Merge tag 'powerpc-6.10-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux-block.git] / fs / bcachefs / extents.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4  *
5  * Code for managing the extent btree and dynamically updating the writeback
6  * dirty sector count.
7  */
8
9 #include "bcachefs.h"
10 #include "bkey_methods.h"
11 #include "btree_cache.h"
12 #include "btree_gc.h"
13 #include "btree_io.h"
14 #include "btree_iter.h"
15 #include "buckets.h"
16 #include "checksum.h"
17 #include "compress.h"
18 #include "debug.h"
19 #include "disk_groups.h"
20 #include "error.h"
21 #include "extents.h"
22 #include "inode.h"
23 #include "journal.h"
24 #include "replicas.h"
25 #include "super.h"
26 #include "super-io.h"
27 #include "trace.h"
28 #include "util.h"
29
30 static unsigned bch2_crc_field_size_max[] = {
31         [BCH_EXTENT_ENTRY_crc32] = CRC32_SIZE_MAX,
32         [BCH_EXTENT_ENTRY_crc64] = CRC64_SIZE_MAX,
33         [BCH_EXTENT_ENTRY_crc128] = CRC128_SIZE_MAX,
34 };
35
36 static void bch2_extent_crc_pack(union bch_extent_crc *,
37                                  struct bch_extent_crc_unpacked,
38                                  enum bch_extent_entry_type);
39
40 static struct bch_dev_io_failures *dev_io_failures(struct bch_io_failures *f,
41                                                    unsigned dev)
42 {
43         struct bch_dev_io_failures *i;
44
45         for (i = f->devs; i < f->devs + f->nr; i++)
46                 if (i->dev == dev)
47                         return i;
48
49         return NULL;
50 }
51
52 void bch2_mark_io_failure(struct bch_io_failures *failed,
53                           struct extent_ptr_decoded *p)
54 {
55         struct bch_dev_io_failures *f = dev_io_failures(failed, p->ptr.dev);
56
57         if (!f) {
58                 BUG_ON(failed->nr >= ARRAY_SIZE(failed->devs));
59
60                 f = &failed->devs[failed->nr++];
61                 f->dev          = p->ptr.dev;
62                 f->idx          = p->idx;
63                 f->nr_failed    = 1;
64                 f->nr_retries   = 0;
65         } else if (p->idx != f->idx) {
66                 f->idx          = p->idx;
67                 f->nr_failed    = 1;
68                 f->nr_retries   = 0;
69         } else {
70                 f->nr_failed++;
71         }
72 }
73
74 static inline u64 dev_latency(struct bch_fs *c, unsigned dev)
75 {
76         struct bch_dev *ca = bch2_dev_rcu(c, dev);
77         return ca ? atomic64_read(&ca->cur_latency[READ]) : S64_MAX;
78 }
79
80 /*
81  * returns true if p1 is better than p2:
82  */
83 static inline bool ptr_better(struct bch_fs *c,
84                               const struct extent_ptr_decoded p1,
85                               const struct extent_ptr_decoded p2)
86 {
87         if (likely(!p1.idx && !p2.idx)) {
88                 u64 l1 = dev_latency(c, p1.ptr.dev);
89                 u64 l2 = dev_latency(c, p2.ptr.dev);
90
91                 /* Pick at random, biased in favor of the faster device: */
92
93                 return bch2_rand_range(l1 + l2) > l1;
94         }
95
96         if (bch2_force_reconstruct_read)
97                 return p1.idx > p2.idx;
98
99         return p1.idx < p2.idx;
100 }
101
102 /*
103  * This picks a non-stale pointer, preferably from a device other than @avoid.
104  * Avoid can be NULL, meaning pick any. If there are no non-stale pointers to
105  * other devices, it will still pick a pointer from avoid.
106  */
107 int bch2_bkey_pick_read_device(struct bch_fs *c, struct bkey_s_c k,
108                                struct bch_io_failures *failed,
109                                struct extent_ptr_decoded *pick)
110 {
111         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
112         const union bch_extent_entry *entry;
113         struct extent_ptr_decoded p;
114         struct bch_dev_io_failures *f;
115         int ret = 0;
116
117         if (k.k->type == KEY_TYPE_error)
118                 return -EIO;
119
120         rcu_read_lock();
121         bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
122                 /*
123                  * Unwritten extent: no need to actually read, treat it as a
124                  * hole and return 0s:
125                  */
126                 if (p.ptr.unwritten) {
127                         ret = 0;
128                         break;
129                 }
130
131                 /*
132                  * If there are any dirty pointers it's an error if we can't
133                  * read:
134                  */
135                 if (!ret && !p.ptr.cached)
136                         ret = -EIO;
137
138                 struct bch_dev *ca = bch2_dev_rcu(c, p.ptr.dev);
139
140                 if (p.ptr.cached && (!ca || dev_ptr_stale_rcu(ca, &p.ptr)))
141                         continue;
142
143                 f = failed ? dev_io_failures(failed, p.ptr.dev) : NULL;
144                 if (f)
145                         p.idx = f->nr_failed < f->nr_retries
146                                 ? f->idx
147                                 : f->idx + 1;
148
149                 if (!p.idx && !ca)
150                         p.idx++;
151
152                 if (!p.idx && p.has_ec && bch2_force_reconstruct_read)
153                         p.idx++;
154
155                 if (!p.idx && !bch2_dev_is_readable(ca))
156                         p.idx++;
157
158                 if (p.idx >= (unsigned) p.has_ec + 1)
159                         continue;
160
161                 if (ret > 0 && !ptr_better(c, p, *pick))
162                         continue;
163
164                 *pick = p;
165                 ret = 1;
166         }
167         rcu_read_unlock();
168
169         return ret;
170 }
171
172 /* KEY_TYPE_btree_ptr: */
173
174 int bch2_btree_ptr_invalid(struct bch_fs *c, struct bkey_s_c k,
175                            enum bch_validate_flags flags,
176                            struct printbuf *err)
177 {
178         int ret = 0;
179
180         bkey_fsck_err_on(bkey_val_u64s(k.k) > BCH_REPLICAS_MAX, c, err,
181                          btree_ptr_val_too_big,
182                          "value too big (%zu > %u)", bkey_val_u64s(k.k), BCH_REPLICAS_MAX);
183
184         ret = bch2_bkey_ptrs_invalid(c, k, flags, err);
185 fsck_err:
186         return ret;
187 }
188
189 void bch2_btree_ptr_to_text(struct printbuf *out, struct bch_fs *c,
190                             struct bkey_s_c k)
191 {
192         bch2_bkey_ptrs_to_text(out, c, k);
193 }
194
195 int bch2_btree_ptr_v2_invalid(struct bch_fs *c, struct bkey_s_c k,
196                               enum bch_validate_flags flags,
197                               struct printbuf *err)
198 {
199         struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k);
200         int ret = 0;
201
202         bkey_fsck_err_on(bkey_val_u64s(k.k) > BKEY_BTREE_PTR_VAL_U64s_MAX,
203                          c, err, btree_ptr_v2_val_too_big,
204                          "value too big (%zu > %zu)",
205                          bkey_val_u64s(k.k), BKEY_BTREE_PTR_VAL_U64s_MAX);
206
207         bkey_fsck_err_on(bpos_ge(bp.v->min_key, bp.k->p),
208                          c, err, btree_ptr_v2_min_key_bad,
209                          "min_key > key");
210
211         if (flags & BCH_VALIDATE_write)
212                 bkey_fsck_err_on(!bp.v->sectors_written,
213                                  c, err, btree_ptr_v2_written_0,
214                                  "sectors_written == 0");
215
216         ret = bch2_bkey_ptrs_invalid(c, k, flags, err);
217 fsck_err:
218         return ret;
219 }
220
221 void bch2_btree_ptr_v2_to_text(struct printbuf *out, struct bch_fs *c,
