powercap: intel_rapl_tpmi: Enable PMU support
[linux-block.git] / fs / bcachefs / btree_key_cache.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "btree_cache.h"
5 #include "btree_iter.h"
6 #include "btree_key_cache.h"
7 #include "btree_locking.h"
8 #include "btree_update.h"
9 #include "errcode.h"
10 #include "error.h"
11 #include "journal.h"
12 #include "journal_reclaim.h"
13 #include "trace.h"
14
15 #include <linux/sched/mm.h>
16
17 static inline bool btree_uses_pcpu_readers(enum btree_id id)
18 {
19         return id == BTREE_ID_subvolumes;
20 }
21
22 static struct kmem_cache *bch2_key_cache;
23
24 static int bch2_btree_key_cache_cmp_fn(struct rhashtable_compare_arg *arg,
25                                        const void *obj)
26 {
27         const struct bkey_cached *ck = obj;
28         const struct bkey_cached_key *key = arg->key;
29
30         return ck->key.btree_id != key->btree_id ||
31                 !bpos_eq(ck->key.pos, key->pos);
32 }
33
34 static const struct rhashtable_params bch2_btree_key_cache_params = {
35         .head_offset    = offsetof(struct bkey_cached, hash),
36         .key_offset     = offsetof(struct bkey_cached, key),
37         .key_len        = sizeof(struct bkey_cached_key),
38         .obj_cmpfn      = bch2_btree_key_cache_cmp_fn,
39 };
40
41 __flatten
42 inline struct bkey_cached *
43 bch2_btree_key_cache_find(struct bch_fs *c, enum btree_id btree_id, struct bpos pos)
44 {
45         struct bkey_cached_key key = {
46                 .btree_id       = btree_id,
47                 .pos            = pos,
48         };
49
50         return rhashtable_lookup_fast(&c->btree_key_cache.table, &key,
51                                       bch2_btree_key_cache_params);
52 }
53
54 static bool bkey_cached_lock_for_evict(struct bkey_cached *ck)
55 {
56         if (!six_trylock_intent(&ck->c.lock))
57                 return false;
58
59         if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
60                 six_unlock_intent(&ck->c.lock);
61                 return false;
62         }
63
64         if (!six_trylock_write(&ck->c.lock)) {
65                 six_unlock_intent(&ck->c.lock);
66                 return false;
67         }
68
69         return true;
70 }
71
72 static void bkey_cached_evict(struct btree_key_cache *c,
73                               struct bkey_cached *ck)
74 {
75         BUG_ON(rhashtable_remove_fast(&c->table, &ck->hash,
76                                       bch2_btree_key_cache_params));
77         memset(&ck->key, ~0, sizeof(ck->key));
78
79         atomic_long_dec(&c->nr_keys);
80 }
81
82 static void bkey_cached_free(struct btree_key_cache *bc,
83                              struct bkey_cached *ck)
84 {
85         struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
86
87         BUG_ON(test_bit(BKEY_CACHED_DIRTY, &ck->flags));
88
89         ck->btree_trans_barrier_seq =
90                 start_poll_synchronize_srcu(&c->btree_trans_barrier);
91
92         if (ck->c.lock.readers) {
93                 list_move_tail(&ck->list, &bc->freed_pcpu);
94                 bc->nr_freed_pcpu++;
95         } else {
96                 list_move_tail(&ck->list, &bc->freed_nonpcpu);
97                 bc->nr_freed_nonpcpu++;
98         }
99         atomic_long_inc(&bc->nr_freed);
100
101         kfree(ck->k);
102         ck->k           = NULL;
103         ck->u64s        = 0;
104
105         six_unlock_write(&ck->c.lock);
106         six_unlock_intent(&ck->c.lock);
107 }
108
109 #ifdef __KERNEL__
110 static void __bkey_cached_move_to_freelist_ordered(struct btree_key_cache *bc,
111                                                    struct bkey_cached *ck)
112 {
113         struct bkey_cached *pos;
114
115         bc->nr_freed_nonpcpu++;
116
117         list_for_each_entry_reverse(pos, &bc->freed_nonpcpu, list) {
118                 if (ULONG_CMP_GE(ck->btree_trans_barrier_seq,
119                                  pos->btree_trans_barrier_seq)) {
120                         list_move(&ck->list, &pos->list);
121                         return;
122                 }
123         }
124
125         list_move(&ck->list, &bc->freed_nonpcpu);
126 }
127 #endif
128
129 static void bkey_cached_move_to_freelist(struct btree_key_cache *bc,
130                                          struct bkey_cached *ck)
131 {
132         BUG_ON(test_bit(BKEY_CACHED_DIRTY, &ck->flags));
133
134         if (!ck->c.lock.readers) {
135 #ifdef __KERNEL__
136                 struct btree_key_cache_freelist *f;
137                 bool freed = false;
138
139                 preempt_disable();
140                 f = this_cpu_ptr(bc->pcpu_freed);
141
142                 if (f->nr < ARRAY_SIZE(f->objs)) {
143                         f->objs[f->nr++] = ck;
144                         freed = true;
145                 }
146                 preempt_enable();
147
148                 if (!freed) {
149                         mutex_lock(&bc->lock);
150                         preempt_disable();
151                         f = this_cpu_ptr(bc->pcpu_freed);
152
153                         while (f->nr > ARRAY_SIZE(f->objs) / 2) {
