4648cc0c5721a2eaef91eeff70b93ac7201c068f
[linux-2.6-block.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29
30 #include "xhci.h"
31
32 #define DRIVER_AUTHOR "Sarah Sharp"
33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
34
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
39
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42  * handshake - spin reading hc until handshake completes or fails
43  * @ptr: address of hc register to be read
44  * @mask: bits to look at in result of read
45  * @done: value of those bits when handshake succeeds
46  * @usec: timeout in microseconds
47  *
48  * Returns negative errno, or zero on success
49  *
50  * Success happens when the "mask" bits have the specified value (hardware
51  * handshake done).  There are two failure modes:  "usec" have passed (major
52  * hardware flakeout), or the register reads as all-ones (hardware removed).
53  */
54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
55                       u32 mask, u32 done, int usec)
56 {
57         u32     result;
58
59         do {
60                 result = xhci_readl(xhci, ptr);
61                 if (result == ~(u32)0)          /* card removed */
62                         return -ENODEV;
63                 result &= mask;
64                 if (result == done)
65                         return 0;
66                 udelay(1);
67                 usec--;
68         } while (usec > 0);
69         return -ETIMEDOUT;
70 }
71
72 /*
73  * Disable interrupts and begin the xHCI halting process.
74  */
75 void xhci_quiesce(struct xhci_hcd *xhci)
76 {
77         u32 halted;
78         u32 cmd;
79         u32 mask;
80
81         mask = ~(XHCI_IRQS);
82         halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
83         if (!halted)
84                 mask &= ~CMD_RUN;
85
86         cmd = xhci_readl(xhci, &xhci->op_regs->command);
87         cmd &= mask;
88         xhci_writel(xhci, cmd, &xhci->op_regs->command);
89 }
90
91 /*
92  * Force HC into halt state.
93  *
94  * Disable any IRQs and clear the run/stop bit.
95  * HC will complete any current and actively pipelined transactions, and
96  * should halt within 16 ms of the run/stop bit being cleared.
97  * Read HC Halted bit in the status register to see when the HC is finished.
98  */
99 int xhci_halt(struct xhci_hcd *xhci)
100 {
101         int ret;
102         xhci_dbg(xhci, "// Halt the HC\n");
103         xhci_quiesce(xhci);
104
105         ret = handshake(xhci, &xhci->op_regs->status,
106                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
107         if (!ret)
108                 xhci->xhc_state |= XHCI_STATE_HALTED;
109         return ret;
110 }
111
112 /*
113  * Set the run bit and wait for the host to be running.
114  */
115 static int xhci_start(struct xhci_hcd *xhci)
116 {
117         u32 temp;
118         int ret;
119
120         temp = xhci_readl(xhci, &xhci->op_regs->command);
121         temp |= (CMD_RUN);
122         xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
123                         temp);
124         xhci_writel(xhci, temp, &xhci->op_regs->command);
125
126         /*
127          * Wait for the HCHalted Status bit to be 0 to indicate the host is
128          * running.
129          */
130         ret = handshake(xhci, &xhci->op_regs->status,
131                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
132         if (ret == -ETIMEDOUT)
133                 xhci_err(xhci, "Host took too long to start, "
134                                 "waited %u microseconds.\n",
135                                 XHCI_MAX_HALT_USEC);
136         if (!ret)
137                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
138         return ret;
139 }
140
141 /*
142  * Reset a halted HC.
143  *
144  * This resets pipelines, timers, counters, state machines, etc.
145  * Transactions will be terminated immediately, and operational registers
146  * will be set to their defaults.
147  */
148 int xhci_reset(struct xhci_hcd *xhci)
149 {
150         u32 command;
151         u32 state;
152         int ret;
153
154         state = xhci_readl(xhci, &xhci->op_regs->status);
155         if ((state & STS_HALT) == 0) {
156                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
157                 return 0;
158         }
159
160         xhci_dbg(xhci, "// Reset the HC\n");
161         command = xhci_readl(xhci, &xhci->op_regs->command);
162         command |= CMD_RESET;
163         xhci_writel(xhci, command, &xhci->op_regs->command);
164
165         ret = handshake(xhci, &xhci->op_regs->command,
166                         CMD_RESET, 0, 250 * 1000);
167         if (ret)
168                 return ret;
169
170         xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
171         /*
172          * xHCI cannot write to any doorbells or operational registers other
173          * than status until the "Controller Not Ready" flag is cleared.
174          */
175         return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000);
176 }
177
178 /*
179  * Free IRQs
180  * free all IRQs request
181  */
182 static void xhci_free_irq(struct xhci_hcd *xhci)
183 {
184         int i;
185         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
186
187         /* return if using legacy interrupt */
188         if (xhci_to_hcd(xhci)->irq >= 0)
189                 return;
190
191         if (xhci->msix_entries) {
192                 for (i = 0; i < xhci->msix_count; i++)
193                         if (xhci->msix_entries[i].vector)
194                                 free_irq(xhci->msix_entries[i].vector,
195                                                 xhci_to_hcd(xhci));
196         } else if (pdev->irq >= 0)
197                 free_irq(pdev->irq, xhci_to_hcd(xhci));
198
199         return;
200 }
201
202 /*
203  * Set up MSI
204  */
205 static int xhci_setup_msi(struct xhci_hcd *xhci)
206 {
207         int ret;
208         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
209
210         ret = pci_enable_msi(pdev);
211         if (ret) {
212                 xhci_err(xhci, "failed to allocate MSI entry\n");
213                 return ret;
214         }
215
216         ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
217                                 0, "xhci_hcd", xhci_to_hcd(xhci));
218         if (ret) {
219                 xhci_err(xhci, "disable MSI interrupt\n");
220                 pci_disable_msi(pdev);
221         }
222
223         return ret;
224 }
225
226 /*
227  * Set up MSI-X
228  */
229 static int xhci_setup_msix(struct xhci_hcd *xhci)
230 {
231         int i, ret = 0;
232         struct usb_hcd *hcd = xhci_to_hcd(xhci);
233         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
234
235         /*
236          * calculate number of msi-x vectors supported.
237          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
238          *   with max number of interrupters based on the xhci HCSPARAMS1.
239          * - num_online_cpus: maximum msi-x vectors per CPUs core.
240          *   Add additional 1 vector to ensure always available interrupt.
241          */
242         xhci->msix_count = min(num_online_cpus() + 1,
243                                 HCS_MAX_INTRS(xhci->hcs_params1));
244
245         xhci->msix_entries =
246                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
247                                 GFP_KERNEL);
248         if (!xhci->msix_entries) {
249                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
250                 return -ENOMEM;
251         }
252
253         for (i = 0; i < xhci->msix_count; i++) {
254                 xhci->msix_entries[i].entry = i;
255                 xhci->msix_entries[i].vector = 0;
256         }
257
258         ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
259         if (ret) {
260                 xhci_err(xhci, "Failed to enable MSI-X\n");
261                 goto free_entries;
262         }
263
264         for (i = 0; i < xhci->msix_count; i++) {
265                 ret = request_irq(xhci->msix_entries[i].vector,
266                                 (irq_handler_t)xhci_msi_irq,
267                                 0, "xhci_hcd", xhci_to_hcd(xhci));
268                 if (ret)
269                         goto disable_msix;
270         }
271
272         hcd->msix_enabled = 1;
273         return ret;
274
275 disable_msix:
276         xhci_err(xhci, "disable MSI-X interrupt\n");
277         xhci_free_irq(xhci);
278         pci_disable_msix(pdev);
279 free_entries:
280         kfree(xhci->msix_entries);
281         xhci->msix_entries = NULL;
282         return ret;
283 }
284
285 /* Free any IRQs and disable MSI-X */
286 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
287 {
288         struct usb_hcd *hcd = xhci_to_hcd(xhci);
289         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
290
291         xhci_free_irq(xhci);
292
293         if (xhci->msix_entries) {
294                 pci_disable_msix(pdev);
295                 kfree(xhci->msix_entries);
296                 xhci->msix_entries = NULL;
297         } else {
298                 pci_disable_msi(pdev);
299         }
300
301         hcd->msix_enabled = 0;
302         return;
303 }
304
305 /*
306  * Initialize memory for HCD and xHC (one-time init).
307  *
308  * Program the PAGESIZE register, initialize the device context array, create
309  * device contexts (?), set up a command ring segment (or two?), create event
310  * ring (one for now).
311  */
312 int xhci_init(struct usb_hcd *hcd)
313 {
314         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
315         int retval = 0;
316
317         xhci_dbg(xhci, "xhci_init\n");
318         spin_lock_init(&xhci->lock);
319         if (xhci->hci_version == 0x95 && link_quirk) {
320                 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
321                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
322         } else {
323                 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
324         }
325         retval = xhci_mem_init(xhci, GFP_KERNEL);
326         xhci_dbg(xhci, "Finished xhci_init\n");
327
328         return retval;
329 }
330
331 /*-------------------------------------------------------------------------*/
332
333
334 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
335 static void xhci_event_ring_work(unsigned long arg)
336 {
337         unsigned long flags;
338         int temp;
339         u64 temp_64;
340         struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
341         int i, j;
342
343         xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
344
345         spin_lock_irqsave(&xhci->lock, flags);
346         temp = xhci_readl(xhci, &xhci->op_regs->status);
347         xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
348         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
349                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
350                 xhci_dbg(xhci, "HW died, polling stopped.\n");
351                 spin_unlock_irqrestore(&xhci->lock, flags);
352                 return;
353         }
354
355         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
356         xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
357         xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
358         xhci->error_bitmask = 0;
359         xhci_dbg(xhci, "Event ring:\n");
360         xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
361         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
362         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
363         temp_64 &= ~ERST_PTR_MASK;
364         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
365         xhci_dbg(xhci, "Command ring:\n");
366         xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
367         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
368         xhci_dbg_cmd_ptrs(xhci);
369         for (i = 0; i < MAX_HC_SLOTS; ++i) {
370                 if (!xhci->devs[i])
371                         continue;
372                 for (j = 0; j < 31; ++j) {
373                         xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
374                 }
375         }
376         spin_unlock_irqrestore(&xhci->lock, flags);
377
378         if (!xhci->zombie)
379                 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
380         else
381                 xhci_dbg(xhci, "Quit polling the event ring.\n");
382 }
383 #endif
384
385 static int xhci_run_finished(struct xhci_hcd *xhci)
386 {
387         if (xhci_start(xhci)) {
388                 xhci_halt(xhci);
389                 return -ENODEV;
390         }
391         xhci->shared_hcd->state = HC_STATE_RUNNING;
392
393         if (xhci->quirks & XHCI_NEC_HOST)
394                 xhci_ring_cmd_db(xhci);
395
396         xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
397         return 0;
398 }
399
400 /*
401  * Start the HC after it was halted.
402  *
403  * This function is called by the USB core when the HC driver is added.
404  * Its opposite is xhci_stop().
405  *
406  * xhci_init() must be called once before this function can be called.
407  * Reset the HC, enable device slot contexts, program DCBAAP, and
408  * set command ring pointer and event ring pointer.
409  *
410  * Setup MSI-X vectors and enable interrupts.
411  */
412 int xhci_run(struct usb_hcd *hcd)
413 {
414         u32 temp;
415         u64 temp_64;
416         u32 ret;
417         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
418         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
419
420         /* Start the xHCI host controller running only after the USB 2.0 roothub
421          * is setup.
422          */
423
424         hcd->uses_new_polling = 1;
425         if (!usb_hcd_is_primary_hcd(hcd))
426                 return xhci_run_finished(xhci);
427
428         xhci_dbg(xhci, "xhci_run\n");
429         /* unregister the legacy interrupt */
430         if (hcd->irq)
431                 free_irq(hcd->irq, hcd);
432         hcd->irq = -1;
433
434         /* Some Fresco Logic host controllers advertise MSI, but fail to
435          * generate interrupts.  Don't even try to enable MSI.
436          */
437         if (xhci->quirks & XHCI_BROKEN_MSI)
438                 goto legacy_irq;
439
440         ret = xhci_setup_msix(xhci);
441         if (ret)
442                 /* fall back to msi*/
443                 ret = xhci_setup_msi(xhci);
444
445         if (ret) {
446 legacy_irq:
447                 /* fall back to legacy interrupt*/
448                 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
449                                         hcd->irq_descr, hcd);
450                 if (ret) {
451                         xhci_err(xhci, "request interrupt %d failed\n",
452                                         pdev->irq);
453                         return ret;
454                 }
455                 hcd->irq = pdev->irq;
456         }
457
458 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
459         init_timer(&xhci->event_ring_timer);
460         xhci->event_ring_timer.data = (unsigned long) xhci;
461         xhci->event_ring_timer.function = xhci_event_ring_work;
462         /* Poll the event ring */
463         xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
464         xhci->zombie = 0;
465         xhci_dbg(xhci, "Setting event ring polling timer\n");
466         add_timer(&xhci->event_ring_timer);
467 #endif
468
469         xhci_dbg(xhci, "Command ring memory map follows:\n");
470         xhci_debug_ring(xhci, xhci->cmd_ring);
471         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
472         xhci_dbg_cmd_ptrs(xhci);
473
474         xhci_dbg(xhci, "ERST memory map follows:\n");
475         xhci_dbg_erst(xhci, &xhci->erst);
476         xhci_dbg(xhci, "Event ring:\n");
477         xhci_debug_ring(xhci, xhci->event_ring);
478         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
479         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
480         temp_64 &= ~ERST_PTR_MASK;
481         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
482
483         xhci_dbg(xhci, "// Set the interrupt modulation register\n");
484         temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
485         temp &= ~ER_IRQ_INTERVAL_MASK;
486         temp |= (u32) 160;
487         xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
488
489         /* Set the HCD state before we enable the irqs */
490         temp = xhci_readl(xhci, &xhci->op_regs->command);
491         temp |= (CMD_EIE);
492         xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
493                         temp);
494         xhci_writel(xhci, temp, &xhci->op_regs->command);
495
496         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
497         xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
498                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
499         xhci_writel(xhci, ER_IRQ_ENABLE(temp),
500                         &xhci->ir_set->irq_pending);
501         xhci_print_ir_set(xhci, 0);
502
503         if (xhci->quirks & XHCI_NEC_HOST)
504                 xhci_queue_vendor_command(xhci, 0, 0, 0,
505                                 TRB_TYPE(TRB_NEC_GET_FW));
506
507         xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
508         return 0;
509 }
510
511 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
512 {
513         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
514
515         spin_lock_irq(&xhci->lock);
516         xhci_halt(xhci);
517
518         /* The shared_hcd is going to be deallocated shortly (the USB core only
519          * calls this function when allocation fails in usb_add_hcd(), or
520          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
521          */
522         xhci->shared_hcd = NULL;
523         spin_unlock_irq(&xhci->lock);
524 }
525
526 /*
527  * Stop xHCI driver.
528  *
529  * This function is called by the USB core when the HC driver is removed.
530  * Its opposite is xhci_run().
531  *
532  * Disable device contexts, disable IRQs, and quiesce the HC.
533  * Reset the HC, finish any completed transactions, and cleanup memory.
534  */
535 void xhci_stop(struct usb_hcd *hcd)
536 {
537         u32 temp;
538         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
539
540         if (!usb_hcd_is_primary_hcd(hcd)) {
541                 xhci_only_stop_hcd(xhci->shared_hcd);
542                 return;
543         }
544
545         spin_lock_irq(&xhci->lock);
546         /* Make sure the xHC is halted for a USB3 roothub
547          * (xhci_stop() could be called as part of failed init).