222                                struct bkey_s_c k)
223 {
224         struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k);
225
226         prt_printf(out, "seq %llx written %u min_key %s",
227                le64_to_cpu(bp.v->seq),
228                le16_to_cpu(bp.v->sectors_written),
229                BTREE_PTR_RANGE_UPDATED(bp.v) ? "R " : "");
230
231         bch2_bpos_to_text(out, bp.v->min_key);
232         prt_printf(out, " ");
233         bch2_bkey_ptrs_to_text(out, c, k);
234 }
235
236 void bch2_btree_ptr_v2_compat(enum btree_id btree_id, unsigned version,
237                               unsigned big_endian, int write,
238                               struct bkey_s k)
239 {
240         struct bkey_s_btree_ptr_v2 bp = bkey_s_to_btree_ptr_v2(k);
241
242         compat_bpos(0, btree_id, version, big_endian, write, &bp.v->min_key);
243
244         if (version < bcachefs_metadata_version_inode_btree_change &&
245             btree_id_is_extents(btree_id) &&
246             !bkey_eq(bp.v->min_key, POS_MIN))
247                 bp.v->min_key = write
248                         ? bpos_nosnap_predecessor(bp.v->min_key)
249                         : bpos_nosnap_successor(bp.v->min_key);
250 }
251
252 /* KEY_TYPE_extent: */
253
254 bool bch2_extent_merge(struct bch_fs *c, struct bkey_s l, struct bkey_s_c r)
255 {
256         struct bkey_ptrs   l_ptrs = bch2_bkey_ptrs(l);
257         struct bkey_ptrs_c r_ptrs = bch2_bkey_ptrs_c(r);
258         union bch_extent_entry *en_l;
259         const union bch_extent_entry *en_r;
260         struct extent_ptr_decoded lp, rp;
261         bool use_right_ptr;
262
263         en_l = l_ptrs.start;
264         en_r = r_ptrs.start;
265         while (en_l < l_ptrs.end && en_r < r_ptrs.end) {
266                 if (extent_entry_type(en_l) != extent_entry_type(en_r))
267                         return false;
268
269                 en_l = extent_entry_next(en_l);
270                 en_r = extent_entry_next(en_r);
271         }
272
273         if (en_l < l_ptrs.end || en_r < r_ptrs.end)
274                 return false;
275
276         en_l = l_ptrs.start;
277         en_r = r_ptrs.start;
278         lp.crc = bch2_extent_crc_unpack(l.k, NULL);
279         rp.crc = bch2_extent_crc_unpack(r.k, NULL);
280
281         while (__bkey_ptr_next_decode(l.k, l_ptrs.end, lp, en_l) &&
282                __bkey_ptr_next_decode(r.k, r_ptrs.end, rp, en_r)) {
283                 if (lp.ptr.offset + lp.crc.offset + lp.crc.live_size !=
284                     rp.ptr.offset + rp.crc.offset ||
285                     lp.ptr.dev                  != rp.ptr.dev ||
286                     lp.ptr.gen                  != rp.ptr.gen ||
287                     lp.ptr.unwritten            != rp.ptr.unwritten ||
288                     lp.has_ec                   != rp.has_ec)
289                         return false;
290
291                 /* Extents may not straddle buckets: */
292                 rcu_read_lock();
293                 struct bch_dev *ca = bch2_dev_rcu(c, lp.ptr.dev);
294                 bool same_bucket = ca && PTR_BUCKET_NR(ca, &lp.ptr) == PTR_BUCKET_NR(ca, &rp.ptr);
295                 rcu_read_unlock();
296
297                 if (!same_bucket)
298                         return false;
299
300                 if (lp.has_ec                   != rp.has_ec ||
301                     (lp.has_ec &&
302                      (lp.ec.block               != rp.ec.block ||
303                       lp.ec.redundancy          != rp.ec.redundancy ||
304                       lp.ec.idx                 != rp.ec.idx)))
305                         return false;
306
307                 if (lp.crc.compression_type     != rp.crc.compression_type ||
308                     lp.crc.nonce                != rp.crc.nonce)
309                         return false;
310
311                 if (lp.crc.offset + lp.crc.live_size + rp.crc.live_size <=
312                     lp.crc.uncompressed_size) {
313                         /* can use left extent's crc entry */
314                 } else if (lp.crc.live_size <= rp.crc.offset) {
315                         /* can use right extent's crc entry */
316                 } else {
317                         /* check if checksums can be merged: */
318                         if (lp.crc.csum_type            != rp.crc.csum_type ||
319                             lp.crc.nonce                != rp.crc.nonce ||
320                             crc_is_compressed(lp.crc) ||
321                             !bch2_checksum_mergeable(lp.crc.csum_type))
322                                 return false;
323
324                         if (lp.crc.offset + lp.crc.live_size != lp.crc.compressed_size ||
325                             rp.crc.offset)
326                                 return false;
327
328                         if (lp.crc.csum_type &&
329                             lp.crc.uncompressed_size +
330                             rp.crc.uncompressed_size > (c->opts.encoded_extent_max >> 9))
331                                 return false;
332                 }
333
334                 en_l = extent_entry_next(en_l);
335                 en_r = extent_entry_next(en_r);
336         }
337
338         en_l = l_ptrs.start;
339         en_r = r_ptrs.start;
340         while (en_l < l_ptrs.end && en_r < r_ptrs.end) {
341                 if (extent_entry_is_crc(en_l)) {
342                         struct bch_extent_crc_unpacked crc_l = bch2_extent_crc_unpack(l.k, entry_to_crc(en_l));
343                         struct bch_extent_crc_unpacked crc_r = bch2_extent_crc_unpack(r.k, entry_to_crc(en_r));
344
345                         if (crc_l.uncompressed_size + crc_r.uncompressed_size >
346                             bch2_crc_field_size_max[extent_entry_type(en_l)])
347                                 return false;
348                 }
349
350                 en_l = extent_entry_next(en_l);
351                 en_r = extent_entry_next(en_r);
352         }
353
354         use_right_ptr = false;
355         en_l = l_ptrs.start;
356         en_r = r_ptrs.start;
357         while (en_l < l_ptrs.end) {
358                 if (extent_entry_type(en_l) == BCH_EXTENT_ENTRY_ptr &&
359                     use_right_ptr)
360                         en_l->ptr = en_r->ptr;
361
362                 if (extent_entry_is_crc(en_l)) {
363                         struct bch_extent_crc_unpacked crc_l =
364                                 bch2_extent_crc_unpack(l.k, entry_to_crc(en_l));
365                         struct bch_extent_crc_unpacked crc_r =
366                                 bch2_extent_crc_unpack(r.k, entry_to_crc(en_r));
367
368                         use_right_ptr = false;
369
370                         if (crc_l.offset + crc_l.live_size + crc_r.live_size <=
371                             crc_l.uncompressed_size) {
372                                 /* can use left extent's crc entry */
373                         } else if (crc_l.live_size <= crc_r.offset) {
374                                 /* can use right extent's crc entry */
375                                 crc_r.offset -= crc_l.live_size;
376                                 bch2_extent_crc_pack(entry_to_crc(en_l), crc_r,
377                                                      extent_entry_type(en_l));
378                                 use_right_ptr = true;
379                         } else {
380                                 crc_l.csum = bch2_checksum_merge(crc_l.csum_type,
381                                                                  crc_l.csum,
382                                                                  crc_r.csum,
383                                                                  crc_r.uncompressed_size << 9);
