use less confusing names for iov_iter direction initializers
[linux-block.git] / fs / afs / rxrpc.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Maintain an RxRPC server socket to do AFS communications through
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7
8 #include <linux/slab.h>
9 #include <linux/sched/signal.h>
10
11 #include <net/sock.h>
12 #include <net/af_rxrpc.h>
13 #include "internal.h"
14 #include "afs_cm.h"
15 #include "protocol_yfs.h"
16
17 struct workqueue_struct *afs_async_calls;
18
19 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
20 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
21 static void afs_process_async_call(struct work_struct *);
22 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
23 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
24 static int afs_deliver_cm_op_id(struct afs_call *);
25
26 /* asynchronous incoming call initial processing */
27 static const struct afs_call_type afs_RXCMxxxx = {
28         .name           = "CB.xxxx",
29         .deliver        = afs_deliver_cm_op_id,
30 };
31
32 /*
33  * open an RxRPC socket and bind it to be a server for callback notifications
34  * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
35  */
36 int afs_open_socket(struct afs_net *net)
37 {
38         struct sockaddr_rxrpc srx;
39         struct socket *socket;
40         int ret;
41
42         _enter("");
43
44         ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket);
45         if (ret < 0)
46                 goto error_1;
47
48         socket->sk->sk_allocation = GFP_NOFS;
49
50         /* bind the callback manager's address to make this a server socket */
51         memset(&srx, 0, sizeof(srx));
52         srx.srx_family                  = AF_RXRPC;
53         srx.srx_service                 = CM_SERVICE;
54         srx.transport_type              = SOCK_DGRAM;
55         srx.transport_len               = sizeof(srx.transport.sin6);
56         srx.transport.sin6.sin6_family  = AF_INET6;
57         srx.transport.sin6.sin6_port    = htons(AFS_CM_PORT);
58
59         ret = rxrpc_sock_set_min_security_level(socket->sk,
60                                                 RXRPC_SECURITY_ENCRYPT);
61         if (ret < 0)
62                 goto error_2;
63
64         ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
65         if (ret == -EADDRINUSE) {
66                 srx.transport.sin6.sin6_port = 0;
67                 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
68         }
69         if (ret < 0)
70                 goto error_2;
71
72         srx.srx_service = YFS_CM_SERVICE;
73         ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
74         if (ret < 0)
75                 goto error_2;
76
77         /* Ideally, we'd turn on service upgrade here, but we can't because
78          * OpenAFS is buggy and leaks the userStatus field from packet to
79          * packet and between FS packets and CB packets - so if we try to do an
80          * upgrade on an FS packet, OpenAFS will leak that into the CB packet
81          * it sends back to us.
82          */
83
84         rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
85                                            afs_rx_discard_new_call);
86
87         ret = kernel_listen(socket, INT_MAX);
88         if (ret < 0)
89                 goto error_2;
90
91         net->socket = socket;
92         afs_charge_preallocation(&net->charge_preallocation_work);
93         _leave(" = 0");
94         return 0;
95
96 error_2:
97         sock_release(socket);
98 error_1:
99         _leave(" = %d", ret);
100         return ret;
101 }
102
103 /*
104  * close the RxRPC socket AFS was using
105  */
106 void afs_close_socket(struct afs_net *net)
107 {
108         _enter("");
109
110         kernel_listen(net->socket, 0);
111         flush_workqueue(afs_async_calls);
112
113         if (net->spare_incoming_call) {
114                 afs_put_call(net->spare_incoming_call);
115                 net->spare_incoming_call = NULL;
116         }
117
118         _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
119         wait_var_event(&net->nr_outstanding_calls,
120                        !atomic_read(&net->nr_outstanding_calls));
121         _debug("no outstanding calls");
122
123         kernel_sock_shutdown(net->socket, SHUT_RDWR);
124         flush_workqueue(afs_async_calls);
125         sock_release(net->socket);
126
127         _debug("dework");
128         _leave("");
129 }
130
131 /*
132  * Allocate a call.
