Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[linux-block.git] / fs / bcachefs / btree_update_interior.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_BTREE_UPDATE_INTERIOR_H
3 #define _BCACHEFS_BTREE_UPDATE_INTERIOR_H
4
5 #include "btree_cache.h"
6 #include "btree_locking.h"
7 #include "btree_update.h"
8
9 #define BTREE_UPDATE_NODES_MAX          ((BTREE_MAX_DEPTH - 2) * 2 + GC_MERGE_NODES)
10
11 #define BTREE_UPDATE_JOURNAL_RES        (BTREE_UPDATE_NODES_MAX * (BKEY_BTREE_PTR_U64s_MAX + 1))
12
13 int bch2_btree_node_check_topology(struct btree_trans *, struct btree *);
14
15 #define BTREE_UPDATE_MODES()    \
16         x(none)                 \
17         x(node)                 \
18         x(root)                 \
19         x(update)
20
21 enum btree_update_mode {
22 #define x(n)    BTREE_UPDATE_##n,
23         BTREE_UPDATE_MODES()
24 #undef x
25 };
26
27 /*
28  * Tracks an in progress split/rewrite of a btree node and the update to the
29  * parent node:
30  *
31  * When we split/rewrite a node, we do all the updates in memory without
32  * waiting for any writes to complete - we allocate the new node(s) and update
33  * the parent node, possibly recursively up to the root.
34  *
35  * The end result is that we have one or more new nodes being written -
36  * possibly several, if there were multiple splits - and then a write (updating
37  * an interior node) which will make all these new nodes visible.
38  *
39  * Additionally, as we split/rewrite nodes we free the old nodes - but the old
40  * nodes can't be freed (their space on disk can't be reclaimed) until the
41  * update to the interior node that makes the new node visible completes -
42  * until then, the old nodes are still reachable on disk.
43  *
44  */
45 struct btree_update {
46         struct closure                  cl;
47         struct bch_fs                   *c;
48         u64                             start_time;
49         unsigned long                   ip_started;
50
51         struct list_head                list;
52         struct list_head                unwritten_list;
53
54         enum btree_update_mode          mode;
55         enum bch_watermark              watermark;
56         unsigned                        nodes_written:1;
57         unsigned                        took_gc_lock:1;
58
59         enum btree_id                   btree_id;
60         unsigned                        update_level;
61
62         struct disk_reservation         disk_res;
63
64         /*
65          * BTREE_UPDATE_node:
66          * The update that made the new nodes visible was a regular update to an
67          * existing interior node - @b. We can't write out the update to @b
68          * until the new nodes we created are finished writing, so we block @b
69          * from writing by putting this btree_interior update on the
70          * @b->write_blocked list with @write_blocked_list:
71          */
72         struct btree                    *b;
73         struct list_head                write_blocked_list;
74
75         /*
76          * We may be freeing nodes that were dirty, and thus had journal entries
77          * pinned: we need to transfer the oldest of those pins to the
78          * btree_update operation, and release it when the new node(s)
79          * are all persistent and reachable:
80          */
81         struct journal_entry_pin        journal;
82
83         /* Preallocated nodes we reserve when we start the update: */
84         struct prealloc_nodes {
85                 struct btree            *b[BTREE_UPDATE_NODES_MAX];
86                 unsigned                nr;
87         }                               prealloc_nodes[2];
88
89         /* Nodes being freed: */
90         struct keylist                  old_keys;
91         u64                             _old_keys[BTREE_UPDATE_NODES_MAX *
92                                                   BKEY_BTREE_PTR_U64s_MAX];
93
94         /* Nodes being added: */
95         struct keylist                  new_keys;
96         u64                             _new_keys[BTREE_UPDATE_NODES_MAX *
97                                                   BKEY_BTREE_PTR_U64s_MAX];
98
99         /* New nodes, that will be made reachable by this update: */
100         struct btree                    *new_nodes[BTREE_UPDATE_NODES_MAX];
101         unsigned                        nr_new_nodes;
102
103         struct btree                    *old_nodes[BTREE_UPDATE_NODES_MAX];
104         __le64                          old_nodes_seq[BTREE_UPDATE_NODES_MAX];
