bcachefs: Refactor filesystem usage accounting
[linux-block.git] / fs / bcachefs / btree_gc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4  * Copyright (C) 2014 Datera Inc.
5  */
6
7 #include "bcachefs.h"
8 #include "alloc_background.h"
9 #include "alloc_foreground.h"
10 #include "bkey_methods.h"
11 #include "bkey_on_stack.h"
12 #include "btree_locking.h"
13 #include "btree_update_interior.h"
14 #include "btree_io.h"
15 #include "btree_gc.h"
16 #include "buckets.h"
17 #include "clock.h"
18 #include "debug.h"
19 #include "ec.h"
20 #include "error.h"
21 #include "extents.h"
22 #include "journal.h"
23 #include "keylist.h"
24 #include "move.h"
25 #include "recovery.h"
26 #include "replicas.h"
27 #include "super-io.h"
28 #include "trace.h"
29
30 #include <linux/slab.h>
31 #include <linux/bitops.h>
32 #include <linux/freezer.h>
33 #include <linux/kthread.h>
34 #include <linux/preempt.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched/task.h>
37
38 static inline void __gc_pos_set(struct bch_fs *c, struct gc_pos new_pos)
39 {
40         preempt_disable();
41         write_seqcount_begin(&c->gc_pos_lock);
42         c->gc_pos = new_pos;
43         write_seqcount_end(&c->gc_pos_lock);
44         preempt_enable();
45 }
46
47 static inline void gc_pos_set(struct bch_fs *c, struct gc_pos new_pos)
48 {
49         BUG_ON(gc_pos_cmp(new_pos, c->gc_pos) <= 0);
50         __gc_pos_set(c, new_pos);
51 }
52
53 static int bch2_gc_check_topology(struct bch_fs *c,
54                                   struct bkey_s_c k,
55                                   struct bpos *expected_start,
56                                   struct bpos expected_end,
57                                   bool is_last)
58 {
59         int ret = 0;
60
61         if (k.k->type == KEY_TYPE_btree_ptr_v2) {
62                 struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k);
63
64                 if (fsck_err_on(bkey_cmp(*expected_start, bp.v->min_key), c,
65                                 "btree node with incorrect min_key: got %llu:%llu, should be %llu:%llu",
66                                 bp.v->min_key.inode,
67                                 bp.v->min_key.offset,
68                                 expected_start->inode,
69                                 expected_start->offset)) {
70                         BUG();
71                 }
72         }
73
74         *expected_start = bkey_cmp(k.k->p, POS_MAX)
75                 ? bkey_successor(k.k->p)
76                 : k.k->p;
77
78         if (fsck_err_on(is_last &&
79                         bkey_cmp(k.k->p, expected_end), c,
80                         "btree node with incorrect max_key: got %llu:%llu, should be %llu:%llu",
81                         k.k->p.inode,
82                         k.k->p.offset,
83                         expected_end.inode,
84                         expected_end.offset)) {
85                 BUG();
86         }
87 fsck_err:
88         return ret;
89 }
90
91 /* marking of btree keys/nodes: */
92
93 static int bch2_gc_mark_key(struct bch_fs *c, struct bkey_s_c k,
94                             u8 *max_stale, bool initial)
95 {
96         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
97         const struct bch_extent_ptr *ptr;
98         unsigned flags =
99                 BTREE_TRIGGER_GC|
100                 (initial ? BTREE_TRIGGER_NOATOMIC : 0);
101         int ret = 0;
102
103         if (initial) {
104                 BUG_ON(bch2_journal_seq_verify &&
105                        k.k->version.lo > journal_cur_seq(&c->journal));
106
107                 /* XXX change to fsck check */
108                 if (fsck_err_on(k.k->version.lo > atomic64_read(&c->key_version), c,
109                                 "key version number higher than recorded: %llu > %llu",
110                                 k.k->version.lo,
111                                 atomic64_read(&c->key_version)))
112                         atomic64_set(&c->key_version, k.k->version.lo);
113
114                 if (test_bit(BCH_FS_REBUILD_REPLICAS, &c->flags) ||
115                     fsck_err_on(!bch2_bkey_replicas_marked(c, k), c,
116                                 "superblock not marked as containing replicas (type %u)",
117                                 k.k->type)) {
118                         ret = bch2_mark_bkey_replicas(c, k);
119                         if (ret)
120                                 return ret;
121                 }
122
123                 bkey_for_each_ptr(ptrs, ptr) {
124                         struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
125                         struct bucket *g = PTR_BUCKET(ca, ptr, true);
126                         struct bucket *g2 = PTR_BUCKET(ca, ptr, false);
127
128                         if (mustfix_fsck_err_on(!g->gen_valid, c,
129                                         "bucket %u:%zu data type %s ptr gen %u missing in alloc btree",
130                                         ptr->dev, PTR_BUCKET_NR(ca, ptr),
131                                         bch2_data_types[ptr_data_type(k.k, ptr)],
132                                         ptr->gen)) {
133                                 g2->_mark.gen   = g->_mark.gen          = ptr->gen;
134                                 g2->gen_valid   = g->gen_valid          = true;
135                         }
136
137                         if (mustfix_fsck_err_on(gen_cmp(ptr->gen, g->mark.gen) > 0, c,
138                                         "bucket %u:%zu data type %s ptr gen in the future: %u > %u",
139                                         ptr->dev, PTR_BUCKET_NR(ca, ptr),
140                                         bch2_data_types[ptr_data_type(k.k, ptr)],
141                                         ptr->gen, g->mark.gen)) {
142                                 g2->_mark.gen   = g->_mark.gen          = ptr->gen;
143                                 g2->gen_valid   = g->gen_valid          = true;
144                                 g2->_mark.data_type             = 0;
145                                 g2->_mark.dirty_sectors         = 0;
146                                 g2->_mark.cached_sectors        = 0;
147                                 set_bit(BCH_FS_FIXED_GENS, &c->flags);
148                         }
149                 }
150         }
151
152         bkey_for_each_ptr(ptrs, ptr) {
153                 struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
154                 struct bucket *g = PTR_BUCKET(ca, ptr, true);
155
156                 if (gen_after(g->oldest_gen, ptr->gen))
157                         g->oldest_gen = ptr->gen;
158
159                 *max_stale = max(*max_stale, ptr_stale(ca, ptr));
160         }
161
162         bch2_mark_key(c, k, 0, k.k->size, NULL, 0, flags);
163 fsck_err:
164         return ret;
165 }
166
167 static int btree_gc_mark_node(struct bch_fs *c, struct btree *b, u8 *max_stale,
168                               bool initial)
169 {
170         struct bpos next_node_start = b->data->min_key;
171         struct btree_node_iter iter;
172         struct bkey unpacked;
173         struct bkey_s_c k;
174         int ret = 0;
175
176         *max_stale = 0;
177
178         if (!btree_node_type_needs_gc(btree_node_type(b)))
179                 return 0;
180
181         bch2_btree_node_iter_init_from_start(&iter, b);
182
183         while ((k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked)).k) {