133  */
134 static struct afs_call *afs_alloc_call(struct afs_net *net,
135                                        const struct afs_call_type *type,
136                                        gfp_t gfp)
137 {
138         struct afs_call *call;
139         int o;
140
141         call = kzalloc(sizeof(*call), gfp);
142         if (!call)
143                 return NULL;
144
145         call->type = type;
146         call->net = net;
147         call->debug_id = atomic_inc_return(&rxrpc_debug_id);
148         refcount_set(&call->ref, 1);
149         INIT_WORK(&call->async_work, afs_process_async_call);
150         init_waitqueue_head(&call->waitq);
151         spin_lock_init(&call->state_lock);
152         call->iter = &call->def_iter;
153
154         o = atomic_inc_return(&net->nr_outstanding_calls);
155         trace_afs_call(call->debug_id, afs_call_trace_alloc, 1, o,
156                        __builtin_return_address(0));
157         return call;
158 }
159
160 /*
161  * Dispose of a reference on a call.
162  */
163 void afs_put_call(struct afs_call *call)
164 {
165         struct afs_net *net = call->net;
166         unsigned int debug_id = call->debug_id;
167         bool zero;
168         int r, o;
169
170         zero = __refcount_dec_and_test(&call->ref, &r);
171         o = atomic_read(&net->nr_outstanding_calls);
172         trace_afs_call(debug_id, afs_call_trace_put, r - 1, o,
173                        __builtin_return_address(0));
174
175         if (zero) {
176                 ASSERT(!work_pending(&call->async_work));
177                 ASSERT(call->type->name != NULL);
178
179                 if (call->rxcall) {
180                         rxrpc_kernel_end_call(net->socket, call->rxcall);
181                         call->rxcall = NULL;
182                 }
183                 if (call->type->destructor)
184                         call->type->destructor(call);
185
186                 afs_unuse_server_notime(call->net, call->server, afs_server_trace_put_call);
187                 afs_put_addrlist(call->alist);
188                 kfree(call->request);
189
190                 trace_afs_call(call->debug_id, afs_call_trace_free, 0, o,
191                                __builtin_return_address(0));
192                 kfree(call);
193
194                 o = atomic_dec_return(&net->nr_outstanding_calls);
195                 if (o == 0)
196                         wake_up_var(&net->nr_outstanding_calls);
197         }
198 }
199
200 static struct afs_call *afs_get_call(struct afs_call *call,
201                                      enum afs_call_trace why)
202 {
203         int r;
204
205         __refcount_inc(&call->ref, &r);
206
207         trace_afs_call(call->debug_id, why, r + 1,
208                        atomic_read(&call->net->nr_outstanding_calls),
209                        __builtin_return_address(0));
210         return call;
211 }
212
213 /*
214  * Queue the call for actual work.
215  */
216 static void afs_queue_call_work(struct afs_call *call)
217 {
218         if (call->type->work) {
219                 INIT_WORK(&call->work, call->type->work);
220
221                 afs_get_call(call, afs_call_trace_work);
222                 if (!queue_work(afs_wq, &call->work))
223                         afs_put_call(call);
224         }
225 }
226
227 /*
228  * allocate a call with flat request and reply buffers
229  */
230 struct afs_call *afs_alloc_flat_call(struct afs_net *net,
231                                      const struct afs_call_type *type,
232                                      size_t request_size, size_t reply_max)
233 {
234         struct afs_call *call;
235
236         call = afs_alloc_call(net, type, GFP_NOFS);
237         if (!call)
238                 goto nomem_call;
239
240         if (request_size) {
241                 call->request_size = request_size;
242                 call->request = kmalloc(request_size, GFP_NOFS);
243                 if (!call->request)
244                         goto nomem_free;
245         }
246
247         if (reply_max) {
248                 call->reply_max = reply_max;
249                 call->buffer = kmalloc(reply_max, GFP_NOFS);
250                 if (!call->buffer)
251                         goto nomem_free;
252         }
253
254         afs_extract_to_buf(call, call->reply_max);
255         call->operation_ID = type->op;
256         init_waitqueue_head(&call->waitq);
257         return call;
258
259 nomem_free:
260         afs_put_call(call);
261 nomem_call:
262         return NULL;
263 }
264
265 /*
266  * clean up a call with flat buffer
267  */
268 void afs_flat_call_destructor(struct afs_call *call)
269 {
270         _enter("");
271
272         kfree(call->request);
273         call->request = NULL;
274         kfree(call->buffer);
275         call->buffer = NULL;
276 }
277
278 /*
279  * Advance the AFS call state when the RxRPC call ends the transmit phase.