384
385                                 crc_l.uncompressed_size += crc_r.uncompressed_size;
386                                 crc_l.compressed_size   += crc_r.compressed_size;
387                                 bch2_extent_crc_pack(entry_to_crc(en_l), crc_l,
388                                                      extent_entry_type(en_l));
389                         }
390                 }
391
392                 en_l = extent_entry_next(en_l);
393                 en_r = extent_entry_next(en_r);
394         }
395
396         bch2_key_resize(l.k, l.k->size + r.k->size);
397         return true;
398 }
399
400 /* KEY_TYPE_reservation: */
401
402 int bch2_reservation_invalid(struct bch_fs *c, struct bkey_s_c k,
403                              enum bch_validate_flags flags,
404                              struct printbuf *err)
405 {
406         struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k);
407         int ret = 0;
408
409         bkey_fsck_err_on(!r.v->nr_replicas || r.v->nr_replicas > BCH_REPLICAS_MAX, c, err,
410                          reservation_key_nr_replicas_invalid,
411                          "invalid nr_replicas (%u)", r.v->nr_replicas);
412 fsck_err:
413         return ret;
414 }
415
416 void bch2_reservation_to_text(struct printbuf *out, struct bch_fs *c,
417                               struct bkey_s_c k)
418 {
419         struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k);
420
421         prt_printf(out, "generation %u replicas %u",
422                le32_to_cpu(r.v->generation),
423                r.v->nr_replicas);
424 }
425
426 bool bch2_reservation_merge(struct bch_fs *c, struct bkey_s _l, struct bkey_s_c _r)
427 {
428         struct bkey_s_reservation l = bkey_s_to_reservation(_l);
429         struct bkey_s_c_reservation r = bkey_s_c_to_reservation(_r);
430
431         if (l.v->generation != r.v->generation ||
432             l.v->nr_replicas != r.v->nr_replicas)
433                 return false;
434
435         bch2_key_resize(l.k, l.k->size + r.k->size);
436         return true;
437 }
438
439 /* Extent checksum entries: */
440
441 /* returns true if not equal */
442 static inline bool bch2_crc_unpacked_cmp(struct bch_extent_crc_unpacked l,
443                                          struct bch_extent_crc_unpacked r)
444 {
445         return (l.csum_type             != r.csum_type ||
446                 l.compression_type      != r.compression_type ||
447                 l.compressed_size       != r.compressed_size ||
448                 l.uncompressed_size     != r.uncompressed_size ||
449                 l.offset                != r.offset ||
450                 l.live_size             != r.live_size ||
451                 l.nonce                 != r.nonce ||
452                 bch2_crc_cmp(l.csum, r.csum));
453 }
454
455 static inline bool can_narrow_crc(struct bch_extent_crc_unpacked u,
456                                   struct bch_extent_crc_unpacked n)
457 {
458         return !crc_is_compressed(u) &&
459                 u.csum_type &&
460                 u.uncompressed_size > u.live_size &&
461                 bch2_csum_type_is_encryption(u.csum_type) ==
462                 bch2_csum_type_is_encryption(n.csum_type);
463 }
464
465 bool bch2_can_narrow_extent_crcs(struct bkey_s_c k,
466                                  struct bch_extent_crc_unpacked n)
467 {
468         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
469         struct bch_extent_crc_unpacked crc;
470         const union bch_extent_entry *i;
471
472         if (!n.csum_type)
473                 return false;
474
475         bkey_for_each_crc(k.k, ptrs, crc, i)
476                 if (can_narrow_crc(crc, n))
477                         return true;
478
479         return false;
480 }
481
482 /*
483  * We're writing another replica for this extent, so while we've got the data in
484  * memory we'll be computing a new checksum for the currently live data.
485  *
486  * If there are other replicas we aren't moving, and they are checksummed but
487  * not compressed, we can modify them to point to only the data that is
488  * currently live (so that readers won't have to bounce) while we've got the
489  * checksum we need:
490  */
491 bool bch2_bkey_narrow_crcs(struct bkey_i *k, struct bch_extent_crc_unpacked n)
492 {
493         struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k));
494         struct bch_extent_crc_unpacked u;
495         struct extent_ptr_decoded p;
496         union bch_extent_entry *i;
497         bool ret = false;
498
499         /* Find a checksum entry that covers only live data: */
500         if (!n.csum_type) {
501                 bkey_for_each_crc(&k->k, ptrs, u, i)
502                         if (!crc_is_compressed(u) &&
503                             u.csum_type &&
504                             u.live_size == u.uncompressed_size) {
505                                 n = u;
506                                 goto found;
507                         }
508                 return false;
509         }
510 found:
511         BUG_ON(crc_is_compressed(n));
512         BUG_ON(n.offset);
513         BUG_ON(n.live_size != k->k.size);
514
515 restart_narrow_pointers:
516         ptrs = bch2_bkey_ptrs(bkey_i_to_s(k));
517
518         bkey_for_each_ptr_decode(&k->k, ptrs, p, i)
519                 if (can_narrow_crc(p.crc, n)) {
520                         bch2_bkey_drop_ptr_noerror(bkey_i_to_s(k), &i->ptr);
521                         p.ptr.offset += p.crc.offset;
522                         p.crc = n;
523                         bch2_extent_ptr_decoded_append(k, &p);
524                         ret = true;
525                         goto restart_narrow_pointers;
526                 }
527
528         return ret;
529 }
530
531 static void bch2_extent_crc_pack(union bch_extent_crc *dst,
532                                  struct bch_extent_crc_unpacked src,
533                                  enum bch_extent_entry_type type)
534 {
535 #define set_common_fields(_dst, _src)                                   \
536                 _dst.type               = 1 << type;                    \
537                 _dst.csum_type          = _src.csum_type,               \
538                 _dst.compression_type   = _src.compression_type,        \
539                 _dst._compressed_size   = _src.compressed_size - 1,     \
540                 _dst._uncompressed_size = _src.uncompressed_size - 1,   \
541                 _dst.offset             = _src.offset
542
543         switch (type) {
544         case BCH_EXTENT_ENTRY_crc32:
545                 set_common_fields(dst->crc32, src);
546                 dst->crc32.csum         = (u32 __force) *((__le32 *) &src.csum.lo);
547                 break;
548         case BCH_EXTENT_ENTRY_crc64:
549                 set_common_fields(dst->crc64, src);
550                 dst->crc64.nonce        = src.nonce;
551                 dst->crc64.csum_lo      = (u64 __force) src.csum.lo;
552                 dst->crc64.csum_hi      = (u64 __force) *((__le16 *) &src.csum.hi);
553                 break;
554         case BCH_EXTENT_ENTRY_crc128:
555                 set_common_fields(dst->crc128, src);
556                 dst->crc128.nonce       = src.nonce;
557                 dst->crc128.csum        = src.csum;
558                 break;
559         default:
560                 BUG();
561         }
562 #undef set_common_fields
563 }
564
565 void bch2_extent_crc_append(struct bkey_i *k,
566                             struct bch_extent_crc_unpacked new)
567 {
568         struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k));
569         union bch_extent_crc *crc = (void *) ptrs.end;