548          */
549         xhci_halt(xhci);
550         xhci_reset(xhci);
551         spin_unlock_irq(&xhci->lock);
552
553         xhci_cleanup_msix(xhci);
554
555 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
556         /* Tell the event ring poll function not to reschedule */
557         xhci->zombie = 1;
558         del_timer_sync(&xhci->event_ring_timer);
559 #endif
560
561         if (xhci->quirks & XHCI_AMD_PLL_FIX)
562                 usb_amd_dev_put();
563
564         xhci_dbg(xhci, "// Disabling event ring interrupts\n");
565         temp = xhci_readl(xhci, &xhci->op_regs->status);
566         xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
567         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
568         xhci_writel(xhci, ER_IRQ_DISABLE(temp),
569                         &xhci->ir_set->irq_pending);
570         xhci_print_ir_set(xhci, 0);
571
572         xhci_dbg(xhci, "cleaning up memory\n");
573         xhci_mem_cleanup(xhci);
574         xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
575                     xhci_readl(xhci, &xhci->op_regs->status));
576 }
577
578 /*
579  * Shutdown HC (not bus-specific)
580  *
581  * This is called when the machine is rebooting or halting.  We assume that the
582  * machine will be powered off, and the HC's internal state will be reset.
583  * Don't bother to free memory.
584  *
585  * This will only ever be called with the main usb_hcd (the USB3 roothub).
586  */
587 void xhci_shutdown(struct usb_hcd *hcd)
588 {
589         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
590
591         spin_lock_irq(&xhci->lock);
592         xhci_halt(xhci);
593         spin_unlock_irq(&xhci->lock);
594
595         xhci_cleanup_msix(xhci);
596
597         xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
598                     xhci_readl(xhci, &xhci->op_regs->status));
599 }
600
601 #ifdef CONFIG_PM
602 static void xhci_save_registers(struct xhci_hcd *xhci)
603 {
604         xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
605         xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
606         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
607         xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
608         xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
609         xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
610         xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
611         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
612         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
613 }
614
615 static void xhci_restore_registers(struct xhci_hcd *xhci)
616 {
617         xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
618         xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
619         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
620         xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
621         xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
622         xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
623         xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
624         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
625 }
626
627 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
628 {
629         u64     val_64;
630
631         /* step 2: initialize command ring buffer */
632         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
633         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
634                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
635                                       xhci->cmd_ring->dequeue) &
636                  (u64) ~CMD_RING_RSVD_BITS) |
637                 xhci->cmd_ring->cycle_state;
638         xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
639                         (long unsigned long) val_64);
640         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
641 }
642
643 /*
644  * The whole command ring must be cleared to zero when we suspend the host.
645  *
646  * The host doesn't save the command ring pointer in the suspend well, so we
647  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
648  * aligned, because of the reserved bits in the command ring dequeue pointer
649  * register.  Therefore, we can't just set the dequeue pointer back in the
650  * middle of the ring (TRBs are 16-byte aligned).
651  */
652 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
653 {
654         struct xhci_ring *ring;
655         struct xhci_segment *seg;
656
657         ring = xhci->cmd_ring;
658         seg = ring->deq_seg;
659         do {
660                 memset(seg->trbs, 0, SEGMENT_SIZE);
661                 seg = seg->next;
662         } while (seg != ring->deq_seg);
663
664         /* Reset the software enqueue and dequeue pointers */
665         ring->deq_seg = ring->first_seg;
666         ring->dequeue = ring->first_seg->trbs;
667         ring->enq_seg = ring->deq_seg;
668         ring->enqueue = ring->dequeue;
669
670         /*
671          * Ring is now zeroed, so the HW should look for change of ownership
672          * when the cycle bit is set to 1.
673          */
674         ring->cycle_state = 1;
675
676         /*
677          * Reset the hardware dequeue pointer.
678          * Yes, this will need to be re-written after resume, but we're paranoid
679          * and want to make sure the hardware doesn't access bogus memory
680          * because, say, the BIOS or an SMI started the host without changing
681          * the command ring pointers.
682          */
683         xhci_set_cmd_ring_deq(xhci);
684 }
685
686 /*
687  * Stop HC (not bus-specific)
688  *
689  * This is called when the machine transition into S3/S4 mode.
690  *
691  */
692 int xhci_suspend(struct xhci_hcd *xhci)
693 {
694         int                     rc = 0;
695         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
696         u32                     command;
697         int                     i;
698
699         spin_lock_irq(&xhci->lock);
700         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
701         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
702         /* step 1: stop endpoint */
703         /* skipped assuming that port suspend has done */
704
705         /* step 2: clear Run/Stop bit */
706         command = xhci_readl(xhci, &xhci->op_regs->command);
707         command &= ~CMD_RUN;
708         xhci_writel(xhci, command, &xhci->op_regs->command);
709         if (handshake(xhci, &xhci->op_regs->status,
710                       STS_HALT, STS_HALT, 100*100)) {
711                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
712                 spin_unlock_irq(&xhci->lock);
713                 return -ETIMEDOUT;
714         }
715         xhci_clear_command_ring(xhci);
716
717         /* step 3: save registers */
718         xhci_save_registers(xhci);
719
720         /* step 4: set CSS flag */
721         command = xhci_readl(xhci, &xhci->op_regs->command);
722         command |= CMD_CSS;
723         xhci_writel(xhci, command, &xhci->op_regs->command);
724         if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) {
725                 xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n");
726                 spin_unlock_irq(&xhci->lock);
727                 return -ETIMEDOUT;
728         }
729         spin_unlock_irq(&xhci->lock);
730
731         /* step 5: remove core well power */
732         /* synchronize irq when using MSI-X */
733         if (xhci->msix_entries) {
734                 for (i = 0; i < xhci->msix_count; i++)
735                         synchronize_irq(xhci->msix_entries[i].vector);
736         }
737
738         return rc;
739 }
740
741 /*
742  * start xHC (not bus-specific)
743  *
744  * This is called when the machine transition from S3/S4 mode.
745  *
746  */
747 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
748 {
749         u32                     command, temp = 0;
750         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
751         struct usb_hcd          *secondary_hcd;
752         int                     retval;
753
754         /* Wait a bit if either of the roothubs need to settle from the
755          * transition into bus suspend.
756          */
757         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
758                         time_before(jiffies,
759                                 xhci->bus_state[1].next_statechange))
760                 msleep(100);
761
762         spin_lock_irq(&xhci->lock);
763         if (xhci->quirks & XHCI_RESET_ON_RESUME)
764                 hibernated = true;
765
766         if (!hibernated) {
767                 /* step 1: restore register */
768                 xhci_restore_registers(xhci);
769                 /* step 2: initialize command ring buffer */
770                 xhci_set_cmd_ring_deq(xhci);
771                 /* step 3: restore state and start state*/
772                 /* step 3: set CRS flag */
773                 command = xhci_readl(xhci, &xhci->op_regs->command);
774                 command |= CMD_CRS;
775                 xhci_writel(xhci, command, &xhci->op_regs->command);
776                 if (handshake(xhci, &xhci->op_regs->status,
777                               STS_RESTORE, 0, 10*100)) {
778                         xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n");
779                         spin_unlock_irq(&xhci->lock);
780                         return -ETIMEDOUT;
781                 }
782                 temp = xhci_readl(xhci, &xhci->op_regs->status);
783         }
784
785         /* If restore operation fails, re-initialize the HC during resume */
786         if ((temp & STS_SRE) || hibernated) {
787                 /* Let the USB core know _both_ roothubs lost power. */
788                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
789                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
790
791                 xhci_dbg(xhci, "Stop HCD\n");
792                 xhci_halt(xhci);
793                 xhci_reset(xhci);
794                 spin_unlock_irq(&xhci->lock);
795                 xhci_cleanup_msix(xhci);
796
797 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
798                 /* Tell the event ring poll function not to reschedule */
799                 xhci->zombie = 1;
800                 del_timer_sync(&xhci->event_ring_timer);
801 #endif
802
803                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
804                 temp = xhci_readl(xhci, &xhci->op_regs->status);
805                 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
806                 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
807                 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
808                                 &xhci->ir_set->irq_pending);
809                 xhci_print_ir_set(xhci, 0);
810
811                 xhci_dbg(xhci, "cleaning up memory\n");
812                 xhci_mem_cleanup(xhci);
813                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
814                             xhci_readl(xhci, &xhci->op_regs->status));
815
816                 /* USB core calls the PCI reinit and start functions twice:
817                  * first with the primary HCD, and then with the secondary HCD.
818                  * If we don't do the same, the host will never be started.
819                  */
820                 if (!usb_hcd_is_primary_hcd(hcd))
821                         secondary_hcd = hcd;
822                 else
823                         secondary_hcd = xhci->shared_hcd;
824
825                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
826                 retval = xhci_init(hcd->primary_hcd);
827                 if (retval)
828                         return retval;
829                 xhci_dbg(xhci, "Start the primary HCD\n");
830                 retval = xhci_run(hcd->primary_hcd);
831                 if (retval)
832                         goto failed_restart;
833
834                 xhci_dbg(xhci, "Start the secondary HCD\n");
835                 retval = xhci_run(secondary_hcd);
836                 if (!retval) {
837                         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
838                         set_bit(HCD_FLAG_HW_ACCESSIBLE,
839                                         &xhci->shared_hcd->flags);
840                 }
841 failed_restart:
842                 hcd->state = HC_STATE_SUSPENDED;
843                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
844                 return retval;
845         }
846
847         /* step 4: set Run/Stop bit */
848         command = xhci_readl(xhci, &xhci->op_regs->command);
849         command |= CMD_RUN;
850         xhci_writel(xhci, command, &xhci->op_regs->command);
851         handshake(xhci, &xhci->op_regs->status, STS_HALT,
852                   0, 250 * 1000);
853
854         /* step 5: walk topology and initialize portsc,
855          * portpmsc and portli
856          */
857         /* this is done in bus_resume */
858
859         /* step 6: restart each of the previously
860          * Running endpoints by ringing their doorbells
861          */
862
863         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
864         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
865
866         spin_unlock_irq(&xhci->lock);
867         return 0;
868 }
869 #endif  /* CONFIG_PM */
870
871 /*-------------------------------------------------------------------------*/
872
873 /**
874  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
875  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
876  * value to right shift 1 for the bitmask.
877  *
878  * Index  = (epnum * 2) + direction - 1,
879  * where direction = 0 for OUT, 1 for IN.
880  * For control endpoints, the IN index is used (OUT index is unused), so
881  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
882  */
883 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
884 {
885         unsigned int index;
886         if (usb_endpoint_xfer_control(desc))
887                 index = (unsigned int) (usb_endpoint_num(desc)*2);
888         else
889                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
890                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
891         return index;
892 }
893
894 /* Find the flag for this endpoint (for use in the control context).  Use the
895  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
896  * bit 1, etc.
897  */
898 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
899 {
900         return 1 << (xhci_get_endpoint_index(desc) + 1);
901 }
902
903 /* Find the flag for this endpoint (for use in the control context).  Use the
904  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
905  * bit 1, etc.
906  */
907 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
908 {
909         return 1 << (ep_index + 1);
910 }
911
912 /* Compute the last valid endpoint context index.  Basically, this is the
913  * endpoint index plus one.  For slot contexts with more than valid endpoint,
914  * we find the most significant bit set in the added contexts flags.
915  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
916  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
917  */
918 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
919 {
920         return fls(added_ctxs) - 1;
921 }
922
923 /* Returns 1 if the arguments are OK;
924  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
925  */
926 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
927                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
928                 const char *func) {
929         struct xhci_hcd *xhci;
930         struct xhci_virt_device *virt_dev;
931
932         if (!hcd || (check_ep && !ep) || !udev) {
933                 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
934                                 func);
935                 return -EINVAL;
936         }
937         if (!udev->parent) {
938                 printk(KERN_DEBUG "xHCI %s called for root hub\n",
939                                 func);
940                 return 0;
941         }
942
943         xhci = hcd_to_xhci(hcd);
944         if (xhci->xhc_state & XHCI_STATE_HALTED)
945                 return -ENODEV;
946
947         if (check_virt_dev) {
948                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
949                         printk(KERN_DEBUG "xHCI %s called with unaddressed "
950                                                 "device\n", func);
951                         return -EINVAL;
952                 }
953
954                 virt_dev = xhci->devs[udev->slot_id];
955                 if (virt_dev->udev != udev) {
956                         printk(KERN_DEBUG "xHCI %s called with udev and "
957                                           "virt_dev does not match\n", func);
958                         return -EINVAL;
959                 }
960         }
961
962         return 1;
963 }
964
965 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
966                 struct usb_device *udev, struct xhci_command *command,
967                 bool ctx_change, bool must_succeed);
968
969 /*
970  * Full speed devices may have a max packet size greater than 8 bytes, but the
971  * USB core doesn't know that until it reads the first 8 bytes of the
972  * descriptor.  If the usb_device's max packet size changes after that point,
973  * we need to issue an evaluate context command and wait on it.
974  */
975 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
976                 unsigned int ep_index, struct urb *urb)
977 {
978         struct xhci_container_ctx *in_ctx;
979         struct xhci_container_ctx *out_ctx;
980         struct xhci_input_control_ctx *ctrl_ctx;
981         struct xhci_ep_ctx *ep_ctx;
982         int max_packet_size;
983         int hw_max_packet_size;
984         int ret = 0;
985
986         out_ctx = xhci->devs[slot_id]->out_ctx;
987         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
988         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
989         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
990         if (hw_max_packet_size != max_packet_size) {
991                 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
992                 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
993                                 max_packet_size);
994                 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
995                                 hw_max_packet_size);
996                 xhci_dbg(xhci, "Issuing evaluate context command.\n");
997
998                 /* Set up the modified control endpoint 0 */
999                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1000                                 xhci->devs[slot_id]->out_ctx, ep_index);
1001                 in_ctx = xhci->devs[slot_id]->in_ctx;
1002                 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1003                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1004                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1005
1006                 /* Set up the input context flags for the command */
1007                 /* FIXME: This won't work if a non-default control endpoint
1008                  * changes max packet sizes.
1009                  */
1010                 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1011                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1012                 ctrl_ctx->drop_flags = 0;
1013
1014                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1015                 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1016                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1017                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1018
1019                 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1020                                 true, false);
1021
1022                 /* Clean up the input context for later use by bandwidth
1023                  * functions.
1024                  */
1025                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1026         }
1027         return ret;
1028 }
1029
1030 /*
1031  * non-error returns are a promise to giveback() the urb later
1032  * we drop ownership so next owner (or urb unlink) can get it
1033  */
1034 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1035 {
1036         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1037         struct xhci_td *buffer;
1038         unsigned long flags;
1039         int ret = 0;
1040         unsigned int slot_id, ep_index;
1041         struct urb_priv *urb_priv;
1042         int size, i;
1043
1044         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1045                                         true, true, __func__) <= 0)
1046                 return -EINVAL;
1047
1048         slot_id = urb->dev->slot_id;
1049         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1050
1051         if (!HCD_HW_ACCESSIBLE(hcd)) {
1052                 if (!in_interrupt())
1053                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1054                 ret = -ESHUTDOWN;
1055                 goto exit;
1056         }
1057
1058         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1059                 size = urb->number_of_packets;
1060         else
1061                 size = 1;
1062
1063         urb_priv = kzalloc(sizeof(struct urb_priv) +
1064                                   size * sizeof(struct xhci_td *), mem_flags);
1065         if (!urb_priv)
1066                 return -ENOMEM;
1067
1068         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1069         if (!buffer) {
1070                 kfree(urb_priv);
1071                 return -ENOMEM;
1072         }
1073
1074         for (i = 0; i < size; i++) {
1075                 urb_priv->td[i] = buffer;
1076                 buffer++;
1077         }
1078
1079         urb_priv->length = size;
1080         urb_priv->td_cnt = 0;
1081         urb->hcpriv = urb_priv;
1082
1083         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1084                 /* Check to see if the max packet size for the default control
1085                  * endpoint changed during FS device enumeration
1086                  */
1087                 if (urb->dev->speed == USB_SPEED_FULL) {
1088                         ret = xhci_check_maxpacket(xhci, slot_id,
1089                                         ep_index, urb);
1090                         if (ret < 0) {
1091                                 xhci_urb_free_priv(xhci, urb_priv);
1092                                 urb->hcpriv = NULL;
1093                                 return ret;
1094                         }
1095                 }
1096
1097                 /* We have a spinlock and interrupts disabled, so we must pass
1098                  * atomic context to this function, which may allocate memory.
