Merge tag 'iommu-updates-v4.21' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/log2.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/slab.h>
17 #include <linux/dmi.h>
18 #include <linux/dma-mapping.h>
19
20 #include "xhci.h"
21 #include "xhci-trace.h"
22 #include "xhci-mtk.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28
29 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42         struct xhci_segment *seg = ring->first_seg;
43
44         if (!td || !td->start_seg)
45                 return false;
46         do {
47                 if (seg == td->start_seg)
48                         return true;
49                 seg = seg->next;
50         } while (seg && seg != ring->first_seg);
51
52         return false;
53 }
54
55 /* TODO: copied from ehci-hcd.c - can this be refactored? */
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
70 {
71         u32     result;
72
73         do {
74                 result = readl(ptr);
75                 if (result == ~(u32)0)          /* card removed */
76                         return -ENODEV;
77                 result &= mask;
78                 if (result == done)
79                         return 0;
80                 udelay(1);
81                 usec--;
82         } while (usec > 0);
83         return -ETIMEDOUT;
84 }
85
86 /*
87  * Disable interrupts and begin the xHCI halting process.
88  */
89 void xhci_quiesce(struct xhci_hcd *xhci)
90 {
91         u32 halted;
92         u32 cmd;
93         u32 mask;
94
95         mask = ~(XHCI_IRQS);
96         halted = readl(&xhci->op_regs->status) & STS_HALT;
97         if (!halted)
98                 mask &= ~CMD_RUN;
99
100         cmd = readl(&xhci->op_regs->command);
101         cmd &= mask;
102         writel(cmd, &xhci->op_regs->command);
103 }
104
105 /*
106  * Force HC into halt state.
107  *
108  * Disable any IRQs and clear the run/stop bit.
109  * HC will complete any current and actively pipelined transactions, and
110  * should halt within 16 ms of the run/stop bit being cleared.
111  * Read HC Halted bit in the status register to see when the HC is finished.
112  */
113 int xhci_halt(struct xhci_hcd *xhci)
114 {
115         int ret;
116         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
117         xhci_quiesce(xhci);
118
119         ret = xhci_handshake(&xhci->op_regs->status,
120                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
121         if (ret) {
122                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
123                 return ret;
124         }
125         xhci->xhc_state |= XHCI_STATE_HALTED;
126         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
127         return ret;
128 }
129
130 /*
131  * Set the run bit and wait for the host to be running.
132  */
133 int xhci_start(struct xhci_hcd *xhci)
134 {
135         u32 temp;
136         int ret;
137
138         temp = readl(&xhci->op_regs->command);
139         temp |= (CMD_RUN);
140         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
141                         temp);
142         writel(temp, &xhci->op_regs->command);
143
144         /*
145          * Wait for the HCHalted Status bit to be 0 to indicate the host is
146          * running.
147          */
148         ret = xhci_handshake(&xhci->op_regs->status,
149                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
150         if (ret == -ETIMEDOUT)
151                 xhci_err(xhci, "Host took too long to start, "
152                                 "waited %u microseconds.\n",
153                                 XHCI_MAX_HALT_USEC);
154         if (!ret)
155                 /* clear state flags. Including dying, halted or removing */
156                 xhci->xhc_state = 0;
157
158         return ret;
159 }
160
161 /*
162  * Reset a halted HC.
163  *
164  * This resets pipelines, timers, counters, state machines, etc.
165  * Transactions will be terminated immediately, and operational registers
166  * will be set to their defaults.
167  */
168 int xhci_reset(struct xhci_hcd *xhci)
169 {
170         u32 command;
171         u32 state;
172         int ret;
173
174         state = readl(&xhci->op_regs->status);
175
176         if (state == ~(u32)0) {
177                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
178                 return -ENODEV;
179         }
180
181         if ((state & STS_HALT) == 0) {
182                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
183                 return 0;
184         }
185
186         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
187         command = readl(&xhci->op_regs->command);
188         command |= CMD_RESET;
189         writel(command, &xhci->op_regs->command);
190
191         /* Existing Intel xHCI controllers require a delay of 1 mS,
192          * after setting the CMD_RESET bit, and before accessing any
193          * HC registers. This allows the HC to complete the
194          * reset operation and be ready for HC register access.