570         enum bch_extent_entry_type type;
571
572         if (bch_crc_bytes[new.csum_type]        <= 4 &&
573             new.uncompressed_size               <= CRC32_SIZE_MAX &&
574             new.nonce                           <= CRC32_NONCE_MAX)
575                 type = BCH_EXTENT_ENTRY_crc32;
576         else if (bch_crc_bytes[new.csum_type]   <= 10 &&
577                    new.uncompressed_size        <= CRC64_SIZE_MAX &&
578                    new.nonce                    <= CRC64_NONCE_MAX)
579                 type = BCH_EXTENT_ENTRY_crc64;
580         else if (bch_crc_bytes[new.csum_type]   <= 16 &&
581                    new.uncompressed_size        <= CRC128_SIZE_MAX &&
582                    new.nonce                    <= CRC128_NONCE_MAX)
583                 type = BCH_EXTENT_ENTRY_crc128;
584         else
585                 BUG();
586
587         bch2_extent_crc_pack(crc, new, type);
588
589         k->k.u64s += extent_entry_u64s(ptrs.end);
590
591         EBUG_ON(bkey_val_u64s(&k->k) > BKEY_EXTENT_VAL_U64s_MAX);
592 }
593
594 /* Generic code for keys with pointers: */
595
596 unsigned bch2_bkey_nr_ptrs(struct bkey_s_c k)
597 {
598         return bch2_bkey_devs(k).nr;
599 }
600
601 unsigned bch2_bkey_nr_ptrs_allocated(struct bkey_s_c k)
602 {
603         return k.k->type == KEY_TYPE_reservation
604                 ? bkey_s_c_to_reservation(k).v->nr_replicas
605                 : bch2_bkey_dirty_devs(k).nr;
606 }
607
608 unsigned bch2_bkey_nr_ptrs_fully_allocated(struct bkey_s_c k)
609 {
610         unsigned ret = 0;
611
612         if (k.k->type == KEY_TYPE_reservation) {
613                 ret = bkey_s_c_to_reservation(k).v->nr_replicas;
614         } else {
615                 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
616                 const union bch_extent_entry *entry;
617                 struct extent_ptr_decoded p;
618
619                 bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
620                         ret += !p.ptr.cached && !crc_is_compressed(p.crc);
621         }
622
623         return ret;
624 }
625
626 unsigned bch2_bkey_sectors_compressed(struct bkey_s_c k)
627 {
628         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
629         const union bch_extent_entry *entry;
630         struct extent_ptr_decoded p;
631         unsigned ret = 0;
632
633         bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
634                 if (!p.ptr.cached && crc_is_compressed(p.crc))
635                         ret += p.crc.compressed_size;
636
637         return ret;
638 }
639
640 bool bch2_bkey_is_incompressible(struct bkey_s_c k)
641 {
642         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
643         const union bch_extent_entry *entry;
644         struct bch_extent_crc_unpacked crc;
645
646         bkey_for_each_crc(k.k, ptrs, crc, entry)
647                 if (crc.compression_type == BCH_COMPRESSION_TYPE_incompressible)
648                         return true;
649         return false;
650 }
651
652 unsigned bch2_bkey_replicas(struct bch_fs *c, struct bkey_s_c k)
653 {
654         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
655         const union bch_extent_entry *entry;
656         struct extent_ptr_decoded p = { 0 };
657         unsigned replicas = 0;
658
659         bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
660                 if (p.ptr.cached)
661                         continue;
662
663                 if (p.has_ec)
664                         replicas += p.ec.redundancy;
665
666                 replicas++;
667
668         }
669
670         return replicas;
671 }
672
673 static inline unsigned __extent_ptr_durability(struct bch_dev *ca, struct extent_ptr_decoded *p)
674 {
675         if (p->ptr.cached)
676                 return 0;
677
678         return p->has_ec
679                 ? p->ec.redundancy + 1
680                 : ca->mi.durability;
681 }
682
683 unsigned bch2_extent_ptr_desired_durability(struct bch_fs *c, struct extent_ptr_decoded *p)
684 {
685         struct bch_dev *ca = bch2_dev_rcu(c, p->ptr.dev);
686
687         return ca ? __extent_ptr_durability(ca, p) : 0;
688 }
689
690 unsigned bch2_extent_ptr_durability(struct bch_fs *c, struct extent_ptr_decoded *p)
691 {
692         struct bch_dev *ca = bch2_dev_rcu(c, p->ptr.dev);
693
694         if (!ca || ca->mi.state == BCH_MEMBER_STATE_failed)
695                 return 0;
696
697         return __extent_ptr_durability(ca, p);
698 }
699
700 unsigned bch2_bkey_durability(struct bch_fs *c, struct bkey_s_c k)
701 {
702         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
703         const union bch_extent_entry *entry;
704         struct extent_ptr_decoded p;
705         unsigned durability = 0;
706
707         rcu_read_lock();
708         bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
709                 durability += bch2_extent_ptr_durability(c, &p);
710         rcu_read_unlock();
711
712         return durability;
713 }
714
715 static unsigned bch2_bkey_durability_safe(struct bch_fs *c, struct bkey_s_c k)
716 {
717         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
718         const union bch_extent_entry *entry;
719         struct extent_ptr_decoded p;
720         unsigned durability = 0;
721
722         rcu_read_lock();
723         bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
724                 if (p.ptr.dev < c->sb.nr_devices && c->devs[p.ptr.dev])
725                         durability += bch2_extent_ptr_durability(c, &p);
726         rcu_read_unlock();
727
728         return durability;
729 }
730
731 void bch2_bkey_extent_entry_drop(struct bkey_i *k, union bch_extent_entry *entry)
732 {
733         union bch_extent_entry *end = bkey_val_end(bkey_i_to_s(k));
734         union bch_extent_entry *next = extent_entry_next(entry);
735
736         memmove_u64s(entry, next, (u64 *) end - (u64 *) next);
737         k->k.u64s -= extent_entry_u64s(entry);
738 }
739
740 void bch2_extent_ptr_decoded_append(struct bkey_i *k,
741                                     struct extent_ptr_decoded *p)
742 {
743         struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k));
744         struct bch_extent_crc_unpacked crc =
745                 bch2_extent_crc_unpack(&k->k, NULL);
746         union bch_extent_entry *pos;
747
748         if (!bch2_crc_unpacked_cmp(crc, p->crc)) {
749                 pos = ptrs.start;
750                 goto found;
751         }
752
753         bkey_for_each_crc(&k->k, ptrs, crc, pos)
754                 if (!bch2_crc_unpacked_cmp(crc, p->crc)) {
755                         pos = extent_entry_next(pos);
756                         goto found;
757                 }
758
759         bch2_extent_crc_append(k, p->crc);
760         pos = bkey_val_end(bkey_i_to_s(k));
761 found:
762         p->ptr.type = 1 << BCH_EXTENT_ENTRY_ptr;
763         __extent_entry_insert(k, pos, to_entry(&p->ptr));
764
765         if (p->has_ec) {
766                 p->ec.type = 1 << BCH_EXTENT_ENTRY_stripe_ptr;
767                 __extent_entry_insert(k, pos, to_entry(&p->ec));
768         }
769 }
770
771 static union bch_extent_entry *extent_entry_prev(struct bkey_ptrs ptrs,
772                                           union bch_extent_entry *entry)
773 {
774         union bch_extent_entry *i = ptrs.start;
775
776         if (i == entry)
777                 return NULL;
778
779         while (extent_entry_next(i) != entry)
780                 i = extent_entry_next(i);
781         return i;
782 }
783
784 /*
785  * Returns pointer to the next entry after the one being dropped:
786  */
787 union bch_extent_entry *bch2_bkey_drop_ptr_noerror(struct bkey_s k,
