bcachefs: Fix shutdown ordering
[linux-2.6-block.git] / fs / bcachefs / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcachefs setup/teardown code, and some metadata io - read a superblock and
4  * figure out what to do with it.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9
10 #include "bcachefs.h"
11 #include "alloc_background.h"
12 #include "alloc_foreground.h"
13 #include "bkey_sort.h"
14 #include "btree_cache.h"
15 #include "btree_gc.h"
16 #include "btree_journal_iter.h"
17 #include "btree_key_cache.h"
18 #include "btree_node_scan.h"
19 #include "btree_update_interior.h"
20 #include "btree_io.h"
21 #include "btree_write_buffer.h"
22 #include "buckets_waiting_for_journal.h"
23 #include "chardev.h"
24 #include "checksum.h"
25 #include "clock.h"
26 #include "compress.h"
27 #include "debug.h"
28 #include "disk_groups.h"
29 #include "ec.h"
30 #include "errcode.h"
31 #include "error.h"
32 #include "fs.h"
33 #include "fs-io.h"
34 #include "fs-io-buffered.h"
35 #include "fs-io-direct.h"
36 #include "fsck.h"
37 #include "inode.h"
38 #include "io_read.h"
39 #include "io_write.h"
40 #include "journal.h"
41 #include "journal_reclaim.h"
42 #include "journal_seq_blacklist.h"
43 #include "move.h"
44 #include "migrate.h"
45 #include "movinggc.h"
46 #include "nocow_locking.h"
47 #include "quota.h"
48 #include "rebalance.h"
49 #include "recovery.h"
50 #include "replicas.h"
51 #include "sb-clean.h"
52 #include "sb-counters.h"
53 #include "sb-errors.h"
54 #include "sb-members.h"
55 #include "snapshot.h"
56 #include "subvolume.h"
57 #include "super.h"
58 #include "super-io.h"
59 #include "sysfs.h"
60 #include "thread_with_file.h"
61 #include "trace.h"
62
63 #include <linux/backing-dev.h>
64 #include <linux/blkdev.h>
65 #include <linux/debugfs.h>
66 #include <linux/device.h>
67 #include <linux/idr.h>
68 #include <linux/module.h>
69 #include <linux/percpu.h>
70 #include <linux/random.h>
71 #include <linux/sysfs.h>
72 #include <crypto/hash.h>
73
74 MODULE_LICENSE("GPL");
75 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
76 MODULE_DESCRIPTION("bcachefs filesystem");
77 MODULE_SOFTDEP("pre: crc32c");
78 MODULE_SOFTDEP("pre: crc64");
79 MODULE_SOFTDEP("pre: sha256");
80 MODULE_SOFTDEP("pre: chacha20");
81 MODULE_SOFTDEP("pre: poly1305");
82 MODULE_SOFTDEP("pre: xxhash");
83
84 const char * const bch2_fs_flag_strs[] = {
85 #define x(n)            #n,
86         BCH_FS_FLAGS()
87 #undef x
88         NULL
89 };
90
91 __printf(2, 0)
92 static void bch2_print_maybe_redirect(struct stdio_redirect *stdio, const char *fmt, va_list args)
93 {
94 #ifdef __KERNEL__
95         if (unlikely(stdio)) {
96                 if (fmt[0] == KERN_SOH[0])
97                         fmt += 2;
98
99                 bch2_stdio_redirect_vprintf(stdio, true, fmt, args);
100                 return;
101         }
102 #endif
103         vprintk(fmt, args);
104 }
105
106 void bch2_print_opts(struct bch_opts *opts, const char *fmt, ...)
107 {
108         struct stdio_redirect *stdio = (void *)(unsigned long)opts->stdio;
109
110         va_list args;
111         va_start(args, fmt);
112         bch2_print_maybe_redirect(stdio, fmt, args);
113         va_end(args);
114 }
115
116 void __bch2_print(struct bch_fs *c, const char *fmt, ...)
117 {
118         struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c);
119
120         va_list args;
121         va_start(args, fmt);
122         bch2_print_maybe_redirect(stdio, fmt, args);
123         va_end(args);
124 }
125
126 #define KTYPE(type)                                                     \
127 static const struct attribute_group type ## _group = {                  \
128         .attrs = type ## _files                                         \
129 };                                                                      \
130                                                                         \
131 static const struct attribute_group *type ## _groups[] = {              \
132         &type ## _group,                                                \
133         NULL                                                            \
134 };                                                                      \
135                                                                         \
136 static const struct kobj_type type ## _ktype = {                        \
137         .release        = type ## _release,                             \
138         .sysfs_ops      = &type ## _sysfs_ops,                          \
139         .default_groups = type ## _groups                               \
140 }
141
142 static void bch2_fs_release(struct kobject *);
143 static void bch2_dev_release(struct kobject *);
144 static void bch2_fs_counters_release(struct kobject *k)
145 {
146 }
147
148 static void bch2_fs_internal_release(struct kobject *k)
149 {
150 }
151
152 static void bch2_fs_opts_dir_release(struct kobject *k)
153 {
154 }
155
156 static void bch2_fs_time_stats_release(struct kobject *k)
157 {
158 }
159
160 KTYPE(bch2_fs);
161 KTYPE(bch2_fs_counters);
162 KTYPE(bch2_fs_internal);
163 KTYPE(bch2_fs_opts_dir);
164 KTYPE(bch2_fs_time_stats);
165 KTYPE(bch2_dev);
166
167 static struct kset *bcachefs_kset;
168 static LIST_HEAD(bch_fs_list);
169 static DEFINE_MUTEX(bch_fs_list_lock);
170
171 DECLARE_WAIT_QUEUE_HEAD(bch2_read_only_wait);
172
173 static void bch2_dev_free(struct bch_dev *);
174 static int bch2_dev_alloc(struct bch_fs *, unsigned);
175 static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *);
176 static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *);
177
178 struct bch_fs *bch2_dev_to_fs(dev_t dev)
179 {
180         struct bch_fs *c;
181
182         mutex_lock(&bch_fs_list_lock);
183         rcu_read_lock();
184
185         list_for_each_entry(c, &bch_fs_list, list)
186                 for_each_member_device_rcu(c, ca, NULL)
187                         if (ca->disk_sb.bdev && ca->disk_sb.bdev->bd_dev == dev) {
188                                 closure_get(&c->cl);
189                                 goto found;
190                         }
191         c = NULL;
192 found:
193         rcu_read_unlock();
194         mutex_unlock(&bch_fs_list_lock);
195
196         return c;
197 }
198
199 static struct bch_fs *__bch2_uuid_to_fs(__uuid_t uuid)
200 {
201         struct bch_fs *c;
202
203         lockdep_assert_held(&bch_fs_list_lock);
204
205         list_for_each_entry(c, &bch_fs_list, list)
206                 if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid)))
207                         return c;
208
209         return NULL;
210 }
211
212 struct bch_fs *bch2_uuid_to_fs(__uuid_t uuid)
213 {
214         struct bch_fs *c;
215
216         mutex_lock(&bch_fs_list_lock);
217         c = __bch2_uuid_to_fs(uuid);
218         if (c)
219                 closure_get(&c->cl);
220         mutex_unlock(&bch_fs_list_lock);
221
222         return c;
223 }
224
225 static void bch2_dev_usage_journal_reserve(struct bch_fs *c)
226 {
227         unsigned nr = 0, u64s =
228                 ((sizeof(struct jset_entry_dev_usage) +
229                   sizeof(struct jset_entry_dev_usage_type) * BCH_DATA_NR)) /
230                 sizeof(u64);
231
232         rcu_read_lock();
233         for_each_member_device_rcu(c, ca, NULL)
234                 nr++;
235         rcu_read_unlock();
236
237         bch2_journal_entry_res_resize(&c->journal,
238                         &c->dev_usage_journal_res, u64s * nr);
239 }
240
241 /* Filesystem RO/RW: */
242
243 /*
244  * For startup/shutdown of RW stuff, the dependencies are:
245  *
246  * - foreground writes depend on copygc and rebalance (to free up space)
247  *
248  * - copygc and rebalance depend on mark and sweep gc (they actually probably
249  *   don't because they either reserve ahead of time or don't block if
250  *   allocations fail, but allocations can require mark and sweep gc to run
251  *   because of generation number wraparound)
252  *
253  * - all of the above depends on the allocator threads
254  *
255  * - allocator depends on the journal (when it rewrites prios and gens)
256  */
257
258 static void __bch2_fs_read_only(struct bch_fs *c)
259 {
260         unsigned clean_passes = 0;
261         u64 seq = 0;
262
263         bch2_fs_ec_stop(c);
264         bch2_open_buckets_stop(c, NULL, true);
265         bch2_rebalance_stop(c);
266         bch2_copygc_stop(c);
267         bch2_fs_ec_flush(c);
268
269         bch_verbose(c, "flushing journal and stopping allocators, journal seq %llu",
270                     journal_cur_seq(&c->journal));
271
272         do {
273                 clean_passes++;
274
275                 if (bch2_btree_interior_updates_flush(c) ||
276                     bch2_journal_flush_all_pins(&c->journal) ||
277                     bch2_btree_flush_all_writes(c) ||
278                     seq != atomic64_read(&c->journal.seq)) {
279                         seq = atomic64_read(&c->journal.seq);
280                         clean_passes = 0;
281                 }
282         } while (clean_passes < 2);
283
284         bch_verbose(c, "flushing journal and stopping allocators complete, journal seq %llu",
285                     journal_cur_seq(&c->journal));
286
287         if (test_bit(JOURNAL_replay_done, &c->journal.flags) &&
288             !test_bit(BCH_FS_emergency_ro, &c->flags))
289                 set_bit(BCH_FS_clean_shutdown, &c->flags);
290
291         bch2_fs_journal_stop(&c->journal);
292
293         bch_info(c, "%sshutdown complete, journal seq %llu",
294                  test_bit(BCH_FS_clean_shutdown, &c->flags) ? "" : "un",
295                  c->journal.seq_ondisk);
296
297         /*
298          * After stopping journal:
299          */
300         for_each_member_device(c, ca)
301                 bch2_dev_allocator_remove(c, ca);
302 }
303
304 #ifndef BCH_WRITE_REF_DEBUG
305 static void bch2_writes_disabled(struct percpu_ref *writes)
306 {
307         struct bch_fs *c = container_of(writes, struct bch_fs, writes);
308
309         set_bit(BCH_FS_write_disable_complete, &c->flags);