195          * Without this delay, the subsequent HC register access,
196          * may result in a system hang very rarely.
197          */
198         if (xhci->quirks & XHCI_INTEL_HOST)
199                 udelay(1000);
200
201         ret = xhci_handshake(&xhci->op_regs->command,
202                         CMD_RESET, 0, 10 * 1000 * 1000);
203         if (ret)
204                 return ret;
205
206         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
207                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
208
209         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
210                          "Wait for controller to be ready for doorbell rings");
211         /*
212          * xHCI cannot write to any doorbells or operational registers other
213          * than status until the "Controller Not Ready" flag is cleared.
214          */
215         ret = xhci_handshake(&xhci->op_regs->status,
216                         STS_CNR, 0, 10 * 1000 * 1000);
217
218         xhci->usb2_rhub.bus_state.port_c_suspend = 0;
219         xhci->usb2_rhub.bus_state.suspended_ports = 0;
220         xhci->usb2_rhub.bus_state.resuming_ports = 0;
221         xhci->usb3_rhub.bus_state.port_c_suspend = 0;
222         xhci->usb3_rhub.bus_state.suspended_ports = 0;
223         xhci->usb3_rhub.bus_state.resuming_ports = 0;
224
225         return ret;
226 }
227
228 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
229 {
230         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
231         int err, i;
232         u64 val;
233
234         /*
235          * Some Renesas controllers get into a weird state if they are
236          * reset while programmed with 64bit addresses (they will preserve
237          * the top half of the address in internal, non visible
238          * registers). You end up with half the address coming from the
239          * kernel, and the other half coming from the firmware. Also,
240          * changing the programming leads to extra accesses even if the
241          * controller is supposed to be halted. The controller ends up with
242          * a fatal fault, and is then ripe for being properly reset.
243          *
244          * Special care is taken to only apply this if the device is behind
245          * an iommu. Doing anything when there is no iommu is definitely
246          * unsafe...
247          */
248         if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
249                 return;
250
251         xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
252
253         /* Clear HSEIE so that faults do not get signaled */
254         val = readl(&xhci->op_regs->command);
255         val &= ~CMD_HSEIE;
256         writel(val, &xhci->op_regs->command);
257
258         /* Clear HSE (aka FATAL) */
259         val = readl(&xhci->op_regs->status);
260         val |= STS_FATAL;
261         writel(val, &xhci->op_regs->status);
262
263         /* Now zero the registers, and brace for impact */
264         val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
265         if (upper_32_bits(val))
266                 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
267         val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
268         if (upper_32_bits(val))
269                 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
270
271         for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
272                 struct xhci_intr_reg __iomem *ir;
273
274                 ir = &xhci->run_regs->ir_set[i];
275                 val = xhci_read_64(xhci, &ir->erst_base);
276                 if (upper_32_bits(val))
277                         xhci_write_64(xhci, 0, &ir->erst_base);
278                 val= xhci_read_64(xhci, &ir->erst_dequeue);
279                 if (upper_32_bits(val))
280                         xhci_write_64(xhci, 0, &ir->erst_dequeue);
281         }
282
283         /* Wait for the fault to appear. It will be cleared on reset */
284         err = xhci_handshake(&xhci->op_regs->status,
285                              STS_FATAL, STS_FATAL,
286                              XHCI_MAX_HALT_USEC);
287         if (!err)
288                 xhci_info(xhci, "Fault detected\n");
289 }
290
291 #ifdef CONFIG_USB_PCI
292 /*
293  * Set up MSI
294  */
295 static int xhci_setup_msi(struct xhci_hcd *xhci)
296 {
297         int ret;
298         /*
299          * TODO:Check with MSI Soc for sysdev
300          */
301         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
302
303         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
304         if (ret < 0) {
305                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
306                                 "failed to allocate MSI entry");
307                 return ret;
308         }
309
310         ret = request_irq(pdev->irq, xhci_msi_irq,
311                                 0, "xhci_hcd", xhci_to_hcd(xhci));
312         if (ret) {
313                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
314                                 "disable MSI interrupt");
315                 pci_free_irq_vectors(pdev);
316         }
317
318         return ret;
319 }
320
321 /*
322  * Set up MSI-X
323  */
324 static int xhci_setup_msix(struct xhci_hcd *xhci)
325 {
326         int i, ret = 0;
327         struct usb_hcd *hcd = xhci_to_hcd(xhci);
328         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
329
330         /*
331          * calculate number of msi-x vectors supported.