788                                                    struct bch_extent_ptr *ptr)
789 {
790         struct bkey_ptrs ptrs = bch2_bkey_ptrs(k);
791         union bch_extent_entry *entry = to_entry(ptr), *next;
792         union bch_extent_entry *ret = entry;
793         bool drop_crc = true;
794
795         EBUG_ON(ptr < &ptrs.start->ptr ||
796                 ptr >= &ptrs.end->ptr);
797         EBUG_ON(ptr->type != 1 << BCH_EXTENT_ENTRY_ptr);
798
799         for (next = extent_entry_next(entry);
800              next != ptrs.end;
801              next = extent_entry_next(next)) {
802                 if (extent_entry_is_crc(next)) {
803                         break;
804                 } else if (extent_entry_is_ptr(next)) {
805                         drop_crc = false;
806                         break;
807                 }
808         }
809
810         extent_entry_drop(k, entry);
811
812         while ((entry = extent_entry_prev(ptrs, entry))) {
813                 if (extent_entry_is_ptr(entry))
814                         break;
815
816                 if ((extent_entry_is_crc(entry) && drop_crc) ||
817                     extent_entry_is_stripe_ptr(entry)) {
818                         ret = (void *) ret - extent_entry_bytes(entry);
819                         extent_entry_drop(k, entry);
820                 }
821         }
822
823         return ret;
824 }
825
826 union bch_extent_entry *bch2_bkey_drop_ptr(struct bkey_s k,
827                                            struct bch_extent_ptr *ptr)
828 {
829         bool have_dirty = bch2_bkey_dirty_devs(k.s_c).nr;
830         union bch_extent_entry *ret =
831                 bch2_bkey_drop_ptr_noerror(k, ptr);
832
833         /*
834          * If we deleted all the dirty pointers and there's still cached
835          * pointers, we could set the cached pointers to dirty if they're not
836          * stale - but to do that correctly we'd need to grab an open_bucket
837          * reference so that we don't race with bucket reuse:
838          */
839         if (have_dirty &&
840             !bch2_bkey_dirty_devs(k.s_c).nr) {
841                 k.k->type = KEY_TYPE_error;
842                 set_bkey_val_u64s(k.k, 0);
843                 ret = NULL;
844         } else if (!bch2_bkey_nr_ptrs(k.s_c)) {
845                 k.k->type = KEY_TYPE_deleted;
846                 set_bkey_val_u64s(k.k, 0);
847                 ret = NULL;
848         }
849
850         return ret;
851 }
852
853 void bch2_bkey_drop_device(struct bkey_s k, unsigned dev)
854 {
855         bch2_bkey_drop_ptrs(k, ptr, ptr->dev == dev);
856 }
857
858 void bch2_bkey_drop_device_noerror(struct bkey_s k, unsigned dev)
859 {
860         struct bch_extent_ptr *ptr = bch2_bkey_has_device(k, dev);
861
862         if (ptr)
863                 bch2_bkey_drop_ptr_noerror(k, ptr);
864 }
865
866 const struct bch_extent_ptr *bch2_bkey_has_device_c(struct bkey_s_c k, unsigned dev)
867 {
868         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
869
870         bkey_for_each_ptr(ptrs, ptr)
871                 if (ptr->dev == dev)
872                         return ptr;
873
874         return NULL;
875 }
876
877 bool bch2_bkey_has_target(struct bch_fs *c, struct bkey_s_c k, unsigned target)
878 {
879         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
880         struct bch_dev *ca;
881         bool ret = false;
882
883         rcu_read_lock();
884         bkey_for_each_ptr(ptrs, ptr)
885                 if (bch2_dev_in_target(c, ptr->dev, target) &&
886                     (ca = bch2_dev_rcu(c, ptr->dev)) &&
887                     (!ptr->cached ||
888                      !dev_ptr_stale_rcu(ca, ptr))) {
889                         ret = true;
890                         break;
891                 }
892         rcu_read_unlock();
893
894         return ret;
895 }
896
897 bool bch2_bkey_matches_ptr(struct bch_fs *c, struct bkey_s_c k,
898                            struct bch_extent_ptr m, u64 offset)
899 {
900         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
901         const union bch_extent_entry *entry;
902         struct extent_ptr_decoded p;
903
904         bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
905                 if (p.ptr.dev   == m.dev &&
906                     p.ptr.gen   == m.gen &&
907                     (s64) p.ptr.offset + p.crc.offset - bkey_start_offset(k.k) ==
908                     (s64) m.offset  - offset)
909                         return true;
910
911         return false;
912 }
913
914 /*
915  * Returns true if two extents refer to the same data:
916  */
917 bool bch2_extents_match(struct bkey_s_c k1, struct bkey_s_c k2)
918 {
919         if (k1.k->type != k2.k->type)
920                 return false;
921
922         if (bkey_extent_is_direct_data(k1.k)) {
923                 struct bkey_ptrs_c ptrs1 = bch2_bkey_ptrs_c(k1);
924                 struct bkey_ptrs_c ptrs2 = bch2_bkey_ptrs_c(k2);
925                 const union bch_extent_entry *entry1, *entry2;
926                 struct extent_ptr_decoded p1, p2;
927
928                 if (bkey_extent_is_unwritten(k1) != bkey_extent_is_unwritten(k2))
929                         return false;
930
931                 bkey_for_each_ptr_decode(k1.k, ptrs1, p1, entry1)
932                         bkey_for_each_ptr_decode(k2.k, ptrs2, p2, entry2)
933                                 if (p1.ptr.dev          == p2.ptr.dev &&
934                                     p1.ptr.gen          == p2.ptr.gen &&
935                                     (s64) p1.ptr.offset + p1.crc.offset - bkey_start_offset(k1.k) ==
936                                     (s64) p2.ptr.offset + p2.crc.offset - bkey_start_offset(k2.k))
937                                         return true;
938
939                 return false;
940         } else {
941                 /* KEY_TYPE_deleted, etc. */
942                 return true;
943         }
944 }
945
946 struct bch_extent_ptr *
947 bch2_extent_has_ptr(struct bkey_s_c k1, struct extent_ptr_decoded p1, struct bkey_s k2)
948 {
949         struct bkey_ptrs ptrs2 = bch2_bkey_ptrs(k2);
950         union bch_extent_entry *entry2;
951         struct extent_ptr_decoded p2;
952
953         bkey_for_each_ptr_decode(k2.k, ptrs2, p2, entry2)
954                 if (p1.ptr.dev          == p2.ptr.dev &&
955                     p1.ptr.gen          == p2.ptr.gen &&
956                     (s64) p1.ptr.offset + p1.crc.offset - bkey_start_offset(k1.k) ==
957                     (s64) p2.ptr.offset + p2.crc.offset - bkey_start_offset(k2.k))
958                         return &entry2->ptr;
959
960         return NULL;
961 }
962
963 void bch2_extent_ptr_set_cached(struct bkey_s k, struct bch_extent_ptr *ptr)
964 {
965         struct bkey_ptrs ptrs = bch2_bkey_ptrs(k);
966         union bch_extent_entry *entry;
967         union bch_extent_entry *ec = NULL;
968
969         bkey_extent_entry_for_each(ptrs, entry) {
970                 if (&entry->ptr == ptr) {
971                         ptr->cached = true;
972                         if (ec)
973                                 extent_entry_drop(k, ec);
974                         return;
975                 }
976
977                 if (extent_entry_is_stripe_ptr(entry))
978                         ec = entry;
979                 else if (extent_entry_is_ptr(entry))
980                         ec = NULL;
981         }
982
983         BUG();
984 }
985
986 /*
987  * bch_extent_normalize - clean up an extent, dropping stale pointers etc.
988  *
989  * Returns true if @k should be dropped entirely
990  *
991  * For existing keys, only called when btree nodes are being rewritten, not when
992  * they're merely being compacted/resorted in memory.