310         wake_up(&bch2_read_only_wait);
311 }
312 #endif
313
314 void bch2_fs_read_only(struct bch_fs *c)
315 {
316         if (!test_bit(BCH_FS_rw, &c->flags)) {
317                 bch2_journal_reclaim_stop(&c->journal);
318                 return;
319         }
320
321         BUG_ON(test_bit(BCH_FS_write_disable_complete, &c->flags));
322
323         bch_verbose(c, "going read-only");
324
325         /*
326          * Block new foreground-end write operations from starting - any new
327          * writes will return -EROFS:
328          */
329         set_bit(BCH_FS_going_ro, &c->flags);
330 #ifndef BCH_WRITE_REF_DEBUG
331         percpu_ref_kill(&c->writes);
332 #else
333         for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++)
334                 bch2_write_ref_put(c, i);
335 #endif
336
337         /*
338          * If we're not doing an emergency shutdown, we want to wait on
339          * outstanding writes to complete so they don't see spurious errors due
340          * to shutting down the allocator:
341          *
342          * If we are doing an emergency shutdown outstanding writes may
343          * hang until we shutdown the allocator so we don't want to wait
344          * on outstanding writes before shutting everything down - but
345          * we do need to wait on them before returning and signalling
346          * that going RO is complete:
347          */
348         wait_event(bch2_read_only_wait,
349                    test_bit(BCH_FS_write_disable_complete, &c->flags) ||
350                    test_bit(BCH_FS_emergency_ro, &c->flags));
351
352         bool writes_disabled = test_bit(BCH_FS_write_disable_complete, &c->flags);
353         if (writes_disabled)
354                 bch_verbose(c, "finished waiting for writes to stop");
355
356         __bch2_fs_read_only(c);
357
358         wait_event(bch2_read_only_wait,
359                    test_bit(BCH_FS_write_disable_complete, &c->flags));
360
361         if (!writes_disabled)
362                 bch_verbose(c, "finished waiting for writes to stop");
363
364         clear_bit(BCH_FS_write_disable_complete, &c->flags);
365         clear_bit(BCH_FS_going_ro, &c->flags);
366         clear_bit(BCH_FS_rw, &c->flags);
367
368         if (!bch2_journal_error(&c->journal) &&
369             !test_bit(BCH_FS_error, &c->flags) &&
370             !test_bit(BCH_FS_emergency_ro, &c->flags) &&
371             test_bit(BCH_FS_started, &c->flags) &&
372             test_bit(BCH_FS_clean_shutdown, &c->flags) &&
373             c->recovery_pass_done >= BCH_RECOVERY_PASS_journal_replay) {
374                 BUG_ON(c->journal.last_empty_seq != journal_cur_seq(&c->journal));
375                 BUG_ON(atomic_read(&c->btree_cache.dirty));
376                 BUG_ON(atomic_long_read(&c->btree_key_cache.nr_dirty));
377                 BUG_ON(c->btree_write_buffer.inc.keys.nr);
378                 BUG_ON(c->btree_write_buffer.flushing.keys.nr);
379
380                 bch_verbose(c, "marking filesystem clean");
381                 bch2_fs_mark_clean(c);
382         } else {
383                 bch_verbose(c, "done going read-only, filesystem not clean");
384         }
385 }
386
387 static void bch2_fs_read_only_work(struct work_struct *work)
388 {
389         struct bch_fs *c =
390                 container_of(work, struct bch_fs, read_only_work);
391
392         down_write(&c->state_lock);
393         bch2_fs_read_only(c);
394         up_write(&c->state_lock);
395 }
396
397 static void bch2_fs_read_only_async(struct bch_fs *c)
398 {
399         queue_work(system_long_wq, &c->read_only_work);
400 }
401
402 bool bch2_fs_emergency_read_only(struct bch_fs *c)
403 {
404         bool ret = !test_and_set_bit(BCH_FS_emergency_ro, &c->flags);
405
406         bch2_journal_halt(&c->journal);
407         bch2_fs_read_only_async(c);
408
409         wake_up(&bch2_read_only_wait);
410         return ret;
411 }
412
413 static int bch2_fs_read_write_late(struct bch_fs *c)
414 {
415         int ret;
416
417         /*
418          * Data move operations can't run until after check_snapshots has
419          * completed, and bch2_snapshot_is_ancestor() is available.
420          *
421          * Ideally we'd start copygc/rebalance earlier instead of waiting for
422          * all of recovery/fsck to complete:
423          */
424         ret = bch2_copygc_start(c);
425         if (ret) {
426                 bch_err(c, "error starting copygc thread");
427                 return ret;
428         }
429
430         ret = bch2_rebalance_start(c);
431         if (ret) {
432                 bch_err(c, "error starting rebalance thread");
433                 return ret;
434         }
435
436         return 0;
437 }
438
439 static int __bch2_fs_read_write(struct bch_fs *c, bool early)
440 {
441         int ret;
442
443         if (test_bit(BCH_FS_initial_gc_unfixed, &c->flags)) {
444                 bch_err(c, "cannot go rw, unfixed btree errors");
445                 return -BCH_ERR_erofs_unfixed_errors;
446         }
447
448         if (test_bit(BCH_FS_rw, &c->flags))
449                 return 0;
450
451         bch_info(c, "going read-write");
452
453         ret = bch2_sb_members_v2_init(c);
454         if (ret)
455                 goto err;
456
457         ret = bch2_fs_mark_dirty(c);
458         if (ret)
459                 goto err;
460
461         clear_bit(BCH_FS_clean_shutdown, &c->flags);
462
463         /*
464          * First journal write must be a flush write: after a clean shutdown we
465          * don't read the journal, so the first journal write may end up
466          * overwriting whatever was there previously, and there must always be
467          * at least one non-flush write in the journal or recovery will fail:
468          */
469         set_bit(JOURNAL_need_flush_write, &c->journal.flags);
470         set_bit(JOURNAL_running, &c->journal.flags);
471
472         for_each_rw_member(c, ca)
473                 bch2_dev_allocator_add(c, ca);
474         bch2_recalc_capacity(c);
475
476         set_bit(BCH_FS_rw, &c->flags);
477         set_bit(BCH_FS_was_rw, &c->flags);
478
479 #ifndef BCH_WRITE_REF_DEBUG
480         percpu_ref_reinit(&c->writes);
481 #else
482         for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) {
483                 BUG_ON(atomic_long_read(&c->writes[i]));
484                 atomic_long_inc(&c->writes[i]);
485         }
486 #endif
487
488         ret = bch2_journal_reclaim_start(&c->journal);
489         if (ret)
490                 goto err;
491
492         if (!early) {
493                 ret = bch2_fs_read_write_late(c);
494                 if (ret)
495                         goto err;
496         }
497
498         bch2_do_discards(c);
499         bch2_do_invalidates(c);
500         bch2_do_stripe_deletes(c);
501         bch2_do_pending_node_rewrites(c);
502         return 0;
503 err:
504         if (test_bit(BCH_FS_rw, &c->flags))
505                 bch2_fs_read_only(c);
506         else
507                 __bch2_fs_read_only(c);
508         return ret;
509 }
510
511 int bch2_fs_read_write(struct bch_fs *c)
512 {
513         if (c->opts.recovery_pass_last &&
514             c->opts.recovery_pass_last < BCH_RECOVERY_PASS_journal_replay)
515                 return -BCH_ERR_erofs_norecovery;
516
517         if (c->opts.nochanges)
518                 return -BCH_ERR_erofs_nochanges;
519
520         return __bch2_fs_read_write(c, false);
521 }
522
523 int bch2_fs_read_write_early(struct bch_fs *c)
524 {
525         lockdep_assert_held(&c->state_lock);
526
527         return __bch2_fs_read_write(c, true);
528 }
529
530 /* Filesystem startup/shutdown: */
531
532 static void __bch2_fs_free(struct bch_fs *c)
533 {
534         for (unsigned i = 0; i < BCH_TIME_STAT_NR; i++)
535                 bch2_time_stats_exit(&c->times[i]);
536
537         bch2_find_btree_nodes_exit(&c->found_btree_nodes);
538         bch2_free_pending_node_rewrites(c);
539         bch2_fs_allocator_background_exit(c);
540         bch2_fs_sb_errors_exit(c);
541         bch2_fs_counters_exit(c);
542         bch2_fs_snapshots_exit(c);
543         bch2_fs_quota_exit(c);
544         bch2_fs_fs_io_direct_exit(c);
545         bch2_fs_fs_io_buffered_exit(c);
546         bch2_fs_fsio_exit(c);
547         bch2_fs_ec_exit(c);
548         bch2_fs_encryption_exit(c);
549         bch2_fs_nocow_locking_exit(c);
550         bch2_fs_io_write_exit(c);
551         bch2_fs_io_read_exit(c);
552         bch2_fs_buckets_waiting_for_journal_exit(c);
553         bch2_fs_btree_interior_update_exit(c);
554         bch2_fs_btree_key_cache_exit(&c->btree_key_cache);
555         bch2_fs_btree_cache_exit(c);
556         bch2_fs_btree_iter_exit(c);
557         bch2_fs_replicas_exit(c);
558         bch2_fs_journal_exit(&c->journal);
559         bch2_io_clock_exit(&c->io_clock[WRITE]);
560         bch2_io_clock_exit(&c->io_clock[READ]);
561         bch2_fs_compress_exit(c);
562         bch2_journal_keys_put_initial(c);
563         bch2_find_btree_nodes_exit(&c->found_btree_nodes);
564         BUG_ON(atomic_read(&c->journal_keys.ref));
565         bch2_fs_btree_write_buffer_exit(c);
566         percpu_free_rwsem(&c->mark_lock);
567         EBUG_ON(percpu_u64_get(c->online_reserved));
568         free_percpu(c->online_reserved);
569
570         darray_exit(&c->btree_roots_extra);
571         free_percpu(c->pcpu);
572         mempool_exit(&c->large_bkey_pool);
573         mempool_exit(&c->btree_bounce_pool);
574         bioset_exit(&c->btree_bio);
575         mempool_exit(&c->fill_iter);
576 #ifndef BCH_WRITE_REF_DEBUG
577         percpu_ref_exit(&c->writes);
578 #endif
579         kfree(rcu_dereference_protected(c->disk_groups, 1));
580         kfree(c->journal_seq_blacklist_table);
581         kfree(c->unused_inode_hints);
582
583         if (c->write_ref_wq)
584                 destroy_workqueue(c->write_ref_wq);
585         if (c->io_complete_wq)
586                 destroy_workqueue(c->io_complete_wq);
587         if (c->copygc_wq)
588                 destroy_workqueue(c->copygc_wq);