1099                  */
1100                 spin_lock_irqsave(&xhci->lock, flags);
1101                 if (xhci->xhc_state & XHCI_STATE_DYING)
1102                         goto dying;
1103                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1104                                 slot_id, ep_index);
1105                 if (ret)
1106                         goto free_priv;
1107                 spin_unlock_irqrestore(&xhci->lock, flags);
1108         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1109                 spin_lock_irqsave(&xhci->lock, flags);
1110                 if (xhci->xhc_state & XHCI_STATE_DYING)
1111                         goto dying;
1112                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1113                                 EP_GETTING_STREAMS) {
1114                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1115                                         "is transitioning to using streams.\n");
1116                         ret = -EINVAL;
1117                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1118                                 EP_GETTING_NO_STREAMS) {
1119                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1120                                         "is transitioning to "
1121                                         "not having streams.\n");
1122                         ret = -EINVAL;
1123                 } else {
1124                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1125                                         slot_id, ep_index);
1126                 }
1127                 if (ret)
1128                         goto free_priv;
1129                 spin_unlock_irqrestore(&xhci->lock, flags);
1130         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1131                 spin_lock_irqsave(&xhci->lock, flags);
1132                 if (xhci->xhc_state & XHCI_STATE_DYING)
1133                         goto dying;
1134                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1135                                 slot_id, ep_index);
1136                 if (ret)
1137                         goto free_priv;
1138                 spin_unlock_irqrestore(&xhci->lock, flags);
1139         } else {
1140                 spin_lock_irqsave(&xhci->lock, flags);
1141                 if (xhci->xhc_state & XHCI_STATE_DYING)
1142                         goto dying;
1143                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1144                                 slot_id, ep_index);
1145                 if (ret)
1146                         goto free_priv;
1147                 spin_unlock_irqrestore(&xhci->lock, flags);
1148         }
1149 exit:
1150         return ret;
1151 dying:
1152         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1153                         "non-responsive xHCI host.\n",
1154                         urb->ep->desc.bEndpointAddress, urb);
1155         ret = -ESHUTDOWN;
1156 free_priv:
1157         xhci_urb_free_priv(xhci, urb_priv);
1158         urb->hcpriv = NULL;
1159         spin_unlock_irqrestore(&xhci->lock, flags);
1160         return ret;
1161 }
1162
1163 /* Get the right ring for the given URB.
1164  * If the endpoint supports streams, boundary check the URB's stream ID.
1165  * If the endpoint doesn't support streams, return the singular endpoint ring.
1166  */
1167 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1168                 struct urb *urb)
1169 {
1170         unsigned int slot_id;
1171         unsigned int ep_index;
1172         unsigned int stream_id;
1173         struct xhci_virt_ep *ep;
1174
1175         slot_id = urb->dev->slot_id;
1176         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1177         stream_id = urb->stream_id;
1178         ep = &xhci->devs[slot_id]->eps[ep_index];
1179         /* Common case: no streams */
1180         if (!(ep->ep_state & EP_HAS_STREAMS))
1181                 return ep->ring;
1182
1183         if (stream_id == 0) {
1184                 xhci_warn(xhci,
1185                                 "WARN: Slot ID %u, ep index %u has streams, "
1186                                 "but URB has no stream ID.\n",
1187                                 slot_id, ep_index);
1188                 return NULL;
1189         }
1190
1191         if (stream_id < ep->stream_info->num_streams)
1192                 return ep->stream_info->stream_rings[stream_id];
1193
1194         xhci_warn(xhci,
1195                         "WARN: Slot ID %u, ep index %u has "
1196                         "stream IDs 1 to %u allocated, "
1197                         "but stream ID %u is requested.\n",
1198                         slot_id, ep_index,
1199                         ep->stream_info->num_streams - 1,
1200                         stream_id);
1201         return NULL;
1202 }
1203
1204 /*
1205  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1206  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1207  * should pick up where it left off in the TD, unless a Set Transfer Ring
1208  * Dequeue Pointer is issued.
1209  *
1210  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1211  * the ring.  Since the ring is a contiguous structure, they can't be physically
1212  * removed.  Instead, there are two options:
1213  *
1214  *  1) If the HC is in the middle of processing the URB to be canceled, we
1215  *     simply move the ring's dequeue pointer past those TRBs using the Set
1216  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1217  *     when drivers timeout on the last submitted URB and attempt to cancel.
1218  *
1219  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1220  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1221  *     HC will need to invalidate the any TRBs it has cached after the stop
1222  *     endpoint command, as noted in the xHCI 0.95 errata.
1223  *
1224  *  3) The TD may have completed by the time the Stop Endpoint Command
1225  *     completes, so software needs to handle that case too.
1226  *
1227  * This function should protect against the TD enqueueing code ringing the
1228  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1229  * It also needs to account for multiple cancellations on happening at the same
1230  * time for the same endpoint.
1231  *
1232  * Note that this function can be called in any context, or so says
1233  * usb_hcd_unlink_urb()
1234  */
1235 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1236 {
1237         unsigned long flags;
1238         int ret, i;
1239         u32 temp;
1240         struct xhci_hcd *xhci;
1241         struct urb_priv *urb_priv;
1242         struct xhci_td *td;
1243         unsigned int ep_index;
1244         struct xhci_ring *ep_ring;
1245         struct xhci_virt_ep *ep;
1246
1247         xhci = hcd_to_xhci(hcd);
1248         spin_lock_irqsave(&xhci->lock, flags);
1249         /* Make sure the URB hasn't completed or been unlinked already */
1250         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1251         if (ret || !urb->hcpriv)
1252                 goto done;
1253         temp = xhci_readl(xhci, &xhci->op_regs->status);
1254         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1255                 xhci_dbg(xhci, "HW died, freeing TD.\n");
1256                 urb_priv = urb->hcpriv;
1257                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1258                         td = urb_priv->td[i];
1259                         if (!list_empty(&td->td_list))
1260                                 list_del_init(&td->td_list);
1261                         if (!list_empty(&td->cancelled_td_list))
1262                                 list_del_init(&td->cancelled_td_list);
1263                 }
1264
1265                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1266                 spin_unlock_irqrestore(&xhci->lock, flags);
1267                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1268                 xhci_urb_free_priv(xhci, urb_priv);
1269                 return ret;
1270         }
1271         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1272                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1273                 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1274                                 "non-responsive xHCI host.\n",
1275                                 urb->ep->desc.bEndpointAddress, urb);
1276                 /* Let the stop endpoint command watchdog timer (which set this
1277                  * state) finish cleaning up the endpoint TD lists.  We must
1278                  * have caught it in the middle of dropping a lock and giving
1279                  * back an URB.
1280                  */
1281                 goto done;
1282         }
1283
1284         xhci_dbg(xhci, "Cancel URB %p\n", urb);
1285         xhci_dbg(xhci, "Event ring:\n");
1286         xhci_debug_ring(xhci, xhci->event_ring);
1287         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1288         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1289         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1290         if (!ep_ring) {
1291                 ret = -EINVAL;
1292                 goto done;
1293         }
1294
1295         xhci_dbg(xhci, "Endpoint ring:\n");
1296         xhci_debug_ring(xhci, ep_ring);
1297
1298         urb_priv = urb->hcpriv;
1299
1300         for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1301                 td = urb_priv->td[i];
1302                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1303         }
1304
1305         /* Queue a stop endpoint command, but only if this is
1306          * the first cancellation to be handled.
1307          */
1308         if (!(ep->ep_state & EP_HALT_PENDING)) {
1309                 ep->ep_state |= EP_HALT_PENDING;
1310                 ep->stop_cmds_pending++;
1311                 ep->stop_cmd_timer.expires = jiffies +
1312                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1313                 add_timer(&ep->stop_cmd_timer);
1314                 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1315                 xhci_ring_cmd_db(xhci);
1316         }
1317 done:
1318         spin_unlock_irqrestore(&xhci->lock, flags);
1319         return ret;
1320 }
1321
1322 /* Drop an endpoint from a new bandwidth configuration for this device.
1323  * Only one call to this function is allowed per endpoint before
1324  * check_bandwidth() or reset_bandwidth() must be called.
1325  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1326  * add the endpoint to the schedule with possibly new parameters denoted by a
1327  * different endpoint descriptor in usb_host_endpoint.
1328  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1329  * not allowed.
1330  *
1331  * The USB core will not allow URBs to be queued to an endpoint that is being
1332  * disabled, so there's no need for mutual exclusion to protect
1333  * the xhci->devs[slot_id] structure.
1334  */
1335 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1336                 struct usb_host_endpoint *ep)
1337 {
1338         struct xhci_hcd *xhci;
1339         struct xhci_container_ctx *in_ctx, *out_ctx;
1340         struct xhci_input_control_ctx *ctrl_ctx;
1341         struct xhci_slot_ctx *slot_ctx;
1342         unsigned int last_ctx;
1343         unsigned int ep_index;
1344         struct xhci_ep_ctx *ep_ctx;
1345         u32 drop_flag;
1346         u32 new_add_flags, new_drop_flags, new_slot_info;
1347         int ret;
1348
1349         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1350         if (ret <= 0)
1351                 return ret;
1352         xhci = hcd_to_xhci(hcd);
1353         if (xhci->xhc_state & XHCI_STATE_DYING)
1354                 return -ENODEV;
1355
1356         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1357         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1358         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1359                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1360                                 __func__, drop_flag);
1361                 return 0;
1362         }
1363
1364         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1365         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1366         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1367         ep_index = xhci_get_endpoint_index(&ep->desc);
1368         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1369         /* If the HC already knows the endpoint is disabled,
1370          * or the HCD has noted it is disabled, ignore this request
1371          */
1372         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1373              cpu_to_le32(EP_STATE_DISABLED)) ||
1374             le32_to_cpu(ctrl_ctx->drop_flags) &
1375             xhci_get_endpoint_flag(&ep->desc)) {
1376                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1377                                 __func__, ep);
1378                 return 0;
1379         }
1380
1381         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1382         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1383
1384         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1385         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1386
1387         last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1388         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1389         /* Update the last valid endpoint context, if we deleted the last one */
1390         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1391             LAST_CTX(last_ctx)) {
1392                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1393                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1394         }
1395         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1396
1397         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1398
1399         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1400                         (unsigned int) ep->desc.bEndpointAddress,
1401                         udev->slot_id,
1402                         (unsigned int) new_drop_flags,
1403                         (unsigned int) new_add_flags,
1404                         (unsigned int) new_slot_info);
1405         return 0;
1406 }
1407
1408 /* Add an endpoint to a new possible bandwidth configuration for this device.
1409  * Only one call to this function is allowed per endpoint before
1410  * check_bandwidth() or reset_bandwidth() must be called.
1411  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1412  * add the endpoint to the schedule with possibly new parameters denoted by a
1413  * different endpoint descriptor in usb_host_endpoint.
1414  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1415  * not allowed.
1416  *
1417  * The USB core will not allow URBs to be queued to an endpoint until the
1418  * configuration or alt setting is installed in the device, so there's no need
1419  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1420  */
1421 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1422                 struct usb_host_endpoint *ep)
1423 {
1424         struct xhci_hcd *xhci;
1425         struct xhci_container_ctx *in_ctx, *out_ctx;
1426         unsigned int ep_index;
1427         struct xhci_ep_ctx *ep_ctx;
1428         struct xhci_slot_ctx *slot_ctx;
1429         struct xhci_input_control_ctx *ctrl_ctx;
1430         u32 added_ctxs;
1431         unsigned int last_ctx;
1432         u32 new_add_flags, new_drop_flags, new_slot_info;
1433         struct xhci_virt_device *virt_dev;
1434         int ret = 0;
1435
1436         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1437         if (ret <= 0) {
1438                 /* So we won't queue a reset ep command for a root hub */
1439                 ep->hcpriv = NULL;
1440                 return ret;
1441         }
1442         xhci = hcd_to_xhci(hcd);
1443         if (xhci->xhc_state & XHCI_STATE_DYING)
1444                 return -ENODEV;
1445
1446         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1447         last_ctx = xhci_last_valid_endpoint(added_ctxs);
1448         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1449                 /* FIXME when we have to issue an evaluate endpoint command to
1450                  * deal with ep0 max packet size changing once we get the
1451                  * descriptors
1452                  */
1453                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1454                                 __func__, added_ctxs);
1455                 return 0;
1456         }
1457
1458         virt_dev = xhci->devs[udev->slot_id];
1459         in_ctx = virt_dev->in_ctx;
1460         out_ctx = virt_dev->out_ctx;
1461         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1462         ep_index = xhci_get_endpoint_index(&ep->desc);
1463         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1464
1465         /* If this endpoint is already in use, and the upper layers are trying
1466          * to add it again without dropping it, reject the addition.
1467          */
1468         if (virt_dev->eps[ep_index].ring &&
1469                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1470                                 xhci_get_endpoint_flag(&ep->desc))) {
1471                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1472                                 "without dropping it.\n",
1473                                 (unsigned int) ep->desc.bEndpointAddress);
1474                 return -EINVAL;
1475         }
1476
1477         /* If the HCD has already noted the endpoint is enabled,
1478          * ignore this request.
1479          */
1480         if (le32_to_cpu(ctrl_ctx->add_flags) &
1481             xhci_get_endpoint_flag(&ep->desc)) {
1482                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1483                                 __func__, ep);
1484                 return 0;
1485         }
1486
1487         /*
1488          * Configuration and alternate setting changes must be done in
1489          * process context, not interrupt context (or so documenation
1490          * for usb_set_interface() and usb_set_configuration() claim).
1491          */
1492         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1493                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1494                                 __func__, ep->desc.bEndpointAddress);
1495                 return -ENOMEM;
1496         }
1497
1498         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1499         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1500
1501         /* If xhci_endpoint_disable() was called for this endpoint, but the
1502          * xHC hasn't been notified yet through the check_bandwidth() call,
1503          * this re-adds a new state for the endpoint from the new endpoint
1504          * descriptors.  We must drop and re-add this endpoint, so we leave the
1505          * drop flags alone.
1506          */
1507         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1508
1509         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1510         /* Update the last valid endpoint context, if we just added one past */
1511         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1512             LAST_CTX(last_ctx)) {
1513                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1514                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1515         }
1516         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1517
1518         /* Store the usb_device pointer for later use */
1519         ep->hcpriv = udev;
1520
1521         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1522                         (unsigned int) ep->desc.bEndpointAddress,
1523                         udev->slot_id,
1524                         (unsigned int) new_drop_flags,
1525                         (unsigned int) new_add_flags,
1526                         (unsigned int) new_slot_info);
1527         return 0;
1528 }
1529
1530 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1531 {
1532         struct xhci_input_control_ctx *ctrl_ctx;
1533         struct xhci_ep_ctx *ep_ctx;
1534         struct xhci_slot_ctx *slot_ctx;
1535         int i;
1536
1537         /* When a device's add flag and drop flag are zero, any subsequent
1538          * configure endpoint command will leave that endpoint's state
1539          * untouched.  Make sure we don't leave any old state in the input
1540          * endpoint contexts.