280  */
281 static void afs_notify_end_request_tx(struct sock *sock,
282                                       struct rxrpc_call *rxcall,
283                                       unsigned long call_user_ID)
284 {
285         struct afs_call *call = (struct afs_call *)call_user_ID;
286
287         afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY);
288 }
289
290 /*
291  * Initiate a call and synchronously queue up the parameters for dispatch.  Any
292  * error is stored into the call struct, which the caller must check for.
293  */
294 void afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, gfp_t gfp)
295 {
296         struct sockaddr_rxrpc *srx = &ac->alist->addrs[ac->index];
297         struct rxrpc_call *rxcall;
298         struct msghdr msg;
299         struct kvec iov[1];
300         size_t len;
301         s64 tx_total_len;
302         int ret;
303
304         _enter(",{%pISp},", &srx->transport);
305
306         ASSERT(call->type != NULL);
307         ASSERT(call->type->name != NULL);
308
309         _debug("____MAKE %p{%s,%x} [%d]____",
310                call, call->type->name, key_serial(call->key),
311                atomic_read(&call->net->nr_outstanding_calls));
312
313         call->addr_ix = ac->index;
314         call->alist = afs_get_addrlist(ac->alist);
315
316         /* Work out the length we're going to transmit.  This is awkward for
317          * calls such as FS.StoreData where there's an extra injection of data
318          * after the initial fixed part.
319          */
320         tx_total_len = call->request_size;
321         if (call->write_iter)
322                 tx_total_len += iov_iter_count(call->write_iter);
323
324         /* If the call is going to be asynchronous, we need an extra ref for
325          * the call to hold itself so the caller need not hang on to its ref.
326          */
327         if (call->async) {
328                 afs_get_call(call, afs_call_trace_get);
329                 call->drop_ref = true;
330         }
331
332         /* create a call */
333         rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key,
334                                          (unsigned long)call,
335                                          tx_total_len, gfp,
336                                          (call->async ?
337                                           afs_wake_up_async_call :
338                                           afs_wake_up_call_waiter),
339                                          call->upgrade,
340                                          (call->intr ? RXRPC_PREINTERRUPTIBLE :
341                                           RXRPC_UNINTERRUPTIBLE),
342                                          call->debug_id);
343         if (IS_ERR(rxcall)) {
344                 ret = PTR_ERR(rxcall);
345                 call->error = ret;
346                 goto error_kill_call;
347         }
348
349         call->rxcall = rxcall;
350
351         if (call->max_lifespan)
352                 rxrpc_kernel_set_max_life(call->net->socket, rxcall,
353                                           call->max_lifespan);
354         call->issue_time = ktime_get_real();
355
356         /* send the request */
357         iov[0].iov_base = call->request;
358         iov[0].iov_len  = call->request_size;
359
360         msg.msg_name            = NULL;
361         msg.msg_namelen         = 0;
362         iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, iov, 1, call->request_size);
363         msg.msg_control         = NULL;
364         msg.msg_controllen      = 0;
365         msg.msg_flags           = MSG_WAITALL | (call->write_iter ? MSG_MORE : 0);
366
367         ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
368                                      &msg, call->request_size,
369                                      afs_notify_end_request_tx);
370         if (ret < 0)
371                 goto error_do_abort;
372
373         if (call->write_iter) {
374                 msg.msg_iter = *call->write_iter;
375                 msg.msg_flags &= ~MSG_MORE;
376                 trace_afs_send_data(call, &msg);
377
378                 ret = rxrpc_kernel_send_data(call->net->socket,
379                                              call->rxcall, &msg,
380                                              iov_iter_count(&msg.msg_iter),
381                                              afs_notify_end_request_tx);
382                 *call->write_iter = msg.msg_iter;
383
384                 trace_afs_sent_data(call, &msg, ret);
385                 if (ret < 0)
386                         goto error_do_abort;
387         }
388
389         /* Note that at this point, we may have received the reply or an abort
390          * - and an asynchronous call may already have completed.
391          *
392          * afs_wait_for_call_to_complete(call, ac)
393          * must be called to synchronously clean up.
