Merge tag 'wireless-drivers-for-davem-2016-05-09' of git://git.kernel.org/pub/scm...
[linux-2.6-block.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
35
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38
39 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
51 /*
52  * xhci_handshake - spin reading hc until handshake completes or fails
53  * @ptr: address of hc register to be read
54  * @mask: bits to look at in result of read
55  * @done: value of those bits when handshake succeeds
56  * @usec: timeout in microseconds
57  *
58  * Returns negative errno, or zero on success
59  *
60  * Success happens when the "mask" bits have the specified value (hardware
61  * handshake done).  There are two failure modes:  "usec" have passed (major
62  * hardware flakeout), or the register reads as all-ones (hardware removed).
63  */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66         u32     result;
67
68         do {
69                 result = readl(ptr);
70                 if (result == ~(u32)0)          /* card removed */
71                         return -ENODEV;
72                 result &= mask;
73                 if (result == done)
74                         return 0;
75                 udelay(1);
76                 usec--;
77         } while (usec > 0);
78         return -ETIMEDOUT;
79 }
80
81 /*
82  * Disable interrupts and begin the xHCI halting process.
83  */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86         u32 halted;
87         u32 cmd;
88         u32 mask;
89
90         mask = ~(XHCI_IRQS);
91         halted = readl(&xhci->op_regs->status) & STS_HALT;
92         if (!halted)
93                 mask &= ~CMD_RUN;
94
95         cmd = readl(&xhci->op_regs->command);
96         cmd &= mask;
97         writel(cmd, &xhci->op_regs->command);
98 }
99
100 /*
101  * Force HC into halt state.
102  *
103  * Disable any IRQs and clear the run/stop bit.
104  * HC will complete any current and actively pipelined transactions, and
105  * should halt within 16 ms of the run/stop bit being cleared.
106  * Read HC Halted bit in the status register to see when the HC is finished.
107  */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110         int ret;
111         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112         xhci_quiesce(xhci);
113
114         ret = xhci_handshake(&xhci->op_regs->status,
115                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116         if (!ret) {
117                 xhci->xhc_state |= XHCI_STATE_HALTED;
118                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
119         } else
120                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
121                                 XHCI_MAX_HALT_USEC);
122         return ret;
123 }
124
125 /*
126  * Set the run bit and wait for the host to be running.
127  */
128 static int xhci_start(struct xhci_hcd *xhci)
129 {
130         u32 temp;
131         int ret;
132
133         temp = readl(&xhci->op_regs->command);
134         temp |= (CMD_RUN);
135         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136                         temp);
137         writel(temp, &xhci->op_regs->command);
138
139         /*
140          * Wait for the HCHalted Status bit to be 0 to indicate the host is
141          * running.
142          */
143         ret = xhci_handshake(&xhci->op_regs->status,
144                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
145         if (ret == -ETIMEDOUT)
146                 xhci_err(xhci, "Host took too long to start, "
147                                 "waited %u microseconds.\n",
148                                 XHCI_MAX_HALT_USEC);
149         if (!ret)
150                 /* clear state flags. Including dying, halted or removing */
151                 xhci->xhc_state = 0;
152
153         return ret;
154 }
155
156 /*
157  * Reset a halted HC.
158  *
159  * This resets pipelines, timers, counters, state machines, etc.
160  * Transactions will be terminated immediately, and operational registers
161  * will be set to their defaults.
162  */
163 int xhci_reset(struct xhci_hcd *xhci)
164 {
165         u32 command;
166         u32 state;
167         int ret, i;
168
169         state = readl(&xhci->op_regs->status);
170         if ((state & STS_HALT) == 0) {
171                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
172                 return 0;
173         }
174
175         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
176         command = readl(&xhci->op_regs->command);
177         command |= CMD_RESET;
178         writel(command, &xhci->op_regs->command);
179
180         /* Existing Intel xHCI controllers require a delay of 1 mS,
181          * after setting the CMD_RESET bit, and before accessing any
182          * HC registers. This allows the HC to complete the
183          * reset operation and be ready for HC register access.
184          * Without this delay, the subsequent HC register access,
185          * may result in a system hang very rarely.
186          */
187         if (xhci->quirks & XHCI_INTEL_HOST)
188                 udelay(1000);
189
190         ret = xhci_handshake(&xhci->op_regs->command,
191                         CMD_RESET, 0, 10 * 1000 * 1000);
192         if (ret)
193                 return ret;
194
195         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
196                          "Wait for controller to be ready for doorbell rings");
197         /*
198          * xHCI cannot write to any doorbells or operational registers other
199          * than status until the "Controller Not Ready" flag is cleared.
200          */
201         ret = xhci_handshake(&xhci->op_regs->status,
202                         STS_CNR, 0, 10 * 1000 * 1000);
203
204         for (i = 0; i < 2; ++i) {
205                 xhci->bus_state[i].port_c_suspend = 0;
206                 xhci->bus_state[i].suspended_ports = 0;
207                 xhci->bus_state[i].resuming_ports = 0;
208         }
209
210         return ret;
211 }
212
213 #ifdef CONFIG_PCI
214 static int xhci_free_msi(struct xhci_hcd *xhci)
215 {
216         int i;
217
218         if (!xhci->msix_entries)
219                 return -EINVAL;
220
221         for (i = 0; i < xhci->msix_count; i++)
222                 if (xhci->msix_entries[i].vector)
223                         free_irq(xhci->msix_entries[i].vector,
224                                         xhci_to_hcd(xhci));
225         return 0;
226 }
227
228 /*
229  * Set up MSI
230  */
231 static int xhci_setup_msi(struct xhci_hcd *xhci)
232 {
233         int ret;
234         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
235
236         ret = pci_enable_msi(pdev);
237         if (ret) {
238                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
239                                 "failed to allocate MSI entry");
240                 return ret;
241         }
242
243         ret = request_irq(pdev->irq, xhci_msi_irq,
244                                 0, "xhci_hcd", xhci_to_hcd(xhci));
245         if (ret) {
246                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
247                                 "disable MSI interrupt");
248                 pci_disable_msi(pdev);
249         }
250
251         return ret;
252 }
253
254 /*
255  * Free IRQs
256  * free all IRQs request
257  */
258 static void xhci_free_irq(struct xhci_hcd *xhci)
259 {
260         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
261         int ret;
262
263         /* return if using legacy interrupt */
264         if (xhci_to_hcd(xhci)->irq > 0)
265                 return;
266
267         ret = xhci_free_msi(xhci);
268         if (!ret)
269                 return;
270         if (pdev->irq > 0)
271                 free_irq(pdev->irq, xhci_to_hcd(xhci));
272
273         return;
274 }
275
276 /*
277  * Set up MSI-X
278  */
279 static int xhci_setup_msix(struct xhci_hcd *xhci)
280 {
281         int i, ret = 0;
282         struct usb_hcd *hcd = xhci_to_hcd(xhci);
283         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
284
285         /*
286          * calculate number of msi-x vectors supported.
287          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
288          *   with max number of interrupters based on the xhci HCSPARAMS1.
289          * - num_online_cpus: maximum msi-x vectors per CPUs core.
290          *   Add additional 1 vector to ensure always available interrupt.
291          */
292         xhci->msix_count = min(num_online_cpus() + 1,
293                                 HCS_MAX_INTRS(xhci->hcs_params1));
294
295         xhci->msix_entries =
296                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
297                                 GFP_KERNEL);
298         if (!xhci->msix_entries) {
299                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
300                 return -ENOMEM;
301         }
302
303         for (i = 0; i < xhci->msix_count; i++) {
304                 xhci->msix_entries[i].entry = i;
305                 xhci->msix_entries[i].vector = 0;
306         }
307
308         ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
309         if (ret) {
310                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
311                                 "Failed to enable MSI-X");
312                 goto free_entries;
313         }
314
315         for (i = 0; i < xhci->msix_count; i++) {
316                 ret = request_irq(xhci->msix_entries[i].vector,
317                                 xhci_msi_irq,
318                                 0, "xhci_hcd", xhci_to_hcd(xhci));
319                 if (ret)
320                         goto disable_msix;
321         }
322
323         hcd->msix_enabled = 1;
324         return ret;
325
326 disable_msix:
327         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
328         xhci_free_irq(xhci);
329         pci_disable_msix(pdev);
330 free_entries:
331         kfree(xhci->msix_entries);
332         xhci->msix_entries = NULL;
333         return ret;
334 }
335
336 /* Free any IRQs and disable MSI-X */
337 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
338 {
339         struct usb_hcd *hcd = xhci_to_hcd(xhci);
340         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
341
342         if (xhci->quirks & XHCI_PLAT)
343                 return;
344
345         xhci_free_irq(xhci);
346
347         if (xhci->msix_entries) {
348                 pci_disable_msix(pdev);
349                 kfree(xhci->msix_entries);
350                 xhci->msix_entries = NULL;
351         } else {
352                 pci_disable_msi(pdev);
353         }
354
355         hcd->msix_enabled = 0;
356         return;
357 }
358
359 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
360 {
361         int i;
362
363         if (xhci->msix_entries) {
364                 for (i = 0; i < xhci->msix_count; i++)
365                         synchronize_irq(xhci->msix_entries[i].vector);
366         }
367 }
368
369 static int xhci_try_enable_msi(struct usb_hcd *hcd)
370 {
371         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
372         struct pci_dev  *pdev;
373         int ret;
374
375         /* The xhci platform device has set up IRQs through usb_add_hcd. */
376         if (xhci->quirks & XHCI_PLAT)
377                 return 0;
378
379         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
380         /*
381          * Some Fresco Logic host controllers advertise MSI, but fail to
382          * generate interrupts.  Don't even try to enable MSI.
383          */
384         if (xhci->quirks & XHCI_BROKEN_MSI)
385                 goto legacy_irq;
386
387         /* unregister the legacy interrupt */
388         if (hcd->irq)
389                 free_irq(hcd->irq, hcd);
390         hcd->irq = 0;
391
392         ret = xhci_setup_msix(xhci);
393         if (ret)
394                 /* fall back to msi*/
395                 ret = xhci_setup_msi(xhci);
396
397         if (!ret)
398                 /* hcd->irq is 0, we have MSI */
399                 return 0;
400
401         if (!pdev->irq) {
402                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
403                 return -EINVAL;
404         }
405
406  legacy_irq:
407         if (!strlen(hcd->irq_descr))
408                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
409                          hcd->driver->description, hcd->self.busnum);
410
411         /* fall back to legacy interrupt*/
412         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
413                         hcd->irq_descr, hcd);
414         if (ret) {
415                 xhci_err(xhci, "request interrupt %d failed\n",
416                                 pdev->irq);
417                 return ret;
418         }
419         hcd->irq = pdev->irq;
420         return 0;
421 }
422
423 #else
424
425 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
426 {
427         return 0;
428 }
429
430 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
431 {
432 }
433
434 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
435 {
436 }
437
438 #endif
439
440 static void compliance_mode_recovery(unsigned long arg)
441 {
442         struct xhci_hcd *xhci;
443         struct usb_hcd *hcd;
444         u32 temp;
445         int i;
446
447         xhci = (struct xhci_hcd *)arg;
448
449         for (i = 0; i < xhci->num_usb3_ports; i++) {
450                 temp = readl(xhci->usb3_ports[i]);
451                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
452                         /*
453                          * Compliance Mode Detected. Letting USB Core
454                          * handle the Warm Reset
455                          */
456                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
457                                         "Compliance mode detected->port %d",
458                                         i + 1);
459                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
460                                         "Attempting compliance mode recovery");
461                         hcd = xhci->shared_hcd;
462
463                         if (hcd->state == HC_STATE_SUSPENDED)
464                                 usb_hcd_resume_root_hub(hcd);
465
466                         usb_hcd_poll_rh_status(hcd);
467                 }
468         }
469
470         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
471                 mod_timer(&xhci->comp_mode_recovery_timer,
472                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
473 }
474
475 /*
476  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
477  * that causes ports behind that hardware to enter compliance mode sometimes.
478  * The quirk creates a timer that polls every 2 seconds the link state of
479  * each host controller's port and recovers it by issuing a Warm reset
480  * if Compliance mode is detected, otherwise the port will become "dead" (no
481  * device connections or disconnections will be detected anymore). Becasue no
482  * status event is generated when entering compliance mode (per xhci spec),
483  * this quirk is needed on systems that have the failing hardware installed.
484  */
485 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
486 {
487         xhci->port_status_u0 = 0;
488         setup_timer(&xhci->comp_mode_recovery_timer,
489                     compliance_mode_recovery, (unsigned long)xhci);
490         xhci->comp_mode_recovery_timer.expires = jiffies +
491                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
492
493         set_timer_slack(&xhci->comp_mode_recovery_timer,
494                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
495         add_timer(&xhci->comp_mode_recovery_timer);
496         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497                         "Compliance mode recovery timer initialized");
498 }
499
500 /*
501  * This function identifies the systems that have installed the SN65LVPE502CP
502  * USB3.0 re-driver and that need the Compliance Mode Quirk.
503  * Systems:
504  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
505  */
506 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
507 {
508         const char *dmi_product_name, *dmi_sys_vendor;
509
510         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
511         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
512         if (!dmi_product_name || !dmi_sys_vendor)
513                 return false;
514
515         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
516                 return false;
517
518         if (strstr(dmi_product_name, "Z420") ||
519                         strstr(dmi_product_name, "Z620") ||
520                         strstr(dmi_product_name, "Z820") ||
521                         strstr(dmi_product_name, "Z1 Workstation"))
522                 return true;
523
524         return false;
525 }
526
527 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
528 {
529         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
530 }
531
532
533 /*
534  * Initialize memory for HCD and xHC (one-time init).
535  *
536  * Program the PAGESIZE register, initialize the device context array, create
537  * device contexts (?), set up a command ring segment (or two?), create event
538  * ring (one for now).
539  */
540 int xhci_init(struct usb_hcd *hcd)
541 {
542         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
543         int retval = 0;
544
545         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
546         spin_lock_init(&xhci->lock);
547         if (xhci->hci_version == 0x95 && link_quirk) {
548                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
549                                 "QUIRK: Not clearing Link TRB chain bits.");
550                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
551         } else {
552                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
553                                 "xHCI doesn't need link TRB QUIRK");
554         }
555         retval = xhci_mem_init(xhci, GFP_KERNEL);
556         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
557
558         /* Initializing Compliance Mode Recovery Data If Needed */
559         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
560                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
561                 compliance_mode_recovery_timer_init(xhci);
562         }
563
564         return retval;
565 }
566
567 /*-------------------------------------------------------------------------*/
568
569
570 static int xhci_run_finished(struct xhci_hcd *xhci)
571 {
572         if (xhci_start(xhci)) {
573                 xhci_halt(xhci);
574                 return -ENODEV;
575         }
576         xhci->shared_hcd->state = HC_STATE_RUNNING;
577         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
578
579         if (xhci->quirks & XHCI_NEC_HOST)
580                 xhci_ring_cmd_db(xhci);
581
582         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
583                         "Finished xhci_run for USB3 roothub");
584         return 0;
585 }
586
587 /*
588  * Start the HC after it was halted.
589  *
590  * This function is called by the USB core when the HC driver is added.
591  * Its opposite is xhci_stop().
592  *
593  * xhci_init() must be called once before this function can be called.
594  * Reset the HC, enable device slot contexts, program DCBAAP, and
595  * set command ring pointer and event ring pointer.
596  *
597  * Setup MSI-X vectors and enable interrupts.
598  */
599 int xhci_run(struct usb_hcd *hcd)
600 {
601         u32 temp;
602         u64 temp_64;
603         int ret;
604         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
605
606         /* Start the xHCI host controller running only after the USB 2.0 roothub
607          * is setup.
608          */
609
610         hcd->uses_new_polling = 1;
611         if (!usb_hcd_is_primary_hcd(hcd))
612                 return xhci_run_finished(xhci);
613
614         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
615
616         ret = xhci_try_enable_msi(hcd);
617         if (ret)
618                 return ret;
619
620         xhci_dbg(xhci, "Command ring memory map follows:\n");
621         xhci_debug_ring(xhci, xhci->cmd_ring);
622         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
623         xhci_dbg_cmd_ptrs(xhci);
624
625         xhci_dbg(xhci, "ERST memory map follows:\n");
626         xhci_dbg_erst(xhci, &xhci->erst);
627         xhci_dbg(xhci, "Event ring:\n");
628         xhci_debug_ring(xhci, xhci->event_ring);
629         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
630         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
631         temp_64 &= ~ERST_PTR_MASK;
632         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
633                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
634
635         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
636                         "// Set the interrupt modulation register");
637         temp = readl(&xhci->ir_set->irq_control);
638         temp &= ~ER_IRQ_INTERVAL_MASK;
639         /*
640          * the increment interval is 8 times as much as that defined
641          * in xHCI spec on MTK's controller
642          */
643         temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
644         writel(temp, &xhci->ir_set->irq_control);
645
646         /* Set the HCD state before we enable the irqs */
647         temp = readl(&xhci->op_regs->command);
648         temp |= (CMD_EIE);
649         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
650                         "// Enable interrupts, cmd = 0x%x.", temp);
651         writel(temp, &xhci->op_regs->command);
652
653         temp = readl(&xhci->ir_set->irq_pending);
654         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
655                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
656                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
657         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
658         xhci_print_ir_set(xhci, 0);
659
660         if (xhci->quirks & XHCI_NEC_HOST) {
661                 struct xhci_command *command;
662                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
663                 if (!command)
664                         return -ENOMEM;
665                 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
666                                 TRB_TYPE(TRB_NEC_GET_FW));
667         }
668         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
669                         "Finished xhci_run for USB2 roothub");
670         return 0;
671 }
672 EXPORT_SYMBOL_GPL(xhci_run);
673
674 /*
675  * Stop xHCI driver.
676  *
677  * This function is called by the USB core when the HC driver is removed.
678  * Its opposite is xhci_run().
679  *
680  * Disable device contexts, disable IRQs, and quiesce the HC.
681  * Reset the HC, finish any completed transactions, and cleanup memory.
682  */
683 void xhci_stop(struct usb_hcd *hcd)
684 {
685         u32 temp;
686         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
687
688         if (xhci->xhc_state & XHCI_STATE_HALTED)
689                 return;
690
691         mutex_lock(&xhci->mutex);
692         spin_lock_irq(&xhci->lock);
693         xhci->xhc_state |= XHCI_STATE_HALTED;
694         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
695
696         /* Make sure the xHC is halted for a USB3 roothub
697          * (xhci_stop() could be called as part of failed init).
698          */
699         xhci_halt(xhci);
700         xhci_reset(xhci);
701         spin_unlock_irq(&xhci->lock);
702
703         xhci_cleanup_msix(xhci);
704
705         /* Deleting Compliance Mode Recovery Timer */
706         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
707                         (!(xhci_all_ports_seen_u0(xhci)))) {
708                 del_timer_sync(&xhci->comp_mode_recovery_timer);
709                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
710                                 "%s: compliance mode recovery timer deleted",
711                                 __func__);
712         }
713
714         if (xhci->quirks & XHCI_AMD_PLL_FIX)
715                 usb_amd_dev_put();
716
717         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
718                         "// Disabling event ring interrupts");
719         temp = readl(&xhci->op_regs->status);
720         writel(temp & ~STS_EINT, &xhci->op_regs->status);
721         temp = readl(&xhci->ir_set->irq_pending);
722         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
723         xhci_print_ir_set(xhci, 0);
724
725         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
726         xhci_mem_cleanup(xhci);
727         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
728                         "xhci_stop completed - status = %x",
729                         readl(&xhci->op_regs->status));
730         mutex_unlock(&xhci->mutex);
731 }
732
733 /*
734  * Shutdown HC (not bus-specific)
735  *
736  * This is called when the machine is rebooting or halting.  We assume that the
737  * machine will be powered off, and the HC's internal state will be reset.
