Merge remote-tracking branches 'asoc/topic/wm8753', 'asoc/topic/wm8770', 'asoc/topic...
[linux-block.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/log2.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/slab.h>
17 #include <linux/dmi.h>
18 #include <linux/dma-mapping.h>
19
20 #include "xhci.h"
21 #include "xhci-trace.h"
22 #include "xhci-mtk.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28
29 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35
36 static unsigned int quirks;
37 module_param(quirks, uint, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42  * xhci_handshake - spin reading hc until handshake completes or fails
43  * @ptr: address of hc register to be read
44  * @mask: bits to look at in result of read
45  * @done: value of those bits when handshake succeeds
46  * @usec: timeout in microseconds
47  *
48  * Returns negative errno, or zero on success
49  *
50  * Success happens when the "mask" bits have the specified value (hardware
51  * handshake done).  There are two failure modes:  "usec" have passed (major
52  * hardware flakeout), or the register reads as all-ones (hardware removed).
53  */
54 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
55 {
56         u32     result;
57
58         do {
59                 result = readl(ptr);
60                 if (result == ~(u32)0)          /* card removed */
61                         return -ENODEV;
62                 result &= mask;
63                 if (result == done)
64                         return 0;
65                 udelay(1);
66                 usec--;
67         } while (usec > 0);
68         return -ETIMEDOUT;
69 }
70
71 /*
72  * Disable interrupts and begin the xHCI halting process.
73  */
74 void xhci_quiesce(struct xhci_hcd *xhci)
75 {
76         u32 halted;
77         u32 cmd;
78         u32 mask;
79
80         mask = ~(XHCI_IRQS);
81         halted = readl(&xhci->op_regs->status) & STS_HALT;
82         if (!halted)
83                 mask &= ~CMD_RUN;
84
85         cmd = readl(&xhci->op_regs->command);
86         cmd &= mask;
87         writel(cmd, &xhci->op_regs->command);
88 }
89
90 /*
91  * Force HC into halt state.
92  *
93  * Disable any IRQs and clear the run/stop bit.
94  * HC will complete any current and actively pipelined transactions, and
95  * should halt within 16 ms of the run/stop bit being cleared.
96  * Read HC Halted bit in the status register to see when the HC is finished.
97  */
98 int xhci_halt(struct xhci_hcd *xhci)
99 {
100         int ret;
101         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
102         xhci_quiesce(xhci);
103
104         ret = xhci_handshake(&xhci->op_regs->status,
105                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
106         if (ret) {
107                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
108                 return ret;
109         }
110         xhci->xhc_state |= XHCI_STATE_HALTED;
111         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
112         return ret;
113 }
114
115 /*
116  * Set the run bit and wait for the host to be running.
117  */
118 int xhci_start(struct xhci_hcd *xhci)
119 {
120         u32 temp;
121         int ret;
122
123         temp = readl(&xhci->op_regs->command);
124         temp |= (CMD_RUN);
125         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
126                         temp);
127         writel(temp, &xhci->op_regs->command);
128
129         /*
130          * Wait for the HCHalted Status bit to be 0 to indicate the host is
131          * running.
132          */
133         ret = xhci_handshake(&xhci->op_regs->status,
134                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
135         if (ret == -ETIMEDOUT)
136                 xhci_err(xhci, "Host took too long to start, "
137                                 "waited %u microseconds.\n",
138                                 XHCI_MAX_HALT_USEC);
139         if (!ret)
140                 /* clear state flags. Including dying, halted or removing */
141                 xhci->xhc_state = 0;
142
143         return ret;
144 }
145
146 /*
147  * Reset a halted HC.
148  *
149  * This resets pipelines, timers, counters, state machines, etc.
150  * Transactions will be terminated immediately, and operational registers
151  * will be set to their defaults.
152  */
153 int xhci_reset(struct xhci_hcd *xhci)
154 {
155         u32 command;
156         u32 state;
157         int ret, i;
158
159         state = readl(&xhci->op_regs->status);
160
161         if (state == ~(u32)0) {
162                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
163                 return -ENODEV;
164         }
165
166         if ((state & STS_HALT) == 0) {
167                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
168                 return 0;
169         }
170
171         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
172         command = readl(&xhci->op_regs->command);
173         command |= CMD_RESET;
174         writel(command, &xhci->op_regs->command);
175
176         /* Existing Intel xHCI controllers require a delay of 1 mS,
177          * after setting the CMD_RESET bit, and before accessing any
178          * HC registers. This allows the HC to complete the
179          * reset operation and be ready for HC register access.
180          * Without this delay, the subsequent HC register access,
181          * may result in a system hang very rarely.
182          */
183         if (xhci->quirks & XHCI_INTEL_HOST)
184                 udelay(1000);
185
186         ret = xhci_handshake(&xhci->op_regs->command,
187                         CMD_RESET, 0, 10 * 1000 * 1000);
188         if (ret)
189                 return ret;
190
191         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
192                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
193
194         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
195                          "Wait for controller to be ready for doorbell rings");
196         /*
197          * xHCI cannot write to any doorbells or operational registers other
198          * than status until the "Controller Not Ready" flag is cleared.
199          */
200         ret = xhci_handshake(&xhci->op_regs->status,
201                         STS_CNR, 0, 10 * 1000 * 1000);
202
203         for (i = 0; i < 2; i++) {
204                 xhci->bus_state[i].port_c_suspend = 0;
205                 xhci->bus_state[i].suspended_ports = 0;
206                 xhci->bus_state[i].resuming_ports = 0;
207         }
208
209         return ret;
210 }
211
212
213 #ifdef CONFIG_USB_PCI
214 /*
215  * Set up MSI
216  */
217 static int xhci_setup_msi(struct xhci_hcd *xhci)
218 {
219         int ret;
220         /*
221          * TODO:Check with MSI Soc for sysdev
222          */
223         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
224
225         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
226         if (ret < 0) {
227                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
228                                 "failed to allocate MSI entry");
229                 return ret;
230         }
231
232         ret = request_irq(pdev->irq, xhci_msi_irq,
233                                 0, "xhci_hcd", xhci_to_hcd(xhci));
234         if (ret) {
235                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
236                                 "disable MSI interrupt");
237                 pci_free_irq_vectors(pdev);
238         }
239
240         return ret;
241 }
242
243 /*
244  * Set up MSI-X
245  */
246 static int xhci_setup_msix(struct xhci_hcd *xhci)
247 {
248         int i, ret = 0;
249         struct usb_hcd *hcd = xhci_to_hcd(xhci);
250         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
251
252         /*
253          * calculate number of msi-x vectors supported.
254          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
255          *   with max number of interrupters based on the xhci HCSPARAMS1.
256          * - num_online_cpus: maximum msi-x vectors per CPUs core.
257          *   Add additional 1 vector to ensure always available interrupt.
258          */
259         xhci->msix_count = min(num_online_cpus() + 1,
260                                 HCS_MAX_INTRS(xhci->hcs_params1));
261
262         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
263                         PCI_IRQ_MSIX);
264         if (ret < 0) {
265                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
266                                 "Failed to enable MSI-X");
267                 return ret;
268         }
269
270         for (i = 0; i < xhci->msix_count; i++) {
271                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
272                                 "xhci_hcd", xhci_to_hcd(xhci));
273                 if (ret)
274                         goto disable_msix;
275         }
276
277         hcd->msix_enabled = 1;
278         return ret;
279
280 disable_msix:
281         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
282         while (--i >= 0)
283                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
284         pci_free_irq_vectors(pdev);
285         return ret;
286 }
287
288 /* Free any IRQs and disable MSI-X */
289 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
290 {
291         struct usb_hcd *hcd = xhci_to_hcd(xhci);
292         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
293
294         if (xhci->quirks & XHCI_PLAT)
295                 return;
296
297         /* return if using legacy interrupt */
298         if (hcd->irq > 0)
299                 return;
300
301         if (hcd->msix_enabled) {
302                 int i;
303
304                 for (i = 0; i < xhci->msix_count; i++)
305                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
306         } else {
307                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
308         }
309
310         pci_free_irq_vectors(pdev);
311         hcd->msix_enabled = 0;
312 }
313
314 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
315 {
316         struct usb_hcd *hcd = xhci_to_hcd(xhci);
317
318         if (hcd->msix_enabled) {
319                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
320                 int i;
321
322                 for (i = 0; i < xhci->msix_count; i++)
323                         synchronize_irq(pci_irq_vector(pdev, i));
324         }
325 }
326
327 static int xhci_try_enable_msi(struct usb_hcd *hcd)
328 {
329         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
330         struct pci_dev  *pdev;
331         int ret;
332
333         /* The xhci platform device has set up IRQs through usb_add_hcd. */
334         if (xhci->quirks & XHCI_PLAT)
335                 return 0;
336
337         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
338         /*
339          * Some Fresco Logic host controllers advertise MSI, but fail to
340          * generate interrupts.  Don't even try to enable MSI.
341          */
342         if (xhci->quirks & XHCI_BROKEN_MSI)
343                 goto legacy_irq;
344
345         /* unregister the legacy interrupt */
346         if (hcd->irq)
347                 free_irq(hcd->irq, hcd);
348         hcd->irq = 0;
349
350         ret = xhci_setup_msix(xhci);
351         if (ret)
352                 /* fall back to msi*/
353                 ret = xhci_setup_msi(xhci);
354
355         if (!ret) {
356                 hcd->msi_enabled = 1;
357                 return 0;
358         }
359
360         if (!pdev->irq) {
361                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
362                 return -EINVAL;
363         }
364
365  legacy_irq:
366         if (!strlen(hcd->irq_descr))
367                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
368                          hcd->driver->description, hcd->self.busnum);
369
370         /* fall back to legacy interrupt*/
371         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
372                         hcd->irq_descr, hcd);
373         if (ret) {
374                 xhci_err(xhci, "request interrupt %d failed\n",
375                                 pdev->irq);
376                 return ret;
377         }
378         hcd->irq = pdev->irq;
379         return 0;
380 }
381
382 #else
383
384 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
385 {
386         return 0;
387 }
388
389 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
390 {
391 }
392
393 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
394 {
395 }
396
397 #endif
398
399 static void compliance_mode_recovery(struct timer_list *t)
400 {
401         struct xhci_hcd *xhci;
402         struct usb_hcd *hcd;
403         u32 temp;
404         int i;
405
406         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
407
408         for (i = 0; i < xhci->num_usb3_ports; i++) {
409                 temp = readl(xhci->usb3_ports[i]);
410                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
411                         /*
412                          * Compliance Mode Detected. Letting USB Core
413                          * handle the Warm Reset
414                          */
415                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
416                                         "Compliance mode detected->port %d",
417                                         i + 1);
418                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
419                                         "Attempting compliance mode recovery");
420                         hcd = xhci->shared_hcd;
421
422                         if (hcd->state == HC_STATE_SUSPENDED)
423                                 usb_hcd_resume_root_hub(hcd);
424
425                         usb_hcd_poll_rh_status(hcd);
426                 }
427         }
428
429         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
430                 mod_timer(&xhci->comp_mode_recovery_timer,
431                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
432 }
433
434 /*
435  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
436  * that causes ports behind that hardware to enter compliance mode sometimes.
437  * The quirk creates a timer that polls every 2 seconds the link state of
438  * each host controller's port and recovers it by issuing a Warm reset
439  * if Compliance mode is detected, otherwise the port will become "dead" (no
440  * device connections or disconnections will be detected anymore). Becasue no
441  * status event is generated when entering compliance mode (per xhci spec),
442  * this quirk is needed on systems that have the failing hardware installed.
443  */
444 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
445 {
446         xhci->port_status_u0 = 0;
447         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
448                     0);
449         xhci->comp_mode_recovery_timer.expires = jiffies +
450                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
451
452         add_timer(&xhci->comp_mode_recovery_timer);
453         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
454                         "Compliance mode recovery timer initialized");
455 }
456
457 /*
458  * This function identifies the systems that have installed the SN65LVPE502CP
459  * USB3.0 re-driver and that need the Compliance Mode Quirk.
460  * Systems:
461  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
462  */
463 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
464 {
465         const char *dmi_product_name, *dmi_sys_vendor;
466
467         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
468         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
469         if (!dmi_product_name || !dmi_sys_vendor)
470                 return false;
471
472         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
473                 return false;
474
475         if (strstr(dmi_product_name, "Z420") ||
476                         strstr(dmi_product_name, "Z620") ||
477                         strstr(dmi_product_name, "Z820") ||
478                         strstr(dmi_product_name, "Z1 Workstation"))
479                 return true;
480
481         return false;
482 }
483
484 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
485 {
486         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
487 }
488
489
490 /*
491  * Initialize memory for HCD and xHC (one-time init).
492  *
493  * Program the PAGESIZE register, initialize the device context array, create
494  * device contexts (?), set up a command ring segment (or two?), create event
495  * ring (one for now).
496  */
497 static int xhci_init(struct usb_hcd *hcd)
498 {
499         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
500         int retval = 0;
501
502         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
503         spin_lock_init(&xhci->lock);
504         if (xhci->hci_version == 0x95 && link_quirk) {
505                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
506                                 "QUIRK: Not clearing Link TRB chain bits.");
507                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
508         } else {
509                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
510                                 "xHCI doesn't need link TRB QUIRK");
511         }
512         retval = xhci_mem_init(xhci, GFP_KERNEL);
513         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
514
515         /* Initializing Compliance Mode Recovery Data If Needed */
516         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
517                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
518                 compliance_mode_recovery_timer_init(xhci);
519         }
520
521         return retval;
522 }
523
524 /*-------------------------------------------------------------------------*/
525
526
527 static int xhci_run_finished(struct xhci_hcd *xhci)
528 {
529         if (xhci_start(xhci)) {
530                 xhci_halt(xhci);
531                 return -ENODEV;
532         }
533         xhci->shared_hcd->state = HC_STATE_RUNNING;
534         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
535
536         if (xhci->quirks & XHCI_NEC_HOST)
537                 xhci_ring_cmd_db(xhci);
538
539         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
540                         "Finished xhci_run for USB3 roothub");
541         return 0;
542 }
543
544 /*
545  * Start the HC after it was halted.
546  *
547  * This function is called by the USB core when the HC driver is added.
548  * Its opposite is xhci_stop().
549  *
550  * xhci_init() must be called once before this function can be called.
551  * Reset the HC, enable device slot contexts, program DCBAAP, and
552  * set command ring pointer and event ring pointer.
553  *
554  * Setup MSI-X vectors and enable interrupts.
555  */
556 int xhci_run(struct usb_hcd *hcd)
557 {
558         u32 temp;
559         u64 temp_64;
560         int ret;
561         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
562
563         /* Start the xHCI host controller running only after the USB 2.0 roothub
564          * is setup.
565          */
566
567         hcd->uses_new_polling = 1;
568         if (!usb_hcd_is_primary_hcd(hcd))
569                 return xhci_run_finished(xhci);
570
571         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
572
573         ret = xhci_try_enable_msi(hcd);
574         if (ret)
575                 return ret;
576
577         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
578         temp_64 &= ~ERST_PTR_MASK;
579         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
580                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
581
582         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
583                         "// Set the interrupt modulation register");
584         temp = readl(&xhci->ir_set->irq_control);
585         temp &= ~ER_IRQ_INTERVAL_MASK;
586         temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
587         writel(temp, &xhci->ir_set->irq_control);
588
589         /* Set the HCD state before we enable the irqs */
590         temp = readl(&xhci->op_regs->command);
591         temp |= (CMD_EIE);
592         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
593                         "// Enable interrupts, cmd = 0x%x.", temp);
594         writel(temp, &xhci->op_regs->command);
595
596         temp = readl(&xhci->ir_set->irq_pending);
597         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
598                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
599                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
600         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
601
602         if (xhci->quirks & XHCI_NEC_HOST) {
603                 struct xhci_command *command;
604
605                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
606                 if (!command)
607                         return -ENOMEM;
608
609                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
610                                 TRB_TYPE(TRB_NEC_GET_FW));
611                 if (ret)
612                         xhci_free_command(xhci, command);
613         }
614         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
615                         "Finished xhci_run for USB2 roothub");
616
617         xhci_dbc_init(xhci);
618
619         xhci_debugfs_init(xhci);
620
621         return 0;
622 }
623 EXPORT_SYMBOL_GPL(xhci_run);
624
625 /*
626  * Stop xHCI driver.
627  *
628  * This function is called by the USB core when the HC driver is removed.
629  * Its opposite is xhci_run().
630  *
631  * Disable device contexts, disable IRQs, and quiesce the HC.
632  * Reset the HC, finish any completed transactions, and cleanup memory.
633  */
634 static void xhci_stop(struct usb_hcd *hcd)
635 {
636         u32 temp;
637         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
638
639         mutex_lock(&xhci->mutex);
640
641         /* Only halt host and free memory after both hcds are removed */
642         if (!usb_hcd_is_primary_hcd(hcd)) {
643                 /* usb core will free this hcd shortly, unset pointer */
644                 xhci->shared_hcd = NULL;
645                 mutex_unlock(&xhci->mutex);
646                 return;
647         }
648
649         xhci_dbc_exit(xhci);
650
651         spin_lock_irq(&xhci->lock);
652         xhci->xhc_state |= XHCI_STATE_HALTED;
653         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
654         xhci_halt(xhci);
655         xhci_reset(xhci);
656         spin_unlock_irq(&xhci->lock);
657
658         xhci_cleanup_msix(xhci);
659
660         /* Deleting Compliance Mode Recovery Timer */
661         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
662                         (!(xhci_all_ports_seen_u0(xhci)))) {
663                 del_timer_sync(&xhci->comp_mode_recovery_timer);
664                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
665                                 "%s: compliance mode recovery timer deleted",
666                                 __func__);
667         }
668
669         if (xhci->quirks & XHCI_AMD_PLL_FIX)
670                 usb_amd_dev_put();
671
672         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
673                         "// Disabling event ring interrupts");
674         temp = readl(&xhci->op_regs->status);
675         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
676         temp = readl(&xhci->ir_set->irq_pending);
677         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
678
679         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
680         xhci_mem_cleanup(xhci);
681         xhci_debugfs_exit(xhci);
682         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
683                         "xhci_stop completed - status = %x",
684                         readl(&xhci->op_regs->status));
685         mutex_unlock(&xhci->mutex);
686 }
687
688 /*
689  * Shutdown HC (not bus-specific)
690  *
691  * This is called when the machine is rebooting or halting.  We assume that the
692  * machine will be powered off, and the HC's internal state will be reset.
693  * Don't bother to free memory.
694  *
695  * This will only ever be called with the main usb_hcd (the USB3 roothub).
