Merge tag 'md-6.9-20240408' of https://git.kernel.org/pub/scm/linux/kernel/git/song...
[linux-block.git] / fs / bcachefs / btree_update_interior.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_BTREE_UPDATE_INTERIOR_H
3 #define _BCACHEFS_BTREE_UPDATE_INTERIOR_H
4
5 #include "btree_cache.h"
6 #include "btree_locking.h"
7 #include "btree_update.h"
8
9 #define BTREE_UPDATE_NODES_MAX          ((BTREE_MAX_DEPTH - 2) * 2 + GC_MERGE_NODES)
10
11 #define BTREE_UPDATE_JOURNAL_RES        (BTREE_UPDATE_NODES_MAX * (BKEY_BTREE_PTR_U64s_MAX + 1))
12
13 /*
14  * Tracks an in progress split/rewrite of a btree node and the update to the
15  * parent node:
16  *
17  * When we split/rewrite a node, we do all the updates in memory without
18  * waiting for any writes to complete - we allocate the new node(s) and update
19  * the parent node, possibly recursively up to the root.
20  *
21  * The end result is that we have one or more new nodes being written -
22  * possibly several, if there were multiple splits - and then a write (updating
23  * an interior node) which will make all these new nodes visible.
24  *
25  * Additionally, as we split/rewrite nodes we free the old nodes - but the old
26  * nodes can't be freed (their space on disk can't be reclaimed) until the
27  * update to the interior node that makes the new node visible completes -
28  * until then, the old nodes are still reachable on disk.
29  *
30  */
31 struct btree_update {
32         struct closure                  cl;
33         struct bch_fs                   *c;
34         u64                             start_time;
35         unsigned long                   ip_started;
36
37         struct list_head                list;
38         struct list_head                unwritten_list;
39
40         /* What kind of update are we doing? */
41         enum {
42                 BTREE_INTERIOR_NO_UPDATE,
43                 BTREE_INTERIOR_UPDATING_NODE,
44                 BTREE_INTERIOR_UPDATING_ROOT,
45                 BTREE_INTERIOR_UPDATING_AS,
46         } mode;
47
48         unsigned                        nodes_written:1;
49         unsigned                        took_gc_lock:1;
50
51         enum btree_id                   btree_id;
52         unsigned                        update_level;
53
54         struct disk_reservation         disk_res;
55
56         /*
57          * BTREE_INTERIOR_UPDATING_NODE:
58          * The update that made the new nodes visible was a regular update to an
59          * existing interior node - @b. We can't write out the update to @b
60          * until the new nodes we created are finished writing, so we block @b
61          * from writing by putting this btree_interior update on the
62          * @b->write_blocked list with @write_blocked_list:
63          */
64         struct btree                    *b;
65         struct list_head                write_blocked_list;
66
67         /*
68          * We may be freeing nodes that were dirty, and thus had journal entries
69          * pinned: we need to transfer the oldest of those pins to the
70          * btree_update operation, and release it when the new node(s)
71          * are all persistent and reachable:
72          */
73         struct journal_entry_pin        journal;
74
75         /* Preallocated nodes we reserve when we start the update: */
76         struct prealloc_nodes {
77                 struct btree            *b[BTREE_UPDATE_NODES_MAX];
78                 unsigned                nr;
79         }                               prealloc_nodes[2];
80
81         /* Nodes being freed: */
82         struct keylist                  old_keys;
83         u64                             _old_keys[BTREE_UPDATE_NODES_MAX *
84                                                   BKEY_BTREE_PTR_U64s_MAX];
85
86         /* Nodes being added: */
87         struct keylist                  new_keys;
88         u64                             _new_keys[BTREE_UPDATE_NODES_MAX *
89                                                   BKEY_BTREE_PTR_U64s_MAX];
90
91         /* New nodes, that will be made reachable by this update: */
92         struct btree                    *new_nodes[BTREE_UPDATE_NODES_MAX];
93         unsigned                        nr_new_nodes;
94
95         struct btree                    *old_nodes[BTREE_UPDATE_NODES_MAX];
96         __le64                          old_nodes_seq[BTREE_UPDATE_NODES_MAX];
97         unsigned                        nr_old_nodes;
98