105         unsigned                        nr_old_nodes;
106
107         open_bucket_idx_t               open_buckets[BTREE_UPDATE_NODES_MAX *
108                                                      BCH_REPLICAS_MAX];
109         open_bucket_idx_t               nr_open_buckets;
110
111         unsigned                        journal_u64s;
112         u64                             journal_entries[BTREE_UPDATE_JOURNAL_RES];
113
114         /* Only here to reduce stack usage on recursive splits: */
115         struct keylist                  parent_keys;
116         /*
117          * Enough room for btree_split's keys without realloc - btree node
118          * pointers never have crc/compression info, so we only need to acount
119          * for the pointers for three keys
120          */
121         u64                             inline_keys[BKEY_BTREE_PTR_U64s_MAX * 3];
122 };
123
124 struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *,
125                                                   struct btree_trans *,
126                                                   struct btree *,
127                                                   struct bkey_format);
128
129 int bch2_btree_split_leaf(struct btree_trans *, btree_path_idx_t, unsigned);
130
131 int bch2_btree_increase_depth(struct btree_trans *, btree_path_idx_t, unsigned);
132
133 int __bch2_foreground_maybe_merge(struct btree_trans *, btree_path_idx_t,
134                                   unsigned, unsigned, enum btree_node_sibling);
135
136 static inline int bch2_foreground_maybe_merge_sibling(struct btree_trans *trans,
137                                         btree_path_idx_t path_idx,
138                                         unsigned level, unsigned flags,
139                                         enum btree_node_sibling sib)
140 {
141         struct btree_path *path = trans->paths + path_idx;
142         struct btree *b;
143
144         EBUG_ON(!btree_node_locked(path, level));
145
146         b = path->l[level].b;
147         if (b->sib_u64s[sib] > trans->c->btree_foreground_merge_threshold)
148                 return 0;
149
150         return __bch2_foreground_maybe_merge(trans, path_idx, level, flags, sib);
151 }
152
153 static inline int bch2_foreground_maybe_merge(struct btree_trans *trans,
154                                               btree_path_idx_t path,
155                                               unsigned level,
156                                               unsigned flags)
157 {
158         return  bch2_foreground_maybe_merge_sibling(trans, path, level, flags,
159                                                     btree_prev_sib) ?:
160                 bch2_foreground_maybe_merge_sibling(trans, path, level, flags,
161                                                     btree_next_sib);
162 }
163
164 int bch2_btree_node_rewrite(struct btree_trans *, struct btree_iter *,
165                             struct btree *, unsigned);
166 void bch2_btree_node_rewrite_async(struct bch_fs *, struct btree *);
167 int bch2_btree_node_update_key(struct btree_trans *, struct btree_iter *,
168                                struct btree *, struct bkey_i *,
169                                unsigned, bool);
170 int bch2_btree_node_update_key_get_iter(struct btree_trans *, struct btree *,
171                                         struct bkey_i *, unsigned, bool);
172
173 void bch2_btree_set_root_for_read(struct bch_fs *, struct btree *);
174 void bch2_btree_root_alloc_fake(struct bch_fs *, enum btree_id, unsigned);
175
176 static inline unsigned btree_update_reserve_required(struct bch_fs *c,
177                                                      struct btree *b)
178 {
179         unsigned depth = btree_node_root(c, b)->c.level + 1;
180
181         /*
182          * Number of nodes we might have to allocate in a worst case btree
183          * split operation - we split all the way up to the root, then allocate
184          * a new root, unless we're already at max depth:
185          */
186         if (depth < BTREE_MAX_DEPTH)
187                 return (depth - b->c.level) * 2 + 1;
188         else
189                 return (depth - b->c.level) * 2 - 1;
190 }
191
192 static inline void btree_node_reset_sib_u64s(struct btree *b)
193 {
194         b->sib_u64s[0] = b->nr.live_u64s;
195         b->sib_u64s[1] = b->nr.live_u64s;
196 }
197
198 static inline void *btree_data_end(struct btree *b)
199 {
200         return (void *) b->data + btree_buf_bytes(b);