993  */
994 bool bch2_extent_normalize(struct bch_fs *c, struct bkey_s k)
995 {
996         struct bch_dev *ca;
997
998         rcu_read_lock();
999         bch2_bkey_drop_ptrs(k, ptr,
1000                 ptr->cached &&
1001                 (ca = bch2_dev_rcu(c, ptr->dev)) &&
1002                 dev_ptr_stale_rcu(ca, ptr) > 0);
1003         rcu_read_unlock();
1004
1005         return bkey_deleted(k.k);
1006 }
1007
1008 void bch2_extent_ptr_to_text(struct printbuf *out, struct bch_fs *c, const struct bch_extent_ptr *ptr)
1009 {
1010         out->atomic++;
1011         rcu_read_lock();
1012         struct bch_dev *ca = bch2_dev_rcu(c, ptr->dev);
1013         if (!ca) {
1014                 prt_printf(out, "ptr: %u:%llu gen %u%s", ptr->dev,
1015                            (u64) ptr->offset, ptr->gen,
1016                            ptr->cached ? " cached" : "");
1017         } else {
1018                 u32 offset;
1019                 u64 b = sector_to_bucket_and_offset(ca, ptr->offset, &offset);
1020
1021                 prt_printf(out, "ptr: %u:%llu:%u gen %u",
1022                            ptr->dev, b, offset, ptr->gen);
1023                 if (ptr->cached)
1024                         prt_str(out, " cached");
1025                 if (ptr->unwritten)
1026                         prt_str(out, " unwritten");
1027                 int stale = dev_ptr_stale_rcu(ca, ptr);
1028                 if (stale > 0)
1029                         prt_printf(out, " stale");
1030                 else if (stale)
1031                         prt_printf(out, " invalid");
1032         }
1033         rcu_read_unlock();
1034         --out->atomic;
1035 }
1036
1037 void bch2_bkey_ptrs_to_text(struct printbuf *out, struct bch_fs *c,
1038                             struct bkey_s_c k)
1039 {
1040         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1041         const union bch_extent_entry *entry;
1042         bool first = true;
1043
1044         if (c)
1045                 prt_printf(out, "durability: %u ", bch2_bkey_durability_safe(c, k));
1046
1047         bkey_extent_entry_for_each(ptrs, entry) {
1048                 if (!first)
1049                         prt_printf(out, " ");
1050
1051                 switch (__extent_entry_type(entry)) {
1052                 case BCH_EXTENT_ENTRY_ptr:
1053                         bch2_extent_ptr_to_text(out, c, entry_to_ptr(entry));
1054                         break;
1055
1056                 case BCH_EXTENT_ENTRY_crc32:
1057                 case BCH_EXTENT_ENTRY_crc64:
1058                 case BCH_EXTENT_ENTRY_crc128: {
1059                         struct bch_extent_crc_unpacked crc =
1060                                 bch2_extent_crc_unpack(k.k, entry_to_crc(entry));
1061
1062                         prt_printf(out, "crc: c_size %u size %u offset %u nonce %u csum ",
1063                                crc.compressed_size,
1064                                crc.uncompressed_size,
1065                                crc.offset, crc.nonce);
1066                         bch2_prt_csum_type(out, crc.csum_type);
1067                         prt_str(out, " compress ");
1068                         bch2_prt_compression_type(out, crc.compression_type);
1069                         break;
1070                 }
1071                 case BCH_EXTENT_ENTRY_stripe_ptr: {
1072                         const struct bch_extent_stripe_ptr *ec = &entry->stripe_ptr;
1073
1074                         prt_printf(out, "ec: idx %llu block %u",
1075                                (u64) ec->idx, ec->block);
1076                         break;
1077                 }
1078                 case BCH_EXTENT_ENTRY_rebalance: {
1079                         const struct bch_extent_rebalance *r = &entry->rebalance;
1080
1081                         prt_str(out, "rebalance: target ");
1082                         if (c)
1083                                 bch2_target_to_text(out, c, r->target);
1084                         else
1085                                 prt_printf(out, "%u", r->target);
1086                         prt_str(out, " compression ");
1087                         bch2_compression_opt_to_text(out, r->compression);
1088                         break;
1089                 }
1090                 default:
1091                         prt_printf(out, "(invalid extent entry %.16llx)", *((u64 *) entry));
1092                         return;
1093                 }
1094
1095                 first = false;
1096         }
1097 }
1098
1099 static int extent_ptr_invalid(struct bch_fs *c,
1100                               struct bkey_s_c k,
1101                               enum bch_validate_flags flags,
1102                               const struct bch_extent_ptr *ptr,
1103                               unsigned size_ondisk,
1104                               bool metadata,
1105                               struct printbuf *err)
1106 {
1107         int ret = 0;
1108
1109         rcu_read_lock();
1110         struct bch_dev *ca = bch2_dev_rcu(c, ptr->dev);
1111         if (!ca) {
1112                 rcu_read_unlock();
1113                 return 0;
1114         }
1115         u32 bucket_offset;
1116         u64 bucket = sector_to_bucket_and_offset(ca, ptr->offset, &bucket_offset);
1117         unsigned first_bucket   = ca->mi.first_bucket;
1118         u64 nbuckets            = ca->mi.nbuckets;
1119         unsigned bucket_size    = ca->mi.bucket_size;
1120         rcu_read_unlock();
1121
1122         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1123         bkey_for_each_ptr(ptrs, ptr2)
1124                 bkey_fsck_err_on(ptr != ptr2 && ptr->dev == ptr2->dev, c, err,
1125                                  ptr_to_duplicate_device,
1126                                  "multiple pointers to same device (%u)", ptr->dev);
1127
1128
1129         bkey_fsck_err_on(bucket >= nbuckets, c, err,
1130                          ptr_after_last_bucket,
1131                          "pointer past last bucket (%llu > %llu)", bucket, nbuckets);
1132         bkey_fsck_err_on(bucket < first_bucket, c, err,
1133                          ptr_before_first_bucket,
1134                          "pointer before first bucket (%llu < %u)", bucket, first_bucket);
1135         bkey_fsck_err_on(bucket_offset + size_ondisk > bucket_size, c, err,
1136                          ptr_spans_multiple_buckets,
1137                          "pointer spans multiple buckets (%u + %u > %u)",
1138                        bucket_offset, size_ondisk, bucket_size);
1139 fsck_err:
1140         return ret;
1141 }
1142
1143 int bch2_bkey_ptrs_invalid(struct bch_fs *c, struct bkey_s_c k,
1144                            enum bch_validate_flags flags,
1145                            struct printbuf *err)
1146 {
1147         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1148         const union bch_extent_entry *entry;
1149         struct bch_extent_crc_unpacked crc;
1150         unsigned size_ondisk = k.k->size;
1151         unsigned nonce = UINT_MAX;
1152         unsigned nr_ptrs = 0;
1153         bool have_written = false, have_unwritten = false, have_ec = false, crc_since_last_ptr = false;
1154         int ret = 0;
1155
1156         if (bkey_is_btree_ptr(k.k))
1157                 size_ondisk = btree_sectors(c);
1158
1159         bkey_extent_entry_for_each(ptrs, entry) {
1160                 bkey_fsck_err_on(__extent_entry_type(entry) >= BCH_EXTENT_ENTRY_MAX, c, err,
1161                         extent_ptrs_invalid_entry,
1162                         "invalid extent entry type (got %u, max %u)",
1163                         __extent_entry_type(entry), BCH_EXTENT_ENTRY_MAX);
1164
1165                 bkey_fsck_err_on(bkey_is_btree_ptr(k.k) &&
1166                                  !extent_entry_is_ptr(entry), c, err,
1167                                  btree_ptr_has_non_ptr,
1168                                  "has non ptr field");
1169
1170                 switch (extent_entry_type(entry)) {
1171                 case BCH_EXTENT_ENTRY_ptr:
1172                         ret = extent_ptr_invalid(c, k, flags, &entry->ptr,
1173                                                  size_ondisk, false, err);