394          */
395         return;
396
397 error_do_abort:
398         if (ret != -ECONNABORTED) {
399                 rxrpc_kernel_abort_call(call->net->socket, rxcall,
400                                         RX_USER_ABORT, ret, "KSD");
401         } else {
402                 len = 0;
403                 iov_iter_kvec(&msg.msg_iter, ITER_DEST, NULL, 0, 0);
404                 rxrpc_kernel_recv_data(call->net->socket, rxcall,
405                                        &msg.msg_iter, &len, false,
406                                        &call->abort_code, &call->service_id);
407                 ac->abort_code = call->abort_code;
408                 ac->responded = true;
409         }
410         call->error = ret;
411         trace_afs_call_done(call);
412 error_kill_call:
413         if (call->type->done)
414                 call->type->done(call);
415
416         /* We need to dispose of the extra ref we grabbed for an async call.
417          * The call, however, might be queued on afs_async_calls and we need to
418          * make sure we don't get any more notifications that might requeue it.
419          */
420         if (call->rxcall) {
421                 rxrpc_kernel_end_call(call->net->socket, call->rxcall);
422                 call->rxcall = NULL;
423         }
424         if (call->async) {
425                 if (cancel_work_sync(&call->async_work))
426                         afs_put_call(call);
427                 afs_put_call(call);
428         }
429
430         ac->error = ret;
431         call->state = AFS_CALL_COMPLETE;
432         _leave(" = %d", ret);
433 }
434
435 /*
436  * Log remote abort codes that indicate that we have a protocol disagreement
437  * with the server.
438  */
439 static void afs_log_error(struct afs_call *call, s32 remote_abort)
440 {
441         static int max = 0;
442         const char *msg;
443         int m;
444
445         switch (remote_abort) {
446         case RX_EOF:             msg = "unexpected EOF";        break;
447         case RXGEN_CC_MARSHAL:   msg = "client marshalling";    break;
448         case RXGEN_CC_UNMARSHAL: msg = "client unmarshalling";  break;
449         case RXGEN_SS_MARSHAL:   msg = "server marshalling";    break;
450         case RXGEN_SS_UNMARSHAL: msg = "server unmarshalling";  break;
451         case RXGEN_DECODE:       msg = "opcode decode";         break;
452         case RXGEN_SS_XDRFREE:   msg = "server XDR cleanup";    break;
453         case RXGEN_CC_XDRFREE:   msg = "client XDR cleanup";    break;
454         case -32:                msg = "insufficient data";     break;
455         default:
456                 return;
457         }
458
459         m = max;
460         if (m < 3) {
461                 max = m + 1;
462                 pr_notice("kAFS: Peer reported %s failure on %s [%pISp]\n",
463                           msg, call->type->name,
464                           &call->alist->addrs[call->addr_ix].transport);
465         }
466 }
467
468 /*
469  * deliver messages to a call
470  */
471 static void afs_deliver_to_call(struct afs_call *call)
472 {
473         enum afs_call_state state;
474         size_t len;
475         u32 abort_code, remote_abort = 0;
476         int ret;
477
478         _enter("%s", call->type->name);
479
480         while (state = READ_ONCE(call->state),
481                state == AFS_CALL_CL_AWAIT_REPLY ||
482                state == AFS_CALL_SV_AWAIT_OP_ID ||
483                state == AFS_CALL_SV_AWAIT_REQUEST ||
484                state == AFS_CALL_SV_AWAIT_ACK
485                ) {
486                 if (state == AFS_CALL_SV_AWAIT_ACK) {
487                         len = 0;
488                         iov_iter_kvec(&call->def_iter, ITER_DEST, NULL, 0, 0);
489                         ret = rxrpc_kernel_recv_data(call->net->socket,
490                                                      call->rxcall, &call->def_iter,
491                                                      &len, false, &remote_abort,
492                                                      &call->service_id);
493                         trace_afs_receive_data(call, &call->def_iter, false, ret);
494
495                         if (ret == -EINPROGRESS || ret == -EAGAIN)
496                                 return;
497                         if (ret < 0 || ret == 1) {
498                                 if (ret == 1)
499                                         ret = 0;
500                                 goto call_complete;
501                         }
502                         return;
503                 }
504
505                 ret = call->type->deliver(call);
506                 state = READ_ONCE(call->state);
507                 if (ret == 0 && call->unmarshalling_error)
508                         ret = -EBADMSG;
509                 switch (ret) {
510                 case 0:
511                         afs_queue_call_work(call);
512                         if (state == AFS_CALL_CL_PROC_REPLY) {
513                                 if (call->op)
514                                         set_bit(AFS_SERVER_FL_MAY_HAVE_CB,