1541          */
1542         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1543         ctrl_ctx->drop_flags = 0;
1544         ctrl_ctx->add_flags = 0;
1545         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1546         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1547         /* Endpoint 0 is always valid */
1548         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1549         for (i = 1; i < 31; ++i) {
1550                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1551                 ep_ctx->ep_info = 0;
1552                 ep_ctx->ep_info2 = 0;
1553                 ep_ctx->deq = 0;
1554                 ep_ctx->tx_info = 0;
1555         }
1556 }
1557
1558 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1559                 struct usb_device *udev, u32 *cmd_status)
1560 {
1561         int ret;
1562
1563         switch (*cmd_status) {
1564         case COMP_ENOMEM:
1565                 dev_warn(&udev->dev, "Not enough host controller resources "
1566                                 "for new device state.\n");
1567                 ret = -ENOMEM;
1568                 /* FIXME: can we allocate more resources for the HC? */
1569                 break;
1570         case COMP_BW_ERR:
1571                 dev_warn(&udev->dev, "Not enough bandwidth "
1572                                 "for new device state.\n");
1573                 ret = -ENOSPC;
1574                 /* FIXME: can we go back to the old state? */
1575                 break;
1576         case COMP_TRB_ERR:
1577                 /* the HCD set up something wrong */
1578                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1579                                 "add flag = 1, "
1580                                 "and endpoint is not disabled.\n");
1581                 ret = -EINVAL;
1582                 break;
1583         case COMP_DEV_ERR:
1584                 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1585                                 "configure command.\n");
1586                 ret = -ENODEV;
1587                 break;
1588         case COMP_SUCCESS:
1589                 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1590                 ret = 0;
1591                 break;
1592         default:
1593                 xhci_err(xhci, "ERROR: unexpected command completion "
1594                                 "code 0x%x.\n", *cmd_status);
1595                 ret = -EINVAL;
1596                 break;
1597         }
1598         return ret;
1599 }
1600
1601 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1602                 struct usb_device *udev, u32 *cmd_status)
1603 {
1604         int ret;
1605         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1606
1607         switch (*cmd_status) {
1608         case COMP_EINVAL:
1609                 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1610                                 "context command.\n");
1611                 ret = -EINVAL;
1612                 break;
1613         case COMP_EBADSLT:
1614                 dev_warn(&udev->dev, "WARN: slot not enabled for"
1615                                 "evaluate context command.\n");
1616         case COMP_CTX_STATE:
1617                 dev_warn(&udev->dev, "WARN: invalid context state for "
1618                                 "evaluate context command.\n");
1619                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1620                 ret = -EINVAL;
1621                 break;
1622         case COMP_DEV_ERR:
1623                 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1624                                 "context command.\n");
1625                 ret = -ENODEV;
1626                 break;
1627         case COMP_MEL_ERR:
1628                 /* Max Exit Latency too large error */
1629                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1630                 ret = -EINVAL;
1631                 break;
1632         case COMP_SUCCESS:
1633                 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1634                 ret = 0;
1635                 break;
1636         default:
1637                 xhci_err(xhci, "ERROR: unexpected command completion "
1638                                 "code 0x%x.\n", *cmd_status);
1639                 ret = -EINVAL;
1640                 break;
1641         }
1642         return ret;
1643 }
1644
1645 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1646                 struct xhci_container_ctx *in_ctx)
1647 {
1648         struct xhci_input_control_ctx *ctrl_ctx;
1649         u32 valid_add_flags;
1650         u32 valid_drop_flags;
1651
1652         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1653         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1654          * (bit 1).  The default control endpoint is added during the Address
1655          * Device command and is never removed until the slot is disabled.
1656          */
1657         valid_add_flags = ctrl_ctx->add_flags >> 2;
1658         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1659
1660         /* Use hweight32 to count the number of ones in the add flags, or
1661          * number of endpoints added.  Don't count endpoints that are changed
1662          * (both added and dropped).
1663          */
1664         return hweight32(valid_add_flags) -
1665                 hweight32(valid_add_flags & valid_drop_flags);
1666 }
1667
1668 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1669                 struct xhci_container_ctx *in_ctx)
1670 {
1671         struct xhci_input_control_ctx *ctrl_ctx;
1672         u32 valid_add_flags;
1673         u32 valid_drop_flags;
1674
1675         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1676         valid_add_flags = ctrl_ctx->add_flags >> 2;
1677         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1678
1679         return hweight32(valid_drop_flags) -
1680                 hweight32(valid_add_flags & valid_drop_flags);
1681 }
1682
1683 /*
1684  * We need to reserve the new number of endpoints before the configure endpoint
1685  * command completes.  We can't subtract the dropped endpoints from the number
1686  * of active endpoints until the command completes because we can oversubscribe
1687  * the host in this case:
1688  *
1689  *  - the first configure endpoint command drops more endpoints than it adds
1690  *  - a second configure endpoint command that adds more endpoints is queued
1691  *  - the first configure endpoint command fails, so the config is unchanged
1692  *  - the second command may succeed, even though there isn't enough resources
1693  *
1694  * Must be called with xhci->lock held.
1695  */
1696 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1697                 struct xhci_container_ctx *in_ctx)
1698 {
1699         u32 added_eps;
1700
1701         added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1702         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1703                 xhci_dbg(xhci, "Not enough ep ctxs: "
1704                                 "%u active, need to add %u, limit is %u.\n",
1705                                 xhci->num_active_eps, added_eps,
1706                                 xhci->limit_active_eps);
1707                 return -ENOMEM;
1708         }
1709         xhci->num_active_eps += added_eps;
1710         xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1711                         xhci->num_active_eps);
1712         return 0;
1713 }
1714
1715 /*
1716  * The configure endpoint was failed by the xHC for some other reason, so we
1717  * need to revert the resources that failed configuration would have used.
1718  *
1719  * Must be called with xhci->lock held.
1720  */
1721 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1722                 struct xhci_container_ctx *in_ctx)
1723 {
1724         u32 num_failed_eps;
1725
1726         num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1727         xhci->num_active_eps -= num_failed_eps;
1728         xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1729                         num_failed_eps,
1730                         xhci->num_active_eps);
1731 }
1732
1733 /*
1734  * Now that the command has completed, clean up the active endpoint count by
1735  * subtracting out the endpoints that were dropped (but not changed).
1736  *
1737  * Must be called with xhci->lock held.
1738  */
1739 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1740                 struct xhci_container_ctx *in_ctx)
1741 {
1742         u32 num_dropped_eps;
1743
1744         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1745         xhci->num_active_eps -= num_dropped_eps;
1746         if (num_dropped_eps)
1747                 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1748                                 num_dropped_eps,
1749                                 xhci->num_active_eps);
1750 }
1751
1752 unsigned int xhci_get_block_size(struct usb_device *udev)
1753 {
1754         switch (udev->speed) {
1755         case USB_SPEED_LOW:
1756         case USB_SPEED_FULL:
1757                 return FS_BLOCK;
1758         case USB_SPEED_HIGH:
1759                 return HS_BLOCK;
1760         case USB_SPEED_SUPER:
1761                 return SS_BLOCK;
1762         case USB_SPEED_UNKNOWN:
1763         case USB_SPEED_WIRELESS:
1764         default:
1765                 /* Should never happen */
1766                 return 1;
1767         }
1768 }
1769
1770 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1771 {
1772         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1773                 return LS_OVERHEAD;
1774         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1775                 return FS_OVERHEAD;
1776         return HS_OVERHEAD;
1777 }
1778
1779 /* If we are changing a LS/FS device under a HS hub,
1780  * make sure (if we are activating a new TT) that the HS bus has enough
1781  * bandwidth for this new TT.
1782  */
1783 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1784                 struct xhci_virt_device *virt_dev,
1785                 int old_active_eps)
1786 {
1787         struct xhci_interval_bw_table *bw_table;
1788         struct xhci_tt_bw_info *tt_info;
1789
1790         /* Find the bandwidth table for the root port this TT is attached to. */
1791         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1792         tt_info = virt_dev->tt_info;
1793         /* If this TT already had active endpoints, the bandwidth for this TT
1794          * has already been added.  Removing all periodic endpoints (and thus
1795          * making the TT enactive) will only decrease the bandwidth used.
1796          */
1797         if (old_active_eps)
1798                 return 0;
1799         if (old_active_eps == 0 && tt_info->active_eps != 0) {
1800                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
1801                         return -ENOMEM;
1802                 return 0;
1803         }
1804         /* Not sure why we would have no new active endpoints...
1805          *
1806          * Maybe because of an Evaluate Context change for a hub update or a
1807          * control endpoint 0 max packet size change?
1808          * FIXME: skip the bandwidth calculation in that case.
1809          */
1810         return 0;
1811 }
1812
1813 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
1814                 struct xhci_virt_device *virt_dev)
1815 {
1816         unsigned int bw_reserved;
1817
1818         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
1819         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
1820                 return -ENOMEM;
1821
1822         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
1823         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
1824                 return -ENOMEM;
1825
1826         return 0;
1827 }
1828
1829 /*
1830  * This algorithm is a very conservative estimate of the worst-case scheduling
1831  * scenario for any one interval.  The hardware dynamically schedules the
1832  * packets, so we can't tell which microframe could be the limiting factor in
1833  * the bandwidth scheduling.  This only takes into account periodic endpoints.
1834  *
1835  * Obviously, we can't solve an NP complete problem to find the minimum worst
1836  * case scenario.  Instead, we come up with an estimate that is no less than
1837  * the worst case bandwidth used for any one microframe, but may be an
1838  * over-estimate.
1839  *
1840  * We walk the requirements for each endpoint by interval, starting with the
1841  * smallest interval, and place packets in the schedule where there is only one
1842  * possible way to schedule packets for that interval.  In order to simplify
1843  * this algorithm, we record the largest max packet size for each interval, and
1844  * assume all packets will be that size.
1845  *
1846  * For interval 0, we obviously must schedule all packets for each interval.
1847  * The bandwidth for interval 0 is just the amount of data to be transmitted
1848  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
1849  * the number of packets).
1850  *
1851  * For interval 1, we have two possible microframes to schedule those packets
1852  * in.  For this algorithm, if we can schedule the same number of packets for
1853  * each possible scheduling opportunity (each microframe), we will do so.  The
1854  * remaining number of packets will be saved to be transmitted in the gaps in
1855  * the next interval's scheduling sequence.
1856  *
1857  * As we move those remaining packets to be scheduled with interval 2 packets,
1858  * we have to double the number of remaining packets to transmit.  This is
1859  * because the intervals are actually powers of 2, and we would be transmitting
1860  * the previous interval's packets twice in this interval.  We also have to be
1861  * sure that when we look at the largest max packet size for this interval, we
1862  * also look at the largest max packet size for the remaining packets and take
1863  * the greater of the two.
1864  *
1865  * The algorithm continues to evenly distribute packets in each scheduling
1866  * opportunity, and push the remaining packets out, until we get to the last
1867  * interval.  Then those packets and their associated overhead are just added
1868  * to the bandwidth used.
1869  */
1870 static int xhci_check_bw_table(struct xhci_hcd *xhci,
1871                 struct xhci_virt_device *virt_dev,
1872                 int old_active_eps)
1873 {
1874         unsigned int bw_reserved;
1875         unsigned int max_bandwidth;
1876         unsigned int bw_used;
1877         unsigned int block_size;
1878         struct xhci_interval_bw_table *bw_table;
1879         unsigned int packet_size = 0;
1880         unsigned int overhead = 0;
1881         unsigned int packets_transmitted = 0;
1882         unsigned int packets_remaining = 0;
1883         unsigned int i;
1884
1885         if (virt_dev->udev->speed == USB_SPEED_SUPER)
1886                 return xhci_check_ss_bw(xhci, virt_dev);
1887
1888         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
1889                 max_bandwidth = HS_BW_LIMIT;
1890                 /* Convert percent of bus BW reserved to blocks reserved */
1891                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
1892         } else {
1893                 max_bandwidth = FS_BW_LIMIT;
1894                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
1895         }
1896
1897         bw_table = virt_dev->bw_table;
1898         /* We need to translate the max packet size and max ESIT payloads into
1899          * the units the hardware uses.
1900          */
1901         block_size = xhci_get_block_size(virt_dev->udev);
1902
1903         /* If we are manipulating a LS/FS device under a HS hub, double check
1904          * that the HS bus has enough bandwidth if we are activing a new TT.
1905          */
1906         if (virt_dev->tt_info) {
1907                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1908                                 virt_dev->real_port);
1909                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
1910                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
1911                                         "newly activated TT.\n");
1912                         return -ENOMEM;
1913                 }
1914                 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
1915                                 virt_dev->tt_info->slot_id,
1916                                 virt_dev->tt_info->ttport);
1917         } else {
1918                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1919                                 virt_dev->real_port);
1920         }
1921
1922         /* Add in how much bandwidth will be used for interval zero, or the
1923          * rounded max ESIT payload + number of packets * largest overhead.
1924          */
1925         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
1926                 bw_table->interval_bw[0].num_packets *
1927                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
1928
1929         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
1930                 unsigned int bw_added;
1931                 unsigned int largest_mps;
1932                 unsigned int interval_overhead;
1933
1934                 /*
1935                  * How many packets could we transmit in this interval?
1936                  * If packets didn't fit in the previous interval, we will need
1937                  * to transmit that many packets twice within this interval.
1938                  */
1939                 packets_remaining = 2 * packets_remaining +
1940                         bw_table->interval_bw[i].num_packets;
1941
1942                 /* Find the largest max packet size of this or the previous
1943                  * interval.
1944                  */
1945                 if (list_empty(&bw_table->interval_bw[i].endpoints))
1946                         largest_mps = 0;
1947                 else {
1948                         struct xhci_virt_ep *virt_ep;
1949                         struct list_head *ep_entry;
1950
1951                         ep_entry = bw_table->interval_bw[i].endpoints.next;
1952                         virt_ep = list_entry(ep_entry,
1953                                         struct xhci_virt_ep, bw_endpoint_list);
1954                         /* Convert to blocks, rounding up */
1955                         largest_mps = DIV_ROUND_UP(
1956                                         virt_ep->bw_info.max_packet_size,
1957                                         block_size);
1958                 }
1959                 if (largest_mps > packet_size)
1960                         packet_size = largest_mps;
1961
1962                 /* Use the larger overhead of this or the previous interval. */
1963                 interval_overhead = xhci_get_largest_overhead(
1964                                 &bw_table->interval_bw[i]);
1965                 if (interval_overhead > overhead)
1966                         overhead = interval_overhead;
1967
1968                 /* How many packets can we evenly distribute across
1969                  * (1 << (i + 1)) possible scheduling opportunities?
1970                  */
1971                 packets_transmitted = packets_remaining >> (i + 1);
1972
1973                 /* Add in the bandwidth used for those scheduled packets */
1974                 bw_added = packets_transmitted * (overhead + packet_size);
1975
1976                 /* How many packets do we have remaining to transmit? */
1977                 packets_remaining = packets_remaining % (1 << (i + 1));
1978
1979                 /* What largest max packet size should those packets have? */
1980                 /* If we've transmitted all packets, don't carry over the
1981                  * largest packet size.
1982                  */
1983                 if (packets_remaining == 0) {
1984                         packet_size = 0;
1985                         overhead = 0;
1986                 } else if (packets_transmitted > 0) {
1987                         /* Otherwise if we do have remaining packets, and we've
1988                          * scheduled some packets in this interval, take the
1989                          * largest max packet size from endpoints with this
1990                          * interval.
1991                          */
1992                         packet_size = largest_mps;
1993                         overhead = interval_overhead;
1994                 }
1995                 /* Otherwise carry over packet_size and overhead from the last
1996                  * time we had a remainder.