201 }
202
203 static inline struct bkey_packed *unwritten_whiteouts_start(struct btree *b)
204 {
205         return (void *) ((u64 *) btree_data_end(b) - b->whiteout_u64s);
206 }
207
208 static inline struct bkey_packed *unwritten_whiteouts_end(struct btree *b)
209 {
210         return btree_data_end(b);
211 }
212
213 static inline void *write_block(struct btree *b)
214 {
215         return (void *) b->data + (b->written << 9);
216 }
217
218 static inline bool __btree_addr_written(struct btree *b, void *p)
219 {
220         return p < write_block(b);
221 }
222
223 static inline bool bset_written(struct btree *b, struct bset *i)
224 {
225         return __btree_addr_written(b, i);
226 }
227
228 static inline bool bkey_written(struct btree *b, struct bkey_packed *k)
229 {
230         return __btree_addr_written(b, k);
231 }
232
233 static inline ssize_t __bch2_btree_u64s_remaining(struct btree *b, void *end)
234 {
235         ssize_t used = bset_byte_offset(b, end) / sizeof(u64) +
236                 b->whiteout_u64s;
237         ssize_t total = btree_buf_bytes(b) >> 3;
238
239         /* Always leave one extra u64 for bch2_varint_decode: */
240         used++;
241
242         return total - used;
243 }
244
245 static inline size_t bch2_btree_keys_u64s_remaining(struct btree *b)
246 {
247         ssize_t remaining = __bch2_btree_u64s_remaining(b,
248                                 btree_bkey_last(b, bset_tree_last(b)));
249
250         BUG_ON(remaining < 0);
251
252         if (bset_written(b, btree_bset_last(b)))
253                 return 0;
254
255         return remaining;
256 }
257
258 #define BTREE_WRITE_SET_U64s_BITS       9
259
260 static inline unsigned btree_write_set_buffer(struct btree *b)
261 {
262         /*
263          * Could buffer up larger amounts of keys for btrees with larger keys,
264          * pending benchmarking:
265          */
266         return 8 << BTREE_WRITE_SET_U64s_BITS;
267 }
268
269 static inline struct btree_node_entry *want_new_bset(struct bch_fs *c, struct btree *b)
270 {
271         struct bset_tree *t = bset_tree_last(b);
272         struct btree_node_entry *bne = max(write_block(b),
273                         (void *) btree_bkey_last(b, bset_tree_last(b)));
274         ssize_t remaining_space =
275                 __bch2_btree_u64s_remaining(b, bne->keys.start);
276
277         if (unlikely(bset_written(b, bset(b, t)))) {
278                 if (remaining_space > (ssize_t) (block_bytes(c) >> 3))
279                         return bne;
280         } else {
281                 if (unlikely(bset_u64s(t) * sizeof(u64) > btree_write_set_buffer(b)) &&
282                     remaining_space > (ssize_t) (btree_write_set_buffer(b) >> 3))
283                         return bne;
284         }
285
286         return NULL;
287 }
288
289 static inline void push_whiteout(struct btree *b, struct bpos pos)
290 {
291         struct bkey_packed k;
292
293         BUG_ON(bch2_btree_keys_u64s_remaining(b) < BKEY_U64s);
294         EBUG_ON(btree_node_just_written(b));
295
296         if (!bkey_pack_pos(&k, pos, b)) {
297                 struct bkey *u = (void *) &k;
298
299                 bkey_init(u);
300                 u->p = pos;
301         }
302
303         k.needs_whiteout = true;
304
305         b->whiteout_u64s += k.u64s;
306         bkey_p_copy(unwritten_whiteouts_start(b), &k);
307 }
308
309 /*
310  * write lock must be held on @b (else the dirty bset that we were going to
311  * insert into could be written out from under us)
312  */
313 static inline bool bch2_btree_node_insert_fits(struct btree *b, unsigned u64s)
314 {
315         if (unlikely(btree_node_need_rewrite(b)))
316                 return false;
317
318         return u64s <= bch2_btree_keys_u64s_remaining(b);
319 }
320
321 void bch2_btree_updates_to_text(struct printbuf *, struct bch_fs *);
322
323 bool bch2_btree_interior_updates_flush(struct bch_fs *);
324
325 void bch2_journal_entry_to_btree_root(struct bch_fs *, struct jset_entry *);
326 struct jset_entry *bch2_btree_roots_to_journal_entries(struct bch_fs *,
327                                         struct jset_entry *, unsigned long);
328
329 void bch2_do_pending_node_rewrites(struct bch_fs *);
330 void bch2_free_pending_node_rewrites(struct bch_fs *);
331
332 void bch2_fs_btree_interior_update_exit(struct bch_fs *);
333 void bch2_fs_btree_interior_update_init_early(struct bch_fs *);
334 int bch2_fs_btree_interior_update_init(struct bch_fs *);
335
336 #endif /* _BCACHEFS_BTREE_UPDATE_INTERIOR_H */