332          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
333          *   with max number of interrupters based on the xhci HCSPARAMS1.
334          * - num_online_cpus: maximum msi-x vectors per CPUs core.
335          *   Add additional 1 vector to ensure always available interrupt.
336          */
337         xhci->msix_count = min(num_online_cpus() + 1,
338                                 HCS_MAX_INTRS(xhci->hcs_params1));
339
340         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
341                         PCI_IRQ_MSIX);
342         if (ret < 0) {
343                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
344                                 "Failed to enable MSI-X");
345                 return ret;
346         }
347
348         for (i = 0; i < xhci->msix_count; i++) {
349                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
350                                 "xhci_hcd", xhci_to_hcd(xhci));
351                 if (ret)
352                         goto disable_msix;
353         }
354
355         hcd->msix_enabled = 1;
356         return ret;
357
358 disable_msix:
359         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
360         while (--i >= 0)
361                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
362         pci_free_irq_vectors(pdev);
363         return ret;
364 }
365
366 /* Free any IRQs and disable MSI-X */
367 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
368 {
369         struct usb_hcd *hcd = xhci_to_hcd(xhci);
370         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
371
372         if (xhci->quirks & XHCI_PLAT)
373                 return;
374
375         /* return if using legacy interrupt */
376         if (hcd->irq > 0)
377                 return;
378
379         if (hcd->msix_enabled) {
380                 int i;
381
382                 for (i = 0; i < xhci->msix_count; i++)
383                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
384         } else {
385                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
386         }
387
388         pci_free_irq_vectors(pdev);
389         hcd->msix_enabled = 0;
390 }
391
392 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
393 {
394         struct usb_hcd *hcd = xhci_to_hcd(xhci);
395
396         if (hcd->msix_enabled) {
397                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
398                 int i;
399
400                 for (i = 0; i < xhci->msix_count; i++)
401                         synchronize_irq(pci_irq_vector(pdev, i));
402         }
403 }
404
405 static int xhci_try_enable_msi(struct usb_hcd *hcd)
406 {
407         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
408         struct pci_dev  *pdev;
409         int ret;
410
411         /* The xhci platform device has set up IRQs through usb_add_hcd. */
412         if (xhci->quirks & XHCI_PLAT)
413                 return 0;
414
415         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
416         /*
417          * Some Fresco Logic host controllers advertise MSI, but fail to
418          * generate interrupts.  Don't even try to enable MSI.
