bcachefs: btree_bkey_cached_common
[linux-block.git] / fs / bcachefs / btree_types.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_BTREE_TYPES_H
3 #define _BCACHEFS_BTREE_TYPES_H
4
5 #include <linux/list.h>
6 #include <linux/rhashtable.h>
7
8 #include "bkey_methods.h"
9 #include "journal_types.h"
10 #include "six.h"
11
12 struct open_bucket;
13 struct btree_update;
14 struct btree_trans;
15
16 #define MAX_BSETS               3U
17
18 struct btree_nr_keys {
19
20         /*
21          * Amount of live metadata (i.e. size of node after a compaction) in
22          * units of u64s
23          */
24         u16                     live_u64s;
25         u16                     bset_u64s[MAX_BSETS];
26
27         /* live keys only: */
28         u16                     packed_keys;
29         u16                     unpacked_keys;
30 };
31
32 struct bset_tree {
33         /*
34          * We construct a binary tree in an array as if the array
35          * started at 1, so that things line up on the same cachelines
36          * better: see comments in bset.c at cacheline_to_bkey() for
37          * details
38          */
39
40         /* size of the binary tree and prev array */
41         u16                     size;
42
43         /* function of size - precalculated for to_inorder() */
44         u16                     extra;
45
46         u16                     data_offset;
47         u16                     aux_data_offset;
48         u16                     end_offset;
49
50         struct bpos             max_key;
51 };
52
53 struct btree_write {
54         struct journal_entry_pin        journal;
55         struct closure_waitlist         wait;
56 };
57
58 struct btree_alloc {
59         struct open_buckets     ob;
60         BKEY_PADDED(k);
61 };
62
63 struct btree_bkey_cached_common {
64         struct six_lock         lock;
65         u8                      level;
66         u8                      btree_id;
67 };
68
69 struct btree {
70         struct btree_bkey_cached_common c;
71
72         struct rhash_head       hash;
73
74         /* Key/pointer for this btree node */
75         __BKEY_PADDED(key, BKEY_BTREE_PTR_VAL_U64s_MAX);
76
77         unsigned long           flags;
78         u16                     written;
79         u8                      nsets;
80         u8                      nr_key_bits;
81
82         struct bkey_format      format;
83
84         struct btree_node       *data;
85         void                    *aux_data;
86
87         /*
88          * Sets of sorted keys - the real btree node - plus a binary search tree
89          *
90          * set[0] is special; set[0]->tree, set[0]->prev and set[0]->data point
91          * to the memory we have allocated for this btree node. Additionally,
92          * set[0]->data points to the entire btree node as it exists on disk.
93          */
94         struct bset_tree        set[MAX_BSETS];
95
96         struct btree_nr_keys    nr;
97         u16                     sib_u64s[2];
98         u16                     whiteout_u64s;
99         u16                     uncompacted_whiteout_u64s;
100         u8                      page_order;
101         u8                      unpack_fn_len;
102
103         /*
104          * XXX: add a delete sequence number, so when bch2_btree_node_relock()
105          * fails because the lock sequence number has changed - i.e. the
106          * contents were modified - we can still relock the node if it's still
107          * the one we want, without redoing the traversal
108          */
109
110         /*
111          * For asynchronous splits/interior node updates:
112          * When we do a split, we allocate new child nodes and update the parent
113          * node to point to them: we update the parent in memory immediately,
114          * but then we must wait until the children have been written out before
115          * the update to the parent can be written - this is a list of the
116          * btree_updates that are blocking this node from being
117          * written:
118          */
119         struct list_head        write_blocked;
120
121         /*
122          * Also for asynchronous splits/interior node updates:
123          * If a btree node isn't reachable yet, we don't want to kick off
124          * another write - because that write also won't yet be reachable and
125          * marking it as completed before it's reachable would be incorrect:
126          */
127         unsigned long           will_make_reachable;
128
129         struct open_buckets     ob;
130
131         /* lru list */
132         struct list_head        list;
133
134         struct btree_write      writes[2];
135
136 #ifdef CONFIG_BCACHEFS_DEBUG
137         bool                    *expensive_debug_checks;
138 #endif
139 };
140
141 struct btree_cache {
142         struct rhashtable       table;
143         bool                    table_init_done;
144         /*
145          * We never free a struct btree, except on shutdown - we just put it on
146          * the btree_cache_freed list and reuse it later. This simplifies the
147          * code, and it doesn't cost us much memory as the memory usage is
148          * dominated by buffers that hold the actual btree node data and those
149          * can be freed - and the number of struct btrees allocated is
150          * effectively bounded.