738  * Don't bother to free memory.
739  *
740  * This will only ever be called with the main usb_hcd (the USB3 roothub).
741  */
742 void xhci_shutdown(struct usb_hcd *hcd)
743 {
744         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
745
746         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
747                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
748
749         spin_lock_irq(&xhci->lock);
750         xhci_halt(xhci);
751         /* Workaround for spurious wakeups at shutdown with HSW */
752         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
753                 xhci_reset(xhci);
754         spin_unlock_irq(&xhci->lock);
755
756         xhci_cleanup_msix(xhci);
757
758         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
759                         "xhci_shutdown completed - status = %x",
760                         readl(&xhci->op_regs->status));
761
762         /* Yet another workaround for spurious wakeups at shutdown with HSW */
763         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
764                 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
765 }
766
767 #ifdef CONFIG_PM
768 static void xhci_save_registers(struct xhci_hcd *xhci)
769 {
770         xhci->s3.command = readl(&xhci->op_regs->command);
771         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
772         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
773         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
774         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
775         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
776         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
777         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
778         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
779 }
780
781 static void xhci_restore_registers(struct xhci_hcd *xhci)
782 {
783         writel(xhci->s3.command, &xhci->op_regs->command);
784         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
785         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
786         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
787         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
788         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
789         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
790         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
791         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
792 }
793
794 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
795 {
796         u64     val_64;
797
798         /* step 2: initialize command ring buffer */
799         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
800         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
801                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
802                                       xhci->cmd_ring->dequeue) &
803                  (u64) ~CMD_RING_RSVD_BITS) |
804                 xhci->cmd_ring->cycle_state;
805         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
806                         "// Setting command ring address to 0x%llx",
807                         (long unsigned long) val_64);
808         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
809 }
810
811 /*
812  * The whole command ring must be cleared to zero when we suspend the host.
813  *
814  * The host doesn't save the command ring pointer in the suspend well, so we
815  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
816  * aligned, because of the reserved bits in the command ring dequeue pointer
817  * register.  Therefore, we can't just set the dequeue pointer back in the
818  * middle of the ring (TRBs are 16-byte aligned).
819  */
820 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
821 {
822         struct xhci_ring *ring;
823         struct xhci_segment *seg;
824
825         ring = xhci->cmd_ring;
826         seg = ring->deq_seg;
827         do {
828                 memset(seg->trbs, 0,
829                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
830                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
831                         cpu_to_le32(~TRB_CYCLE);
832                 seg = seg->next;
833         } while (seg != ring->deq_seg);
834
835         /* Reset the software enqueue and dequeue pointers */
836         ring->deq_seg = ring->first_seg;
837         ring->dequeue = ring->first_seg->trbs;
838         ring->enq_seg = ring->deq_seg;
839         ring->enqueue = ring->dequeue;
840
841         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
842         /*
843          * Ring is now zeroed, so the HW should look for change of ownership
844          * when the cycle bit is set to 1.
845          */
846         ring->cycle_state = 1;
847
848         /*
849          * Reset the hardware dequeue pointer.
850          * Yes, this will need to be re-written after resume, but we're paranoid
851          * and want to make sure the hardware doesn't access bogus memory
852          * because, say, the BIOS or an SMI started the host without changing
853          * the command ring pointers.
854          */
855         xhci_set_cmd_ring_deq(xhci);
856 }
857
858 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
859 {
860         int port_index;
861         __le32 __iomem **port_array;
862         unsigned long flags;
863         u32 t1, t2;
864
865         spin_lock_irqsave(&xhci->lock, flags);
866
867         /* disble usb3 ports Wake bits*/
868         port_index = xhci->num_usb3_ports;
869         port_array = xhci->usb3_ports;
870         while (port_index--) {
871                 t1 = readl(port_array[port_index]);
872                 t1 = xhci_port_state_to_neutral(t1);
873                 t2 = t1 & ~PORT_WAKE_BITS;
874                 if (t1 != t2)
875                         writel(t2, port_array[port_index]);
876         }
877
878         /* disble usb2 ports Wake bits*/
879         port_index = xhci->num_usb2_ports;
880         port_array = xhci->usb2_ports;
881         while (port_index--) {
882                 t1 = readl(port_array[port_index]);
883                 t1 = xhci_port_state_to_neutral(t1);
884                 t2 = t1 & ~PORT_WAKE_BITS;
885                 if (t1 != t2)
886                         writel(t2, port_array[port_index]);
887         }
888
889         spin_unlock_irqrestore(&xhci->lock, flags);
890 }
891
892 /*
893  * Stop HC (not bus-specific)
894  *
895  * This is called when the machine transition into S3/S4 mode.
896  *
897  */
898 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
899 {
900         int                     rc = 0;
901         unsigned int            delay = XHCI_MAX_HALT_USEC;
902         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
903         u32                     command;
904
905         if (!hcd->state)
906                 return 0;
907
908         if (hcd->state != HC_STATE_SUSPENDED ||
909                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
910                 return -EINVAL;
911
912         /* Clear root port wake on bits if wakeup not allowed. */
913         if (!do_wakeup)
914                 xhci_disable_port_wake_on_bits(xhci);
915
916         /* Don't poll the roothubs on bus suspend. */
917         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
918         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
919         del_timer_sync(&hcd->rh_timer);
920         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
921         del_timer_sync(&xhci->shared_hcd->rh_timer);
922
923         spin_lock_irq(&xhci->lock);
924         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
925         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
926         /* step 1: stop endpoint */
927         /* skipped assuming that port suspend has done */
928
929         /* step 2: clear Run/Stop bit */
930         command = readl(&xhci->op_regs->command);
931         command &= ~CMD_RUN;
932         writel(command, &xhci->op_regs->command);
933
934         /* Some chips from Fresco Logic need an extraordinary delay */
935         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
936
937         if (xhci_handshake(&xhci->op_regs->status,
938                       STS_HALT, STS_HALT, delay)) {
939                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
940                 spin_unlock_irq(&xhci->lock);
941                 return -ETIMEDOUT;
942         }
943         xhci_clear_command_ring(xhci);
944
945         /* step 3: save registers */
946         xhci_save_registers(xhci);
947
948         /* step 4: set CSS flag */
949         command = readl(&xhci->op_regs->command);
950         command |= CMD_CSS;
951         writel(command, &xhci->op_regs->command);
952         if (xhci_handshake(&xhci->op_regs->status,
953                                 STS_SAVE, 0, 10 * 1000)) {
954                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
955                 spin_unlock_irq(&xhci->lock);
956                 return -ETIMEDOUT;
957         }
958         spin_unlock_irq(&xhci->lock);
959
960         /*
961          * Deleting Compliance Mode Recovery Timer because the xHCI Host
962          * is about to be suspended.
963          */
964         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
965                         (!(xhci_all_ports_seen_u0(xhci)))) {
966                 del_timer_sync(&xhci->comp_mode_recovery_timer);
967                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
968                                 "%s: compliance mode recovery timer deleted",
969                                 __func__);
970         }
971
972         /* step 5: remove core well power */
973         /* synchronize irq when using MSI-X */
974         xhci_msix_sync_irqs(xhci);
975
976         return rc;
977 }
978 EXPORT_SYMBOL_GPL(xhci_suspend);
979
980 /*
981  * start xHC (not bus-specific)
982  *
983  * This is called when the machine transition from S3/S4 mode.
984  *
985  */
986 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
987 {
988         u32                     command, temp = 0, status;
989         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
990         struct usb_hcd          *secondary_hcd;
991         int                     retval = 0;
992         bool                    comp_timer_running = false;
993
994         if (!hcd->state)
995                 return 0;
996
997         /* Wait a bit if either of the roothubs need to settle from the
998          * transition into bus suspend.
999          */
1000         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1001                         time_before(jiffies,
1002                                 xhci->bus_state[1].next_statechange))
1003                 msleep(100);
1004
1005         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1006         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1007
1008         spin_lock_irq(&xhci->lock);
1009         if (xhci->quirks & XHCI_RESET_ON_RESUME)
1010                 hibernated = true;
1011
1012         if (!hibernated) {
1013                 /* step 1: restore register */
1014                 xhci_restore_registers(xhci);
1015                 /* step 2: initialize command ring buffer */
1016                 xhci_set_cmd_ring_deq(xhci);
1017                 /* step 3: restore state and start state*/
1018                 /* step 3: set CRS flag */
1019                 command = readl(&xhci->op_regs->command);
1020                 command |= CMD_CRS;
1021                 writel(command, &xhci->op_regs->command);
1022                 if (xhci_handshake(&xhci->op_regs->status,
1023                               STS_RESTORE, 0, 10 * 1000)) {
1024                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1025                         spin_unlock_irq(&xhci->lock);
1026                         return -ETIMEDOUT;
1027                 }
1028                 temp = readl(&xhci->op_regs->status);
1029         }
1030
1031         /* If restore operation fails, re-initialize the HC during resume */
1032         if ((temp & STS_SRE) || hibernated) {
1033
1034                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1035                                 !(xhci_all_ports_seen_u0(xhci))) {
1036                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1037                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1038                                 "Compliance Mode Recovery Timer deleted!");
1039                 }
1040
1041                 /* Let the USB core know _both_ roothubs lost power. */
1042                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1043                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1044
1045                 xhci_dbg(xhci, "Stop HCD\n");
1046                 xhci_halt(xhci);
1047                 xhci_reset(xhci);
1048                 spin_unlock_irq(&xhci->lock);
1049                 xhci_cleanup_msix(xhci);
1050
1051                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1052                 temp = readl(&xhci->op_regs->status);
1053                 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1054                 temp = readl(&xhci->ir_set->irq_pending);
1055                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1056                 xhci_print_ir_set(xhci, 0);
1057
1058                 xhci_dbg(xhci, "cleaning up memory\n");
1059                 xhci_mem_cleanup(xhci);
1060                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1061                             readl(&xhci->op_regs->status));
1062
1063                 /* USB core calls the PCI reinit and start functions twice:
1064                  * first with the primary HCD, and then with the secondary HCD.
1065                  * If we don't do the same, the host will never be started.
1066                  */
1067                 if (!usb_hcd_is_primary_hcd(hcd))
1068                         secondary_hcd = hcd;
1069                 else
1070                         secondary_hcd = xhci->shared_hcd;
1071
1072                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1073                 retval = xhci_init(hcd->primary_hcd);
1074                 if (retval)
1075                         return retval;
1076                 comp_timer_running = true;
1077
1078                 xhci_dbg(xhci, "Start the primary HCD\n");
1079                 retval = xhci_run(hcd->primary_hcd);
1080                 if (!retval) {
1081                         xhci_dbg(xhci, "Start the secondary HCD\n");
1082                         retval = xhci_run(secondary_hcd);
1083                 }
1084                 hcd->state = HC_STATE_SUSPENDED;
1085                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1086                 goto done;
1087         }
1088
1089         /* step 4: set Run/Stop bit */
1090         command = readl(&xhci->op_regs->command);
1091         command |= CMD_RUN;
1092         writel(command, &xhci->op_regs->command);
1093         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1094                   0, 250 * 1000);
1095
1096         /* step 5: walk topology and initialize portsc,
1097          * portpmsc and portli
1098          */
1099         /* this is done in bus_resume */
1100
1101         /* step 6: restart each of the previously
1102          * Running endpoints by ringing their doorbells
1103          */
1104
1105         spin_unlock_irq(&xhci->lock);
1106
1107  done:
1108         if (retval == 0) {
1109                 /* Resume root hubs only when have pending events. */
1110                 status = readl(&xhci->op_regs->status);
1111                 if (status & STS_EINT) {
1112                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1113                         usb_hcd_resume_root_hub(hcd);
1114                 }
1115         }
1116
1117         /*
1118          * If system is subject to the Quirk, Compliance Mode Timer needs to
1119          * be re-initialized Always after a system resume. Ports are subject
1120          * to suffer the Compliance Mode issue again. It doesn't matter if
1121          * ports have entered previously to U0 before system's suspension.
1122          */
1123         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1124                 compliance_mode_recovery_timer_init(xhci);
1125
1126         /* Re-enable port polling. */
1127         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1128         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1129         usb_hcd_poll_rh_status(xhci->shared_hcd);
1130         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1131         usb_hcd_poll_rh_status(hcd);
1132
1133         return retval;
1134 }
1135 EXPORT_SYMBOL_GPL(xhci_resume);
1136 #endif  /* CONFIG_PM */
1137
1138 /*-------------------------------------------------------------------------*/
1139
1140 /**
1141  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1142  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1143  * value to right shift 1 for the bitmask.
1144  *
1145  * Index  = (epnum * 2) + direction - 1,
1146  * where direction = 0 for OUT, 1 for IN.
1147  * For control endpoints, the IN index is used (OUT index is unused), so
1148  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1149  */
1150 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1151 {
1152         unsigned int index;
1153         if (usb_endpoint_xfer_control(desc))
1154                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1155         else
1156                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1157                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1158         return index;
1159 }
1160
1161 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1162  * address from the XHCI endpoint index.
1163  */
1164 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1165 {
1166         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1167         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1168         return direction | number;
1169 }
1170
1171 /* Find the flag for this endpoint (for use in the control context).  Use the
1172  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1173  * bit 1, etc.
1174  */
1175 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1176 {
1177         return 1 << (xhci_get_endpoint_index(desc) + 1);
1178 }
1179
1180 /* Find the flag for this endpoint (for use in the control context).  Use the
1181  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1182  * bit 1, etc.
1183  */
1184 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1185 {
1186         return 1 << (ep_index + 1);
1187 }
1188
1189 /* Compute the last valid endpoint context index.  Basically, this is the
1190  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1191  * we find the most significant bit set in the added contexts flags.
1192  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1193  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1194  */
1195 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1196 {
1197         return fls(added_ctxs) - 1;
1198 }
1199
1200 /* Returns 1 if the arguments are OK;
1201  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1202  */
1203 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1204                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1205                 const char *func) {
1206         struct xhci_hcd *xhci;
1207         struct xhci_virt_device *virt_dev;
1208
1209         if (!hcd || (check_ep && !ep) || !udev) {
1210                 pr_debug("xHCI %s called with invalid args\n", func);
1211                 return -EINVAL;
1212         }
1213         if (!udev->parent) {
1214                 pr_debug("xHCI %s called for root hub\n", func);
1215                 return 0;
1216         }
1217
1218         xhci = hcd_to_xhci(hcd);
1219         if (check_virt_dev) {
1220                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1221                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1222                                         func);
1223                         return -EINVAL;
1224                 }
1225
1226                 virt_dev = xhci->devs[udev->slot_id];
1227                 if (virt_dev->udev != udev) {
1228                         xhci_dbg(xhci, "xHCI %s called with udev and "
1229                                           "virt_dev does not match\n", func);
1230                         return -EINVAL;
1231                 }
1232         }
1233
1234         if (xhci->xhc_state & XHCI_STATE_HALTED)
1235                 return -ENODEV;
1236
1237         return 1;
1238 }
1239
1240 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1241                 struct usb_device *udev, struct xhci_command *command,
1242                 bool ctx_change, bool must_succeed);
1243
1244 /*
1245  * Full speed devices may have a max packet size greater than 8 bytes, but the
1246  * USB core doesn't know that until it reads the first 8 bytes of the
1247  * descriptor.  If the usb_device's max packet size changes after that point,
1248  * we need to issue an evaluate context command and wait on it.
1249  */
1250 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1251                 unsigned int ep_index, struct urb *urb)
1252 {
1253         struct xhci_container_ctx *out_ctx;
1254         struct xhci_input_control_ctx *ctrl_ctx;
1255         struct xhci_ep_ctx *ep_ctx;
1256         struct xhci_command *command;
1257         int max_packet_size;
1258         int hw_max_packet_size;
1259         int ret = 0;
1260
1261         out_ctx = xhci->devs[slot_id]->out_ctx;
1262         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1263         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1264         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1265         if (hw_max_packet_size != max_packet_size) {
1266                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1267                                 "Max Packet Size for ep 0 changed.");
1268                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1269                                 "Max packet size in usb_device = %d",
1270                                 max_packet_size);
1271                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1272                                 "Max packet size in xHCI HW = %d",
1273                                 hw_max_packet_size);
1274                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1275                                 "Issuing evaluate context command.");
1276
1277                 /* Set up the input context flags for the command */
1278                 /* FIXME: This won't work if a non-default control endpoint
1279                  * changes max packet sizes.
1280                  */
1281
1282                 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1283                 if (!command)
1284                         return -ENOMEM;
1285
1286                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1287                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1288                 if (!ctrl_ctx) {
1289                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1290                                         __func__);
1291                         ret = -ENOMEM;
1292                         goto command_cleanup;
1293                 }
1294                 /* Set up the modified control endpoint 0 */
1295                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1296                                 xhci->devs[slot_id]->out_ctx, ep_index);
1297
1298                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1299                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1300                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1301
1302                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1303                 ctrl_ctx->drop_flags = 0;
1304
1305                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1306                 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1307                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1308                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1309
1310                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1311                                 true, false);
1312
1313                 /* Clean up the input context for later use by bandwidth
1314                  * functions.
1315                  */
1316                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1317 command_cleanup:
1318                 kfree(command->completion);
1319                 kfree(command);
1320         }
1321         return ret;
1322 }
1323
1324 /*
1325  * non-error returns are a promise to giveback() the urb later
1326  * we drop ownership so next owner (or urb unlink) can get it
1327  */
1328 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1329 {
1330         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1331         struct xhci_td *buffer;
1332         unsigned long flags;
1333         int ret = 0;
1334         unsigned int slot_id, ep_index;
1335         struct urb_priv *urb_priv;
1336         int size, i;
1337
1338         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1339                                         true, true, __func__) <= 0)
1340                 return -EINVAL;
1341
1342         slot_id = urb->dev->slot_id;
1343         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1344
1345         if (!HCD_HW_ACCESSIBLE(hcd)) {
1346                 if (!in_interrupt())
1347                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1348                 ret = -ESHUTDOWN;
1349                 goto exit;
1350         }
1351
1352         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1353                 size = urb->number_of_packets;
1354         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1355             urb->transfer_buffer_length > 0 &&
1356             urb->transfer_flags & URB_ZERO_PACKET &&
1357             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1358                 size = 2;
1359         else
1360                 size = 1;
1361
1362         urb_priv = kzalloc(sizeof(struct urb_priv) +
1363                                   size * sizeof(struct xhci_td *), mem_flags);
1364         if (!urb_priv)
1365                 return -ENOMEM;
1366
1367         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1368         if (!buffer) {
1369                 kfree(urb_priv);
1370                 return -ENOMEM;
1371         }
1372
1373         for (i = 0; i < size; i++) {
1374                 urb_priv->td[i] = buffer;
1375                 buffer++;
1376         }
1377
1378         urb_priv->length = size;
1379         urb_priv->td_cnt = 0;
1380         urb->hcpriv = urb_priv;
1381
1382         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1383                 /* Check to see if the max packet size for the default control
1384                  * endpoint changed during FS device enumeration
1385                  */
1386                 if (urb->dev->speed == USB_SPEED_FULL) {
1387                         ret = xhci_check_maxpacket(xhci, slot_id,
1388                                         ep_index, urb);
1389                         if (ret < 0) {
1390                                 xhci_urb_free_priv(urb_priv);
1391                                 urb->hcpriv = NULL;
1392                                 return ret;
1393                         }
1394                 }
1395
1396                 /* We have a spinlock and interrupts disabled, so we must pass
1397                  * atomic context to this function, which may allocate memory.