589         if (c->btree_io_complete_wq)
590                 destroy_workqueue(c->btree_io_complete_wq);
591         if (c->btree_update_wq)
592                 destroy_workqueue(c->btree_update_wq);
593
594         bch2_free_super(&c->disk_sb);
595         kvfree(c);
596         module_put(THIS_MODULE);
597 }
598
599 static void bch2_fs_release(struct kobject *kobj)
600 {
601         struct bch_fs *c = container_of(kobj, struct bch_fs, kobj);
602
603         __bch2_fs_free(c);
604 }
605
606 void __bch2_fs_stop(struct bch_fs *c)
607 {
608         bch_verbose(c, "shutting down");
609
610         set_bit(BCH_FS_stopping, &c->flags);
611
612         down_write(&c->state_lock);
613         bch2_fs_read_only(c);
614         up_write(&c->state_lock);
615
616         for_each_member_device(c, ca)
617                 if (ca->kobj.state_in_sysfs &&
618                     ca->disk_sb.bdev)
619                         sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs");
620
621         if (c->kobj.state_in_sysfs)
622                 kobject_del(&c->kobj);
623
624         bch2_fs_debug_exit(c);
625         bch2_fs_chardev_exit(c);
626
627         bch2_ro_ref_put(c);
628         wait_event(c->ro_ref_wait, !refcount_read(&c->ro_ref));
629
630         kobject_put(&c->counters_kobj);
631         kobject_put(&c->time_stats);
632         kobject_put(&c->opts_dir);
633         kobject_put(&c->internal);
634
635         /* btree prefetch might have kicked off reads in the background: */
636         bch2_btree_flush_all_reads(c);
637
638         for_each_member_device(c, ca)
639                 cancel_work_sync(&ca->io_error_work);
640
641         cancel_work_sync(&c->read_only_work);
642 }
643
644 void bch2_fs_free(struct bch_fs *c)
645 {
646         unsigned i;
647
648         mutex_lock(&bch_fs_list_lock);
649         list_del(&c->list);
650         mutex_unlock(&bch_fs_list_lock);
651
652         closure_sync(&c->cl);
653         closure_debug_destroy(&c->cl);
654
655         for (i = 0; i < c->sb.nr_devices; i++) {
656                 struct bch_dev *ca = rcu_dereference_protected(c->devs[i], true);
657
658                 if (ca) {
659                         EBUG_ON(atomic_long_read(&ca->ref) != 1);
660                         bch2_free_super(&ca->disk_sb);
661                         bch2_dev_free(ca);
662                 }
663         }
664
665         bch_verbose(c, "shutdown complete");
666
667         kobject_put(&c->kobj);
668 }
669
670 void bch2_fs_stop(struct bch_fs *c)
671 {
672         __bch2_fs_stop(c);
673         bch2_fs_free(c);
674 }
675
676 static int bch2_fs_online(struct bch_fs *c)
677 {
678         int ret = 0;
679
680         lockdep_assert_held(&bch_fs_list_lock);
681
682         if (__bch2_uuid_to_fs(c->sb.uuid)) {
683                 bch_err(c, "filesystem UUID already open");
684                 return -EINVAL;
685         }
686
687         ret = bch2_fs_chardev_init(c);
688         if (ret) {
689                 bch_err(c, "error creating character device");
690                 return ret;
691         }
692
693         bch2_fs_debug_init(c);
694
695         ret = kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) ?:
696             kobject_add(&c->internal, &c->kobj, "internal") ?:
697             kobject_add(&c->opts_dir, &c->kobj, "options") ?:
698 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
699             kobject_add(&c->time_stats, &c->kobj, "time_stats") ?:
700 #endif
701             kobject_add(&c->counters_kobj, &c->kobj, "counters") ?:
702             bch2_opts_create_sysfs_files(&c->opts_dir);
703         if (ret) {
704                 bch_err(c, "error creating sysfs objects");
705                 return ret;
706         }
707
708         down_write(&c->state_lock);
709
710         for_each_member_device(c, ca) {
711                 ret = bch2_dev_sysfs_online(c, ca);
712                 if (ret) {
713                         bch_err(c, "error creating sysfs objects");
714                         bch2_dev_put(ca);
715                         goto err;
716                 }
717         }
718
719         BUG_ON(!list_empty(&c->list));
720         list_add(&c->list, &bch_fs_list);
721 err:
722         up_write(&c->state_lock);
723         return ret;
724 }
725
726 static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts)
727 {
728         struct bch_fs *c;
729         struct printbuf name = PRINTBUF;
730         unsigned i, iter_size;
731         int ret = 0;
732
733         c = kvmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO);
734         if (!c) {
735                 c = ERR_PTR(-BCH_ERR_ENOMEM_fs_alloc);
736                 goto out;
737         }
738
739         c->stdio = (void *)(unsigned long) opts.stdio;
740
741         __module_get(THIS_MODULE);
742
743         closure_init(&c->cl, NULL);
744
745         c->kobj.kset = bcachefs_kset;
746         kobject_init(&c->kobj, &bch2_fs_ktype);
747         kobject_init(&c->internal, &bch2_fs_internal_ktype);
748         kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype);
749         kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype);
750         kobject_init(&c->counters_kobj, &bch2_fs_counters_ktype);
751
752         c->minor                = -1;
753         c->disk_sb.fs_sb        = true;
754
755         init_rwsem(&c->state_lock);
756         mutex_init(&c->sb_lock);
757         mutex_init(&c->replicas_gc_lock);
758         mutex_init(&c->btree_root_lock);
759         INIT_WORK(&c->read_only_work, bch2_fs_read_only_work);
760
761         refcount_set(&c->ro_ref, 1);
762         init_waitqueue_head(&c->ro_ref_wait);
763         sema_init(&c->online_fsck_mutex, 1);
764
765         init_rwsem(&c->gc_lock);
766         mutex_init(&c->gc_gens_lock);
767         atomic_set(&c->journal_keys.ref, 1);
768         c->journal_keys.initial_ref_held = true;
769
770         for (i = 0; i < BCH_TIME_STAT_NR; i++)
771                 bch2_time_stats_init(&c->times[i]);
772
773         bch2_fs_gc_init(c);
774         bch2_fs_copygc_init(c);
775         bch2_fs_btree_key_cache_init_early(&c->btree_key_cache);
776         bch2_fs_btree_iter_init_early(c);
777         bch2_fs_btree_interior_update_init_early(c);
778         bch2_fs_allocator_background_init(c);
779         bch2_fs_allocator_foreground_init(c);
780         bch2_fs_rebalance_init(c);
781         bch2_fs_quota_init(c);
782         bch2_fs_ec_init_early(c);
783         bch2_fs_move_init(c);
784         bch2_fs_sb_errors_init_early(c);
785
786         INIT_LIST_HEAD(&c->list);
787
788         mutex_init(&c->usage_scratch_lock);
789
790         mutex_init(&c->bio_bounce_pages_lock);
791         mutex_init(&c->snapshot_table_lock);
792         init_rwsem(&c->snapshot_create_lock);
793
794         spin_lock_init(&c->btree_write_error_lock);
795
796         INIT_LIST_HEAD(&c->journal_iters);
797
798         INIT_LIST_HEAD(&c->fsck_error_msgs);
799         mutex_init(&c->fsck_error_msgs_lock);
800
801         seqcount_init(&c->usage_lock);
802
803         sema_init(&c->io_in_flight, 128);
804
805         INIT_LIST_HEAD(&c->vfs_inodes_list);
806         mutex_init(&c->vfs_inodes_lock);
807
808         c->copy_gc_enabled              = 1;
809         c->rebalance.enabled            = 1;
810         c->promote_whole_extents        = true;
811
812         c->journal.flush_write_time     = &c->times[BCH_TIME_journal_flush_write];
813         c->journal.noflush_write_time   = &c->times[BCH_TIME_journal_noflush_write];
814         c->journal.flush_seq_time       = &c->times[BCH_TIME_journal_flush_seq];
815
816         bch2_fs_btree_cache_init_early(&c->btree_cache);
817
818         mutex_init(&c->sectors_available_lock);
819
820         ret = percpu_init_rwsem(&c->mark_lock);
821         if (ret)
822                 goto err;
823
824         mutex_lock(&c->sb_lock);
825         ret = bch2_sb_to_fs(c, sb);
826         mutex_unlock(&c->sb_lock);
827
828         if (ret)
829                 goto err;
830
831         pr_uuid(&name, c->sb.user_uuid.b);
832         ret = name.allocation_failure ? -BCH_ERR_ENOMEM_fs_name_alloc : 0;
833         if (ret)
834                 goto err;
835
836         strscpy(c->name, name.buf, sizeof(c->name));
837         printbuf_exit(&name);
838
839         /* Compat: */
840         if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 &&
841             !BCH_SB_JOURNAL_FLUSH_DELAY(sb))
842                 SET_BCH_SB_JOURNAL_FLUSH_DELAY(sb, 1000);
843
844         if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 &&
845             !BCH_SB_JOURNAL_RECLAIM_DELAY(sb))
846                 SET_BCH_SB_JOURNAL_RECLAIM_DELAY(sb, 100);
847
848         c->opts = bch2_opts_default;
849         ret = bch2_opts_from_sb(&c->opts, sb);
850         if (ret)
851                 goto err;
852
853         bch2_opts_apply(&c->opts, opts);
854
855         c->btree_key_cache_btrees |= 1U << BTREE_ID_alloc;
856         if (c->opts.inodes_use_key_cache)
857                 c->btree_key_cache_btrees |= 1U << BTREE_ID_inodes;
858         c->btree_key_cache_btrees |= 1U << BTREE_ID_logged_ops;
859
860         c->block_bits           = ilog2(block_sectors(c));
861         c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c);
862
863         if (bch2_fs_init_fault("fs_alloc")) {
864                 bch_err(c, "fs_alloc fault injected");
865                 ret = -EFAULT;
866                 goto err;
867         }
868
869         iter_size = sizeof(struct sort_iter) +
870                 (btree_blocks(c) + 1) * 2 *
871                 sizeof(struct sort_iter_set);
872
873         c->inode_shard_bits = ilog2(roundup_pow_of_two(num_possible_cpus()));
874
875         if (!(c->btree_update_wq = alloc_workqueue("bcachefs",
876                                 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_UNBOUND, 512)) ||
877             !(c->btree_io_complete_wq = alloc_workqueue("bcachefs_btree_io",
878                                 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) ||
879             !(c->copygc_wq = alloc_workqueue("bcachefs_copygc",