151          *
152          * btree_cache_freeable effectively is a small cache - we use it because
153          * high order page allocations can be rather expensive, and it's quite
154          * common to delete and allocate btree nodes in quick succession. It
155          * should never grow past ~2-3 nodes in practice.
156          */
157         struct mutex            lock;
158         struct list_head        live;
159         struct list_head        freeable;
160         struct list_head        freed;
161
162         /* Number of elements in live + freeable lists */
163         unsigned                used;
164         unsigned                reserve;
165         struct shrinker         shrink;
166
167         /*
168          * If we need to allocate memory for a new btree node and that
169          * allocation fails, we can cannibalize another node in the btree cache
170          * to satisfy the allocation - lock to guarantee only one thread does
171          * this at a time:
172          */
173         struct task_struct      *alloc_lock;
174         struct closure_waitlist alloc_wait;
175 };
176
177 struct btree_node_iter {
178         struct btree_node_iter_set {
179                 u16     k, end;
180         } data[MAX_BSETS];
181 };
182
183 enum btree_iter_type {
184         BTREE_ITER_KEYS,
185         BTREE_ITER_SLOTS,
186         BTREE_ITER_NODES,
187 };
188
189 #define BTREE_ITER_TYPE                 ((1 << 2) - 1)
190
191 #define BTREE_ITER_INTENT               (1 << 2)
192 #define BTREE_ITER_PREFETCH             (1 << 3)
193 /*
194  * Used in bch2_btree_iter_traverse(), to indicate whether we're searching for
195  * @pos or the first key strictly greater than @pos
196  */
197 #define BTREE_ITER_IS_EXTENTS           (1 << 4)
198 #define BTREE_ITER_ERROR                (1 << 5)
199 #define BTREE_ITER_NOUNLOCK             (1 << 6)
200
201 enum btree_iter_uptodate {
202         BTREE_ITER_UPTODATE             = 0,
203         BTREE_ITER_NEED_PEEK            = 1,
204         BTREE_ITER_NEED_RELOCK          = 2,
205         BTREE_ITER_NEED_TRAVERSE        = 3,
206 };
207
208 /*
209  * @pos                 - iterator's current position
210  * @level               - current btree depth
211  * @locks_want          - btree level below which we start taking intent locks
212  * @nodes_locked        - bitmask indicating which nodes in @nodes are locked
213  * @nodes_intent_locked - bitmask indicating which locks are intent locks
214  */
215 struct btree_iter {
216         u8                      idx;
217
218         struct btree_trans      *trans;
219         struct bpos             pos;
220
221         u8                      flags;
222         enum btree_iter_uptodate uptodate:4;
223         enum btree_id           btree_id:4;
224         unsigned                level:4,
225                                 locks_want:4,
226                                 nodes_locked:4,
227                                 nodes_intent_locked:4;
228
229         struct btree_iter_level {
230                 struct btree    *b;
231                 struct btree_node_iter iter;
232                 u32             lock_seq;
233         }                       l[BTREE_MAX_DEPTH];
234
235         /*
236          * Current unpacked key - so that bch2_btree_iter_next()/
237          * bch2_btree_iter_next_slot() can correctly advance pos.