1997                  */
1998                 bw_used += bw_added;
1999                 if (bw_used > max_bandwidth) {
2000                         xhci_warn(xhci, "Not enough bandwidth. "
2001                                         "Proposed: %u, Max: %u\n",
2002                                 bw_used, max_bandwidth);
2003                         return -ENOMEM;
2004                 }
2005         }
2006         /*
2007          * Ok, we know we have some packets left over after even-handedly
2008          * scheduling interval 15.  We don't know which microframes they will
2009          * fit into, so we over-schedule and say they will be scheduled every
2010          * microframe.
2011          */
2012         if (packets_remaining > 0)
2013                 bw_used += overhead + packet_size;
2014
2015         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2016                 unsigned int port_index = virt_dev->real_port - 1;
2017
2018                 /* OK, we're manipulating a HS device attached to a
2019                  * root port bandwidth domain.  Include the number of active TTs
2020                  * in the bandwidth used.
2021                  */
2022                 bw_used += TT_HS_OVERHEAD *
2023                         xhci->rh_bw[port_index].num_active_tts;
2024         }
2025
2026         xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2027                 "Available: %u " "percent\n",
2028                 bw_used, max_bandwidth, bw_reserved,
2029                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2030                 max_bandwidth);
2031
2032         bw_used += bw_reserved;
2033         if (bw_used > max_bandwidth) {
2034                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2035                                 bw_used, max_bandwidth);
2036                 return -ENOMEM;
2037         }
2038
2039         bw_table->bw_used = bw_used;
2040         return 0;
2041 }
2042
2043 static bool xhci_is_async_ep(unsigned int ep_type)
2044 {
2045         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2046                                         ep_type != ISOC_IN_EP &&
2047                                         ep_type != INT_IN_EP);
2048 }
2049
2050 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2051 {
2052         return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP);
2053 }
2054
2055 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2056 {
2057         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2058
2059         if (ep_bw->ep_interval == 0)
2060                 return SS_OVERHEAD_BURST +
2061                         (ep_bw->mult * ep_bw->num_packets *
2062                                         (SS_OVERHEAD + mps));
2063         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2064                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2065                                 1 << ep_bw->ep_interval);
2066
2067 }
2068
2069 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2070                 struct xhci_bw_info *ep_bw,
2071                 struct xhci_interval_bw_table *bw_table,
2072                 struct usb_device *udev,
2073                 struct xhci_virt_ep *virt_ep,
2074                 struct xhci_tt_bw_info *tt_info)
2075 {
2076         struct xhci_interval_bw *interval_bw;
2077         int normalized_interval;
2078
2079         if (xhci_is_async_ep(ep_bw->type))
2080                 return;
2081
2082         if (udev->speed == USB_SPEED_SUPER) {
2083                 if (xhci_is_sync_in_ep(ep_bw->type))
2084                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2085                                 xhci_get_ss_bw_consumed(ep_bw);
2086                 else
2087                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2088                                 xhci_get_ss_bw_consumed(ep_bw);
2089                 return;
2090         }
2091
2092         /* SuperSpeed endpoints never get added to intervals in the table, so
2093          * this check is only valid for HS/FS/LS devices.
2094          */
2095         if (list_empty(&virt_ep->bw_endpoint_list))
2096                 return;
2097         /* For LS/FS devices, we need to translate the interval expressed in
2098          * microframes to frames.
2099          */
2100         if (udev->speed == USB_SPEED_HIGH)
2101                 normalized_interval = ep_bw->ep_interval;
2102         else
2103                 normalized_interval = ep_bw->ep_interval - 3;
2104
2105         if (normalized_interval == 0)
2106                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2107         interval_bw = &bw_table->interval_bw[normalized_interval];
2108         interval_bw->num_packets -= ep_bw->num_packets;
2109         switch (udev->speed) {
2110         case USB_SPEED_LOW:
2111                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2112                 break;
2113         case USB_SPEED_FULL:
2114                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2115                 break;
2116         case USB_SPEED_HIGH:
2117                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2118                 break;
2119         case USB_SPEED_SUPER:
2120         case USB_SPEED_UNKNOWN:
2121         case USB_SPEED_WIRELESS:
2122                 /* Should never happen because only LS/FS/HS endpoints will get
2123                  * added to the endpoint list.
2124                  */
2125                 return;
2126         }
2127         if (tt_info)
2128                 tt_info->active_eps -= 1;
2129         list_del_init(&virt_ep->bw_endpoint_list);
2130 }
2131
2132 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2133                 struct xhci_bw_info *ep_bw,
2134                 struct xhci_interval_bw_table *bw_table,
2135                 struct usb_device *udev,
2136                 struct xhci_virt_ep *virt_ep,
2137                 struct xhci_tt_bw_info *tt_info)
2138 {
2139         struct xhci_interval_bw *interval_bw;
2140         struct xhci_virt_ep *smaller_ep;
2141         int normalized_interval;
2142
2143         if (xhci_is_async_ep(ep_bw->type))
2144                 return;
2145
2146         if (udev->speed == USB_SPEED_SUPER) {
2147                 if (xhci_is_sync_in_ep(ep_bw->type))
2148                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2149                                 xhci_get_ss_bw_consumed(ep_bw);
2150                 else
2151                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2152                                 xhci_get_ss_bw_consumed(ep_bw);
2153                 return;
2154         }
2155
2156         /* For LS/FS devices, we need to translate the interval expressed in
2157          * microframes to frames.
2158          */
2159         if (udev->speed == USB_SPEED_HIGH)
2160                 normalized_interval = ep_bw->ep_interval;
2161         else
2162                 normalized_interval = ep_bw->ep_interval - 3;
2163
2164         if (normalized_interval == 0)
2165                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2166         interval_bw = &bw_table->interval_bw[normalized_interval];
2167         interval_bw->num_packets += ep_bw->num_packets;
2168         switch (udev->speed) {
2169         case USB_SPEED_LOW:
2170                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2171                 break;
2172         case USB_SPEED_FULL:
2173                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2174                 break;
2175         case USB_SPEED_HIGH:
2176                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2177                 break;
2178         case USB_SPEED_SUPER:
2179         case USB_SPEED_UNKNOWN:
2180         case USB_SPEED_WIRELESS:
2181                 /* Should never happen because only LS/FS/HS endpoints will get
2182                  * added to the endpoint list.
2183                  */
2184                 return;
2185         }
2186
2187         if (tt_info)
2188                 tt_info->active_eps += 1;
2189         /* Insert the endpoint into the list, largest max packet size first. */
2190         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2191                         bw_endpoint_list) {
2192                 if (ep_bw->max_packet_size >=
2193                                 smaller_ep->bw_info.max_packet_size) {
2194                         /* Add the new ep before the smaller endpoint */
2195                         list_add_tail(&virt_ep->bw_endpoint_list,
2196                                         &smaller_ep->bw_endpoint_list);
2197                         return;
2198                 }
2199         }
2200         /* Add the new endpoint at the end of the list. */
2201         list_add_tail(&virt_ep->bw_endpoint_list,
2202                         &interval_bw->endpoints);
2203 }
2204
2205 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2206                 struct xhci_virt_device *virt_dev,
2207                 int old_active_eps)
2208 {
2209         struct xhci_root_port_bw_info *rh_bw_info;
2210         if (!virt_dev->tt_info)
2211                 return;
2212
2213         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2214         if (old_active_eps == 0 &&
2215                                 virt_dev->tt_info->active_eps != 0) {
2216                 rh_bw_info->num_active_tts += 1;
2217                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2218         } else if (old_active_eps != 0 &&
2219                                 virt_dev->tt_info->active_eps == 0) {
2220                 rh_bw_info->num_active_tts -= 1;
2221                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2222         }
2223 }
2224
2225 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2226                 struct xhci_virt_device *virt_dev,
2227                 struct xhci_container_ctx *in_ctx)
2228 {
2229         struct xhci_bw_info ep_bw_info[31];
2230         int i;
2231         struct xhci_input_control_ctx *ctrl_ctx;
2232         int old_active_eps = 0;
2233
2234         if (virt_dev->tt_info)
2235                 old_active_eps = virt_dev->tt_info->active_eps;
2236
2237         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2238
2239         for (i = 0; i < 31; i++) {
2240                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2241                         continue;
2242
2243                 /* Make a copy of the BW info in case we need to revert this */
2244                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2245                                 sizeof(ep_bw_info[i]));
2246                 /* Drop the endpoint from the interval table if the endpoint is
2247                  * being dropped or changed.
2248                  */
2249                 if (EP_IS_DROPPED(ctrl_ctx, i))
2250                         xhci_drop_ep_from_interval_table(xhci,
2251                                         &virt_dev->eps[i].bw_info,
2252                                         virt_dev->bw_table,
2253                                         virt_dev->udev,
2254                                         &virt_dev->eps[i],
2255                                         virt_dev->tt_info);
2256         }
2257         /* Overwrite the information stored in the endpoints' bw_info */
2258         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2259         for (i = 0; i < 31; i++) {
2260                 /* Add any changed or added endpoints to the interval table */
2261                 if (EP_IS_ADDED(ctrl_ctx, i))
2262                         xhci_add_ep_to_interval_table(xhci,
2263                                         &virt_dev->eps[i].bw_info,
2264                                         virt_dev->bw_table,
2265                                         virt_dev->udev,
2266                                         &virt_dev->eps[i],
2267                                         virt_dev->tt_info);
2268         }
2269
2270         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2271                 /* Ok, this fits in the bandwidth we have.
2272                  * Update the number of active TTs.
2273                  */
2274                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2275                 return 0;
2276         }
2277
2278         /* We don't have enough bandwidth for this, revert the stored info. */
2279         for (i = 0; i < 31; i++) {
2280                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2281                         continue;
2282
2283                 /* Drop the new copies of any added or changed endpoints from
2284                  * the interval table.
2285                  */
2286                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2287                         xhci_drop_ep_from_interval_table(xhci,
2288                                         &virt_dev->eps[i].bw_info,
2289                                         virt_dev->bw_table,
2290                                         virt_dev->udev,
2291                                         &virt_dev->eps[i],
2292                                         virt_dev->tt_info);
2293                 }
2294                 /* Revert the endpoint back to its old information */
2295                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2296                                 sizeof(ep_bw_info[i]));
2297                 /* Add any changed or dropped endpoints back into the table */
2298                 if (EP_IS_DROPPED(ctrl_ctx, i))
2299                         xhci_add_ep_to_interval_table(xhci,
2300                                         &virt_dev->eps[i].bw_info,
2301                                         virt_dev->bw_table,
2302                                         virt_dev->udev,
2303                                         &virt_dev->eps[i],
2304                                         virt_dev->tt_info);
2305         }
2306         return -ENOMEM;
2307 }
2308
2309
2310 /* Issue a configure endpoint command or evaluate context command
2311  * and wait for it to finish.
2312  */
2313 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2314                 struct usb_device *udev,
2315                 struct xhci_command *command,
2316                 bool ctx_change, bool must_succeed)
2317 {
2318         int ret;
2319         int timeleft;
2320         unsigned long flags;
2321         struct xhci_container_ctx *in_ctx;
2322         struct completion *cmd_completion;
2323         u32 *cmd_status;
2324         struct xhci_virt_device *virt_dev;
2325
2326         spin_lock_irqsave(&xhci->lock, flags);
2327         virt_dev = xhci->devs[udev->slot_id];
2328
2329         if (command)
2330                 in_ctx = command->in_ctx;
2331         else
2332                 in_ctx = virt_dev->in_ctx;
2333
2334         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2335                         xhci_reserve_host_resources(xhci, in_ctx)) {
2336                 spin_unlock_irqrestore(&xhci->lock, flags);
2337                 xhci_warn(xhci, "Not enough host resources, "
2338                                 "active endpoint contexts = %u\n",
2339                                 xhci->num_active_eps);
2340                 return -ENOMEM;
2341         }
2342         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2343                         xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2344                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2345                         xhci_free_host_resources(xhci, in_ctx);
2346                 spin_unlock_irqrestore(&xhci->lock, flags);
2347                 xhci_warn(xhci, "Not enough bandwidth\n");
2348                 return -ENOMEM;
2349         }
2350
2351         if (command) {
2352                 cmd_completion = command->completion;
2353                 cmd_status = &command->status;
2354                 command->command_trb = xhci->cmd_ring->enqueue;
2355
2356                 /* Enqueue pointer can be left pointing to the link TRB,
2357                  * we must handle that
2358                  */
2359                 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2360                         command->command_trb =
2361                                 xhci->cmd_ring->enq_seg->next->trbs;
2362
2363                 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2364         } else {
2365                 cmd_completion = &virt_dev->cmd_completion;
2366                 cmd_status = &virt_dev->cmd_status;
2367         }
2368         init_completion(cmd_completion);
2369
2370         if (!ctx_change)
2371                 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2372                                 udev->slot_id, must_succeed);
2373         else
2374                 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2375                                 udev->slot_id);
2376         if (ret < 0) {
2377                 if (command)
2378                         list_del(&command->cmd_list);
2379                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2380                         xhci_free_host_resources(xhci, in_ctx);
2381                 spin_unlock_irqrestore(&xhci->lock, flags);
2382                 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2383                 return -ENOMEM;
2384         }
2385         xhci_ring_cmd_db(xhci);
2386         spin_unlock_irqrestore(&xhci->lock, flags);
2387
2388         /* Wait for the configure endpoint command to complete */
2389         timeleft = wait_for_completion_interruptible_timeout(
2390                         cmd_completion,
2391                         USB_CTRL_SET_TIMEOUT);
2392         if (timeleft <= 0) {
2393                 xhci_warn(xhci, "%s while waiting for %s command\n",
2394                                 timeleft == 0 ? "Timeout" : "Signal",
2395                                 ctx_change == 0 ?
2396                                         "configure endpoint" :
2397                                         "evaluate context");
2398                 /* FIXME cancel the configure endpoint command */
2399                 return -ETIME;
2400         }
2401
2402         if (!ctx_change)
2403                 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2404         else
2405                 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2406
2407         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2408                 spin_lock_irqsave(&xhci->lock, flags);
2409                 /* If the command failed, remove the reserved resources.
2410                  * Otherwise, clean up the estimate to include dropped eps.
2411                  */
2412                 if (ret)
2413                         xhci_free_host_resources(xhci, in_ctx);
2414                 else
2415                         xhci_finish_resource_reservation(xhci, in_ctx);
2416                 spin_unlock_irqrestore(&xhci->lock, flags);
2417         }
2418         return ret;
2419 }
2420
2421 /* Called after one or more calls to xhci_add_endpoint() or
2422  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2423  * to call xhci_reset_bandwidth().
2424  *
2425  * Since we are in the middle of changing either configuration or
2426  * installing a new alt setting, the USB core won't allow URBs to be
2427  * enqueued for any endpoint on the old config or interface.  Nothing
2428  * else should be touching the xhci->devs[slot_id] structure, so we
2429  * don't need to take the xhci->lock for manipulating that.
