Merge tag 'for-6.9-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[linux-block.git] / fs / bcachefs / btree_write_buffer.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "btree_locking.h"
5 #include "btree_update.h"
6 #include "btree_update_interior.h"
7 #include "btree_write_buffer.h"
8 #include "error.h"
9 #include "journal.h"
10 #include "journal_io.h"
11 #include "journal_reclaim.h"
12
13 #include <linux/prefetch.h>
14 #include <linux/sort.h>
15
16 static int bch2_btree_write_buffer_journal_flush(struct journal *,
17                                 struct journal_entry_pin *, u64);
18
19 static int bch2_journal_keys_to_write_buffer(struct bch_fs *, struct journal_buf *);
20
21 static inline bool __wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r)
22 {
23         return (cmp_int(l->hi, r->hi) ?:
24                 cmp_int(l->mi, r->mi) ?:
25                 cmp_int(l->lo, r->lo)) >= 0;
26 }
27
28 static inline bool wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r)
29 {
30 #ifdef CONFIG_X86_64
31         int cmp;
32
33         asm("mov   (%[l]), %%rax;"
34             "sub   (%[r]), %%rax;"
35             "mov  8(%[l]), %%rax;"
36             "sbb  8(%[r]), %%rax;"
37             "mov 16(%[l]), %%rax;"
38             "sbb 16(%[r]), %%rax;"
39             : "=@ccae" (cmp)
40             : [l] "r" (l), [r] "r" (r)
41             : "rax", "cc");
42
43         EBUG_ON(cmp != __wb_key_ref_cmp(l, r));
44         return cmp;
45 #else
46         return __wb_key_ref_cmp(l, r);
47 #endif
48 }
49
50 static int wb_key_seq_cmp(const void *_l, const void *_r)
51 {
52         const struct btree_write_buffered_key *l = _l;
53         const struct btree_write_buffered_key *r = _r;
54
55         return cmp_int(l->journal_seq, r->journal_seq);
56 }
57
58 /* Compare excluding idx, the low 24 bits: */
59 static inline bool wb_key_eq(const void *_l, const void *_r)
60 {
61         const struct wb_key_ref *l = _l;
62         const struct wb_key_ref *r = _r;
63
64         return !((l->hi ^ r->hi)|
65                  (l->mi ^ r->mi)|
66                  ((l->lo >> 24) ^ (r->lo >> 24)));
67 }
68
69 static noinline void wb_sort(struct wb_key_ref *base, size_t num)
70 {
71         size_t n = num, a = num / 2;
72
73         if (!a)         /* num < 2 || size == 0 */
74                 return;
75
76         for (;;) {
77                 size_t b, c, d;
78
79                 if (a)                  /* Building heap: sift down --a */
80                         --a;
81                 else if (--n)           /* Sorting: Extract root to --n */
82                         swap(base[0], base[n]);
83                 else                    /* Sort complete */
84                         break;
85
86                 /*
87                  * Sift element at "a" down into heap.  This is the
88                  * "bottom-up" variant, which significantly reduces
89                  * calls to cmp_func(): we find the sift-down path all
90                  * the way to the leaves (one compare per level), then
91                  * backtrack to find where to insert the target element.
92                  *
93                  * Because elements tend to sift down close to the leaves,
94                  * this uses fewer compares than doing two per level
95                  * on the way down.  (A bit more than half as many on
96                  * average, 3/4 worst-case.)