696  */
697 static void xhci_shutdown(struct usb_hcd *hcd)
698 {
699         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
700
701         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
702                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
703
704         spin_lock_irq(&xhci->lock);
705         xhci_halt(xhci);
706         /* Workaround for spurious wakeups at shutdown with HSW */
707         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
708                 xhci_reset(xhci);
709         spin_unlock_irq(&xhci->lock);
710
711         xhci_cleanup_msix(xhci);
712
713         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
714                         "xhci_shutdown completed - status = %x",
715                         readl(&xhci->op_regs->status));
716
717         /* Yet another workaround for spurious wakeups at shutdown with HSW */
718         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
719                 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
720 }
721
722 #ifdef CONFIG_PM
723 static void xhci_save_registers(struct xhci_hcd *xhci)
724 {
725         xhci->s3.command = readl(&xhci->op_regs->command);
726         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
727         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
728         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
729         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
730         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
731         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
732         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
733         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
734 }
735
736 static void xhci_restore_registers(struct xhci_hcd *xhci)
737 {
738         writel(xhci->s3.command, &xhci->op_regs->command);
739         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
740         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
741         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
742         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
743         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
744         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
745         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
746         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
747 }
748
749 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
750 {
751         u64     val_64;
752
753         /* step 2: initialize command ring buffer */
754         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
755         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
756                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
757                                       xhci->cmd_ring->dequeue) &
758                  (u64) ~CMD_RING_RSVD_BITS) |
759                 xhci->cmd_ring->cycle_state;
760         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
761                         "// Setting command ring address to 0x%llx",
762                         (long unsigned long) val_64);
763         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
764 }
765
766 /*
767  * The whole command ring must be cleared to zero when we suspend the host.
768  *
769  * The host doesn't save the command ring pointer in the suspend well, so we
770  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
771  * aligned, because of the reserved bits in the command ring dequeue pointer
772  * register.  Therefore, we can't just set the dequeue pointer back in the
773  * middle of the ring (TRBs are 16-byte aligned).
774  */
775 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
776 {
777         struct xhci_ring *ring;
778         struct xhci_segment *seg;
779
780         ring = xhci->cmd_ring;
781         seg = ring->deq_seg;
782         do {
783                 memset(seg->trbs, 0,
784                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
785                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
786                         cpu_to_le32(~TRB_CYCLE);
787                 seg = seg->next;
788         } while (seg != ring->deq_seg);
789
790         /* Reset the software enqueue and dequeue pointers */
791         ring->deq_seg = ring->first_seg;
792         ring->dequeue = ring->first_seg->trbs;
793         ring->enq_seg = ring->deq_seg;
794         ring->enqueue = ring->dequeue;
795
796         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
797         /*
798          * Ring is now zeroed, so the HW should look for change of ownership
799          * when the cycle bit is set to 1.
800          */
801         ring->cycle_state = 1;
802
803         /*
804          * Reset the hardware dequeue pointer.
805          * Yes, this will need to be re-written after resume, but we're paranoid
806          * and want to make sure the hardware doesn't access bogus memory
807          * because, say, the BIOS or an SMI started the host without changing
808          * the command ring pointers.
809          */
810         xhci_set_cmd_ring_deq(xhci);
811 }
812
813 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
814 {
815         int port_index;
816         __le32 __iomem **port_array;
817         unsigned long flags;
818         u32 t1, t2;
819
820         spin_lock_irqsave(&xhci->lock, flags);
821
822         /* disable usb3 ports Wake bits */
823         port_index = xhci->num_usb3_ports;
824         port_array = xhci->usb3_ports;
825         while (port_index--) {
826                 t1 = readl(port_array[port_index]);
827                 t1 = xhci_port_state_to_neutral(t1);
828                 t2 = t1 & ~PORT_WAKE_BITS;
829                 if (t1 != t2)
830                         writel(t2, port_array[port_index]);
831         }
832
833         /* disable usb2 ports Wake bits */
834         port_index = xhci->num_usb2_ports;
835         port_array = xhci->usb2_ports;
836         while (port_index--) {
837                 t1 = readl(port_array[port_index]);
838                 t1 = xhci_port_state_to_neutral(t1);
839                 t2 = t1 & ~PORT_WAKE_BITS;
840                 if (t1 != t2)
841                         writel(t2, port_array[port_index]);
842         }
843
844         spin_unlock_irqrestore(&xhci->lock, flags);
845 }
846
847 /*
848  * Stop HC (not bus-specific)
849  *
850  * This is called when the machine transition into S3/S4 mode.
851  *
852  */
853 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
854 {
855         int                     rc = 0;
856         unsigned int            delay = XHCI_MAX_HALT_USEC;
857         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
858         u32                     command;
859
860         if (!hcd->state)
861                 return 0;
862
863         if (hcd->state != HC_STATE_SUSPENDED ||
864                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
865                 return -EINVAL;
866
867         xhci_dbc_suspend(xhci);
868
869         /* Clear root port wake on bits if wakeup not allowed. */
870         if (!do_wakeup)
871                 xhci_disable_port_wake_on_bits(xhci);
872
873         /* Don't poll the roothubs on bus suspend. */
874         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
875         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
876         del_timer_sync(&hcd->rh_timer);
877         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
878         del_timer_sync(&xhci->shared_hcd->rh_timer);
879
880         if (xhci->quirks & XHCI_SUSPEND_DELAY)
881                 usleep_range(1000, 1500);
882
883         spin_lock_irq(&xhci->lock);
884         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
885         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
886         /* step 1: stop endpoint */
887         /* skipped assuming that port suspend has done */
888
889         /* step 2: clear Run/Stop bit */
890         command = readl(&xhci->op_regs->command);
891         command &= ~CMD_RUN;
892         writel(command, &xhci->op_regs->command);
893
894         /* Some chips from Fresco Logic need an extraordinary delay */
895         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
896
897         if (xhci_handshake(&xhci->op_regs->status,
898                       STS_HALT, STS_HALT, delay)) {
899                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
900                 spin_unlock_irq(&xhci->lock);
901                 return -ETIMEDOUT;
902         }
903         xhci_clear_command_ring(xhci);
904
905         /* step 3: save registers */
906         xhci_save_registers(xhci);
907
908         /* step 4: set CSS flag */
909         command = readl(&xhci->op_regs->command);
910         command |= CMD_CSS;
911         writel(command, &xhci->op_regs->command);
912         if (xhci_handshake(&xhci->op_regs->status,
913                                 STS_SAVE, 0, 10 * 1000)) {
914                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
915                 spin_unlock_irq(&xhci->lock);
916                 return -ETIMEDOUT;
917         }
918         spin_unlock_irq(&xhci->lock);
919
920         /*
921          * Deleting Compliance Mode Recovery Timer because the xHCI Host
922          * is about to be suspended.
923          */
924         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
925                         (!(xhci_all_ports_seen_u0(xhci)))) {
926                 del_timer_sync(&xhci->comp_mode_recovery_timer);
927                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
928                                 "%s: compliance mode recovery timer deleted",
929                                 __func__);
930         }
931
932         /* step 5: remove core well power */
933         /* synchronize irq when using MSI-X */
934         xhci_msix_sync_irqs(xhci);
935
936         return rc;
937 }
938 EXPORT_SYMBOL_GPL(xhci_suspend);
939
940 /*
941  * start xHC (not bus-specific)
942  *
943  * This is called when the machine transition from S3/S4 mode.
944  *
945  */
946 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
947 {
948         u32                     command, temp = 0, status;
949         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
950         struct usb_hcd          *secondary_hcd;
951         int                     retval = 0;
952         bool                    comp_timer_running = false;
953
954         if (!hcd->state)
955                 return 0;
956
957         /* Wait a bit if either of the roothubs need to settle from the
958          * transition into bus suspend.
959          */
960         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
961                         time_before(jiffies,
962                                 xhci->bus_state[1].next_statechange))
963                 msleep(100);
964
965         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
966         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
967
968         spin_lock_irq(&xhci->lock);
969         if (xhci->quirks & XHCI_RESET_ON_RESUME)
970                 hibernated = true;
971
972         if (!hibernated) {
973                 /* step 1: restore register */
974                 xhci_restore_registers(xhci);
975                 /* step 2: initialize command ring buffer */
976                 xhci_set_cmd_ring_deq(xhci);
977                 /* step 3: restore state and start state*/
978                 /* step 3: set CRS flag */
979                 command = readl(&xhci->op_regs->command);
980                 command |= CMD_CRS;
981                 writel(command, &xhci->op_regs->command);
982                 if (xhci_handshake(&xhci->op_regs->status,
983                               STS_RESTORE, 0, 10 * 1000)) {
984                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
985                         spin_unlock_irq(&xhci->lock);
986                         return -ETIMEDOUT;
987                 }
988                 temp = readl(&xhci->op_regs->status);
989         }
990
991         /* If restore operation fails, re-initialize the HC during resume */
992         if ((temp & STS_SRE) || hibernated) {
993
994                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
995                                 !(xhci_all_ports_seen_u0(xhci))) {
996                         del_timer_sync(&xhci->comp_mode_recovery_timer);
997                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
998                                 "Compliance Mode Recovery Timer deleted!");
999                 }
1000
1001                 /* Let the USB core know _both_ roothubs lost power. */
1002                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1003                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1004
1005                 xhci_dbg(xhci, "Stop HCD\n");
1006                 xhci_halt(xhci);
1007                 xhci_reset(xhci);
1008                 spin_unlock_irq(&xhci->lock);
1009                 xhci_cleanup_msix(xhci);
1010
1011                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1012                 temp = readl(&xhci->op_regs->status);
1013                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1014                 temp = readl(&xhci->ir_set->irq_pending);
1015                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1016
1017                 xhci_dbg(xhci, "cleaning up memory\n");
1018                 xhci_mem_cleanup(xhci);
1019                 xhci_debugfs_exit(xhci);
1020                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1021                             readl(&xhci->op_regs->status));
1022
1023                 /* USB core calls the PCI reinit and start functions twice:
1024                  * first with the primary HCD, and then with the secondary HCD.
1025                  * If we don't do the same, the host will never be started.
1026                  */
1027                 if (!usb_hcd_is_primary_hcd(hcd))
1028                         secondary_hcd = hcd;
1029                 else
1030                         secondary_hcd = xhci->shared_hcd;
1031
1032                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1033                 retval = xhci_init(hcd->primary_hcd);
1034                 if (retval)
1035                         return retval;
1036                 comp_timer_running = true;
1037
1038                 xhci_dbg(xhci, "Start the primary HCD\n");
1039                 retval = xhci_run(hcd->primary_hcd);
1040                 if (!retval) {
1041                         xhci_dbg(xhci, "Start the secondary HCD\n");
1042                         retval = xhci_run(secondary_hcd);
1043                 }
1044                 hcd->state = HC_STATE_SUSPENDED;
1045                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1046                 goto done;
1047         }
1048
1049         /* step 4: set Run/Stop bit */
1050         command = readl(&xhci->op_regs->command);
1051         command |= CMD_RUN;
1052         writel(command, &xhci->op_regs->command);
1053         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1054                   0, 250 * 1000);
1055
1056         /* step 5: walk topology and initialize portsc,
1057          * portpmsc and portli
1058          */
1059         /* this is done in bus_resume */
1060
1061         /* step 6: restart each of the previously
1062          * Running endpoints by ringing their doorbells
1063          */
1064
1065         spin_unlock_irq(&xhci->lock);
1066
1067         xhci_dbc_resume(xhci);
1068
1069  done:
1070         if (retval == 0) {
1071                 /* Resume root hubs only when have pending events. */
1072                 status = readl(&xhci->op_regs->status);
1073                 if (status & STS_EINT) {
1074                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1075                         usb_hcd_resume_root_hub(hcd);
1076                 }
1077         }
1078
1079         /*
1080          * If system is subject to the Quirk, Compliance Mode Timer needs to
1081          * be re-initialized Always after a system resume. Ports are subject
1082          * to suffer the Compliance Mode issue again. It doesn't matter if
1083          * ports have entered previously to U0 before system's suspension.
1084          */
1085         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1086                 compliance_mode_recovery_timer_init(xhci);
1087
1088         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1089                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1090
1091         /* Re-enable port polling. */
1092         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1093         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1094         usb_hcd_poll_rh_status(xhci->shared_hcd);
1095         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1096         usb_hcd_poll_rh_status(hcd);
1097
1098         return retval;
1099 }
1100 EXPORT_SYMBOL_GPL(xhci_resume);
1101 #endif  /* CONFIG_PM */
1102
1103 /*-------------------------------------------------------------------------*/
1104
1105 /**
1106  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1107  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1108  * value to right shift 1 for the bitmask.
1109  *
1110  * Index  = (epnum * 2) + direction - 1,
1111  * where direction = 0 for OUT, 1 for IN.
1112  * For control endpoints, the IN index is used (OUT index is unused), so
1113  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1114  */
1115 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1116 {
1117         unsigned int index;
1118         if (usb_endpoint_xfer_control(desc))
1119                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1120         else
1121                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1122                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1123         return index;
1124 }
1125
1126 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1127  * address from the XHCI endpoint index.
1128  */
1129 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1130 {
1131         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1132         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1133         return direction | number;
1134 }
1135
1136 /* Find the flag for this endpoint (for use in the control context).  Use the
1137  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1138  * bit 1, etc.
1139  */
1140 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1141 {
1142         return 1 << (xhci_get_endpoint_index(desc) + 1);
1143 }
1144
1145 /* Find the flag for this endpoint (for use in the control context).  Use the
1146  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1147  * bit 1, etc.
1148  */
1149 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1150 {
1151         return 1 << (ep_index + 1);
1152 }
1153
1154 /* Compute the last valid endpoint context index.  Basically, this is the
1155  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1156  * we find the most significant bit set in the added contexts flags.
1157  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1158  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1159  */
1160 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1161 {
1162         return fls(added_ctxs) - 1;
1163 }
1164
1165 /* Returns 1 if the arguments are OK;
1166  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1167  */
1168 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1169                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1170                 const char *func) {
1171         struct xhci_hcd *xhci;
1172         struct xhci_virt_device *virt_dev;
1173
1174         if (!hcd || (check_ep && !ep) || !udev) {
1175                 pr_debug("xHCI %s called with invalid args\n", func);
1176                 return -EINVAL;
1177         }
1178         if (!udev->parent) {
1179                 pr_debug("xHCI %s called for root hub\n", func);
1180                 return 0;
1181         }
1182
1183         xhci = hcd_to_xhci(hcd);
1184         if (check_virt_dev) {
1185                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1186                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1187                                         func);
1188                         return -EINVAL;
1189                 }
1190
1191                 virt_dev = xhci->devs[udev->slot_id];
1192                 if (virt_dev->udev != udev) {
1193                         xhci_dbg(xhci, "xHCI %s called with udev and "
1194                                           "virt_dev does not match\n", func);
1195                         return -EINVAL;
1196                 }
1197         }
1198
1199         if (xhci->xhc_state & XHCI_STATE_HALTED)
1200                 return -ENODEV;
1201
1202         return 1;
1203 }
1204
1205 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1206                 struct usb_device *udev, struct xhci_command *command,
1207                 bool ctx_change, bool must_succeed);
1208
1209 /*
1210  * Full speed devices may have a max packet size greater than 8 bytes, but the
1211  * USB core doesn't know that until it reads the first 8 bytes of the
1212  * descriptor.  If the usb_device's max packet size changes after that point,
1213  * we need to issue an evaluate context command and wait on it.
1214  */
1215 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1216                 unsigned int ep_index, struct urb *urb)
1217 {
1218         struct xhci_container_ctx *out_ctx;
1219         struct xhci_input_control_ctx *ctrl_ctx;
1220         struct xhci_ep_ctx *ep_ctx;
1221         struct xhci_command *command;
1222         int max_packet_size;
1223         int hw_max_packet_size;
1224         int ret = 0;
1225
1226         out_ctx = xhci->devs[slot_id]->out_ctx;
1227         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1228         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1229         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1230         if (hw_max_packet_size != max_packet_size) {
1231                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1232                                 "Max Packet Size for ep 0 changed.");
1233                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1234                                 "Max packet size in usb_device = %d",
1235                                 max_packet_size);
1236                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1237                                 "Max packet size in xHCI HW = %d",
1238                                 hw_max_packet_size);
1239                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1240                                 "Issuing evaluate context command.");
1241
1242                 /* Set up the input context flags for the command */
1243                 /* FIXME: This won't work if a non-default control endpoint
1244                  * changes max packet sizes.
1245                  */
1246
1247                 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1248                 if (!command)
1249                         return -ENOMEM;
1250
1251                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1252                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1253                 if (!ctrl_ctx) {
1254                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1255                                         __func__);
1256                         ret = -ENOMEM;
1257                         goto command_cleanup;
1258                 }
1259                 /* Set up the modified control endpoint 0 */
1260                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1261                                 xhci->devs[slot_id]->out_ctx, ep_index);
1262
1263                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1264                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1265                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1266
1267                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1268                 ctrl_ctx->drop_flags = 0;
1269
1270                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1271                                 true, false);
1272
1273                 /* Clean up the input context for later use by bandwidth
1274                  * functions.
1275                  */
1276                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1277 command_cleanup:
1278                 kfree(command->completion);
1279                 kfree(command);
1280         }
1281         return ret;
1282 }
1283
1284 /*
1285  * non-error returns are a promise to giveback() the urb later
1286  * we drop ownership so next owner (or urb unlink) can get it
1287  */
1288 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1289 {
1290         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1291         unsigned long flags;
1292         int ret = 0;
1293         unsigned int slot_id, ep_index, ep_state;
1294         struct urb_priv *urb_priv;
1295         int num_tds;
1296
1297         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1298                                         true, true, __func__) <= 0)
1299                 return -EINVAL;
1300
1301         slot_id = urb->dev->slot_id;
1302         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1303
1304         if (!HCD_HW_ACCESSIBLE(hcd)) {
1305                 if (!in_interrupt())
1306                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1307                 return -ESHUTDOWN;
1308         }
1309
1310         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1311                 num_tds = urb->number_of_packets;
1312         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1313             urb->transfer_buffer_length > 0 &&
1314             urb->transfer_flags & URB_ZERO_PACKET &&
1315             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1316                 num_tds = 2;
1317         else
1318                 num_tds = 1;
1319
1320         urb_priv = kzalloc(sizeof(struct urb_priv) +
1321                            num_tds * sizeof(struct xhci_td), mem_flags);
1322         if (!urb_priv)
1323                 return -ENOMEM;
1324
1325         urb_priv->num_tds = num_tds;
1326         urb_priv->num_tds_done = 0;
1327         urb->hcpriv = urb_priv;
1328
1329         trace_xhci_urb_enqueue(urb);
1330
1331         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1332                 /* Check to see if the max packet size for the default control
1333                  * endpoint changed during FS device enumeration
1334                  */
1335                 if (urb->dev->speed == USB_SPEED_FULL) {
1336                         ret = xhci_check_maxpacket(xhci, slot_id,
1337                                         ep_index, urb);
1338                         if (ret < 0) {
1339                                 xhci_urb_free_priv(urb_priv);
1340                                 urb->hcpriv = NULL;
1341                                 return ret;
1342                         }
1343                 }
1344         }
1345
1346         spin_lock_irqsave(&xhci->lock, flags);
1347
1348         if (xhci->xhc_state & XHCI_STATE_DYING) {
1349                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1350                          urb->ep->desc.bEndpointAddress, urb);
1351                 ret = -ESHUTDOWN;
1352                 goto free_priv;
1353         }
1354
1355         switch (usb_endpoint_type(&urb->ep->desc)) {
1356
1357         case USB_ENDPOINT_XFER_CONTROL:
1358                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1359                                          slot_id, ep_index);
1360                 break;
1361         case USB_ENDPOINT_XFER_BULK:
1362                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1363                 if (ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1364                         xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1365                                   ep_state);
1366                         ret = -EINVAL;
1367                         break;
1368                 }
1369                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1370                                          slot_id, ep_index);
1371                 break;
1372
1373
1374         case USB_ENDPOINT_XFER_INT:
1375                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1376                                 slot_id, ep_index);
1377                 break;
1378
1379         case USB_ENDPOINT_XFER_ISOC:
1380                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1381                                 slot_id, ep_index);
1382         }
1383
1384         if (ret) {
1385 free_priv:
1386                 xhci_urb_free_priv(urb_priv);
1387                 urb->hcpriv = NULL;
1388         }
1389         spin_unlock_irqrestore(&xhci->lock, flags);
1390         return ret;
1391 }
1392
1393 /*
1394  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1395  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1396  * should pick up where it left off in the TD, unless a Set Transfer Ring
1397  * Dequeue Pointer is issued.