880                                 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) ||
881             !(c->io_complete_wq = alloc_workqueue("bcachefs_io",
882                                 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 512)) ||
883             !(c->write_ref_wq = alloc_workqueue("bcachefs_write_ref",
884                                 WQ_FREEZABLE, 0)) ||
885 #ifndef BCH_WRITE_REF_DEBUG
886             percpu_ref_init(&c->writes, bch2_writes_disabled,
887                             PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
888 #endif
889             mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) ||
890             bioset_init(&c->btree_bio, 1,
891                         max(offsetof(struct btree_read_bio, bio),
892                             offsetof(struct btree_write_bio, wbio.bio)),
893                         BIOSET_NEED_BVECS) ||
894             !(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) ||
895             !(c->online_reserved = alloc_percpu(u64)) ||
896             mempool_init_kvmalloc_pool(&c->btree_bounce_pool, 1,
897                                        c->opts.btree_node_size) ||
898             mempool_init_kmalloc_pool(&c->large_bkey_pool, 1, 2048) ||
899             !(c->unused_inode_hints = kcalloc(1U << c->inode_shard_bits,
900                                               sizeof(u64), GFP_KERNEL))) {
901                 ret = -BCH_ERR_ENOMEM_fs_other_alloc;
902                 goto err;
903         }
904
905         ret = bch2_fs_counters_init(c) ?:
906             bch2_fs_sb_errors_init(c) ?:
907             bch2_io_clock_init(&c->io_clock[READ]) ?:
908             bch2_io_clock_init(&c->io_clock[WRITE]) ?:
909             bch2_fs_journal_init(&c->journal) ?:
910             bch2_fs_replicas_init(c) ?:
911             bch2_fs_btree_cache_init(c) ?:
912             bch2_fs_btree_key_cache_init(&c->btree_key_cache) ?:
913             bch2_fs_btree_iter_init(c) ?:
914             bch2_fs_btree_interior_update_init(c) ?:
915             bch2_fs_buckets_waiting_for_journal_init(c) ?:
916             bch2_fs_btree_write_buffer_init(c) ?:
917             bch2_fs_subvolumes_init(c) ?:
918             bch2_fs_io_read_init(c) ?:
919             bch2_fs_io_write_init(c) ?:
920             bch2_fs_nocow_locking_init(c) ?:
921             bch2_fs_encryption_init(c) ?:
922             bch2_fs_compress_init(c) ?:
923             bch2_fs_ec_init(c) ?:
924             bch2_fs_fsio_init(c) ?:
925             bch2_fs_fs_io_buffered_init(c) ?:
926             bch2_fs_fs_io_direct_init(c);
927         if (ret)
928                 goto err;
929
930         for (i = 0; i < c->sb.nr_devices; i++)
931                 if (bch2_member_exists(c->disk_sb.sb, i) &&
932                     bch2_dev_alloc(c, i)) {
933                         ret = -EEXIST;
934                         goto err;
935                 }
936
937         bch2_journal_entry_res_resize(&c->journal,
938                         &c->btree_root_journal_res,
939                         BTREE_ID_NR * (JSET_KEYS_U64s + BKEY_BTREE_PTR_U64s_MAX));
940         bch2_dev_usage_journal_reserve(c);
941         bch2_journal_entry_res_resize(&c->journal,
942                         &c->clock_journal_res,
943                         (sizeof(struct jset_entry_clock) / sizeof(u64)) * 2);
944
945         mutex_lock(&bch_fs_list_lock);
946         ret = bch2_fs_online(c);
947         mutex_unlock(&bch_fs_list_lock);
948
949         if (ret)
950                 goto err;
951 out:
952         return c;
953 err:
954         bch2_fs_free(c);
955         c = ERR_PTR(ret);
956         goto out;
957 }
958
959 noinline_for_stack
960 static void print_mount_opts(struct bch_fs *c)
961 {
962         enum bch_opt_id i;
963         struct printbuf p = PRINTBUF;
964         bool first = true;
965
966         prt_str(&p, "mounting version ");
967         bch2_version_to_text(&p, c->sb.version);
968
969         if (c->opts.read_only) {
970                 prt_str(&p, " opts=");
971                 first = false;
972                 prt_printf(&p, "ro");
973         }
974
975         for (i = 0; i < bch2_opts_nr; i++) {
976                 const struct bch_option *opt = &bch2_opt_table[i];
977                 u64 v = bch2_opt_get_by_id(&c->opts, i);
978
979                 if (!(opt->flags & OPT_MOUNT))
980                         continue;
981
982                 if (v == bch2_opt_get_by_id(&bch2_opts_default, i))
983                         continue;
984
985                 prt_str(&p, first ? " opts=" : ",");
986                 first = false;
987                 bch2_opt_to_text(&p, c, c->disk_sb.sb, opt, v, OPT_SHOW_MOUNT_STYLE);
988         }
989
990         bch_info(c, "%s", p.buf);
991         printbuf_exit(&p);
992 }
993
994 int bch2_fs_start(struct bch_fs *c)
995 {
996         time64_t now = ktime_get_real_seconds();
997         int ret;
998
999         print_mount_opts(c);
1000
1001         down_write(&c->state_lock);
1002
1003         BUG_ON(test_bit(BCH_FS_started, &c->flags));
1004
1005         mutex_lock(&c->sb_lock);
1006
1007         ret = bch2_sb_members_v2_init(c);
1008         if (ret) {
1009                 mutex_unlock(&c->sb_lock);
1010                 goto err;
1011         }
1012
1013         for_each_online_member(c, ca)
1014                 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = cpu_to_le64(now);
1015
1016         struct bch_sb_field_ext *ext =
1017                 bch2_sb_field_get_minsize(&c->disk_sb, ext, sizeof(*ext) / sizeof(u64));
1018         mutex_unlock(&c->sb_lock);
1019
1020         if (!ext) {
1021                 bch_err(c, "insufficient space in superblock for sb_field_ext");
1022                 ret = -BCH_ERR_ENOSPC_sb;
1023                 goto err;
1024         }
1025
1026         for_each_rw_member(c, ca)
1027                 bch2_dev_allocator_add(c, ca);
1028         bch2_recalc_capacity(c);
1029
1030         ret = BCH_SB_INITIALIZED(c->disk_sb.sb)
1031                 ? bch2_fs_recovery(c)
1032                 : bch2_fs_initialize(c);
1033         if (ret)
1034                 goto err;
1035
1036         ret = bch2_opts_check_may_set(c);
1037         if (ret)
1038                 goto err;
1039
1040         if (bch2_fs_init_fault("fs_start")) {
1041                 bch_err(c, "fs_start fault injected");
1042                 ret = -EINVAL;
1043                 goto err;
1044         }
1045
1046         set_bit(BCH_FS_started, &c->flags);
1047
1048         if (c->opts.read_only) {
1049                 bch2_fs_read_only(c);
1050         } else {
1051                 ret = !test_bit(BCH_FS_rw, &c->flags)
1052                         ? bch2_fs_read_write(c)
1053                         : bch2_fs_read_write_late(c);
1054                 if (ret)
1055                         goto err;
1056         }
1057
1058         ret = 0;
1059 err:
1060         if (ret)
1061                 bch_err_msg(c, ret, "starting filesystem");
1062         else
1063                 bch_verbose(c, "done starting filesystem");
1064         up_write(&c->state_lock);
1065         return ret;
1066 }
1067
1068 static int bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c)
1069 {
1070         struct bch_member m = bch2_sb_member_get(sb, sb->dev_idx);
1071
1072         if (le16_to_cpu(sb->block_size) != block_sectors(c))
1073                 return -BCH_ERR_mismatched_block_size;
1074
1075         if (le16_to_cpu(m.bucket_size) <
1076             BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb))
1077                 return -BCH_ERR_bucket_size_too_small;
1078
1079         return 0;
1080 }
1081
1082 static int bch2_dev_in_fs(struct bch_sb_handle *fs,
1083                           struct bch_sb_handle *sb,
1084                           struct bch_opts *opts)
1085 {
1086         if (fs == sb)
1087                 return 0;
1088
1089         if (!uuid_equal(&fs->sb->uuid, &sb->sb->uuid))
1090                 return -BCH_ERR_device_not_a_member_of_filesystem;
1091
1092         if (!bch2_member_exists(fs->sb, sb->sb->dev_idx))
1093                 return -BCH_ERR_device_has_been_removed;
1094
1095         if (fs->sb->block_size != sb->sb->block_size)
1096                 return -BCH_ERR_mismatched_block_size;
1097
1098         if (le16_to_cpu(fs->sb->version) < bcachefs_metadata_version_member_seq ||
1099             le16_to_cpu(sb->sb->version) < bcachefs_metadata_version_member_seq)
1100                 return 0;
1101
1102         if (fs->sb->seq == sb->sb->seq &&
1103             fs->sb->write_time != sb->sb->write_time) {
1104                 struct printbuf buf = PRINTBUF;
1105
1106                 prt_str(&buf, "Split brain detected between ");
1107                 prt_bdevname(&buf, sb->bdev);
1108                 prt_str(&buf, " and ");
1109                 prt_bdevname(&buf, fs->bdev);
1110                 prt_char(&buf, ':');
1111                 prt_newline(&buf);
1112                 prt_printf(&buf, "seq=%llu but write_time different, got", le64_to_cpu(sb->sb->seq));
1113                 prt_newline(&buf);
1114
1115                 prt_bdevname(&buf, fs->bdev);
1116                 prt_char(&buf, ' ');
1117                 bch2_prt_datetime(&buf, le64_to_cpu(fs->sb->write_time));;
1118                 prt_newline(&buf);
1119
1120                 prt_bdevname(&buf, sb->bdev);
1121                 prt_char(&buf, ' ');
1122                 bch2_prt_datetime(&buf, le64_to_cpu(sb->sb->write_time));;
1123                 prt_newline(&buf);
1124
1125                 if (!opts->no_splitbrain_check)
1126                         prt_printf(&buf, "Not using older sb");
1127
1128                 pr_err("%s", buf.buf);
1129                 printbuf_exit(&buf);
1130
1131                 if (!opts->no_splitbrain_check)
1132                         return -BCH_ERR_device_splitbrain;
1133         }
1134
1135         struct bch_member m = bch2_sb_member_get(fs->sb, sb->sb->dev_idx);
1136         u64 seq_from_fs         = le64_to_cpu(m.seq);