515                                                 &call->op->server->flags);
516                                 goto call_complete;
517                         }
518                         ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY);
519                         goto done;
520                 case -EINPROGRESS:
521                 case -EAGAIN:
522                         goto out;
523                 case -ECONNABORTED:
524                         ASSERTCMP(state, ==, AFS_CALL_COMPLETE);
525                         afs_log_error(call, call->abort_code);
526                         goto done;
527                 case -ENOTSUPP:
528                         abort_code = RXGEN_OPCODE;
529                         rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
530                                                 abort_code, ret, "KIV");
531                         goto local_abort;
532                 case -EIO:
533                         pr_err("kAFS: Call %u in bad state %u\n",
534                                call->debug_id, state);
535                         fallthrough;
536                 case -ENODATA:
537                 case -EBADMSG:
538                 case -EMSGSIZE:
539                 case -ENOMEM:
540                 case -EFAULT:
541                         abort_code = RXGEN_CC_UNMARSHAL;
542                         if (state != AFS_CALL_CL_AWAIT_REPLY)
543                                 abort_code = RXGEN_SS_UNMARSHAL;
544                         rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
545                                                 abort_code, ret, "KUM");
546                         goto local_abort;
547                 default:
548                         abort_code = RX_CALL_DEAD;
549                         rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
550                                                 abort_code, ret, "KER");
551                         goto local_abort;
552                 }
553         }
554
555 done:
556         if (call->type->done)
557                 call->type->done(call);
558 out:
559         _leave("");
560         return;
561
562 local_abort:
563         abort_code = 0;
564 call_complete:
565         afs_set_call_complete(call, ret, remote_abort);
566         state = AFS_CALL_COMPLETE;
567         goto done;
568 }
569
570 /*
571  * Wait synchronously for a call to complete and clean up the call struct.
572  */
573 long afs_wait_for_call_to_complete(struct afs_call *call,
574                                    struct afs_addr_cursor *ac)
575 {
576         long ret;
577         bool rxrpc_complete = false;
578
579         DECLARE_WAITQUEUE(myself, current);
580
581         _enter("");
582
583         ret = call->error;
584         if (ret < 0)
585                 goto out;
586
587         add_wait_queue(&call->waitq, &myself);
588         for (;;) {
589                 set_current_state(TASK_UNINTERRUPTIBLE);
590
591                 /* deliver any messages that are in the queue */
592                 if (!afs_check_call_state(call, AFS_CALL_COMPLETE) &&
593                     call->need_attention) {
594                         call->need_attention = false;
595                         __set_current_state(TASK_RUNNING);
596                         afs_deliver_to_call(call);
597                         continue;
598                 }
599
600                 if (afs_check_call_state(call, AFS_CALL_COMPLETE))
601                         break;
602
603                 if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall)) {
604                         /* rxrpc terminated the call. */
605                         rxrpc_complete = true;
606                         break;
607                 }
608
609                 schedule();
610         }
611
612         remove_wait_queue(&call->waitq, &myself);
613         __set_current_state(TASK_RUNNING);
614
615         if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
616                 if (rxrpc_complete) {
617                         afs_set_call_complete(call, call->error, call->abort_code);
618                 } else {
619                         /* Kill off the call if it's still live. */
620                         _debug("call interrupted");
621                         if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
622                                                     RX_USER_ABORT, -EINTR, "KWI"))
623                                 afs_set_call_complete(call, -EINTR, 0);
624                 }
625         }
626
627         spin_lock_bh(&call->state_lock);
628         ac->abort_code = call->abort_code;
629         ac->error = call->error;
630         spin_unlock_bh(&call->state_lock);
631
632         ret = ac->error;
633         switch (ret) {
634         case 0:
635                 ret = call->ret0;
636                 call->ret0 = 0;
637
638                 fallthrough;
639         case -ECONNABORTED:
640                 ac->responded = true;
641                 break;
642         }
643
644 out:
645         _debug("call complete");
646         afs_put_call(call);
647         _leave(" = %p", (void *)ret);
648         return ret;
649 }