154                                 struct bkey_cached *ck2 = f->objs[--f->nr];
155
156                                 __bkey_cached_move_to_freelist_ordered(bc, ck2);
157                         }
158                         preempt_enable();
159
160                         __bkey_cached_move_to_freelist_ordered(bc, ck);
161                         mutex_unlock(&bc->lock);
162                 }
163 #else
164                 mutex_lock(&bc->lock);
165                 list_move_tail(&ck->list, &bc->freed_nonpcpu);
166                 bc->nr_freed_nonpcpu++;
167                 mutex_unlock(&bc->lock);
168 #endif
169         } else {
170                 mutex_lock(&bc->lock);
171                 list_move_tail(&ck->list, &bc->freed_pcpu);
172                 bc->nr_freed_pcpu++;
173                 mutex_unlock(&bc->lock);
174         }
175 }
176
177 static void bkey_cached_free_fast(struct btree_key_cache *bc,
178                                   struct bkey_cached *ck)
179 {
180         struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
181
182         ck->btree_trans_barrier_seq =
183                 start_poll_synchronize_srcu(&c->btree_trans_barrier);
184
185         list_del_init(&ck->list);
186         atomic_long_inc(&bc->nr_freed);
187
188         kfree(ck->k);
189         ck->k           = NULL;
190         ck->u64s        = 0;
191
192         bkey_cached_move_to_freelist(bc, ck);
193
194         six_unlock_write(&ck->c.lock);
195         six_unlock_intent(&ck->c.lock);
196 }
197
198 static struct bkey_cached *
199 bkey_cached_alloc(struct btree_trans *trans, struct btree_path *path,
200                   bool *was_new)
201 {
202         struct bch_fs *c = trans->c;
203         struct btree_key_cache *bc = &c->btree_key_cache;
204         struct bkey_cached *ck = NULL;
205         bool pcpu_readers = btree_uses_pcpu_readers(path->btree_id);
206         int ret;
207
208         if (!pcpu_readers) {
209 #ifdef __KERNEL__
210                 struct btree_key_cache_freelist *f;
211
212                 preempt_disable();
213                 f = this_cpu_ptr(bc->pcpu_freed);
214                 if (f->nr)
215                         ck = f->objs[--f->nr];
216                 preempt_enable();
217
218                 if (!ck) {
219                         mutex_lock(&bc->lock);
220                         preempt_disable();
221                         f = this_cpu_ptr(bc->pcpu_freed);
222
223                         while (!list_empty(&bc->freed_nonpcpu) &&
224                                f->nr < ARRAY_SIZE(f->objs) / 2) {
225                                 ck = list_last_entry(&bc->freed_nonpcpu, struct bkey_cached, list);
226                                 list_del_init(&ck->list);
227                                 bc->nr_freed_nonpcpu--;
228                                 f->objs[f->nr++] = ck;
229                         }
230
231                         ck = f->nr ? f->objs[--f->nr] : NULL;
232                         preempt_enable();
233                         mutex_unlock(&bc->lock);
234                 }
235 #else
236                 mutex_lock(&bc->lock);
237                 if (!list_empty(&bc->freed_nonpcpu)) {
238                         ck = list_last_entry(&bc->freed_nonpcpu, struct bkey_cached, list);
239                         list_del_init(&ck->list);
240                         bc->nr_freed_nonpcpu--;
241                 }
242                 mutex_unlock(&bc->lock);
243 #endif
244         } else {
245                 mutex_lock(&bc->lock);
246                 if (!list_empty(&bc->freed_pcpu)) {
247                         ck = list_last_entry(&bc->freed_pcpu, struct bkey_cached, list);
248                         list_del_init(&ck->list);
249                         bc->nr_freed_pcpu--;
250                 }
251                 mutex_unlock(&bc->lock);
252         }
253
254         if (ck) {
255                 ret = btree_node_lock_nopath(trans, &ck->c, SIX_LOCK_intent, _THIS_IP_);
256                 if (unlikely(ret)) {
257                         bkey_cached_move_to_freelist(bc, ck);
258                         return ERR_PTR(ret);
259                 }
260
261                 path->l[0].b = (void *) ck;
262                 path->l[0].lock_seq = six_lock_seq(&ck->c.lock);
263                 mark_btree_node_locked(trans, path, 0, BTREE_NODE_INTENT_LOCKED);
264
265                 ret = bch2_btree_node_lock_write(trans, path, &ck->c);
266                 if (unlikely(ret)) {
267                         btree_node_unlock(trans, path, 0);
268                         bkey_cached_move_to_freelist(bc, ck);
269                         return ERR_PTR(ret);
270                 }
271
272                 return ck;
273         }
274
275         ck = allocate_dropping_locks(trans, ret,
276                         kmem_cache_zalloc(bch2_key_cache, _gfp));
277         if (ret) {
278                 kmem_cache_free(bch2_key_cache, ck);
279                 return ERR_PTR(ret);
280         }
281
282         if (!ck)
283                 return NULL;
284
285         INIT_LIST_HEAD(&ck->list);