238          */
239         struct bkey             k;
240
241         u64                     id;
242 };
243
244 struct deferred_update {
245         struct journal_preres   res;
246         struct journal_entry_pin journal;
247
248         spinlock_t              lock;
249         unsigned                dirty:1;
250
251         u8                      allocated_u64s;
252         enum btree_id           btree_id;
253
254         /* must be last: */
255         struct bkey_i           k;
256 };
257
258 struct btree_insert_entry {
259         struct bkey_i           *k;
260
261         union {
262         struct btree_iter       *iter;
263         struct deferred_update  *d;
264         };
265
266         bool                    deferred;
267 };
268
269 #define BTREE_ITER_MAX          64
270
271 struct btree_trans {
272         struct bch_fs           *c;
273         unsigned long           ip;
274         size_t                  nr_restarts;
275         u64                     commit_start;
276
277         u64                     iters_linked;
278         u64                     iters_live;
279         u64                     iters_touched;
280         u64                     iters_unlink_on_restart;
281         u64                     iters_unlink_on_commit;
282
283         u8                      nr_iters;
284         u8                      nr_updates;
285         u8                      size;
286         unsigned                used_mempool:1;
287         unsigned                error:1;
288
289         unsigned                mem_top;
290         unsigned                mem_bytes;
291         void                    *mem;
292
293         struct btree_iter       *iters;
294         struct btree_insert_entry *updates;
295
296         /* update path: */
297         struct journal_res      journal_res;
298         struct journal_preres   journal_preres;
299         u64                     *journal_seq;
300         struct disk_reservation *disk_res;
301         unsigned                flags;
302
303         struct btree_iter       iters_onstack[2];
304         struct btree_insert_entry updates_onstack[6];
305 };
306
307 #define BTREE_FLAG(flag)                                                \
308 static inline bool btree_node_ ## flag(struct btree *b)                 \
309 {       return test_bit(BTREE_NODE_ ## flag, &b->flags); }              \
310                                                                         \
311 static inline void set_btree_node_ ## flag(struct btree *b)             \
312 {       set_bit(BTREE_NODE_ ## flag, &b->flags); }                      \
313                                                                         \
314 static inline void clear_btree_node_ ## flag(struct btree *b)           \
315 {       clear_bit(BTREE_NODE_ ## flag, &b->flags); }
316
317 enum btree_flags {
318         BTREE_NODE_read_in_flight,
319         BTREE_NODE_read_error,
320         BTREE_NODE_dirty,
321         BTREE_NODE_need_write,
322         BTREE_NODE_noevict,
323         BTREE_NODE_write_idx,
324         BTREE_NODE_accessed,
325         BTREE_NODE_write_in_flight,
326         BTREE_NODE_just_written,
327         BTREE_NODE_dying,
328         BTREE_NODE_fake,
329 };
330
331 BTREE_FLAG(read_in_flight);
332 BTREE_FLAG(read_error);
333 BTREE_FLAG(dirty);
334 BTREE_FLAG(need_write);
335 BTREE_FLAG(noevict);
336 BTREE_FLAG(write_idx);
337 BTREE_FLAG(accessed);
338 BTREE_FLAG(write_in_flight);
339 BTREE_FLAG(just_written);
340 BTREE_FLAG(dying);
341 BTREE_FLAG(fake);
342
343 static inline struct btree_write *btree_current_write(struct btree *b)
344 {
345         return b->writes + btree_node_write_idx(b);
346 }
347
348 static inline struct btree_write *btree_prev_write(struct btree *b)
349 {
350         return b->writes + (btree_node_write_idx(b) ^ 1);
351 }
352
353 static inline struct bset_tree *bset_tree_last(struct btree *b)
354 {
355         EBUG_ON(!b->nsets);
356         return b->set + b->nsets - 1;
357 }
358
359 static inline void *
360 __btree_node_offset_to_ptr(const struct btree *b, u16 offset)
361 {
362         return (void *) ((u64 *) b->data + 1 + offset);
363 }
364
365 static inline u16
366 __btree_node_ptr_to_offset(const struct btree *b, const void *p)
367 {
368         u16 ret = (u64 *) p - 1 - (u64 *) b->data;
369
370         EBUG_ON(__btree_node_offset_to_ptr(b, ret) != p);
371         return ret;
372 }
373
374 static inline struct bset *bset(const struct btree *b,
375                                 const struct bset_tree *t)
376 {
377         return __btree_node_offset_to_ptr(b, t->data_offset);
378 }
379
380 static inline void set_btree_bset_end(struct btree *b, struct bset_tree *t)
381 {
382         t->end_offset =
383                 __btree_node_ptr_to_offset(b, vstruct_last(bset(b, t)));