184                 bch2_bkey_debugcheck(c, b, k);
185
186                 ret = bch2_gc_mark_key(c, k, max_stale, initial);
187                 if (ret)
188                         break;
189
190                 bch2_btree_node_iter_advance(&iter, b);
191
192                 if (b->c.level) {
193                         ret = bch2_gc_check_topology(c, k,
194                                         &next_node_start,
195                                         b->data->max_key,
196                                         bch2_btree_node_iter_end(&iter));
197                         if (ret)
198                                 break;
199                 }
200         }
201
202         return ret;
203 }
204
205 static int bch2_gc_btree(struct bch_fs *c, enum btree_id btree_id,
206                          bool initial, bool metadata_only)
207 {
208         struct btree_trans trans;
209         struct btree_iter *iter;
210         struct btree *b;
211         unsigned depth = metadata_only                  ? 1
212                 : bch2_expensive_debug_checks           ? 0
213                 : !btree_node_type_needs_gc(btree_id)   ? 1
214                 : 0;
215         u8 max_stale = 0;
216         int ret = 0;
217
218         bch2_trans_init(&trans, c, 0, 0);
219
220         gc_pos_set(c, gc_pos_btree(btree_id, POS_MIN, 0));
221
222         __for_each_btree_node(&trans, iter, btree_id, POS_MIN,
223                               0, depth, BTREE_ITER_PREFETCH, b) {
224                 bch2_verify_btree_nr_keys(b);
225
226                 gc_pos_set(c, gc_pos_btree_node(b));
227
228                 ret = btree_gc_mark_node(c, b, &max_stale, initial);
229                 if (ret)
230                         break;
231
232                 if (!initial) {
233                         if (max_stale > 64)
234                                 bch2_btree_node_rewrite(c, iter,
235                                                 b->data->keys.seq,
236                                                 BTREE_INSERT_USE_RESERVE|
237                                                 BTREE_INSERT_NOWAIT|
238                                                 BTREE_INSERT_GC_LOCK_HELD);
239                         else if (!bch2_btree_gc_rewrite_disabled &&
240                                  (bch2_btree_gc_always_rewrite || max_stale > 16))
241                                 bch2_btree_node_rewrite(c, iter,
242                                                 b->data->keys.seq,
243                                                 BTREE_INSERT_NOWAIT|
244                                                 BTREE_INSERT_GC_LOCK_HELD);
245                 }
246
247                 bch2_trans_cond_resched(&trans);
248         }
249         ret = bch2_trans_exit(&trans) ?: ret;
250         if (ret)
251                 return ret;
252
253         mutex_lock(&c->btree_root_lock);
254         b = c->btree_roots[btree_id].b;
255         if (!btree_node_fake(b))
256                 ret = bch2_gc_mark_key(c, bkey_i_to_s_c(&b->key),
257                                        &max_stale, initial);
258         gc_pos_set(c, gc_pos_btree_root(b->c.btree_id));
259         mutex_unlock(&c->btree_root_lock);
260
261         return ret;
262 }
263
264 static int bch2_gc_btree_init_recurse(struct bch_fs *c, struct btree *b,
265                                       struct journal_keys *journal_keys,
266                                       unsigned target_depth)
267 {
268         struct btree_and_journal_iter iter;
269         struct bkey_s_c k;
270         struct bpos next_node_start = b->data->min_key;
271         u8 max_stale = 0;
272         int ret = 0;
273
274         bch2_btree_and_journal_iter_init_node_iter(&iter, journal_keys, b);
275
276         while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) {
277                 bch2_bkey_debugcheck(c, b, k);
278
279                 BUG_ON(bkey_cmp(k.k->p, b->data->min_key) < 0);
280                 BUG_ON(bkey_cmp(k.k->p, b->data->max_key) > 0);
281
282                 ret = bch2_gc_mark_key(c, k, &max_stale, true);
283                 if (ret)
284                         break;
285
286                 if (b->c.level) {
287                         struct btree *child;
288                         BKEY_PADDED(k) tmp;
289
290                         bkey_reassemble(&tmp.k, k);
291                         k = bkey_i_to_s_c(&tmp.k);
292
293                         bch2_btree_and_journal_iter_advance(&iter);
294
295                         ret = bch2_gc_check_topology(c, k,
296                                         &next_node_start,
297                                         b->data->max_key,
298                                         !bch2_btree_and_journal_iter_peek(&iter).k);
299                         if (ret)
300                                 break;
301
302                         if (b->c.level > target_depth) {
303                                 child = bch2_btree_node_get_noiter(c, &tmp.k,
304                                                         b->c.btree_id, b->c.level - 1);
305                                 ret = PTR_ERR_OR_ZERO(child);
306                                 if (ret)
307                                         break;
308
309                                 ret = bch2_gc_btree_init_recurse(c, child,
310                                                 journal_keys, target_depth);
311                                 six_unlock_read(&child->c.lock);
312
313                                 if (ret)
314                                         break;
315                         }
316                 } else {
317                         bch2_btree_and_journal_iter_advance(&iter);
318                 }
319         }
320
321         return ret;
322 }
323
324 static int bch2_gc_btree_init(struct bch_fs *c,
325                               struct journal_keys *journal_keys,
326                               enum btree_id btree_id,
327                               bool metadata_only)
328 {
329         struct btree *b;
330         unsigned target_depth = metadata_only           ? 1
331                 : bch2_expensive_debug_checks           ? 0
332                 : !btree_node_type_needs_gc(btree_id)   ? 1
333                 : 0;
334         u8 max_stale = 0;
335         int ret = 0;
336
337         b = c->btree_roots[btree_id].b;
338
339         if (btree_node_fake(b))
340                 return 0;
341
342         six_lock_read(&b->c.lock, NULL, NULL);
343         if (fsck_err_on(bkey_cmp(b->data->min_key, POS_MIN), c,
344                         "btree root with incorrect min_key: %llu:%llu",
345                         b->data->min_key.inode,
346                         b->data->min_key.offset)) {
347                 BUG();
348         }
349
350         if (fsck_err_on(bkey_cmp(b->data->max_key, POS_MAX), c,
351                         "btree root with incorrect min_key: %llu:%llu",
352                         b->data->max_key.inode,
353                         b->data->max_key.offset)) {
354                 BUG();
355         }
356
357         if (b->c.level >= target_depth)
358                 ret = bch2_gc_btree_init_recurse(c, b,
359                                         journal_keys, target_depth);
360
361         if (!ret)
362                 ret = bch2_gc_mark_key(c, bkey_i_to_s_c(&b->key),