1137         u64 seq_from_member     = le64_to_cpu(sb->sb->seq);
1138
1139         if (seq_from_fs && seq_from_fs < seq_from_member) {
1140                 struct printbuf buf = PRINTBUF;
1141
1142                 prt_str(&buf, "Split brain detected between ");
1143                 prt_bdevname(&buf, sb->bdev);
1144                 prt_str(&buf, " and ");
1145                 prt_bdevname(&buf, fs->bdev);
1146                 prt_char(&buf, ':');
1147                 prt_newline(&buf);
1148
1149                 prt_bdevname(&buf, fs->bdev);
1150                 prt_str(&buf, " believes seq of ");
1151                 prt_bdevname(&buf, sb->bdev);
1152                 prt_printf(&buf, " to be %llu, but ", seq_from_fs);
1153                 prt_bdevname(&buf, sb->bdev);
1154                 prt_printf(&buf, " has %llu\n", seq_from_member);
1155
1156                 if (!opts->no_splitbrain_check) {
1157                         prt_str(&buf, "Not using ");
1158                         prt_bdevname(&buf, sb->bdev);
1159                 }
1160
1161                 pr_err("%s", buf.buf);
1162                 printbuf_exit(&buf);
1163
1164                 if (!opts->no_splitbrain_check)
1165                         return -BCH_ERR_device_splitbrain;
1166         }
1167
1168         return 0;
1169 }
1170
1171 /* Device startup/shutdown: */
1172
1173 static void bch2_dev_release(struct kobject *kobj)
1174 {
1175         struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj);
1176
1177         kfree(ca);
1178 }
1179
1180 static void bch2_dev_free(struct bch_dev *ca)
1181 {
1182         cancel_work_sync(&ca->io_error_work);
1183
1184         if (ca->kobj.state_in_sysfs &&
1185             ca->disk_sb.bdev)
1186                 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs");
1187
1188         if (ca->kobj.state_in_sysfs)
1189                 kobject_del(&ca->kobj);
1190
1191         kfree(ca->buckets_nouse);
1192         bch2_free_super(&ca->disk_sb);
1193         bch2_dev_journal_exit(ca);
1194
1195         free_percpu(ca->io_done);
1196         bch2_dev_buckets_free(ca);
1197         free_page((unsigned long) ca->sb_read_scratch);
1198
1199         bch2_time_stats_quantiles_exit(&ca->io_latency[WRITE]);
1200         bch2_time_stats_quantiles_exit(&ca->io_latency[READ]);
1201
1202         percpu_ref_exit(&ca->io_ref);
1203 #ifndef CONFIG_BCACHEFS_DEBUG
1204         percpu_ref_exit(&ca->ref);
1205 #endif
1206         kobject_put(&ca->kobj);
1207 }
1208
1209 static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca)
1210 {
1211
1212         lockdep_assert_held(&c->state_lock);
1213
1214         if (percpu_ref_is_zero(&ca->io_ref))
1215                 return;
1216
1217         __bch2_dev_read_only(c, ca);
1218
1219         reinit_completion(&ca->io_ref_completion);
1220         percpu_ref_kill(&ca->io_ref);
1221         wait_for_completion(&ca->io_ref_completion);
1222
1223         if (ca->kobj.state_in_sysfs) {
1224                 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs");
1225                 sysfs_remove_link(&ca->kobj, "block");
1226         }
1227
1228         bch2_free_super(&ca->disk_sb);
1229         bch2_dev_journal_exit(ca);
1230 }
1231
1232 #ifndef CONFIG_BCACHEFS_DEBUG
1233 static void bch2_dev_ref_complete(struct percpu_ref *ref)
1234 {
1235         struct bch_dev *ca = container_of(ref, struct bch_dev, ref);
1236
1237         complete(&ca->ref_completion);
1238 }
1239 #endif
1240
1241 static void bch2_dev_io_ref_complete(struct percpu_ref *ref)
1242 {
1243         struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref);
1244
1245         complete(&ca->io_ref_completion);
1246 }
1247
1248 static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca)
1249 {
1250         int ret;
1251
1252         if (!c->kobj.state_in_sysfs)
1253                 return 0;
1254
1255         if (!ca->kobj.state_in_sysfs) {
1256                 ret = kobject_add(&ca->kobj, &c->kobj,
1257                                   "dev-%u", ca->dev_idx);
1258                 if (ret)
1259                         return ret;
1260         }
1261
1262         if (ca->disk_sb.bdev) {
1263                 struct kobject *block = bdev_kobj(ca->disk_sb.bdev);
1264
1265                 ret = sysfs_create_link(block, &ca->kobj, "bcachefs");
1266                 if (ret)
1267                         return ret;
1268
1269                 ret = sysfs_create_link(&ca->kobj, block, "block");
1270                 if (ret)
1271                         return ret;
1272         }
1273
1274         return 0;
1275 }
1276
1277 static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c,
1278                                         struct bch_member *member)
1279 {
1280         struct bch_dev *ca;
1281         unsigned i;
1282
1283         ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1284         if (!ca)
1285                 return NULL;
1286
1287         kobject_init(&ca->kobj, &bch2_dev_ktype);
1288         init_completion(&ca->ref_completion);
1289         init_completion(&ca->io_ref_completion);
1290
1291         init_rwsem(&ca->bucket_lock);
1292
1293         INIT_WORK(&ca->io_error_work, bch2_io_error_work);
1294
1295         bch2_time_stats_quantiles_init(&ca->io_latency[READ]);
1296         bch2_time_stats_quantiles_init(&ca->io_latency[WRITE]);
1297
1298         ca->mi = bch2_mi_to_cpu(member);
1299
1300         for (i = 0; i < ARRAY_SIZE(member->errors); i++)
1301                 atomic64_set(&ca->errors[i], le64_to_cpu(member->errors[i]));
1302
1303         ca->uuid = member->uuid;
1304
1305         ca->nr_btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE,
1306                              ca->mi.bucket_size / btree_sectors(c));
1307
1308 #ifndef CONFIG_BCACHEFS_DEBUG
1309         if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete, 0, GFP_KERNEL))
1310                 goto err;
1311 #else
1312         atomic_long_set(&ca->ref, 1);
1313 #endif
1314
1315         if (percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_complete,
1316                             PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
1317             !(ca->sb_read_scratch = (void *) __get_free_page(GFP_KERNEL)) ||
1318             bch2_dev_buckets_alloc(c, ca) ||
1319             !(ca->io_done       = alloc_percpu(*ca->io_done)))
1320                 goto err;
1321
1322         return ca;
1323 err:
1324         bch2_dev_free(ca);
1325         return NULL;
1326 }
1327
1328 static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca,
1329                             unsigned dev_idx)
1330 {
1331         ca->dev_idx = dev_idx;
1332         __set_bit(ca->dev_idx, ca->self.d);
1333         scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx);
1334
1335         ca->fs = c;
1336         rcu_assign_pointer(c->devs[ca->dev_idx], ca);
1337
1338         if (bch2_dev_sysfs_online(c, ca))
1339                 pr_warn("error creating sysfs objects");
1340 }
1341
1342 static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx)
1343 {
1344         struct bch_member member = bch2_sb_member_get(c->disk_sb.sb, dev_idx);
1345         struct bch_dev *ca = NULL;
1346         int ret = 0;
1347
1348         if (bch2_fs_init_fault("dev_alloc"))
1349                 goto err;
1350
1351         ca = __bch2_dev_alloc(c, &member);
1352         if (!ca)
1353                 goto err;
1354
1355         ca->fs = c;
1356
1357         bch2_dev_attach(c, ca, dev_idx);
1358         return ret;
1359 err:
1360         if (ca)
1361                 bch2_dev_free(ca);
1362         return -BCH_ERR_ENOMEM_dev_alloc;
1363 }
1364
1365 static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb)
1366 {
1367         unsigned ret;
1368
1369         if (bch2_dev_is_online(ca)) {
1370                 bch_err(ca, "already have device online in slot %u",
1371                         sb->sb->dev_idx);
1372                 return -BCH_ERR_device_already_online;
1373         }
1374
1375         if (get_capacity(sb->bdev->bd_disk) <
1376             ca->mi.bucket_size * ca->mi.nbuckets) {
1377                 bch_err(ca, "cannot online: device too small");
1378                 return -BCH_ERR_device_size_too_small;
1379         }
1380
1381         BUG_ON(!percpu_ref_is_zero(&ca->io_ref));
1382
1383         ret = bch2_dev_journal_init(ca, sb->sb);
1384         if (ret)
1385                 return ret;
1386
1387         /* Commit: */
1388         ca->disk_sb = *sb;
1389         memset(sb, 0, sizeof(*sb));
1390
1391         ca->dev = ca->disk_sb.bdev->bd_dev;
1392
1393         percpu_ref_reinit(&ca->io_ref);
1394
1395         return 0;
1396 }
1397
1398 static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb)
1399 {
1400         struct bch_dev *ca;
1401         int ret;
1402
1403         lockdep_assert_held(&c->state_lock);
1404
1405         if (le64_to_cpu(sb->sb->seq) >
1406             le64_to_cpu(c->disk_sb.sb->seq))
1407                 bch2_sb_to_fs(c, sb->sb);
1408
1409         BUG_ON(!bch2_dev_exists(c, sb->sb->dev_idx));
1410
1411         ca = bch2_dev_locked(c, sb->sb->dev_idx);
1412
1413         ret = __bch2_dev_attach_bdev(ca, sb);
1414         if (ret)
1415                 return ret;
1416
1417         bch2_dev_sysfs_online(c, ca);
1418
1419         struct printbuf name = PRINTBUF;
1420         prt_bdevname(&name, ca->disk_sb.bdev);
1421
1422         if (c->sb.nr_devices == 1)
1423                 strscpy(c->name, name.buf, sizeof(c->name));
1424         strscpy(ca->name, name.buf, sizeof(ca->name));
1425
1426         printbuf_exit(&name);
1427
1428         rebalance_wakeup(c);
1429         return 0;
1430 }
1431
1432 /* Device management: */
1433
1434 /*
1435  * Note: this function is also used by the error paths - when a particular
1436  * device sees an error, we call it to determine whether we can just set the
1437  * device RO, or - if this function returns false - we'll set the whole
1438  * filesystem RO:
1439  *
1440  * XXX: maybe we should be more explicit about whether we're changing state
1441  * because we got an error or what have you?