1398                  */
1399                 spin_lock_irqsave(&xhci->lock, flags);
1400                 if (xhci->xhc_state & XHCI_STATE_DYING)
1401                         goto dying;
1402                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1403                                 slot_id, ep_index);
1404                 if (ret)
1405                         goto free_priv;
1406                 spin_unlock_irqrestore(&xhci->lock, flags);
1407         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1408                 spin_lock_irqsave(&xhci->lock, flags);
1409                 if (xhci->xhc_state & XHCI_STATE_DYING)
1410                         goto dying;
1411                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1412                                 EP_GETTING_STREAMS) {
1413                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1414                                         "is transitioning to using streams.\n");
1415                         ret = -EINVAL;
1416                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1417                                 EP_GETTING_NO_STREAMS) {
1418                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1419                                         "is transitioning to "
1420                                         "not having streams.\n");
1421                         ret = -EINVAL;
1422                 } else {
1423                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1424                                         slot_id, ep_index);
1425                 }
1426                 if (ret)
1427                         goto free_priv;
1428                 spin_unlock_irqrestore(&xhci->lock, flags);
1429         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1430                 spin_lock_irqsave(&xhci->lock, flags);
1431                 if (xhci->xhc_state & XHCI_STATE_DYING)
1432                         goto dying;
1433                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1434                                 slot_id, ep_index);
1435                 if (ret)
1436                         goto free_priv;
1437                 spin_unlock_irqrestore(&xhci->lock, flags);
1438         } else {
1439                 spin_lock_irqsave(&xhci->lock, flags);
1440                 if (xhci->xhc_state & XHCI_STATE_DYING)
1441                         goto dying;
1442                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1443                                 slot_id, ep_index);
1444                 if (ret)
1445                         goto free_priv;
1446                 spin_unlock_irqrestore(&xhci->lock, flags);
1447         }
1448 exit:
1449         return ret;
1450 dying:
1451         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1452                         "non-responsive xHCI host.\n",
1453                         urb->ep->desc.bEndpointAddress, urb);
1454         ret = -ESHUTDOWN;
1455 free_priv:
1456         xhci_urb_free_priv(urb_priv);
1457         urb->hcpriv = NULL;
1458         spin_unlock_irqrestore(&xhci->lock, flags);
1459         return ret;
1460 }
1461
1462 /* Get the right ring for the given URB.
1463  * If the endpoint supports streams, boundary check the URB's stream ID.
1464  * If the endpoint doesn't support streams, return the singular endpoint ring.
1465  */
1466 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1467                 struct urb *urb)
1468 {
1469         unsigned int slot_id;
1470         unsigned int ep_index;
1471         unsigned int stream_id;
1472         struct xhci_virt_ep *ep;
1473
1474         slot_id = urb->dev->slot_id;
1475         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1476         stream_id = urb->stream_id;
1477         ep = &xhci->devs[slot_id]->eps[ep_index];
1478         /* Common case: no streams */
1479         if (!(ep->ep_state & EP_HAS_STREAMS))
1480                 return ep->ring;
1481
1482         if (stream_id == 0) {
1483                 xhci_warn(xhci,
1484                                 "WARN: Slot ID %u, ep index %u has streams, "
1485                                 "but URB has no stream ID.\n",
1486                                 slot_id, ep_index);
1487                 return NULL;
1488         }
1489
1490         if (stream_id < ep->stream_info->num_streams)
1491                 return ep->stream_info->stream_rings[stream_id];
1492
1493         xhci_warn(xhci,
1494                         "WARN: Slot ID %u, ep index %u has "
1495                         "stream IDs 1 to %u allocated, "
1496                         "but stream ID %u is requested.\n",
1497                         slot_id, ep_index,
1498                         ep->stream_info->num_streams - 1,
1499                         stream_id);
1500         return NULL;
1501 }
1502
1503 /*
1504  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1505  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1506  * should pick up where it left off in the TD, unless a Set Transfer Ring
1507  * Dequeue Pointer is issued.
1508  *
1509  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1510  * the ring.  Since the ring is a contiguous structure, they can't be physically
1511  * removed.  Instead, there are two options:
1512  *
1513  *  1) If the HC is in the middle of processing the URB to be canceled, we
1514  *     simply move the ring's dequeue pointer past those TRBs using the Set
1515  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1516  *     when drivers timeout on the last submitted URB and attempt to cancel.
1517  *
1518  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1519  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1520  *     HC will need to invalidate the any TRBs it has cached after the stop
1521  *     endpoint command, as noted in the xHCI 0.95 errata.
1522  *
1523  *  3) The TD may have completed by the time the Stop Endpoint Command
1524  *     completes, so software needs to handle that case too.
1525  *
1526  * This function should protect against the TD enqueueing code ringing the
1527  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1528  * It also needs to account for multiple cancellations on happening at the same
1529  * time for the same endpoint.
1530  *
1531  * Note that this function can be called in any context, or so says
1532  * usb_hcd_unlink_urb()
1533  */
1534 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1535 {
1536         unsigned long flags;
1537         int ret, i;
1538         u32 temp;
1539         struct xhci_hcd *xhci;
1540         struct urb_priv *urb_priv;
1541         struct xhci_td *td;
1542         unsigned int ep_index;
1543         struct xhci_ring *ep_ring;
1544         struct xhci_virt_ep *ep;
1545         struct xhci_command *command;
1546
1547         xhci = hcd_to_xhci(hcd);
1548         spin_lock_irqsave(&xhci->lock, flags);
1549         /* Make sure the URB hasn't completed or been unlinked already */
1550         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1551         if (ret || !urb->hcpriv)
1552                 goto done;
1553         temp = readl(&xhci->op_regs->status);
1554         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1555                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1556                                 "HW died, freeing TD.");
1557                 urb_priv = urb->hcpriv;
1558                 for (i = urb_priv->td_cnt;
1559                      i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1560                      i++) {
1561                         td = urb_priv->td[i];
1562                         if (!list_empty(&td->td_list))
1563                                 list_del_init(&td->td_list);
1564                         if (!list_empty(&td->cancelled_td_list))
1565                                 list_del_init(&td->cancelled_td_list);
1566                 }
1567
1568                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1569                 spin_unlock_irqrestore(&xhci->lock, flags);
1570                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1571                 xhci_urb_free_priv(urb_priv);
1572                 return ret;
1573         }
1574         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1575                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1576                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1577                                 "Ep 0x%x: URB %p to be canceled on "
1578                                 "non-responsive xHCI host.",
1579                                 urb->ep->desc.bEndpointAddress, urb);
1580                 /* Let the stop endpoint command watchdog timer (which set this
1581                  * state) finish cleaning up the endpoint TD lists.  We must
1582                  * have caught it in the middle of dropping a lock and giving
1583                  * back an URB.
1584                  */
1585                 goto done;
1586         }
1587
1588         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1589         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1590         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1591         if (!ep_ring) {
1592                 ret = -EINVAL;
1593                 goto done;
1594         }
1595
1596         urb_priv = urb->hcpriv;
1597         i = urb_priv->td_cnt;
1598         if (i < urb_priv->length)
1599                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1600                                 "Cancel URB %p, dev %s, ep 0x%x, "
1601                                 "starting at offset 0x%llx",
1602                                 urb, urb->dev->devpath,
1603                                 urb->ep->desc.bEndpointAddress,
1604                                 (unsigned long long) xhci_trb_virt_to_dma(
1605                                         urb_priv->td[i]->start_seg,
1606                                         urb_priv->td[i]->first_trb));
1607
1608         for (; i < urb_priv->length; i++) {
1609                 td = urb_priv->td[i];
1610                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1611         }
1612
1613         /* Queue a stop endpoint command, but only if this is
1614          * the first cancellation to be handled.
1615          */
1616         if (!(ep->ep_state & EP_HALT_PENDING)) {
1617                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1618                 if (!command) {
1619                         ret = -ENOMEM;
1620                         goto done;
1621                 }
1622                 ep->ep_state |= EP_HALT_PENDING;
1623                 ep->stop_cmds_pending++;
1624                 ep->stop_cmd_timer.expires = jiffies +
1625                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1626                 add_timer(&ep->stop_cmd_timer);
1627                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1628                                          ep_index, 0);
1629                 xhci_ring_cmd_db(xhci);
1630         }
1631 done:
1632         spin_unlock_irqrestore(&xhci->lock, flags);
1633         return ret;
1634 }
1635
1636 /* Drop an endpoint from a new bandwidth configuration for this device.
1637  * Only one call to this function is allowed per endpoint before
1638  * check_bandwidth() or reset_bandwidth() must be called.
1639  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1640  * add the endpoint to the schedule with possibly new parameters denoted by a
1641  * different endpoint descriptor in usb_host_endpoint.
1642  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1643  * not allowed.
1644  *
1645  * The USB core will not allow URBs to be queued to an endpoint that is being
1646  * disabled, so there's no need for mutual exclusion to protect
1647  * the xhci->devs[slot_id] structure.
1648  */
1649 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1650                 struct usb_host_endpoint *ep)
1651 {
1652         struct xhci_hcd *xhci;
1653         struct xhci_container_ctx *in_ctx, *out_ctx;
1654         struct xhci_input_control_ctx *ctrl_ctx;
1655         unsigned int ep_index;
1656         struct xhci_ep_ctx *ep_ctx;
1657         u32 drop_flag;
1658         u32 new_add_flags, new_drop_flags;
1659         int ret;
1660
1661         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1662         if (ret <= 0)
1663                 return ret;
1664         xhci = hcd_to_xhci(hcd);
1665         if (xhci->xhc_state & XHCI_STATE_DYING)
1666                 return -ENODEV;
1667
1668         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1669         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1670         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1671                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1672                                 __func__, drop_flag);
1673                 return 0;
1674         }
1675
1676         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1677         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1678         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1679         if (!ctrl_ctx) {
1680                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1681                                 __func__);
1682                 return 0;
1683         }
1684
1685         ep_index = xhci_get_endpoint_index(&ep->desc);
1686         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1687         /* If the HC already knows the endpoint is disabled,
1688          * or the HCD has noted it is disabled, ignore this request
1689          */
1690         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1691              cpu_to_le32(EP_STATE_DISABLED)) ||
1692             le32_to_cpu(ctrl_ctx->drop_flags) &
1693             xhci_get_endpoint_flag(&ep->desc)) {
1694                 /* Do not warn when called after a usb_device_reset */
1695                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1696                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1697                                   __func__, ep);
1698                 return 0;
1699         }
1700
1701         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1702         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1703
1704         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1705         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1706
1707         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1708
1709         if (xhci->quirks & XHCI_MTK_HOST)
1710                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1711
1712         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1713                         (unsigned int) ep->desc.bEndpointAddress,
1714                         udev->slot_id,
1715                         (unsigned int) new_drop_flags,
1716                         (unsigned int) new_add_flags);
1717         return 0;
1718 }
1719
1720 /* Add an endpoint to a new possible bandwidth configuration for this device.
1721  * Only one call to this function is allowed per endpoint before
1722  * check_bandwidth() or reset_bandwidth() must be called.
1723  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1724  * add the endpoint to the schedule with possibly new parameters denoted by a
1725  * different endpoint descriptor in usb_host_endpoint.
1726  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1727  * not allowed.
1728  *
1729  * The USB core will not allow URBs to be queued to an endpoint until the
1730  * configuration or alt setting is installed in the device, so there's no need
1731  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1732  */
1733 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1734                 struct usb_host_endpoint *ep)
1735 {
1736         struct xhci_hcd *xhci;
1737         struct xhci_container_ctx *in_ctx;
1738         unsigned int ep_index;
1739         struct xhci_input_control_ctx *ctrl_ctx;
1740         u32 added_ctxs;
1741         u32 new_add_flags, new_drop_flags;
1742         struct xhci_virt_device *virt_dev;
1743         int ret = 0;
1744
1745         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1746         if (ret <= 0) {
1747                 /* So we won't queue a reset ep command for a root hub */
1748                 ep->hcpriv = NULL;
1749                 return ret;
1750         }
1751         xhci = hcd_to_xhci(hcd);
1752         if (xhci->xhc_state & XHCI_STATE_DYING)
1753                 return -ENODEV;
1754
1755         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1756         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1757                 /* FIXME when we have to issue an evaluate endpoint command to
1758                  * deal with ep0 max packet size changing once we get the
1759                  * descriptors
1760                  */
1761                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1762                                 __func__, added_ctxs);
1763                 return 0;
1764         }
1765
1766         virt_dev = xhci->devs[udev->slot_id];
1767         in_ctx = virt_dev->in_ctx;
1768         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1769         if (!ctrl_ctx) {
1770                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1771                                 __func__);
1772                 return 0;
1773         }
1774
1775         ep_index = xhci_get_endpoint_index(&ep->desc);
1776         /* If this endpoint is already in use, and the upper layers are trying
1777          * to add it again without dropping it, reject the addition.
1778          */
1779         if (virt_dev->eps[ep_index].ring &&
1780                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1781                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1782                                 "without dropping it.\n",
1783                                 (unsigned int) ep->desc.bEndpointAddress);
1784                 return -EINVAL;
1785         }
1786
1787         /* If the HCD has already noted the endpoint is enabled,
1788          * ignore this request.
1789          */
1790         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1791                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1792                                 __func__, ep);
1793                 return 0;
1794         }
1795
1796         /*
1797          * Configuration and alternate setting changes must be done in
1798          * process context, not interrupt context (or so documenation
1799          * for usb_set_interface() and usb_set_configuration() claim).
1800          */
1801         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1802                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1803                                 __func__, ep->desc.bEndpointAddress);
1804                 return -ENOMEM;
1805         }
1806
1807         if (xhci->quirks & XHCI_MTK_HOST) {
1808                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1809                 if (ret < 0) {
1810                         xhci_free_or_cache_endpoint_ring(xhci,
1811                                 virt_dev, ep_index);
1812                         return ret;
1813                 }
1814         }
1815
1816         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1817         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1818
1819         /* If xhci_endpoint_disable() was called for this endpoint, but the
1820          * xHC hasn't been notified yet through the check_bandwidth() call,
1821          * this re-adds a new state for the endpoint from the new endpoint
1822          * descriptors.  We must drop and re-add this endpoint, so we leave the
1823          * drop flags alone.
1824          */
1825         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1826
1827         /* Store the usb_device pointer for later use */
1828         ep->hcpriv = udev;
1829
1830         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1831                         (unsigned int) ep->desc.bEndpointAddress,
1832                         udev->slot_id,
1833                         (unsigned int) new_drop_flags,
1834                         (unsigned int) new_add_flags);
1835         return 0;
1836 }
1837
1838 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1839 {
1840         struct xhci_input_control_ctx *ctrl_ctx;
1841         struct xhci_ep_ctx *ep_ctx;
1842         struct xhci_slot_ctx *slot_ctx;
1843         int i;
1844
1845         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1846         if (!ctrl_ctx) {
1847                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1848                                 __func__);
1849                 return;
1850         }
1851
1852         /* When a device's add flag and drop flag are zero, any subsequent
1853          * configure endpoint command will leave that endpoint's state
1854          * untouched.  Make sure we don't leave any old state in the input
1855          * endpoint contexts.
1856          */
1857         ctrl_ctx->drop_flags = 0;
1858         ctrl_ctx->add_flags = 0;
1859         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1860         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1861         /* Endpoint 0 is always valid */
1862         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1863         for (i = 1; i < 31; ++i) {
1864                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1865                 ep_ctx->ep_info = 0;
1866                 ep_ctx->ep_info2 = 0;
1867                 ep_ctx->deq = 0;
1868                 ep_ctx->tx_info = 0;
1869         }
1870 }
1871
1872 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1873                 struct usb_device *udev, u32 *cmd_status)
1874 {
1875         int ret;
1876
1877         switch (*cmd_status) {
1878         case COMP_CMD_ABORT:
1879         case COMP_CMD_STOP:
1880                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1881                 ret = -ETIME;
1882                 break;
1883         case COMP_ENOMEM:
1884                 dev_warn(&udev->dev,
1885                          "Not enough host controller resources for new device state.\n");
1886                 ret = -ENOMEM;
1887                 /* FIXME: can we allocate more resources for the HC? */
1888                 break;
1889         case COMP_BW_ERR:
1890         case COMP_2ND_BW_ERR:
1891                 dev_warn(&udev->dev,
1892                          "Not enough bandwidth for new device state.\n");
1893                 ret = -ENOSPC;
1894                 /* FIXME: can we go back to the old state? */
1895                 break;
1896         case COMP_TRB_ERR:
1897                 /* the HCD set up something wrong */
1898                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1899                                 "add flag = 1, "
1900                                 "and endpoint is not disabled.\n");
1901                 ret = -EINVAL;
1902                 break;
1903         case COMP_DEV_ERR:
1904                 dev_warn(&udev->dev,
1905                          "ERROR: Incompatible device for endpoint configure command.\n");
1906                 ret = -ENODEV;
1907                 break;
1908         case COMP_SUCCESS:
1909                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1910                                 "Successful Endpoint Configure command");
1911                 ret = 0;
1912                 break;
1913         default:
1914                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1915                                 *cmd_status);
1916                 ret = -EINVAL;
1917                 break;
1918         }
1919         return ret;
1920 }
1921
1922 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1923                 struct usb_device *udev, u32 *cmd_status)
1924 {
1925         int ret;
1926         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1927
1928         switch (*cmd_status) {
1929         case COMP_CMD_ABORT:
1930         case COMP_CMD_STOP:
1931                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1932                 ret = -ETIME;
1933                 break;
1934         case COMP_EINVAL:
1935                 dev_warn(&udev->dev,
1936                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1937                 ret = -EINVAL;
1938                 break;
1939         case COMP_EBADSLT:
1940                 dev_warn(&udev->dev,
1941                         "WARN: slot not enabled for evaluate context command.\n");
1942                 ret = -EINVAL;
1943                 break;
1944         case COMP_CTX_STATE:
1945                 dev_warn(&udev->dev,
1946                         "WARN: invalid context state for evaluate context command.\n");
1947                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1948                 ret = -EINVAL;
1949                 break;
1950         case COMP_DEV_ERR:
1951                 dev_warn(&udev->dev,
1952                         "ERROR: Incompatible device for evaluate context command.\n");
1953                 ret = -ENODEV;
1954                 break;
1955         case COMP_MEL_ERR:
1956                 /* Max Exit Latency too large error */
1957                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1958                 ret = -EINVAL;
1959                 break;
1960         case COMP_SUCCESS:
1961                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1962                                 "Successful evaluate context command");
1963                 ret = 0;
1964                 break;
1965         default:
1966                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1967                         *cmd_status);
1968                 ret = -EINVAL;
1969                 break;
1970         }
1971         return ret;
1972 }
1973
1974 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1975                 struct xhci_input_control_ctx *ctrl_ctx)
1976 {
1977         u32 valid_add_flags;
1978         u32 valid_drop_flags;
1979
1980         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1981          * (bit 1).  The default control endpoint is added during the Address
1982          * Device command and is never removed until the slot is disabled.
1983          */
1984         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1985         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1986
1987         /* Use hweight32 to count the number of ones in the add flags, or
1988          * number of endpoints added.  Don't count endpoints that are changed
1989          * (both added and dropped).