363                                        &max_stale, true);
364 fsck_err:
365         six_unlock_read(&b->c.lock);
366
367         return ret;
368 }
369
370 static inline int btree_id_gc_phase_cmp(enum btree_id l, enum btree_id r)
371 {
372         return  (int) btree_id_to_gc_phase(l) -
373                 (int) btree_id_to_gc_phase(r);
374 }
375
376 static int bch2_gc_btrees(struct bch_fs *c, struct journal_keys *journal_keys,
377                           bool initial, bool metadata_only)
378 {
379         enum btree_id ids[BTREE_ID_NR];
380         unsigned i;
381
382         for (i = 0; i < BTREE_ID_NR; i++)
383                 ids[i] = i;
384         bubble_sort(ids, BTREE_ID_NR, btree_id_gc_phase_cmp);
385
386         for (i = 0; i < BTREE_ID_NR; i++) {
387                 enum btree_id id = ids[i];
388                 int ret = initial
389                         ? bch2_gc_btree_init(c, journal_keys,
390                                              id, metadata_only)
391                         : bch2_gc_btree(c, id, initial, metadata_only);
392                 if (ret)
393                         return ret;
394         }
395
396         return 0;
397 }
398
399 static void mark_metadata_sectors(struct bch_fs *c, struct bch_dev *ca,
400                                   u64 start, u64 end,
401                                   enum bch_data_type type,
402                                   unsigned flags)
403 {
404         u64 b = sector_to_bucket(ca, start);
405
406         do {
407                 unsigned sectors =
408                         min_t(u64, bucket_to_sector(ca, b + 1), end) - start;
409
410                 bch2_mark_metadata_bucket(c, ca, b, type, sectors,
411                                           gc_phase(GC_PHASE_SB), flags);
412                 b++;
413                 start += sectors;
414         } while (start < end);
415 }
416
417 void bch2_mark_dev_superblock(struct bch_fs *c, struct bch_dev *ca,
418                               unsigned flags)
419 {
420         struct bch_sb_layout *layout = &ca->disk_sb.sb->layout;
421         unsigned i;
422         u64 b;
423
424         /*
425          * This conditional is kind of gross, but we may be called from the
426          * device add path, before the new device has actually been added to the
427          * running filesystem:
428          */
429         if (c) {
430                 lockdep_assert_held(&c->sb_lock);
431                 percpu_down_read(&c->mark_lock);
432         }
433
434         for (i = 0; i < layout->nr_superblocks; i++) {
435                 u64 offset = le64_to_cpu(layout->sb_offset[i]);
436
437                 if (offset == BCH_SB_SECTOR)
438                         mark_metadata_sectors(c, ca, 0, BCH_SB_SECTOR,
439                                               BCH_DATA_sb, flags);
440
441                 mark_metadata_sectors(c, ca, offset,
442                                       offset + (1 << layout->sb_max_size_bits),
443                                       BCH_DATA_sb, flags);
444         }
445
446         for (i = 0; i < ca->journal.nr; i++) {
447                 b = ca->journal.buckets[i];
448                 bch2_mark_metadata_bucket(c, ca, b, BCH_DATA_journal,
449                                           ca->mi.bucket_size,
450                                           gc_phase(GC_PHASE_SB), flags);
451         }
452
453         if (c)
454                 percpu_up_read(&c->mark_lock);
455 }
456
457 static void bch2_mark_superblocks(struct bch_fs *c)
458 {
459         struct bch_dev *ca;
460         unsigned i;
461
462         mutex_lock(&c->sb_lock);
463         gc_pos_set(c, gc_phase(GC_PHASE_SB));
464
465         for_each_online_member(ca, c, i)
466                 bch2_mark_dev_superblock(c, ca, BTREE_TRIGGER_GC);
467         mutex_unlock(&c->sb_lock);
468 }
469
470 #if 0
471 /* Also see bch2_pending_btree_node_free_insert_done() */
472 static void bch2_mark_pending_btree_node_frees(struct bch_fs *c)
473 {
474         struct btree_update *as;
475         struct pending_btree_node_free *d;
476
477         mutex_lock(&c->btree_interior_update_lock);
478         gc_pos_set(c, gc_phase(GC_PHASE_PENDING_DELETE));
479
480         for_each_pending_btree_node_free(c, as, d)
481                 if (d->index_update_done)
482                         bch2_mark_key(c, bkey_i_to_s_c(&d->key),
483                                       0, 0, NULL, 0,
484                                       BTREE_TRIGGER_GC);
485
486         mutex_unlock(&c->btree_interior_update_lock);
487 }
488 #endif
489
490 static void bch2_mark_allocator_buckets(struct bch_fs *c)
491 {
492         struct bch_dev *ca;
493         struct open_bucket *ob;
494         size_t i, j, iter;
495         unsigned ci;
496
497         percpu_down_read(&c->mark_lock);
498
499         spin_lock(&c->freelist_lock);
500         gc_pos_set(c, gc_pos_alloc(c, NULL));
501
502         for_each_member_device(ca, c, ci) {
503                 fifo_for_each_entry(i, &ca->free_inc, iter)
504                         bch2_mark_alloc_bucket(c, ca, i, true,
505                                                gc_pos_alloc(c, NULL),
506                                                BTREE_TRIGGER_GC);
507
508
509
510                 for (j = 0; j < RESERVE_NR; j++)
511                         fifo_for_each_entry(i, &ca->free[j], iter)
512                                 bch2_mark_alloc_bucket(c, ca, i, true,
513                                                        gc_pos_alloc(c, NULL),
514                                                        BTREE_TRIGGER_GC);
515         }
516
517         spin_unlock(&c->freelist_lock);
518
519         for (ob = c->open_buckets;
520              ob < c->open_buckets + ARRAY_SIZE(c->open_buckets);
521              ob++) {
522                 spin_lock(&ob->lock);
523                 if (ob->valid) {
524                         gc_pos_set(c, gc_pos_alloc(c, ob));
525                         ca = bch_dev_bkey_exists(c, ob->ptr.dev);
526                         bch2_mark_alloc_bucket(c, ca, PTR_BUCKET_NR(ca, &ob->ptr), true,
527                                                gc_pos_alloc(c, ob),
528                                                BTREE_TRIGGER_GC);
529                 }
530                 spin_unlock(&ob->lock);
531         }
532
533         percpu_up_read(&c->mark_lock);
534 }
535
536 static void bch2_gc_free(struct bch_fs *c)
537 {
538         struct bch_dev *ca;
539         unsigned i;
540
541         genradix_free(&c->stripes[1]);
542
543         for_each_member_device(ca, c, i) {
544                 kvpfree(rcu_dereference_protected(ca->buckets[1], 1),
545                         sizeof(struct bucket_array) +
546                         ca->mi.nbuckets * sizeof(struct bucket));
547                 ca->buckets[1] = NULL;
548
549                 free_percpu(ca->usage[1]);
550                 ca->usage[1] = NULL;
551         }
552
553         free_percpu(c->usage_gc);
554         c->usage_gc = NULL;
555 }
556
557 static int bch2_gc_done(struct bch_fs *c,
558                         bool initial, bool metadata_only)
559 {
560         struct bch_dev *ca;
561         bool verify = !metadata_only &&
562                 (!initial ||
563                  (c->sb.compat & (1ULL << BCH_COMPAT_FEAT_ALLOC_INFO)));
564         unsigned i;
565         int ret = 0;
566
567 #define copy_field(_f, _msg, ...)                                       \
