1635                 if (ret)
1636                         goto err;
1637
1638                 err = bch2_sb_validate(&sb[i]);
1639                 if (err)
1640                         goto err_print;
1641         }
1642
1643         for (i = 1; i < nr_devices; i++)
1644                 if (le64_to_cpu(sb[i].sb->seq) >
1645                     le64_to_cpu(sb[best_sb].sb->seq))
1646                         best_sb = i;
1647
1648         for (i = 0; i < nr_devices; i++) {
1649                 err = bch2_dev_in_fs(sb[best_sb].sb, sb[i].sb);
1650                 if (err)
1651                         goto err_print;
1652         }
1653
1654         ret = -ENOMEM;
1655         c = bch2_fs_alloc(sb[best_sb].sb, opts);
1656         if (!c)
1657                 goto err;
1658
1659         err = "bch2_dev_online() error";
1660         mutex_lock(&c->state_lock);
1661         for (i = 0; i < nr_devices; i++)
1662                 if (bch2_dev_attach_bdev(c, &sb[i])) {
1663                         mutex_unlock(&c->state_lock);
1664                         goto err_print;
1665                 }
1666         mutex_unlock(&c->state_lock);
1667
1668         err = "insufficient devices";
1669         if (!bch2_fs_may_start(c))
1670                 goto err_print;
1671
1672         if (!c->opts.nostart) {
1673                 err = bch2_fs_start(c);
1674                 if (err)
1675                         goto err_print;
1676         }
1677 out:
1678         kfree(sb);
1679         module_put(THIS_MODULE);
1680 out2:
1681         pr_verbose_init(opts, "ret %i", PTR_ERR_OR_ZERO(c));
1682         return c;
1683 err_print:
1684         pr_err("bch_fs_open err opening %s: %s",
1685                devices[0], err);
1686         ret = -EINVAL;
1687 err:
1688         if (c)
1689                 bch2_fs_stop(c);
1690         for (i = 0; i < nr_devices; i++)
1691                 bch2_free_super(&sb[i]);
1692         c = ERR_PTR(ret);
1693         goto out;
1694 }
1695
1696 static const char *__bch2_fs_open_incremental(struct bch_sb_handle *sb,
1697                                               struct bch_opts opts)
1698 {
1699         const char *err;
1700         struct bch_fs *c;
1701         bool allocated_fs = false;
1702
1703         err = bch2_sb_validate(sb);
1704         if (err)
1705                 return err;
1706
1707         mutex_lock(&bch_fs_list_lock);
1708         c = __bch2_uuid_to_fs(sb->sb->uuid);
1709         if (c) {
1710                 closure_get(&c->cl);
1711
1712                 err = bch2_dev_in_fs(c->disk_sb.sb, sb->sb);
1713                 if (err)
1714                         goto err;
1715         } else {
1716                 c = bch2_fs_alloc(sb->sb, opts);
1717                 err = "cannot allocate memory";
1718                 if (!c)
1719                         goto err;
1720
1721                 allocated_fs = true;
1722         }
1723
1724         err = "bch2_dev_online() error";
1725
1726         mutex_lock(&c->sb_lock);
1727         if (bch2_dev_attach_bdev(c, sb)) {
1728                 mutex_unlock(&c->sb_lock);
1729                 goto err;
1730         }
1731         mutex_unlock(&c->sb_lock);
1732
1733         if (!c->opts.nostart && bch2_fs_may_start(c)) {
1734                 err = bch2_fs_start(c);
1735                 if (err)
1736                         goto err;
1737         }
1738
1739         closure_put(&c->cl);
1740         mutex_unlock(&bch_fs_list_lock);
1741
1742         return NULL;
1743 err:
1744         mutex_unlock(&bch_fs_list_lock);
1745
1746         if (allocated_fs)
1747                 bch2_fs_stop(c);
1748         else if (c)
1749                 closure_put(&c->cl);
1750
1751         return err;
1752 }
1753
1754 const char *bch2_fs_open_incremental(const char *path)
1755 {
1756         struct bch_sb_handle sb;
1757         struct bch_opts opts = bch2_opts_empty();
1758         const char *err;
1759
1760         if (bch2_read_super(path, &opts, &sb))
1761                 return "error reading superblock";
1762
1763         err = __bch2_fs_open_incremental(&sb, opts);
1764         bch2_free_super(&sb);
1765
1766         return err;
1767 }
1768
1769 /* Global interfaces/init */
1770
1771 static void bcachefs_exit(void)
1772 {
1773         bch2_debug_exit();
1774         bch2_vfs_exit();
1775         bch2_chardev_exit();
1776         if (bcachefs_kset)
1777                 kset_unregister(bcachefs_kset);
1778 }
1779
1780 static int __init bcachefs_init(void)
1781 {
1782         bch2_bkey_pack_test();
1783         bch2_inode_pack_test();
1784
1785         if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) ||
1786             bch2_chardev_init() ||
1787             bch2_vfs_init() ||
1788             bch2_debug_init())
1789                 goto err;
1790
1791         return 0;
1792 err:
1793         bcachefs_exit();
1794         return -ENOMEM;
1795 }
1796
1797 #define BCH_DEBUG_PARAM(name, description)                      \
1798         bool bch2_##name;                                       \
1799         module_param_named(name, bch2_##name, bool, 0644);      \
1800         MODULE_PARM_DESC(name, description);
1801 BCH_DEBUG_PARAMS()
1802 #undef BCH_DEBUG_PARAM
1803
1804 unsigned bch2_metadata_version = BCH_SB_VERSION_MAX;
1805 module_param_named(version, bch2_metadata_version, uint, 0400);
1806
1807 module_exit(bcachefs_exit);
1808 module_init(bcachefs_init);