2430  */
2431 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2432 {
2433         int i;
2434         int ret = 0;
2435         struct xhci_hcd *xhci;
2436         struct xhci_virt_device *virt_dev;
2437         struct xhci_input_control_ctx *ctrl_ctx;
2438         struct xhci_slot_ctx *slot_ctx;
2439
2440         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2441         if (ret <= 0)
2442                 return ret;
2443         xhci = hcd_to_xhci(hcd);
2444         if (xhci->xhc_state & XHCI_STATE_DYING)
2445                 return -ENODEV;
2446
2447         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2448         virt_dev = xhci->devs[udev->slot_id];
2449
2450         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2451         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2452         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2453         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2454         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2455
2456         /* Don't issue the command if there's no endpoints to update. */
2457         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2458                         ctrl_ctx->drop_flags == 0)
2459                 return 0;
2460
2461         xhci_dbg(xhci, "New Input Control Context:\n");
2462         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2463         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2464                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2465
2466         ret = xhci_configure_endpoint(xhci, udev, NULL,
2467                         false, false);
2468         if (ret) {
2469                 /* Callee should call reset_bandwidth() */
2470                 return ret;
2471         }
2472
2473         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2474         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2475                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2476
2477         /* Free any rings that were dropped, but not changed. */
2478         for (i = 1; i < 31; ++i) {
2479                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2480                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2481                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2482         }
2483         xhci_zero_in_ctx(xhci, virt_dev);
2484         /*
2485          * Install any rings for completely new endpoints or changed endpoints,
2486          * and free or cache any old rings from changed endpoints.
2487          */
2488         for (i = 1; i < 31; ++i) {
2489                 if (!virt_dev->eps[i].new_ring)
2490                         continue;
2491                 /* Only cache or free the old ring if it exists.
2492                  * It may not if this is the first add of an endpoint.
2493                  */
2494                 if (virt_dev->eps[i].ring) {
2495                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2496                 }
2497                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2498                 virt_dev->eps[i].new_ring = NULL;
2499         }
2500
2501         return ret;
2502 }
2503
2504 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2505 {
2506         struct xhci_hcd *xhci;
2507         struct xhci_virt_device *virt_dev;
2508         int i, ret;
2509
2510         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2511         if (ret <= 0)
2512                 return;
2513         xhci = hcd_to_xhci(hcd);
2514
2515         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2516         virt_dev = xhci->devs[udev->slot_id];
2517         /* Free any rings allocated for added endpoints */
2518         for (i = 0; i < 31; ++i) {
2519                 if (virt_dev->eps[i].new_ring) {
2520                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2521                         virt_dev->eps[i].new_ring = NULL;
2522                 }
2523         }
2524         xhci_zero_in_ctx(xhci, virt_dev);
2525 }
2526
2527 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2528                 struct xhci_container_ctx *in_ctx,
2529                 struct xhci_container_ctx *out_ctx,
2530                 u32 add_flags, u32 drop_flags)
2531 {
2532         struct xhci_input_control_ctx *ctrl_ctx;
2533         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2534         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2535         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2536         xhci_slot_copy(xhci, in_ctx, out_ctx);
2537         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2538
2539         xhci_dbg(xhci, "Input Context:\n");
2540         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2541 }
2542
2543 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2544                 unsigned int slot_id, unsigned int ep_index,
2545                 struct xhci_dequeue_state *deq_state)
2546 {
2547         struct xhci_container_ctx *in_ctx;
2548         struct xhci_ep_ctx *ep_ctx;
2549         u32 added_ctxs;
2550         dma_addr_t addr;
2551
2552         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2553                         xhci->devs[slot_id]->out_ctx, ep_index);
2554         in_ctx = xhci->devs[slot_id]->in_ctx;
2555         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2556         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2557                         deq_state->new_deq_ptr);
2558         if (addr == 0) {
2559                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2560                                 "reset ep command\n");
2561                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2562                                 deq_state->new_deq_seg,
2563                                 deq_state->new_deq_ptr);
2564                 return;
2565         }
2566         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2567
2568         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2569         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2570                         xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2571 }
2572
2573 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2574                 struct usb_device *udev, unsigned int ep_index)
2575 {
2576         struct xhci_dequeue_state deq_state;
2577         struct xhci_virt_ep *ep;
2578
2579         xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2580         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2581         /* We need to move the HW's dequeue pointer past this TD,
2582          * or it will attempt to resend it on the next doorbell ring.
2583          */
2584         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2585                         ep_index, ep->stopped_stream, ep->stopped_td,
2586                         &deq_state);
2587
2588         /* HW with the reset endpoint quirk will use the saved dequeue state to
2589          * issue a configure endpoint command later.
2590          */
2591         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2592                 xhci_dbg(xhci, "Queueing new dequeue state\n");
2593                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2594                                 ep_index, ep->stopped_stream, &deq_state);
2595         } else {
2596                 /* Better hope no one uses the input context between now and the
2597                  * reset endpoint completion!
2598                  * XXX: No idea how this hardware will react when stream rings
2599                  * are enabled.
2600                  */
2601                 xhci_dbg(xhci, "Setting up input context for "
2602                                 "configure endpoint command\n");
2603                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2604                                 ep_index, &deq_state);
2605         }
2606 }
2607
2608 /* Deal with stalled endpoints.  The core should have sent the control message
2609  * to clear the halt condition.  However, we need to make the xHCI hardware
2610  * reset its sequence number, since a device will expect a sequence number of
2611  * zero after the halt condition is cleared.
2612  * Context: in_interrupt
2613  */
2614 void xhci_endpoint_reset(struct usb_hcd *hcd,
2615                 struct usb_host_endpoint *ep)
2616 {
2617         struct xhci_hcd *xhci;
2618         struct usb_device *udev;
2619         unsigned int ep_index;
2620         unsigned long flags;
2621         int ret;
2622         struct xhci_virt_ep *virt_ep;
2623
2624         xhci = hcd_to_xhci(hcd);
2625         udev = (struct usb_device *) ep->hcpriv;
2626         /* Called with a root hub endpoint (or an endpoint that wasn't added
2627          * with xhci_add_endpoint()
2628          */
2629         if (!ep->hcpriv)
2630                 return;
2631         ep_index = xhci_get_endpoint_index(&ep->desc);
2632         virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2633         if (!virt_ep->stopped_td) {
2634                 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2635                                 ep->desc.bEndpointAddress);
2636                 return;
2637         }
2638         if (usb_endpoint_xfer_control(&ep->desc)) {
2639                 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2640                 return;
2641         }
2642
2643         xhci_dbg(xhci, "Queueing reset endpoint command\n");
2644         spin_lock_irqsave(&xhci->lock, flags);
2645         ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2646         /*
2647          * Can't change the ring dequeue pointer until it's transitioned to the
2648          * stopped state, which is only upon a successful reset endpoint
2649          * command.  Better hope that last command worked!
2650          */
2651         if (!ret) {
2652                 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2653                 kfree(virt_ep->stopped_td);
2654                 xhci_ring_cmd_db(xhci);
2655         }
2656         virt_ep->stopped_td = NULL;
2657         virt_ep->stopped_trb = NULL;
2658         virt_ep->stopped_stream = 0;
2659         spin_unlock_irqrestore(&xhci->lock, flags);
2660
2661         if (ret)
2662                 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2663 }
2664
2665 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2666                 struct usb_device *udev, struct usb_host_endpoint *ep,
2667                 unsigned int slot_id)
2668 {
2669         int ret;
2670         unsigned int ep_index;
2671         unsigned int ep_state;
2672
2673         if (!ep)
2674                 return -EINVAL;
2675         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2676         if (ret <= 0)
2677                 return -EINVAL;
2678         if (ep->ss_ep_comp.bmAttributes == 0) {
2679                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2680                                 " descriptor for ep 0x%x does not support streams\n",
2681                                 ep->desc.bEndpointAddress);
2682                 return -EINVAL;
2683         }
2684
2685         ep_index = xhci_get_endpoint_index(&ep->desc);
2686         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2687         if (ep_state & EP_HAS_STREAMS ||
2688                         ep_state & EP_GETTING_STREAMS) {
2689                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2690                                 "already has streams set up.\n",
2691                                 ep->desc.bEndpointAddress);
2692                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2693                                 "dynamic stream context array reallocation.\n");
2694                 return -EINVAL;
2695         }
2696         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2697                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2698                                 "endpoint 0x%x; URBs are pending.\n",
2699                                 ep->desc.bEndpointAddress);
2700                 return -EINVAL;
2701         }
2702         return 0;
2703 }
2704
2705 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2706                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2707 {
2708         unsigned int max_streams;
2709
2710         /* The stream context array size must be a power of two */
2711         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2712         /*
2713          * Find out how many primary stream array entries the host controller
2714          * supports.  Later we may use secondary stream arrays (similar to 2nd
2715          * level page entries), but that's an optional feature for xHCI host
2716          * controllers. xHCs must support at least 4 stream IDs.
2717          */
2718         max_streams = HCC_MAX_PSA(xhci->hcc_params);
2719         if (*num_stream_ctxs > max_streams) {
2720                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2721                                 max_streams);
2722                 *num_stream_ctxs = max_streams;
2723                 *num_streams = max_streams;
2724         }
2725 }
2726
2727 /* Returns an error code if one of the endpoint already has streams.
2728  * This does not change any data structures, it only checks and gathers
2729  * information.
2730  */
2731 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2732                 struct usb_device *udev,
2733                 struct usb_host_endpoint **eps, unsigned int num_eps,
2734                 unsigned int *num_streams, u32 *changed_ep_bitmask)
2735 {
2736         unsigned int max_streams;
2737         unsigned int endpoint_flag;
2738         int i;
2739         int ret;
2740
2741         for (i = 0; i < num_eps; i++) {
2742                 ret = xhci_check_streams_endpoint(xhci, udev,
2743                                 eps[i], udev->slot_id);
2744                 if (ret < 0)
2745                         return ret;
2746
2747                 max_streams = USB_SS_MAX_STREAMS(
2748                                 eps[i]->ss_ep_comp.bmAttributes);
2749                 if (max_streams < (*num_streams - 1)) {
2750                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2751                                         eps[i]->desc.bEndpointAddress,
2752                                         max_streams);
2753                         *num_streams = max_streams+1;
2754                 }
2755
2756                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2757                 if (*changed_ep_bitmask & endpoint_flag)
2758                         return -EINVAL;
2759                 *changed_ep_bitmask |= endpoint_flag;
2760         }
2761         return 0;
2762 }
2763
2764 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2765                 struct usb_device *udev,
2766                 struct usb_host_endpoint **eps, unsigned int num_eps)
2767 {
2768         u32 changed_ep_bitmask = 0;
2769         unsigned int slot_id;
2770         unsigned int ep_index;
2771         unsigned int ep_state;
2772         int i;
2773
2774         slot_id = udev->slot_id;
2775         if (!xhci->devs[slot_id])
2776                 return 0;
2777
2778         for (i = 0; i < num_eps; i++) {
2779                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2780                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2781                 /* Are streams already being freed for the endpoint? */
2782                 if (ep_state & EP_GETTING_NO_STREAMS) {
2783                         xhci_warn(xhci, "WARN Can't disable streams for "
2784                                         "endpoint 0x%x\n, "
2785                                         "streams are being disabled already.",
2786                                         eps[i]->desc.bEndpointAddress);
2787                         return 0;
2788                 }
2789                 /* Are there actually any streams to free? */
2790                 if (!(ep_state & EP_HAS_STREAMS) &&
2791                                 !(ep_state & EP_GETTING_STREAMS)) {
2792                         xhci_warn(xhci, "WARN Can't disable streams for "
2793                                         "endpoint 0x%x\n, "
2794                                         "streams are already disabled!",
2795                                         eps[i]->desc.bEndpointAddress);
2796                         xhci_warn(xhci, "WARN xhci_free_streams() called "
2797                                         "with non-streams endpoint\n");
2798                         return 0;
2799                 }
2800                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
2801         }
2802         return changed_ep_bitmask;
2803 }
2804
2805 /*
2806  * The USB device drivers use this function (though the HCD interface in USB
2807  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
2808  * coordinate mass storage command queueing across multiple endpoints (basically
2809  * a stream ID == a task ID).
2810  *
2811  * Setting up streams involves allocating the same size stream context array
2812  * for each endpoint and issuing a configure endpoint command for all endpoints.
2813  *
2814  * Don't allow the call to succeed if one endpoint only supports one stream
2815  * (which means it doesn't support streams at all).
2816  *
2817  * Drivers may get less stream IDs than they asked for, if the host controller
2818  * hardware or endpoints claim they can't support the number of requested
2819  * stream IDs.
2820  */
2821 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
2822                 struct usb_host_endpoint **eps, unsigned int num_eps,
2823                 unsigned int num_streams, gfp_t mem_flags)
2824 {
2825         int i, ret;
2826         struct xhci_hcd *xhci;
2827         struct xhci_virt_device *vdev;
2828         struct xhci_command *config_cmd;
2829         unsigned int ep_index;
2830         unsigned int num_stream_ctxs;
2831         unsigned long flags;
2832         u32 changed_ep_bitmask = 0;
2833
2834         if (!eps)
2835                 return -EINVAL;
2836
2837         /* Add one to the number of streams requested to account for
2838          * stream 0 that is reserved for xHCI usage.
2839          */
2840         num_streams += 1;
2841         xhci = hcd_to_xhci(hcd);
2842         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
2843                         num_streams);
2844
2845         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2846         if (!config_cmd) {
2847                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2848                 return -ENOMEM;
2849         }
2850
2851         /* Check to make sure all endpoints are not already configured for
2852          * streams.  While we're at it, find the maximum number of streams that
2853          * all the endpoints will support and check for duplicate endpoints.
2854          */
2855         spin_lock_irqsave(&xhci->lock, flags);
2856         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
2857                         num_eps, &num_streams, &changed_ep_bitmask);
2858         if (ret < 0) {
2859                 xhci_free_command(xhci, config_cmd);
2860                 spin_unlock_irqrestore(&xhci->lock, flags);
2861                 return ret;
2862         }
2863         if (num_streams <= 1) {
2864                 xhci_warn(xhci, "WARN: endpoints can't handle "
2865                                 "more than one stream.\n");
2866                 xhci_free_command(xhci, config_cmd);
2867                 spin_unlock_irqrestore(&xhci->lock, flags);
2868                 return -EINVAL;
2869         }
2870         vdev = xhci->devs[udev->slot_id];
2871         /* Mark each endpoint as being in transition, so
2872          * xhci_urb_enqueue() will reject all URBs.
2873          */
2874         for (i = 0; i < num_eps; i++) {
2875                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2876                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
2877         }
2878         spin_unlock_irqrestore(&xhci->lock, flags);
2879
2880         /* Setup internal data structures and allocate HW data structures for
2881          * streams (but don't install the HW structures in the input context
2882          * until we're sure all memory allocation succeeded).
2883          */
2884         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
2885         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
2886                         num_stream_ctxs, num_streams);
2887
2888         for (i = 0; i < num_eps; i++) {
2889                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2890                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
2891                                 num_stream_ctxs,
2892                                 num_streams, mem_flags);
2893                 if (!vdev->eps[ep_index].stream_info)
2894                         goto cleanup;
2895                 /* Set maxPstreams in endpoint context and update deq ptr to
2896                  * point to stream context array. FIXME
2897                  */
2898         }
2899
2900         /* Set up the input context for a configure endpoint command. */
2901         for (i = 0; i < num_eps; i++) {
2902                 struct xhci_ep_ctx *ep_ctx;
2903
2904                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2905                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
2906
2907                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
2908                                 vdev->out_ctx, ep_index);
2909                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
2910                                 vdev->eps[ep_index].stream_info);
2911         }
2912         /* Tell the HW to drop its old copy of the endpoint context info
2913          * and add the updated copy from the input context.
2914          */
2915         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
2916                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2917
2918         /* Issue and wait for the configure endpoint command */
2919         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
2920                         false, false);
2921
2922         /* xHC rejected the configure endpoint command for some reason, so we
2923          * leave the old ring intact and free our internal streams data
2924          * structure.