568         if (dst->_f != src->_f) {                                       \
569                 if (verify)                                             \
570                         fsck_err(c, _msg ": got %llu, should be %llu"   \
571                                 , ##__VA_ARGS__, dst->_f, src->_f);     \
572                 dst->_f = src->_f;                                      \
573                 ret = 1;                                                \
574         }
575 #define copy_stripe_field(_f, _msg, ...)                                \
576         if (dst->_f != src->_f) {                                       \
577                 if (verify)                                             \
578                         fsck_err(c, "stripe %zu has wrong "_msg         \
579                                 ": got %u, should be %u",               \
580                                 dst_iter.pos, ##__VA_ARGS__,            \
581                                 dst->_f, src->_f);                      \
582                 dst->_f = src->_f;                                      \
583                 dst->dirty = true;                                      \
584                 ret = 1;                                                \
585         }
586 #define copy_bucket_field(_f)                                           \
587         if (dst->b[b].mark._f != src->b[b].mark._f) {                   \
588                 if (verify)                                             \
589                         fsck_err(c, "bucket %u:%zu gen %u data type %s has wrong " #_f  \
590                                 ": got %u, should be %u", i, b,         \
591                                 dst->b[b].mark.gen,                     \
592                                 bch2_data_types[dst->b[b].mark.data_type],\
593                                 dst->b[b].mark._f, src->b[b].mark._f);  \
594                 dst->b[b]._mark._f = src->b[b].mark._f;                 \
595                 ret = 1;                                                \
596         }
597 #define copy_dev_field(_f, _msg, ...)                                   \
598         copy_field(_f, "dev %u has wrong " _msg, i, ##__VA_ARGS__)
599 #define copy_fs_field(_f, _msg, ...)                                    \
600         copy_field(_f, "fs has wrong " _msg, ##__VA_ARGS__)
601
602         if (!metadata_only) {
603                 struct genradix_iter dst_iter = genradix_iter_init(&c->stripes[0], 0);
604                 struct genradix_iter src_iter = genradix_iter_init(&c->stripes[1], 0);
605                 struct stripe *dst, *src;
606
607                 c->ec_stripes_heap.used = 0;
608
609                 while ((dst = genradix_iter_peek(&dst_iter, &c->stripes[0])) &&
610                        (src = genradix_iter_peek(&src_iter, &c->stripes[1]))) {
611                         BUG_ON(src_iter.pos != dst_iter.pos);
612
613                         copy_stripe_field(alive,        "alive");
614                         copy_stripe_field(sectors,      "sectors");
615                         copy_stripe_field(algorithm,    "algorithm");
616                         copy_stripe_field(nr_blocks,    "nr_blocks");
617                         copy_stripe_field(nr_redundant, "nr_redundant");
618                         copy_stripe_field(blocks_nonempty,
619                                           "blocks_nonempty");
620
621                         for (i = 0; i < ARRAY_SIZE(dst->block_sectors); i++)
622                                 copy_stripe_field(block_sectors[i],
623                                                   "block_sectors[%u]", i);
624
625                         if (dst->alive) {
626                                 spin_lock(&c->ec_stripes_heap_lock);
627                                 bch2_stripes_heap_insert(c, dst, dst_iter.pos);
628                                 spin_unlock(&c->ec_stripes_heap_lock);
629                         }
630
631                         genradix_iter_advance(&dst_iter, &c->stripes[0]);
632                         genradix_iter_advance(&src_iter, &c->stripes[1]);
633                 }
634         }
635
636         for_each_member_device(ca, c, i) {
637                 struct bucket_array *dst = __bucket_array(ca, 0);
638                 struct bucket_array *src = __bucket_array(ca, 1);
639                 size_t b;
640
641                 for (b = 0; b < src->nbuckets; b++) {
642                         copy_bucket_field(gen);
643                         copy_bucket_field(data_type);
644                         copy_bucket_field(owned_by_allocator);
645                         copy_bucket_field(stripe);
646                         copy_bucket_field(dirty_sectors);
647                         copy_bucket_field(cached_sectors);
648
649                         dst->b[b].oldest_gen = src->b[b].oldest_gen;
650                 }
651         };
652
653         for (i = 0; i < ARRAY_SIZE(c->usage); i++)
654                 bch2_fs_usage_acc_to_base(c, i);
655
656         bch2_dev_usage_from_buckets(c);
657
658         {
659                 unsigned nr = fs_usage_u64s(c);
660                 struct bch_fs_usage *dst = c->usage_base;
661                 struct bch_fs_usage *src = (void *)
662                         bch2_acc_percpu_u64s((void *) c->usage_gc, nr);
663
664                 copy_fs_field(hidden,           "hidden");
665                 copy_fs_field(btree,            "btree");
666
667                 if (!metadata_only) {
668                         copy_fs_field(data,     "data");
669                         copy_fs_field(cached,   "cached");
670                         copy_fs_field(reserved, "reserved");
671                         copy_fs_field(nr_inodes,"nr_inodes");
672
673                         for (i = 0; i < BCH_REPLICAS_MAX; i++)
674                                 copy_fs_field(persistent_reserved[i],
675                                               "persistent_reserved[%i]", i);
676                 }
677
678                 for (i = 0; i < c->replicas.nr; i++) {
679                         struct bch_replicas_entry *e =
680                                 cpu_replicas_entry(&c->replicas, i);
681                         char buf[80];
682
683                         if (metadata_only &&
684                             (e->data_type == BCH_DATA_user ||
685                              e->data_type == BCH_DATA_cached))
686                                 continue;
687
688                         bch2_replicas_entry_to_text(&PBUF(buf), e);
689
690                         copy_fs_field(replicas[i], "%s", buf);
691                 }
692         }
693
694 #undef copy_fs_field
695 #undef copy_dev_field
696 #undef copy_bucket_field
697 #undef copy_stripe_field
698 #undef copy_field
699 fsck_err:
700         return ret;
701 }
702
703 static int bch2_gc_start(struct bch_fs *c,
704                          bool metadata_only)
705 {
706         struct bch_dev *ca;
707         unsigned i;
708         int ret;
709
710         BUG_ON(c->usage_gc);
711
712         c->usage_gc = __alloc_percpu_gfp(fs_usage_u64s(c) * sizeof(u64),
713                                          sizeof(u64), GFP_KERNEL);
714         if (!c->usage_gc) {
715                 bch_err(c, "error allocating c->usage_gc");
716                 return -ENOMEM;
717         }
718