97                  */
98                 for (b = a; c = 2*b + 1, (d = c + 1) < n;)
99                         b = wb_key_ref_cmp(base + c, base + d) ? c : d;
100                 if (d == n)             /* Special case last leaf with no sibling */
101                         b = c;
102
103                 /* Now backtrack from "b" to the correct location for "a" */
104                 while (b != a && wb_key_ref_cmp(base + a, base + b))
105                         b = (b - 1) / 2;
106                 c = b;                  /* Where "a" belongs */
107                 while (b != a) {        /* Shift it into place */
108                         b = (b - 1) / 2;
109                         swap(base[b], base[c]);
110                 }
111         }
112 }
113
114 static noinline int wb_flush_one_slowpath(struct btree_trans *trans,
115                                           struct btree_iter *iter,
116                                           struct btree_write_buffered_key *wb)
117 {
118         struct btree_path *path = btree_iter_path(trans, iter);
119
120         bch2_btree_node_unlock_write(trans, path, path->l[0].b);
121
122         trans->journal_res.seq = wb->journal_seq;
123
124         return bch2_trans_update(trans, iter, &wb->k,
125                                  BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE) ?:
126                 bch2_trans_commit(trans, NULL, NULL,
127                                   BCH_TRANS_COMMIT_no_enospc|
128                                   BCH_TRANS_COMMIT_no_check_rw|
129                                   BCH_TRANS_COMMIT_no_journal_res|
130                                   BCH_TRANS_COMMIT_journal_reclaim);
131 }
132
133 static inline int wb_flush_one(struct btree_trans *trans, struct btree_iter *iter,
134                                struct btree_write_buffered_key *wb,
135                                bool *write_locked, size_t *fast)
136 {
137         struct btree_path *path;
138         int ret;
139
140         EBUG_ON(!wb->journal_seq);
141         EBUG_ON(!trans->c->btree_write_buffer.flushing.pin.seq);
142         EBUG_ON(trans->c->btree_write_buffer.flushing.pin.seq > wb->journal_seq);
143
144         ret = bch2_btree_iter_traverse(iter);
145         if (ret)
146                 return ret;
147
148         /*
149          * We can't clone a path that has write locks: unshare it now, before
150          * set_pos and traverse():
151          */
152         if (btree_iter_path(trans, iter)->ref > 1)
153                 iter->path = __bch2_btree_path_make_mut(trans, iter->path, true, _THIS_IP_);
154
155         path = btree_iter_path(trans, iter);
156
157         if (!*write_locked) {
158                 ret = bch2_btree_node_lock_write(trans, path, &path->l[0].b->c);
159                 if (ret)
160                         return ret;
161
162                 bch2_btree_node_prep_for_write(trans, path, path->l[0].b);
163                 *write_locked = true;
164         }
165
166         if (unlikely(!bch2_btree_node_insert_fits(path->l[0].b, wb->k.k.u64s))) {
167                 *write_locked = false;
168                 return wb_flush_one_slowpath(trans, iter, wb);
169         }
170
171         bch2_btree_insert_key_leaf(trans, path, &wb->k, wb->journal_seq);
172         (*fast)++;
173         return 0;
174 }
175
176 /*
177  * Update a btree with a write buffered key using the journal seq of the
178  * original write buffer insert.
179  *
180  * It is not safe to rejournal the key once it has been inserted into the write
181  * buffer because that may break recovery ordering. For example, the key may
182  * have already been modified in the active write buffer in a seq that comes
183  * before the current transaction. If we were to journal this key again and
184  * crash, recovery would process updates in the wrong order.
185  */
186 static int
187 btree_write_buffered_insert(struct btree_trans *trans,
188                           struct btree_write_buffered_key *wb)
189 {
190         struct btree_iter iter;
191         int ret;
192
193         bch2_trans_iter_init(trans, &iter, wb->btree, bkey_start_pos(&wb->k.k),
194                              BTREE_ITER_CACHED|BTREE_ITER_INTENT);
195
196         trans->journal_res.seq = wb->journal_seq;
197
198         ret   = bch2_btree_iter_traverse(&iter) ?:
199                 bch2_trans_update(trans, &iter, &wb->k,
200                                   BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE);
201         bch2_trans_iter_exit(trans, &iter);
202         return ret;
203 }
204