99         open_bucket_idx_t               open_buckets[BTREE_UPDATE_NODES_MAX *
100                                                      BCH_REPLICAS_MAX];
101         open_bucket_idx_t               nr_open_buckets;
102
103         unsigned                        journal_u64s;
104         u64                             journal_entries[BTREE_UPDATE_JOURNAL_RES];
105
106         /* Only here to reduce stack usage on recursive splits: */
107         struct keylist                  parent_keys;
108         /*
109          * Enough room for btree_split's keys without realloc - btree node
110          * pointers never have crc/compression info, so we only need to acount
111          * for the pointers for three keys
112          */
113         u64                             inline_keys[BKEY_BTREE_PTR_U64s_MAX * 3];
114 };
115
116 struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *,
117                                                   struct btree_trans *,
118                                                   struct btree *,
119                                                   struct bkey_format);
120
121 int bch2_btree_split_leaf(struct btree_trans *, btree_path_idx_t, unsigned);
122
123 int bch2_btree_increase_depth(struct btree_trans *, btree_path_idx_t, unsigned);
124
125 int __bch2_foreground_maybe_merge(struct btree_trans *, btree_path_idx_t,
126                                   unsigned, unsigned, enum btree_node_sibling);
127
128 static inline int bch2_foreground_maybe_merge_sibling(struct btree_trans *trans,
129                                         btree_path_idx_t path_idx,
130                                         unsigned level, unsigned flags,
131                                         enum btree_node_sibling sib)
132 {
133         struct btree_path *path = trans->paths + path_idx;
134         struct btree *b;
135
136         EBUG_ON(!btree_node_locked(path, level));
137
138         b = path->l[level].b;
139         if (b->sib_u64s[sib] > trans->c->btree_foreground_merge_threshold)
140                 return 0;
141
142         return __bch2_foreground_maybe_merge(trans, path_idx, level, flags, sib);
143 }
144
145 static inline int bch2_foreground_maybe_merge(struct btree_trans *trans,
146                                               btree_path_idx_t path,
147                                               unsigned level,
148                                               unsigned flags)
149 {
150         return  bch2_foreground_maybe_merge_sibling(trans, path, level, flags,
151                                                     btree_prev_sib) ?:
152                 bch2_foreground_maybe_merge_sibling(trans, path, level, flags,
153                                                     btree_next_sib);
154 }
155
156 int bch2_btree_node_rewrite(struct btree_trans *, struct btree_iter *,
157                             struct btree *, unsigned);
158 void bch2_btree_node_rewrite_async(struct bch_fs *, struct btree *);
159 int bch2_btree_node_update_key(struct btree_trans *, struct btree_iter *,
160                                struct btree *, struct bkey_i *,
161                                unsigned, bool);
162 int bch2_btree_node_update_key_get_iter(struct btree_trans *, struct btree *,
163                                         struct bkey_i *, unsigned, bool);
164
165 void bch2_btree_set_root_for_read(struct bch_fs *, struct btree *);
166 void bch2_btree_root_alloc(struct bch_fs *, enum btree_id);
167
168 static inline unsigned btree_update_reserve_required(struct bch_fs *c,
169                                                      struct btree *b)
170 {
171         unsigned depth = btree_node_root(c, b)->c.level + 1;
172
173         /*
174          * Number of nodes we might have to allocate in a worst case btree
175          * split operation - we split all the way up to the root, then allocate
176          * a new root, unless we're already at max depth:
177          */
178         if (depth < BTREE_MAX_DEPTH)
179                 return (depth - b->c.level) * 2 + 1;
180         else
181                 return (depth - b->c.level) * 2 - 1;
182 }
183
184 static inline void btree_node_reset_sib_u64s(struct btree *b)
185 {
186         b->sib_u64s[0] = b->nr.live_u64s;
187         b->sib_u64s[1] = b->nr.live_u64s;
188 }
189
190 static inline void *btree_data_end(struct btree *b)
191 {
192         return (void *) b->data + btree_buf_bytes(b);
193 }
194