719         for_each_member_device(ca, c, i) {
720                 BUG_ON(ca->buckets[1]);
721                 BUG_ON(ca->usage[1]);
722
723                 ca->buckets[1] = kvpmalloc(sizeof(struct bucket_array) +
724                                 ca->mi.nbuckets * sizeof(struct bucket),
725                                 GFP_KERNEL|__GFP_ZERO);
726                 if (!ca->buckets[1]) {
727                         percpu_ref_put(&ca->ref);
728                         bch_err(c, "error allocating ca->buckets[gc]");
729                         return -ENOMEM;
730                 }
731
732                 ca->usage[1] = alloc_percpu(struct bch_dev_usage);
733                 if (!ca->usage[1]) {
734                         bch_err(c, "error allocating ca->usage[gc]");
735                         percpu_ref_put(&ca->ref);
736                         return -ENOMEM;
737                 }
738         }
739
740         ret = bch2_ec_mem_alloc(c, true);
741         if (ret) {
742                 bch_err(c, "error allocating ec gc mem");
743                 return ret;
744         }
745
746         percpu_down_write(&c->mark_lock);
747
748         /*
749          * indicate to stripe code that we need to allocate for the gc stripes
750          * radix tree, too
751          */
752         gc_pos_set(c, gc_phase(GC_PHASE_START));
753
754         for_each_member_device(ca, c, i) {
755                 struct bucket_array *dst = __bucket_array(ca, 1);
756                 struct bucket_array *src = __bucket_array(ca, 0);
757                 size_t b;
758
759                 dst->first_bucket       = src->first_bucket;
760                 dst->nbuckets           = src->nbuckets;
761
762                 for (b = 0; b < src->nbuckets; b++) {
763                         struct bucket *d = &dst->b[b];
764                         struct bucket *s = &src->b[b];
765
766                         d->_mark.gen = dst->b[b].oldest_gen = s->mark.gen;
767                         d->gen_valid = s->gen_valid;
768
769                         if (metadata_only &&
770                             (s->mark.data_type == BCH_DATA_user ||
771                              s->mark.data_type == BCH_DATA_cached)) {
772                                 d->_mark = s->mark;
773                                 d->_mark.owned_by_allocator = 0;
774                         }
775                 }
776         };
777
778         percpu_up_write(&c->mark_lock);
779
780         return 0;
781 }
782
783 /**
784  * bch2_gc - walk _all_ references to buckets, and recompute them:
785  *
786  * Order matters here:
787  *  - Concurrent GC relies on the fact that we have a total ordering for
788  *    everything that GC walks - see  gc_will_visit_node(),
789  *    gc_will_visit_root()
790  *
791  *  - also, references move around in the course of index updates and
792  *    various other crap: everything needs to agree on the ordering
793  *    references are allowed to move around in - e.g., we're allowed to
794  *    start with a reference owned by an open_bucket (the allocator) and
795  *    move it to the btree, but not the reverse.
796  *
797  *    This is necessary to ensure that gc doesn't miss references that
798  *    move around - if references move backwards in the ordering GC
799  *    uses, GC could skip past them
800  */
801 int bch2_gc(struct bch_fs *c, struct journal_keys *journal_keys,
802             bool initial, bool metadata_only)
803 {
804         struct bch_dev *ca;
805         u64 start_time = local_clock();
806         unsigned i, iter = 0;
807         int ret;
808
809         lockdep_assert_held(&c->state_lock);
810         trace_gc_start(c);
811
812         down_write(&c->gc_lock);
813
814         /* flush interior btree updates: */
815         closure_wait_event(&c->btree_interior_update_wait,
816                            !bch2_btree_interior_updates_nr_pending(c));
817 again:
818         ret = bch2_gc_start(c, metadata_only);
819         if (ret)
820                 goto out;
821
822         bch2_mark_superblocks(c);
823
824         ret = bch2_gc_btrees(c, journal_keys, initial, metadata_only);
825         if (ret)
826                 goto out;
827
828 #if 0
829         bch2_mark_pending_btree_node_frees(c);
830 #endif
831         bch2_mark_allocator_buckets(c);
832
833         c->gc_count++;
834 out:
835         if (!ret &&
836             (test_bit(BCH_FS_FIXED_GENS, &c->flags) ||
837              (!iter && bch2_test_restart_gc))) {
838                 /*
839                  * XXX: make sure gens we fixed got saved
840                  */
841                 if (iter++ <= 2) {
842                         bch_info(c, "Fixed gens, restarting mark and sweep:");
843                         clear_bit(BCH_FS_FIXED_GENS, &c->flags);
844                         __gc_pos_set(c, gc_phase(GC_PHASE_NOT_RUNNING));
845
846                         percpu_down_write(&c->mark_lock);
847                         bch2_gc_free(c);
848                         percpu_up_write(&c->mark_lock);
849                         /* flush fsck errors, reset counters */
850                         bch2_flush_fsck_errs(c);
851
852                         goto again;
853                 }
854
855                 bch_info(c, "Unable to fix bucket gens, looping");
856                 ret = -EINVAL;
857         }
858
859         if (!ret) {
860                 bch2_journal_block(&c->journal);
861
862                 percpu_down_write(&c->mark_lock);
863                 ret = bch2_gc_done(c, initial, metadata_only);
864
865                 bch2_journal_unblock(&c->journal);
866         } else {
867                 percpu_down_write(&c->mark_lock);
868         }
869
870         /* Indicates that gc is no longer in progress: */
871         __gc_pos_set(c, gc_phase(GC_PHASE_NOT_RUNNING));
872
873         bch2_gc_free(c);
874         percpu_up_write(&c->mark_lock);
875
876         up_write(&c->gc_lock);
877
878         trace_gc_end(c);
879         bch2_time_stats_update(&c->times[BCH_TIME_btree_gc], start_time);
880
881         /*
882          * Wake up allocator in case it was waiting for buckets
883          * because of not being able to inc gens
884          */
885         for_each_member_device(ca, c, i)
886                 bch2_wake_allocator(ca);
887
888         /*
889          * At startup, allocations can happen directly instead of via the
890          * allocator thread - issue wakeup in case they blocked on gc_lock:
891          */
892         closure_wake_up(&c->freelist_wait);
893         return ret;
894 }
895
896 static bool gc_btree_gens_key(struct bch_fs *c, struct bkey_s_c k)
897 {
898         struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
899         const struct bch_extent_ptr *ptr;
900
901         percpu_down_read(&c->mark_lock);
902         bkey_for_each_ptr(ptrs, ptr) {
903                 struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
904                 struct bucket *g = PTR_BUCKET(ca, ptr, false);
905
906                 if (gen_after(g->mark.gen, ptr->gen) > 16) {
907                         percpu_up_read(&c->mark_lock);
908                         return true;
909                 }
910         }
911
912         bkey_for_each_ptr(ptrs, ptr) {
913                 struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
914                 struct bucket *g = PTR_BUCKET(ca, ptr, false);
915