205 static void move_keys_from_inc_to_flushing(struct btree_write_buffer *wb)
206 {
207         struct bch_fs *c = container_of(wb, struct bch_fs, btree_write_buffer);
208         struct journal *j = &c->journal;
209
210         if (!wb->inc.keys.nr)
211                 return;
212
213         bch2_journal_pin_add(j, wb->inc.keys.data[0].journal_seq, &wb->flushing.pin,
214                              bch2_btree_write_buffer_journal_flush);
215
216         darray_resize(&wb->flushing.keys, min_t(size_t, 1U << 20, wb->flushing.keys.nr + wb->inc.keys.nr));
217         darray_resize(&wb->sorted, wb->flushing.keys.size);
218
219         if (!wb->flushing.keys.nr && wb->sorted.size >= wb->inc.keys.nr) {
220                 swap(wb->flushing.keys, wb->inc.keys);
221                 goto out;
222         }
223
224         size_t nr = min(darray_room(wb->flushing.keys),
225                         wb->sorted.size - wb->flushing.keys.nr);
226         nr = min(nr, wb->inc.keys.nr);
227
228         memcpy(&darray_top(wb->flushing.keys),
229                wb->inc.keys.data,
230                sizeof(wb->inc.keys.data[0]) * nr);
231
232         memmove(wb->inc.keys.data,
233                 wb->inc.keys.data + nr,
234                sizeof(wb->inc.keys.data[0]) * (wb->inc.keys.nr - nr));
235
236         wb->flushing.keys.nr    += nr;
237         wb->inc.keys.nr         -= nr;
238 out:
239         if (!wb->inc.keys.nr)
240                 bch2_journal_pin_drop(j, &wb->inc.pin);
241         else
242                 bch2_journal_pin_update(j, wb->inc.keys.data[0].journal_seq, &wb->inc.pin,
243                                         bch2_btree_write_buffer_journal_flush);
244
245         if (j->watermark) {
246                 spin_lock(&j->lock);
247                 bch2_journal_set_watermark(j);
248                 spin_unlock(&j->lock);
249         }
250
251         BUG_ON(wb->sorted.size < wb->flushing.keys.nr);
252 }
253
254 static int bch2_btree_write_buffer_flush_locked(struct btree_trans *trans)
255 {
256         struct bch_fs *c = trans->c;
257         struct journal *j = &c->journal;
258         struct btree_write_buffer *wb = &c->btree_write_buffer;
259         struct btree_iter iter = { NULL };
260         size_t skipped = 0, fast = 0, slowpath = 0;
261         bool write_locked = false;
262         int ret = 0;
263
264         bch2_trans_unlock(trans);
265         bch2_trans_begin(trans);
266
267         mutex_lock(&wb->inc.lock);
268         move_keys_from_inc_to_flushing(wb);
269         mutex_unlock(&wb->inc.lock);
270
271         for (size_t i = 0; i < wb->flushing.keys.nr; i++) {
272                 wb->sorted.data[i].idx = i;
273                 wb->sorted.data[i].btree = wb->flushing.keys.data[i].btree;
274                 memcpy(&wb->sorted.data[i].pos, &wb->flushing.keys.data[i].k.k.p, sizeof(struct bpos));
275         }
276         wb->sorted.nr = wb->flushing.keys.nr;
277
278         /*
279          * We first sort so that we can detect and skip redundant updates, and
280          * then we attempt to flush in sorted btree order, as this is most
281          * efficient.
282          *
283          * However, since we're not flushing in the order they appear in the
284          * journal we won't be able to drop our journal pin until everything is
285          * flushed - which means this could deadlock the journal if we weren't
286          * passing BCH_TRANS_COMMIT_journal_reclaim. This causes the update to fail
287          * if it would block taking a journal reservation.
288          *
289          * If that happens, simply skip the key so we can optimistically insert
290          * as many keys as possible in the fast path.
291          */
292         wb_sort(wb->sorted.data, wb->sorted.nr);
293
294         darray_for_each(wb->sorted, i) {
295                 struct btree_write_buffered_key *k = &wb->flushing.keys.data[i->idx];
296
297                 for (struct wb_key_ref *n = i + 1; n < min(i + 4, &darray_top(wb->sorted)); n++)
298                         prefetch(&wb->flushing.keys.data[n->idx]);
299
300                 BUG_ON(!k->journal_seq);
301
302                 if (i + 1 < &darray_top(wb->sorted) &&
303                     wb_key_eq(i, i + 1)) {
304                         struct btree_write_buffered_key *n = &wb->flushing.keys.data[i[1].idx];
305
306                         skipped++;
307                         n->journal_seq = min_t(u64, n->journal_seq, k->journal_seq);
308                         k->journal_seq = 0;
309                         continue;
310                 }
311