384 }
385
386 static inline void set_btree_bset(struct btree *b, struct bset_tree *t,
387                                   const struct bset *i)
388 {
389         t->data_offset = __btree_node_ptr_to_offset(b, i);
390         set_btree_bset_end(b, t);
391 }
392
393 static inline struct bset *btree_bset_first(struct btree *b)
394 {
395         return bset(b, b->set);
396 }
397
398 static inline struct bset *btree_bset_last(struct btree *b)
399 {
400         return bset(b, bset_tree_last(b));
401 }
402
403 static inline u16
404 __btree_node_key_to_offset(const struct btree *b, const struct bkey_packed *k)
405 {
406         return __btree_node_ptr_to_offset(b, k);
407 }
408
409 static inline struct bkey_packed *
410 __btree_node_offset_to_key(const struct btree *b, u16 k)
411 {
412         return __btree_node_offset_to_ptr(b, k);
413 }
414
415 static inline unsigned btree_bkey_first_offset(const struct bset_tree *t)
416 {
417         return t->data_offset + offsetof(struct bset, _data) / sizeof(u64);
418 }
419
420 #define btree_bkey_first(_b, _t)                                        \
421 ({                                                                      \
422         EBUG_ON(bset(_b, _t)->start !=                                  \
423                 __btree_node_offset_to_key(_b, btree_bkey_first_offset(_t)));\
424                                                                         \
425         bset(_b, _t)->start;                                            \
426 })
427
428 #define btree_bkey_last(_b, _t)                                         \
429 ({                                                                      \
430         EBUG_ON(__btree_node_offset_to_key(_b, (_t)->end_offset) !=     \
431                 vstruct_last(bset(_b, _t)));                            \
432                                                                         \
433         __btree_node_offset_to_key(_b, (_t)->end_offset);               \
434 })
435
436 static inline unsigned bset_byte_offset(struct btree *b, void *i)
437 {
438         return i - (void *) b->data;
439 }
440
441 enum btree_node_type {
442 #define x(kwd, val, name) BKEY_TYPE_##kwd = val,
443         BCH_BTREE_IDS()
444 #undef x
445         BKEY_TYPE_BTREE,
446 };
447
448 /* Type of a key in btree @id at level @level: */
449 static inline enum btree_node_type __btree_node_type(unsigned level, enum btree_id id)
450 {
451         return level ? BKEY_TYPE_BTREE : (enum btree_node_type) id;
452 }
453
454 /* Type of keys @b contains: */
455 static inline enum btree_node_type btree_node_type(struct btree *b)
456 {
457         return __btree_node_type(b->c.level, b->c.btree_id);
458 }
459
460 static inline bool btree_node_type_is_extents(enum btree_node_type type)
461 {
462         return type == BKEY_TYPE_EXTENTS;
463 }
464
465 static inline bool btree_node_is_extents(struct btree *b)
466 {
467         return btree_node_type_is_extents(btree_node_type(b));
468 }
469
470 static inline bool btree_node_type_needs_gc(enum btree_node_type type)
471 {
472         switch (type) {
473         case BKEY_TYPE_ALLOC:
474         case BKEY_TYPE_BTREE:
475         case BKEY_TYPE_EXTENTS:
476         case BKEY_TYPE_INODES:
477         case BKEY_TYPE_EC:
478                 return true;
479         default:
480                 return false;
481         }
482 }
483
484 struct btree_root {
485         struct btree            *b;
486
487         struct btree_update     *as;
488
489         /* On disk root - see async splits: */
490         __BKEY_PADDED(key, BKEY_BTREE_PTR_VAL_U64s_MAX);
491         u8                      level;
492         u8                      alive;
493         s8                      error;
494 };
495
496 /*
497  * Optional hook that will be called just prior to a btree node update, when
498  * we're holding the write lock and we know what key is about to be overwritten:
499  */
500
501 enum btree_insert_ret {
502         BTREE_INSERT_OK,
503         /* leaf node needs to be split */
504         BTREE_INSERT_BTREE_NODE_FULL,
505         BTREE_INSERT_ENOSPC,
506         BTREE_INSERT_NEED_MARK_REPLICAS,
507         BTREE_INSERT_NEED_JOURNAL_RES,
508 };
509
510 enum btree_gc_coalesce_fail_reason {
511         BTREE_GC_COALESCE_FAIL_RESERVE_GET,
512         BTREE_GC_COALESCE_FAIL_KEYLIST_REALLOC,
513         BTREE_GC_COALESCE_FAIL_FORMAT_FITS,
514 };
515
516 enum btree_node_sibling {
517         btree_prev_sib,
518         btree_next_sib,
519 };
520
521 typedef struct btree_nr_keys (*sort_fix_overlapping_fn)(struct bset *,
522                                                         struct btree *,
523                                                         struct btree_node_iter *);
524
525 #endif /* _BCACHEFS_BTREE_TYPES_H */