1398  *
1399  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1400  * the ring.  Since the ring is a contiguous structure, they can't be physically
1401  * removed.  Instead, there are two options:
1402  *
1403  *  1) If the HC is in the middle of processing the URB to be canceled, we
1404  *     simply move the ring's dequeue pointer past those TRBs using the Set
1405  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1406  *     when drivers timeout on the last submitted URB and attempt to cancel.
1407  *
1408  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1409  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1410  *     HC will need to invalidate the any TRBs it has cached after the stop
1411  *     endpoint command, as noted in the xHCI 0.95 errata.
1412  *
1413  *  3) The TD may have completed by the time the Stop Endpoint Command
1414  *     completes, so software needs to handle that case too.
1415  *
1416  * This function should protect against the TD enqueueing code ringing the
1417  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1418  * It also needs to account for multiple cancellations on happening at the same
1419  * time for the same endpoint.
1420  *
1421  * Note that this function can be called in any context, or so says
1422  * usb_hcd_unlink_urb()
1423  */
1424 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1425 {
1426         unsigned long flags;
1427         int ret, i;
1428         u32 temp;
1429         struct xhci_hcd *xhci;
1430         struct urb_priv *urb_priv;
1431         struct xhci_td *td;
1432         unsigned int ep_index;
1433         struct xhci_ring *ep_ring;
1434         struct xhci_virt_ep *ep;
1435         struct xhci_command *command;
1436         struct xhci_virt_device *vdev;
1437
1438         xhci = hcd_to_xhci(hcd);
1439         spin_lock_irqsave(&xhci->lock, flags);
1440
1441         trace_xhci_urb_dequeue(urb);
1442
1443         /* Make sure the URB hasn't completed or been unlinked already */
1444         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1445         if (ret)
1446                 goto done;
1447
1448         /* give back URB now if we can't queue it for cancel */
1449         vdev = xhci->devs[urb->dev->slot_id];
1450         urb_priv = urb->hcpriv;
1451         if (!vdev || !urb_priv)
1452                 goto err_giveback;
1453
1454         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1455         ep = &vdev->eps[ep_index];
1456         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1457         if (!ep || !ep_ring)
1458                 goto err_giveback;
1459
1460         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1461         temp = readl(&xhci->op_regs->status);
1462         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1463                 xhci_hc_died(xhci);
1464                 goto done;
1465         }
1466
1467         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1468                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1469                                 "HC halted, freeing TD manually.");
1470                 for (i = urb_priv->num_tds_done;
1471                      i < urb_priv->num_tds;
1472                      i++) {
1473                         td = &urb_priv->td[i];
1474                         if (!list_empty(&td->td_list))
1475                                 list_del_init(&td->td_list);
1476                         if (!list_empty(&td->cancelled_td_list))
1477                                 list_del_init(&td->cancelled_td_list);
1478                 }
1479                 goto err_giveback;
1480         }
1481
1482         i = urb_priv->num_tds_done;
1483         if (i < urb_priv->num_tds)
1484                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1485                                 "Cancel URB %p, dev %s, ep 0x%x, "
1486                                 "starting at offset 0x%llx",
1487                                 urb, urb->dev->devpath,
1488                                 urb->ep->desc.bEndpointAddress,
1489                                 (unsigned long long) xhci_trb_virt_to_dma(
1490                                         urb_priv->td[i].start_seg,
1491                                         urb_priv->td[i].first_trb));
1492
1493         for (; i < urb_priv->num_tds; i++) {
1494                 td = &urb_priv->td[i];
1495                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1496         }
1497
1498         /* Queue a stop endpoint command, but only if this is
1499          * the first cancellation to be handled.
1500          */
1501         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1502                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1503                 if (!command) {
1504                         ret = -ENOMEM;
1505                         goto done;
1506                 }
1507                 ep->ep_state |= EP_STOP_CMD_PENDING;
1508                 ep->stop_cmd_timer.expires = jiffies +
1509                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1510                 add_timer(&ep->stop_cmd_timer);
1511                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1512                                          ep_index, 0);
1513                 xhci_ring_cmd_db(xhci);
1514         }
1515 done:
1516         spin_unlock_irqrestore(&xhci->lock, flags);
1517         return ret;
1518
1519 err_giveback:
1520         if (urb_priv)
1521                 xhci_urb_free_priv(urb_priv);
1522         usb_hcd_unlink_urb_from_ep(hcd, urb);
1523         spin_unlock_irqrestore(&xhci->lock, flags);
1524         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1525         return ret;
1526 }
1527
1528 /* Drop an endpoint from a new bandwidth configuration for this device.
1529  * Only one call to this function is allowed per endpoint before
1530  * check_bandwidth() or reset_bandwidth() must be called.
1531  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1532  * add the endpoint to the schedule with possibly new parameters denoted by a
1533  * different endpoint descriptor in usb_host_endpoint.
1534  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1535  * not allowed.
1536  *
1537  * The USB core will not allow URBs to be queued to an endpoint that is being
1538  * disabled, so there's no need for mutual exclusion to protect
1539  * the xhci->devs[slot_id] structure.
1540  */
1541 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1542                 struct usb_host_endpoint *ep)
1543 {
1544         struct xhci_hcd *xhci;
1545         struct xhci_container_ctx *in_ctx, *out_ctx;
1546         struct xhci_input_control_ctx *ctrl_ctx;
1547         unsigned int ep_index;
1548         struct xhci_ep_ctx *ep_ctx;
1549         u32 drop_flag;
1550         u32 new_add_flags, new_drop_flags;
1551         int ret;
1552
1553         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1554         if (ret <= 0)
1555                 return ret;
1556         xhci = hcd_to_xhci(hcd);
1557         if (xhci->xhc_state & XHCI_STATE_DYING)
1558                 return -ENODEV;
1559
1560         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1561         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1562         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1563                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1564                                 __func__, drop_flag);
1565                 return 0;
1566         }
1567
1568         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1569         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1570         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1571         if (!ctrl_ctx) {
1572                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1573                                 __func__);
1574                 return 0;
1575         }
1576
1577         ep_index = xhci_get_endpoint_index(&ep->desc);
1578         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1579         /* If the HC already knows the endpoint is disabled,
1580          * or the HCD has noted it is disabled, ignore this request
1581          */
1582         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1583             le32_to_cpu(ctrl_ctx->drop_flags) &
1584             xhci_get_endpoint_flag(&ep->desc)) {
1585                 /* Do not warn when called after a usb_device_reset */
1586                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1587                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1588                                   __func__, ep);
1589                 return 0;
1590         }
1591
1592         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1593         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1594
1595         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1596         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1597
1598         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1599
1600         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1601
1602         if (xhci->quirks & XHCI_MTK_HOST)
1603                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1604
1605         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1606                         (unsigned int) ep->desc.bEndpointAddress,
1607                         udev->slot_id,
1608                         (unsigned int) new_drop_flags,
1609                         (unsigned int) new_add_flags);
1610         return 0;
1611 }
1612
1613 /* Add an endpoint to a new possible bandwidth configuration for this device.
1614  * Only one call to this function is allowed per endpoint before
1615  * check_bandwidth() or reset_bandwidth() must be called.
1616  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1617  * add the endpoint to the schedule with possibly new parameters denoted by a
1618  * different endpoint descriptor in usb_host_endpoint.
1619  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1620  * not allowed.
1621  *
1622  * The USB core will not allow URBs to be queued to an endpoint until the
1623  * configuration or alt setting is installed in the device, so there's no need
1624  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1625  */
1626 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1627                 struct usb_host_endpoint *ep)
1628 {
1629         struct xhci_hcd *xhci;
1630         struct xhci_container_ctx *in_ctx;
1631         unsigned int ep_index;
1632         struct xhci_input_control_ctx *ctrl_ctx;
1633         u32 added_ctxs;
1634         u32 new_add_flags, new_drop_flags;
1635         struct xhci_virt_device *virt_dev;
1636         int ret = 0;
1637
1638         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1639         if (ret <= 0) {
1640                 /* So we won't queue a reset ep command for a root hub */
1641                 ep->hcpriv = NULL;
1642                 return ret;
1643         }
1644         xhci = hcd_to_xhci(hcd);
1645         if (xhci->xhc_state & XHCI_STATE_DYING)
1646                 return -ENODEV;
1647
1648         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1649         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1650                 /* FIXME when we have to issue an evaluate endpoint command to
1651                  * deal with ep0 max packet size changing once we get the
1652                  * descriptors
1653                  */
1654                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1655                                 __func__, added_ctxs);
1656                 return 0;
1657         }
1658
1659         virt_dev = xhci->devs[udev->slot_id];
1660         in_ctx = virt_dev->in_ctx;
1661         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1662         if (!ctrl_ctx) {
1663                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1664                                 __func__);
1665                 return 0;
1666         }
1667
1668         ep_index = xhci_get_endpoint_index(&ep->desc);
1669         /* If this endpoint is already in use, and the upper layers are trying
1670          * to add it again without dropping it, reject the addition.
1671          */
1672         if (virt_dev->eps[ep_index].ring &&
1673                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1674                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1675                                 "without dropping it.\n",
1676                                 (unsigned int) ep->desc.bEndpointAddress);
1677                 return -EINVAL;
1678         }
1679
1680         /* If the HCD has already noted the endpoint is enabled,
1681          * ignore this request.
1682          */
1683         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1684                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1685                                 __func__, ep);
1686                 return 0;
1687         }
1688
1689         /*
1690          * Configuration and alternate setting changes must be done in
1691          * process context, not interrupt context (or so documenation
1692          * for usb_set_interface() and usb_set_configuration() claim).
1693          */
1694         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1695                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1696                                 __func__, ep->desc.bEndpointAddress);
1697                 return -ENOMEM;
1698         }
1699
1700         if (xhci->quirks & XHCI_MTK_HOST) {
1701                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1702                 if (ret < 0) {
1703                         xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1704                         virt_dev->eps[ep_index].new_ring = NULL;
1705                         return ret;
1706                 }
1707         }
1708
1709         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1710         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1711
1712         /* If xhci_endpoint_disable() was called for this endpoint, but the
1713          * xHC hasn't been notified yet through the check_bandwidth() call,
1714          * this re-adds a new state for the endpoint from the new endpoint
1715          * descriptors.  We must drop and re-add this endpoint, so we leave the
1716          * drop flags alone.
1717          */
1718         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1719
1720         /* Store the usb_device pointer for later use */
1721         ep->hcpriv = udev;
1722
1723         xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1724
1725         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1726                         (unsigned int) ep->desc.bEndpointAddress,
1727                         udev->slot_id,
1728                         (unsigned int) new_drop_flags,
1729                         (unsigned int) new_add_flags);
1730         return 0;
1731 }
1732
1733 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1734 {
1735         struct xhci_input_control_ctx *ctrl_ctx;
1736         struct xhci_ep_ctx *ep_ctx;
1737         struct xhci_slot_ctx *slot_ctx;
1738         int i;
1739
1740         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1741         if (!ctrl_ctx) {
1742                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1743                                 __func__);
1744                 return;
1745         }
1746
1747         /* When a device's add flag and drop flag are zero, any subsequent
1748          * configure endpoint command will leave that endpoint's state
1749          * untouched.  Make sure we don't leave any old state in the input
1750          * endpoint contexts.
1751          */
1752         ctrl_ctx->drop_flags = 0;
1753         ctrl_ctx->add_flags = 0;
1754         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1755         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1756         /* Endpoint 0 is always valid */
1757         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1758         for (i = 1; i < 31; i++) {
1759                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1760                 ep_ctx->ep_info = 0;
1761                 ep_ctx->ep_info2 = 0;
1762                 ep_ctx->deq = 0;
1763                 ep_ctx->tx_info = 0;
1764         }
1765 }
1766
1767 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1768                 struct usb_device *udev, u32 *cmd_status)
1769 {
1770         int ret;
1771
1772         switch (*cmd_status) {
1773         case COMP_COMMAND_ABORTED:
1774         case COMP_COMMAND_RING_STOPPED:
1775                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1776                 ret = -ETIME;
1777                 break;
1778         case COMP_RESOURCE_ERROR:
1779                 dev_warn(&udev->dev,
1780                          "Not enough host controller resources for new device state.\n");
1781                 ret = -ENOMEM;
1782                 /* FIXME: can we allocate more resources for the HC? */
1783                 break;
1784         case COMP_BANDWIDTH_ERROR:
1785         case COMP_SECONDARY_BANDWIDTH_ERROR:
1786                 dev_warn(&udev->dev,
1787                          "Not enough bandwidth for new device state.\n");
1788                 ret = -ENOSPC;
1789                 /* FIXME: can we go back to the old state? */
1790                 break;
1791         case COMP_TRB_ERROR:
1792                 /* the HCD set up something wrong */
1793                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1794                                 "add flag = 1, "
1795                                 "and endpoint is not disabled.\n");
1796                 ret = -EINVAL;
1797                 break;
1798         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1799                 dev_warn(&udev->dev,
1800                          "ERROR: Incompatible device for endpoint configure command.\n");
1801                 ret = -ENODEV;
1802                 break;
1803         case COMP_SUCCESS:
1804                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1805                                 "Successful Endpoint Configure command");
1806                 ret = 0;
1807                 break;
1808         default:
1809                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1810                                 *cmd_status);
1811                 ret = -EINVAL;
1812                 break;
1813         }
1814         return ret;
1815 }
1816
1817 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1818                 struct usb_device *udev, u32 *cmd_status)
1819 {
1820         int ret;
1821
1822         switch (*cmd_status) {
1823         case COMP_COMMAND_ABORTED:
1824         case COMP_COMMAND_RING_STOPPED:
1825                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1826                 ret = -ETIME;
1827                 break;
1828         case COMP_PARAMETER_ERROR:
1829                 dev_warn(&udev->dev,
1830                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1831                 ret = -EINVAL;
1832                 break;
1833         case COMP_SLOT_NOT_ENABLED_ERROR:
1834                 dev_warn(&udev->dev,
1835                         "WARN: slot not enabled for evaluate context command.\n");
1836                 ret = -EINVAL;
1837                 break;
1838         case COMP_CONTEXT_STATE_ERROR:
1839                 dev_warn(&udev->dev,
1840                         "WARN: invalid context state for evaluate context command.\n");
1841                 ret = -EINVAL;
1842                 break;
1843         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1844                 dev_warn(&udev->dev,
1845                         "ERROR: Incompatible device for evaluate context command.\n");
1846                 ret = -ENODEV;
1847                 break;
1848         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1849                 /* Max Exit Latency too large error */
1850                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1851                 ret = -EINVAL;
1852                 break;
1853         case COMP_SUCCESS:
1854                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1855                                 "Successful evaluate context command");
1856                 ret = 0;
1857                 break;
1858         default:
1859                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1860                         *cmd_status);
1861                 ret = -EINVAL;
1862                 break;
1863         }
1864         return ret;
1865 }
1866
1867 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1868                 struct xhci_input_control_ctx *ctrl_ctx)
1869 {
1870         u32 valid_add_flags;
1871         u32 valid_drop_flags;
1872
1873         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1874          * (bit 1).  The default control endpoint is added during the Address
1875          * Device command and is never removed until the slot is disabled.
1876          */
1877         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1878         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1879
1880         /* Use hweight32 to count the number of ones in the add flags, or
1881          * number of endpoints added.  Don't count endpoints that are changed
1882          * (both added and dropped).
1883          */
1884         return hweight32(valid_add_flags) -
1885                 hweight32(valid_add_flags & valid_drop_flags);
1886 }
1887
1888 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1889                 struct xhci_input_control_ctx *ctrl_ctx)
1890 {
1891         u32 valid_add_flags;
1892         u32 valid_drop_flags;
1893
1894         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1895         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1896
1897         return hweight32(valid_drop_flags) -
1898                 hweight32(valid_add_flags & valid_drop_flags);
1899 }
1900
1901 /*
1902  * We need to reserve the new number of endpoints before the configure endpoint
1903  * command completes.  We can't subtract the dropped endpoints from the number
1904  * of active endpoints until the command completes because we can oversubscribe
1905  * the host in this case:
1906  *
1907  *  - the first configure endpoint command drops more endpoints than it adds
1908  *  - a second configure endpoint command that adds more endpoints is queued
1909  *  - the first configure endpoint command fails, so the config is unchanged
1910  *  - the second command may succeed, even though there isn't enough resources
1911  *
1912  * Must be called with xhci->lock held.
1913  */
1914 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1915                 struct xhci_input_control_ctx *ctrl_ctx)
1916 {
1917         u32 added_eps;
1918
1919         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1920         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1921                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1922                                 "Not enough ep ctxs: "
1923                                 "%u active, need to add %u, limit is %u.",
1924                                 xhci->num_active_eps, added_eps,
1925                                 xhci->limit_active_eps);
1926                 return -ENOMEM;
1927         }
1928         xhci->num_active_eps += added_eps;
1929         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1930                         "Adding %u ep ctxs, %u now active.", added_eps,
1931                         xhci->num_active_eps);
1932         return 0;
1933 }
1934
1935 /*
1936  * The configure endpoint was failed by the xHC for some other reason, so we
1937  * need to revert the resources that failed configuration would have used.
1938  *
1939  * Must be called with xhci->lock held.
1940  */
1941 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1942                 struct xhci_input_control_ctx *ctrl_ctx)
1943 {
1944         u32 num_failed_eps;
1945
1946         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1947         xhci->num_active_eps -= num_failed_eps;
1948         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1949                         "Removing %u failed ep ctxs, %u now active.",
1950                         num_failed_eps,
1951                         xhci->num_active_eps);
1952 }
1953
1954 /*
1955  * Now that the command has completed, clean up the active endpoint count by
1956  * subtracting out the endpoints that were dropped (but not changed).
1957  *
1958  * Must be called with xhci->lock held.