312                 if (write_locked) {
313                         struct btree_path *path = btree_iter_path(trans, &iter);
314
315                         if (path->btree_id != i->btree ||
316                             bpos_gt(k->k.k.p, path->l[0].b->key.k.p)) {
317                                 bch2_btree_node_unlock_write(trans, path, path->l[0].b);
318                                 write_locked = false;
319                         }
320                 }
321
322                 if (!iter.path || iter.btree_id != k->btree) {
323                         bch2_trans_iter_exit(trans, &iter);
324                         bch2_trans_iter_init(trans, &iter, k->btree, k->k.k.p,
325                                              BTREE_ITER_INTENT|BTREE_ITER_ALL_SNAPSHOTS);
326                 }
327
328                 bch2_btree_iter_set_pos(&iter, k->k.k.p);
329                 btree_iter_path(trans, &iter)->preserve = false;
330
331                 do {
332                         if (race_fault()) {
333                                 ret = -BCH_ERR_journal_reclaim_would_deadlock;
334                                 break;
335                         }
336
337                         ret = wb_flush_one(trans, &iter, k, &write_locked, &fast);
338                         if (!write_locked)
339                                 bch2_trans_begin(trans);
340                 } while (bch2_err_matches(ret, BCH_ERR_transaction_restart));
341
342                 if (!ret) {
343                         k->journal_seq = 0;
344                 } else if (ret == -BCH_ERR_journal_reclaim_would_deadlock) {
345                         slowpath++;
346                         ret = 0;
347                 } else
348                         break;
349         }
350
351         if (write_locked) {
352                 struct btree_path *path = btree_iter_path(trans, &iter);
353                 bch2_btree_node_unlock_write(trans, path, path->l[0].b);
354         }
355         bch2_trans_iter_exit(trans, &iter);
356
357         if (ret)
358                 goto err;
359
360         if (slowpath) {
361                 /*
362                  * Flush in the order they were present in the journal, so that
363                  * we can release journal pins:
364                  * The fastpath zapped the seq of keys that were successfully flushed so
365                  * we can skip those here.
366                  */
367                 trace_and_count(c, write_buffer_flush_slowpath, trans, slowpath, wb->flushing.keys.nr);
368
369                 sort(wb->flushing.keys.data,
370                      wb->flushing.keys.nr,
371                      sizeof(wb->flushing.keys.data[0]),
372                      wb_key_seq_cmp, NULL);
373
374                 darray_for_each(wb->flushing.keys, i) {
375                         if (!i->journal_seq)
376                                 continue;
377
378                         bch2_journal_pin_update(j, i->journal_seq, &wb->flushing.pin,
379                                                 bch2_btree_write_buffer_journal_flush);
380
381                         bch2_trans_begin(trans);
382
383                         ret = commit_do(trans, NULL, NULL,
384                                         BCH_WATERMARK_reclaim|
385                                         BCH_TRANS_COMMIT_no_check_rw|
386                                         BCH_TRANS_COMMIT_no_enospc|
387                                         BCH_TRANS_COMMIT_no_journal_res|
388                                         BCH_TRANS_COMMIT_journal_reclaim,
389                                         btree_write_buffered_insert(trans, i));
390                         if (ret)
391                                 goto err;
392                 }
393         }
394 err:
395         bch2_fs_fatal_err_on(ret, c, "%s", bch2_err_str(ret));
396         trace_write_buffer_flush(trans, wb->flushing.keys.nr, skipped, fast, 0);
397         bch2_journal_pin_drop(j, &wb->flushing.pin);
398         wb->flushing.keys.nr = 0;
399         return ret;
400 }
401
402 static int fetch_wb_keys_from_journal(struct bch_fs *c, u64 seq)
403 {
404         struct journal *j = &c->journal;
405         struct journal_buf *buf;
406         int ret = 0;
407
408         while (!ret && (buf = bch2_next_write_buffer_flush_journal_buf(j, seq))) {
409                 ret = bch2_journal_keys_to_write_buffer(c, buf);
410                 mutex_unlock(&j->buf_lock);
411         }
412
413         return ret;
414 }
415
416 static int btree_write_buffer_flush_seq(struct btree_trans *trans, u64 seq)
417 {