2925          */
2926         if (ret < 0)
2927                 goto cleanup;
2928
2929         spin_lock_irqsave(&xhci->lock, flags);
2930         for (i = 0; i < num_eps; i++) {
2931                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2932                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2933                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
2934                          udev->slot_id, ep_index);
2935                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
2936         }
2937         xhci_free_command(xhci, config_cmd);
2938         spin_unlock_irqrestore(&xhci->lock, flags);
2939
2940         /* Subtract 1 for stream 0, which drivers can't use */
2941         return num_streams - 1;
2942
2943 cleanup:
2944         /* If it didn't work, free the streams! */
2945         for (i = 0; i < num_eps; i++) {
2946                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2947                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2948                 vdev->eps[ep_index].stream_info = NULL;
2949                 /* FIXME Unset maxPstreams in endpoint context and
2950                  * update deq ptr to point to normal string ring.
2951                  */
2952                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2953                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
2954                 xhci_endpoint_zero(xhci, vdev, eps[i]);
2955         }
2956         xhci_free_command(xhci, config_cmd);
2957         return -ENOMEM;
2958 }
2959
2960 /* Transition the endpoint from using streams to being a "normal" endpoint
2961  * without streams.
2962  *
2963  * Modify the endpoint context state, submit a configure endpoint command,
2964  * and free all endpoint rings for streams if that completes successfully.
2965  */
2966 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
2967                 struct usb_host_endpoint **eps, unsigned int num_eps,
2968                 gfp_t mem_flags)
2969 {
2970         int i, ret;
2971         struct xhci_hcd *xhci;
2972         struct xhci_virt_device *vdev;
2973         struct xhci_command *command;
2974         unsigned int ep_index;
2975         unsigned long flags;
2976         u32 changed_ep_bitmask;
2977
2978         xhci = hcd_to_xhci(hcd);
2979         vdev = xhci->devs[udev->slot_id];
2980
2981         /* Set up a configure endpoint command to remove the streams rings */
2982         spin_lock_irqsave(&xhci->lock, flags);
2983         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
2984                         udev, eps, num_eps);
2985         if (changed_ep_bitmask == 0) {
2986                 spin_unlock_irqrestore(&xhci->lock, flags);
2987                 return -EINVAL;
2988         }
2989
2990         /* Use the xhci_command structure from the first endpoint.  We may have
2991          * allocated too many, but the driver may call xhci_free_streams() for
2992          * each endpoint it grouped into one call to xhci_alloc_streams().
2993          */
2994         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
2995         command = vdev->eps[ep_index].stream_info->free_streams_command;
2996         for (i = 0; i < num_eps; i++) {
2997                 struct xhci_ep_ctx *ep_ctx;
2998
2999                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3000                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3001                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3002                         EP_GETTING_NO_STREAMS;
3003
3004                 xhci_endpoint_copy(xhci, command->in_ctx,
3005                                 vdev->out_ctx, ep_index);
3006                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3007                                 &vdev->eps[ep_index]);
3008         }
3009         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3010                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3011         spin_unlock_irqrestore(&xhci->lock, flags);
3012
3013         /* Issue and wait for the configure endpoint command,
3014          * which must succeed.
3015          */
3016         ret = xhci_configure_endpoint(xhci, udev, command,
3017                         false, true);
3018
3019         /* xHC rejected the configure endpoint command for some reason, so we
3020          * leave the streams rings intact.
3021          */
3022         if (ret < 0)
3023                 return ret;
3024
3025         spin_lock_irqsave(&xhci->lock, flags);
3026         for (i = 0; i < num_eps; i++) {
3027                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3028                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3029                 vdev->eps[ep_index].stream_info = NULL;
3030                 /* FIXME Unset maxPstreams in endpoint context and
3031                  * update deq ptr to point to normal string ring.
3032                  */
3033                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3034                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3035         }
3036         spin_unlock_irqrestore(&xhci->lock, flags);
3037
3038         return 0;
3039 }
3040
3041 /*
3042  * Deletes endpoint resources for endpoints that were active before a Reset
3043  * Device command, or a Disable Slot command.  The Reset Device command leaves
3044  * the control endpoint intact, whereas the Disable Slot command deletes it.
3045  *
3046  * Must be called with xhci->lock held.
3047  */
3048 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3049         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3050 {
3051         int i;
3052         unsigned int num_dropped_eps = 0;
3053         unsigned int drop_flags = 0;
3054
3055         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3056                 if (virt_dev->eps[i].ring) {
3057                         drop_flags |= 1 << i;
3058                         num_dropped_eps++;
3059                 }
3060         }
3061         xhci->num_active_eps -= num_dropped_eps;
3062         if (num_dropped_eps)
3063                 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3064                                 "%u now active.\n",
3065                                 num_dropped_eps, drop_flags,
3066                                 xhci->num_active_eps);
3067 }
3068
3069 /*
3070  * This submits a Reset Device Command, which will set the device state to 0,
3071  * set the device address to 0, and disable all the endpoints except the default
3072  * control endpoint.  The USB core should come back and call
3073  * xhci_address_device(), and then re-set up the configuration.  If this is
3074  * called because of a usb_reset_and_verify_device(), then the old alternate
3075  * settings will be re-installed through the normal bandwidth allocation
3076  * functions.
3077  *
3078  * Wait for the Reset Device command to finish.  Remove all structures
3079  * associated with the endpoints that were disabled.  Clear the input device
3080  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3081  *
3082  * If the virt_dev to be reset does not exist or does not match the udev,
3083  * it means the device is lost, possibly due to the xHC restore error and
3084  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3085  * re-allocate the device.
3086  */
3087 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3088 {
3089         int ret, i;
3090         unsigned long flags;
3091         struct xhci_hcd *xhci;
3092         unsigned int slot_id;
3093         struct xhci_virt_device *virt_dev;
3094         struct xhci_command *reset_device_cmd;
3095         int timeleft;
3096         int last_freed_endpoint;
3097         struct xhci_slot_ctx *slot_ctx;
3098         int old_active_eps = 0;
3099
3100         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3101         if (ret <= 0)
3102                 return ret;
3103         xhci = hcd_to_xhci(hcd);
3104         slot_id = udev->slot_id;
3105         virt_dev = xhci->devs[slot_id];
3106         if (!virt_dev) {
3107                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3108                                 "not exist. Re-allocate the device\n", slot_id);
3109                 ret = xhci_alloc_dev(hcd, udev);
3110                 if (ret == 1)
3111                         return 0;
3112                 else
3113                         return -EINVAL;
3114         }
3115
3116         if (virt_dev->udev != udev) {
3117                 /* If the virt_dev and the udev does not match, this virt_dev
3118                  * may belong to another udev.
3119                  * Re-allocate the device.
3120                  */
3121                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3122                                 "not match the udev. Re-allocate the device\n",
3123                                 slot_id);
3124                 ret = xhci_alloc_dev(hcd, udev);
3125                 if (ret == 1)
3126                         return 0;
3127                 else
3128                         return -EINVAL;
3129         }
3130
3131         /* If device is not setup, there is no point in resetting it */
3132         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3133         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3134                                                 SLOT_STATE_DISABLED)
3135                 return 0;
3136
3137         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3138         /* Allocate the command structure that holds the struct completion.
3139          * Assume we're in process context, since the normal device reset
3140          * process has to wait for the device anyway.  Storage devices are
3141          * reset as part of error handling, so use GFP_NOIO instead of
3142          * GFP_KERNEL.
3143          */
3144         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3145         if (!reset_device_cmd) {
3146                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3147                 return -ENOMEM;
3148         }
3149
3150         /* Attempt to submit the Reset Device command to the command ring */
3151         spin_lock_irqsave(&xhci->lock, flags);
3152         reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3153
3154         /* Enqueue pointer can be left pointing to the link TRB,
3155          * we must handle that
3156          */
3157         if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3158                 reset_device_cmd->command_trb =
3159                         xhci->cmd_ring->enq_seg->next->trbs;
3160
3161         list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3162         ret = xhci_queue_reset_device(xhci, slot_id);
3163         if (ret) {
3164                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3165                 list_del(&reset_device_cmd->cmd_list);
3166                 spin_unlock_irqrestore(&xhci->lock, flags);
3167                 goto command_cleanup;
3168         }
3169         xhci_ring_cmd_db(xhci);
3170         spin_unlock_irqrestore(&xhci->lock, flags);
3171
3172         /* Wait for the Reset Device command to finish */
3173         timeleft = wait_for_completion_interruptible_timeout(
3174                         reset_device_cmd->completion,
3175                         USB_CTRL_SET_TIMEOUT);
3176         if (timeleft <= 0) {
3177                 xhci_warn(xhci, "%s while waiting for reset device command\n",
3178                                 timeleft == 0 ? "Timeout" : "Signal");
3179                 spin_lock_irqsave(&xhci->lock, flags);
3180                 /* The timeout might have raced with the event ring handler, so
3181                  * only delete from the list if the item isn't poisoned.
3182                  */
3183                 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3184                         list_del(&reset_device_cmd->cmd_list);
3185                 spin_unlock_irqrestore(&xhci->lock, flags);
3186                 ret = -ETIME;
3187                 goto command_cleanup;
3188         }
3189
3190         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3191          * unless we tried to reset a slot ID that wasn't enabled,
3192          * or the device wasn't in the addressed or configured state.
3193          */
3194         ret = reset_device_cmd->status;
3195         switch (ret) {
3196         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3197         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3198                 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3199                                 slot_id,
3200                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3201                 xhci_info(xhci, "Not freeing device rings.\n");
3202                 /* Don't treat this as an error.  May change my mind later. */
3203                 ret = 0;
3204                 goto command_cleanup;
3205         case COMP_SUCCESS:
3206                 xhci_dbg(xhci, "Successful reset device command.\n");
3207                 break;
3208         default:
3209                 if (xhci_is_vendor_info_code(xhci, ret))
3210                         break;
3211                 xhci_warn(xhci, "Unknown completion code %u for "
3212                                 "reset device command.\n", ret);
3213                 ret = -EINVAL;
3214                 goto command_cleanup;
3215         }
3216
3217         /* Free up host controller endpoint resources */
3218         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3219                 spin_lock_irqsave(&xhci->lock, flags);
3220                 /* Don't delete the default control endpoint resources */
3221                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3222                 spin_unlock_irqrestore(&xhci->lock, flags);
3223         }
3224
3225         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3226         last_freed_endpoint = 1;
3227         for (i = 1; i < 31; ++i) {
3228                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3229
3230                 if (ep->ep_state & EP_HAS_STREAMS) {
3231                         xhci_free_stream_info(xhci, ep->stream_info);
3232                         ep->stream_info = NULL;
3233                         ep->ep_state &= ~EP_HAS_STREAMS;
3234                 }
3235
3236                 if (ep->ring) {
3237                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3238                         last_freed_endpoint = i;
3239                 }
3240                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3241                         xhci_drop_ep_from_interval_table(xhci,
3242                                         &virt_dev->eps[i].bw_info,
3243                                         virt_dev->bw_table,
3244                                         udev,
3245                                         &virt_dev->eps[i],
3246                                         virt_dev->tt_info);
3247                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3248         }
3249         /* If necessary, update the number of active TTs on this root port */
3250         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3251
3252         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3253         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3254         ret = 0;
3255
3256 command_cleanup:
3257         xhci_free_command(xhci, reset_device_cmd);
3258         return ret;
3259 }
3260
3261 /*
3262  * At this point, the struct usb_device is about to go away, the device has
3263  * disconnected, and all traffic has been stopped and the endpoints have been
3264  * disabled.  Free any HC data structures associated with that device.
3265  */
3266 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3267 {
3268         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3269         struct xhci_virt_device *virt_dev;
3270         unsigned long flags;
3271         u32 state;
3272         int i, ret;
3273
3274         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3275         /* If the host is halted due to driver unload, we still need to free the
3276          * device.
3277          */
3278         if (ret <= 0 && ret != -ENODEV)
3279                 return;
3280
3281         virt_dev = xhci->devs[udev->slot_id];
3282
3283         /* Stop any wayward timer functions (which may grab the lock) */
3284         for (i = 0; i < 31; ++i) {
3285                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3286                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3287         }
3288
3289         if (udev->usb2_hw_lpm_enabled) {
3290                 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3291                 udev->usb2_hw_lpm_enabled = 0;
3292         }
3293
3294         spin_lock_irqsave(&xhci->lock, flags);
3295         /* Don't disable the slot if the host controller is dead. */
3296         state = xhci_readl(xhci, &xhci->op_regs->status);
3297         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3298                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3299                 xhci_free_virt_device(xhci, udev->slot_id);
3300                 spin_unlock_irqrestore(&xhci->lock, flags);
3301                 return;
3302         }
3303
3304         if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3305                 spin_unlock_irqrestore(&xhci->lock, flags);
3306                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3307                 return;
3308         }
3309         xhci_ring_cmd_db(xhci);
3310         spin_unlock_irqrestore(&xhci->lock, flags);
3311         /*
3312          * Event command completion handler will free any data structures
3313          * associated with the slot.  XXX Can free sleep?
3314          */
3315 }
3316
3317 /*
3318  * Checks if we have enough host controller resources for the default control
3319  * endpoint.
3320  *
3321  * Must be called with xhci->lock held.
3322  */
3323 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3324 {
3325         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3326                 xhci_dbg(xhci, "Not enough ep ctxs: "
3327                                 "%u active, need to add 1, limit is %u.\n",
3328                                 xhci->num_active_eps, xhci->limit_active_eps);
3329                 return -ENOMEM;
3330         }
3331         xhci->num_active_eps += 1;
3332         xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3333                         xhci->num_active_eps);
3334         return 0;
3335 }
3336
3337
3338 /*
3339  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3340  * timed out, or allocating memory failed.  Returns 1 on success.
3341  */
3342 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3343 {
3344         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3345         unsigned long flags;
3346         int timeleft;
3347         int ret;
3348
3349         spin_lock_irqsave(&xhci->lock, flags);
3350         ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3351         if (ret) {
3352                 spin_unlock_irqrestore(&xhci->lock, flags);
3353                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3354                 return 0;
3355         }
3356         xhci_ring_cmd_db(xhci);
3357         spin_unlock_irqrestore(&xhci->lock, flags);
3358
3359         /* XXX: how much time for xHC slot assignment? */
3360         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3361                         USB_CTRL_SET_TIMEOUT);
3362         if (timeleft <= 0) {
3363                 xhci_warn(xhci, "%s while waiting for a slot\n",
3364                                 timeleft == 0 ? "Timeout" : "Signal");
3365                 /* FIXME cancel the enable slot request */
3366                 return 0;
3367         }
3368
3369         if (!xhci->slot_id) {
3370                 xhci_err(xhci, "Error while assigning device slot ID\n");
3371                 return 0;
3372         }
3373
3374         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3375                 spin_lock_irqsave(&xhci->lock, flags);
3376                 ret = xhci_reserve_host_control_ep_resources(xhci);
3377                 if (ret) {
3378                         spin_unlock_irqrestore(&xhci->lock, flags);
3379                         xhci_warn(xhci, "Not enough host resources, "
3380                                         "active endpoint contexts = %u\n",
3381                                         xhci->num_active_eps);
3382                         goto disable_slot;
3383                 }
3384                 spin_unlock_irqrestore(&xhci->lock, flags);
3385         }
3386         /* Use GFP_NOIO, since this function can be called from
3387          * xhci_discover_or_reset_device(), which may be called as part of
3388          * mass storage driver error handling.
3389          */
3390         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3391                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3392                 goto disable_slot;
3393         }
3394         udev->slot_id = xhci->slot_id;
3395         /* Is this a LS or FS device under a HS hub? */
3396         /* Hub or peripherial? */
3397         return 1;
3398
3399 disable_slot:
3400         /* Disable slot, if we can do it without mem alloc */
3401         spin_lock_irqsave(&xhci->lock, flags);
3402         if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3403                 xhci_ring_cmd_db(xhci);
3404         spin_unlock_irqrestore(&xhci->lock, flags);
3405         return 0;
3406 }
3407
3408 /*
3409  * Issue an Address Device command (which will issue a SetAddress request to
3410  * the device).