1959  */
1960 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1961                 struct xhci_input_control_ctx *ctrl_ctx)
1962 {
1963         u32 num_dropped_eps;
1964
1965         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1966         xhci->num_active_eps -= num_dropped_eps;
1967         if (num_dropped_eps)
1968                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1969                                 "Removing %u dropped ep ctxs, %u now active.",
1970                                 num_dropped_eps,
1971                                 xhci->num_active_eps);
1972 }
1973
1974 static unsigned int xhci_get_block_size(struct usb_device *udev)
1975 {
1976         switch (udev->speed) {
1977         case USB_SPEED_LOW:
1978         case USB_SPEED_FULL:
1979                 return FS_BLOCK;
1980         case USB_SPEED_HIGH:
1981                 return HS_BLOCK;
1982         case USB_SPEED_SUPER:
1983         case USB_SPEED_SUPER_PLUS:
1984                 return SS_BLOCK;
1985         case USB_SPEED_UNKNOWN:
1986         case USB_SPEED_WIRELESS:
1987         default:
1988                 /* Should never happen */
1989                 return 1;
1990         }
1991 }
1992
1993 static unsigned int
1994 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1995 {
1996         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1997                 return LS_OVERHEAD;
1998         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1999                 return FS_OVERHEAD;
2000         return HS_OVERHEAD;
2001 }
2002
2003 /* If we are changing a LS/FS device under a HS hub,
2004  * make sure (if we are activating a new TT) that the HS bus has enough
2005  * bandwidth for this new TT.
2006  */
2007 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2008                 struct xhci_virt_device *virt_dev,
2009                 int old_active_eps)
2010 {
2011         struct xhci_interval_bw_table *bw_table;
2012         struct xhci_tt_bw_info *tt_info;
2013
2014         /* Find the bandwidth table for the root port this TT is attached to. */
2015         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2016         tt_info = virt_dev->tt_info;
2017         /* If this TT already had active endpoints, the bandwidth for this TT
2018          * has already been added.  Removing all periodic endpoints (and thus
2019          * making the TT enactive) will only decrease the bandwidth used.
2020          */
2021         if (old_active_eps)
2022                 return 0;
2023         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2024                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2025                         return -ENOMEM;
2026                 return 0;
2027         }
2028         /* Not sure why we would have no new active endpoints...
2029          *
2030          * Maybe because of an Evaluate Context change for a hub update or a
2031          * control endpoint 0 max packet size change?
2032          * FIXME: skip the bandwidth calculation in that case.
2033          */
2034         return 0;
2035 }
2036
2037 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2038                 struct xhci_virt_device *virt_dev)
2039 {
2040         unsigned int bw_reserved;
2041
2042         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2043         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2044                 return -ENOMEM;
2045
2046         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2047         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2048                 return -ENOMEM;
2049
2050         return 0;
2051 }
2052
2053 /*
2054  * This algorithm is a very conservative estimate of the worst-case scheduling
2055  * scenario for any one interval.  The hardware dynamically schedules the
2056  * packets, so we can't tell which microframe could be the limiting factor in
2057  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2058  *
2059  * Obviously, we can't solve an NP complete problem to find the minimum worst
2060  * case scenario.  Instead, we come up with an estimate that is no less than
2061  * the worst case bandwidth used for any one microframe, but may be an
2062  * over-estimate.
2063  *
2064  * We walk the requirements for each endpoint by interval, starting with the
2065  * smallest interval, and place packets in the schedule where there is only one
2066  * possible way to schedule packets for that interval.  In order to simplify
2067  * this algorithm, we record the largest max packet size for each interval, and
2068  * assume all packets will be that size.
2069  *
2070  * For interval 0, we obviously must schedule all packets for each interval.
2071  * The bandwidth for interval 0 is just the amount of data to be transmitted
2072  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2073  * the number of packets).
2074  *
2075  * For interval 1, we have two possible microframes to schedule those packets
2076  * in.  For this algorithm, if we can schedule the same number of packets for
2077  * each possible scheduling opportunity (each microframe), we will do so.  The
2078  * remaining number of packets will be saved to be transmitted in the gaps in
2079  * the next interval's scheduling sequence.
2080  *
2081  * As we move those remaining packets to be scheduled with interval 2 packets,
2082  * we have to double the number of remaining packets to transmit.  This is
2083  * because the intervals are actually powers of 2, and we would be transmitting
2084  * the previous interval's packets twice in this interval.  We also have to be
2085  * sure that when we look at the largest max packet size for this interval, we
2086  * also look at the largest max packet size for the remaining packets and take
2087  * the greater of the two.
2088  *
2089  * The algorithm continues to evenly distribute packets in each scheduling
2090  * opportunity, and push the remaining packets out, until we get to the last
2091  * interval.  Then those packets and their associated overhead are just added
2092  * to the bandwidth used.
2093  */
2094 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2095                 struct xhci_virt_device *virt_dev,
2096                 int old_active_eps)
2097 {
2098         unsigned int bw_reserved;
2099         unsigned int max_bandwidth;
2100         unsigned int bw_used;
2101         unsigned int block_size;
2102         struct xhci_interval_bw_table *bw_table;
2103         unsigned int packet_size = 0;
2104         unsigned int overhead = 0;
2105         unsigned int packets_transmitted = 0;
2106         unsigned int packets_remaining = 0;
2107         unsigned int i;
2108
2109         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2110                 return xhci_check_ss_bw(xhci, virt_dev);
2111
2112         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2113                 max_bandwidth = HS_BW_LIMIT;
2114                 /* Convert percent of bus BW reserved to blocks reserved */
2115                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2116         } else {
2117                 max_bandwidth = FS_BW_LIMIT;
2118                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2119         }
2120
2121         bw_table = virt_dev->bw_table;
2122         /* We need to translate the max packet size and max ESIT payloads into
2123          * the units the hardware uses.
2124          */
2125         block_size = xhci_get_block_size(virt_dev->udev);
2126
2127         /* If we are manipulating a LS/FS device under a HS hub, double check
2128          * that the HS bus has enough bandwidth if we are activing a new TT.
2129          */
2130         if (virt_dev->tt_info) {
2131                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2132                                 "Recalculating BW for rootport %u",
2133                                 virt_dev->real_port);
2134                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2135                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2136                                         "newly activated TT.\n");
2137                         return -ENOMEM;
2138                 }
2139                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2140                                 "Recalculating BW for TT slot %u port %u",
2141                                 virt_dev->tt_info->slot_id,
2142                                 virt_dev->tt_info->ttport);
2143         } else {
2144                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2145                                 "Recalculating BW for rootport %u",
2146                                 virt_dev->real_port);
2147         }
2148
2149         /* Add in how much bandwidth will be used for interval zero, or the
2150          * rounded max ESIT payload + number of packets * largest overhead.
2151          */
2152         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2153                 bw_table->interval_bw[0].num_packets *
2154                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2155
2156         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2157                 unsigned int bw_added;
2158                 unsigned int largest_mps;
2159                 unsigned int interval_overhead;
2160
2161                 /*
2162                  * How many packets could we transmit in this interval?
2163                  * If packets didn't fit in the previous interval, we will need
2164                  * to transmit that many packets twice within this interval.
2165                  */
2166                 packets_remaining = 2 * packets_remaining +
2167                         bw_table->interval_bw[i].num_packets;
2168
2169                 /* Find the largest max packet size of this or the previous
2170                  * interval.
2171                  */
2172                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2173                         largest_mps = 0;
2174                 else {
2175                         struct xhci_virt_ep *virt_ep;
2176                         struct list_head *ep_entry;
2177
2178                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2179                         virt_ep = list_entry(ep_entry,
2180                                         struct xhci_virt_ep, bw_endpoint_list);
2181                         /* Convert to blocks, rounding up */
2182                         largest_mps = DIV_ROUND_UP(
2183                                         virt_ep->bw_info.max_packet_size,
2184                                         block_size);
2185                 }
2186                 if (largest_mps > packet_size)
2187                         packet_size = largest_mps;
2188
2189                 /* Use the larger overhead of this or the previous interval. */
2190                 interval_overhead = xhci_get_largest_overhead(
2191                                 &bw_table->interval_bw[i]);
2192                 if (interval_overhead > overhead)
2193                         overhead = interval_overhead;
2194
2195                 /* How many packets can we evenly distribute across
2196                  * (1 << (i + 1)) possible scheduling opportunities?
2197                  */
2198                 packets_transmitted = packets_remaining >> (i + 1);
2199
2200                 /* Add in the bandwidth used for those scheduled packets */
2201                 bw_added = packets_transmitted * (overhead + packet_size);
2202
2203                 /* How many packets do we have remaining to transmit? */
2204                 packets_remaining = packets_remaining % (1 << (i + 1));
2205
2206                 /* What largest max packet size should those packets have? */
2207                 /* If we've transmitted all packets, don't carry over the
2208                  * largest packet size.
2209                  */
2210                 if (packets_remaining == 0) {
2211                         packet_size = 0;
2212                         overhead = 0;
2213                 } else if (packets_transmitted > 0) {
2214                         /* Otherwise if we do have remaining packets, and we've
2215                          * scheduled some packets in this interval, take the
2216                          * largest max packet size from endpoints with this
2217                          * interval.
2218                          */
2219                         packet_size = largest_mps;
2220                         overhead = interval_overhead;
2221                 }
2222                 /* Otherwise carry over packet_size and overhead from the last
2223                  * time we had a remainder.
2224                  */
2225                 bw_used += bw_added;
2226                 if (bw_used > max_bandwidth) {
2227                         xhci_warn(xhci, "Not enough bandwidth. "
2228                                         "Proposed: %u, Max: %u\n",
2229                                 bw_used, max_bandwidth);
2230                         return -ENOMEM;
2231                 }
2232         }
2233         /*
2234          * Ok, we know we have some packets left over after even-handedly
2235          * scheduling interval 15.  We don't know which microframes they will
2236          * fit into, so we over-schedule and say they will be scheduled every
2237          * microframe.
2238          */
2239         if (packets_remaining > 0)
2240                 bw_used += overhead + packet_size;
2241
2242         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2243                 unsigned int port_index = virt_dev->real_port - 1;
2244
2245                 /* OK, we're manipulating a HS device attached to a
2246                  * root port bandwidth domain.  Include the number of active TTs
2247                  * in the bandwidth used.
2248                  */
2249                 bw_used += TT_HS_OVERHEAD *
2250                         xhci->rh_bw[port_index].num_active_tts;
2251         }
2252
2253         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2254                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2255                 "Available: %u " "percent",
2256                 bw_used, max_bandwidth, bw_reserved,
2257                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2258                 max_bandwidth);
2259
2260         bw_used += bw_reserved;
2261         if (bw_used > max_bandwidth) {
2262                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2263                                 bw_used, max_bandwidth);
2264                 return -ENOMEM;
2265         }
2266
2267         bw_table->bw_used = bw_used;
2268         return 0;
2269 }
2270
2271 static bool xhci_is_async_ep(unsigned int ep_type)
2272 {
2273         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2274                                         ep_type != ISOC_IN_EP &&
2275                                         ep_type != INT_IN_EP);
2276 }
2277
2278 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2279 {
2280         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2281 }
2282
2283 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2284 {
2285         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2286
2287         if (ep_bw->ep_interval == 0)
2288                 return SS_OVERHEAD_BURST +
2289                         (ep_bw->mult * ep_bw->num_packets *
2290                                         (SS_OVERHEAD + mps));
2291         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2292                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2293                                 1 << ep_bw->ep_interval);
2294
2295 }
2296
2297 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2298                 struct xhci_bw_info *ep_bw,
2299                 struct xhci_interval_bw_table *bw_table,
2300                 struct usb_device *udev,
2301                 struct xhci_virt_ep *virt_ep,
2302                 struct xhci_tt_bw_info *tt_info)
2303 {
2304         struct xhci_interval_bw *interval_bw;
2305         int normalized_interval;
2306
2307         if (xhci_is_async_ep(ep_bw->type))
2308                 return;
2309
2310         if (udev->speed >= USB_SPEED_SUPER) {
2311                 if (xhci_is_sync_in_ep(ep_bw->type))
2312                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2313                                 xhci_get_ss_bw_consumed(ep_bw);
2314                 else
2315                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2316                                 xhci_get_ss_bw_consumed(ep_bw);
2317                 return;
2318         }
2319
2320         /* SuperSpeed endpoints never get added to intervals in the table, so
2321          * this check is only valid for HS/FS/LS devices.
2322          */
2323         if (list_empty(&virt_ep->bw_endpoint_list))
2324                 return;
2325         /* For LS/FS devices, we need to translate the interval expressed in
2326          * microframes to frames.
2327          */
2328         if (udev->speed == USB_SPEED_HIGH)
2329                 normalized_interval = ep_bw->ep_interval;
2330         else
2331                 normalized_interval = ep_bw->ep_interval - 3;
2332
2333         if (normalized_interval == 0)
2334                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2335         interval_bw = &bw_table->interval_bw[normalized_interval];
2336         interval_bw->num_packets -= ep_bw->num_packets;
2337         switch (udev->speed) {
2338         case USB_SPEED_LOW:
2339                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2340                 break;
2341         case USB_SPEED_FULL:
2342                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2343                 break;
2344         case USB_SPEED_HIGH:
2345                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2346                 break;
2347         case USB_SPEED_SUPER:
2348         case USB_SPEED_SUPER_PLUS:
2349         case USB_SPEED_UNKNOWN:
2350         case USB_SPEED_WIRELESS:
2351                 /* Should never happen because only LS/FS/HS endpoints will get
2352                  * added to the endpoint list.
2353                  */
2354                 return;
2355         }
2356         if (tt_info)
2357                 tt_info->active_eps -= 1;
2358         list_del_init(&virt_ep->bw_endpoint_list);
2359 }
2360
2361 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2362                 struct xhci_bw_info *ep_bw,
2363                 struct xhci_interval_bw_table *bw_table,
2364                 struct usb_device *udev,
2365                 struct xhci_virt_ep *virt_ep,
2366                 struct xhci_tt_bw_info *tt_info)
2367 {
2368         struct xhci_interval_bw *interval_bw;
2369         struct xhci_virt_ep *smaller_ep;
2370         int normalized_interval;
2371
2372         if (xhci_is_async_ep(ep_bw->type))
2373                 return;
2374
2375         if (udev->speed == USB_SPEED_SUPER) {
2376                 if (xhci_is_sync_in_ep(ep_bw->type))
2377                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2378                                 xhci_get_ss_bw_consumed(ep_bw);
2379                 else
2380                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2381                                 xhci_get_ss_bw_consumed(ep_bw);
2382                 return;
2383         }
2384
2385         /* For LS/FS devices, we need to translate the interval expressed in
2386          * microframes to frames.
2387          */
2388         if (udev->speed == USB_SPEED_HIGH)
2389                 normalized_interval = ep_bw->ep_interval;
2390         else
2391                 normalized_interval = ep_bw->ep_interval - 3;
2392
2393         if (normalized_interval == 0)
2394                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2395         interval_bw = &bw_table->interval_bw[normalized_interval];
2396         interval_bw->num_packets += ep_bw->num_packets;
2397         switch (udev->speed) {
2398         case USB_SPEED_LOW:
2399                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2400                 break;
2401         case USB_SPEED_FULL:
2402                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2403                 break;
2404         case USB_SPEED_HIGH:
2405                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2406                 break;
2407         case USB_SPEED_SUPER:
2408         case USB_SPEED_SUPER_PLUS:
2409         case USB_SPEED_UNKNOWN:
2410         case USB_SPEED_WIRELESS:
2411                 /* Should never happen because only LS/FS/HS endpoints will get
2412                  * added to the endpoint list.
2413                  */
2414                 return;
2415         }
2416
2417         if (tt_info)
2418                 tt_info->active_eps += 1;
2419         /* Insert the endpoint into the list, largest max packet size first. */
2420         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2421                         bw_endpoint_list) {
2422                 if (ep_bw->max_packet_size >=
2423                                 smaller_ep->bw_info.max_packet_size) {
2424                         /* Add the new ep before the smaller endpoint */
2425                         list_add_tail(&virt_ep->bw_endpoint_list,
2426                                         &smaller_ep->bw_endpoint_list);
2427                         return;
2428                 }
2429         }
2430         /* Add the new endpoint at the end of the list. */
2431         list_add_tail(&virt_ep->bw_endpoint_list,
2432                         &interval_bw->endpoints);
2433 }
2434
2435 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2436                 struct xhci_virt_device *virt_dev,
2437                 int old_active_eps)
2438 {
2439         struct xhci_root_port_bw_info *rh_bw_info;
2440         if (!virt_dev->tt_info)
2441                 return;
2442
2443         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2444         if (old_active_eps == 0 &&
2445                                 virt_dev->tt_info->active_eps != 0) {
2446                 rh_bw_info->num_active_tts += 1;
2447                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2448         } else if (old_active_eps != 0 &&
2449                                 virt_dev->tt_info->active_eps == 0) {
2450                 rh_bw_info->num_active_tts -= 1;
2451                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2452         }
2453 }
2454
2455 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2456                 struct xhci_virt_device *virt_dev,
2457                 struct xhci_container_ctx *in_ctx)
2458 {
2459         struct xhci_bw_info ep_bw_info[31];
2460         int i;
2461         struct xhci_input_control_ctx *ctrl_ctx;
2462         int old_active_eps = 0;
2463
2464         if (virt_dev->tt_info)
2465                 old_active_eps = virt_dev->tt_info->active_eps;
2466
2467         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2468         if (!ctrl_ctx) {
2469                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2470                                 __func__);
2471                 return -ENOMEM;
2472         }
2473
2474         for (i = 0; i < 31; i++) {
2475                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2476                         continue;
2477
2478                 /* Make a copy of the BW info in case we need to revert this */
2479                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2480                                 sizeof(ep_bw_info[i]));
2481                 /* Drop the endpoint from the interval table if the endpoint is
2482                  * being dropped or changed.
2483                  */
2484                 if (EP_IS_DROPPED(ctrl_ctx, i))
2485                         xhci_drop_ep_from_interval_table(xhci,
2486                                         &virt_dev->eps[i].bw_info,
2487                                         virt_dev->bw_table,
2488                                         virt_dev->udev,
2489                                         &virt_dev->eps[i],
2490                                         virt_dev->tt_info);
2491         }
2492         /* Overwrite the information stored in the endpoints' bw_info */
2493         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2494         for (i = 0; i < 31; i++) {
2495                 /* Add any changed or added endpoints to the interval table */
2496                 if (EP_IS_ADDED(ctrl_ctx, i))
2497                         xhci_add_ep_to_interval_table(xhci,
2498                                         &virt_dev->eps[i].bw_info,
2499                                         virt_dev->bw_table,
2500                                         virt_dev->udev,
2501                                         &virt_dev->eps[i],
2502                                         virt_dev->tt_info);
2503         }
2504
2505         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2506                 /* Ok, this fits in the bandwidth we have.
2507                  * Update the number of active TTs.
2508                  */
2509                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2510                 return 0;
2511         }
2512
2513         /* We don't have enough bandwidth for this, revert the stored info. */
2514         for (i = 0; i < 31; i++) {
2515                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2516                         continue;
2517
2518                 /* Drop the new copies of any added or changed endpoints from
2519                  * the interval table.