1990          */
1991         return hweight32(valid_add_flags) -
1992                 hweight32(valid_add_flags & valid_drop_flags);
1993 }
1994
1995 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1996                 struct xhci_input_control_ctx *ctrl_ctx)
1997 {
1998         u32 valid_add_flags;
1999         u32 valid_drop_flags;
2000
2001         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2002         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2003
2004         return hweight32(valid_drop_flags) -
2005                 hweight32(valid_add_flags & valid_drop_flags);
2006 }
2007
2008 /*
2009  * We need to reserve the new number of endpoints before the configure endpoint
2010  * command completes.  We can't subtract the dropped endpoints from the number
2011  * of active endpoints until the command completes because we can oversubscribe
2012  * the host in this case:
2013  *
2014  *  - the first configure endpoint command drops more endpoints than it adds
2015  *  - a second configure endpoint command that adds more endpoints is queued
2016  *  - the first configure endpoint command fails, so the config is unchanged
2017  *  - the second command may succeed, even though there isn't enough resources
2018  *
2019  * Must be called with xhci->lock held.
2020  */
2021 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2022                 struct xhci_input_control_ctx *ctrl_ctx)
2023 {
2024         u32 added_eps;
2025
2026         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2027         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2028                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2029                                 "Not enough ep ctxs: "
2030                                 "%u active, need to add %u, limit is %u.",
2031                                 xhci->num_active_eps, added_eps,
2032                                 xhci->limit_active_eps);
2033                 return -ENOMEM;
2034         }
2035         xhci->num_active_eps += added_eps;
2036         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2037                         "Adding %u ep ctxs, %u now active.", added_eps,
2038                         xhci->num_active_eps);
2039         return 0;
2040 }
2041
2042 /*
2043  * The configure endpoint was failed by the xHC for some other reason, so we
2044  * need to revert the resources that failed configuration would have used.
2045  *
2046  * Must be called with xhci->lock held.
2047  */
2048 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2049                 struct xhci_input_control_ctx *ctrl_ctx)
2050 {
2051         u32 num_failed_eps;
2052
2053         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2054         xhci->num_active_eps -= num_failed_eps;
2055         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2056                         "Removing %u failed ep ctxs, %u now active.",
2057                         num_failed_eps,
2058                         xhci->num_active_eps);
2059 }
2060
2061 /*
2062  * Now that the command has completed, clean up the active endpoint count by
2063  * subtracting out the endpoints that were dropped (but not changed).
2064  *
2065  * Must be called with xhci->lock held.
2066  */
2067 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2068                 struct xhci_input_control_ctx *ctrl_ctx)
2069 {
2070         u32 num_dropped_eps;
2071
2072         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2073         xhci->num_active_eps -= num_dropped_eps;
2074         if (num_dropped_eps)
2075                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2076                                 "Removing %u dropped ep ctxs, %u now active.",
2077                                 num_dropped_eps,
2078                                 xhci->num_active_eps);
2079 }
2080
2081 static unsigned int xhci_get_block_size(struct usb_device *udev)
2082 {
2083         switch (udev->speed) {
2084         case USB_SPEED_LOW:
2085         case USB_SPEED_FULL:
2086                 return FS_BLOCK;
2087         case USB_SPEED_HIGH:
2088                 return HS_BLOCK;
2089         case USB_SPEED_SUPER:
2090         case USB_SPEED_SUPER_PLUS:
2091                 return SS_BLOCK;
2092         case USB_SPEED_UNKNOWN:
2093         case USB_SPEED_WIRELESS:
2094         default:
2095                 /* Should never happen */
2096                 return 1;
2097         }
2098 }
2099
2100 static unsigned int
2101 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2102 {
2103         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2104                 return LS_OVERHEAD;
2105         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2106                 return FS_OVERHEAD;
2107         return HS_OVERHEAD;
2108 }
2109
2110 /* If we are changing a LS/FS device under a HS hub,
2111  * make sure (if we are activating a new TT) that the HS bus has enough
2112  * bandwidth for this new TT.
2113  */
2114 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2115                 struct xhci_virt_device *virt_dev,
2116                 int old_active_eps)
2117 {
2118         struct xhci_interval_bw_table *bw_table;
2119         struct xhci_tt_bw_info *tt_info;
2120
2121         /* Find the bandwidth table for the root port this TT is attached to. */
2122         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2123         tt_info = virt_dev->tt_info;
2124         /* If this TT already had active endpoints, the bandwidth for this TT
2125          * has already been added.  Removing all periodic endpoints (and thus
2126          * making the TT enactive) will only decrease the bandwidth used.
2127          */
2128         if (old_active_eps)
2129                 return 0;
2130         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2131                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2132                         return -ENOMEM;
2133                 return 0;
2134         }
2135         /* Not sure why we would have no new active endpoints...
2136          *
2137          * Maybe because of an Evaluate Context change for a hub update or a
2138          * control endpoint 0 max packet size change?
2139          * FIXME: skip the bandwidth calculation in that case.
2140          */
2141         return 0;
2142 }
2143
2144 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2145                 struct xhci_virt_device *virt_dev)
2146 {
2147         unsigned int bw_reserved;
2148
2149         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2150         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2151                 return -ENOMEM;
2152
2153         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2154         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2155                 return -ENOMEM;
2156
2157         return 0;
2158 }
2159
2160 /*
2161  * This algorithm is a very conservative estimate of the worst-case scheduling
2162  * scenario for any one interval.  The hardware dynamically schedules the
2163  * packets, so we can't tell which microframe could be the limiting factor in
2164  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2165  *
2166  * Obviously, we can't solve an NP complete problem to find the minimum worst
2167  * case scenario.  Instead, we come up with an estimate that is no less than
2168  * the worst case bandwidth used for any one microframe, but may be an
2169  * over-estimate.
2170  *
2171  * We walk the requirements for each endpoint by interval, starting with the
2172  * smallest interval, and place packets in the schedule where there is only one
2173  * possible way to schedule packets for that interval.  In order to simplify
2174  * this algorithm, we record the largest max packet size for each interval, and
2175  * assume all packets will be that size.
2176  *
2177  * For interval 0, we obviously must schedule all packets for each interval.
2178  * The bandwidth for interval 0 is just the amount of data to be transmitted
2179  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2180  * the number of packets).
2181  *
2182  * For interval 1, we have two possible microframes to schedule those packets
2183  * in.  For this algorithm, if we can schedule the same number of packets for
2184  * each possible scheduling opportunity (each microframe), we will do so.  The
2185  * remaining number of packets will be saved to be transmitted in the gaps in
2186  * the next interval's scheduling sequence.
2187  *
2188  * As we move those remaining packets to be scheduled with interval 2 packets,
2189  * we have to double the number of remaining packets to transmit.  This is
2190  * because the intervals are actually powers of 2, and we would be transmitting
2191  * the previous interval's packets twice in this interval.  We also have to be
2192  * sure that when we look at the largest max packet size for this interval, we
2193  * also look at the largest max packet size for the remaining packets and take
2194  * the greater of the two.
2195  *
2196  * The algorithm continues to evenly distribute packets in each scheduling
2197  * opportunity, and push the remaining packets out, until we get to the last
2198  * interval.  Then those packets and their associated overhead are just added
2199  * to the bandwidth used.
2200  */
2201 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2202                 struct xhci_virt_device *virt_dev,
2203                 int old_active_eps)
2204 {
2205         unsigned int bw_reserved;
2206         unsigned int max_bandwidth;
2207         unsigned int bw_used;
2208         unsigned int block_size;
2209         struct xhci_interval_bw_table *bw_table;
2210         unsigned int packet_size = 0;
2211         unsigned int overhead = 0;
2212         unsigned int packets_transmitted = 0;
2213         unsigned int packets_remaining = 0;
2214         unsigned int i;
2215
2216         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2217                 return xhci_check_ss_bw(xhci, virt_dev);
2218
2219         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2220                 max_bandwidth = HS_BW_LIMIT;
2221                 /* Convert percent of bus BW reserved to blocks reserved */
2222                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2223         } else {
2224                 max_bandwidth = FS_BW_LIMIT;
2225                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2226         }
2227
2228         bw_table = virt_dev->bw_table;
2229         /* We need to translate the max packet size and max ESIT payloads into
2230          * the units the hardware uses.
2231          */
2232         block_size = xhci_get_block_size(virt_dev->udev);
2233
2234         /* If we are manipulating a LS/FS device under a HS hub, double check
2235          * that the HS bus has enough bandwidth if we are activing a new TT.
2236          */
2237         if (virt_dev->tt_info) {
2238                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2239                                 "Recalculating BW for rootport %u",
2240                                 virt_dev->real_port);
2241                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2242                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2243                                         "newly activated TT.\n");
2244                         return -ENOMEM;
2245                 }
2246                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2247                                 "Recalculating BW for TT slot %u port %u",
2248                                 virt_dev->tt_info->slot_id,
2249                                 virt_dev->tt_info->ttport);
2250         } else {
2251                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2252                                 "Recalculating BW for rootport %u",
2253                                 virt_dev->real_port);
2254         }
2255
2256         /* Add in how much bandwidth will be used for interval zero, or the
2257          * rounded max ESIT payload + number of packets * largest overhead.
2258          */
2259         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2260                 bw_table->interval_bw[0].num_packets *
2261                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2262
2263         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2264                 unsigned int bw_added;
2265                 unsigned int largest_mps;
2266                 unsigned int interval_overhead;
2267
2268                 /*
2269                  * How many packets could we transmit in this interval?
2270                  * If packets didn't fit in the previous interval, we will need
2271                  * to transmit that many packets twice within this interval.
2272                  */
2273                 packets_remaining = 2 * packets_remaining +
2274                         bw_table->interval_bw[i].num_packets;
2275
2276                 /* Find the largest max packet size of this or the previous
2277                  * interval.
2278                  */
2279                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2280                         largest_mps = 0;
2281                 else {
2282                         struct xhci_virt_ep *virt_ep;
2283                         struct list_head *ep_entry;
2284
2285                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2286                         virt_ep = list_entry(ep_entry,
2287                                         struct xhci_virt_ep, bw_endpoint_list);
2288                         /* Convert to blocks, rounding up */
2289                         largest_mps = DIV_ROUND_UP(
2290                                         virt_ep->bw_info.max_packet_size,
2291                                         block_size);
2292                 }
2293                 if (largest_mps > packet_size)
2294                         packet_size = largest_mps;
2295
2296                 /* Use the larger overhead of this or the previous interval. */
2297                 interval_overhead = xhci_get_largest_overhead(
2298                                 &bw_table->interval_bw[i]);
2299                 if (interval_overhead > overhead)
2300                         overhead = interval_overhead;
2301
2302                 /* How many packets can we evenly distribute across
2303                  * (1 << (i + 1)) possible scheduling opportunities?
2304                  */
2305                 packets_transmitted = packets_remaining >> (i + 1);
2306
2307                 /* Add in the bandwidth used for those scheduled packets */
2308                 bw_added = packets_transmitted * (overhead + packet_size);
2309
2310                 /* How many packets do we have remaining to transmit? */
2311                 packets_remaining = packets_remaining % (1 << (i + 1));
2312
2313                 /* What largest max packet size should those packets have? */
2314                 /* If we've transmitted all packets, don't carry over the
2315                  * largest packet size.
2316                  */
2317                 if (packets_remaining == 0) {
2318                         packet_size = 0;
2319                         overhead = 0;
2320                 } else if (packets_transmitted > 0) {
2321                         /* Otherwise if we do have remaining packets, and we've
2322                          * scheduled some packets in this interval, take the
2323                          * largest max packet size from endpoints with this
2324                          * interval.
2325                          */
2326                         packet_size = largest_mps;
2327                         overhead = interval_overhead;
2328                 }
2329                 /* Otherwise carry over packet_size and overhead from the last
2330                  * time we had a remainder.
2331                  */
2332                 bw_used += bw_added;
2333                 if (bw_used > max_bandwidth) {
2334                         xhci_warn(xhci, "Not enough bandwidth. "
2335                                         "Proposed: %u, Max: %u\n",
2336                                 bw_used, max_bandwidth);
2337                         return -ENOMEM;
2338                 }
2339         }
2340         /*
2341          * Ok, we know we have some packets left over after even-handedly
2342          * scheduling interval 15.  We don't know which microframes they will
2343          * fit into, so we over-schedule and say they will be scheduled every
2344          * microframe.
2345          */
2346         if (packets_remaining > 0)
2347                 bw_used += overhead + packet_size;
2348
2349         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2350                 unsigned int port_index = virt_dev->real_port - 1;
2351
2352                 /* OK, we're manipulating a HS device attached to a
2353                  * root port bandwidth domain.  Include the number of active TTs
2354                  * in the bandwidth used.
2355                  */
2356                 bw_used += TT_HS_OVERHEAD *
2357                         xhci->rh_bw[port_index].num_active_tts;
2358         }
2359
2360         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2361                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2362                 "Available: %u " "percent",
2363                 bw_used, max_bandwidth, bw_reserved,
2364                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2365                 max_bandwidth);
2366
2367         bw_used += bw_reserved;
2368         if (bw_used > max_bandwidth) {
2369                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2370                                 bw_used, max_bandwidth);
2371                 return -ENOMEM;
2372         }
2373
2374         bw_table->bw_used = bw_used;
2375         return 0;
2376 }
2377
2378 static bool xhci_is_async_ep(unsigned int ep_type)
2379 {
2380         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2381                                         ep_type != ISOC_IN_EP &&
2382                                         ep_type != INT_IN_EP);
2383 }
2384
2385 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2386 {
2387         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2388 }
2389
2390 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2391 {
2392         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2393
2394         if (ep_bw->ep_interval == 0)
2395                 return SS_OVERHEAD_BURST +
2396                         (ep_bw->mult * ep_bw->num_packets *
2397                                         (SS_OVERHEAD + mps));
2398         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2399                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2400                                 1 << ep_bw->ep_interval);
2401
2402 }
2403
2404 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2405                 struct xhci_bw_info *ep_bw,
2406                 struct xhci_interval_bw_table *bw_table,
2407                 struct usb_device *udev,
2408                 struct xhci_virt_ep *virt_ep,
2409                 struct xhci_tt_bw_info *tt_info)
2410 {
2411         struct xhci_interval_bw *interval_bw;
2412         int normalized_interval;
2413
2414         if (xhci_is_async_ep(ep_bw->type))
2415                 return;
2416
2417         if (udev->speed >= USB_SPEED_SUPER) {
2418                 if (xhci_is_sync_in_ep(ep_bw->type))
2419                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2420                                 xhci_get_ss_bw_consumed(ep_bw);
2421                 else
2422                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2423                                 xhci_get_ss_bw_consumed(ep_bw);
2424                 return;
2425         }
2426
2427         /* SuperSpeed endpoints never get added to intervals in the table, so
2428          * this check is only valid for HS/FS/LS devices.
2429          */
2430         if (list_empty(&virt_ep->bw_endpoint_list))
2431                 return;
2432         /* For LS/FS devices, we need to translate the interval expressed in
2433          * microframes to frames.
2434          */
2435         if (udev->speed == USB_SPEED_HIGH)
2436                 normalized_interval = ep_bw->ep_interval;
2437         else
2438                 normalized_interval = ep_bw->ep_interval - 3;
2439
2440         if (normalized_interval == 0)
2441                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2442         interval_bw = &bw_table->interval_bw[normalized_interval];
2443         interval_bw->num_packets -= ep_bw->num_packets;
2444         switch (udev->speed) {
2445         case USB_SPEED_LOW:
2446                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2447                 break;
2448         case USB_SPEED_FULL:
2449                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2450                 break;
2451         case USB_SPEED_HIGH:
2452                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2453                 break;
2454         case USB_SPEED_SUPER:
2455         case USB_SPEED_SUPER_PLUS:
2456         case USB_SPEED_UNKNOWN:
2457         case USB_SPEED_WIRELESS:
2458                 /* Should never happen because only LS/FS/HS endpoints will get
2459                  * added to the endpoint list.
2460                  */
2461                 return;
2462         }
2463         if (tt_info)
2464                 tt_info->active_eps -= 1;
2465         list_del_init(&virt_ep->bw_endpoint_list);
2466 }
2467
2468 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2469                 struct xhci_bw_info *ep_bw,
2470                 struct xhci_interval_bw_table *bw_table,
2471                 struct usb_device *udev,
2472                 struct xhci_virt_ep *virt_ep,
2473                 struct xhci_tt_bw_info *tt_info)
2474 {
2475         struct xhci_interval_bw *interval_bw;
2476         struct xhci_virt_ep *smaller_ep;
2477         int normalized_interval;
2478
2479         if (xhci_is_async_ep(ep_bw->type))
2480                 return;
2481
2482         if (udev->speed == USB_SPEED_SUPER) {
2483                 if (xhci_is_sync_in_ep(ep_bw->type))
2484                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2485                                 xhci_get_ss_bw_consumed(ep_bw);
2486                 else
2487                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2488                                 xhci_get_ss_bw_consumed(ep_bw);
2489                 return;
2490         }
2491
2492         /* For LS/FS devices, we need to translate the interval expressed in
2493          * microframes to frames.
2494          */
2495         if (udev->speed == USB_SPEED_HIGH)
2496                 normalized_interval = ep_bw->ep_interval;
2497         else
2498                 normalized_interval = ep_bw->ep_interval - 3;
2499
2500         if (normalized_interval == 0)
2501                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2502         interval_bw = &bw_table->interval_bw[normalized_interval];
2503         interval_bw->num_packets += ep_bw->num_packets;
2504         switch (udev->speed) {
2505         case USB_SPEED_LOW:
2506                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2507                 break;
2508         case USB_SPEED_FULL:
2509                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2510                 break;
2511         case USB_SPEED_HIGH:
2512                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2513                 break;
2514         case USB_SPEED_SUPER:
2515         case USB_SPEED_SUPER_PLUS:
2516         case USB_SPEED_UNKNOWN:
2517         case USB_SPEED_WIRELESS:
2518                 /* Should never happen because only LS/FS/HS endpoints will get
2519                  * added to the endpoint list.
2520                  */
2521                 return;
2522         }
2523
2524         if (tt_info)
2525                 tt_info->active_eps += 1;
2526         /* Insert the endpoint into the list, largest max packet size first. */
2527         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2528                         bw_endpoint_list) {
2529                 if (ep_bw->max_packet_size >=
2530                                 smaller_ep->bw_info.max_packet_size) {
2531                         /* Add the new ep before the smaller endpoint */
2532                         list_add_tail(&virt_ep->bw_endpoint_list,
2533                                         &smaller_ep->bw_endpoint_list);
2534                         return;
2535                 }
2536         }
2537         /* Add the new endpoint at the end of the list. */
2538         list_add_tail(&virt_ep->bw_endpoint_list,
2539                         &interval_bw->endpoints);
2540 }
2541
2542 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2543                 struct xhci_virt_device *virt_dev,
2544                 int old_active_eps)
2545 {
2546         struct xhci_root_port_bw_info *rh_bw_info;
2547         if (!virt_dev->tt_info)
2548                 return;
2549
2550         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2551         if (old_active_eps == 0 &&
2552                                 virt_dev->tt_info->active_eps != 0) {
2553                 rh_bw_info->num_active_tts += 1;
2554                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2555         } else if (old_active_eps != 0 &&
2556                                 virt_dev->tt_info->active_eps == 0) {
2557                 rh_bw_info->num_active_tts -= 1;
2558                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2559         }
2560 }
2561
2562 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2563                 struct xhci_virt_device *virt_dev,
2564                 struct xhci_container_ctx *in_ctx)
2565 {
2566         struct xhci_bw_info ep_bw_info[31];
2567         int i;
2568         struct xhci_input_control_ctx *ctrl_ctx;
2569         int old_active_eps = 0;
2570
2571         if (virt_dev->tt_info)
2572                 old_active_eps = virt_dev->tt_info->active_eps;
2573
2574         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2575         if (!ctrl_ctx) {
2576                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2577                                 __func__);
2578                 return -ENOMEM;
2579         }
2580
2581         for (i = 0; i < 31; i++) {
2582                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2583                         continue;
2584
2585                 /* Make a copy of the BW info in case we need to revert this */
2586                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2587                                 sizeof(ep_bw_info[i]));
2588                 /* Drop the endpoint from the interval table if the endpoint is
2589                  * being dropped or changed.