650
651 /*
652  * wake up a waiting call
653  */
654 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
655                                     unsigned long call_user_ID)
656 {
657         struct afs_call *call = (struct afs_call *)call_user_ID;
658
659         call->need_attention = true;
660         wake_up(&call->waitq);
661 }
662
663 /*
664  * wake up an asynchronous call
665  */
666 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
667                                    unsigned long call_user_ID)
668 {
669         struct afs_call *call = (struct afs_call *)call_user_ID;
670         int r;
671
672         trace_afs_notify_call(rxcall, call);
673         call->need_attention = true;
674
675         if (__refcount_inc_not_zero(&call->ref, &r)) {
676                 trace_afs_call(call->debug_id, afs_call_trace_wake, r + 1,
677                                atomic_read(&call->net->nr_outstanding_calls),
678                                __builtin_return_address(0));
679
680                 if (!queue_work(afs_async_calls, &call->async_work))
681                         afs_put_call(call);
682         }
683 }
684
685 /*
686  * Perform I/O processing on an asynchronous call.  The work item carries a ref
687  * to the call struct that we either need to release or to pass on.
688  */
689 static void afs_process_async_call(struct work_struct *work)
690 {
691         struct afs_call *call = container_of(work, struct afs_call, async_work);
692
693         _enter("");
694
695         if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
696                 call->need_attention = false;
697                 afs_deliver_to_call(call);
698         }
699
700         afs_put_call(call);
701         _leave("");
702 }
703
704 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
705 {
706         struct afs_call *call = (struct afs_call *)user_call_ID;
707
708         call->rxcall = rxcall;
709 }
710
711 /*
712  * Charge the incoming call preallocation.
713  */
714 void afs_charge_preallocation(struct work_struct *work)
715 {
716         struct afs_net *net =
717                 container_of(work, struct afs_net, charge_preallocation_work);
718         struct afs_call *call = net->spare_incoming_call;
719
720         for (;;) {
721                 if (!call) {
722                         call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL);
723                         if (!call)
724                                 break;
725
726                         call->drop_ref = true;
727                         call->async = true;
728                         call->state = AFS_CALL_SV_AWAIT_OP_ID;
729                         init_waitqueue_head(&call->waitq);
730                         afs_extract_to_tmp(call);
731                 }
732
733                 if (rxrpc_kernel_charge_accept(net->socket,
734                                                afs_wake_up_async_call,
735                                                afs_rx_attach,
736                                                (unsigned long)call,
737                                                GFP_KERNEL,
738                                                call->debug_id) < 0)
739                         break;
740                 call = NULL;
741         }
742         net->spare_incoming_call = call;
743 }
744
745 /*
746  * Discard a preallocated call when a socket is shut down.
747  */
748 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
749                                     unsigned long user_call_ID)
750 {
751         struct afs_call *call = (struct afs_call *)user_call_ID;
752
753         call->rxcall = NULL;
754         afs_put_call(call);
755 }
756
757 /*
758  * Notification of an incoming call.
759  */
760 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
761                             unsigned long user_call_ID)
762 {
763         struct afs_net *net = afs_sock2net(sk);
764
765         queue_work(afs_wq, &net->charge_preallocation_work);
766 }
767
768 /*
769  * Grab the operation ID from an incoming cache manager call.  The socket
770  * buffer is discarded on error or if we don't yet have sufficient data.
771  */
772 static int afs_deliver_cm_op_id(struct afs_call *call)
773 {
774         int ret;
775
776         _enter("{%zu}", iov_iter_count(call->iter));
777
778         /* the operation ID forms the first four bytes of the request data */
779         ret = afs_extract_data(call, true);
780         if (ret < 0)
781                 return ret;
782
783         call->operation_ID = ntohl(call->tmp);
784         afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST);
785
786         /* ask the cache manager to route the call (it'll change the call type
787          * if successful) */
788         if (!afs_cm_incoming_call(call))
789                 return -ENOTSUPP;
790
791         trace_afs_cb_call(call);
792
793         /* pass responsibility for the remainer of this message off to the
794          * cache manager op */
795         return call->type->deliver(call);
796 }
797
798 /*
799  * Advance the AFS call state when an RxRPC service call ends the transmit
800  * phase.