419          */
420         if (xhci->quirks & XHCI_BROKEN_MSI)
421                 goto legacy_irq;
422
423         /* unregister the legacy interrupt */
424         if (hcd->irq)
425                 free_irq(hcd->irq, hcd);
426         hcd->irq = 0;
427
428         ret = xhci_setup_msix(xhci);
429         if (ret)
430                 /* fall back to msi*/
431                 ret = xhci_setup_msi(xhci);
432
433         if (!ret) {
434                 hcd->msi_enabled = 1;
435                 return 0;
436         }
437
438         if (!pdev->irq) {
439                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
440                 return -EINVAL;
441         }
442
443  legacy_irq:
444         if (!strlen(hcd->irq_descr))
445                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
446                          hcd->driver->description, hcd->self.busnum);
447
448         /* fall back to legacy interrupt*/
449         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
450                         hcd->irq_descr, hcd);
451         if (ret) {
452                 xhci_err(xhci, "request interrupt %d failed\n",
453                                 pdev->irq);
454                 return ret;
455         }
456         hcd->irq = pdev->irq;
457         return 0;
458 }
459
460 #else
461
462 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
463 {
464         return 0;
465 }
466
467 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
468 {
469 }
470
471 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
472 {
473 }
474
475 #endif
476
477 static void compliance_mode_recovery(struct timer_list *t)
478 {
479         struct xhci_hcd *xhci;
480         struct usb_hcd *hcd;
481         struct xhci_hub *rhub;
482         u32 temp;
483         int i;
484
485         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
486         rhub = &xhci->usb3_rhub;
487
488         for (i = 0; i < rhub->num_ports; i++) {
489                 temp = readl(rhub->ports[i]->addr);
490                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
491                         /*
492                          * Compliance Mode Detected. Letting USB Core
493                          * handle the Warm Reset
494                          */
495                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
496                                         "Compliance mode detected->port %d",
497                                         i + 1);
498                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
499                                         "Attempting compliance mode recovery");
500                         hcd = xhci->shared_hcd;
501
502                         if (hcd->state == HC_STATE_SUSPENDED)
503                                 usb_hcd_resume_root_hub(hcd);
504
505                         usb_hcd_poll_rh_status(hcd);
506                 }
507         }
508
509         if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
510                 mod_timer(&xhci->comp_mode_recovery_timer,
511                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
512 }
513
514 /*
515  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
516  * that causes ports behind that hardware to enter compliance mode sometimes.
517  * The quirk creates a timer that polls every 2 seconds the link state of
518  * each host controller's port and recovers it by issuing a Warm reset
519  * if Compliance mode is detected, otherwise the port will become "dead" (no
520  * device connections or disconnections will be detected anymore). Becasue no
521  * status event is generated when entering compliance mode (per xhci spec),
522  * this quirk is needed on systems that have the failing hardware installed.
523  */
524 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
525 {
526         xhci->port_status_u0 = 0;
527         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
528                     0);
529         xhci->comp_mode_recovery_timer.expires = jiffies +
530                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
531
532         add_timer(&xhci->comp_mode_recovery_timer);
533         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
534                         "Compliance mode recovery timer initialized");
535 }
536
537 /*
538  * This function identifies the systems that have installed the SN65LVPE502CP
539  * USB3.0 re-driver and that need the Compliance Mode Quirk.
540  * Systems:
541  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
542  */
543 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
544 {
545         const char *dmi_product_name, *dmi_sys_vendor;
546
547         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
548         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
549         if (!dmi_product_name || !dmi_sys_vendor)
550                 return false;
551
552         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
553                 return false;
554
555         if (strstr(dmi_product_name, "Z420") ||
556                         strstr(dmi_product_name, "Z620") ||
557                         strstr(dmi_product_name, "Z820") ||
558                         strstr(dmi_product_name, "Z1 Workstation"))
559                 return true;
560
561         return false;
562 }
563
564 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
565 {
566         return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
567 }
568
569
570 /*
571  * Initialize memory for HCD and xHC (one-time init).
572  *
573  * Program the PAGESIZE register, initialize the device context array, create
574  * device contexts (?), set up a command ring segment (or two?), create event
575  * ring (one for now).