286         bch2_btree_lock_init(&ck->c, pcpu_readers ? SIX_LOCK_INIT_PCPU : 0);
287
288         ck->c.cached = true;
289         BUG_ON(!six_trylock_intent(&ck->c.lock));
290         BUG_ON(!six_trylock_write(&ck->c.lock));
291         *was_new = true;
292         return ck;
293 }
294
295 static struct bkey_cached *
296 bkey_cached_reuse(struct btree_key_cache *c)
297 {
298         struct bucket_table *tbl;
299         struct rhash_head *pos;
300         struct bkey_cached *ck;
301         unsigned i;
302
303         mutex_lock(&c->lock);
304         rcu_read_lock();
305         tbl = rht_dereference_rcu(c->table.tbl, &c->table);
306         for (i = 0; i < tbl->size; i++)
307                 rht_for_each_entry_rcu(ck, pos, tbl, i, hash) {
308                         if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags) &&
309                             bkey_cached_lock_for_evict(ck)) {
310                                 bkey_cached_evict(c, ck);
311                                 goto out;
312                         }
313                 }
314         ck = NULL;
315 out:
316         rcu_read_unlock();
317         mutex_unlock(&c->lock);
318         return ck;
319 }
320
321 static struct bkey_cached *
322 btree_key_cache_create(struct btree_trans *trans, struct btree_path *path)
323 {
324         struct bch_fs *c = trans->c;
325         struct btree_key_cache *bc = &c->btree_key_cache;
326         struct bkey_cached *ck;
327         bool was_new = false;
328
329         ck = bkey_cached_alloc(trans, path, &was_new);
330         if (IS_ERR(ck))
331                 return ck;
332
333         if (unlikely(!ck)) {
334                 ck = bkey_cached_reuse(bc);
335                 if (unlikely(!ck)) {
336                         bch_err(c, "error allocating memory for key cache item, btree %s",
337                                 bch2_btree_id_str(path->btree_id));
338                         return ERR_PTR(-BCH_ERR_ENOMEM_btree_key_cache_create);
339                 }
340
341                 mark_btree_node_locked(trans, path, 0, BTREE_NODE_INTENT_LOCKED);
342         }
343
344         ck->c.level             = 0;
345         ck->c.btree_id          = path->btree_id;
346         ck->key.btree_id        = path->btree_id;
347         ck->key.pos             = path->pos;
348         ck->valid               = false;
349         ck->flags               = 1U << BKEY_CACHED_ACCESSED;
350
351         if (unlikely(rhashtable_lookup_insert_fast(&bc->table,
352                                           &ck->hash,
353                                           bch2_btree_key_cache_params))) {
354                 /* We raced with another fill: */
355
356                 if (likely(was_new)) {
357                         six_unlock_write(&ck->c.lock);
358                         six_unlock_intent(&ck->c.lock);
359                         kfree(ck);
360                 } else {
361                         bkey_cached_free_fast(bc, ck);
362                 }
363
364                 mark_btree_node_locked(trans, path, 0, BTREE_NODE_UNLOCKED);
365                 return NULL;
366         }
367
368         atomic_long_inc(&bc->nr_keys);
369
370         six_unlock_write(&ck->c.lock);
371
372         return ck;
373 }
374
375 static int btree_key_cache_fill(struct btree_trans *trans,
376                                 struct btree_path *ck_path,
377                                 struct bkey_cached *ck)
378 {
379         struct btree_iter iter;
380         struct bkey_s_c k;
381         unsigned new_u64s = 0;
382         struct bkey_i *new_k = NULL;
383         int ret;
384
385         bch2_trans_iter_init(trans, &iter, ck->key.btree_id, ck->key.pos,
386                              BTREE_ITER_KEY_CACHE_FILL|
387                              BTREE_ITER_CACHED_NOFILL);
388         iter.flags &= ~BTREE_ITER_WITH_JOURNAL;
389         k = bch2_btree_iter_peek_slot(&iter);
390         ret = bkey_err(k);
391         if (ret)
392                 goto err;
393
394         if (!bch2_btree_node_relock(trans, ck_path, 0)) {
395                 trace_and_count(trans->c, trans_restart_relock_key_cache_fill, trans, _THIS_IP_, ck_path);
396                 ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_fill);
397                 goto err;
398         }
399
400         /*
401          * bch2_varint_decode can read past the end of the buffer by at
402          * most 7 bytes (it won't be used):
403          */
404         new_u64s = k.k->u64s + 1;
405
406         /*
407          * Allocate some extra space so that the transaction commit path is less
408          * likely to have to reallocate, since that requires a transaction
409          * restart:
410          */
411         new_u64s = min(256U, (new_u64s * 3) / 2);
412
413         if (new_u64s > ck->u64s) {
414                 new_u64s = roundup_pow_of_two(new_u64s);
415                 new_k = kmalloc(new_u64s * sizeof(u64), GFP_NOWAIT|__GFP_NOWARN);
416                 if (!new_k) {
417                         bch2_trans_unlock(trans);
418
419                         new_k = kmalloc(new_u64s * sizeof(u64), GFP_KERNEL);