1174                         if (ret)
1175                                 return ret;
1176
1177                         bkey_fsck_err_on(entry->ptr.cached && have_ec, c, err,
1178                                          ptr_cached_and_erasure_coded,
1179                                          "cached, erasure coded ptr");
1180
1181                         if (!entry->ptr.unwritten)
1182                                 have_written = true;
1183                         else
1184                                 have_unwritten = true;
1185
1186                         have_ec = false;
1187                         crc_since_last_ptr = false;
1188                         nr_ptrs++;
1189                         break;
1190                 case BCH_EXTENT_ENTRY_crc32:
1191                 case BCH_EXTENT_ENTRY_crc64:
1192                 case BCH_EXTENT_ENTRY_crc128:
1193                         crc = bch2_extent_crc_unpack(k.k, entry_to_crc(entry));
1194
1195                         bkey_fsck_err_on(crc.offset + crc.live_size > crc.uncompressed_size, c, err,
1196                                          ptr_crc_uncompressed_size_too_small,
1197                                          "checksum offset + key size > uncompressed size");
1198                         bkey_fsck_err_on(!bch2_checksum_type_valid(c, crc.csum_type), c, err,
1199                                          ptr_crc_csum_type_unknown,
1200                                          "invalid checksum type");
1201                         bkey_fsck_err_on(crc.compression_type >= BCH_COMPRESSION_TYPE_NR, c, err,
1202                                          ptr_crc_compression_type_unknown,
1203                                          "invalid compression type");
1204
1205                         if (bch2_csum_type_is_encryption(crc.csum_type)) {
1206                                 if (nonce == UINT_MAX)
1207                                         nonce = crc.offset + crc.nonce;
1208                                 else if (nonce != crc.offset + crc.nonce)
1209                                         bkey_fsck_err(c, err, ptr_crc_nonce_mismatch,
1210                                                       "incorrect nonce");
1211                         }
1212
1213                         bkey_fsck_err_on(crc_since_last_ptr, c, err,
1214                                          ptr_crc_redundant,
1215                                          "redundant crc entry");
1216                         crc_since_last_ptr = true;
1217
1218                         bkey_fsck_err_on(crc_is_encoded(crc) &&
1219                                          (crc.uncompressed_size > c->opts.encoded_extent_max >> 9) &&
1220                                          (flags & (BCH_VALIDATE_write|BCH_VALIDATE_commit)), c, err,
1221                                          ptr_crc_uncompressed_size_too_big,
1222                                          "too large encoded extent");
1223
1224                         size_ondisk = crc.compressed_size;
1225                         break;
1226                 case BCH_EXTENT_ENTRY_stripe_ptr:
1227                         bkey_fsck_err_on(have_ec, c, err,
1228                                          ptr_stripe_redundant,
1229                                          "redundant stripe entry");
1230                         have_ec = true;
1231                         break;
1232                 case BCH_EXTENT_ENTRY_rebalance: {
1233                         const struct bch_extent_rebalance *r = &entry->rebalance;
1234
1235                         if (!bch2_compression_opt_valid(r->compression)) {
1236                                 struct bch_compression_opt opt = __bch2_compression_decode(r->compression);
1237                                 prt_printf(err, "invalid compression opt %u:%u",
1238                                            opt.type, opt.level);
1239                                 return -BCH_ERR_invalid_bkey;
1240                         }
1241                         break;
1242                 }
1243                 }
1244         }
1245
1246         bkey_fsck_err_on(!nr_ptrs, c, err,
1247                          extent_ptrs_no_ptrs,
1248                          "no ptrs");
1249         bkey_fsck_err_on(nr_ptrs > BCH_BKEY_PTRS_MAX, c, err,
1250                          extent_ptrs_too_many_ptrs,
1251                          "too many ptrs: %u > %u", nr_ptrs, BCH_BKEY_PTRS_MAX);
1252         bkey_fsck_err_on(have_written && have_unwritten, c, err,
1253                          extent_ptrs_written_and_unwritten,
1254                          "extent with unwritten and written ptrs");
1255         bkey_fsck_err_on(k.k->type != KEY_TYPE_extent && have_unwritten, c, err,
1256                          extent_ptrs_unwritten,
1257                          "has unwritten ptrs");
1258         bkey_fsck_err_on(crc_since_last_ptr, c, err,
1259                          extent_ptrs_redundant_crc,
1260                          "redundant crc entry");
1261         bkey_fsck_err_on(have_ec, c, err,
1262                          extent_ptrs_redundant_stripe,
1263                          "redundant stripe entry");
1264 fsck_err:
1265         return ret;
1266 }
1267
1268 void bch2_ptr_swab(struct bkey_s k)
1269 {
1270         struct bkey_ptrs ptrs = bch2_bkey_ptrs(k);
1271         union bch_extent_entry *entry;
1272         u64 *d;
1273
1274         for (d =  (u64 *) ptrs.start;
1275              d != (u64 *) ptrs.end;
1276              d++)
1277                 *d = swab64(*d);
1278
1279         for (entry = ptrs.start;
1280              entry < ptrs.end;
1281              entry = extent_entry_next(entry)) {
1282                 switch (extent_entry_type(entry)) {
1283                 case BCH_EXTENT_ENTRY_ptr:
1284                         break;
1285                 case BCH_EXTENT_ENTRY_crc32:
1286                         entry->crc32.csum = swab32(entry->crc32.csum);
1287                         break;
1288                 case BCH_EXTENT_ENTRY_crc64:
1289                         entry->crc64.csum_hi = swab16(entry->crc64.csum_hi);
1290                         entry->crc64.csum_lo = swab64(entry->crc64.csum_lo);
1291                         break;
1292                 case BCH_EXTENT_ENTRY_crc128:
1293                         entry->crc128.csum.hi = (__force __le64)
1294                                 swab64((__force u64) entry->crc128.csum.hi);
1295                         entry->crc128.csum.lo = (__force __le64)
1296                                 swab64((__force u64) entry->crc128.csum.lo);
1297                         break;
1298                 case BCH_EXTENT_ENTRY_stripe_ptr:
1299                         break;
1300                 case BCH_EXTENT_ENTRY_rebalance:
1301                         break;
1302                 }
1303         }
1304 }
1305
1306 const struct bch_extent_rebalance *bch2_bkey_rebalance_opts(struct bkey_s_c k)
1307 {
1308         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1309         const union bch_extent_entry *entry;
1310
1311         bkey_extent_entry_for_each(ptrs, entry)
1312                 if (__extent_entry_type(entry) == BCH_EXTENT_ENTRY_rebalance)
1313                         return &entry->rebalance;
1314
1315         return NULL;
1316 }
1317
1318 unsigned bch2_bkey_ptrs_need_rebalance(struct bch_fs *c, struct bkey_s_c k,
1319                                        unsigned target, unsigned compression)
1320 {
1321         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1322         unsigned rewrite_ptrs = 0;
1323
1324         if (compression) {
1325                 unsigned compression_type = bch2_compression_opt_to_type(compression);
1326                 const union bch_extent_entry *entry;
1327                 struct extent_ptr_decoded p;
1328                 unsigned i = 0;
1329
1330                 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
1331                         if (p.crc.compression_type == BCH_COMPRESSION_TYPE_incompressible ||
1332                             p.ptr.unwritten) {
1333                                 rewrite_ptrs = 0;
1334                                 goto incompressible;