576  */
577 static int xhci_init(struct usb_hcd *hcd)
578 {
579         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
580         int retval = 0;
581
582         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
583         spin_lock_init(&xhci->lock);
584         if (xhci->hci_version == 0x95 && link_quirk) {
585                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
586                                 "QUIRK: Not clearing Link TRB chain bits.");
587                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
588         } else {
589                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
590                                 "xHCI doesn't need link TRB QUIRK");
591         }
592         retval = xhci_mem_init(xhci, GFP_KERNEL);
593         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
594
595         /* Initializing Compliance Mode Recovery Data If Needed */
596         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
597                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
598                 compliance_mode_recovery_timer_init(xhci);
599         }
600
601         return retval;
602 }
603
604 /*-------------------------------------------------------------------------*/
605
606
607 static int xhci_run_finished(struct xhci_hcd *xhci)
608 {
609         if (xhci_start(xhci)) {
610                 xhci_halt(xhci);
611                 return -ENODEV;
612         }
613         xhci->shared_hcd->state = HC_STATE_RUNNING;
614         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
615
616         if (xhci->quirks & XHCI_NEC_HOST)
617                 xhci_ring_cmd_db(xhci);
618
619         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
620                         "Finished xhci_run for USB3 roothub");
621         return 0;
622 }
623
624 /*
625  * Start the HC after it was halted.
626  *
627  * This function is called by the USB core when the HC driver is added.
628  * Its opposite is xhci_stop().
629  *
630  * xhci_init() must be called once before this function can be called.
631  * Reset the HC, enable device slot contexts, program DCBAAP, and
632  * set command ring pointer and event ring pointer.
633  *
634  * Setup MSI-X vectors and enable interrupts.
635  */
636 int xhci_run(struct usb_hcd *hcd)
637 {
638         u32 temp;
639         u64 temp_64;
640         int ret;
641         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
642
643         /* Start the xHCI host controller running only after the USB 2.0 roothub
644          * is setup.
645          */
646
647         hcd->uses_new_polling = 1;
648         if (!usb_hcd_is_primary_hcd(hcd))
649                 return xhci_run_finished(xhci);
650
651         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
652
653         ret = xhci_try_enable_msi(hcd);
654         if (ret)
655                 return ret;
656
657         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
658         temp_64 &= ~ERST_PTR_MASK;
659         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
660                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
661
662         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
663                         "// Set the interrupt modulation register");
664         temp = readl(&xhci->ir_set->irq_control);
665         temp &= ~ER_IRQ_INTERVAL_MASK;
666         temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
667         writel(temp, &xhci->ir_set->irq_control);
668
669         /* Set the HCD state before we enable the irqs */
670         temp = readl(&xhci->op_regs->command);
671         temp |= (CMD_EIE);
672         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
673                         "// Enable interrupts, cmd = 0x%x.", temp);
674         writel(temp, &xhci->op_regs->command);
675
676         temp = readl(&xhci->ir_set->irq_pending);
677         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
678                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
679                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
680         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
681
682         if (xhci->quirks & XHCI_NEC_HOST) {
683                 struct xhci_command *command;
684
685                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
686                 if (!command)
687                         return -ENOMEM;
688
689                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
690                                 TRB_TYPE(TRB_NEC_GET_FW));
691                 if (ret)
692                         xhci_free_command(xhci, command);
693         }
694         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
695                         "Finished xhci_run for USB2 roothub");
696
697         xhci_dbc_init(xhci);
698
699         xhci_debugfs_init(xhci);
700
701         return 0;
702 }
703 EXPORT_SYMBOL_GPL(xhci_run);
704
705 /*
706  * Stop xHCI driver.
707  *
708  * This function is called by the USB core when the HC driver is removed.
709  * Its opposite is xhci_run().
710  *
711  * Disable device contexts, disable IRQs, and quiesce the HC.
712  * Reset the HC, finish any completed transactions, and cleanup memory.