418         struct bch_fs *c = trans->c;
419         struct btree_write_buffer *wb = &c->btree_write_buffer;
420         int ret = 0, fetch_from_journal_err;
421
422         do {
423                 bch2_trans_unlock(trans);
424
425                 fetch_from_journal_err = fetch_wb_keys_from_journal(c, seq);
426
427                 /*
428                  * On memory allocation failure, bch2_btree_write_buffer_flush_locked()
429                  * is not guaranteed to empty wb->inc:
430                  */
431                 mutex_lock(&wb->flushing.lock);
432                 ret = bch2_btree_write_buffer_flush_locked(trans);
433                 mutex_unlock(&wb->flushing.lock);
434         } while (!ret &&
435                  (fetch_from_journal_err ||
436                   (wb->inc.pin.seq && wb->inc.pin.seq <= seq) ||
437                   (wb->flushing.pin.seq && wb->flushing.pin.seq <= seq)));
438
439         return ret;
440 }
441
442 static int bch2_btree_write_buffer_journal_flush(struct journal *j,
443                                 struct journal_entry_pin *_pin, u64 seq)
444 {
445         struct bch_fs *c = container_of(j, struct bch_fs, journal);
446
447         return bch2_trans_run(c, btree_write_buffer_flush_seq(trans, seq));
448 }
449
450 int bch2_btree_write_buffer_flush_sync(struct btree_trans *trans)
451 {
452         struct bch_fs *c = trans->c;
453
454         trace_and_count(c, write_buffer_flush_sync, trans, _RET_IP_);
455
456         return btree_write_buffer_flush_seq(trans, journal_cur_seq(&c->journal));
457 }
458
459 int bch2_btree_write_buffer_flush_nocheck_rw(struct btree_trans *trans)
460 {
461         struct bch_fs *c = trans->c;
462         struct btree_write_buffer *wb = &c->btree_write_buffer;
463         int ret = 0;
464
465         if (mutex_trylock(&wb->flushing.lock)) {
466                 ret = bch2_btree_write_buffer_flush_locked(trans);
467                 mutex_unlock(&wb->flushing.lock);
468         }
469
470         return ret;
471 }
472
473 int bch2_btree_write_buffer_tryflush(struct btree_trans *trans)
474 {
475         struct bch_fs *c = trans->c;
476
477         if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer))
478                 return -BCH_ERR_erofs_no_writes;
479
480         int ret = bch2_btree_write_buffer_flush_nocheck_rw(trans);
481         bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
482         return ret;
483 }
484
485 static void bch2_btree_write_buffer_flush_work(struct work_struct *work)
486 {
487         struct bch_fs *c = container_of(work, struct bch_fs, btree_write_buffer.flush_work);
488         struct btree_write_buffer *wb = &c->btree_write_buffer;
489         int ret;
490
491         mutex_lock(&wb->flushing.lock);
492         do {
493                 ret = bch2_trans_run(c, bch2_btree_write_buffer_flush_locked(trans));
494         } while (!ret && bch2_btree_write_buffer_should_flush(c));
495         mutex_unlock(&wb->flushing.lock);
496
497         bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
498 }
499
500 int bch2_journal_key_to_wb_slowpath(struct bch_fs *c,
501                              struct journal_keys_to_wb *dst,
502                              enum btree_id btree, struct bkey_i *k)
503 {
504         struct btree_write_buffer *wb = &c->btree_write_buffer;
505         int ret;
506 retry:
507         ret = darray_make_room_gfp(&dst->wb->keys, 1, GFP_KERNEL);
508         if (!ret && dst->wb == &wb->flushing)
509                 ret = darray_resize(&wb->sorted, wb->flushing.keys.size);
510
511         if (unlikely(ret)) {
512                 if (dst->wb == &c->btree_write_buffer.flushing) {
513                         mutex_unlock(&dst->wb->lock);
514                         dst->wb = &c->btree_write_buffer.inc;
515                         bch2_journal_pin_add(&c->journal, dst->seq, &dst->wb->pin,
516                                              bch2_btree_write_buffer_journal_flush);
517                         goto retry;
518                 }
519
520                 return ret;
521         }
522
523         dst->room = darray_room(dst->wb->keys);
524         if (dst->wb == &wb->flushing)
525                 dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr);
526         BUG_ON(!dst->room);
527         BUG_ON(!dst->seq);
528
529         struct btree_write_buffered_key *wb_k = &darray_top(dst->wb->keys);
530         wb_k->journal_seq       = dst->seq;
531         wb_k->btree             = btree;
532         bkey_copy(&wb_k->k, k);
533         dst->wb->keys.nr++;
534         dst->room--;
535         return 0;