420                         if (!new_k) {
421                                 bch_err(trans->c, "error allocating memory for key cache key, btree %s u64s %u",
422                                         bch2_btree_id_str(ck->key.btree_id), new_u64s);
423                                 ret = -BCH_ERR_ENOMEM_btree_key_cache_fill;
424                                 goto err;
425                         }
426
427                         if (!bch2_btree_node_relock(trans, ck_path, 0)) {
428                                 kfree(new_k);
429                                 trace_and_count(trans->c, trans_restart_relock_key_cache_fill, trans, _THIS_IP_, ck_path);
430                                 ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_fill);
431                                 goto err;
432                         }
433
434                         ret = bch2_trans_relock(trans);
435                         if (ret) {
436                                 kfree(new_k);
437                                 goto err;
438                         }
439                 }
440         }
441
442         ret = bch2_btree_node_lock_write(trans, ck_path, &ck_path->l[0].b->c);
443         if (ret) {
444                 kfree(new_k);
445                 goto err;
446         }
447
448         if (new_k) {
449                 kfree(ck->k);
450                 ck->u64s = new_u64s;
451                 ck->k = new_k;
452         }
453
454         bkey_reassemble(ck->k, k);
455         ck->valid = true;
456         bch2_btree_node_unlock_write(trans, ck_path, ck_path->l[0].b);
457
458         /* We're not likely to need this iterator again: */
459         set_btree_iter_dontneed(&iter);
460 err:
461         bch2_trans_iter_exit(trans, &iter);
462         return ret;
463 }
464
465 static noinline int
466 bch2_btree_path_traverse_cached_slowpath(struct btree_trans *trans, struct btree_path *path,
467                                          unsigned flags)
468 {
469         struct bch_fs *c = trans->c;
470         struct bkey_cached *ck;
471         int ret = 0;
472
473         BUG_ON(path->level);
474
475         path->l[1].b = NULL;
476
477         if (bch2_btree_node_relock_notrace(trans, path, 0)) {
478                 ck = (void *) path->l[0].b;
479                 goto fill;
480         }
481 retry:
482         ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos);
483         if (!ck) {
484                 ck = btree_key_cache_create(trans, path);
485                 ret = PTR_ERR_OR_ZERO(ck);
486                 if (ret)
487                         goto err;
488                 if (!ck)
489                         goto retry;
490
491                 mark_btree_node_locked(trans, path, 0, BTREE_NODE_INTENT_LOCKED);
492                 path->locks_want = 1;
493         } else {
494                 enum six_lock_type lock_want = __btree_lock_want(path, 0);
495
496                 ret = btree_node_lock(trans, path, (void *) ck, 0,
497                                       lock_want, _THIS_IP_);
498                 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
499                         goto err;
500
501                 BUG_ON(ret);
502
503                 if (ck->key.btree_id != path->btree_id ||
504                     !bpos_eq(ck->key.pos, path->pos)) {
505                         six_unlock_type(&ck->c.lock, lock_want);
506                         goto retry;
507                 }
508
509                 mark_btree_node_locked(trans, path, 0,
510                                        (enum btree_node_locked_type) lock_want);
511         }
512
513         path->l[0].lock_seq     = six_lock_seq(&ck->c.lock);
514         path->l[0].b            = (void *) ck;
515 fill:
516         path->uptodate = BTREE_ITER_UPTODATE;
517
518         if (!ck->valid && !(flags & BTREE_ITER_CACHED_NOFILL)) {
519                 /*
520                  * Using the underscore version because we haven't set
521                  * path->uptodate yet:
522                  */
523                 if (!path->locks_want &&
524                     !__bch2_btree_path_upgrade(trans, path, 1, NULL)) {
525                         trace_and_count(trans->c, trans_restart_key_cache_upgrade, trans, _THIS_IP_);
526                         ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_upgrade);
527                         goto err;
528                 }
529
530                 ret = btree_key_cache_fill(trans, path, ck);
531                 if (ret)
532                         goto err;
533
534                 ret = bch2_btree_path_relock(trans, path, _THIS_IP_);
535                 if (ret)
536                         goto err;
537
538                 path->uptodate = BTREE_ITER_UPTODATE;
539         }
540
541         if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
542                 set_bit(BKEY_CACHED_ACCESSED, &ck->flags);
543
544         BUG_ON(btree_node_locked_type(path, 0) != btree_lock_want(path, 0));
545         BUG_ON(path->uptodate);
546
547         return ret;
548 err:
549         path->uptodate = BTREE_ITER_NEED_TRAVERSE;