713  */
714 static void xhci_stop(struct usb_hcd *hcd)
715 {
716         u32 temp;
717         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
718
719         mutex_lock(&xhci->mutex);
720
721         /* Only halt host and free memory after both hcds are removed */
722         if (!usb_hcd_is_primary_hcd(hcd)) {
723                 mutex_unlock(&xhci->mutex);
724                 return;
725         }
726
727         xhci_dbc_exit(xhci);
728
729         spin_lock_irq(&xhci->lock);
730         xhci->xhc_state |= XHCI_STATE_HALTED;
731         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
732         xhci_halt(xhci);
733         xhci_reset(xhci);
734         spin_unlock_irq(&xhci->lock);
735
736         xhci_cleanup_msix(xhci);
737
738         /* Deleting Compliance Mode Recovery Timer */
739         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
740                         (!(xhci_all_ports_seen_u0(xhci)))) {
741                 del_timer_sync(&xhci->comp_mode_recovery_timer);
742                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
743                                 "%s: compliance mode recovery timer deleted",
744                                 __func__);
745         }
746
747         if (xhci->quirks & XHCI_AMD_PLL_FIX)
748                 usb_amd_dev_put();
749
750         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
751                         "// Disabling event ring interrupts");
752         temp = readl(&xhci->op_regs->status);
753         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
754         temp = readl(&xhci->ir_set->irq_pending);
755         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
756
757         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
758         xhci_mem_cleanup(xhci);
759         xhci_debugfs_exit(xhci);
760         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
761                         "xhci_stop completed - status = %x",
762                         readl(&xhci->op_regs->status));
763         mutex_unlock(&xhci->mutex);
764 }
765
766 /*
767  * Shutdown HC (not bus-specific)
768  *
769  * This is called when the machine is rebooting or halting.  We assume that the
770  * machine will be powered off, and the HC's internal state will be reset.
771  * Don't bother to free memory.
772  *
773  * This will only ever be called with the main usb_hcd (the USB3 roothub).
774  */
775 static void xhci_shutdown(struct usb_hcd *hcd)
776 {
777         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
778
779         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
780                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
781
782         spin_lock_irq(&xhci->lock);
783         xhci_halt(xhci);
784         /* Workaround for spurious wakeups at shutdown with HSW */
785         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
786                 xhci_reset(xhci);
787         spin_unlock_irq(&xhci->lock);
788
789         xhci_cleanup_msix(xhci);
790
791         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
792                         "xhci_shutdown completed - status = %x",
793                         readl(&xhci->op_regs->status));
794
795         /* Yet another workaround for spurious wakeups at shutdown with HSW */
796         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
797                 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
798 }
799
800 #ifdef CONFIG_PM
801 static void xhci_save_registers(struct xhci_hcd *xhci)
802 {
803         xhci->s3.command = readl(&xhci->op_regs->command);
804         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
805         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
806         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
807         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
808         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
809         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
810         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
811         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
812 }
813
814 static void xhci_restore_registers(struct xhci_hcd *xhci)
815 {
816         writel(xhci->s3.command, &xhci->op_regs->command);
817         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
818         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
819         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
820         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
821         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
822         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
823         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
824         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
825 }
826
827 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
828 {
829         u64     val_64;
830
831         /* step 2: initialize command ring buffer */
832         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
833         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
834                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
835                                       xhci->cmd_ring->dequeue) &
836                  (u64) ~CMD_RING_RSVD_BITS) |
837                 xhci->cmd_ring->cycle_state;
838         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
839                         "// Setting command ring address to 0x%llx",
840                         (long unsigned long) val_64);
841         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
842 }
843
844 /*
845  * The whole command ring must be cleared to zero when we suspend the host.
846  *
847  * The host doesn't save the command ring pointer in the suspend well, so we
848  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
849  * aligned, because of the reserved bits in the command ring dequeue pointer
850  * register.  Therefore, we can't just set the dequeue pointer back in the
851  * middle of the ring (TRBs are 16-byte aligned).