536 }
537
538 void bch2_journal_keys_to_write_buffer_start(struct bch_fs *c, struct journal_keys_to_wb *dst, u64 seq)
539 {
540         struct btree_write_buffer *wb = &c->btree_write_buffer;
541
542         if (mutex_trylock(&wb->flushing.lock)) {
543                 mutex_lock(&wb->inc.lock);
544                 move_keys_from_inc_to_flushing(wb);
545
546                 /*
547                  * Attempt to skip wb->inc, and add keys directly to
548                  * wb->flushing, saving us a copy later:
549                  */
550
551                 if (!wb->inc.keys.nr) {
552                         dst->wb = &wb->flushing;
553                 } else {
554                         mutex_unlock(&wb->flushing.lock);
555                         dst->wb = &wb->inc;
556                 }
557         } else {
558                 mutex_lock(&wb->inc.lock);
559                 dst->wb = &wb->inc;
560         }
561
562         dst->room = darray_room(dst->wb->keys);
563         if (dst->wb == &wb->flushing)
564                 dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr);
565         dst->seq = seq;
566
567         bch2_journal_pin_add(&c->journal, seq, &dst->wb->pin,
568                              bch2_btree_write_buffer_journal_flush);
569 }
570
571 void bch2_journal_keys_to_write_buffer_end(struct bch_fs *c, struct journal_keys_to_wb *dst)
572 {
573         struct btree_write_buffer *wb = &c->btree_write_buffer;
574
575         if (!dst->wb->keys.nr)
576                 bch2_journal_pin_drop(&c->journal, &dst->wb->pin);
577
578         if (bch2_btree_write_buffer_should_flush(c) &&
579             __bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer) &&
580             !queue_work(system_unbound_wq, &c->btree_write_buffer.flush_work))
581                 bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
582
583         if (dst->wb == &wb->flushing)
584                 mutex_unlock(&wb->flushing.lock);
585         mutex_unlock(&wb->inc.lock);
586 }
587
588 static int bch2_journal_keys_to_write_buffer(struct bch_fs *c, struct journal_buf *buf)
589 {
590         struct journal_keys_to_wb dst;
591         int ret = 0;
592
593         bch2_journal_keys_to_write_buffer_start(c, &dst, le64_to_cpu(buf->data->seq));
594
595         for_each_jset_entry_type(entry, buf->data, BCH_JSET_ENTRY_write_buffer_keys) {
596                 jset_entry_for_each_key(entry, k) {
597                         ret = bch2_journal_key_to_wb(c, &dst, entry->btree_id, k);
598                         if (ret)
599                                 goto out;
600                 }
601
602                 entry->type = BCH_JSET_ENTRY_btree_keys;
603         }
604
605         spin_lock(&c->journal.lock);
606         buf->need_flush_to_write_buffer = false;
607         spin_unlock(&c->journal.lock);
608 out:
609         bch2_journal_keys_to_write_buffer_end(c, &dst);
610         return ret;
611 }
612
613 static int wb_keys_resize(struct btree_write_buffer_keys *wb, size_t new_size)
614 {
615         if (wb->keys.size >= new_size)
616                 return 0;
617
618         if (!mutex_trylock(&wb->lock))
619                 return -EINTR;
620
621         int ret = darray_resize(&wb->keys, new_size);
622         mutex_unlock(&wb->lock);
623         return ret;
624 }
625
626 int bch2_btree_write_buffer_resize(struct bch_fs *c, size_t new_size)
627 {
628         struct btree_write_buffer *wb = &c->btree_write_buffer;
629
630         return wb_keys_resize(&wb->flushing, new_size) ?:
631                 wb_keys_resize(&wb->inc, new_size);
632 }
633
634 void bch2_fs_btree_write_buffer_exit(struct bch_fs *c)
635 {
636         struct btree_write_buffer *wb = &c->btree_write_buffer;
637
638         BUG_ON((wb->inc.keys.nr || wb->flushing.keys.nr) &&
639                !bch2_journal_error(&c->journal));
640
641         darray_exit(&wb->sorted);
642         darray_exit(&wb->flushing.keys);
643         darray_exit(&wb->inc.keys);
644 }
645
646 int bch2_fs_btree_write_buffer_init(struct bch_fs *c)
647 {
648         struct btree_write_buffer *wb = &c->btree_write_buffer;
649
650         mutex_init(&wb->inc.lock);
651         mutex_init(&wb->flushing.lock);
652         INIT_WORK(&wb->flush_work, bch2_btree_write_buffer_flush_work);
653
654         /* Will be resized by journal as needed: */
655         unsigned initial_size = 1 << 16;
656
657         return  darray_make_room(&wb->inc.keys, initial_size) ?:
658                 darray_make_room(&wb->flushing.keys, initial_size) ?:
659                 darray_make_room(&wb->sorted, initial_size);
660 }