550         if (!bch2_err_matches(ret, BCH_ERR_transaction_restart)) {
551                 btree_node_unlock(trans, path, 0);
552                 path->l[0].b = ERR_PTR(ret);
553         }
554         return ret;
555 }
556
557 int bch2_btree_path_traverse_cached(struct btree_trans *trans, struct btree_path *path,
558                                     unsigned flags)
559 {
560         struct bch_fs *c = trans->c;
561         struct bkey_cached *ck;
562         int ret = 0;
563
564         EBUG_ON(path->level);
565
566         path->l[1].b = NULL;
567
568         if (bch2_btree_node_relock_notrace(trans, path, 0)) {
569                 ck = (void *) path->l[0].b;
570                 goto fill;
571         }
572 retry:
573         ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos);
574         if (!ck) {
575                 return bch2_btree_path_traverse_cached_slowpath(trans, path, flags);
576         } else {
577                 enum six_lock_type lock_want = __btree_lock_want(path, 0);
578
579                 ret = btree_node_lock(trans, path, (void *) ck, 0,
580                                       lock_want, _THIS_IP_);
581                 EBUG_ON(ret && !bch2_err_matches(ret, BCH_ERR_transaction_restart));
582
583                 if (ret)
584                         return ret;
585
586                 if (ck->key.btree_id != path->btree_id ||
587                     !bpos_eq(ck->key.pos, path->pos)) {
588                         six_unlock_type(&ck->c.lock, lock_want);
589                         goto retry;
590                 }
591
592                 mark_btree_node_locked(trans, path, 0,
593                                        (enum btree_node_locked_type) lock_want);
594         }
595
596         path->l[0].lock_seq     = six_lock_seq(&ck->c.lock);
597         path->l[0].b            = (void *) ck;
598 fill:
599         if (!ck->valid)
600                 return bch2_btree_path_traverse_cached_slowpath(trans, path, flags);
601
602         if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
603                 set_bit(BKEY_CACHED_ACCESSED, &ck->flags);
604
605         path->uptodate = BTREE_ITER_UPTODATE;
606         EBUG_ON(!ck->valid);
607         EBUG_ON(btree_node_locked_type(path, 0) != btree_lock_want(path, 0));
608
609         return ret;
610 }
611
612 static int btree_key_cache_flush_pos(struct btree_trans *trans,
613                                      struct bkey_cached_key key,
614                                      u64 journal_seq,
615                                      unsigned commit_flags,
616                                      bool evict)
617 {
618         struct bch_fs *c = trans->c;
619         struct journal *j = &c->journal;
620         struct btree_iter c_iter, b_iter;
621         struct bkey_cached *ck = NULL;
622         int ret;
623
624         bch2_trans_iter_init(trans, &b_iter, key.btree_id, key.pos,
625                              BTREE_ITER_SLOTS|
626                              BTREE_ITER_INTENT|
627                              BTREE_ITER_ALL_SNAPSHOTS);
628         bch2_trans_iter_init(trans, &c_iter, key.btree_id, key.pos,
629                              BTREE_ITER_CACHED|
630                              BTREE_ITER_INTENT);
631         b_iter.flags &= ~BTREE_ITER_WITH_KEY_CACHE;
632
633         ret = bch2_btree_iter_traverse(&c_iter);
634         if (ret)
635                 goto out;
636
637         ck = (void *) btree_iter_path(trans, &c_iter)->l[0].b;
638         if (!ck)
639                 goto out;
640
641         if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
642                 if (evict)
643                         goto evict;
644                 goto out;
645         }
646
647         BUG_ON(!ck->valid);
648
649         if (journal_seq && ck->journal.seq != journal_seq)
650                 goto out;
651
652         trans->journal_res.seq = ck->journal.seq;
653
654         /*
655          * If we're at the end of the journal, we really want to free up space
656          * in the journal right away - we don't want to pin that old journal
657          * sequence number with a new btree node write, we want to re-journal
658          * the update
659          */
660         if (ck->journal.seq == journal_last_seq(j))
661                 commit_flags |= BCH_WATERMARK_reclaim;
662
663         if (ck->journal.seq != journal_last_seq(j) ||
664             !test_bit(JOURNAL_SPACE_LOW, &c->journal.flags))
665                 commit_flags |= BCH_TRANS_COMMIT_no_journal_res;
666
667         ret   = bch2_btree_iter_traverse(&b_iter) ?:
668                 bch2_trans_update(trans, &b_iter, ck->k,
669                                   BTREE_UPDATE_KEY_CACHE_RECLAIM|
670                                   BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|
671                                   BTREE_TRIGGER_NORUN) ?:
672                 bch2_trans_commit(trans, NULL, NULL,
673                                   BCH_TRANS_COMMIT_no_check_rw|
674                                   BCH_TRANS_COMMIT_no_enospc|
675                                   commit_flags);