195 static inline struct bkey_packed *unwritten_whiteouts_start(struct btree *b)
196 {
197         return (void *) ((u64 *) btree_data_end(b) - b->whiteout_u64s);
198 }
199
200 static inline struct bkey_packed *unwritten_whiteouts_end(struct btree *b)
201 {
202         return btree_data_end(b);
203 }
204
205 static inline void *write_block(struct btree *b)
206 {
207         return (void *) b->data + (b->written << 9);
208 }
209
210 static inline bool __btree_addr_written(struct btree *b, void *p)
211 {
212         return p < write_block(b);
213 }
214
215 static inline bool bset_written(struct btree *b, struct bset *i)
216 {
217         return __btree_addr_written(b, i);
218 }
219
220 static inline bool bkey_written(struct btree *b, struct bkey_packed *k)
221 {
222         return __btree_addr_written(b, k);
223 }
224
225 static inline ssize_t __bch2_btree_u64s_remaining(struct btree *b, void *end)
226 {
227         ssize_t used = bset_byte_offset(b, end) / sizeof(u64) +
228                 b->whiteout_u64s;
229         ssize_t total = btree_buf_bytes(b) >> 3;
230
231         /* Always leave one extra u64 for bch2_varint_decode: */
232         used++;
233
234         return total - used;
235 }
236
237 static inline size_t bch2_btree_keys_u64s_remaining(struct btree *b)
238 {
239         ssize_t remaining = __bch2_btree_u64s_remaining(b,
240                                 btree_bkey_last(b, bset_tree_last(b)));
241
242         BUG_ON(remaining < 0);
243
244         if (bset_written(b, btree_bset_last(b)))
245                 return 0;
246
247         return remaining;
248 }
249
250 #define BTREE_WRITE_SET_U64s_BITS       9
251
252 static inline unsigned btree_write_set_buffer(struct btree *b)
253 {
254         /*
255          * Could buffer up larger amounts of keys for btrees with larger keys,
256          * pending benchmarking:
257          */
258         return 8 << BTREE_WRITE_SET_U64s_BITS;
259 }
260
261 static inline struct btree_node_entry *want_new_bset(struct bch_fs *c, struct btree *b)
262 {
263         struct bset_tree *t = bset_tree_last(b);
264         struct btree_node_entry *bne = max(write_block(b),
265                         (void *) btree_bkey_last(b, bset_tree_last(b)));
266         ssize_t remaining_space =
267                 __bch2_btree_u64s_remaining(b, bne->keys.start);
268
269         if (unlikely(bset_written(b, bset(b, t)))) {
270                 if (remaining_space > (ssize_t) (block_bytes(c) >> 3))
271                         return bne;
272         } else {
273                 if (unlikely(bset_u64s(t) * sizeof(u64) > btree_write_set_buffer(b)) &&
274                     remaining_space > (ssize_t) (btree_write_set_buffer(b) >> 3))
275                         return bne;
276         }
277
278         return NULL;
279 }
280
281 static inline void push_whiteout(struct btree *b, struct bpos pos)
282 {
283         struct bkey_packed k;
284
285         BUG_ON(bch2_btree_keys_u64s_remaining(b) < BKEY_U64s);
286         EBUG_ON(btree_node_just_written(b));
287
288         if (!bkey_pack_pos(&k, pos, b)) {
289                 struct bkey *u = (void *) &k;
290
291                 bkey_init(u);
292                 u->p = pos;
293         }
294
295         k.needs_whiteout = true;
296
297         b->whiteout_u64s += k.u64s;
298         bkey_p_copy(unwritten_whiteouts_start(b), &k);
299 }
300
301 /*
302  * write lock must be held on @b (else the dirty bset that we were going to
303  * insert into could be written out from under us)
304  */
305 static inline bool bch2_btree_node_insert_fits(struct btree *b, unsigned u64s)
306 {
307         if (unlikely(btree_node_need_rewrite(b)))
308                 return false;
309
310         return u64s <= bch2_btree_keys_u64s_remaining(b);
311 }
312
313 void bch2_btree_updates_to_text(struct printbuf *, struct bch_fs *);
314
315 bool bch2_btree_interior_updates_flush(struct bch_fs *);
316
317 void bch2_journal_entry_to_btree_root(struct bch_fs *, struct jset_entry *);
318 struct jset_entry *bch2_btree_roots_to_journal_entries(struct bch_fs *,
319                                         struct jset_entry *, unsigned long);
320
321 void bch2_do_pending_node_rewrites(struct bch_fs *);
322 void bch2_free_pending_node_rewrites(struct bch_fs *);
323
324 void bch2_fs_btree_interior_update_exit(struct bch_fs *);
325 void bch2_fs_btree_interior_update_init_early(struct bch_fs *);
326 int bch2_fs_btree_interior_update_init(struct bch_fs *);
327
328 #endif /* _BCACHEFS_BTREE_UPDATE_INTERIOR_H */