916                 if (gen_after(g->gc_gen, ptr->gen))
917                         g->gc_gen = ptr->gen;
918         }
919         percpu_up_read(&c->mark_lock);
920
921         return false;
922 }
923
924 /*
925  * For recalculating oldest gen, we only need to walk keys in leaf nodes; btree
926  * node pointers currently never have cached pointers that can become stale:
927  */
928 static int bch2_gc_btree_gens(struct bch_fs *c, enum btree_id btree_id)
929 {
930         struct btree_trans trans;
931         struct btree_iter *iter;
932         struct bkey_s_c k;
933         struct bkey_on_stack sk;
934         int ret = 0;
935
936         bkey_on_stack_init(&sk);
937         bch2_trans_init(&trans, c, 0, 0);
938
939         iter = bch2_trans_get_iter(&trans, btree_id, POS_MIN,
940                                    BTREE_ITER_PREFETCH);
941
942         while ((k = bch2_btree_iter_peek(iter)).k &&
943                !(ret = bkey_err(k))) {
944                 if (gc_btree_gens_key(c, k)) {
945                         bkey_on_stack_reassemble(&sk, c, k);
946                         bch2_extent_normalize(c, bkey_i_to_s(sk.k));
947
948                         bch2_btree_iter_set_pos(iter, bkey_start_pos(&sk.k->k));
949
950                         bch2_trans_update(&trans, iter, sk.k, 0);
951
952                         ret = bch2_trans_commit(&trans, NULL, NULL,
953                                                 BTREE_INSERT_NOFAIL);
954                         if (ret == -EINTR)
955                                 continue;
956                         if (ret) {
957                                 break;
958                         }
959                 }
960
961                 bch2_btree_iter_next(iter);
962         }
963
964         bch2_trans_exit(&trans);
965         bkey_on_stack_exit(&sk, c);
966
967         return ret;
968 }
969
970 int bch2_gc_gens(struct bch_fs *c)
971 {
972         struct bch_dev *ca;
973         struct bucket_array *buckets;
974         struct bucket *g;
975         unsigned i;
976         int ret;
977
978         /*
979          * Ideally we would be using state_lock and not gc_lock here, but that
980          * introduces a deadlock in the RO path - we currently take the state
981          * lock at the start of going RO, thus the gc thread may get stuck:
982          */
983         down_read(&c->gc_lock);
984
985         for_each_member_device(ca, c, i) {
986                 down_read(&ca->bucket_lock);
987                 buckets = bucket_array(ca);
988
989                 for_each_bucket(g, buckets)
990                         g->gc_gen = g->mark.gen;
991                 up_read(&ca->bucket_lock);
992         }
993
994         for (i = 0; i < BTREE_ID_NR; i++)
995                 if (btree_node_type_needs_gc(i)) {
996                         ret = bch2_gc_btree_gens(c, i);
997                         if (ret) {
998                                 bch_err(c, "error recalculating oldest_gen: %i", ret);
999                                 goto err;
1000                         }
1001                 }
1002
1003         for_each_member_device(ca, c, i) {
1004                 down_read(&ca->bucket_lock);
1005                 buckets = bucket_array(ca);
1006
1007                 for_each_bucket(g, buckets)
1008                         g->oldest_gen = g->gc_gen;
1009                 up_read(&ca->bucket_lock);
1010         }
1011
1012         c->gc_count++;
1013 err:
1014         up_read(&c->gc_lock);
1015         return ret;
1016 }
1017
1018 /* Btree coalescing */
1019
1020 static void recalc_packed_keys(struct btree *b)
1021 {
1022         struct bset *i = btree_bset_first(b);
1023         struct bkey_packed *k;
1024
1025         memset(&b->nr, 0, sizeof(b->nr));
1026
1027         BUG_ON(b->nsets != 1);
1028
1029         vstruct_for_each(i, k)
1030                 btree_keys_account_key_add(&b->nr, 0, k);
1031 }
1032
1033 static void bch2_coalesce_nodes(struct bch_fs *c, struct btree_iter *iter,
1034                                 struct btree *old_nodes[GC_MERGE_NODES])
1035 {
1036         struct btree *parent = btree_node_parent(iter, old_nodes[0]);
1037         unsigned i, nr_old_nodes, nr_new_nodes, u64s = 0;
1038         unsigned blocks = btree_blocks(c) * 2 / 3;
1039         struct btree *new_nodes[GC_MERGE_NODES];
1040         struct btree_update *as;
1041         struct keylist keylist;
1042         struct bkey_format_state format_state;
1043         struct bkey_format new_format;
1044
1045         memset(new_nodes, 0, sizeof(new_nodes));
1046         bch2_keylist_init(&keylist, NULL);
1047
1048         /* Count keys that are not deleted */
1049         for (i = 0; i < GC_MERGE_NODES && old_nodes[i]; i++)
1050                 u64s += old_nodes[i]->nr.live_u64s;
1051
1052         nr_old_nodes = nr_new_nodes = i;
1053
1054         /* Check if all keys in @old_nodes could fit in one fewer node */
1055         if (nr_old_nodes <= 1 ||
1056             __vstruct_blocks(struct btree_node, c->block_bits,
1057                              DIV_ROUND_UP(u64s, nr_old_nodes - 1)) > blocks)
1058                 return;
1059
1060         /* Find a format that all keys in @old_nodes can pack into */
1061         bch2_bkey_format_init(&format_state);
1062
1063         for (i = 0; i < nr_old_nodes; i++)
1064                 __bch2_btree_calc_format(&format_state, old_nodes[i]);
1065
1066         new_format = bch2_bkey_format_done(&format_state);
1067
1068         /* Check if repacking would make any nodes too big to fit */
1069         for (i = 0; i < nr_old_nodes; i++)
1070                 if (!bch2_btree_node_format_fits(c, old_nodes[i], &new_format)) {
1071                         trace_btree_gc_coalesce_fail(c,
1072                                         BTREE_GC_COALESCE_FAIL_FORMAT_FITS);
1073                         return;
1074                 }
1075
1076         if (bch2_keylist_realloc(&keylist, NULL, 0,
1077                         (BKEY_U64s + BKEY_EXTENT_U64s_MAX) * nr_old_nodes)) {
1078                 trace_btree_gc_coalesce_fail(c,
1079                                 BTREE_GC_COALESCE_FAIL_KEYLIST_REALLOC);
1080                 return;
1081         }
1082
1083         as = bch2_btree_update_start(iter->trans, iter->btree_id,
1084                         btree_update_reserve_required(c, parent) + nr_old_nodes,
1085                         BTREE_INSERT_NOFAIL|
1086                         BTREE_INSERT_USE_RESERVE,
1087                         NULL);
1088         if (IS_ERR(as)) {
1089                 trace_btree_gc_coalesce_fail(c,
1090                                 BTREE_GC_COALESCE_FAIL_RESERVE_GET);
1091                 bch2_keylist_free(&keylist, NULL);
1092                 return;
1093         }
1094
1095         trace_btree_gc_coalesce(c, old_nodes[0]);
1096
1097         for (i = 0; i < nr_old_nodes; i++)
1098                 bch2_btree_interior_update_will_free_node(as, old_nodes[i]);
1099
1100         /* Repack everything with @new_format and sort down to one bset */
1101         for (i = 0; i < nr_old_nodes; i++)
1102                 new_nodes[i] =
1103                         __bch2_btree_node_alloc_replacement(as, old_nodes[i],
1104                                                             new_format);
1105
1106         /*
1107          * Conceptually we concatenate the nodes together and slice them
1108          * up at different boundaries.