2590                  */
2591                 if (EP_IS_DROPPED(ctrl_ctx, i))
2592                         xhci_drop_ep_from_interval_table(xhci,
2593                                         &virt_dev->eps[i].bw_info,
2594                                         virt_dev->bw_table,
2595                                         virt_dev->udev,
2596                                         &virt_dev->eps[i],
2597                                         virt_dev->tt_info);
2598         }
2599         /* Overwrite the information stored in the endpoints' bw_info */
2600         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2601         for (i = 0; i < 31; i++) {
2602                 /* Add any changed or added endpoints to the interval table */
2603                 if (EP_IS_ADDED(ctrl_ctx, i))
2604                         xhci_add_ep_to_interval_table(xhci,
2605                                         &virt_dev->eps[i].bw_info,
2606                                         virt_dev->bw_table,
2607                                         virt_dev->udev,
2608                                         &virt_dev->eps[i],
2609                                         virt_dev->tt_info);
2610         }
2611
2612         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2613                 /* Ok, this fits in the bandwidth we have.
2614                  * Update the number of active TTs.
2615                  */
2616                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2617                 return 0;
2618         }
2619
2620         /* We don't have enough bandwidth for this, revert the stored info. */
2621         for (i = 0; i < 31; i++) {
2622                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2623                         continue;
2624
2625                 /* Drop the new copies of any added or changed endpoints from
2626                  * the interval table.
2627                  */
2628                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2629                         xhci_drop_ep_from_interval_table(xhci,
2630                                         &virt_dev->eps[i].bw_info,
2631                                         virt_dev->bw_table,
2632                                         virt_dev->udev,
2633                                         &virt_dev->eps[i],
2634                                         virt_dev->tt_info);
2635                 }
2636                 /* Revert the endpoint back to its old information */
2637                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2638                                 sizeof(ep_bw_info[i]));
2639                 /* Add any changed or dropped endpoints back into the table */
2640                 if (EP_IS_DROPPED(ctrl_ctx, i))
2641                         xhci_add_ep_to_interval_table(xhci,
2642                                         &virt_dev->eps[i].bw_info,
2643                                         virt_dev->bw_table,
2644                                         virt_dev->udev,
2645                                         &virt_dev->eps[i],
2646                                         virt_dev->tt_info);
2647         }
2648         return -ENOMEM;
2649 }
2650
2651
2652 /* Issue a configure endpoint command or evaluate context command
2653  * and wait for it to finish.
2654  */
2655 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2656                 struct usb_device *udev,
2657                 struct xhci_command *command,
2658                 bool ctx_change, bool must_succeed)
2659 {
2660         int ret;
2661         unsigned long flags;
2662         struct xhci_input_control_ctx *ctrl_ctx;
2663         struct xhci_virt_device *virt_dev;
2664
2665         if (!command)
2666                 return -EINVAL;
2667
2668         spin_lock_irqsave(&xhci->lock, flags);
2669         virt_dev = xhci->devs[udev->slot_id];
2670
2671         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2672         if (!ctrl_ctx) {
2673                 spin_unlock_irqrestore(&xhci->lock, flags);
2674                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2675                                 __func__);
2676                 return -ENOMEM;
2677         }
2678
2679         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2680                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2681                 spin_unlock_irqrestore(&xhci->lock, flags);
2682                 xhci_warn(xhci, "Not enough host resources, "
2683                                 "active endpoint contexts = %u\n",
2684                                 xhci->num_active_eps);
2685                 return -ENOMEM;
2686         }
2687         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2688             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2689                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2690                         xhci_free_host_resources(xhci, ctrl_ctx);
2691                 spin_unlock_irqrestore(&xhci->lock, flags);
2692                 xhci_warn(xhci, "Not enough bandwidth\n");
2693                 return -ENOMEM;
2694         }
2695
2696         if (!ctx_change)
2697                 ret = xhci_queue_configure_endpoint(xhci, command,
2698                                 command->in_ctx->dma,
2699                                 udev->slot_id, must_succeed);
2700         else
2701                 ret = xhci_queue_evaluate_context(xhci, command,
2702                                 command->in_ctx->dma,
2703                                 udev->slot_id, must_succeed);
2704         if (ret < 0) {
2705                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2706                         xhci_free_host_resources(xhci, ctrl_ctx);
2707                 spin_unlock_irqrestore(&xhci->lock, flags);
2708                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2709                                 "FIXME allocate a new ring segment");
2710                 return -ENOMEM;
2711         }
2712         xhci_ring_cmd_db(xhci);
2713         spin_unlock_irqrestore(&xhci->lock, flags);
2714
2715         /* Wait for the configure endpoint command to complete */
2716         wait_for_completion(command->completion);
2717
2718         if (!ctx_change)
2719                 ret = xhci_configure_endpoint_result(xhci, udev,
2720                                                      &command->status);
2721         else
2722                 ret = xhci_evaluate_context_result(xhci, udev,
2723                                                    &command->status);
2724
2725         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2726                 spin_lock_irqsave(&xhci->lock, flags);
2727                 /* If the command failed, remove the reserved resources.
2728                  * Otherwise, clean up the estimate to include dropped eps.
2729                  */
2730                 if (ret)
2731                         xhci_free_host_resources(xhci, ctrl_ctx);
2732                 else
2733                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2734                 spin_unlock_irqrestore(&xhci->lock, flags);
2735         }
2736         return ret;
2737 }
2738
2739 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2740         struct xhci_virt_device *vdev, int i)
2741 {
2742         struct xhci_virt_ep *ep = &vdev->eps[i];
2743
2744         if (ep->ep_state & EP_HAS_STREAMS) {
2745                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2746                                 xhci_get_endpoint_address(i));
2747                 xhci_free_stream_info(xhci, ep->stream_info);
2748                 ep->stream_info = NULL;
2749                 ep->ep_state &= ~EP_HAS_STREAMS;
2750         }
2751 }
2752
2753 /* Called after one or more calls to xhci_add_endpoint() or
2754  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2755  * to call xhci_reset_bandwidth().
2756  *
2757  * Since we are in the middle of changing either configuration or
2758  * installing a new alt setting, the USB core won't allow URBs to be
2759  * enqueued for any endpoint on the old config or interface.  Nothing
2760  * else should be touching the xhci->devs[slot_id] structure, so we
2761  * don't need to take the xhci->lock for manipulating that.
2762  */
2763 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2764 {
2765         int i;
2766         int ret = 0;
2767         struct xhci_hcd *xhci;
2768         struct xhci_virt_device *virt_dev;
2769         struct xhci_input_control_ctx *ctrl_ctx;
2770         struct xhci_slot_ctx *slot_ctx;
2771         struct xhci_command *command;
2772
2773         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2774         if (ret <= 0)
2775                 return ret;
2776         xhci = hcd_to_xhci(hcd);
2777         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2778                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2779                 return -ENODEV;
2780
2781         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2782         virt_dev = xhci->devs[udev->slot_id];
2783
2784         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2785         if (!command)
2786                 return -ENOMEM;
2787
2788         command->in_ctx = virt_dev->in_ctx;
2789
2790         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2791         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2792         if (!ctrl_ctx) {
2793                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2794                                 __func__);
2795                 ret = -ENOMEM;
2796                 goto command_cleanup;
2797         }
2798         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2799         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2800         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2801
2802         /* Don't issue the command if there's no endpoints to update. */
2803         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2804             ctrl_ctx->drop_flags == 0) {
2805                 ret = 0;
2806                 goto command_cleanup;
2807         }
2808         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2809         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2810         for (i = 31; i >= 1; i--) {
2811                 __le32 le32 = cpu_to_le32(BIT(i));
2812
2813                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2814                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2815                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2816                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2817                         break;
2818                 }
2819         }
2820         xhci_dbg(xhci, "New Input Control Context:\n");
2821         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2822                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2823
2824         ret = xhci_configure_endpoint(xhci, udev, command,
2825                         false, false);
2826         if (ret)
2827                 /* Callee should call reset_bandwidth() */
2828                 goto command_cleanup;
2829
2830         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2831         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2832                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2833
2834         /* Free any rings that were dropped, but not changed. */
2835         for (i = 1; i < 31; ++i) {
2836                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2837                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2838                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2839                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2840                 }
2841         }
2842         xhci_zero_in_ctx(xhci, virt_dev);
2843         /*
2844          * Install any rings for completely new endpoints or changed endpoints,
2845          * and free or cache any old rings from changed endpoints.
2846          */
2847         for (i = 1; i < 31; ++i) {
2848                 if (!virt_dev->eps[i].new_ring)
2849                         continue;
2850                 /* Only cache or free the old ring if it exists.
2851                  * It may not if this is the first add of an endpoint.
2852                  */
2853                 if (virt_dev->eps[i].ring) {
2854                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2855                 }
2856                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2857                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2858                 virt_dev->eps[i].new_ring = NULL;
2859         }
2860 command_cleanup:
2861         kfree(command->completion);
2862         kfree(command);
2863
2864         return ret;
2865 }
2866
2867 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2868 {
2869         struct xhci_hcd *xhci;
2870         struct xhci_virt_device *virt_dev;
2871         int i, ret;
2872
2873         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2874         if (ret <= 0)
2875                 return;
2876         xhci = hcd_to_xhci(hcd);
2877
2878         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2879         virt_dev = xhci->devs[udev->slot_id];
2880         /* Free any rings allocated for added endpoints */
2881         for (i = 0; i < 31; ++i) {
2882                 if (virt_dev->eps[i].new_ring) {
2883                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2884                         virt_dev->eps[i].new_ring = NULL;
2885                 }
2886         }
2887         xhci_zero_in_ctx(xhci, virt_dev);
2888 }
2889
2890 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2891                 struct xhci_container_ctx *in_ctx,
2892                 struct xhci_container_ctx *out_ctx,
2893                 struct xhci_input_control_ctx *ctrl_ctx,
2894                 u32 add_flags, u32 drop_flags)
2895 {
2896         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2897         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2898         xhci_slot_copy(xhci, in_ctx, out_ctx);
2899         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2900
2901         xhci_dbg(xhci, "Input Context:\n");
2902         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2903 }
2904
2905 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2906                 unsigned int slot_id, unsigned int ep_index,
2907                 struct xhci_dequeue_state *deq_state)
2908 {
2909         struct xhci_input_control_ctx *ctrl_ctx;
2910         struct xhci_container_ctx *in_ctx;
2911         struct xhci_ep_ctx *ep_ctx;
2912         u32 added_ctxs;
2913         dma_addr_t addr;
2914
2915         in_ctx = xhci->devs[slot_id]->in_ctx;
2916         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2917         if (!ctrl_ctx) {
2918                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2919                                 __func__);
2920                 return;
2921         }
2922
2923         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2924                         xhci->devs[slot_id]->out_ctx, ep_index);
2925         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2926         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2927                         deq_state->new_deq_ptr);
2928         if (addr == 0) {
2929                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2930                                 "reset ep command\n");
2931                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2932                                 deq_state->new_deq_seg,
2933                                 deq_state->new_deq_ptr);
2934                 return;
2935         }
2936         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2937
2938         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2939         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2940                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2941                         added_ctxs, added_ctxs);
2942 }
2943
2944 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2945                         unsigned int ep_index, struct xhci_td *td)
2946 {
2947         struct xhci_dequeue_state deq_state;
2948         struct xhci_virt_ep *ep;
2949         struct usb_device *udev = td->urb->dev;
2950
2951         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2952                         "Cleaning up stalled endpoint ring");
2953         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2954         /* We need to move the HW's dequeue pointer past this TD,
2955          * or it will attempt to resend it on the next doorbell ring.
2956          */
2957         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2958                         ep_index, ep->stopped_stream, td, &deq_state);
2959
2960         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2961                 return;
2962
2963         /* HW with the reset endpoint quirk will use the saved dequeue state to
2964          * issue a configure endpoint command later.
2965          */
2966         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2967                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2968                                 "Queueing new dequeue state");
2969                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2970                                 ep_index, ep->stopped_stream, &deq_state);
2971         } else {
2972                 /* Better hope no one uses the input context between now and the
2973                  * reset endpoint completion!
2974                  * XXX: No idea how this hardware will react when stream rings
2975                  * are enabled.
2976                  */
2977                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2978                                 "Setting up input context for "
2979                                 "configure endpoint command");
2980                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2981                                 ep_index, &deq_state);
2982         }
2983 }
2984
2985 /* Called when clearing halted device. The core should have sent the control
2986  * message to clear the device halt condition. The host side of the halt should
2987  * already be cleared with a reset endpoint command issued when the STALL tx
2988  * event was received.
2989  *
2990  * Context: in_interrupt
2991  */
2992
2993 void xhci_endpoint_reset(struct usb_hcd *hcd,
2994                 struct usb_host_endpoint *ep)
2995 {
2996         struct xhci_hcd *xhci;
2997
2998         xhci = hcd_to_xhci(hcd);
2999
3000         /*
3001          * We might need to implement the config ep cmd in xhci 4.8.1 note:
3002          * The Reset Endpoint Command may only be issued to endpoints in the
3003          * Halted state. If software wishes reset the Data Toggle or Sequence
3004          * Number of an endpoint that isn't in the Halted state, then software
3005          * may issue a Configure Endpoint Command with the Drop and Add bits set
3006          * for the target endpoint. that is in the Stopped state.
3007          */
3008
3009         /* For now just print debug to follow the situation */
3010         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
3011                  ep->desc.bEndpointAddress);
3012 }
3013
3014 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3015                 struct usb_device *udev, struct usb_host_endpoint *ep,
3016                 unsigned int slot_id)
3017 {
3018         int ret;
3019         unsigned int ep_index;
3020         unsigned int ep_state;
3021
3022         if (!ep)
3023                 return -EINVAL;
3024         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3025         if (ret <= 0)
3026                 return -EINVAL;
3027         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3028                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3029                                 " descriptor for ep 0x%x does not support streams\n",
3030                                 ep->desc.bEndpointAddress);
3031                 return -EINVAL;
3032         }
3033
3034         ep_index = xhci_get_endpoint_index(&ep->desc);
3035         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3036         if (ep_state & EP_HAS_STREAMS ||
3037                         ep_state & EP_GETTING_STREAMS) {
3038                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3039                                 "already has streams set up.\n",
3040                                 ep->desc.bEndpointAddress);
3041                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3042                                 "dynamic stream context array reallocation.\n");
3043                 return -EINVAL;
3044         }
3045         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3046                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3047                                 "endpoint 0x%x; URBs are pending.\n",
3048                                 ep->desc.bEndpointAddress);
3049                 return -EINVAL;
3050         }
3051         return 0;
3052 }
3053
3054 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3055                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3056 {
3057         unsigned int max_streams;
3058
3059         /* The stream context array size must be a power of two */
3060         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3061         /*
3062          * Find out how many primary stream array entries the host controller
3063          * supports.  Later we may use secondary stream arrays (similar to 2nd
3064          * level page entries), but that's an optional feature for xHCI host
3065          * controllers. xHCs must support at least 4 stream IDs.
3066          */
3067         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3068         if (*num_stream_ctxs > max_streams) {
3069                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3070                                 max_streams);
3071                 *num_stream_ctxs = max_streams;
3072                 *num_streams = max_streams;
3073         }
3074 }
3075
3076 /* Returns an error code if one of the endpoint already has streams.
3077  * This does not change any data structures, it only checks and gathers
3078  * information.
3079  */
3080 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3081                 struct usb_device *udev,
3082                 struct usb_host_endpoint **eps, unsigned int num_eps,
3083                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3084 {
3085         unsigned int max_streams;
3086         unsigned int endpoint_flag;
3087         int i;
3088         int ret;
3089
3090         for (i = 0; i < num_eps; i++) {
3091                 ret = xhci_check_streams_endpoint(xhci, udev,
3092                                 eps[i], udev->slot_id);
3093                 if (ret < 0)
3094                         return ret;
3095
3096                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3097                 if (max_streams < (*num_streams - 1)) {
3098                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3099                                         eps[i]->desc.bEndpointAddress,
3100                                         max_streams);
3101                         *num_streams = max_streams+1;
3102                 }
3103
3104                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3105                 if (*changed_ep_bitmask & endpoint_flag)
3106                         return -EINVAL;
3107                 *changed_ep_bitmask |= endpoint_flag;
3108         }
3109         return 0;
3110 }
3111
3112 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3113                 struct usb_device *udev,
3114                 struct usb_host_endpoint **eps, unsigned int num_eps)
3115 {
3116         u32 changed_ep_bitmask = 0;
3117         unsigned int slot_id;
3118         unsigned int ep_index;
3119         unsigned int ep_state;
3120         int i;
3121
3122         slot_id = udev->slot_id;
3123         if (!xhci->devs[slot_id])
3124                 return 0;
3125
3126         for (i = 0; i < num_eps; i++) {
3127                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3128                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3129                 /* Are streams already being freed for the endpoint? */
3130                 if (ep_state & EP_GETTING_NO_STREAMS) {
3131                         xhci_warn(xhci, "WARN Can't disable streams for "
3132                                         "endpoint 0x%x, "
3133                                         "streams are being disabled already\n",
3134                                         eps[i]->desc.bEndpointAddress);
3135                         return 0;
3136                 }
3137                 /* Are there actually any streams to free? */
3138                 if (!(ep_state & EP_HAS_STREAMS) &&
3139                                 !(ep_state & EP_GETTING_STREAMS)) {
3140                         xhci_warn(xhci, "WARN Can't disable streams for "
3141                                         "endpoint 0x%x, "
3142                                         "streams are already disabled!\n",
3143                                         eps[i]->desc.bEndpointAddress);
3144                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3145                                         "with non-streams endpoint\n");
3146                         return 0;
3147                 }
3148                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3149         }
3150         return changed_ep_bitmask;
3151 }
3152
3153 /*
3154  * The USB device drivers use this function (through the HCD interface in USB
3155  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3156  * coordinate mass storage command queueing across multiple endpoints (basically
3157  * a stream ID == a task ID).
3158  *
3159  * Setting up streams involves allocating the same size stream context array
3160  * for each endpoint and issuing a configure endpoint command for all endpoints.
3161  *
3162  * Don't allow the call to succeed if one endpoint only supports one stream
3163  * (which means it doesn't support streams at all).
3164  *
3165  * Drivers may get less stream IDs than they asked for, if the host controller
3166  * hardware or endpoints claim they can't support the number of requested
3167  * stream IDs.