1442  */
1443 bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca,
1444                             enum bch_member_state new_state, int flags)
1445 {
1446         struct bch_devs_mask new_online_devs;
1447         int nr_rw = 0, required;
1448
1449         lockdep_assert_held(&c->state_lock);
1450
1451         switch (new_state) {
1452         case BCH_MEMBER_STATE_rw:
1453                 return true;
1454         case BCH_MEMBER_STATE_ro:
1455                 if (ca->mi.state != BCH_MEMBER_STATE_rw)
1456                         return true;
1457
1458                 /* do we have enough devices to write to?  */
1459                 for_each_member_device(c, ca2)
1460                         if (ca2 != ca)
1461                                 nr_rw += ca2->mi.state == BCH_MEMBER_STATE_rw;
1462
1463                 required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED)
1464                                ? c->opts.metadata_replicas
1465                                : metadata_replicas_required(c),
1466                                !(flags & BCH_FORCE_IF_DATA_DEGRADED)
1467                                ? c->opts.data_replicas
1468                                : data_replicas_required(c));
1469
1470                 return nr_rw >= required;
1471         case BCH_MEMBER_STATE_failed:
1472         case BCH_MEMBER_STATE_spare:
1473                 if (ca->mi.state != BCH_MEMBER_STATE_rw &&
1474                     ca->mi.state != BCH_MEMBER_STATE_ro)
1475                         return true;
1476
1477                 /* do we have enough devices to read from?  */
1478                 new_online_devs = bch2_online_devs(c);
1479                 __clear_bit(ca->dev_idx, new_online_devs.d);
1480
1481                 return bch2_have_enough_devs(c, new_online_devs, flags, false);
1482         default:
1483                 BUG();
1484         }
1485 }
1486
1487 static bool bch2_fs_may_start(struct bch_fs *c)
1488 {
1489         struct bch_dev *ca;
1490         unsigned i, flags = 0;
1491
1492         if (c->opts.very_degraded)
1493                 flags |= BCH_FORCE_IF_DEGRADED|BCH_FORCE_IF_LOST;
1494
1495         if (c->opts.degraded)
1496                 flags |= BCH_FORCE_IF_DEGRADED;
1497
1498         if (!c->opts.degraded &&
1499             !c->opts.very_degraded) {
1500                 mutex_lock(&c->sb_lock);
1501
1502                 for (i = 0; i < c->disk_sb.sb->nr_devices; i++) {
1503                         if (!bch2_member_exists(c->disk_sb.sb, i))
1504                                 continue;
1505
1506                         ca = bch2_dev_locked(c, i);
1507
1508                         if (!bch2_dev_is_online(ca) &&
1509                             (ca->mi.state == BCH_MEMBER_STATE_rw ||
1510                              ca->mi.state == BCH_MEMBER_STATE_ro)) {
1511                                 mutex_unlock(&c->sb_lock);
1512                                 return false;
1513                         }
1514                 }
1515                 mutex_unlock(&c->sb_lock);
1516         }
1517
1518         return bch2_have_enough_devs(c, bch2_online_devs(c), flags, true);
1519 }
1520
1521 static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca)
1522 {
1523         /*
1524          * The allocator thread itself allocates btree nodes, so stop it first:
1525          */
1526         bch2_dev_allocator_remove(c, ca);
1527         bch2_dev_journal_stop(&c->journal, ca);
1528 }
1529
1530 static void __bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca)
1531 {
1532         lockdep_assert_held(&c->state_lock);
1533
1534         BUG_ON(ca->mi.state != BCH_MEMBER_STATE_rw);
1535
1536         bch2_dev_allocator_add(c, ca);
1537         bch2_recalc_capacity(c);
1538 }
1539
1540 int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
1541                          enum bch_member_state new_state, int flags)
1542 {
1543         struct bch_member *m;
1544         int ret = 0;
1545
1546         if (ca->mi.state == new_state)
1547                 return 0;
1548
1549         if (!bch2_dev_state_allowed(c, ca, new_state, flags))
1550                 return -BCH_ERR_device_state_not_allowed;
1551
1552         if (new_state != BCH_MEMBER_STATE_rw)
1553                 __bch2_dev_read_only(c, ca);
1554
1555         bch_notice(ca, "%s", bch2_member_states[new_state]);
1556
1557         mutex_lock(&c->sb_lock);
1558         m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx);
1559         SET_BCH_MEMBER_STATE(m, new_state);
1560         bch2_write_super(c);
1561         mutex_unlock(&c->sb_lock);
1562
1563         if (new_state == BCH_MEMBER_STATE_rw)
1564                 __bch2_dev_read_write(c, ca);
1565
1566         rebalance_wakeup(c);
1567
1568         return ret;
1569 }
1570
1571 int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
1572                        enum bch_member_state new_state, int flags)
1573 {
1574         int ret;
1575
1576         down_write(&c->state_lock);
1577         ret = __bch2_dev_set_state(c, ca, new_state, flags);
1578         up_write(&c->state_lock);
1579
1580         return ret;
1581 }
1582
1583 /* Device add/removal: */
1584
1585 static int bch2_dev_remove_alloc(struct bch_fs *c, struct bch_dev *ca)
1586 {
1587         struct bpos start       = POS(ca->dev_idx, 0);
1588         struct bpos end         = POS(ca->dev_idx, U64_MAX);
1589         int ret;
1590
1591         /*
1592          * We clear the LRU and need_discard btrees first so that we don't race
1593          * with bch2_do_invalidates() and bch2_do_discards()
1594          */
1595         ret =   bch2_btree_delete_range(c, BTREE_ID_lru, start, end,
1596                                         BTREE_TRIGGER_norun, NULL) ?:
1597                 bch2_btree_delete_range(c, BTREE_ID_need_discard, start, end,
1598                                         BTREE_TRIGGER_norun, NULL) ?:
1599                 bch2_btree_delete_range(c, BTREE_ID_freespace, start, end,
1600                                         BTREE_TRIGGER_norun, NULL) ?:
1601                 bch2_btree_delete_range(c, BTREE_ID_backpointers, start, end,
1602                                         BTREE_TRIGGER_norun, NULL) ?:
1603                 bch2_btree_delete_range(c, BTREE_ID_alloc, start, end,
1604                                         BTREE_TRIGGER_norun, NULL) ?:
1605                 bch2_btree_delete_range(c, BTREE_ID_bucket_gens, start, end,
1606                                         BTREE_TRIGGER_norun, NULL);
1607         bch_err_msg(c, ret, "removing dev alloc info");
1608         return ret;
1609 }
1610
1611 int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags)
1612 {
1613         struct bch_member *m;
1614         unsigned dev_idx = ca->dev_idx, data;
1615         int ret;
1616
1617         down_write(&c->state_lock);
1618
1619         /*
1620          * We consume a reference to ca->ref, regardless of whether we succeed
1621          * or fail:
1622          */
1623         bch2_dev_put(ca);
1624
1625         if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) {
1626                 bch_err(ca, "Cannot remove without losing data");
1627                 ret = -BCH_ERR_device_state_not_allowed;
1628                 goto err;
1629         }
1630
1631         __bch2_dev_read_only(c, ca);
1632
1633         ret = bch2_dev_data_drop(c, ca->dev_idx, flags);
1634         bch_err_msg(ca, ret, "bch2_dev_data_drop()");
1635         if (ret)
1636                 goto err;
1637
1638         ret = bch2_dev_remove_alloc(c, ca);
1639         bch_err_msg(ca, ret, "bch2_dev_remove_alloc()");
1640         if (ret)
1641                 goto err;
1642
1643         ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx);
1644         bch_err_msg(ca, ret, "bch2_journal_flush_device_pins()");
1645         if (ret)
1646                 goto err;
1647
1648         ret = bch2_journal_flush(&c->journal);
1649         bch_err_msg(ca, ret, "bch2_journal_flush()");
1650         if (ret)
1651                 goto err;
1652
1653         ret = bch2_replicas_gc2(c);
1654         bch_err_msg(ca, ret, "bch2_replicas_gc2()");
1655         if (ret)
1656                 goto err;
1657
1658         data = bch2_dev_has_data(c, ca);
1659         if (data) {
1660                 struct printbuf data_has = PRINTBUF;
1661
1662                 prt_bitflags(&data_has, __bch2_data_types, data);
1663                 bch_err(ca, "Remove failed, still has data (%s)", data_has.buf);
1664                 printbuf_exit(&data_has);
1665                 ret = -EBUSY;
1666                 goto err;
1667         }
1668
1669         __bch2_dev_offline(c, ca);
1670
1671         mutex_lock(&c->sb_lock);
1672         rcu_assign_pointer(c->devs[ca->dev_idx], NULL);
1673         mutex_unlock(&c->sb_lock);
1674
1675 #ifndef CONFIG_BCACHEFS_DEBUG
1676         percpu_ref_kill(&ca->ref);
1677 #else
1678         ca->dying = true;
1679         bch2_dev_put(ca);
1680 #endif
1681         wait_for_completion(&ca->ref_completion);
1682
1683         bch2_dev_free(ca);
1684
1685         /*
1686          * At this point the device object has been removed in-core, but the
1687          * on-disk journal might still refer to the device index via sb device
1688          * usage entries. Recovery fails if it sees usage information for an
1689          * invalid device. Flush journal pins to push the back of the journal
1690          * past now invalid device index references before we update the
1691          * superblock, but after the device object has been removed so any
1692          * further journal writes elide usage info for the device.