676
677         bch2_fs_fatal_err_on(ret &&
678                              !bch2_err_matches(ret, BCH_ERR_transaction_restart) &&
679                              !bch2_err_matches(ret, BCH_ERR_journal_reclaim_would_deadlock) &&
680                              !bch2_journal_error(j), c,
681                              "flushing key cache: %s", bch2_err_str(ret));
682         if (ret)
683                 goto out;
684
685         bch2_journal_pin_drop(j, &ck->journal);
686
687         struct btree_path *path = btree_iter_path(trans, &c_iter);
688         BUG_ON(!btree_node_locked(path, 0));
689
690         if (!evict) {
691                 if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
692                         clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
693                         atomic_long_dec(&c->btree_key_cache.nr_dirty);
694                 }
695         } else {
696                 struct btree_path *path2;
697                 unsigned i;
698 evict:
699                 trans_for_each_path(trans, path2, i)
700                         if (path2 != path)
701                                 __bch2_btree_path_unlock(trans, path2);
702
703                 bch2_btree_node_lock_write_nofail(trans, path, &ck->c);
704
705                 if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
706                         clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
707                         atomic_long_dec(&c->btree_key_cache.nr_dirty);
708                 }
709
710                 mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED);
711                 bkey_cached_evict(&c->btree_key_cache, ck);
712                 bkey_cached_free_fast(&c->btree_key_cache, ck);
713         }
714 out:
715         bch2_trans_iter_exit(trans, &b_iter);
716         bch2_trans_iter_exit(trans, &c_iter);
717         return ret;
718 }
719
720 int bch2_btree_key_cache_journal_flush(struct journal *j,
721                                 struct journal_entry_pin *pin, u64 seq)
722 {
723         struct bch_fs *c = container_of(j, struct bch_fs, journal);
724         struct bkey_cached *ck =
725                 container_of(pin, struct bkey_cached, journal);
726         struct bkey_cached_key key;
727         struct btree_trans *trans = bch2_trans_get(c);
728         int srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
729         int ret = 0;
730
731         btree_node_lock_nopath_nofail(trans, &ck->c, SIX_LOCK_read);
732         key = ck->key;
733
734         if (ck->journal.seq != seq ||
735             !test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
736                 six_unlock_read(&ck->c.lock);
737                 goto unlock;
738         }
739
740         if (ck->seq != seq) {
741                 bch2_journal_pin_update(&c->journal, ck->seq, &ck->journal,
742                                         bch2_btree_key_cache_journal_flush);
743                 six_unlock_read(&ck->c.lock);
744                 goto unlock;
745         }
746         six_unlock_read(&ck->c.lock);
747
748         ret = lockrestart_do(trans,
749                 btree_key_cache_flush_pos(trans, key, seq,
750                                 BCH_TRANS_COMMIT_journal_reclaim, false));
751 unlock:
752         srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
753
754         bch2_trans_put(trans);
755         return ret;
756 }
757
758 bool bch2_btree_insert_key_cached(struct btree_trans *trans,
759                                   unsigned flags,
760                                   struct btree_insert_entry *insert_entry)
761 {
762         struct bch_fs *c = trans->c;
763         struct bkey_cached *ck = (void *) (trans->paths + insert_entry->path)->l[0].b;
764         struct bkey_i *insert = insert_entry->k;
765         bool kick_reclaim = false;
766
767         BUG_ON(insert->k.u64s > ck->u64s);
768
769         bkey_copy(ck->k, insert);
770         ck->valid = true;
771
772         if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
773                 EBUG_ON(test_bit(BCH_FS_clean_shutdown, &c->flags));
774                 set_bit(BKEY_CACHED_DIRTY, &ck->flags);
775                 atomic_long_inc(&c->btree_key_cache.nr_dirty);
776
777                 if (bch2_nr_btree_keys_need_flush(c))
778                         kick_reclaim = true;
779         }
780
781         /*
782          * To minimize lock contention, we only add the journal pin here and
783          * defer pin updates to the flush callback via ->seq. Be careful not to
784          * update ->seq on nojournal commits because we don't want to update the
785          * pin to a seq that doesn't include journal updates on disk. Otherwise
786          * we risk losing the update after a crash.
787          *
788          * The only exception is if the pin is not active in the first place. We
789          * have to add the pin because journal reclaim drives key cache
790          * flushing. The flush callback will not proceed unless ->seq matches
791          * the latest pin, so make sure it starts with a consistent value.