3168  */
3169 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3170                 struct usb_host_endpoint **eps, unsigned int num_eps,
3171                 unsigned int num_streams, gfp_t mem_flags)
3172 {
3173         int i, ret;
3174         struct xhci_hcd *xhci;
3175         struct xhci_virt_device *vdev;
3176         struct xhci_command *config_cmd;
3177         struct xhci_input_control_ctx *ctrl_ctx;
3178         unsigned int ep_index;
3179         unsigned int num_stream_ctxs;
3180         unsigned long flags;
3181         u32 changed_ep_bitmask = 0;
3182
3183         if (!eps)
3184                 return -EINVAL;
3185
3186         /* Add one to the number of streams requested to account for
3187          * stream 0 that is reserved for xHCI usage.
3188          */
3189         num_streams += 1;
3190         xhci = hcd_to_xhci(hcd);
3191         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3192                         num_streams);
3193
3194         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3195         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3196                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3197                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3198                 return -ENOSYS;
3199         }
3200
3201         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3202         if (!config_cmd) {
3203                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3204                 return -ENOMEM;
3205         }
3206         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3207         if (!ctrl_ctx) {
3208                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3209                                 __func__);
3210                 xhci_free_command(xhci, config_cmd);
3211                 return -ENOMEM;
3212         }
3213
3214         /* Check to make sure all endpoints are not already configured for
3215          * streams.  While we're at it, find the maximum number of streams that
3216          * all the endpoints will support and check for duplicate endpoints.
3217          */
3218         spin_lock_irqsave(&xhci->lock, flags);
3219         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3220                         num_eps, &num_streams, &changed_ep_bitmask);
3221         if (ret < 0) {
3222                 xhci_free_command(xhci, config_cmd);
3223                 spin_unlock_irqrestore(&xhci->lock, flags);
3224                 return ret;
3225         }
3226         if (num_streams <= 1) {
3227                 xhci_warn(xhci, "WARN: endpoints can't handle "
3228                                 "more than one stream.\n");
3229                 xhci_free_command(xhci, config_cmd);
3230                 spin_unlock_irqrestore(&xhci->lock, flags);
3231                 return -EINVAL;
3232         }
3233         vdev = xhci->devs[udev->slot_id];
3234         /* Mark each endpoint as being in transition, so
3235          * xhci_urb_enqueue() will reject all URBs.
3236          */
3237         for (i = 0; i < num_eps; i++) {
3238                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3239                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3240         }
3241         spin_unlock_irqrestore(&xhci->lock, flags);
3242
3243         /* Setup internal data structures and allocate HW data structures for
3244          * streams (but don't install the HW structures in the input context
3245          * until we're sure all memory allocation succeeded).
3246          */
3247         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3248         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3249                         num_stream_ctxs, num_streams);
3250
3251         for (i = 0; i < num_eps; i++) {
3252                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3253                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3254                                 num_stream_ctxs,
3255                                 num_streams, mem_flags);
3256                 if (!vdev->eps[ep_index].stream_info)
3257                         goto cleanup;
3258                 /* Set maxPstreams in endpoint context and update deq ptr to
3259                  * point to stream context array. FIXME
3260                  */
3261         }
3262
3263         /* Set up the input context for a configure endpoint command. */
3264         for (i = 0; i < num_eps; i++) {
3265                 struct xhci_ep_ctx *ep_ctx;
3266
3267                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3268                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3269
3270                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3271                                 vdev->out_ctx, ep_index);
3272                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3273                                 vdev->eps[ep_index].stream_info);
3274         }
3275         /* Tell the HW to drop its old copy of the endpoint context info
3276          * and add the updated copy from the input context.
3277          */
3278         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3279                         vdev->out_ctx, ctrl_ctx,
3280                         changed_ep_bitmask, changed_ep_bitmask);
3281
3282         /* Issue and wait for the configure endpoint command */
3283         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3284                         false, false);
3285
3286         /* xHC rejected the configure endpoint command for some reason, so we
3287          * leave the old ring intact and free our internal streams data
3288          * structure.
3289          */
3290         if (ret < 0)
3291                 goto cleanup;
3292
3293         spin_lock_irqsave(&xhci->lock, flags);
3294         for (i = 0; i < num_eps; i++) {
3295                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3296                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3297                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3298                          udev->slot_id, ep_index);
3299                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3300         }
3301         xhci_free_command(xhci, config_cmd);
3302         spin_unlock_irqrestore(&xhci->lock, flags);
3303
3304         /* Subtract 1 for stream 0, which drivers can't use */
3305         return num_streams - 1;
3306
3307 cleanup:
3308         /* If it didn't work, free the streams! */
3309         for (i = 0; i < num_eps; i++) {
3310                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3311                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3312                 vdev->eps[ep_index].stream_info = NULL;
3313                 /* FIXME Unset maxPstreams in endpoint context and
3314                  * update deq ptr to point to normal string ring.
3315                  */
3316                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3317                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3318                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3319         }
3320         xhci_free_command(xhci, config_cmd);
3321         return -ENOMEM;
3322 }
3323
3324 /* Transition the endpoint from using streams to being a "normal" endpoint
3325  * without streams.
3326  *
3327  * Modify the endpoint context state, submit a configure endpoint command,
3328  * and free all endpoint rings for streams if that completes successfully.
3329  */
3330 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3331                 struct usb_host_endpoint **eps, unsigned int num_eps,
3332                 gfp_t mem_flags)
3333 {
3334         int i, ret;
3335         struct xhci_hcd *xhci;
3336         struct xhci_virt_device *vdev;
3337         struct xhci_command *command;
3338         struct xhci_input_control_ctx *ctrl_ctx;
3339         unsigned int ep_index;
3340         unsigned long flags;
3341         u32 changed_ep_bitmask;
3342
3343         xhci = hcd_to_xhci(hcd);
3344         vdev = xhci->devs[udev->slot_id];
3345
3346         /* Set up a configure endpoint command to remove the streams rings */
3347         spin_lock_irqsave(&xhci->lock, flags);
3348         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3349                         udev, eps, num_eps);
3350         if (changed_ep_bitmask == 0) {
3351                 spin_unlock_irqrestore(&xhci->lock, flags);
3352                 return -EINVAL;
3353         }
3354
3355         /* Use the xhci_command structure from the first endpoint.  We may have
3356          * allocated too many, but the driver may call xhci_free_streams() for
3357          * each endpoint it grouped into one call to xhci_alloc_streams().
3358          */
3359         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3360         command = vdev->eps[ep_index].stream_info->free_streams_command;
3361         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3362         if (!ctrl_ctx) {
3363                 spin_unlock_irqrestore(&xhci->lock, flags);
3364                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3365                                 __func__);
3366                 return -EINVAL;
3367         }
3368
3369         for (i = 0; i < num_eps; i++) {
3370                 struct xhci_ep_ctx *ep_ctx;
3371
3372                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3373                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3374                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3375                         EP_GETTING_NO_STREAMS;
3376
3377                 xhci_endpoint_copy(xhci, command->in_ctx,
3378                                 vdev->out_ctx, ep_index);
3379                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3380                                 &vdev->eps[ep_index]);
3381         }
3382         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3383                         vdev->out_ctx, ctrl_ctx,
3384                         changed_ep_bitmask, changed_ep_bitmask);
3385         spin_unlock_irqrestore(&xhci->lock, flags);
3386
3387         /* Issue and wait for the configure endpoint command,
3388          * which must succeed.
3389          */
3390         ret = xhci_configure_endpoint(xhci, udev, command,
3391                         false, true);
3392
3393         /* xHC rejected the configure endpoint command for some reason, so we
3394          * leave the streams rings intact.
3395          */
3396         if (ret < 0)
3397                 return ret;
3398
3399         spin_lock_irqsave(&xhci->lock, flags);
3400         for (i = 0; i < num_eps; i++) {
3401                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3402                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3403                 vdev->eps[ep_index].stream_info = NULL;
3404                 /* FIXME Unset maxPstreams in endpoint context and
3405                  * update deq ptr to point to normal string ring.
3406                  */
3407                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3408                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3409         }
3410         spin_unlock_irqrestore(&xhci->lock, flags);
3411
3412         return 0;
3413 }
3414
3415 /*
3416  * Deletes endpoint resources for endpoints that were active before a Reset
3417  * Device command, or a Disable Slot command.  The Reset Device command leaves
3418  * the control endpoint intact, whereas the Disable Slot command deletes it.
3419  *
3420  * Must be called with xhci->lock held.
3421  */
3422 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3423         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3424 {
3425         int i;
3426         unsigned int num_dropped_eps = 0;
3427         unsigned int drop_flags = 0;
3428
3429         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3430                 if (virt_dev->eps[i].ring) {
3431                         drop_flags |= 1 << i;
3432                         num_dropped_eps++;
3433                 }
3434         }
3435         xhci->num_active_eps -= num_dropped_eps;
3436         if (num_dropped_eps)
3437                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3438                                 "Dropped %u ep ctxs, flags = 0x%x, "
3439                                 "%u now active.",
3440                                 num_dropped_eps, drop_flags,
3441                                 xhci->num_active_eps);
3442 }
3443
3444 /*
3445  * This submits a Reset Device Command, which will set the device state to 0,
3446  * set the device address to 0, and disable all the endpoints except the default
3447  * control endpoint.  The USB core should come back and call
3448  * xhci_address_device(), and then re-set up the configuration.  If this is
3449  * called because of a usb_reset_and_verify_device(), then the old alternate
3450  * settings will be re-installed through the normal bandwidth allocation
3451  * functions.
3452  *
3453  * Wait for the Reset Device command to finish.  Remove all structures
3454  * associated with the endpoints that were disabled.  Clear the input device
3455  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3456  *
3457  * If the virt_dev to be reset does not exist or does not match the udev,
3458  * it means the device is lost, possibly due to the xHC restore error and
3459  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3460  * re-allocate the device.
3461  */
3462 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3463 {
3464         int ret, i;
3465         unsigned long flags;
3466         struct xhci_hcd *xhci;
3467         unsigned int slot_id;
3468         struct xhci_virt_device *virt_dev;
3469         struct xhci_command *reset_device_cmd;
3470         int last_freed_endpoint;
3471         struct xhci_slot_ctx *slot_ctx;
3472         int old_active_eps = 0;
3473
3474         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3475         if (ret <= 0)
3476                 return ret;
3477         xhci = hcd_to_xhci(hcd);
3478         slot_id = udev->slot_id;
3479         virt_dev = xhci->devs[slot_id];
3480         if (!virt_dev) {
3481                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3482                                 "not exist. Re-allocate the device\n", slot_id);
3483                 ret = xhci_alloc_dev(hcd, udev);
3484                 if (ret == 1)
3485                         return 0;
3486                 else
3487                         return -EINVAL;
3488         }
3489
3490         if (virt_dev->tt_info)
3491                 old_active_eps = virt_dev->tt_info->active_eps;
3492
3493         if (virt_dev->udev != udev) {
3494                 /* If the virt_dev and the udev does not match, this virt_dev
3495                  * may belong to another udev.
3496                  * Re-allocate the device.
3497                  */
3498                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3499                                 "not match the udev. Re-allocate the device\n",
3500                                 slot_id);
3501                 ret = xhci_alloc_dev(hcd, udev);
3502                 if (ret == 1)
3503                         return 0;
3504                 else
3505                         return -EINVAL;
3506         }
3507
3508         /* If device is not setup, there is no point in resetting it */
3509         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3510         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3511                                                 SLOT_STATE_DISABLED)
3512                 return 0;
3513
3514         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3515         /* Allocate the command structure that holds the struct completion.
3516          * Assume we're in process context, since the normal device reset
3517          * process has to wait for the device anyway.  Storage devices are
3518          * reset as part of error handling, so use GFP_NOIO instead of
3519          * GFP_KERNEL.
3520          */
3521         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3522         if (!reset_device_cmd) {
3523                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3524                 return -ENOMEM;
3525         }
3526
3527         /* Attempt to submit the Reset Device command to the command ring */
3528         spin_lock_irqsave(&xhci->lock, flags);
3529
3530         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3531         if (ret) {
3532                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3533                 spin_unlock_irqrestore(&xhci->lock, flags);
3534                 goto command_cleanup;
3535         }
3536         xhci_ring_cmd_db(xhci);
3537         spin_unlock_irqrestore(&xhci->lock, flags);
3538
3539         /* Wait for the Reset Device command to finish */
3540         wait_for_completion(reset_device_cmd->completion);
3541
3542         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3543          * unless we tried to reset a slot ID that wasn't enabled,
3544          * or the device wasn't in the addressed or configured state.
3545          */
3546         ret = reset_device_cmd->status;
3547         switch (ret) {
3548         case COMP_CMD_ABORT:
3549         case COMP_CMD_STOP:
3550                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3551                 ret = -ETIME;
3552                 goto command_cleanup;
3553         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3554         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3555                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3556                                 slot_id,
3557                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3558                 xhci_dbg(xhci, "Not freeing device rings.\n");
3559                 /* Don't treat this as an error.  May change my mind later. */
3560                 ret = 0;
3561                 goto command_cleanup;
3562         case COMP_SUCCESS:
3563                 xhci_dbg(xhci, "Successful reset device command.\n");
3564                 break;
3565         default:
3566                 if (xhci_is_vendor_info_code(xhci, ret))
3567                         break;
3568                 xhci_warn(xhci, "Unknown completion code %u for "
3569                                 "reset device command.\n", ret);
3570                 ret = -EINVAL;
3571                 goto command_cleanup;
3572         }
3573
3574         /* Free up host controller endpoint resources */
3575         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3576                 spin_lock_irqsave(&xhci->lock, flags);
3577                 /* Don't delete the default control endpoint resources */
3578                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3579                 spin_unlock_irqrestore(&xhci->lock, flags);
3580         }
3581
3582         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3583         last_freed_endpoint = 1;
3584         for (i = 1; i < 31; ++i) {
3585                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3586
3587                 if (ep->ep_state & EP_HAS_STREAMS) {
3588                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3589                                         xhci_get_endpoint_address(i));
3590                         xhci_free_stream_info(xhci, ep->stream_info);
3591                         ep->stream_info = NULL;
3592                         ep->ep_state &= ~EP_HAS_STREAMS;
3593                 }
3594
3595                 if (ep->ring) {
3596                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3597                         last_freed_endpoint = i;
3598                 }
3599                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3600                         xhci_drop_ep_from_interval_table(xhci,
3601                                         &virt_dev->eps[i].bw_info,
3602                                         virt_dev->bw_table,
3603                                         udev,
3604                                         &virt_dev->eps[i],
3605                                         virt_dev->tt_info);
3606                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3607         }
3608         /* If necessary, update the number of active TTs on this root port */
3609         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3610
3611         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3612         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3613         ret = 0;
3614
3615 command_cleanup:
3616         xhci_free_command(xhci, reset_device_cmd);
3617         return ret;
3618 }
3619
3620 /*
3621  * At this point, the struct usb_device is about to go away, the device has
3622  * disconnected, and all traffic has been stopped and the endpoints have been
3623  * disabled.  Free any HC data structures associated with that device.
3624  */
3625 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3626 {
3627         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3628         struct xhci_virt_device *virt_dev;
3629         unsigned long flags;
3630         u32 state;
3631         int i, ret;
3632         struct xhci_command *command;
3633
3634         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3635         if (!command)
3636                 return;
3637
3638 #ifndef CONFIG_USB_DEFAULT_PERSIST
3639         /*
3640          * We called pm_runtime_get_noresume when the device was attached.
3641          * Decrement the counter here to allow controller to runtime suspend
3642          * if no devices remain.
3643          */
3644         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3645                 pm_runtime_put_noidle(hcd->self.controller);
3646 #endif
3647
3648         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3649         /* If the host is halted due to driver unload, we still need to free the
3650          * device.
3651          */
3652         if (ret <= 0 && ret != -ENODEV) {
3653                 kfree(command);
3654                 return;
3655         }
3656
3657         virt_dev = xhci->devs[udev->slot_id];
3658
3659         /* Stop any wayward timer functions (which may grab the lock) */
3660         for (i = 0; i < 31; ++i) {
3661                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3662                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3663         }
3664
3665         spin_lock_irqsave(&xhci->lock, flags);
3666         /* Don't disable the slot if the host controller is dead. */
3667         state = readl(&xhci->op_regs->status);
3668         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3669                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3670                 xhci_free_virt_device(xhci, udev->slot_id);
3671                 spin_unlock_irqrestore(&xhci->lock, flags);
3672                 kfree(command);
3673                 return;
3674         }
3675
3676         if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3677                                     udev->slot_id)) {
3678                 spin_unlock_irqrestore(&xhci->lock, flags);
3679                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3680                 return;
3681         }
3682         xhci_ring_cmd_db(xhci);
3683         spin_unlock_irqrestore(&xhci->lock, flags);
3684
3685         /*
3686          * Event command completion handler will free any data structures
3687          * associated with the slot.  XXX Can free sleep?
3688          */
3689 }
3690
3691 /*
3692  * Checks if we have enough host controller resources for the default control
3693  * endpoint.
3694  *
3695  * Must be called with xhci->lock held.
3696  */
3697 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3698 {
3699         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3700                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3701                                 "Not enough ep ctxs: "
3702                                 "%u active, need to add 1, limit is %u.",
3703                                 xhci->num_active_eps, xhci->limit_active_eps);
3704                 return -ENOMEM;
3705         }
3706         xhci->num_active_eps += 1;
3707         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3708                         "Adding 1 ep ctx, %u now active.",
3709                         xhci->num_active_eps);
3710         return 0;
3711 }
3712
3713
3714 /*
3715  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3716  * timed out, or allocating memory failed.  Returns 1 on success.
3717  */
3718 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3719 {
3720         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3721         unsigned long flags;
3722         int ret, slot_id;
3723         struct xhci_command *command;
3724
3725         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3726         if (!command)
3727                 return 0;
3728
3729         /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3730         mutex_lock(&xhci->mutex);
3731         spin_lock_irqsave(&xhci->lock, flags);
3732         command->completion = &xhci->addr_dev;
3733         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3734         if (ret) {
3735                 spin_unlock_irqrestore(&xhci->lock, flags);
3736                 mutex_unlock(&xhci->mutex);
3737                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3738                 kfree(command);
3739                 return 0;
3740         }
3741         xhci_ring_cmd_db(xhci);
3742         spin_unlock_irqrestore(&xhci->lock, flags);
3743
3744         wait_for_completion(command->completion);
3745         slot_id = xhci->slot_id;
3746         mutex_unlock(&xhci->mutex);
3747
3748         if (!slot_id || command->status != COMP_SUCCESS) {
3749                 xhci_err(xhci, "Error while assigning device slot ID\n");
3750                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3751                                 HCS_MAX_SLOTS(
3752                                         readl(&xhci->cap_regs->hcs_params1)));
3753                 kfree(command);
3754                 return 0;
3755         }
3756
3757         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3758                 spin_lock_irqsave(&xhci->lock, flags);
3759                 ret = xhci_reserve_host_control_ep_resources(xhci);
3760                 if (ret) {
3761                         spin_unlock_irqrestore(&xhci->lock, flags);
3762                         xhci_warn(xhci, "Not enough host resources, "
3763                                         "active endpoint contexts = %u\n",
3764                                         xhci->num_active_eps);
3765                         goto disable_slot;
3766                 }
3767                 spin_unlock_irqrestore(&xhci->lock, flags);
3768         }
3769         /* Use GFP_NOIO, since this function can be called from
3770          * xhci_discover_or_reset_device(), which may be called as part of
3771          * mass storage driver error handling.