1693          */
1694         bch2_journal_flush_all_pins(&c->journal);
1695
1696         /*
1697          * Free this device's slot in the bch_member array - all pointers to
1698          * this device must be gone:
1699          */
1700         mutex_lock(&c->sb_lock);
1701         m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx);
1702         memset(&m->uuid, 0, sizeof(m->uuid));
1703
1704         bch2_write_super(c);
1705
1706         mutex_unlock(&c->sb_lock);
1707         up_write(&c->state_lock);
1708
1709         bch2_dev_usage_journal_reserve(c);
1710         return 0;
1711 err:
1712         if (ca->mi.state == BCH_MEMBER_STATE_rw &&
1713             !percpu_ref_is_zero(&ca->io_ref))
1714                 __bch2_dev_read_write(c, ca);
1715         up_write(&c->state_lock);
1716         return ret;
1717 }
1718
1719 /* Add new device to running filesystem: */
1720 int bch2_dev_add(struct bch_fs *c, const char *path)
1721 {
1722         struct bch_opts opts = bch2_opts_empty();
1723         struct bch_sb_handle sb;
1724         struct bch_dev *ca = NULL;
1725         struct bch_sb_field_members_v2 *mi;
1726         struct bch_member dev_mi;
1727         unsigned dev_idx, nr_devices, u64s;
1728         struct printbuf errbuf = PRINTBUF;
1729         struct printbuf label = PRINTBUF;
1730         int ret;
1731
1732         ret = bch2_read_super(path, &opts, &sb);
1733         bch_err_msg(c, ret, "reading super");
1734         if (ret)
1735                 goto err;
1736
1737         dev_mi = bch2_sb_member_get(sb.sb, sb.sb->dev_idx);
1738
1739         if (BCH_MEMBER_GROUP(&dev_mi)) {
1740                 bch2_disk_path_to_text_sb(&label, sb.sb, BCH_MEMBER_GROUP(&dev_mi) - 1);
1741                 if (label.allocation_failure) {
1742                         ret = -ENOMEM;
1743                         goto err;
1744                 }
1745         }
1746
1747         ret = bch2_dev_may_add(sb.sb, c);
1748         if (ret)
1749                 goto err;
1750
1751         ca = __bch2_dev_alloc(c, &dev_mi);
1752         if (!ca) {
1753                 ret = -ENOMEM;
1754                 goto err;
1755         }
1756
1757         bch2_dev_usage_init(ca);
1758
1759         ret = __bch2_dev_attach_bdev(ca, &sb);
1760         if (ret)
1761                 goto err;
1762
1763         ret = bch2_dev_journal_alloc(ca);
1764         bch_err_msg(c, ret, "allocating journal");
1765         if (ret)
1766                 goto err;
1767
1768         down_write(&c->state_lock);
1769         mutex_lock(&c->sb_lock);
1770
1771         ret = bch2_sb_from_fs(c, ca);
1772         bch_err_msg(c, ret, "setting up new superblock");
1773         if (ret)
1774                 goto err_unlock;
1775
1776         if (dynamic_fault("bcachefs:add:no_slot"))
1777                 goto no_slot;
1778
1779         if (c->sb.nr_devices < BCH_SB_MEMBERS_MAX) {
1780                 dev_idx = c->sb.nr_devices;
1781                 goto have_slot;
1782         }
1783
1784         int best = -1;
1785         u64 best_last_mount = 0;
1786         for (dev_idx = 0; dev_idx < BCH_SB_MEMBERS_MAX; dev_idx++) {
1787                 struct bch_member m = bch2_sb_member_get(c->disk_sb.sb, dev_idx);
1788                 if (bch2_member_alive(&m))
1789                         continue;
1790
1791                 u64 last_mount = le64_to_cpu(m.last_mount);
1792                 if (best < 0 || last_mount < best_last_mount) {
1793                         best = dev_idx;
1794                         best_last_mount = last_mount;
1795                 }
1796         }
1797         if (best >= 0) {
1798                 dev_idx = best;
1799                 goto have_slot;
1800         }
1801 no_slot:
1802         ret = -BCH_ERR_ENOSPC_sb_members;
1803         bch_err_msg(c, ret, "setting up new superblock");
1804         goto err_unlock;
1805
1806 have_slot:
1807         nr_devices = max_t(unsigned, dev_idx + 1, c->sb.nr_devices);
1808
1809         mi = bch2_sb_field_get(c->disk_sb.sb, members_v2);
1810         u64s = DIV_ROUND_UP(sizeof(struct bch_sb_field_members_v2) +
1811                             le16_to_cpu(mi->member_bytes) * nr_devices, sizeof(u64));
1812
1813         mi = bch2_sb_field_resize(&c->disk_sb, members_v2, u64s);
1814         if (!mi) {
1815                 ret = -BCH_ERR_ENOSPC_sb_members;
1816                 bch_err_msg(c, ret, "setting up new superblock");
1817                 goto err_unlock;
1818         }
1819         struct bch_member *m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx);
1820
1821         /* success: */
1822
1823         *m = dev_mi;
1824         m->last_mount = cpu_to_le64(ktime_get_real_seconds());
1825         c->disk_sb.sb->nr_devices       = nr_devices;
1826
1827         ca->disk_sb.sb->dev_idx = dev_idx;
1828         bch2_dev_attach(c, ca, dev_idx);
1829
1830         if (BCH_MEMBER_GROUP(&dev_mi)) {
1831                 ret = __bch2_dev_group_set(c, ca, label.buf);
1832                 bch_err_msg(c, ret, "creating new label");
1833                 if (ret)
1834                         goto err_unlock;
1835         }
1836
1837         bch2_write_super(c);
1838         mutex_unlock(&c->sb_lock);
1839
1840         bch2_dev_usage_journal_reserve(c);
1841
1842         ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional);
1843         bch_err_msg(ca, ret, "marking new superblock");
1844         if (ret)
1845                 goto err_late;
1846
1847         ret = bch2_fs_freespace_init(c);
1848         bch_err_msg(ca, ret, "initializing free space");
1849         if (ret)
1850                 goto err_late;
1851
1852         ca->new_fs_bucket_idx = 0;
1853
1854         if (ca->mi.state == BCH_MEMBER_STATE_rw)
1855                 __bch2_dev_read_write(c, ca);
1856
1857         up_write(&c->state_lock);
1858         return 0;
1859
1860 err_unlock:
1861         mutex_unlock(&c->sb_lock);
1862         up_write(&c->state_lock);
1863 err:
1864         if (ca)
1865                 bch2_dev_free(ca);
1866         bch2_free_super(&sb);
1867         printbuf_exit(&label);
1868         printbuf_exit(&errbuf);
1869         bch_err_fn(c, ret);
1870         return ret;
1871 err_late:
1872         up_write(&c->state_lock);
1873         ca = NULL;
1874         goto err;
1875 }
1876
1877 /* Hot add existing device to running filesystem: */
1878 int bch2_dev_online(struct bch_fs *c, const char *path)
1879 {
1880         struct bch_opts opts = bch2_opts_empty();
1881         struct bch_sb_handle sb = { NULL };
1882         struct bch_dev *ca;
1883         unsigned dev_idx;
1884         int ret;
1885
1886         down_write(&c->state_lock);
1887
1888         ret = bch2_read_super(path, &opts, &sb);
1889         if (ret) {
1890                 up_write(&c->state_lock);
1891                 return ret;
1892         }
1893
1894         dev_idx = sb.sb->dev_idx;
1895
1896         ret = bch2_dev_in_fs(&c->disk_sb, &sb, &c->opts);
1897         bch_err_msg(c, ret, "bringing %s online", path);
1898         if (ret)
1899                 goto err;
1900
1901         ret = bch2_dev_attach_bdev(c, &sb);
1902         if (ret)
1903                 goto err;
1904
1905         ca = bch2_dev_locked(c, dev_idx);
1906
1907         ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional);
1908         bch_err_msg(c, ret, "bringing %s online: error from bch2_trans_mark_dev_sb", path);
1909         if (ret)
1910                 goto err;
1911
1912         if (ca->mi.state == BCH_MEMBER_STATE_rw)
1913                 __bch2_dev_read_write(c, ca);
1914
1915         if (!ca->mi.freespace_initialized) {
1916                 ret = bch2_dev_freespace_init(c, ca, 0, ca->mi.nbuckets);
1917                 bch_err_msg(ca, ret, "initializing free space");
1918                 if (ret)
1919                         goto err;
1920         }
1921
1922         if (!ca->journal.nr) {
1923                 ret = bch2_dev_journal_alloc(ca);
1924                 bch_err_msg(ca, ret, "allocating journal");
1925                 if (ret)
1926                         goto err;
1927         }
1928
1929         mutex_lock(&c->sb_lock);
1930         bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount =
1931                 cpu_to_le64(ktime_get_real_seconds());
1932         bch2_write_super(c);
1933         mutex_unlock(&c->sb_lock);
1934