792          */
793         if (!(insert_entry->flags & BTREE_UPDATE_NOJOURNAL) ||
794             !journal_pin_active(&ck->journal)) {
795                 ck->seq = trans->journal_res.seq;
796         }
797         bch2_journal_pin_add(&c->journal, trans->journal_res.seq,
798                              &ck->journal, bch2_btree_key_cache_journal_flush);
799
800         if (kick_reclaim)
801                 journal_reclaim_kick(&c->journal);
802         return true;
803 }
804
805 void bch2_btree_key_cache_drop(struct btree_trans *trans,
806                                struct btree_path *path)
807 {
808         struct bch_fs *c = trans->c;
809         struct bkey_cached *ck = (void *) path->l[0].b;
810
811         BUG_ON(!ck->valid);
812
813         /*
814          * We just did an update to the btree, bypassing the key cache: the key
815          * cache key is now stale and must be dropped, even if dirty:
816          */
817         if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
818                 clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
819                 atomic_long_dec(&c->btree_key_cache.nr_dirty);
820                 bch2_journal_pin_drop(&c->journal, &ck->journal);
821         }
822
823         ck->valid = false;
824 }
825
826 static unsigned long bch2_btree_key_cache_scan(struct shrinker *shrink,
827                                            struct shrink_control *sc)
828 {
829         struct bch_fs *c = shrink->private_data;
830         struct btree_key_cache *bc = &c->btree_key_cache;
831         struct bucket_table *tbl;
832         struct bkey_cached *ck, *t;
833         size_t scanned = 0, freed = 0, nr = sc->nr_to_scan;
834         unsigned start, flags;
835         int srcu_idx;
836
837         mutex_lock(&bc->lock);
838         srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
839         flags = memalloc_nofs_save();
840
841         /*
842          * Newest freed entries are at the end of the list - once we hit one
843          * that's too new to be freed, we can bail out:
844          */
845         scanned += bc->nr_freed_nonpcpu;
846
847         list_for_each_entry_safe(ck, t, &bc->freed_nonpcpu, list) {
848                 if (!poll_state_synchronize_srcu(&c->btree_trans_barrier,
849                                                  ck->btree_trans_barrier_seq))
850                         break;
851
852                 list_del(&ck->list);
853                 six_lock_exit(&ck->c.lock);
854                 kmem_cache_free(bch2_key_cache, ck);
855                 atomic_long_dec(&bc->nr_freed);
856                 freed++;
857                 bc->nr_freed_nonpcpu--;
858         }
859
860         if (scanned >= nr)
861                 goto out;
862
863         scanned += bc->nr_freed_pcpu;
864
865         list_for_each_entry_safe(ck, t, &bc->freed_pcpu, list) {
866                 if (!poll_state_synchronize_srcu(&c->btree_trans_barrier,
867                                                  ck->btree_trans_barrier_seq))
868                         break;
869
870                 list_del(&ck->list);
871                 six_lock_exit(&ck->c.lock);
872                 kmem_cache_free(bch2_key_cache, ck);
873                 atomic_long_dec(&bc->nr_freed);
874                 freed++;
875                 bc->nr_freed_pcpu--;
876         }
877
878         if (scanned >= nr)
879                 goto out;
880
881         rcu_read_lock();
882         tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
883         if (bc->shrink_iter >= tbl->size)
884                 bc->shrink_iter = 0;
885         start = bc->shrink_iter;
886
887         do {
888                 struct rhash_head *pos, *next;
889
890                 pos = rht_ptr_rcu(rht_bucket(tbl, bc->shrink_iter));
891
892                 while (!rht_is_a_nulls(pos)) {
893                         next = rht_dereference_bucket_rcu(pos->next, tbl, bc->shrink_iter);
894                         ck = container_of(pos, struct bkey_cached, hash);
895
896                         if (test_bit(BKEY_CACHED_DIRTY, &ck->flags))
897                                 goto next;
898
899                         if (test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
900                                 clear_bit(BKEY_CACHED_ACCESSED, &ck->flags);
901                         else if (bkey_cached_lock_for_evict(ck)) {
902                                 bkey_cached_evict(bc, ck);
903                                 bkey_cached_free(bc, ck);
904                         }
905
906                         scanned++;
907                         if (scanned >= nr)
908                                 break;
909 next:
910                         pos = next;
911                 }
912
913                 bc->shrink_iter++;
914                 if (bc->shrink_iter >= tbl->size)
915                         bc->shrink_iter = 0;
916         } while (scanned < nr && bc->shrink_iter != start);
917
918         rcu_read_unlock();
919 out:
920         memalloc_nofs_restore(flags);
921         srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
922         mutex_unlock(&bc->lock);
923
924         return freed;
925 }
926
927 static unsigned long bch2_btree_key_cache_count(struct shrinker *shrink,