3772          */
3773         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3774                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3775                 goto disable_slot;
3776         }
3777         udev->slot_id = slot_id;
3778
3779 #ifndef CONFIG_USB_DEFAULT_PERSIST
3780         /*
3781          * If resetting upon resume, we can't put the controller into runtime
3782          * suspend if there is a device attached.
3783          */
3784         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3785                 pm_runtime_get_noresume(hcd->self.controller);
3786 #endif
3787
3788
3789         kfree(command);
3790         /* Is this a LS or FS device under a HS hub? */
3791         /* Hub or peripherial? */
3792         return 1;
3793
3794 disable_slot:
3795         /* Disable slot, if we can do it without mem alloc */
3796         spin_lock_irqsave(&xhci->lock, flags);
3797         command->completion = NULL;
3798         command->status = 0;
3799         if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3800                                      udev->slot_id))
3801                 xhci_ring_cmd_db(xhci);
3802         spin_unlock_irqrestore(&xhci->lock, flags);
3803         return 0;
3804 }
3805
3806 /*
3807  * Issue an Address Device command and optionally send a corresponding
3808  * SetAddress request to the device.
3809  */
3810 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3811                              enum xhci_setup_dev setup)
3812 {
3813         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3814         unsigned long flags;
3815         struct xhci_virt_device *virt_dev;
3816         int ret = 0;
3817         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3818         struct xhci_slot_ctx *slot_ctx;
3819         struct xhci_input_control_ctx *ctrl_ctx;
3820         u64 temp_64;
3821         struct xhci_command *command = NULL;
3822
3823         mutex_lock(&xhci->mutex);
3824
3825         if (xhci->xhc_state)    /* dying, removing or halted */
3826                 goto out;
3827
3828         if (!udev->slot_id) {
3829                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3830                                 "Bad Slot ID %d", udev->slot_id);
3831                 ret = -EINVAL;
3832                 goto out;
3833         }
3834
3835         virt_dev = xhci->devs[udev->slot_id];
3836
3837         if (WARN_ON(!virt_dev)) {
3838                 /*
3839                  * In plug/unplug torture test with an NEC controller,
3840                  * a zero-dereference was observed once due to virt_dev = 0.
3841                  * Print useful debug rather than crash if it is observed again!
3842                  */
3843                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3844                         udev->slot_id);
3845                 ret = -EINVAL;
3846                 goto out;
3847         }
3848
3849         if (setup == SETUP_CONTEXT_ONLY) {
3850                 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3851                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3852                     SLOT_STATE_DEFAULT) {
3853                         xhci_dbg(xhci, "Slot already in default state\n");
3854                         goto out;
3855                 }
3856         }
3857
3858         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3859         if (!command) {
3860                 ret = -ENOMEM;
3861                 goto out;
3862         }
3863
3864         command->in_ctx = virt_dev->in_ctx;
3865         command->completion = &xhci->addr_dev;
3866
3867         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3868         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3869         if (!ctrl_ctx) {
3870                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3871                                 __func__);
3872                 ret = -EINVAL;
3873                 goto out;
3874         }
3875         /*
3876          * If this is the first Set Address since device plug-in or
3877          * virt_device realloaction after a resume with an xHCI power loss,
3878          * then set up the slot context.
3879          */
3880         if (!slot_ctx->dev_info)
3881                 xhci_setup_addressable_virt_dev(xhci, udev);
3882         /* Otherwise, update the control endpoint ring enqueue pointer. */
3883         else
3884                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3885         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3886         ctrl_ctx->drop_flags = 0;
3887
3888         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3889         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3890         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3891                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3892
3893         spin_lock_irqsave(&xhci->lock, flags);
3894         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3895                                         udev->slot_id, setup);
3896         if (ret) {
3897                 spin_unlock_irqrestore(&xhci->lock, flags);
3898                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3899                                 "FIXME: allocate a command ring segment");
3900                 goto out;
3901         }
3902         xhci_ring_cmd_db(xhci);
3903         spin_unlock_irqrestore(&xhci->lock, flags);
3904
3905         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3906         wait_for_completion(command->completion);
3907
3908         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3909          * the SetAddress() "recovery interval" required by USB and aborting the
3910          * command on a timeout.
3911          */
3912         switch (command->status) {
3913         case COMP_CMD_ABORT:
3914         case COMP_CMD_STOP:
3915                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3916                 ret = -ETIME;
3917                 break;
3918         case COMP_CTX_STATE:
3919         case COMP_EBADSLT:
3920                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3921                          act, udev->slot_id);
3922                 ret = -EINVAL;
3923                 break;
3924         case COMP_TX_ERR:
3925                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3926                 ret = -EPROTO;
3927                 break;
3928         case COMP_DEV_ERR:
3929                 dev_warn(&udev->dev,
3930                          "ERROR: Incompatible device for setup %s command\n", act);
3931                 ret = -ENODEV;
3932                 break;
3933         case COMP_SUCCESS:
3934                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3935                                "Successful setup %s command", act);
3936                 break;
3937         default:
3938                 xhci_err(xhci,
3939                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3940                          act, command->status);
3941                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3942                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3943                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3944                 ret = -EINVAL;
3945                 break;
3946         }
3947         if (ret)
3948                 goto out;
3949         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3950         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3951                         "Op regs DCBAA ptr = %#016llx", temp_64);
3952         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3953                 "Slot ID %d dcbaa entry @%p = %#016llx",
3954                 udev->slot_id,
3955                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3956                 (unsigned long long)
3957                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3958         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3959                         "Output Context DMA address = %#08llx",
3960                         (unsigned long long)virt_dev->out_ctx->dma);
3961         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3962         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3963         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3964                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3965         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3966         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3967         /*
3968          * USB core uses address 1 for the roothubs, so we add one to the
3969          * address given back to us by the HC.
3970          */
3971         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3972         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3973                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3974         /* Zero the input context control for later use */
3975         ctrl_ctx->add_flags = 0;
3976         ctrl_ctx->drop_flags = 0;
3977
3978         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3979                        "Internal device address = %d",
3980                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3981 out:
3982         mutex_unlock(&xhci->mutex);
3983         kfree(command);
3984         return ret;
3985 }
3986
3987 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3988 {
3989         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3990 }
3991
3992 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3993 {
3994         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3995 }
3996
3997 /*
3998  * Transfer the port index into real index in the HW port status
3999  * registers. Caculate offset between the port's PORTSC register
4000  * and port status base. Divide the number of per port register
4001  * to get the real index. The raw port number bases 1.
4002  */
4003 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4004 {
4005         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4006         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
4007         __le32 __iomem *addr;
4008         int raw_port;
4009
4010         if (hcd->speed < HCD_USB3)
4011                 addr = xhci->usb2_ports[port1 - 1];
4012         else
4013                 addr = xhci->usb3_ports[port1 - 1];
4014
4015         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
4016         return raw_port;
4017 }
4018
4019 /*
4020  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4021  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4022  */
4023 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4024                         struct usb_device *udev, u16 max_exit_latency)
4025 {
4026         struct xhci_virt_device *virt_dev;
4027         struct xhci_command *command;
4028         struct xhci_input_control_ctx *ctrl_ctx;
4029         struct xhci_slot_ctx *slot_ctx;
4030         unsigned long flags;
4031         int ret;
4032
4033         spin_lock_irqsave(&xhci->lock, flags);
4034
4035         virt_dev = xhci->devs[udev->slot_id];
4036
4037         /*
4038          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4039          * xHC was re-initialized. Exit latency will be set later after
4040          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4041          */
4042
4043         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4044                 spin_unlock_irqrestore(&xhci->lock, flags);
4045                 return 0;
4046         }
4047
4048         /* Attempt to issue an Evaluate Context command to change the MEL. */
4049         command = xhci->lpm_command;
4050         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4051         if (!ctrl_ctx) {
4052                 spin_unlock_irqrestore(&xhci->lock, flags);
4053                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4054                                 __func__);
4055                 return -ENOMEM;
4056         }
4057
4058         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4059         spin_unlock_irqrestore(&xhci->lock, flags);
4060
4061         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4062         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4063         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4064         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4065         slot_ctx->dev_state = 0;
4066
4067         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4068                         "Set up evaluate context for LPM MEL change.");
4069         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4070         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4071
4072         /* Issue and wait for the evaluate context command. */
4073         ret = xhci_configure_endpoint(xhci, udev, command,
4074                         true, true);
4075         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4076         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4077
4078         if (!ret) {
4079                 spin_lock_irqsave(&xhci->lock, flags);
4080                 virt_dev->current_mel = max_exit_latency;
4081                 spin_unlock_irqrestore(&xhci->lock, flags);
4082         }
4083         return ret;
4084 }
4085
4086 #ifdef CONFIG_PM
4087
4088 /* BESL to HIRD Encoding array for USB2 LPM */
4089 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4090         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4091
4092 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4093 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4094                                         struct usb_device *udev)
4095 {
4096         int u2del, besl, besl_host;
4097         int besl_device = 0;
4098         u32 field;
4099
4100         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4101         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4102
4103         if (field & USB_BESL_SUPPORT) {
4104                 for (besl_host = 0; besl_host < 16; besl_host++) {
4105                         if (xhci_besl_encoding[besl_host] >= u2del)
4106                                 break;
4107                 }
4108                 /* Use baseline BESL value as default */
4109                 if (field & USB_BESL_BASELINE_VALID)
4110                         besl_device = USB_GET_BESL_BASELINE(field);
4111                 else if (field & USB_BESL_DEEP_VALID)
4112                         besl_device = USB_GET_BESL_DEEP(field);
4113         } else {
4114                 if (u2del <= 50)
4115                         besl_host = 0;
4116                 else
4117                         besl_host = (u2del - 51) / 75 + 1;
4118         }
4119
4120         besl = besl_host + besl_device;
4121         if (besl > 15)
4122                 besl = 15;
4123
4124         return besl;
4125 }
4126
4127 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4128 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4129 {
4130         u32 field;
4131         int l1;
4132         int besld = 0;
4133         int hirdm = 0;
4134
4135         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4136
4137         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4138         l1 = udev->l1_params.timeout / 256;
4139
4140         /* device has preferred BESLD */
4141         if (field & USB_BESL_DEEP_VALID) {
4142                 besld = USB_GET_BESL_DEEP(field);
4143                 hirdm = 1;
4144         }
4145
4146         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4147 }
4148
4149 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4150                         struct usb_device *udev, int enable)
4151 {
4152         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4153         __le32 __iomem  **port_array;
4154         __le32 __iomem  *pm_addr, *hlpm_addr;
4155         u32             pm_val, hlpm_val, field;
4156         unsigned int    port_num;
4157         unsigned long   flags;
4158         int             hird, exit_latency;
4159         int             ret;
4160
4161         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4162                         !udev->lpm_capable)
4163                 return -EPERM;
4164
4165         if (!udev->parent || udev->parent->parent ||
4166                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4167                 return -EPERM;
4168
4169         if (udev->usb2_hw_lpm_capable != 1)
4170                 return -EPERM;
4171
4172         spin_lock_irqsave(&xhci->lock, flags);
4173
4174         port_array = xhci->usb2_ports;
4175         port_num = udev->portnum - 1;
4176         pm_addr = port_array[port_num] + PORTPMSC;
4177         pm_val = readl(pm_addr);
4178         hlpm_addr = port_array[port_num] + PORTHLPMC;
4179         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4180
4181         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4182                         enable ? "enable" : "disable", port_num + 1);
4183
4184         if (enable) {
4185                 /* Host supports BESL timeout instead of HIRD */
4186                 if (udev->usb2_hw_lpm_besl_capable) {
4187                         /* if device doesn't have a preferred BESL value use a
4188                          * default one which works with mixed HIRD and BESL
4189                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4190                          */
4191                         if ((field & USB_BESL_SUPPORT) &&
4192                             (field & USB_BESL_BASELINE_VALID))
4193                                 hird = USB_GET_BESL_BASELINE(field);
4194                         else
4195                                 hird = udev->l1_params.besl;
4196
4197                         exit_latency = xhci_besl_encoding[hird];
4198                         spin_unlock_irqrestore(&xhci->lock, flags);
4199
4200                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4201                          * input context for link powermanagement evaluate
4202                          * context commands. It is protected by hcd->bandwidth
4203                          * mutex and is shared by all devices. We need to set
4204                          * the max ext latency in USB 2 BESL LPM as well, so
4205                          * use the same mutex and xhci_change_max_exit_latency()
4206                          */
4207                         mutex_lock(hcd->bandwidth_mutex);
4208                         ret = xhci_change_max_exit_latency(xhci, udev,
4209                                                            exit_latency);
4210                         mutex_unlock(hcd->bandwidth_mutex);
4211
4212                         if (ret < 0)
4213                                 return ret;
4214                         spin_lock_irqsave(&xhci->lock, flags);
4215
4216                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4217                         writel(hlpm_val, hlpm_addr);
4218                         /* flush write */
4219                         readl(hlpm_addr);
4220                 } else {
4221                         hird = xhci_calculate_hird_besl(xhci, udev);
4222                 }
4223
4224                 pm_val &= ~PORT_HIRD_MASK;
4225                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4226                 writel(pm_val, pm_addr);
4227                 pm_val = readl(pm_addr);
4228                 pm_val |= PORT_HLE;
4229                 writel(pm_val, pm_addr);
4230                 /* flush write */
4231                 readl(pm_addr);
4232         } else {
4233                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4234                 writel(pm_val, pm_addr);
4235                 /* flush write */
4236                 readl(pm_addr);
4237                 if (udev->usb2_hw_lpm_besl_capable) {
4238                         spin_unlock_irqrestore(&xhci->lock, flags);
4239                         mutex_lock(hcd->bandwidth_mutex);
4240                         xhci_change_max_exit_latency(xhci, udev, 0);
4241                         mutex_unlock(hcd->bandwidth_mutex);
4242                         return 0;
4243                 }
4244         }
4245
4246         spin_unlock_irqrestore(&xhci->lock, flags);
4247         return 0;
4248 }
4249
4250 /* check if a usb2 port supports a given extened capability protocol
4251  * only USB2 ports extended protocol capability values are cached.
4252  * Return 1 if capability is supported
4253  */
4254 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4255                                            unsigned capability)
4256 {
4257         u32 port_offset, port_count;
4258         int i;
4259
4260         for (i = 0; i < xhci->num_ext_caps; i++) {
4261                 if (xhci->ext_caps[i] & capability) {
4262                         /* port offsets starts at 1 */
4263                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4264                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4265                         if (port >= port_offset &&
4266                             port < port_offset + port_count)
4267                                 return 1;
4268                 }
4269         }
4270         return 0;
4271 }
4272
4273 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4274 {
4275         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4276         int             portnum = udev->portnum - 1;
4277
4278         if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4279                         !udev->lpm_capable)
4280                 return 0;
4281
4282         /* we only support lpm for non-hub device connected to root hub yet */
4283         if (!udev->parent || udev->parent->parent ||
4284                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4285                 return 0;
4286
4287         if (xhci->hw_lpm_support == 1 &&
4288                         xhci_check_usb2_port_capability(
4289                                 xhci, portnum, XHCI_HLC)) {
4290                 udev->usb2_hw_lpm_capable = 1;
4291                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4292                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4293                 if (xhci_check_usb2_port_capability(xhci, portnum,
4294                                         XHCI_BLC))
4295                         udev->usb2_hw_lpm_besl_capable = 1;
4296         }
4297
4298         return 0;
4299 }
4300
4301 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4302
4303 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4304 static unsigned long long xhci_service_interval_to_ns(
4305                 struct usb_endpoint_descriptor *desc)
4306 {
4307         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4308 }
4309
4310 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4311                 enum usb3_link_state state)
4312 {
4313         unsigned long long sel;
4314         unsigned long long pel;
4315         unsigned int max_sel_pel;
4316         char *state_name;
4317
4318         switch (state) {
4319         case USB3_LPM_U1:
4320                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4321                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4322                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4323                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4324                 state_name = "U1";
4325                 break;
4326         case USB3_LPM_U2:
4327                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4328                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4329                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4330                 state_name = "U2";
4331                 break;
4332         default:
4333                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4334                                 __func__);
4335                 return USB3_LPM_DISABLED;
4336         }
4337
4338         if (sel <= max_sel_pel && pel <= max_sel_pel)
4339                 return USB3_LPM_DEVICE_INITIATED;
4340
4341         if (sel > max_sel_pel)
4342                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4343                                 "due to long SEL %llu ms\n",
4344                                 state_name, sel);
4345         else
4346                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4347                                 "due to long PEL %llu ms\n",
4348                                 state_name, pel);
4349         return USB3_LPM_DISABLED;
4350 }
4351
4352 /* The U1 timeout should be the maximum of the following values:
4353  *  - For control endpoints, U1 system exit latency (SEL) * 3
4354  *  - For bulk endpoints, U1 SEL * 5
4355  *  - For interrupt endpoints:
4356  *    - Notification EPs, U1 SEL * 3
4357  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4358  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4359  */
4360 static unsigned long long xhci_calculate_intel_u1_timeout(
4361                 struct usb_device *udev,
4362                 struct usb_endpoint_descriptor *desc)
4363 {
4364         unsigned long long timeout_ns;
4365         int ep_type;
4366         int intr_type;
4367
4368         ep_type = usb_endpoint_type(desc);
4369         switch (ep_type) {
4370         case USB_ENDPOINT_XFER_CONTROL:
4371                 timeout_ns = udev->u1_params.sel * 3;
4372                 break;
4373         case USB_ENDPOINT_XFER_BULK:
4374                 timeout_ns = udev->u1_params.sel * 5;
4375                 break;
4376         case USB_ENDPOINT_XFER_INT:
4377                 intr_type = usb_endpoint_interrupt_type(desc);
4378                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4379                         timeout_ns = udev->u1_params.sel * 3;
4380                         break;
4381                 }
4382                 /* Otherwise the calculation is the same as isoc eps */
4383         case USB_ENDPOINT_XFER_ISOC:
4384                 timeout_ns = xhci_service_interval_to_ns(desc);
4385                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4386                 if (timeout_ns < udev->u1_params.sel * 2)
4387                         timeout_ns = udev->u1_params.sel * 2;
4388                 break;
4389         default:
4390                 return 0;
4391         }
4392
4393         return timeout_ns;
4394 }
4395
4396 /* Returns the hub-encoded U1 timeout value. */
4397 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4398                 struct usb_device *udev,
4399                 struct usb_endpoint_descriptor *desc)
4400 {
4401         unsigned long long timeout_ns;
4402
4403         if (xhci->quirks & XHCI_INTEL_HOST)
4404                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4405         else
4406                 timeout_ns = udev->u1_params.sel;
4407
4408         /* The U1 timeout is encoded in 1us intervals.
4409          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4410          */
4411         if (timeout_ns == USB3_LPM_DISABLED)
4412                 timeout_ns = 1;
4413         else
4414                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4415
4416         /* If the necessary timeout value is bigger than what we can set in the
4417          * USB 3.0 hub, we have to disable hub-initiated U1.
4418          */
4419         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4420                 return timeout_ns;
4421         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4422                         "due to long timeout %llu ms\n", timeout_ns);
4423         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4424 }
4425
4426 /* The U2 timeout should be the maximum of:
4427  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4428  *  - largest bInterval of any active periodic endpoint (to avoid going
4429  *    into lower power link states between intervals).