2520                  */
2521                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2522                         xhci_drop_ep_from_interval_table(xhci,
2523                                         &virt_dev->eps[i].bw_info,
2524                                         virt_dev->bw_table,
2525                                         virt_dev->udev,
2526                                         &virt_dev->eps[i],
2527                                         virt_dev->tt_info);
2528                 }
2529                 /* Revert the endpoint back to its old information */
2530                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2531                                 sizeof(ep_bw_info[i]));
2532                 /* Add any changed or dropped endpoints back into the table */
2533                 if (EP_IS_DROPPED(ctrl_ctx, i))
2534                         xhci_add_ep_to_interval_table(xhci,
2535                                         &virt_dev->eps[i].bw_info,
2536                                         virt_dev->bw_table,
2537                                         virt_dev->udev,
2538                                         &virt_dev->eps[i],
2539                                         virt_dev->tt_info);
2540         }
2541         return -ENOMEM;
2542 }
2543
2544
2545 /* Issue a configure endpoint command or evaluate context command
2546  * and wait for it to finish.
2547  */
2548 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2549                 struct usb_device *udev,
2550                 struct xhci_command *command,
2551                 bool ctx_change, bool must_succeed)
2552 {
2553         int ret;
2554         unsigned long flags;
2555         struct xhci_input_control_ctx *ctrl_ctx;
2556         struct xhci_virt_device *virt_dev;
2557         struct xhci_slot_ctx *slot_ctx;
2558
2559         if (!command)
2560                 return -EINVAL;
2561
2562         spin_lock_irqsave(&xhci->lock, flags);
2563
2564         if (xhci->xhc_state & XHCI_STATE_DYING) {
2565                 spin_unlock_irqrestore(&xhci->lock, flags);
2566                 return -ESHUTDOWN;
2567         }
2568
2569         virt_dev = xhci->devs[udev->slot_id];
2570
2571         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2572         if (!ctrl_ctx) {
2573                 spin_unlock_irqrestore(&xhci->lock, flags);
2574                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2575                                 __func__);
2576                 return -ENOMEM;
2577         }
2578
2579         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2580                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2581                 spin_unlock_irqrestore(&xhci->lock, flags);
2582                 xhci_warn(xhci, "Not enough host resources, "
2583                                 "active endpoint contexts = %u\n",
2584                                 xhci->num_active_eps);
2585                 return -ENOMEM;
2586         }
2587         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2588             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2589                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2590                         xhci_free_host_resources(xhci, ctrl_ctx);
2591                 spin_unlock_irqrestore(&xhci->lock, flags);
2592                 xhci_warn(xhci, "Not enough bandwidth\n");
2593                 return -ENOMEM;
2594         }
2595
2596         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2597         trace_xhci_configure_endpoint(slot_ctx);
2598
2599         if (!ctx_change)
2600                 ret = xhci_queue_configure_endpoint(xhci, command,
2601                                 command->in_ctx->dma,
2602                                 udev->slot_id, must_succeed);
2603         else
2604                 ret = xhci_queue_evaluate_context(xhci, command,
2605                                 command->in_ctx->dma,
2606                                 udev->slot_id, must_succeed);
2607         if (ret < 0) {
2608                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2609                         xhci_free_host_resources(xhci, ctrl_ctx);
2610                 spin_unlock_irqrestore(&xhci->lock, flags);
2611                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2612                                 "FIXME allocate a new ring segment");
2613                 return -ENOMEM;
2614         }
2615         xhci_ring_cmd_db(xhci);
2616         spin_unlock_irqrestore(&xhci->lock, flags);
2617
2618         /* Wait for the configure endpoint command to complete */
2619         wait_for_completion(command->completion);
2620
2621         if (!ctx_change)
2622                 ret = xhci_configure_endpoint_result(xhci, udev,
2623                                                      &command->status);
2624         else
2625                 ret = xhci_evaluate_context_result(xhci, udev,
2626                                                    &command->status);
2627
2628         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2629                 spin_lock_irqsave(&xhci->lock, flags);
2630                 /* If the command failed, remove the reserved resources.
2631                  * Otherwise, clean up the estimate to include dropped eps.
2632                  */
2633                 if (ret)
2634                         xhci_free_host_resources(xhci, ctrl_ctx);
2635                 else
2636                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2637                 spin_unlock_irqrestore(&xhci->lock, flags);
2638         }
2639         return ret;
2640 }
2641
2642 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2643         struct xhci_virt_device *vdev, int i)
2644 {
2645         struct xhci_virt_ep *ep = &vdev->eps[i];
2646
2647         if (ep->ep_state & EP_HAS_STREAMS) {
2648                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2649                                 xhci_get_endpoint_address(i));
2650                 xhci_free_stream_info(xhci, ep->stream_info);
2651                 ep->stream_info = NULL;
2652                 ep->ep_state &= ~EP_HAS_STREAMS;
2653         }
2654 }
2655
2656 /* Called after one or more calls to xhci_add_endpoint() or
2657  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2658  * to call xhci_reset_bandwidth().
2659  *
2660  * Since we are in the middle of changing either configuration or
2661  * installing a new alt setting, the USB core won't allow URBs to be
2662  * enqueued for any endpoint on the old config or interface.  Nothing
2663  * else should be touching the xhci->devs[slot_id] structure, so we
2664  * don't need to take the xhci->lock for manipulating that.
2665  */
2666 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2667 {
2668         int i;
2669         int ret = 0;
2670         struct xhci_hcd *xhci;
2671         struct xhci_virt_device *virt_dev;
2672         struct xhci_input_control_ctx *ctrl_ctx;
2673         struct xhci_slot_ctx *slot_ctx;
2674         struct xhci_command *command;
2675
2676         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2677         if (ret <= 0)
2678                 return ret;
2679         xhci = hcd_to_xhci(hcd);
2680         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2681                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2682                 return -ENODEV;
2683
2684         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2685         virt_dev = xhci->devs[udev->slot_id];
2686
2687         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2688         if (!command)
2689                 return -ENOMEM;
2690
2691         command->in_ctx = virt_dev->in_ctx;
2692
2693         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2694         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2695         if (!ctrl_ctx) {
2696                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2697                                 __func__);
2698                 ret = -ENOMEM;
2699                 goto command_cleanup;
2700         }
2701         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2702         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2703         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2704
2705         /* Don't issue the command if there's no endpoints to update. */
2706         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2707             ctrl_ctx->drop_flags == 0) {
2708                 ret = 0;
2709                 goto command_cleanup;
2710         }
2711         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2712         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2713         for (i = 31; i >= 1; i--) {
2714                 __le32 le32 = cpu_to_le32(BIT(i));
2715
2716                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2717                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2718                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2719                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2720                         break;
2721                 }
2722         }
2723
2724         ret = xhci_configure_endpoint(xhci, udev, command,
2725                         false, false);
2726         if (ret)
2727                 /* Callee should call reset_bandwidth() */
2728                 goto command_cleanup;
2729
2730         /* Free any rings that were dropped, but not changed. */
2731         for (i = 1; i < 31; i++) {
2732                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2733                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2734                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2735                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2736                 }
2737         }
2738         xhci_zero_in_ctx(xhci, virt_dev);
2739         /*
2740          * Install any rings for completely new endpoints or changed endpoints,
2741          * and free any old rings from changed endpoints.
2742          */
2743         for (i = 1; i < 31; i++) {
2744                 if (!virt_dev->eps[i].new_ring)
2745                         continue;
2746                 /* Only free the old ring if it exists.
2747                  * It may not if this is the first add of an endpoint.
2748                  */
2749                 if (virt_dev->eps[i].ring) {
2750                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2751                 }
2752                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2753                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2754                 virt_dev->eps[i].new_ring = NULL;
2755         }
2756 command_cleanup:
2757         kfree(command->completion);
2758         kfree(command);
2759
2760         return ret;
2761 }
2762
2763 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2764 {
2765         struct xhci_hcd *xhci;
2766         struct xhci_virt_device *virt_dev;
2767         int i, ret;
2768
2769         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2770         if (ret <= 0)
2771                 return;
2772         xhci = hcd_to_xhci(hcd);
2773
2774         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2775         virt_dev = xhci->devs[udev->slot_id];
2776         /* Free any rings allocated for added endpoints */
2777         for (i = 0; i < 31; i++) {
2778                 if (virt_dev->eps[i].new_ring) {
2779                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2780                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2781                         virt_dev->eps[i].new_ring = NULL;
2782                 }
2783         }
2784         xhci_zero_in_ctx(xhci, virt_dev);
2785 }
2786
2787 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2788                 struct xhci_container_ctx *in_ctx,
2789                 struct xhci_container_ctx *out_ctx,
2790                 struct xhci_input_control_ctx *ctrl_ctx,
2791                 u32 add_flags, u32 drop_flags)
2792 {
2793         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2794         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2795         xhci_slot_copy(xhci, in_ctx, out_ctx);
2796         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2797 }
2798
2799 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2800                 unsigned int slot_id, unsigned int ep_index,
2801                 struct xhci_dequeue_state *deq_state)
2802 {
2803         struct xhci_input_control_ctx *ctrl_ctx;
2804         struct xhci_container_ctx *in_ctx;
2805         struct xhci_ep_ctx *ep_ctx;
2806         u32 added_ctxs;
2807         dma_addr_t addr;
2808
2809         in_ctx = xhci->devs[slot_id]->in_ctx;
2810         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2811         if (!ctrl_ctx) {
2812                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2813                                 __func__);
2814                 return;
2815         }
2816
2817         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2818                         xhci->devs[slot_id]->out_ctx, ep_index);
2819         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2820         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2821                         deq_state->new_deq_ptr);
2822         if (addr == 0) {
2823                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2824                                 "reset ep command\n");
2825                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2826                                 deq_state->new_deq_seg,
2827                                 deq_state->new_deq_ptr);
2828                 return;
2829         }
2830         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2831
2832         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2833         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2834                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2835                         added_ctxs, added_ctxs);
2836 }
2837
2838 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2839                                unsigned int stream_id, struct xhci_td *td)
2840 {
2841         struct xhci_dequeue_state deq_state;
2842         struct usb_device *udev = td->urb->dev;
2843
2844         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2845                         "Cleaning up stalled endpoint ring");
2846         /* We need to move the HW's dequeue pointer past this TD,
2847          * or it will attempt to resend it on the next doorbell ring.
2848          */
2849         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2850                         ep_index, stream_id, td, &deq_state);
2851
2852         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2853                 return;
2854
2855         /* HW with the reset endpoint quirk will use the saved dequeue state to
2856          * issue a configure endpoint command later.
2857          */
2858         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2859                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2860                                 "Queueing new dequeue state");
2861                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2862                                 ep_index, &deq_state);
2863         } else {
2864                 /* Better hope no one uses the input context between now and the
2865                  * reset endpoint completion!
2866                  * XXX: No idea how this hardware will react when stream rings
2867                  * are enabled.
2868                  */
2869                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2870                                 "Setting up input context for "
2871                                 "configure endpoint command");
2872                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2873                                 ep_index, &deq_state);
2874         }
2875 }
2876
2877 /* Called when clearing halted device. The core should have sent the control
2878  * message to clear the device halt condition. The host side of the halt should
2879  * already be cleared with a reset endpoint command issued when the STALL tx
2880  * event was received.
2881  *
2882  * Context: in_interrupt
2883  */
2884
2885 static void xhci_endpoint_reset(struct usb_hcd *hcd,
2886                 struct usb_host_endpoint *ep)
2887 {
2888         struct xhci_hcd *xhci;
2889
2890         xhci = hcd_to_xhci(hcd);
2891
2892         /*
2893          * We might need to implement the config ep cmd in xhci 4.8.1 note:
2894          * The Reset Endpoint Command may only be issued to endpoints in the
2895          * Halted state. If software wishes reset the Data Toggle or Sequence
2896          * Number of an endpoint that isn't in the Halted state, then software
2897          * may issue a Configure Endpoint Command with the Drop and Add bits set
2898          * for the target endpoint. that is in the Stopped state.
2899          */
2900
2901         /* For now just print debug to follow the situation */
2902         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2903                  ep->desc.bEndpointAddress);
2904 }
2905
2906 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2907                 struct usb_device *udev, struct usb_host_endpoint *ep,
2908                 unsigned int slot_id)
2909 {
2910         int ret;
2911         unsigned int ep_index;
2912         unsigned int ep_state;
2913
2914         if (!ep)
2915                 return -EINVAL;
2916         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2917         if (ret <= 0)
2918                 return -EINVAL;
2919         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2920                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2921                                 " descriptor for ep 0x%x does not support streams\n",
2922                                 ep->desc.bEndpointAddress);
2923                 return -EINVAL;
2924         }
2925
2926         ep_index = xhci_get_endpoint_index(&ep->desc);
2927         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2928         if (ep_state & EP_HAS_STREAMS ||
2929                         ep_state & EP_GETTING_STREAMS) {
2930                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2931                                 "already has streams set up.\n",
2932                                 ep->desc.bEndpointAddress);
2933                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2934                                 "dynamic stream context array reallocation.\n");
2935                 return -EINVAL;
2936         }
2937         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2938                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2939                                 "endpoint 0x%x; URBs are pending.\n",
2940                                 ep->desc.bEndpointAddress);
2941                 return -EINVAL;
2942         }
2943         return 0;
2944 }
2945
2946 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2947                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2948 {
2949         unsigned int max_streams;
2950
2951         /* The stream context array size must be a power of two */
2952         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2953         /*
2954          * Find out how many primary stream array entries the host controller
2955          * supports.  Later we may use secondary stream arrays (similar to 2nd
2956          * level page entries), but that's an optional feature for xHCI host
2957          * controllers. xHCs must support at least 4 stream IDs.
2958          */
2959         max_streams = HCC_MAX_PSA(xhci->hcc_params);
2960         if (*num_stream_ctxs > max_streams) {
2961                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2962                                 max_streams);
2963                 *num_stream_ctxs = max_streams;
2964                 *num_streams = max_streams;
2965         }
2966 }
2967
2968 /* Returns an error code if one of the endpoint already has streams.
2969  * This does not change any data structures, it only checks and gathers
2970  * information.
2971  */
2972 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2973                 struct usb_device *udev,
2974                 struct usb_host_endpoint **eps, unsigned int num_eps,
2975                 unsigned int *num_streams, u32 *changed_ep_bitmask)
2976 {
2977         unsigned int max_streams;
2978         unsigned int endpoint_flag;
2979         int i;
2980         int ret;
2981
2982         for (i = 0; i < num_eps; i++) {
2983                 ret = xhci_check_streams_endpoint(xhci, udev,
2984                                 eps[i], udev->slot_id);
2985                 if (ret < 0)
2986                         return ret;
2987
2988                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2989                 if (max_streams < (*num_streams - 1)) {
2990                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2991                                         eps[i]->desc.bEndpointAddress,
2992                                         max_streams);
2993                         *num_streams = max_streams+1;
2994                 }
2995
2996                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2997                 if (*changed_ep_bitmask & endpoint_flag)
2998                         return -EINVAL;
2999                 *changed_ep_bitmask |= endpoint_flag;
3000         }
3001         return 0;
3002 }
3003
3004 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3005                 struct usb_device *udev,
3006                 struct usb_host_endpoint **eps, unsigned int num_eps)
3007 {
3008         u32 changed_ep_bitmask = 0;
3009         unsigned int slot_id;
3010         unsigned int ep_index;
3011         unsigned int ep_state;
3012         int i;
3013
3014         slot_id = udev->slot_id;
3015         if (!xhci->devs[slot_id])
3016                 return 0;
3017
3018         for (i = 0; i < num_eps; i++) {
3019                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3020                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3021                 /* Are streams already being freed for the endpoint? */
3022                 if (ep_state & EP_GETTING_NO_STREAMS) {
3023                         xhci_warn(xhci, "WARN Can't disable streams for "
3024                                         "endpoint 0x%x, "
3025                                         "streams are being disabled already\n",
3026                                         eps[i]->desc.bEndpointAddress);
3027                         return 0;
3028                 }
3029                 /* Are there actually any streams to free? */
3030                 if (!(ep_state & EP_HAS_STREAMS) &&
3031                                 !(ep_state & EP_GETTING_STREAMS)) {
3032                         xhci_warn(xhci, "WARN Can't disable streams for "
3033                                         "endpoint 0x%x, "
3034                                         "streams are already disabled!\n",
3035                                         eps[i]->desc.bEndpointAddress);
3036                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3037                                         "with non-streams endpoint\n");
3038                         return 0;
3039                 }
3040                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3041         }
3042         return changed_ep_bitmask;
3043 }
3044
3045 /*
3046  * The USB device drivers use this function (through the HCD interface in USB
3047  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3048  * coordinate mass storage command queueing across multiple endpoints (basically
3049  * a stream ID == a task ID).
3050  *
3051  * Setting up streams involves allocating the same size stream context array
3052  * for each endpoint and issuing a configure endpoint command for all endpoints.
3053  *
3054  * Don't allow the call to succeed if one endpoint only supports one stream
3055  * (which means it doesn't support streams at all).
3056  *
3057  * Drivers may get less stream IDs than they asked for, if the host controller
3058  * hardware or endpoints claim they can't support the number of requested
3059  * stream IDs.
3060  */
3061 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3062                 struct usb_host_endpoint **eps, unsigned int num_eps,
3063                 unsigned int num_streams, gfp_t mem_flags)
3064 {
3065         int i, ret;
3066         struct xhci_hcd *xhci;
3067         struct xhci_virt_device *vdev;
3068         struct xhci_command *config_cmd;
3069         struct xhci_input_control_ctx *ctrl_ctx;
3070         unsigned int ep_index;
3071         unsigned int num_stream_ctxs;
3072         unsigned int max_packet;
3073         unsigned long flags;
3074         u32 changed_ep_bitmask = 0;
3075
3076         if (!eps)
3077                 return -EINVAL;
3078
3079         /* Add one to the number of streams requested to account for
3080          * stream 0 that is reserved for xHCI usage.
3081          */
3082         num_streams += 1;
3083         xhci = hcd_to_xhci(hcd);
3084         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3085                         num_streams);
3086
3087         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3088         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3089                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3090                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3091                 return -ENOSYS;
3092         }
3093
3094         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3095         if (!config_cmd)
3096                 return -ENOMEM;
3097
3098         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3099         if (!ctrl_ctx) {
3100                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3101                                 __func__);
3102                 xhci_free_command(xhci, config_cmd);
3103                 return -ENOMEM;
3104         }
3105
3106         /* Check to make sure all endpoints are not already configured for
3107          * streams.  While we're at it, find the maximum number of streams that
3108          * all the endpoints will support and check for duplicate endpoints.
3109          */
3110         spin_lock_irqsave(&xhci->lock, flags);
3111         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3112                         num_eps, &num_streams, &changed_ep_bitmask);
3113         if (ret < 0) {
3114                 xhci_free_command(xhci, config_cmd);
3115                 spin_unlock_irqrestore(&xhci->lock, flags);
3116                 return ret;
3117         }
3118         if (num_streams <= 1) {
3119                 xhci_warn(xhci, "WARN: endpoints can't handle "
3120                                 "more than one stream.\n");
3121                 xhci_free_command(xhci, config_cmd);
3122                 spin_unlock_irqrestore(&xhci->lock, flags);
3123                 return -EINVAL;
3124         }
3125         vdev = xhci->devs[udev->slot_id];
3126         /* Mark each endpoint as being in transition, so
3127          * xhci_urb_enqueue() will reject all URBs.