928                                             struct shrink_control *sc)
929 {
930         struct bch_fs *c = shrink->private_data;
931         struct btree_key_cache *bc = &c->btree_key_cache;
932         long nr = atomic_long_read(&bc->nr_keys) -
933                 atomic_long_read(&bc->nr_dirty);
934
935         return max(0L, nr);
936 }
937
938 void bch2_fs_btree_key_cache_exit(struct btree_key_cache *bc)
939 {
940         struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
941         struct bucket_table *tbl;
942         struct bkey_cached *ck, *n;
943         struct rhash_head *pos;
944         LIST_HEAD(items);
945         unsigned i;
946 #ifdef __KERNEL__
947         int cpu;
948 #endif
949
950         shrinker_free(bc->shrink);
951
952         mutex_lock(&bc->lock);
953
954         /*
955          * The loop is needed to guard against racing with rehash:
956          */
957         while (atomic_long_read(&bc->nr_keys)) {
958                 rcu_read_lock();
959                 tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
960                 if (tbl)
961                         for (i = 0; i < tbl->size; i++)
962                                 rht_for_each_entry_rcu(ck, pos, tbl, i, hash) {
963                                         bkey_cached_evict(bc, ck);
964                                         list_add(&ck->list, &items);
965                                 }
966                 rcu_read_unlock();
967         }
968
969 #ifdef __KERNEL__
970         for_each_possible_cpu(cpu) {
971                 struct btree_key_cache_freelist *f =
972                         per_cpu_ptr(bc->pcpu_freed, cpu);
973
974                 for (i = 0; i < f->nr; i++) {
975                         ck = f->objs[i];
976                         list_add(&ck->list, &items);
977                 }
978         }
979 #endif
980
981         BUG_ON(list_count_nodes(&bc->freed_pcpu) != bc->nr_freed_pcpu);
982         BUG_ON(list_count_nodes(&bc->freed_nonpcpu) != bc->nr_freed_nonpcpu);
983
984         list_splice(&bc->freed_pcpu,    &items);
985         list_splice(&bc->freed_nonpcpu, &items);
986
987         mutex_unlock(&bc->lock);
988
989         list_for_each_entry_safe(ck, n, &items, list) {
990                 cond_resched();
991
992                 list_del(&ck->list);
993                 kfree(ck->k);
994                 six_lock_exit(&ck->c.lock);
995                 kmem_cache_free(bch2_key_cache, ck);
996         }
997
998         if (atomic_long_read(&bc->nr_dirty) &&
999             !bch2_journal_error(&c->journal) &&
1000             test_bit(BCH_FS_was_rw, &c->flags))
1001                 panic("btree key cache shutdown error: nr_dirty nonzero (%li)\n",
1002                       atomic_long_read(&bc->nr_dirty));
1003
1004         if (atomic_long_read(&bc->nr_keys))
1005                 panic("btree key cache shutdown error: nr_keys nonzero (%li)\n",
1006                       atomic_long_read(&bc->nr_keys));
1007
1008         if (bc->table_init_done)
1009                 rhashtable_destroy(&bc->table);
1010
1011         free_percpu(bc->pcpu_freed);
1012 }
1013
1014 void bch2_fs_btree_key_cache_init_early(struct btree_key_cache *c)
1015 {
1016         mutex_init(&c->lock);
1017         INIT_LIST_HEAD(&c->freed_pcpu);
1018         INIT_LIST_HEAD(&c->freed_nonpcpu);
1019 }
1020
1021 int bch2_fs_btree_key_cache_init(struct btree_key_cache *bc)
1022 {
1023         struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
1024         struct shrinker *shrink;
1025
1026 #ifdef __KERNEL__
1027         bc->pcpu_freed = alloc_percpu(struct btree_key_cache_freelist);
1028         if (!bc->pcpu_freed)
1029                 return -BCH_ERR_ENOMEM_fs_btree_cache_init;
1030 #endif
1031
1032         if (rhashtable_init(&bc->table, &bch2_btree_key_cache_params))
1033                 return -BCH_ERR_ENOMEM_fs_btree_cache_init;
1034
1035         bc->table_init_done = true;
1036
1037         shrink = shrinker_alloc(0, "%s-btree_key_cache", c->name);
1038         if (!shrink)
1039                 return -BCH_ERR_ENOMEM_fs_btree_cache_init;
1040         bc->shrink = shrink;
1041         shrink->seeks           = 0;
1042         shrink->count_objects   = bch2_btree_key_cache_count;
1043         shrink->scan_objects    = bch2_btree_key_cache_scan;
1044         shrink->private_data    = c;
1045         shrinker_register(shrink);
1046         return 0;
1047 }
1048
1049 void bch2_btree_key_cache_to_text(struct printbuf *out, struct btree_key_cache *c)
1050 {
1051         prt_printf(out, "nr_freed:\t%lu",       atomic_long_read(&c->nr_freed));
1052         prt_newline(out);
1053         prt_printf(out, "nr_keys:\t%lu",        atomic_long_read(&c->nr_keys));
1054         prt_newline(out);
1055         prt_printf(out, "nr_dirty:\t%lu",       atomic_long_read(&c->nr_dirty));
1056         prt_newline(out);
1057 }
1058
1059 void bch2_btree_key_cache_exit(void)
1060 {
1061         kmem_cache_destroy(bch2_key_cache);
1062 }
1063
1064 int __init bch2_btree_key_cache_init(void)
1065 {
1066         bch2_key_cache = KMEM_CACHE(bkey_cached, SLAB_RECLAIM_ACCOUNT);
1067         if (!bch2_key_cache)
1068                 return -ENOMEM;
1069
1070         return 0;
1071 }