4430  *  - the U2 Exit Latency of the device
4431  */
4432 static unsigned long long xhci_calculate_intel_u2_timeout(
4433                 struct usb_device *udev,
4434                 struct usb_endpoint_descriptor *desc)
4435 {
4436         unsigned long long timeout_ns;
4437         unsigned long long u2_del_ns;
4438
4439         timeout_ns = 10 * 1000 * 1000;
4440
4441         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4442                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4443                 timeout_ns = xhci_service_interval_to_ns(desc);
4444
4445         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4446         if (u2_del_ns > timeout_ns)
4447                 timeout_ns = u2_del_ns;
4448
4449         return timeout_ns;
4450 }
4451
4452 /* Returns the hub-encoded U2 timeout value. */
4453 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4454                 struct usb_device *udev,
4455                 struct usb_endpoint_descriptor *desc)
4456 {
4457         unsigned long long timeout_ns;
4458
4459         if (xhci->quirks & XHCI_INTEL_HOST)
4460                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4461         else
4462                 timeout_ns = udev->u2_params.sel;
4463
4464         /* The U2 timeout is encoded in 256us intervals */
4465         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4466         /* If the necessary timeout value is bigger than what we can set in the
4467          * USB 3.0 hub, we have to disable hub-initiated U2.
4468          */
4469         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4470                 return timeout_ns;
4471         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4472                         "due to long timeout %llu ms\n", timeout_ns);
4473         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4474 }
4475
4476 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4477                 struct usb_device *udev,
4478                 struct usb_endpoint_descriptor *desc,
4479                 enum usb3_link_state state,
4480                 u16 *timeout)
4481 {
4482         if (state == USB3_LPM_U1)
4483                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4484         else if (state == USB3_LPM_U2)
4485                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4486
4487         return USB3_LPM_DISABLED;
4488 }
4489
4490 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4491                 struct usb_device *udev,
4492                 struct usb_endpoint_descriptor *desc,
4493                 enum usb3_link_state state,
4494                 u16 *timeout)
4495 {
4496         u16 alt_timeout;
4497
4498         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4499                 desc, state, timeout);
4500
4501         /* If we found we can't enable hub-initiated LPM, or
4502          * the U1 or U2 exit latency was too high to allow
4503          * device-initiated LPM as well, just stop searching.
4504          */
4505         if (alt_timeout == USB3_LPM_DISABLED ||
4506                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4507                 *timeout = alt_timeout;
4508                 return -E2BIG;
4509         }
4510         if (alt_timeout > *timeout)
4511                 *timeout = alt_timeout;
4512         return 0;
4513 }
4514
4515 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4516                 struct usb_device *udev,
4517                 struct usb_host_interface *alt,
4518                 enum usb3_link_state state,
4519                 u16 *timeout)
4520 {
4521         int j;
4522
4523         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4524                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4525                                         &alt->endpoint[j].desc, state, timeout))
4526                         return -E2BIG;
4527                 continue;
4528         }
4529         return 0;
4530 }
4531
4532 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4533                 enum usb3_link_state state)
4534 {
4535         struct usb_device *parent;
4536         unsigned int num_hubs;
4537
4538         if (state == USB3_LPM_U2)
4539                 return 0;
4540
4541         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4542         for (parent = udev->parent, num_hubs = 0; parent->parent;
4543                         parent = parent->parent)
4544                 num_hubs++;
4545
4546         if (num_hubs < 2)
4547                 return 0;
4548
4549         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4550                         " below second-tier hub.\n");
4551         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4552                         "to decrease power consumption.\n");
4553         return -E2BIG;
4554 }
4555
4556 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4557                 struct usb_device *udev,
4558                 enum usb3_link_state state)
4559 {
4560         if (xhci->quirks & XHCI_INTEL_HOST)
4561                 return xhci_check_intel_tier_policy(udev, state);
4562         else
4563                 return 0;
4564 }
4565
4566 /* Returns the U1 or U2 timeout that should be enabled.
4567  * If the tier check or timeout setting functions return with a non-zero exit
4568  * code, that means the timeout value has been finalized and we shouldn't look
4569  * at any more endpoints.
4570  */
4571 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4572                         struct usb_device *udev, enum usb3_link_state state)
4573 {
4574         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4575         struct usb_host_config *config;
4576         char *state_name;
4577         int i;
4578         u16 timeout = USB3_LPM_DISABLED;
4579
4580         if (state == USB3_LPM_U1)
4581                 state_name = "U1";
4582         else if (state == USB3_LPM_U2)
4583                 state_name = "U2";
4584         else {
4585                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4586                                 state);
4587                 return timeout;
4588         }
4589
4590         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4591                 return timeout;
4592
4593         /* Gather some information about the currently installed configuration
4594          * and alternate interface settings.
4595          */
4596         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4597                         state, &timeout))
4598                 return timeout;
4599
4600         config = udev->actconfig;
4601         if (!config)
4602                 return timeout;
4603
4604         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4605                 struct usb_driver *driver;
4606                 struct usb_interface *intf = config->interface[i];
4607
4608                 if (!intf)
4609                         continue;
4610
4611                 /* Check if any currently bound drivers want hub-initiated LPM
4612                  * disabled.
4613                  */
4614                 if (intf->dev.driver) {
4615                         driver = to_usb_driver(intf->dev.driver);
4616                         if (driver && driver->disable_hub_initiated_lpm) {
4617                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4618                                                 "at request of driver %s\n",
4619                                                 state_name, driver->name);
4620                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4621                         }
4622                 }
4623
4624                 /* Not sure how this could happen... */
4625                 if (!intf->cur_altsetting)
4626                         continue;
4627
4628                 if (xhci_update_timeout_for_interface(xhci, udev,
4629                                         intf->cur_altsetting,
4630                                         state, &timeout))
4631                         return timeout;
4632         }
4633         return timeout;
4634 }
4635
4636 static int calculate_max_exit_latency(struct usb_device *udev,
4637                 enum usb3_link_state state_changed,
4638                 u16 hub_encoded_timeout)
4639 {
4640         unsigned long long u1_mel_us = 0;
4641         unsigned long long u2_mel_us = 0;
4642         unsigned long long mel_us = 0;
4643         bool disabling_u1;
4644         bool disabling_u2;
4645         bool enabling_u1;
4646         bool enabling_u2;
4647
4648         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4649                         hub_encoded_timeout == USB3_LPM_DISABLED);
4650         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4651                         hub_encoded_timeout == USB3_LPM_DISABLED);
4652
4653         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4654                         hub_encoded_timeout != USB3_LPM_DISABLED);
4655         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4656                         hub_encoded_timeout != USB3_LPM_DISABLED);
4657
4658         /* If U1 was already enabled and we're not disabling it,
4659          * or we're going to enable U1, account for the U1 max exit latency.
4660          */
4661         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4662                         enabling_u1)
4663                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4664         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4665                         enabling_u2)
4666                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4667
4668         if (u1_mel_us > u2_mel_us)
4669                 mel_us = u1_mel_us;
4670         else
4671                 mel_us = u2_mel_us;
4672         /* xHCI host controller max exit latency field is only 16 bits wide. */
4673         if (mel_us > MAX_EXIT) {
4674                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4675                                 "is too big.\n", mel_us);
4676                 return -E2BIG;
4677         }
4678         return mel_us;
4679 }
4680
4681 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4682 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4683                         struct usb_device *udev, enum usb3_link_state state)
4684 {
4685         struct xhci_hcd *xhci;
4686         u16 hub_encoded_timeout;
4687         int mel;
4688         int ret;
4689
4690         xhci = hcd_to_xhci(hcd);
4691         /* The LPM timeout values are pretty host-controller specific, so don't
4692          * enable hub-initiated timeouts unless the vendor has provided
4693          * information about their timeout algorithm.
4694          */
4695         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4696                         !xhci->devs[udev->slot_id])
4697                 return USB3_LPM_DISABLED;
4698
4699         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4700         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4701         if (mel < 0) {
4702                 /* Max Exit Latency is too big, disable LPM. */
4703                 hub_encoded_timeout = USB3_LPM_DISABLED;
4704                 mel = 0;
4705         }
4706
4707         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4708         if (ret)
4709                 return ret;
4710         return hub_encoded_timeout;
4711 }
4712
4713 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4714                         struct usb_device *udev, enum usb3_link_state state)
4715 {
4716         struct xhci_hcd *xhci;
4717         u16 mel;
4718
4719         xhci = hcd_to_xhci(hcd);
4720         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4721                         !xhci->devs[udev->slot_id])
4722                 return 0;
4723
4724         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4725         return xhci_change_max_exit_latency(xhci, udev, mel);
4726 }
4727 #else /* CONFIG_PM */
4728
4729 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4730                                 struct usb_device *udev, int enable)
4731 {
4732         return 0;
4733 }
4734
4735 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4736 {
4737         return 0;
4738 }
4739
4740 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4741                         struct usb_device *udev, enum usb3_link_state state)
4742 {
4743         return USB3_LPM_DISABLED;
4744 }
4745
4746 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4747                         struct usb_device *udev, enum usb3_link_state state)
4748 {
4749         return 0;
4750 }
4751 #endif  /* CONFIG_PM */
4752
4753 /*-------------------------------------------------------------------------*/
4754
4755 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4756  * internal data structures for the device.
4757  */
4758 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4759                         struct usb_tt *tt, gfp_t mem_flags)
4760 {
4761         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4762         struct xhci_virt_device *vdev;
4763         struct xhci_command *config_cmd;
4764         struct xhci_input_control_ctx *ctrl_ctx;
4765         struct xhci_slot_ctx *slot_ctx;
4766         unsigned long flags;
4767         unsigned think_time;
4768         int ret;
4769
4770         /* Ignore root hubs */
4771         if (!hdev->parent)
4772                 return 0;
4773
4774         vdev = xhci->devs[hdev->slot_id];
4775         if (!vdev) {
4776                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4777                 return -EINVAL;
4778         }
4779         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4780         if (!config_cmd) {
4781                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4782                 return -ENOMEM;
4783         }
4784         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4785         if (!ctrl_ctx) {
4786                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4787                                 __func__);
4788                 xhci_free_command(xhci, config_cmd);
4789                 return -ENOMEM;
4790         }
4791
4792         spin_lock_irqsave(&xhci->lock, flags);
4793         if (hdev->speed == USB_SPEED_HIGH &&
4794                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4795                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4796                 xhci_free_command(xhci, config_cmd);
4797                 spin_unlock_irqrestore(&xhci->lock, flags);
4798                 return -ENOMEM;
4799         }
4800
4801         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4802         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4803         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4804         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4805         /*
4806          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4807          * but it may be already set to 1 when setup an xHCI virtual
4808          * device, so clear it anyway.
4809          */
4810         if (tt->multi)
4811                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4812         else if (hdev->speed == USB_SPEED_FULL)
4813                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4814
4815         if (xhci->hci_version > 0x95) {
4816                 xhci_dbg(xhci, "xHCI version %x needs hub "
4817                                 "TT think time and number of ports\n",
4818                                 (unsigned int) xhci->hci_version);
4819                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4820                 /* Set TT think time - convert from ns to FS bit times.
4821                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4822                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4823                  *
4824                  * xHCI 1.0: this field shall be 0 if the device is not a
4825                  * High-spped hub.
4826                  */
4827                 think_time = tt->think_time;
4828                 if (think_time != 0)
4829                         think_time = (think_time / 666) - 1;
4830                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4831                         slot_ctx->tt_info |=
4832                                 cpu_to_le32(TT_THINK_TIME(think_time));
4833         } else {
4834                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4835                                 "TT think time or number of ports\n",
4836                                 (unsigned int) xhci->hci_version);
4837         }
4838         slot_ctx->dev_state = 0;
4839         spin_unlock_irqrestore(&xhci->lock, flags);
4840
4841         xhci_dbg(xhci, "Set up %s for hub device.\n",
4842                         (xhci->hci_version > 0x95) ?
4843                         "configure endpoint" : "evaluate context");
4844         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4845         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4846
4847         /* Issue and wait for the configure endpoint or
4848          * evaluate context command.
4849          */
4850         if (xhci->hci_version > 0x95)
4851                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4852                                 false, false);
4853         else
4854                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4855                                 true, false);
4856
4857         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4858         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4859
4860         xhci_free_command(xhci, config_cmd);
4861         return ret;
4862 }
4863
4864 int xhci_get_frame(struct usb_hcd *hcd)
4865 {
4866         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4867         /* EHCI mods by the periodic size.  Why? */
4868         return readl(&xhci->run_regs->microframe_index) >> 3;
4869 }
4870
4871 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4872 {
4873         struct xhci_hcd         *xhci;
4874         struct device           *dev = hcd->self.controller;
4875         int                     retval;
4876
4877         /* Accept arbitrarily long scatter-gather lists */
4878         hcd->self.sg_tablesize = ~0;
4879
4880         /* support to build packet from discontinuous buffers */
4881         hcd->self.no_sg_constraint = 1;
4882
4883         /* XHCI controllers don't stop the ep queue on short packets :| */
4884         hcd->self.no_stop_on_short = 1;
4885
4886         xhci = hcd_to_xhci(hcd);
4887
4888         if (usb_hcd_is_primary_hcd(hcd)) {
4889                 xhci->main_hcd = hcd;
4890                 /* Mark the first roothub as being USB 2.0.
4891                  * The xHCI driver will register the USB 3.0 roothub.
4892                  */
4893                 hcd->speed = HCD_USB2;
4894                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4895                 /*
4896                  * USB 2.0 roothub under xHCI has an integrated TT,
4897                  * (rate matching hub) as opposed to having an OHCI/UHCI
4898                  * companion controller.
4899                  */
4900                 hcd->has_tt = 1;
4901         } else {
4902                 if (xhci->sbrn == 0x31) {
4903                         xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4904                         hcd->speed = HCD_USB31;
4905                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4906                 }
4907                 /* xHCI private pointer was set in xhci_pci_probe for the second
4908                  * registered roothub.
4909                  */
4910                 return 0;
4911         }
4912
4913         mutex_init(&xhci->mutex);
4914         xhci->cap_regs = hcd->regs;
4915         xhci->op_regs = hcd->regs +
4916                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4917         xhci->run_regs = hcd->regs +
4918                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4919         /* Cache read-only capability registers */
4920         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4921         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4922         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4923         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4924         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4925         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4926         if (xhci->hci_version > 0x100)
4927                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4928         xhci_print_registers(xhci);
4929
4930         xhci->quirks = quirks;
4931
4932         get_quirks(dev, xhci);
4933
4934         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4935          * success event after a short transfer. This quirk will ignore such
4936          * spurious event.
4937          */
4938         if (xhci->hci_version > 0x96)
4939                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4940
4941         /* Make sure the HC is halted. */
4942         retval = xhci_halt(xhci);
4943         if (retval)
4944                 return retval;
4945
4946         xhci_dbg(xhci, "Resetting HCD\n");
4947         /* Reset the internal HC memory state and registers. */
4948         retval = xhci_reset(xhci);
4949         if (retval)
4950                 return retval;
4951         xhci_dbg(xhci, "Reset complete\n");
4952
4953         /*
4954          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4955          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4956          * address memory pointers actually. So, this driver clears the AC64
4957          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4958          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4959          */
4960         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4961                 xhci->hcc_params &= ~BIT(0);
4962
4963         /* Set dma_mask and coherent_dma_mask to 64-bits,
4964          * if xHC supports 64-bit addressing */
4965         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4966                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4967                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4968                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4969         } else {
4970                 /*
4971                  * This is to avoid error in cases where a 32-bit USB
4972                  * controller is used on a 64-bit capable system.
4973                  */
4974                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4975                 if (retval)
4976                         return retval;
4977                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4978                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4979         }
4980
4981         xhci_dbg(xhci, "Calling HCD init\n");
4982         /* Initialize HCD and host controller data structures. */
4983         retval = xhci_init(hcd);
4984         if (retval)
4985                 return retval;
4986         xhci_dbg(xhci, "Called HCD init\n");
4987
4988         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4989                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
4990
4991         return 0;
4992 }
4993 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4994
4995 static const struct hc_driver xhci_hc_driver = {
4996         .description =          "xhci-hcd",
4997         .product_desc =         "xHCI Host Controller",
4998         .hcd_priv_size =        sizeof(struct xhci_hcd),
4999
5000         /*
5001          * generic hardware linkage
5002          */
5003         .irq =                  xhci_irq,
5004         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
5005
5006         /*
5007          * basic lifecycle operations
5008          */
5009         .reset =                NULL, /* set in xhci_init_driver() */
5010         .start =                xhci_run,
5011         .stop =                 xhci_stop,
5012         .shutdown =             xhci_shutdown,
5013
5014         /*
5015          * managing i/o requests and associated device resources
5016          */
5017         .urb_enqueue =          xhci_urb_enqueue,
5018         .urb_dequeue =          xhci_urb_dequeue,
5019         .alloc_dev =            xhci_alloc_dev,
5020         .free_dev =             xhci_free_dev,
5021         .alloc_streams =        xhci_alloc_streams,
5022         .free_streams =         xhci_free_streams,
5023         .add_endpoint =         xhci_add_endpoint,
5024         .drop_endpoint =        xhci_drop_endpoint,
5025         .endpoint_reset =       xhci_endpoint_reset,
5026         .check_bandwidth =      xhci_check_bandwidth,
5027         .reset_bandwidth =      xhci_reset_bandwidth,
5028         .address_device =       xhci_address_device,
5029         .enable_device =        xhci_enable_device,
5030         .update_hub_device =    xhci_update_hub_device,
5031         .reset_device =         xhci_discover_or_reset_device,
5032
5033         /*
5034          * scheduling support
5035          */
5036         .get_frame_number =     xhci_get_frame,
5037
5038         /*
5039          * root hub support
5040          */
5041         .hub_control =          xhci_hub_control,
5042         .hub_status_data =      xhci_hub_status_data,
5043         .bus_suspend =          xhci_bus_suspend,
5044         .bus_resume =           xhci_bus_resume,
5045
5046         /*
5047          * call back when device connected and addressed
5048          */
5049         .update_device =        xhci_update_device,
5050         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5051         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5052         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5053         .find_raw_port_number = xhci_find_raw_port_number,
5054 };
5055
5056 void xhci_init_driver(struct hc_driver *drv,
5057                       const struct xhci_driver_overrides *over)
5058 {
5059         BUG_ON(!over);
5060
5061         /* Copy the generic table to drv then apply the overrides */
5062         *drv = xhci_hc_driver;
5063
5064         if (over) {
5065                 drv->hcd_priv_size += over->extra_priv_size;
5066                 if (over->reset)
5067                         drv->reset = over->reset;
5068                 if (over->start)
5069                         drv->start = over->start;
5070         }
5071 }
5072 EXPORT_SYMBOL_GPL(xhci_init_driver);
5073
5074 MODULE_DESCRIPTION(DRIVER_DESC);
5075 MODULE_AUTHOR(DRIVER_AUTHOR);
5076 MODULE_LICENSE("GPL");
5077
5078 static int __init xhci_hcd_init(void)
5079 {
5080         /*
5081          * Check the compiler generated sizes of structures that must be laid
5082          * out in specific ways for hardware access.
5083          */
5084         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5085         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5086         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5087         /* xhci_device_control has eight fields, and also
5088          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5089          */
5090         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5091         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5092         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5093         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5094         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5095         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5096         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5097
5098         if (usb_disabled())
5099                 return -ENODEV;
5100
5101         return 0;
5102 }
5103
5104 /*
5105  * If an init function is provided, an exit function must also be provided
5106  * to allow module unload.
5107  */
5108 static void __exit xhci_hcd_fini(void) { }
5109
5110 module_init(xhci_hcd_init);
5111 module_exit(xhci_hcd_fini);