801  */
802 static void afs_notify_end_reply_tx(struct sock *sock,
803                                     struct rxrpc_call *rxcall,
804                                     unsigned long call_user_ID)
805 {
806         struct afs_call *call = (struct afs_call *)call_user_ID;
807
808         afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK);
809 }
810
811 /*
812  * send an empty reply
813  */
814 void afs_send_empty_reply(struct afs_call *call)
815 {
816         struct afs_net *net = call->net;
817         struct msghdr msg;
818
819         _enter("");
820
821         rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);
822
823         msg.msg_name            = NULL;
824         msg.msg_namelen         = 0;
825         iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, NULL, 0, 0);
826         msg.msg_control         = NULL;
827         msg.msg_controllen      = 0;
828         msg.msg_flags           = 0;
829
830         switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
831                                        afs_notify_end_reply_tx)) {
832         case 0:
833                 _leave(" [replied]");
834                 return;
835
836         case -ENOMEM:
837                 _debug("oom");
838                 rxrpc_kernel_abort_call(net->socket, call->rxcall,
839                                         RXGEN_SS_MARSHAL, -ENOMEM, "KOO");
840                 fallthrough;
841         default:
842                 _leave(" [error]");
843                 return;
844         }
845 }
846
847 /*
848  * send a simple reply
849  */
850 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
851 {
852         struct afs_net *net = call->net;
853         struct msghdr msg;
854         struct kvec iov[1];
855         int n;
856
857         _enter("");
858
859         rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);
860
861         iov[0].iov_base         = (void *) buf;
862         iov[0].iov_len          = len;
863         msg.msg_name            = NULL;
864         msg.msg_namelen         = 0;
865         iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, iov, 1, len);
866         msg.msg_control         = NULL;
867         msg.msg_controllen      = 0;
868         msg.msg_flags           = 0;
869
870         n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
871                                    afs_notify_end_reply_tx);
872         if (n >= 0) {
873                 /* Success */
874                 _leave(" [replied]");
875                 return;
876         }
877
878         if (n == -ENOMEM) {
879                 _debug("oom");
880                 rxrpc_kernel_abort_call(net->socket, call->rxcall,
881                                         RXGEN_SS_MARSHAL, -ENOMEM, "KOO");
882         }
883         _leave(" [error]");
884 }
885
886 /*
887  * Extract a piece of data from the received data socket buffers.
888  */
889 int afs_extract_data(struct afs_call *call, bool want_more)
890 {
891         struct afs_net *net = call->net;
892         struct iov_iter *iter = call->iter;
893         enum afs_call_state state;
894         u32 remote_abort = 0;
895         int ret;
896
897         _enter("{%s,%zu,%zu},%d",
898                call->type->name, call->iov_len, iov_iter_count(iter), want_more);
899
900         ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter,
901                                      &call->iov_len, want_more, &remote_abort,
902                                      &call->service_id);
903         if (ret == 0 || ret == -EAGAIN)
904                 return ret;
905
906         state = READ_ONCE(call->state);
907         if (ret == 1) {
908                 switch (state) {
909                 case AFS_CALL_CL_AWAIT_REPLY:
910                         afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY);
911                         break;
912                 case AFS_CALL_SV_AWAIT_REQUEST:
913                         afs_set_call_state(call, state, AFS_CALL_SV_REPLYING);
914                         break;
915                 case AFS_CALL_COMPLETE:
916                         kdebug("prem complete %d", call->error);
917                         return afs_io_error(call, afs_io_error_extract);
918                 default:
919                         break;
920                 }
921                 return 0;
922         }
923
924         afs_set_call_complete(call, ret, remote_abort);
925         return ret;
926 }
927
928 /*
929  * Log protocol error production.
930  */
931 noinline int afs_protocol_error(struct afs_call *call,
932                                 enum afs_eproto_cause cause)
933 {
934         trace_afs_protocol_error(call, cause);
935         if (call)
936                 call->unmarshalling_error = true;
937         return -EBADMSG;
938 }