3128          */
3129         for (i = 0; i < num_eps; i++) {
3130                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3131                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3132         }
3133         spin_unlock_irqrestore(&xhci->lock, flags);
3134
3135         /* Setup internal data structures and allocate HW data structures for
3136          * streams (but don't install the HW structures in the input context
3137          * until we're sure all memory allocation succeeded).
3138          */
3139         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3140         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3141                         num_stream_ctxs, num_streams);
3142
3143         for (i = 0; i < num_eps; i++) {
3144                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3145                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3146                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3147                                 num_stream_ctxs,
3148                                 num_streams,
3149                                 max_packet, mem_flags);
3150                 if (!vdev->eps[ep_index].stream_info)
3151                         goto cleanup;
3152                 /* Set maxPstreams in endpoint context and update deq ptr to
3153                  * point to stream context array. FIXME
3154                  */
3155         }
3156
3157         /* Set up the input context for a configure endpoint command. */
3158         for (i = 0; i < num_eps; i++) {
3159                 struct xhci_ep_ctx *ep_ctx;
3160
3161                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3162                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3163
3164                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3165                                 vdev->out_ctx, ep_index);
3166                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3167                                 vdev->eps[ep_index].stream_info);
3168         }
3169         /* Tell the HW to drop its old copy of the endpoint context info
3170          * and add the updated copy from the input context.
3171          */
3172         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3173                         vdev->out_ctx, ctrl_ctx,
3174                         changed_ep_bitmask, changed_ep_bitmask);
3175
3176         /* Issue and wait for the configure endpoint command */
3177         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3178                         false, false);
3179
3180         /* xHC rejected the configure endpoint command for some reason, so we
3181          * leave the old ring intact and free our internal streams data
3182          * structure.
3183          */
3184         if (ret < 0)
3185                 goto cleanup;
3186
3187         spin_lock_irqsave(&xhci->lock, flags);
3188         for (i = 0; i < num_eps; i++) {
3189                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3190                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3191                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3192                          udev->slot_id, ep_index);
3193                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3194         }
3195         xhci_free_command(xhci, config_cmd);
3196         spin_unlock_irqrestore(&xhci->lock, flags);
3197
3198         /* Subtract 1 for stream 0, which drivers can't use */
3199         return num_streams - 1;
3200
3201 cleanup:
3202         /* If it didn't work, free the streams! */
3203         for (i = 0; i < num_eps; i++) {
3204                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3205                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3206                 vdev->eps[ep_index].stream_info = NULL;
3207                 /* FIXME Unset maxPstreams in endpoint context and
3208                  * update deq ptr to point to normal string ring.
3209                  */
3210                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3211                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3212                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3213         }
3214         xhci_free_command(xhci, config_cmd);
3215         return -ENOMEM;
3216 }
3217
3218 /* Transition the endpoint from using streams to being a "normal" endpoint
3219  * without streams.
3220  *
3221  * Modify the endpoint context state, submit a configure endpoint command,
3222  * and free all endpoint rings for streams if that completes successfully.
3223  */
3224 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3225                 struct usb_host_endpoint **eps, unsigned int num_eps,
3226                 gfp_t mem_flags)
3227 {
3228         int i, ret;
3229         struct xhci_hcd *xhci;
3230         struct xhci_virt_device *vdev;
3231         struct xhci_command *command;
3232         struct xhci_input_control_ctx *ctrl_ctx;
3233         unsigned int ep_index;
3234         unsigned long flags;
3235         u32 changed_ep_bitmask;
3236
3237         xhci = hcd_to_xhci(hcd);
3238         vdev = xhci->devs[udev->slot_id];
3239
3240         /* Set up a configure endpoint command to remove the streams rings */
3241         spin_lock_irqsave(&xhci->lock, flags);
3242         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3243                         udev, eps, num_eps);
3244         if (changed_ep_bitmask == 0) {
3245                 spin_unlock_irqrestore(&xhci->lock, flags);
3246                 return -EINVAL;
3247         }
3248
3249         /* Use the xhci_command structure from the first endpoint.  We may have
3250          * allocated too many, but the driver may call xhci_free_streams() for
3251          * each endpoint it grouped into one call to xhci_alloc_streams().
3252          */
3253         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3254         command = vdev->eps[ep_index].stream_info->free_streams_command;
3255         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3256         if (!ctrl_ctx) {
3257                 spin_unlock_irqrestore(&xhci->lock, flags);
3258                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3259                                 __func__);
3260                 return -EINVAL;
3261         }
3262
3263         for (i = 0; i < num_eps; i++) {
3264                 struct xhci_ep_ctx *ep_ctx;
3265
3266                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3267                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3268                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3269                         EP_GETTING_NO_STREAMS;
3270
3271                 xhci_endpoint_copy(xhci, command->in_ctx,
3272                                 vdev->out_ctx, ep_index);
3273                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3274                                 &vdev->eps[ep_index]);
3275         }
3276         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3277                         vdev->out_ctx, ctrl_ctx,
3278                         changed_ep_bitmask, changed_ep_bitmask);
3279         spin_unlock_irqrestore(&xhci->lock, flags);
3280
3281         /* Issue and wait for the configure endpoint command,
3282          * which must succeed.
3283          */
3284         ret = xhci_configure_endpoint(xhci, udev, command,
3285                         false, true);
3286
3287         /* xHC rejected the configure endpoint command for some reason, so we
3288          * leave the streams rings intact.
3289          */
3290         if (ret < 0)
3291                 return ret;
3292
3293         spin_lock_irqsave(&xhci->lock, flags);
3294         for (i = 0; i < num_eps; i++) {
3295                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3296                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3297                 vdev->eps[ep_index].stream_info = NULL;
3298                 /* FIXME Unset maxPstreams in endpoint context and
3299                  * update deq ptr to point to normal string ring.
3300                  */
3301                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3302                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3303         }
3304         spin_unlock_irqrestore(&xhci->lock, flags);
3305
3306         return 0;
3307 }
3308
3309 /*
3310  * Deletes endpoint resources for endpoints that were active before a Reset
3311  * Device command, or a Disable Slot command.  The Reset Device command leaves
3312  * the control endpoint intact, whereas the Disable Slot command deletes it.
3313  *
3314  * Must be called with xhci->lock held.
3315  */
3316 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3317         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3318 {
3319         int i;
3320         unsigned int num_dropped_eps = 0;
3321         unsigned int drop_flags = 0;
3322
3323         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3324                 if (virt_dev->eps[i].ring) {
3325                         drop_flags |= 1 << i;
3326                         num_dropped_eps++;
3327                 }
3328         }
3329         xhci->num_active_eps -= num_dropped_eps;
3330         if (num_dropped_eps)
3331                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3332                                 "Dropped %u ep ctxs, flags = 0x%x, "
3333                                 "%u now active.",
3334                                 num_dropped_eps, drop_flags,
3335                                 xhci->num_active_eps);
3336 }
3337
3338 /*
3339  * This submits a Reset Device Command, which will set the device state to 0,
3340  * set the device address to 0, and disable all the endpoints except the default
3341  * control endpoint.  The USB core should come back and call
3342  * xhci_address_device(), and then re-set up the configuration.  If this is
3343  * called because of a usb_reset_and_verify_device(), then the old alternate
3344  * settings will be re-installed through the normal bandwidth allocation
3345  * functions.
3346  *
3347  * Wait for the Reset Device command to finish.  Remove all structures
3348  * associated with the endpoints that were disabled.  Clear the input device
3349  * structure? Reset the control endpoint 0 max packet size?
3350  *
3351  * If the virt_dev to be reset does not exist or does not match the udev,
3352  * it means the device is lost, possibly due to the xHC restore error and
3353  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3354  * re-allocate the device.
3355  */
3356 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3357                 struct usb_device *udev)
3358 {
3359         int ret, i;
3360         unsigned long flags;
3361         struct xhci_hcd *xhci;
3362         unsigned int slot_id;
3363         struct xhci_virt_device *virt_dev;
3364         struct xhci_command *reset_device_cmd;
3365         struct xhci_slot_ctx *slot_ctx;
3366         int old_active_eps = 0;
3367
3368         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3369         if (ret <= 0)
3370                 return ret;
3371         xhci = hcd_to_xhci(hcd);
3372         slot_id = udev->slot_id;
3373         virt_dev = xhci->devs[slot_id];
3374         if (!virt_dev) {
3375                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3376                                 "not exist. Re-allocate the device\n", slot_id);
3377                 ret = xhci_alloc_dev(hcd, udev);
3378                 if (ret == 1)
3379                         return 0;
3380                 else
3381                         return -EINVAL;
3382         }
3383
3384         if (virt_dev->tt_info)
3385                 old_active_eps = virt_dev->tt_info->active_eps;
3386
3387         if (virt_dev->udev != udev) {
3388                 /* If the virt_dev and the udev does not match, this virt_dev
3389                  * may belong to another udev.
3390                  * Re-allocate the device.
3391                  */
3392                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3393                                 "not match the udev. Re-allocate the device\n",
3394                                 slot_id);
3395                 ret = xhci_alloc_dev(hcd, udev);
3396                 if (ret == 1)
3397                         return 0;
3398                 else
3399                         return -EINVAL;
3400         }
3401
3402         /* If device is not setup, there is no point in resetting it */
3403         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3404         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3405                                                 SLOT_STATE_DISABLED)
3406                 return 0;
3407
3408         trace_xhci_discover_or_reset_device(slot_ctx);
3409
3410         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3411         /* Allocate the command structure that holds the struct completion.
3412          * Assume we're in process context, since the normal device reset
3413          * process has to wait for the device anyway.  Storage devices are
3414          * reset as part of error handling, so use GFP_NOIO instead of
3415          * GFP_KERNEL.
3416          */
3417         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3418         if (!reset_device_cmd) {
3419                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3420                 return -ENOMEM;
3421         }
3422
3423         /* Attempt to submit the Reset Device command to the command ring */
3424         spin_lock_irqsave(&xhci->lock, flags);
3425
3426         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3427         if (ret) {
3428                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3429                 spin_unlock_irqrestore(&xhci->lock, flags);
3430                 goto command_cleanup;
3431         }
3432         xhci_ring_cmd_db(xhci);
3433         spin_unlock_irqrestore(&xhci->lock, flags);
3434
3435         /* Wait for the Reset Device command to finish */
3436         wait_for_completion(reset_device_cmd->completion);
3437
3438         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3439          * unless we tried to reset a slot ID that wasn't enabled,
3440          * or the device wasn't in the addressed or configured state.
3441          */
3442         ret = reset_device_cmd->status;
3443         switch (ret) {
3444         case COMP_COMMAND_ABORTED:
3445         case COMP_COMMAND_RING_STOPPED:
3446                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3447                 ret = -ETIME;
3448                 goto command_cleanup;
3449         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3450         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3451                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3452                                 slot_id,
3453                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3454                 xhci_dbg(xhci, "Not freeing device rings.\n");
3455                 /* Don't treat this as an error.  May change my mind later. */
3456                 ret = 0;
3457                 goto command_cleanup;
3458         case COMP_SUCCESS:
3459                 xhci_dbg(xhci, "Successful reset device command.\n");
3460                 break;
3461         default:
3462                 if (xhci_is_vendor_info_code(xhci, ret))
3463                         break;
3464                 xhci_warn(xhci, "Unknown completion code %u for "
3465                                 "reset device command.\n", ret);
3466                 ret = -EINVAL;
3467                 goto command_cleanup;
3468         }
3469
3470         /* Free up host controller endpoint resources */
3471         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3472                 spin_lock_irqsave(&xhci->lock, flags);
3473                 /* Don't delete the default control endpoint resources */
3474                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3475                 spin_unlock_irqrestore(&xhci->lock, flags);
3476         }
3477
3478         /* Everything but endpoint 0 is disabled, so free the rings. */
3479         for (i = 1; i < 31; i++) {
3480                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3481
3482                 if (ep->ep_state & EP_HAS_STREAMS) {
3483                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3484                                         xhci_get_endpoint_address(i));
3485                         xhci_free_stream_info(xhci, ep->stream_info);
3486                         ep->stream_info = NULL;
3487                         ep->ep_state &= ~EP_HAS_STREAMS;
3488                 }
3489
3490                 if (ep->ring) {
3491                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3492                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3493                 }
3494                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3495                         xhci_drop_ep_from_interval_table(xhci,
3496                                         &virt_dev->eps[i].bw_info,
3497                                         virt_dev->bw_table,
3498                                         udev,
3499                                         &virt_dev->eps[i],
3500                                         virt_dev->tt_info);
3501                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3502         }
3503         /* If necessary, update the number of active TTs on this root port */
3504         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3505         ret = 0;
3506
3507 command_cleanup:
3508         xhci_free_command(xhci, reset_device_cmd);
3509         return ret;
3510 }
3511
3512 /*
3513  * At this point, the struct usb_device is about to go away, the device has
3514  * disconnected, and all traffic has been stopped and the endpoints have been
3515  * disabled.  Free any HC data structures associated with that device.
3516  */
3517 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3518 {
3519         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3520         struct xhci_virt_device *virt_dev;
3521         struct xhci_slot_ctx *slot_ctx;
3522         int i, ret;
3523
3524 #ifndef CONFIG_USB_DEFAULT_PERSIST
3525         /*
3526          * We called pm_runtime_get_noresume when the device was attached.
3527          * Decrement the counter here to allow controller to runtime suspend
3528          * if no devices remain.
3529          */
3530         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3531                 pm_runtime_put_noidle(hcd->self.controller);
3532 #endif
3533
3534         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3535         /* If the host is halted due to driver unload, we still need to free the
3536          * device.
3537          */
3538         if (ret <= 0 && ret != -ENODEV)
3539                 return;
3540
3541         virt_dev = xhci->devs[udev->slot_id];
3542         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3543         trace_xhci_free_dev(slot_ctx);
3544
3545         /* Stop any wayward timer functions (which may grab the lock) */
3546         for (i = 0; i < 31; i++) {
3547                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3548                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3549         }
3550         xhci_debugfs_remove_slot(xhci, udev->slot_id);
3551         ret = xhci_disable_slot(xhci, udev->slot_id);
3552         if (ret)
3553                 xhci_free_virt_device(xhci, udev->slot_id);
3554 }
3555
3556 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3557 {
3558         struct xhci_command *command;
3559         unsigned long flags;
3560         u32 state;
3561         int ret = 0;
3562
3563         command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3564         if (!command)
3565                 return -ENOMEM;
3566
3567         spin_lock_irqsave(&xhci->lock, flags);
3568         /* Don't disable the slot if the host controller is dead. */
3569         state = readl(&xhci->op_regs->status);
3570         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3571                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3572                 spin_unlock_irqrestore(&xhci->lock, flags);
3573                 kfree(command);
3574                 return -ENODEV;
3575         }
3576
3577         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3578                                 slot_id);
3579         if (ret) {
3580                 spin_unlock_irqrestore(&xhci->lock, flags);
3581                 kfree(command);
3582                 return ret;
3583         }
3584         xhci_ring_cmd_db(xhci);
3585         spin_unlock_irqrestore(&xhci->lock, flags);
3586         return ret;
3587 }
3588
3589 /*
3590  * Checks if we have enough host controller resources for the default control
3591  * endpoint.
3592  *
3593  * Must be called with xhci->lock held.
3594  */
3595 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3596 {
3597         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3598                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3599                                 "Not enough ep ctxs: "
3600                                 "%u active, need to add 1, limit is %u.",
3601                                 xhci->num_active_eps, xhci->limit_active_eps);
3602                 return -ENOMEM;
3603         }
3604         xhci->num_active_eps += 1;
3605         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3606                         "Adding 1 ep ctx, %u now active.",
3607                         xhci->num_active_eps);
3608         return 0;
3609 }
3610
3611
3612 /*
3613  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3614  * timed out, or allocating memory failed.  Returns 1 on success.
3615  */
3616 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3617 {
3618         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3619         struct xhci_virt_device *vdev;
3620         struct xhci_slot_ctx *slot_ctx;
3621         unsigned long flags;
3622         int ret, slot_id;
3623         struct xhci_command *command;
3624
3625         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3626         if (!command)
3627                 return 0;
3628
3629         spin_lock_irqsave(&xhci->lock, flags);
3630         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3631         if (ret) {
3632                 spin_unlock_irqrestore(&xhci->lock, flags);
3633                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3634                 xhci_free_command(xhci, command);
3635                 return 0;
3636         }
3637         xhci_ring_cmd_db(xhci);
3638         spin_unlock_irqrestore(&xhci->lock, flags);
3639
3640         wait_for_completion(command->completion);
3641         slot_id = command->slot_id;
3642
3643         if (!slot_id || command->status != COMP_SUCCESS) {
3644                 xhci_err(xhci, "Error while assigning device slot ID\n");
3645                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3646                                 HCS_MAX_SLOTS(
3647                                         readl(&xhci->cap_regs->hcs_params1)));
3648                 xhci_free_command(xhci, command);
3649                 return 0;
3650         }
3651
3652         xhci_free_command(xhci, command);
3653
3654         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3655                 spin_lock_irqsave(&xhci->lock, flags);
3656                 ret = xhci_reserve_host_control_ep_resources(xhci);
3657                 if (ret) {
3658                         spin_unlock_irqrestore(&xhci->lock, flags);
3659                         xhci_warn(xhci, "Not enough host resources, "
3660                                         "active endpoint contexts = %u\n",
3661                                         xhci->num_active_eps);
3662                         goto disable_slot;
3663                 }
3664                 spin_unlock_irqrestore(&xhci->lock, flags);
3665         }
3666         /* Use GFP_NOIO, since this function can be called from
3667          * xhci_discover_or_reset_device(), which may be called as part of
3668          * mass storage driver error handling.
3669          */
3670         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3671                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3672                 goto disable_slot;
3673         }
3674         vdev = xhci->devs[slot_id];
3675         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3676         trace_xhci_alloc_dev(slot_ctx);
3677
3678         udev->slot_id = slot_id;
3679
3680         xhci_debugfs_create_slot(xhci, slot_id);
3681
3682 #ifndef CONFIG_USB_DEFAULT_PERSIST
3683         /*
3684          * If resetting upon resume, we can't put the controller into runtime
3685          * suspend if there is a device attached.
3686          */
3687         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3688                 pm_runtime_get_noresume(hcd->self.controller);
3689 #endif
3690
3691         /* Is this a LS or FS device under a HS hub? */
3692         /* Hub or peripherial? */
3693         return 1;
3694
3695 disable_slot:
3696         ret = xhci_disable_slot(xhci, udev->slot_id);
3697         if (ret)
3698                 xhci_free_virt_device(xhci, udev->slot_id);
3699
3700         return 0;
3701 }
3702
3703 /*
3704  * Issue an Address Device command and optionally send a corresponding
3705  * SetAddress request to the device.