1935         up_write(&c->state_lock);
1936         return 0;
1937 err:
1938         up_write(&c->state_lock);
1939         bch2_free_super(&sb);
1940         return ret;
1941 }
1942
1943 int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags)
1944 {
1945         down_write(&c->state_lock);
1946
1947         if (!bch2_dev_is_online(ca)) {
1948                 bch_err(ca, "Already offline");
1949                 up_write(&c->state_lock);
1950                 return 0;
1951         }
1952
1953         if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) {
1954                 bch_err(ca, "Cannot offline required disk");
1955                 up_write(&c->state_lock);
1956                 return -BCH_ERR_device_state_not_allowed;
1957         }
1958
1959         __bch2_dev_offline(c, ca);
1960
1961         up_write(&c->state_lock);
1962         return 0;
1963 }
1964
1965 int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets)
1966 {
1967         struct bch_member *m;
1968         u64 old_nbuckets;
1969         int ret = 0;
1970
1971         down_write(&c->state_lock);
1972         old_nbuckets = ca->mi.nbuckets;
1973
1974         if (nbuckets < ca->mi.nbuckets) {
1975                 bch_err(ca, "Cannot shrink yet");
1976                 ret = -EINVAL;
1977                 goto err;
1978         }
1979
1980         if (nbuckets > BCH_MEMBER_NBUCKETS_MAX) {
1981                 bch_err(ca, "New device size too big (%llu greater than max %u)",
1982                         nbuckets, BCH_MEMBER_NBUCKETS_MAX);
1983                 ret = -BCH_ERR_device_size_too_big;
1984                 goto err;
1985         }
1986
1987         if (bch2_dev_is_online(ca) &&
1988             get_capacity(ca->disk_sb.bdev->bd_disk) <
1989             ca->mi.bucket_size * nbuckets) {
1990                 bch_err(ca, "New size larger than device");
1991                 ret = -BCH_ERR_device_size_too_small;
1992                 goto err;
1993         }
1994
1995         ret = bch2_dev_buckets_resize(c, ca, nbuckets);
1996         bch_err_msg(ca, ret, "resizing buckets");
1997         if (ret)
1998                 goto err;
1999
2000         ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional);
2001         if (ret)
2002                 goto err;
2003
2004         mutex_lock(&c->sb_lock);
2005         m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx);
2006         m->nbuckets = cpu_to_le64(nbuckets);
2007
2008         bch2_write_super(c);
2009         mutex_unlock(&c->sb_lock);
2010
2011         if (ca->mi.freespace_initialized) {
2012                 ret = bch2_dev_freespace_init(c, ca, old_nbuckets, nbuckets);
2013                 if (ret)
2014                         goto err;
2015
2016                 /*
2017                  * XXX: this is all wrong transactionally - we'll be able to do
2018                  * this correctly after the disk space accounting rewrite
2019                  */
2020                 ca->usage_base->d[BCH_DATA_free].buckets += nbuckets - old_nbuckets;
2021         }
2022
2023         bch2_recalc_capacity(c);
2024 err:
2025         up_write(&c->state_lock);
2026         return ret;
2027 }
2028
2029 /* return with ref on ca->ref: */
2030 struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *name)
2031 {
2032         for_each_member_device(c, ca)
2033                 if (!strcmp(name, ca->name))
2034                         return ca;
2035         return ERR_PTR(-BCH_ERR_ENOENT_dev_not_found);
2036 }
2037
2038 /* Filesystem open: */
2039
2040 static inline int sb_cmp(struct bch_sb *l, struct bch_sb *r)
2041 {
2042         return  cmp_int(le64_to_cpu(l->seq), le64_to_cpu(r->seq)) ?:
2043                 cmp_int(le64_to_cpu(l->write_time), le64_to_cpu(r->write_time));
2044 }
2045
2046 struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices,
2047                             struct bch_opts opts)
2048 {
2049         DARRAY(struct bch_sb_handle) sbs = { 0 };
2050         struct bch_fs *c = NULL;
2051         struct bch_sb_handle *best = NULL;
2052         struct printbuf errbuf = PRINTBUF;
2053         int ret = 0;
2054
2055         if (!try_module_get(THIS_MODULE))
2056                 return ERR_PTR(-ENODEV);
2057
2058         if (!nr_devices) {
2059                 ret = -EINVAL;
2060                 goto err;
2061         }
2062
2063         ret = darray_make_room(&sbs, nr_devices);
2064         if (ret)
2065                 goto err;
2066
2067         for (unsigned i = 0; i < nr_devices; i++) {
2068                 struct bch_sb_handle sb = { NULL };
2069
2070                 ret = bch2_read_super(devices[i], &opts, &sb);
2071                 if (ret)
2072                         goto err;
2073
2074                 BUG_ON(darray_push(&sbs, sb));
2075         }
2076
2077         if (opts.nochanges && !opts.read_only) {
2078                 ret = -BCH_ERR_erofs_nochanges;
2079                 goto err_print;
2080         }
2081
2082         darray_for_each(sbs, sb)
2083                 if (!best || sb_cmp(sb->sb, best->sb) > 0)
2084                         best = sb;
2085
2086         darray_for_each_reverse(sbs, sb) {
2087                 ret = bch2_dev_in_fs(best, sb, &opts);
2088
2089                 if (ret == -BCH_ERR_device_has_been_removed ||
2090                     ret == -BCH_ERR_device_splitbrain) {
2091                         bch2_free_super(sb);
2092                         darray_remove_item(&sbs, sb);
2093                         best -= best > sb;
2094                         ret = 0;
2095                         continue;
2096                 }
2097
2098                 if (ret)
2099                         goto err_print;
2100         }
2101
2102         c = bch2_fs_alloc(best->sb, opts);
2103         ret = PTR_ERR_OR_ZERO(c);
2104         if (ret)
2105                 goto err;
2106
2107         down_write(&c->state_lock);
2108         darray_for_each(sbs, sb) {
2109                 ret = bch2_dev_attach_bdev(c, sb);
2110                 if (ret) {
2111                         up_write(&c->state_lock);
2112                         goto err;
2113                 }
2114         }
2115         up_write(&c->state_lock);
2116
2117         if (!bch2_fs_may_start(c)) {
2118                 ret = -BCH_ERR_insufficient_devices_to_start;
2119                 goto err_print;
2120         }
2121
2122         if (!c->opts.nostart) {
2123                 ret = bch2_fs_start(c);
2124                 if (ret)
2125                         goto err;
2126         }
2127 out:
2128         darray_for_each(sbs, sb)
2129                 bch2_free_super(sb);
2130         darray_exit(&sbs);
2131         printbuf_exit(&errbuf);
2132         module_put(THIS_MODULE);
2133         return c;
2134 err_print:
2135         pr_err("bch_fs_open err opening %s: %s",
2136                devices[0], bch2_err_str(ret));
2137 err:
2138         if (!IS_ERR_OR_NULL(c))
2139                 bch2_fs_stop(c);
2140         c = ERR_PTR(ret);
2141         goto out;
2142 }
2143
2144 /* Global interfaces/init */
2145
2146 static void bcachefs_exit(void)
2147 {
2148         bch2_debug_exit();
2149         bch2_vfs_exit();
2150         bch2_chardev_exit();
2151         bch2_btree_key_cache_exit();
2152         if (bcachefs_kset)
2153                 kset_unregister(bcachefs_kset);
2154 }
2155
2156 static int __init bcachefs_init(void)
2157 {
2158         bch2_bkey_pack_test();
2159
2160         if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) ||
2161             bch2_btree_key_cache_init() ||
2162             bch2_chardev_init() ||
2163             bch2_vfs_init() ||
2164             bch2_debug_init())
2165                 goto err;
2166
2167         return 0;
2168 err:
2169         bcachefs_exit();
2170         return -ENOMEM;
2171 }
2172
2173 #define BCH_DEBUG_PARAM(name, description)                      \
2174         bool bch2_##name;                                       \
2175         module_param_named(name, bch2_##name, bool, 0644);      \
2176         MODULE_PARM_DESC(name, description);
2177 BCH_DEBUG_PARAMS()
2178 #undef BCH_DEBUG_PARAM
2179
2180 __maybe_unused
2181 static unsigned bch2_metadata_version = bcachefs_metadata_version_current;
2182 module_param_named(version, bch2_metadata_version, uint, 0400);
2183
2184 module_exit(bcachefs_exit);
2185 module_init(bcachefs_init);