1109          */
1110         for (i = nr_new_nodes - 1; i > 0; --i) {
1111                 struct btree *n1 = new_nodes[i];
1112                 struct btree *n2 = new_nodes[i - 1];
1113
1114                 struct bset *s1 = btree_bset_first(n1);
1115                 struct bset *s2 = btree_bset_first(n2);
1116                 struct bkey_packed *k, *last = NULL;
1117
1118                 /* Calculate how many keys from @n2 we could fit inside @n1 */
1119                 u64s = 0;
1120
1121                 for (k = s2->start;
1122                      k < vstruct_last(s2) &&
1123                      vstruct_blocks_plus(n1->data, c->block_bits,
1124                                          u64s + k->u64s) <= blocks;
1125                      k = bkey_next_skip_noops(k, vstruct_last(s2))) {
1126                         last = k;
1127                         u64s += k->u64s;
1128                 }
1129
1130                 if (u64s == le16_to_cpu(s2->u64s)) {
1131                         /* n2 fits entirely in n1 */
1132                         n1->key.k.p = n1->data->max_key = n2->data->max_key;
1133
1134                         memcpy_u64s(vstruct_last(s1),
1135                                     s2->start,
1136                                     le16_to_cpu(s2->u64s));
1137                         le16_add_cpu(&s1->u64s, le16_to_cpu(s2->u64s));
1138
1139                         set_btree_bset_end(n1, n1->set);
1140
1141                         six_unlock_write(&n2->c.lock);
1142                         bch2_btree_node_free_never_inserted(c, n2);
1143                         six_unlock_intent(&n2->c.lock);
1144
1145                         memmove(new_nodes + i - 1,
1146                                 new_nodes + i,
1147                                 sizeof(new_nodes[0]) * (nr_new_nodes - i));
1148                         new_nodes[--nr_new_nodes] = NULL;
1149                 } else if (u64s) {
1150                         /* move part of n2 into n1 */
1151                         n1->key.k.p = n1->data->max_key =
1152                                 bkey_unpack_pos(n1, last);
1153
1154                         n2->data->min_key = bkey_successor(n1->data->max_key);
1155
1156                         memcpy_u64s(vstruct_last(s1),
1157                                     s2->start, u64s);
1158                         le16_add_cpu(&s1->u64s, u64s);
1159
1160                         memmove(s2->start,
1161                                 vstruct_idx(s2, u64s),
1162                                 (le16_to_cpu(s2->u64s) - u64s) * sizeof(u64));
1163                         s2->u64s = cpu_to_le16(le16_to_cpu(s2->u64s) - u64s);
1164
1165                         set_btree_bset_end(n1, n1->set);
1166                         set_btree_bset_end(n2, n2->set);
1167                 }
1168         }
1169
1170         for (i = 0; i < nr_new_nodes; i++) {
1171                 struct btree *n = new_nodes[i];
1172
1173                 recalc_packed_keys(n);
1174                 btree_node_reset_sib_u64s(n);
1175
1176                 bch2_btree_build_aux_trees(n);
1177
1178                 bch2_btree_update_add_new_node(as, n);
1179                 six_unlock_write(&n->c.lock);
1180
1181                 bch2_btree_node_write(c, n, SIX_LOCK_intent);
1182         }
1183
1184         /*
1185          * The keys for the old nodes get deleted. We don't want to insert keys
1186          * that compare equal to the keys for the new nodes we'll also be
1187          * inserting - we can't because keys on a keylist must be strictly
1188          * greater than the previous keys, and we also don't need to since the
1189          * key for the new node will serve the same purpose (overwriting the key
1190          * for the old node).
1191          */
1192         for (i = 0; i < nr_old_nodes; i++) {
1193                 struct bkey_i delete;
1194                 unsigned j;
1195
1196                 for (j = 0; j < nr_new_nodes; j++)
1197                         if (!bkey_cmp(old_nodes[i]->key.k.p,
1198                                       new_nodes[j]->key.k.p))
1199                                 goto next;
1200
1201                 bkey_init(&delete.k);
1202                 delete.k.p = old_nodes[i]->key.k.p;
1203                 bch2_keylist_add_in_order(&keylist, &delete);
1204 next:
1205                 i = i;
1206         }
1207
1208         /*
1209          * Keys for the new nodes get inserted: bch2_btree_insert_keys() only
1210          * does the lookup once and thus expects the keys to be in sorted order
1211          * so we have to make sure the new keys are correctly ordered with
1212          * respect to the deleted keys added in the previous loop
1213          */
1214         for (i = 0; i < nr_new_nodes; i++)
1215                 bch2_keylist_add_in_order(&keylist, &new_nodes[i]->key);
1216
1217         /* Insert the newly coalesced nodes */
1218         bch2_btree_insert_node(as, parent, iter, &keylist, 0);
1219
1220         BUG_ON(!bch2_keylist_empty(&keylist));
1221
1222         BUG_ON(iter->l[old_nodes[0]->c.level].b != old_nodes[0]);
1223
1224         bch2_btree_iter_node_replace(iter, new_nodes[0]);
1225
1226         for (i = 0; i < nr_new_nodes; i++)
1227                 bch2_btree_update_get_open_buckets(as, new_nodes[i]);
1228
1229         /* Free the old nodes and update our sliding window */
1230         for (i = 0; i < nr_old_nodes; i++) {
1231                 bch2_btree_node_free_inmem(c, old_nodes[i], iter);
1232
1233                 /*
1234                  * the index update might have triggered a split, in which case
1235                  * the nodes we coalesced - the new nodes we just created -
1236                  * might not be sibling nodes anymore - don't add them to the
1237                  * sliding window (except the first):
1238                  */
1239                 if (!i) {
1240                         old_nodes[i] = new_nodes[i];
1241                 } else {
1242                         old_nodes[i] = NULL;
1243                 }
1244         }
1245
1246         for (i = 0; i < nr_new_nodes; i++)
1247                 six_unlock_intent(&new_nodes[i]->c.lock);
1248
1249         bch2_btree_update_done(as);
1250         bch2_keylist_free(&keylist, NULL);
1251 }
1252
1253 static int bch2_coalesce_btree(struct bch_fs *c, enum btree_id btree_id)
1254 {
1255         struct btree_trans trans;
1256         struct btree_iter *iter;
1257         struct btree *b;
1258         bool kthread = (current->flags & PF_KTHREAD) != 0;
1259         unsigned i;
1260
1261         /* Sliding window of adjacent btree nodes */
1262         struct btree *merge[GC_MERGE_NODES];
1263         u32 lock_seq[GC_MERGE_NODES];
1264
1265         bch2_trans_init(&trans, c, 0, 0);
1266
1267         /*
1268          * XXX: We don't have a good way of positively matching on sibling nodes
1269          * that have the same parent - this code works by handling the cases
1270          * where they might not have the same parent, and is thus fragile. Ugh.