3706  */
3707 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3708                              enum xhci_setup_dev setup)
3709 {
3710         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3711         unsigned long flags;
3712         struct xhci_virt_device *virt_dev;
3713         int ret = 0;
3714         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3715         struct xhci_slot_ctx *slot_ctx;
3716         struct xhci_input_control_ctx *ctrl_ctx;
3717         u64 temp_64;
3718         struct xhci_command *command = NULL;
3719
3720         mutex_lock(&xhci->mutex);
3721
3722         if (xhci->xhc_state) {  /* dying, removing or halted */
3723                 ret = -ESHUTDOWN;
3724                 goto out;
3725         }
3726
3727         if (!udev->slot_id) {
3728                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3729                                 "Bad Slot ID %d", udev->slot_id);
3730                 ret = -EINVAL;
3731                 goto out;
3732         }
3733
3734         virt_dev = xhci->devs[udev->slot_id];
3735
3736         if (WARN_ON(!virt_dev)) {
3737                 /*
3738                  * In plug/unplug torture test with an NEC controller,
3739                  * a zero-dereference was observed once due to virt_dev = 0.
3740                  * Print useful debug rather than crash if it is observed again!
3741                  */
3742                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3743                         udev->slot_id);
3744                 ret = -EINVAL;
3745                 goto out;
3746         }
3747         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3748         trace_xhci_setup_device_slot(slot_ctx);
3749
3750         if (setup == SETUP_CONTEXT_ONLY) {
3751                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3752                     SLOT_STATE_DEFAULT) {
3753                         xhci_dbg(xhci, "Slot already in default state\n");
3754                         goto out;
3755                 }
3756         }
3757
3758         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3759         if (!command) {
3760                 ret = -ENOMEM;
3761                 goto out;
3762         }
3763
3764         command->in_ctx = virt_dev->in_ctx;
3765
3766         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3767         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3768         if (!ctrl_ctx) {
3769                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3770                                 __func__);
3771                 ret = -EINVAL;
3772                 goto out;
3773         }
3774         /*
3775          * If this is the first Set Address since device plug-in or
3776          * virt_device realloaction after a resume with an xHCI power loss,
3777          * then set up the slot context.
3778          */
3779         if (!slot_ctx->dev_info)
3780                 xhci_setup_addressable_virt_dev(xhci, udev);
3781         /* Otherwise, update the control endpoint ring enqueue pointer. */
3782         else
3783                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3784         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3785         ctrl_ctx->drop_flags = 0;
3786
3787         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3788                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3789
3790         spin_lock_irqsave(&xhci->lock, flags);
3791         trace_xhci_setup_device(virt_dev);
3792         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3793                                         udev->slot_id, setup);
3794         if (ret) {
3795                 spin_unlock_irqrestore(&xhci->lock, flags);
3796                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3797                                 "FIXME: allocate a command ring segment");
3798                 goto out;
3799         }
3800         xhci_ring_cmd_db(xhci);
3801         spin_unlock_irqrestore(&xhci->lock, flags);
3802
3803         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3804         wait_for_completion(command->completion);
3805
3806         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3807          * the SetAddress() "recovery interval" required by USB and aborting the
3808          * command on a timeout.
3809          */
3810         switch (command->status) {
3811         case COMP_COMMAND_ABORTED:
3812         case COMP_COMMAND_RING_STOPPED:
3813                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3814                 ret = -ETIME;
3815                 break;
3816         case COMP_CONTEXT_STATE_ERROR:
3817         case COMP_SLOT_NOT_ENABLED_ERROR:
3818                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3819                          act, udev->slot_id);
3820                 ret = -EINVAL;
3821                 break;
3822         case COMP_USB_TRANSACTION_ERROR:
3823                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3824
3825                 mutex_unlock(&xhci->mutex);
3826                 ret = xhci_disable_slot(xhci, udev->slot_id);
3827                 if (!ret)
3828                         xhci_alloc_dev(hcd, udev);
3829                 kfree(command->completion);
3830                 kfree(command);
3831                 return -EPROTO;
3832         case COMP_INCOMPATIBLE_DEVICE_ERROR:
3833                 dev_warn(&udev->dev,
3834                          "ERROR: Incompatible device for setup %s command\n", act);
3835                 ret = -ENODEV;
3836                 break;
3837         case COMP_SUCCESS:
3838                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3839                                "Successful setup %s command", act);
3840                 break;
3841         default:
3842                 xhci_err(xhci,
3843                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3844                          act, command->status);
3845                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3846                 ret = -EINVAL;
3847                 break;
3848         }
3849         if (ret)
3850                 goto out;
3851         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3852         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3853                         "Op regs DCBAA ptr = %#016llx", temp_64);
3854         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3855                 "Slot ID %d dcbaa entry @%p = %#016llx",
3856                 udev->slot_id,
3857                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3858                 (unsigned long long)
3859                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3860         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3861                         "Output Context DMA address = %#08llx",
3862                         (unsigned long long)virt_dev->out_ctx->dma);
3863         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3864                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3865         /*
3866          * USB core uses address 1 for the roothubs, so we add one to the
3867          * address given back to us by the HC.
3868          */
3869         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3870                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3871         /* Zero the input context control for later use */
3872         ctrl_ctx->add_flags = 0;
3873         ctrl_ctx->drop_flags = 0;
3874
3875         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3876                        "Internal device address = %d",
3877                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3878 out:
3879         mutex_unlock(&xhci->mutex);
3880         if (command) {
3881                 kfree(command->completion);
3882                 kfree(command);
3883         }
3884         return ret;
3885 }
3886
3887 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3888 {
3889         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3890 }
3891
3892 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3893 {
3894         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3895 }
3896
3897 /*
3898  * Transfer the port index into real index in the HW port status
3899  * registers. Caculate offset between the port's PORTSC register
3900  * and port status base. Divide the number of per port register
3901  * to get the real index. The raw port number bases 1.
3902  */
3903 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3904 {
3905         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3906         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3907         __le32 __iomem *addr;
3908         int raw_port;
3909
3910         if (hcd->speed < HCD_USB3)
3911                 addr = xhci->usb2_ports[port1 - 1];
3912         else
3913                 addr = xhci->usb3_ports[port1 - 1];
3914
3915         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3916         return raw_port;
3917 }
3918
3919 /*
3920  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3921  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3922  */
3923 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3924                         struct usb_device *udev, u16 max_exit_latency)
3925 {
3926         struct xhci_virt_device *virt_dev;
3927         struct xhci_command *command;
3928         struct xhci_input_control_ctx *ctrl_ctx;
3929         struct xhci_slot_ctx *slot_ctx;
3930         unsigned long flags;
3931         int ret;
3932
3933         spin_lock_irqsave(&xhci->lock, flags);
3934
3935         virt_dev = xhci->devs[udev->slot_id];
3936
3937         /*
3938          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3939          * xHC was re-initialized. Exit latency will be set later after
3940          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3941          */
3942
3943         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
3944                 spin_unlock_irqrestore(&xhci->lock, flags);
3945                 return 0;
3946         }
3947
3948         /* Attempt to issue an Evaluate Context command to change the MEL. */
3949         command = xhci->lpm_command;
3950         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3951         if (!ctrl_ctx) {
3952                 spin_unlock_irqrestore(&xhci->lock, flags);
3953                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3954                                 __func__);
3955                 return -ENOMEM;
3956         }
3957
3958         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3959         spin_unlock_irqrestore(&xhci->lock, flags);
3960
3961         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3962         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3963         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3964         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3965         slot_ctx->dev_state = 0;
3966
3967         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3968                         "Set up evaluate context for LPM MEL change.");
3969
3970         /* Issue and wait for the evaluate context command. */
3971         ret = xhci_configure_endpoint(xhci, udev, command,
3972                         true, true);
3973
3974         if (!ret) {
3975                 spin_lock_irqsave(&xhci->lock, flags);
3976                 virt_dev->current_mel = max_exit_latency;
3977                 spin_unlock_irqrestore(&xhci->lock, flags);
3978         }
3979         return ret;
3980 }
3981
3982 #ifdef CONFIG_PM
3983
3984 /* BESL to HIRD Encoding array for USB2 LPM */
3985 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3986         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3987
3988 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3989 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3990                                         struct usb_device *udev)
3991 {
3992         int u2del, besl, besl_host;
3993         int besl_device = 0;
3994         u32 field;
3995
3996         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3997         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3998
3999         if (field & USB_BESL_SUPPORT) {
4000                 for (besl_host = 0; besl_host < 16; besl_host++) {
4001                         if (xhci_besl_encoding[besl_host] >= u2del)
4002                                 break;
4003                 }
4004                 /* Use baseline BESL value as default */
4005                 if (field & USB_BESL_BASELINE_VALID)
4006                         besl_device = USB_GET_BESL_BASELINE(field);
4007                 else if (field & USB_BESL_DEEP_VALID)
4008                         besl_device = USB_GET_BESL_DEEP(field);
4009         } else {
4010                 if (u2del <= 50)
4011                         besl_host = 0;
4012                 else
4013                         besl_host = (u2del - 51) / 75 + 1;
4014         }
4015
4016         besl = besl_host + besl_device;
4017         if (besl > 15)
4018                 besl = 15;
4019
4020         return besl;
4021 }
4022
4023 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4024 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4025 {
4026         u32 field;
4027         int l1;
4028         int besld = 0;
4029         int hirdm = 0;
4030
4031         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4032
4033         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4034         l1 = udev->l1_params.timeout / 256;
4035
4036         /* device has preferred BESLD */
4037         if (field & USB_BESL_DEEP_VALID) {
4038                 besld = USB_GET_BESL_DEEP(field);
4039                 hirdm = 1;
4040         }
4041
4042         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4043 }
4044
4045 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4046                         struct usb_device *udev, int enable)
4047 {
4048         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4049         __le32 __iomem  **port_array;
4050         __le32 __iomem  *pm_addr, *hlpm_addr;
4051         u32             pm_val, hlpm_val, field;
4052         unsigned int    port_num;
4053         unsigned long   flags;
4054         int             hird, exit_latency;
4055         int             ret;
4056
4057         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4058                         !udev->lpm_capable)
4059                 return -EPERM;
4060
4061         if (!udev->parent || udev->parent->parent ||
4062                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4063                 return -EPERM;
4064
4065         if (udev->usb2_hw_lpm_capable != 1)
4066                 return -EPERM;
4067
4068         spin_lock_irqsave(&xhci->lock, flags);
4069
4070         port_array = xhci->usb2_ports;
4071         port_num = udev->portnum - 1;
4072         pm_addr = port_array[port_num] + PORTPMSC;
4073         pm_val = readl(pm_addr);
4074         hlpm_addr = port_array[port_num] + PORTHLPMC;
4075         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4076
4077         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4078                         enable ? "enable" : "disable", port_num + 1);
4079
4080         if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4081                 /* Host supports BESL timeout instead of HIRD */
4082                 if (udev->usb2_hw_lpm_besl_capable) {
4083                         /* if device doesn't have a preferred BESL value use a
4084                          * default one which works with mixed HIRD and BESL
4085                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4086                          */
4087                         if ((field & USB_BESL_SUPPORT) &&
4088                             (field & USB_BESL_BASELINE_VALID))
4089                                 hird = USB_GET_BESL_BASELINE(field);
4090                         else
4091                                 hird = udev->l1_params.besl;
4092
4093                         exit_latency = xhci_besl_encoding[hird];
4094                         spin_unlock_irqrestore(&xhci->lock, flags);
4095
4096                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4097                          * input context for link powermanagement evaluate
4098                          * context commands. It is protected by hcd->bandwidth
4099                          * mutex and is shared by all devices. We need to set
4100                          * the max ext latency in USB 2 BESL LPM as well, so
4101                          * use the same mutex and xhci_change_max_exit_latency()
4102                          */
4103                         mutex_lock(hcd->bandwidth_mutex);
4104                         ret = xhci_change_max_exit_latency(xhci, udev,
4105                                                            exit_latency);
4106                         mutex_unlock(hcd->bandwidth_mutex);
4107
4108                         if (ret < 0)
4109                                 return ret;
4110                         spin_lock_irqsave(&xhci->lock, flags);
4111
4112                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4113                         writel(hlpm_val, hlpm_addr);
4114                         /* flush write */
4115                         readl(hlpm_addr);
4116                 } else {
4117                         hird = xhci_calculate_hird_besl(xhci, udev);
4118                 }
4119
4120                 pm_val &= ~PORT_HIRD_MASK;
4121                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4122                 writel(pm_val, pm_addr);
4123                 pm_val = readl(pm_addr);
4124                 pm_val |= PORT_HLE;
4125                 writel(pm_val, pm_addr);
4126                 /* flush write */
4127                 readl(pm_addr);
4128         } else {
4129                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4130                 writel(pm_val, pm_addr);
4131                 /* flush write */
4132                 readl(pm_addr);
4133                 if (udev->usb2_hw_lpm_besl_capable) {
4134                         spin_unlock_irqrestore(&xhci->lock, flags);
4135                         mutex_lock(hcd->bandwidth_mutex);
4136                         xhci_change_max_exit_latency(xhci, udev, 0);
4137                         mutex_unlock(hcd->bandwidth_mutex);
4138                         return 0;
4139                 }
4140         }
4141
4142         spin_unlock_irqrestore(&xhci->lock, flags);
4143         return 0;
4144 }
4145
4146 /* check if a usb2 port supports a given extened capability protocol
4147  * only USB2 ports extended protocol capability values are cached.
4148  * Return 1 if capability is supported
4149  */
4150 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4151                                            unsigned capability)
4152 {
4153         u32 port_offset, port_count;
4154         int i;
4155
4156         for (i = 0; i < xhci->num_ext_caps; i++) {
4157                 if (xhci->ext_caps[i] & capability) {
4158                         /* port offsets starts at 1 */
4159                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4160                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4161                         if (port >= port_offset &&
4162                             port < port_offset + port_count)
4163                                 return 1;
4164                 }
4165         }
4166         return 0;
4167 }
4168
4169 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4170 {
4171         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4172         int             portnum = udev->portnum - 1;
4173
4174         if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4175                         !udev->lpm_capable)
4176                 return 0;
4177
4178         /* we only support lpm for non-hub device connected to root hub yet */
4179         if (!udev->parent || udev->parent->parent ||
4180                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4181                 return 0;
4182
4183         if (xhci->hw_lpm_support == 1 &&
4184                         xhci_check_usb2_port_capability(
4185                                 xhci, portnum, XHCI_HLC)) {
4186                 udev->usb2_hw_lpm_capable = 1;
4187                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4188                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4189                 if (xhci_check_usb2_port_capability(xhci, portnum,
4190                                         XHCI_BLC))
4191                         udev->usb2_hw_lpm_besl_capable = 1;
4192         }
4193
4194         return 0;
4195 }
4196
4197 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4198
4199 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4200 static unsigned long long xhci_service_interval_to_ns(
4201                 struct usb_endpoint_descriptor *desc)
4202 {
4203         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4204 }
4205
4206 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4207                 enum usb3_link_state state)
4208 {
4209         unsigned long long sel;
4210         unsigned long long pel;
4211         unsigned int max_sel_pel;
4212         char *state_name;
4213
4214         switch (state) {
4215         case USB3_LPM_U1:
4216                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4217                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4218                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4219                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4220                 state_name = "U1";
4221                 break;
4222         case USB3_LPM_U2:
4223                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4224                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4225                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4226                 state_name = "U2";
4227                 break;
4228         default:
4229                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4230                                 __func__);
4231                 return USB3_LPM_DISABLED;
4232         }
4233
4234         if (sel <= max_sel_pel && pel <= max_sel_pel)
4235                 return USB3_LPM_DEVICE_INITIATED;
4236
4237         if (sel > max_sel_pel)
4238                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4239                                 "due to long SEL %llu ms\n",
4240                                 state_name, sel);
4241         else
4242                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4243                                 "due to long PEL %llu ms\n",
4244                                 state_name, pel);
4245         return USB3_LPM_DISABLED;
4246 }
4247
4248 /* The U1 timeout should be the maximum of the following values:
4249  *  - For control endpoints, U1 system exit latency (SEL) * 3
4250  *  - For bulk endpoints, U1 SEL * 5
4251  *  - For interrupt endpoints:
4252  *    - Notification EPs, U1 SEL * 3
4253  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4254  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4255  */
4256 static unsigned long long xhci_calculate_intel_u1_timeout(
4257                 struct usb_device *udev,
4258                 struct usb_endpoint_descriptor *desc)
4259 {
4260         unsigned long long timeout_ns;
4261         int ep_type;
4262         int intr_type;
4263
4264         ep_type = usb_endpoint_type(desc);
4265         switch (ep_type) {
4266         case USB_ENDPOINT_XFER_CONTROL:
4267                 timeout_ns = udev->u1_params.sel * 3;
4268                 break;
4269         case USB_ENDPOINT_XFER_BULK:
4270                 timeout_ns = udev->u1_params.sel * 5;
4271                 break;
4272         case USB_ENDPOINT_XFER_INT:
4273                 intr_type = usb_endpoint_interrupt_type(desc);
4274                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4275                         timeout_ns = udev->u1_params.sel * 3;
4276                         break;
4277                 }
4278                 /* Otherwise the calculation is the same as isoc eps */
4279                 /* fall through */
4280         case USB_ENDPOINT_XFER_ISOC:
4281                 timeout_ns = xhci_service_interval_to_ns(desc);
4282                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4283                 if (timeout_ns < udev->u1_params.sel * 2)
4284                         timeout_ns = udev->u1_params.sel * 2;
4285                 break;
4286         default:
4287                 return 0;
4288         }
4289
4290         return timeout_ns;
4291 }
4292
4293 /* Returns the hub-encoded U1 timeout value. */
4294 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4295                 struct usb_device *udev,
4296                 struct usb_endpoint_descriptor *desc)
4297 {
4298         unsigned long long timeout_ns;
4299
4300         if (xhci->quirks & XHCI_INTEL_HOST)
4301                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4302         else
4303                 timeout_ns = udev->u1_params.sel;
4304
4305         /* The U1 timeout is encoded in 1us intervals.
4306          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4307          */
4308         if (timeout_ns == USB3_LPM_DISABLED)
4309                 timeout_ns = 1;
4310         else
4311                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4312
4313         /* If the necessary timeout value is bigger than what we can set in the
4314          * USB 3.0 hub, we have to disable hub-initiated U1.
4315          */
4316         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4317                 return timeout_ns;
4318         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4319                         "due to long timeout %llu ms\n", timeout_ns);
4320         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4321 }
4322
4323 /* The U2 timeout should be the maximum of:
4324  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4325  *  - largest bInterval of any active periodic endpoint (to avoid going
4326  *    into lower power link states between intervals).
4327  *  - the U2 Exit Latency of the device
4328  */
4329 static unsigned long long xhci_calculate_intel_u2_timeout(
4330                 struct usb_device *udev,
4331                 struct usb_endpoint_descriptor *desc)
4332 {
4333         unsigned long long timeout_ns;
4334         unsigned long long u2_del_ns;
4335
4336         timeout_ns = 10 * 1000 * 1000;
4337
4338         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4339                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4340                 timeout_ns = xhci_service_interval_to_ns(desc);
4341
4342         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4343         if (u2_del_ns > timeout_ns)
4344                 timeout_ns = u2_del_ns;
4345
4346         return timeout_ns;
4347 }
4348
4349 /* Returns the hub-encoded U2 timeout value. */
4350 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4351                 struct usb_device *udev,
4352                 struct usb_endpoint_descriptor *desc)
4353 {
4354         unsigned long long timeout_ns;
4355
4356         if (xhci->quirks & XHCI_INTEL_HOST)
4357                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4358         else
4359                 timeout_ns = udev->u2_params.sel;
4360
4361         /* The U2 timeout is encoded in 256us intervals */
4362         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4363         /* If the necessary timeout value is bigger than what we can set in the
4364          * USB 3.0 hub, we have to disable hub-initiated U2.