3411  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3412  * we should only issue and wait on one address command at the same time.
3413  *
3414  * We add one to the device address issued by the hardware because the USB core
3415  * uses address 1 for the root hubs (even though they're not really devices).
3416  */
3417 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3418 {
3419         unsigned long flags;
3420         int timeleft;
3421         struct xhci_virt_device *virt_dev;
3422         int ret = 0;
3423         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3424         struct xhci_slot_ctx *slot_ctx;
3425         struct xhci_input_control_ctx *ctrl_ctx;
3426         u64 temp_64;
3427
3428         if (!udev->slot_id) {
3429                 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3430                 return -EINVAL;
3431         }
3432
3433         virt_dev = xhci->devs[udev->slot_id];
3434
3435         if (WARN_ON(!virt_dev)) {
3436                 /*
3437                  * In plug/unplug torture test with an NEC controller,
3438                  * a zero-dereference was observed once due to virt_dev = 0.
3439                  * Print useful debug rather than crash if it is observed again!
3440                  */
3441                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3442                         udev->slot_id);
3443                 return -EINVAL;
3444         }
3445
3446         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3447         /*
3448          * If this is the first Set Address since device plug-in or
3449          * virt_device realloaction after a resume with an xHCI power loss,
3450          * then set up the slot context.
3451          */
3452         if (!slot_ctx->dev_info)
3453                 xhci_setup_addressable_virt_dev(xhci, udev);
3454         /* Otherwise, update the control endpoint ring enqueue pointer. */
3455         else
3456                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3457         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3458         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3459
3460         spin_lock_irqsave(&xhci->lock, flags);
3461         ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3462                                         udev->slot_id);
3463         if (ret) {
3464                 spin_unlock_irqrestore(&xhci->lock, flags);
3465                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3466                 return ret;
3467         }
3468         xhci_ring_cmd_db(xhci);
3469         spin_unlock_irqrestore(&xhci->lock, flags);
3470
3471         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3472         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3473                         USB_CTRL_SET_TIMEOUT);
3474         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3475          * the SetAddress() "recovery interval" required by USB and aborting the
3476          * command on a timeout.
3477          */
3478         if (timeleft <= 0) {
3479                 xhci_warn(xhci, "%s while waiting for a slot\n",
3480                                 timeleft == 0 ? "Timeout" : "Signal");
3481                 /* FIXME cancel the address device command */
3482                 return -ETIME;
3483         }
3484
3485         switch (virt_dev->cmd_status) {
3486         case COMP_CTX_STATE:
3487         case COMP_EBADSLT:
3488                 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3489                                 udev->slot_id);
3490                 ret = -EINVAL;
3491                 break;
3492         case COMP_TX_ERR:
3493                 dev_warn(&udev->dev, "Device not responding to set address.\n");
3494                 ret = -EPROTO;
3495                 break;
3496         case COMP_DEV_ERR:
3497                 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3498                                 "device command.\n");
3499                 ret = -ENODEV;
3500                 break;
3501         case COMP_SUCCESS:
3502                 xhci_dbg(xhci, "Successful Address Device command\n");
3503                 break;
3504         default:
3505                 xhci_err(xhci, "ERROR: unexpected command completion "
3506                                 "code 0x%x.\n", virt_dev->cmd_status);
3507                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3508                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3509                 ret = -EINVAL;
3510                 break;
3511         }
3512         if (ret) {
3513                 return ret;
3514         }
3515         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3516         xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3517         xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3518                  udev->slot_id,
3519                  &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3520                  (unsigned long long)
3521                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3522         xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3523                         (unsigned long long)virt_dev->out_ctx->dma);
3524         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3525         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3526         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3527         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3528         /*
3529          * USB core uses address 1 for the roothubs, so we add one to the
3530          * address given back to us by the HC.
3531          */
3532         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3533         /* Use kernel assigned address for devices; store xHC assigned
3534          * address locally. */
3535         virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3536                 + 1;
3537         /* Zero the input context control for later use */
3538         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3539         ctrl_ctx->add_flags = 0;
3540         ctrl_ctx->drop_flags = 0;
3541
3542         xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3543
3544         return 0;
3545 }
3546
3547 #ifdef CONFIG_USB_SUSPEND
3548
3549 /* BESL to HIRD Encoding array for USB2 LPM */
3550 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3551         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3552
3553 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3554 static int xhci_calculate_hird_besl(int u2del, bool use_besl)
3555 {
3556         int hird;
3557
3558         if (use_besl) {
3559                 for (hird = 0; hird < 16; hird++) {
3560                         if (xhci_besl_encoding[hird] >= u2del)
3561                                 break;
3562                 }
3563         } else {
3564                 if (u2del <= 50)
3565                         hird = 0;
3566                 else
3567                         hird = (u2del - 51) / 75 + 1;
3568
3569                 if (hird > 15)
3570                         hird = 15;
3571         }
3572
3573         return hird;
3574 }
3575
3576 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3577                                         struct usb_device *udev)
3578 {
3579         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3580         struct dev_info *dev_info;
3581         __le32 __iomem  **port_array;
3582         __le32 __iomem  *addr, *pm_addr;
3583         u32             temp, dev_id;
3584         unsigned int    port_num;
3585         unsigned long   flags;
3586         int             u2del, hird;
3587         int             ret;
3588
3589         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3590                         !udev->lpm_capable)
3591                 return -EINVAL;
3592
3593         /* we only support lpm for non-hub device connected to root hub yet */
3594         if (!udev->parent || udev->parent->parent ||
3595                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3596                 return -EINVAL;
3597
3598         spin_lock_irqsave(&xhci->lock, flags);
3599
3600         /* Look for devices in lpm_failed_devs list */
3601         dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3602                         le16_to_cpu(udev->descriptor.idProduct);
3603         list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3604                 if (dev_info->dev_id == dev_id) {
3605                         ret = -EINVAL;
3606                         goto finish;
3607                 }
3608         }
3609
3610         port_array = xhci->usb2_ports;
3611         port_num = udev->portnum - 1;
3612
3613         if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3614                 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3615                 ret = -EINVAL;
3616                 goto finish;
3617         }
3618
3619         /*
3620          * Test USB 2.0 software LPM.
3621          * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3622          * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3623          * in the June 2011 errata release.
3624          */
3625         xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3626         /*
3627          * Set L1 Device Slot and HIRD/BESL.
3628          * Check device's USB 2.0 extension descriptor to determine whether
3629          * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3630          */
3631         pm_addr = port_array[port_num] + 1;
3632         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3633         if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2))
3634                 hird = xhci_calculate_hird_besl(u2del, 1);
3635         else
3636                 hird = xhci_calculate_hird_besl(u2del, 0);
3637
3638         temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3639         xhci_writel(xhci, temp, pm_addr);
3640
3641         /* Set port link state to U2(L1) */
3642         addr = port_array[port_num];
3643         xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3644
3645         /* wait for ACK */
3646         spin_unlock_irqrestore(&xhci->lock, flags);
3647         msleep(10);
3648         spin_lock_irqsave(&xhci->lock, flags);
3649
3650         /* Check L1 Status */
3651         ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3652         if (ret != -ETIMEDOUT) {
3653                 /* enter L1 successfully */
3654                 temp = xhci_readl(xhci, addr);
3655                 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3656                                 port_num, temp);
3657                 ret = 0;
3658         } else {
3659                 temp = xhci_readl(xhci, pm_addr);
3660                 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3661                                 port_num, temp & PORT_L1S_MASK);
3662                 ret = -EINVAL;
3663         }
3664
3665         /* Resume the port */
3666         xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3667
3668         spin_unlock_irqrestore(&xhci->lock, flags);
3669         msleep(10);
3670         spin_lock_irqsave(&xhci->lock, flags);
3671
3672         /* Clear PLC */
3673         xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3674
3675         /* Check PORTSC to make sure the device is in the right state */
3676         if (!ret) {
3677                 temp = xhci_readl(xhci, addr);
3678                 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
3679                 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3680                                 (temp & PORT_PLS_MASK) != XDEV_U0) {
3681                         xhci_dbg(xhci, "port L1 resume fail\n");
3682                         ret = -EINVAL;
3683                 }
3684         }
3685
3686         if (ret) {
3687                 /* Insert dev to lpm_failed_devs list */
3688                 xhci_warn(xhci, "device LPM test failed, may disconnect and "
3689                                 "re-enumerate\n");
3690                 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3691                 if (!dev_info) {
3692                         ret = -ENOMEM;
3693                         goto finish;
3694                 }
3695                 dev_info->dev_id = dev_id;
3696                 INIT_LIST_HEAD(&dev_info->list);
3697                 list_add(&dev_info->list, &xhci->lpm_failed_devs);
3698         } else {
3699                 xhci_ring_device(xhci, udev->slot_id);
3700         }
3701
3702 finish:
3703         spin_unlock_irqrestore(&xhci->lock, flags);
3704         return ret;
3705 }
3706
3707 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3708                         struct usb_device *udev, int enable)
3709 {
3710         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3711         __le32 __iomem  **port_array;
3712         __le32 __iomem  *pm_addr;
3713         u32             temp;
3714         unsigned int    port_num;
3715         unsigned long   flags;
3716         int             u2del, hird;
3717
3718         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3719                         !udev->lpm_capable)
3720                 return -EPERM;
3721
3722         if (!udev->parent || udev->parent->parent ||
3723                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3724                 return -EPERM;
3725
3726         if (udev->usb2_hw_lpm_capable != 1)
3727                 return -EPERM;
3728
3729         spin_lock_irqsave(&xhci->lock, flags);
3730
3731         port_array = xhci->usb2_ports;
3732         port_num = udev->portnum - 1;
3733         pm_addr = port_array[port_num] + 1;
3734         temp = xhci_readl(xhci, pm_addr);
3735
3736         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3737                         enable ? "enable" : "disable", port_num);
3738
3739         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3740         if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2))
3741                 hird = xhci_calculate_hird_besl(u2del, 1);
3742         else
3743                 hird = xhci_calculate_hird_besl(u2del, 0);
3744
3745         if (enable) {
3746                 temp &= ~PORT_HIRD_MASK;
3747                 temp |= PORT_HIRD(hird) | PORT_RWE;
3748                 xhci_writel(xhci, temp, pm_addr);
3749                 temp = xhci_readl(xhci, pm_addr);
3750                 temp |= PORT_HLE;
3751                 xhci_writel(xhci, temp, pm_addr);
3752         } else {
3753                 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3754                 xhci_writel(xhci, temp, pm_addr);
3755         }
3756
3757         spin_unlock_irqrestore(&xhci->lock, flags);
3758         return 0;
3759 }
3760
3761 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3762 {
3763         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3764         int             ret;
3765
3766         ret = xhci_usb2_software_lpm_test(hcd, udev);
3767         if (!ret) {
3768                 xhci_dbg(xhci, "software LPM test succeed\n");
3769                 if (xhci->hw_lpm_support == 1) {
3770                         udev->usb2_hw_lpm_capable = 1;
3771                         ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
3772                         if (!ret)
3773                                 udev->usb2_hw_lpm_enabled = 1;
3774                 }
3775         }
3776
3777         return 0;
3778 }
3779
3780 #else
3781
3782 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3783                                 struct usb_device *udev, int enable)
3784 {
3785         return 0;
3786 }
3787
3788 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3789 {
3790         return 0;
3791 }
3792
3793 #endif /* CONFIG_USB_SUSPEND */
3794
3795 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
3796  * internal data structures for the device.
3797  */
3798 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
3799                         struct usb_tt *tt, gfp_t mem_flags)
3800 {
3801         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3802         struct xhci_virt_device *vdev;
3803         struct xhci_command *config_cmd;
3804         struct xhci_input_control_ctx *ctrl_ctx;
3805         struct xhci_slot_ctx *slot_ctx;
3806         unsigned long flags;
3807         unsigned think_time;
3808         int ret;
3809
3810         /* Ignore root hubs */
3811         if (!hdev->parent)
3812                 return 0;
3813
3814         vdev = xhci->devs[hdev->slot_id];
3815         if (!vdev) {
3816                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
3817                 return -EINVAL;
3818         }
3819         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3820         if (!config_cmd) {
3821                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3822                 return -ENOMEM;
3823         }
3824
3825         spin_lock_irqsave(&xhci->lock, flags);
3826         if (hdev->speed == USB_SPEED_HIGH &&
3827                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
3828                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
3829                 xhci_free_command(xhci, config_cmd);
3830                 spin_unlock_irqrestore(&xhci->lock, flags);
3831                 return -ENOMEM;
3832         }
3833
3834         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
3835         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3836         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3837         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
3838         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
3839         if (tt->multi)
3840                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
3841         if (xhci->hci_version > 0x95) {
3842                 xhci_dbg(xhci, "xHCI version %x needs hub "
3843                                 "TT think time and number of ports\n",
3844                                 (unsigned int) xhci->hci_version);
3845                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
3846                 /* Set TT think time - convert from ns to FS bit times.
3847                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
3848                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
3849                  *
3850                  * xHCI 1.0: this field shall be 0 if the device is not a
3851                  * High-spped hub.
3852                  */
3853                 think_time = tt->think_time;
3854                 if (think_time != 0)
3855                         think_time = (think_time / 666) - 1;
3856                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
3857                         slot_ctx->tt_info |=
3858                                 cpu_to_le32(TT_THINK_TIME(think_time));
3859         } else {
3860                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
3861                                 "TT think time or number of ports\n",
3862                                 (unsigned int) xhci->hci_version);
3863         }
3864         slot_ctx->dev_state = 0;
3865         spin_unlock_irqrestore(&xhci->lock, flags);
3866
3867         xhci_dbg(xhci, "Set up %s for hub device.\n",
3868                         (xhci->hci_version > 0x95) ?
3869                         "configure endpoint" : "evaluate context");
3870         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
3871         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
3872
3873         /* Issue and wait for the configure endpoint or
3874          * evaluate context command.
3875          */
3876         if (xhci->hci_version > 0x95)
3877                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3878                                 false, false);
3879         else
3880                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3881                                 true, false);
3882
3883         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
3884         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
3885
3886         xhci_free_command(xhci, config_cmd);
3887         return ret;
3888 }
3889
3890 int xhci_get_frame(struct usb_hcd *hcd)
3891 {
3892         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3893         /* EHCI mods by the periodic size.  Why? */
3894         return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
3895 }
3896
3897 MODULE_DESCRIPTION(DRIVER_DESC);
3898 MODULE_AUTHOR(DRIVER_AUTHOR);
3899 MODULE_LICENSE("GPL");
3900
3901 static int __init xhci_hcd_init(void)
3902 {
3903 #ifdef CONFIG_PCI
3904         int retval = 0;
3905
3906         retval = xhci_register_pci();
3907
3908         if (retval < 0) {
3909                 printk(KERN_DEBUG "Problem registering PCI driver.");
3910                 return retval;
3911         }
3912 #endif
3913         /*
3914          * Check the compiler generated sizes of structures that must be laid
3915          * out in specific ways for hardware access.
3916          */
3917         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
3918         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
3919         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
3920         /* xhci_device_control has eight fields, and also
3921          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
3922          */
3923         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
3924         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
3925         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
3926         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
3927         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
3928         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
3929         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
3930         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
3931         return 0;
3932 }
3933 module_init(xhci_hcd_init);
3934
3935 static void __exit xhci_hcd_cleanup(void)
3936 {
3937 #ifdef CONFIG_PCI
3938         xhci_unregister_pci();
3939 #endif
3940 }
3941 module_exit(xhci_hcd_cleanup);