1335                         }
1336
1337                         if (!p.ptr.cached && p.crc.compression_type != compression_type)
1338                                 rewrite_ptrs |= 1U << i;
1339                         i++;
1340                 }
1341         }
1342 incompressible:
1343         if (target && bch2_target_accepts_data(c, BCH_DATA_user, target)) {
1344                 unsigned i = 0;
1345
1346                 bkey_for_each_ptr(ptrs, ptr) {
1347                         if (!ptr->cached && !bch2_dev_in_target(c, ptr->dev, target))
1348                                 rewrite_ptrs |= 1U << i;
1349                         i++;
1350                 }
1351         }
1352
1353         return rewrite_ptrs;
1354 }
1355
1356 bool bch2_bkey_needs_rebalance(struct bch_fs *c, struct bkey_s_c k)
1357 {
1358         const struct bch_extent_rebalance *r = bch2_bkey_rebalance_opts(k);
1359
1360         /*
1361          * If it's an indirect extent, we don't delete the rebalance entry when
1362          * done so that we know what options were applied - check if it still
1363          * needs work done:
1364          */
1365         if (r &&
1366             k.k->type == KEY_TYPE_reflink_v &&
1367             !bch2_bkey_ptrs_need_rebalance(c, k, r->target, r->compression))
1368                 r = NULL;
1369
1370         return r != NULL;
1371 }
1372
1373 int bch2_bkey_set_needs_rebalance(struct bch_fs *c, struct bkey_i *_k,
1374                                   struct bch_io_opts *opts)
1375 {
1376         struct bkey_s k = bkey_i_to_s(_k);
1377         struct bch_extent_rebalance *r;
1378         unsigned target = opts->background_target;
1379         unsigned compression = background_compression(*opts);
1380         bool needs_rebalance;
1381
1382         if (!bkey_extent_is_direct_data(k.k))
1383                 return 0;
1384
1385         /* get existing rebalance entry: */
1386         r = (struct bch_extent_rebalance *) bch2_bkey_rebalance_opts(k.s_c);
1387         if (r) {
1388                 if (k.k->type == KEY_TYPE_reflink_v) {
1389                         /*
1390                          * indirect extents: existing options take precedence,
1391                          * so that we don't move extents back and forth if
1392                          * they're referenced by different inodes with different
1393                          * options:
1394                          */
1395                         if (r->target)
1396                                 target = r->target;
1397                         if (r->compression)
1398                                 compression = r->compression;
1399                 }
1400
1401                 r->target       = target;
1402                 r->compression  = compression;
1403         }
1404
1405         needs_rebalance = bch2_bkey_ptrs_need_rebalance(c, k.s_c, target, compression);
1406
1407         if (needs_rebalance && !r) {
1408                 union bch_extent_entry *new = bkey_val_end(k);
1409
1410                 new->rebalance.type             = 1U << BCH_EXTENT_ENTRY_rebalance;
1411                 new->rebalance.compression      = compression;
1412                 new->rebalance.target           = target;
1413                 new->rebalance.unused           = 0;
1414                 k.k->u64s += extent_entry_u64s(new);
1415         } else if (!needs_rebalance && r && k.k->type != KEY_TYPE_reflink_v) {
1416                 /*
1417                  * For indirect extents, don't delete the rebalance entry when
1418                  * we're finished so that we know we specifically moved it or
1419                  * compressed it to its current location/compression type
1420                  */
1421                 extent_entry_drop(k, (union bch_extent_entry *) r);
1422         }
1423
1424         return 0;
1425 }
1426
1427 /* Generic extent code: */
1428
1429 int bch2_cut_front_s(struct bpos where, struct bkey_s k)
1430 {
1431         unsigned new_val_u64s = bkey_val_u64s(k.k);
1432         int val_u64s_delta;
1433         u64 sub;
1434
1435         if (bkey_le(where, bkey_start_pos(k.k)))
1436                 return 0;
1437
1438         EBUG_ON(bkey_gt(where, k.k->p));
1439
1440         sub = where.offset - bkey_start_offset(k.k);
1441
1442         k.k->size -= sub;
1443
1444         if (!k.k->size) {
1445                 k.k->type = KEY_TYPE_deleted;
1446                 new_val_u64s = 0;
1447         }
1448
1449         switch (k.k->type) {
1450         case KEY_TYPE_extent:
1451         case KEY_TYPE_reflink_v: {
1452                 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k);
1453                 union bch_extent_entry *entry;
1454                 bool seen_crc = false;
1455
1456                 bkey_extent_entry_for_each(ptrs, entry) {
1457                         switch (extent_entry_type(entry)) {
1458                         case BCH_EXTENT_ENTRY_ptr:
1459                                 if (!seen_crc)
1460                                         entry->ptr.offset += sub;
1461                                 break;
1462                         case BCH_EXTENT_ENTRY_crc32:
1463                                 entry->crc32.offset += sub;
1464                                 break;
1465                         case BCH_EXTENT_ENTRY_crc64:
1466                                 entry->crc64.offset += sub;
1467                                 break;
1468                         case BCH_EXTENT_ENTRY_crc128:
1469                                 entry->crc128.offset += sub;
1470                                 break;
1471                         case BCH_EXTENT_ENTRY_stripe_ptr:
1472                                 break;
1473                         case BCH_EXTENT_ENTRY_rebalance:
1474                                 break;
1475                         }
1476
1477                         if (extent_entry_is_crc(entry))
1478                                 seen_crc = true;
1479                 }
1480
1481                 break;
1482         }
1483         case KEY_TYPE_reflink_p: {
1484                 struct bkey_s_reflink_p p = bkey_s_to_reflink_p(k);
1485
1486                 le64_add_cpu(&p.v->idx, sub);
1487                 break;
1488         }
1489         case KEY_TYPE_inline_data:
1490         case KEY_TYPE_indirect_inline_data: {
1491                 void *p = bkey_inline_data_p(k);
1492                 unsigned bytes = bkey_inline_data_bytes(k.k);
1493
1494                 sub = min_t(u64, sub << 9, bytes);
1495
1496                 memmove(p, p + sub, bytes - sub);
1497
1498                 new_val_u64s -= sub >> 3;
1499                 break;
1500         }
1501         }
1502
1503         val_u64s_delta = bkey_val_u64s(k.k) - new_val_u64s;
1504         BUG_ON(val_u64s_delta < 0);
1505
1506         set_bkey_val_u64s(k.k, new_val_u64s);
1507         memset(bkey_val_end(k), 0, val_u64s_delta * sizeof(u64));
1508         return -val_u64s_delta;
1509 }
1510
1511 int bch2_cut_back_s(struct bpos where, struct bkey_s k)
1512 {
1513         unsigned new_val_u64s = bkey_val_u64s(k.k);
1514         int val_u64s_delta;
1515         u64 len = 0;
1516
1517         if (bkey_ge(where, k.k->p))
1518                 return 0;
1519
1520         EBUG_ON(bkey_lt(where, bkey_start_pos(k.k)));
1521
1522         len = where.offset - bkey_start_offset(k.k);
1523
1524         k.k->p.offset = where.offset;
1525         k.k->size = len;
1526
1527         if (!len) {
1528                 k.k->type = KEY_TYPE_deleted;
1529                 new_val_u64s = 0;
1530         }
1531
1532         switch (k.k->type) {
1533         case KEY_TYPE_inline_data:
1534         case KEY_TYPE_indirect_inline_data:
1535                 new_val_u64s = (bkey_inline_data_offset(k.k) +
1536                                 min(bkey_inline_data_bytes(k.k), k.k->size << 9)) >> 3;
1537                 break;
1538         }
1539
1540         val_u64s_delta = bkey_val_u64s(k.k) - new_val_u64s;
1541         BUG_ON(val_u64s_delta < 0);
1542
1543         set_bkey_val_u64s(k.k, new_val_u64s);
1544         memset(bkey_val_end(k), 0, val_u64s_delta * sizeof(u64));
1545         return -val_u64s_delta;
1546 }