4365          */
4366         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4367                 return timeout_ns;
4368         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4369                         "due to long timeout %llu ms\n", timeout_ns);
4370         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4371 }
4372
4373 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4374                 struct usb_device *udev,
4375                 struct usb_endpoint_descriptor *desc,
4376                 enum usb3_link_state state,
4377                 u16 *timeout)
4378 {
4379         if (state == USB3_LPM_U1)
4380                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4381         else if (state == USB3_LPM_U2)
4382                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4383
4384         return USB3_LPM_DISABLED;
4385 }
4386
4387 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4388                 struct usb_device *udev,
4389                 struct usb_endpoint_descriptor *desc,
4390                 enum usb3_link_state state,
4391                 u16 *timeout)
4392 {
4393         u16 alt_timeout;
4394
4395         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4396                 desc, state, timeout);
4397
4398         /* If we found we can't enable hub-initiated LPM, or
4399          * the U1 or U2 exit latency was too high to allow
4400          * device-initiated LPM as well, just stop searching.
4401          */
4402         if (alt_timeout == USB3_LPM_DISABLED ||
4403                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4404                 *timeout = alt_timeout;
4405                 return -E2BIG;
4406         }
4407         if (alt_timeout > *timeout)
4408                 *timeout = alt_timeout;
4409         return 0;
4410 }
4411
4412 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4413                 struct usb_device *udev,
4414                 struct usb_host_interface *alt,
4415                 enum usb3_link_state state,
4416                 u16 *timeout)
4417 {
4418         int j;
4419
4420         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4421                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4422                                         &alt->endpoint[j].desc, state, timeout))
4423                         return -E2BIG;
4424                 continue;
4425         }
4426         return 0;
4427 }
4428
4429 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4430                 enum usb3_link_state state)
4431 {
4432         struct usb_device *parent;
4433         unsigned int num_hubs;
4434
4435         if (state == USB3_LPM_U2)
4436                 return 0;
4437
4438         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4439         for (parent = udev->parent, num_hubs = 0; parent->parent;
4440                         parent = parent->parent)
4441                 num_hubs++;
4442
4443         if (num_hubs < 2)
4444                 return 0;
4445
4446         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4447                         " below second-tier hub.\n");
4448         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4449                         "to decrease power consumption.\n");
4450         return -E2BIG;
4451 }
4452
4453 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4454                 struct usb_device *udev,
4455                 enum usb3_link_state state)
4456 {
4457         if (xhci->quirks & XHCI_INTEL_HOST)
4458                 return xhci_check_intel_tier_policy(udev, state);
4459         else
4460                 return 0;
4461 }
4462
4463 /* Returns the U1 or U2 timeout that should be enabled.
4464  * If the tier check or timeout setting functions return with a non-zero exit
4465  * code, that means the timeout value has been finalized and we shouldn't look
4466  * at any more endpoints.
4467  */
4468 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4469                         struct usb_device *udev, enum usb3_link_state state)
4470 {
4471         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4472         struct usb_host_config *config;
4473         char *state_name;
4474         int i;
4475         u16 timeout = USB3_LPM_DISABLED;
4476
4477         if (state == USB3_LPM_U1)
4478                 state_name = "U1";
4479         else if (state == USB3_LPM_U2)
4480                 state_name = "U2";
4481         else {
4482                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4483                                 state);
4484                 return timeout;
4485         }
4486
4487         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4488                 return timeout;
4489
4490         /* Gather some information about the currently installed configuration
4491          * and alternate interface settings.
4492          */
4493         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4494                         state, &timeout))
4495                 return timeout;
4496
4497         config = udev->actconfig;
4498         if (!config)
4499                 return timeout;
4500
4501         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4502                 struct usb_driver *driver;
4503                 struct usb_interface *intf = config->interface[i];
4504
4505                 if (!intf)
4506                         continue;
4507
4508                 /* Check if any currently bound drivers want hub-initiated LPM
4509                  * disabled.
4510                  */
4511                 if (intf->dev.driver) {
4512                         driver = to_usb_driver(intf->dev.driver);
4513                         if (driver && driver->disable_hub_initiated_lpm) {
4514                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4515                                                 "at request of driver %s\n",
4516                                                 state_name, driver->name);
4517                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4518                         }
4519                 }
4520
4521                 /* Not sure how this could happen... */
4522                 if (!intf->cur_altsetting)
4523                         continue;
4524
4525                 if (xhci_update_timeout_for_interface(xhci, udev,
4526                                         intf->cur_altsetting,
4527                                         state, &timeout))
4528                         return timeout;
4529         }
4530         return timeout;
4531 }
4532
4533 static int calculate_max_exit_latency(struct usb_device *udev,
4534                 enum usb3_link_state state_changed,
4535                 u16 hub_encoded_timeout)
4536 {
4537         unsigned long long u1_mel_us = 0;
4538         unsigned long long u2_mel_us = 0;
4539         unsigned long long mel_us = 0;
4540         bool disabling_u1;
4541         bool disabling_u2;
4542         bool enabling_u1;
4543         bool enabling_u2;
4544
4545         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4546                         hub_encoded_timeout == USB3_LPM_DISABLED);
4547         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4548                         hub_encoded_timeout == USB3_LPM_DISABLED);
4549
4550         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4551                         hub_encoded_timeout != USB3_LPM_DISABLED);
4552         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4553                         hub_encoded_timeout != USB3_LPM_DISABLED);
4554
4555         /* If U1 was already enabled and we're not disabling it,
4556          * or we're going to enable U1, account for the U1 max exit latency.
4557          */
4558         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4559                         enabling_u1)
4560                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4561         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4562                         enabling_u2)
4563                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4564
4565         if (u1_mel_us > u2_mel_us)
4566                 mel_us = u1_mel_us;
4567         else
4568                 mel_us = u2_mel_us;
4569         /* xHCI host controller max exit latency field is only 16 bits wide. */
4570         if (mel_us > MAX_EXIT) {
4571                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4572                                 "is too big.\n", mel_us);
4573                 return -E2BIG;
4574         }
4575         return mel_us;
4576 }
4577
4578 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4579 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4580                         struct usb_device *udev, enum usb3_link_state state)
4581 {
4582         struct xhci_hcd *xhci;
4583         u16 hub_encoded_timeout;
4584         int mel;
4585         int ret;
4586
4587         xhci = hcd_to_xhci(hcd);
4588         /* The LPM timeout values are pretty host-controller specific, so don't
4589          * enable hub-initiated timeouts unless the vendor has provided
4590          * information about their timeout algorithm.
4591          */
4592         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4593                         !xhci->devs[udev->slot_id])
4594                 return USB3_LPM_DISABLED;
4595
4596         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4597         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4598         if (mel < 0) {
4599                 /* Max Exit Latency is too big, disable LPM. */
4600                 hub_encoded_timeout = USB3_LPM_DISABLED;
4601                 mel = 0;
4602         }
4603
4604         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4605         if (ret)
4606                 return ret;
4607         return hub_encoded_timeout;
4608 }
4609
4610 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4611                         struct usb_device *udev, enum usb3_link_state state)
4612 {
4613         struct xhci_hcd *xhci;
4614         u16 mel;
4615
4616         xhci = hcd_to_xhci(hcd);
4617         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4618                         !xhci->devs[udev->slot_id])
4619                 return 0;
4620
4621         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4622         return xhci_change_max_exit_latency(xhci, udev, mel);
4623 }
4624 #else /* CONFIG_PM */
4625
4626 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4627                                 struct usb_device *udev, int enable)
4628 {
4629         return 0;
4630 }
4631
4632 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4633 {
4634         return 0;
4635 }
4636
4637 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4638                         struct usb_device *udev, enum usb3_link_state state)
4639 {
4640         return USB3_LPM_DISABLED;
4641 }
4642
4643 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4644                         struct usb_device *udev, enum usb3_link_state state)
4645 {
4646         return 0;
4647 }
4648 #endif  /* CONFIG_PM */
4649
4650 /*-------------------------------------------------------------------------*/
4651
4652 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4653  * internal data structures for the device.
4654  */
4655 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4656                         struct usb_tt *tt, gfp_t mem_flags)
4657 {
4658         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4659         struct xhci_virt_device *vdev;
4660         struct xhci_command *config_cmd;
4661         struct xhci_input_control_ctx *ctrl_ctx;
4662         struct xhci_slot_ctx *slot_ctx;
4663         unsigned long flags;
4664         unsigned think_time;
4665         int ret;
4666
4667         /* Ignore root hubs */
4668         if (!hdev->parent)
4669                 return 0;
4670
4671         vdev = xhci->devs[hdev->slot_id];
4672         if (!vdev) {
4673                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4674                 return -EINVAL;
4675         }
4676
4677         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
4678         if (!config_cmd)
4679                 return -ENOMEM;
4680
4681         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4682         if (!ctrl_ctx) {
4683                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4684                                 __func__);
4685                 xhci_free_command(xhci, config_cmd);
4686                 return -ENOMEM;
4687         }
4688
4689         spin_lock_irqsave(&xhci->lock, flags);
4690         if (hdev->speed == USB_SPEED_HIGH &&
4691                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4692                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4693                 xhci_free_command(xhci, config_cmd);
4694                 spin_unlock_irqrestore(&xhci->lock, flags);
4695                 return -ENOMEM;
4696         }
4697
4698         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4699         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4700         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4701         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4702         /*
4703          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4704          * but it may be already set to 1 when setup an xHCI virtual
4705          * device, so clear it anyway.
4706          */
4707         if (tt->multi)
4708                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4709         else if (hdev->speed == USB_SPEED_FULL)
4710                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4711
4712         if (xhci->hci_version > 0x95) {
4713                 xhci_dbg(xhci, "xHCI version %x needs hub "
4714                                 "TT think time and number of ports\n",
4715                                 (unsigned int) xhci->hci_version);
4716                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4717                 /* Set TT think time - convert from ns to FS bit times.
4718                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4719                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4720                  *
4721                  * xHCI 1.0: this field shall be 0 if the device is not a
4722                  * High-spped hub.
4723                  */
4724                 think_time = tt->think_time;
4725                 if (think_time != 0)
4726                         think_time = (think_time / 666) - 1;
4727                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4728                         slot_ctx->tt_info |=
4729                                 cpu_to_le32(TT_THINK_TIME(think_time));
4730         } else {
4731                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4732                                 "TT think time or number of ports\n",
4733                                 (unsigned int) xhci->hci_version);
4734         }
4735         slot_ctx->dev_state = 0;
4736         spin_unlock_irqrestore(&xhci->lock, flags);
4737
4738         xhci_dbg(xhci, "Set up %s for hub device.\n",
4739                         (xhci->hci_version > 0x95) ?
4740                         "configure endpoint" : "evaluate context");
4741
4742         /* Issue and wait for the configure endpoint or
4743          * evaluate context command.
4744          */
4745         if (xhci->hci_version > 0x95)
4746                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4747                                 false, false);
4748         else
4749                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4750                                 true, false);
4751
4752         xhci_free_command(xhci, config_cmd);
4753         return ret;
4754 }
4755
4756 static int xhci_get_frame(struct usb_hcd *hcd)
4757 {
4758         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4759         /* EHCI mods by the periodic size.  Why? */
4760         return readl(&xhci->run_regs->microframe_index) >> 3;
4761 }
4762
4763 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4764 {
4765         struct xhci_hcd         *xhci;
4766         /*
4767          * TODO: Check with DWC3 clients for sysdev according to
4768          * quirks
4769          */
4770         struct device           *dev = hcd->self.sysdev;
4771         int                     retval;
4772
4773         /* Accept arbitrarily long scatter-gather lists */
4774         hcd->self.sg_tablesize = ~0;
4775
4776         /* support to build packet from discontinuous buffers */
4777         hcd->self.no_sg_constraint = 1;
4778
4779         /* XHCI controllers don't stop the ep queue on short packets :| */
4780         hcd->self.no_stop_on_short = 1;
4781
4782         xhci = hcd_to_xhci(hcd);
4783
4784         if (usb_hcd_is_primary_hcd(hcd)) {
4785                 xhci->main_hcd = hcd;
4786                 /* Mark the first roothub as being USB 2.0.
4787                  * The xHCI driver will register the USB 3.0 roothub.
4788                  */
4789                 hcd->speed = HCD_USB2;
4790                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4791                 /*
4792                  * USB 2.0 roothub under xHCI has an integrated TT,
4793                  * (rate matching hub) as opposed to having an OHCI/UHCI
4794                  * companion controller.
4795                  */
4796                 hcd->has_tt = 1;
4797         } else {
4798                 /* Some 3.1 hosts return sbrn 0x30, can't rely on sbrn alone */
4799                 if (xhci->sbrn == 0x31 || xhci->usb3_rhub.min_rev >= 1) {
4800                         xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4801                         hcd->speed = HCD_USB31;
4802                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4803                 }
4804                 /* xHCI private pointer was set in xhci_pci_probe for the second
4805                  * registered roothub.
4806                  */
4807                 return 0;
4808         }
4809
4810         mutex_init(&xhci->mutex);
4811         xhci->cap_regs = hcd->regs;
4812         xhci->op_regs = hcd->regs +
4813                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4814         xhci->run_regs = hcd->regs +
4815                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4816         /* Cache read-only capability registers */
4817         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4818         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4819         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4820         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4821         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4822         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4823         if (xhci->hci_version > 0x100)
4824                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4825
4826         xhci->quirks |= quirks;
4827
4828         get_quirks(dev, xhci);
4829
4830         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4831          * success event after a short transfer. This quirk will ignore such
4832          * spurious event.
4833          */
4834         if (xhci->hci_version > 0x96)
4835                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4836
4837         /* Make sure the HC is halted. */
4838         retval = xhci_halt(xhci);
4839         if (retval)
4840                 return retval;
4841
4842         xhci_dbg(xhci, "Resetting HCD\n");
4843         /* Reset the internal HC memory state and registers. */
4844         retval = xhci_reset(xhci);
4845         if (retval)
4846                 return retval;
4847         xhci_dbg(xhci, "Reset complete\n");
4848
4849         /*
4850          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4851          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4852          * address memory pointers actually. So, this driver clears the AC64
4853          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4854          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4855          */
4856         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4857                 xhci->hcc_params &= ~BIT(0);
4858
4859         /* Set dma_mask and coherent_dma_mask to 64-bits,
4860          * if xHC supports 64-bit addressing */
4861         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4862                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4863                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4864                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4865         } else {
4866                 /*
4867                  * This is to avoid error in cases where a 32-bit USB
4868                  * controller is used on a 64-bit capable system.
4869                  */
4870                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4871                 if (retval)
4872                         return retval;
4873                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4874                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4875         }
4876
4877         xhci_dbg(xhci, "Calling HCD init\n");
4878         /* Initialize HCD and host controller data structures. */
4879         retval = xhci_init(hcd);
4880         if (retval)
4881                 return retval;
4882         xhci_dbg(xhci, "Called HCD init\n");
4883
4884         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4885                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
4886
4887         return 0;
4888 }
4889 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4890
4891 static const struct hc_driver xhci_hc_driver = {
4892         .description =          "xhci-hcd",
4893         .product_desc =         "xHCI Host Controller",
4894         .hcd_priv_size =        sizeof(struct xhci_hcd),
4895
4896         /*
4897          * generic hardware linkage
4898          */
4899         .irq =                  xhci_irq,
4900         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4901
4902         /*
4903          * basic lifecycle operations
4904          */
4905         .reset =                NULL, /* set in xhci_init_driver() */
4906         .start =                xhci_run,
4907         .stop =                 xhci_stop,
4908         .shutdown =             xhci_shutdown,
4909
4910         /*
4911          * managing i/o requests and associated device resources
4912          */
4913         .urb_enqueue =          xhci_urb_enqueue,
4914         .urb_dequeue =          xhci_urb_dequeue,
4915         .alloc_dev =            xhci_alloc_dev,
4916         .free_dev =             xhci_free_dev,
4917         .alloc_streams =        xhci_alloc_streams,
4918         .free_streams =         xhci_free_streams,
4919         .add_endpoint =         xhci_add_endpoint,
4920         .drop_endpoint =        xhci_drop_endpoint,
4921         .endpoint_reset =       xhci_endpoint_reset,
4922         .check_bandwidth =      xhci_check_bandwidth,
4923         .reset_bandwidth =      xhci_reset_bandwidth,
4924         .address_device =       xhci_address_device,
4925         .enable_device =        xhci_enable_device,
4926         .update_hub_device =    xhci_update_hub_device,
4927         .reset_device =         xhci_discover_or_reset_device,
4928
4929         /*
4930          * scheduling support
4931          */
4932         .get_frame_number =     xhci_get_frame,
4933
4934         /*
4935          * root hub support
4936          */
4937         .hub_control =          xhci_hub_control,
4938         .hub_status_data =      xhci_hub_status_data,
4939         .bus_suspend =          xhci_bus_suspend,
4940         .bus_resume =           xhci_bus_resume,
4941
4942         /*
4943          * call back when device connected and addressed
4944          */
4945         .update_device =        xhci_update_device,
4946         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
4947         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
4948         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
4949         .find_raw_port_number = xhci_find_raw_port_number,
4950 };
4951
4952 void xhci_init_driver(struct hc_driver *drv,
4953                       const struct xhci_driver_overrides *over)
4954 {
4955         BUG_ON(!over);
4956
4957         /* Copy the generic table to drv then apply the overrides */
4958         *drv = xhci_hc_driver;
4959
4960         if (over) {
4961                 drv->hcd_priv_size += over->extra_priv_size;
4962                 if (over->reset)
4963                         drv->reset = over->reset;
4964                 if (over->start)
4965                         drv->start = over->start;
4966         }
4967 }
4968 EXPORT_SYMBOL_GPL(xhci_init_driver);
4969
4970 MODULE_DESCRIPTION(DRIVER_DESC);
4971 MODULE_AUTHOR(DRIVER_AUTHOR);
4972 MODULE_LICENSE("GPL");
4973
4974 static int __init xhci_hcd_init(void)
4975 {
4976         /*
4977          * Check the compiler generated sizes of structures that must be laid
4978          * out in specific ways for hardware access.
4979          */
4980         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4981         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4982         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4983         /* xhci_device_control has eight fields, and also
4984          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4985          */
4986         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4987         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4988         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4989         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
4990         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4991         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4992         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4993
4994         if (usb_disabled())
4995                 return -ENODEV;
4996
4997         xhci_debugfs_create_root();
4998
4999         return 0;
5000 }
5001
5002 /*
5003  * If an init function is provided, an exit function must also be provided
5004  * to allow module unload.
5005  */
5006 static void __exit xhci_hcd_fini(void)
5007 {
5008         xhci_debugfs_remove_root();
5009 }
5010
5011 module_init(xhci_hcd_init);
5012 module_exit(xhci_hcd_fini);