1271          *
1272          * Perhaps redo this to use multiple linked iterators?
1273          */
1274         memset(merge, 0, sizeof(merge));
1275
1276         __for_each_btree_node(&trans, iter, btree_id, POS_MIN,
1277                               BTREE_MAX_DEPTH, 0,
1278                               BTREE_ITER_PREFETCH, b) {
1279                 memmove(merge + 1, merge,
1280                         sizeof(merge) - sizeof(merge[0]));
1281                 memmove(lock_seq + 1, lock_seq,
1282                         sizeof(lock_seq) - sizeof(lock_seq[0]));
1283
1284                 merge[0] = b;
1285
1286                 for (i = 1; i < GC_MERGE_NODES; i++) {
1287                         if (!merge[i] ||
1288                             !six_relock_intent(&merge[i]->c.lock, lock_seq[i]))
1289                                 break;
1290
1291                         if (merge[i]->c.level != merge[0]->c.level) {
1292                                 six_unlock_intent(&merge[i]->c.lock);
1293                                 break;
1294                         }
1295                 }
1296                 memset(merge + i, 0, (GC_MERGE_NODES - i) * sizeof(merge[0]));
1297
1298                 bch2_coalesce_nodes(c, iter, merge);
1299
1300                 for (i = 1; i < GC_MERGE_NODES && merge[i]; i++) {
1301                         lock_seq[i] = merge[i]->c.lock.state.seq;
1302                         six_unlock_intent(&merge[i]->c.lock);
1303                 }
1304
1305                 lock_seq[0] = merge[0]->c.lock.state.seq;
1306
1307                 if (kthread && kthread_should_stop()) {
1308                         bch2_trans_exit(&trans);
1309                         return -ESHUTDOWN;
1310                 }
1311
1312                 bch2_trans_cond_resched(&trans);
1313
1314                 /*
1315                  * If the parent node wasn't relocked, it might have been split
1316                  * and the nodes in our sliding window might not have the same
1317                  * parent anymore - blow away the sliding window:
1318                  */
1319                 if (btree_iter_node(iter, iter->level + 1) &&
1320                     !btree_node_intent_locked(iter, iter->level + 1))
1321                         memset(merge + 1, 0,
1322                                (GC_MERGE_NODES - 1) * sizeof(merge[0]));
1323         }
1324         return bch2_trans_exit(&trans);
1325 }
1326
1327 /**
1328  * bch_coalesce - coalesce adjacent nodes with low occupancy
1329  */
1330 void bch2_coalesce(struct bch_fs *c)
1331 {
1332         enum btree_id id;
1333
1334         down_read(&c->gc_lock);
1335         trace_gc_coalesce_start(c);
1336
1337         for (id = 0; id < BTREE_ID_NR; id++) {
1338                 int ret = c->btree_roots[id].b
1339                         ? bch2_coalesce_btree(c, id)
1340                         : 0;
1341
1342                 if (ret) {
1343                         if (ret != -ESHUTDOWN)
1344                                 bch_err(c, "btree coalescing failed: %d", ret);
1345                         return;
1346                 }
1347         }
1348
1349         trace_gc_coalesce_end(c);
1350         up_read(&c->gc_lock);
1351 }
1352
1353 static int bch2_gc_thread(void *arg)
1354 {
1355         struct bch_fs *c = arg;
1356         struct io_clock *clock = &c->io_clock[WRITE];
1357         unsigned long last = atomic_long_read(&clock->now);
1358         unsigned last_kick = atomic_read(&c->kick_gc);
1359         int ret;
1360
1361         set_freezable();
1362
1363         while (1) {
1364                 while (1) {
1365                         set_current_state(TASK_INTERRUPTIBLE);
1366
1367                         if (kthread_should_stop()) {
1368                                 __set_current_state(TASK_RUNNING);
1369                                 return 0;
1370                         }
1371
1372                         if (atomic_read(&c->kick_gc) != last_kick)
1373                                 break;
1374
1375                         if (c->btree_gc_periodic) {
1376                                 unsigned long next = last + c->capacity / 16;
1377
1378                                 if (atomic_long_read(&clock->now) >= next)
1379                                         break;
1380
1381                                 bch2_io_clock_schedule_timeout(clock, next);
1382                         } else {
1383                                 schedule();
1384                         }
1385
1386                         try_to_freeze();
1387                 }
1388                 __set_current_state(TASK_RUNNING);
1389
1390                 last = atomic_long_read(&clock->now);
1391                 last_kick = atomic_read(&c->kick_gc);
1392
1393                 /*
1394                  * Full gc is currently incompatible with btree key cache:
1395                  */
1396 #if 0
1397                 ret = bch2_gc(c, NULL, false, false);
1398 #else
1399                 ret = bch2_gc_gens(c);
1400 #endif
1401                 if (ret < 0)
1402                         bch_err(c, "btree gc failed: %i", ret);
1403
1404                 debug_check_no_locks_held();
1405         }
1406
1407         return 0;
1408 }
1409
1410 void bch2_gc_thread_stop(struct bch_fs *c)
1411 {
1412         struct task_struct *p;
1413
1414         p = c->gc_thread;
1415         c->gc_thread = NULL;
1416
1417         if (p) {
1418                 kthread_stop(p);
1419                 put_task_struct(p);
1420         }
1421 }
1422
1423 int bch2_gc_thread_start(struct bch_fs *c)
1424 {
1425         struct task_struct *p;
1426
1427         BUG_ON(c->gc_thread);
1428
1429         p = kthread_create(bch2_gc_thread, c, "bch-gc/%s", c->name);
1430         if (IS_ERR(p))
1431                 return PTR_ERR(p);
1432
1433         get_task_struct(p);
1434         c->gc_thread = p;
1435         wake_up_process(p);
1436         return 0;
1437 }