852  */
853 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
854 {
855         struct xhci_ring *ring;
856         struct xhci_segment *seg;
857
858         ring = xhci->cmd_ring;
859         seg = ring->deq_seg;
860         do {
861                 memset(seg->trbs, 0,
862                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
863                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
864                         cpu_to_le32(~TRB_CYCLE);
865                 seg = seg->next;
866         } while (seg != ring->deq_seg);
867
868         /* Reset the software enqueue and dequeue pointers */
869         ring->deq_seg = ring->first_seg;
870         ring->dequeue = ring->first_seg->trbs;
871         ring->enq_seg = ring->deq_seg;
872         ring->enqueue = ring->dequeue;
873
874         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
875         /*
876          * Ring is now zeroed, so the HW should look for change of ownership
877          * when the cycle bit is set to 1.
878          */
879         ring->cycle_state = 1;
880
881         /*
882          * Reset the hardware dequeue pointer.
883          * Yes, this will need to be re-written after resume, but we're paranoid
884          * and want to make sure the hardware doesn't access bogus memory
885          * because, say, the BIOS or an SMI started the host without changing
886          * the command ring pointers.
887          */
888         xhci_set_cmd_ring_deq(xhci);
889 }
890
891 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
892 {
893         struct xhci_port **ports;
894         int port_index;
895         unsigned long flags;
896         u32 t1, t2;
897
898         spin_lock_irqsave(&xhci->lock, flags);
899
900         /* disable usb3 ports Wake bits */
901         port_index = xhci->usb3_rhub.num_ports;
902         ports = xhci->usb3_rhub.ports;
903         while (port_index--) {
904                 t1 = readl(ports[port_index]->addr);
905                 t1 = xhci_port_state_to_neutral(t1);
906                 t2 = t1 & ~PORT_WAKE_BITS;
907                 if (t1 != t2)
908                         writel(t2, ports[port_index]->addr);
909         }
910
911         /* disable usb2 ports Wake bits */
912         port_index = xhci->usb2_rhub.num_ports;
913         ports = xhci->usb2_rhub.ports;
914         while (port_index--) {
915                 t1 = readl(ports[port_index]->addr);
916                 t1 = xhci_port_state_to_neutral(t1);
917                 t2 = t1 & ~PORT_WAKE_BITS;
918                 if (t1 != t2)
919                         writel(t2, ports[port_index]->addr);
920         }
921
922         spin_unlock_irqrestore(&xhci->lock, flags);
923 }
924
925 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
926 {
927         struct xhci_port        **ports;
928         int                     port_index;
929         u32                     status;
930         u32                     portsc;
931
932         status = readl(&xhci->op_regs->status);
933         if (status & STS_EINT)
934                 return true;
935         /*
936          * Checking STS_EINT is not enough as there is a lag between a change
937          * bit being set and the Port Status Change Event that it generated
938          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
939          */
940
941         port_index = xhci->usb2_rhub.num_ports;
942         ports = xhci->usb2_rhub.ports;
943         while (port_index--) {
944                 portsc = readl(ports[port_index]->addr);
945                 if (portsc & PORT_CHANGE_MASK ||
946                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
947                         return true;
948         }
949         port_index = xhci->usb3_rhub.num_ports;
950         ports = xhci->usb3_rhub.ports;
951         while (port_index--) {
952                 portsc = readl(ports[port_index]->addr);
953                 if (portsc & PORT_CHANGE_MASK ||
954                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
955                         return true;
956         }
957         return false;
958 }
959
960 /*
961  * Stop HC (not bus-specific)
962  *
963  * This is called when the machine transition into S3/S4 mode.
964  *
965  */
966 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
967 {
968         int                     rc = 0;
969         unsigned int            delay = XHCI_MAX_HALT_USEC;
970         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
971         u32                     command;
972         u32                     res;
973
974         if (!hcd->state)
975                 return 0;
976
977         if (hcd->state != HC_STATE_SUSPENDED ||
978                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
979                 return -EINVAL;
980
981         xhci_dbc_suspend(xhci);
982
983         /* Clear root port wake on bits if wakeup not allowed. */
984         if (!do_wakeup)
985                 xhci_disable_port_wake_on_bits(xhci);
986
987         /* Don't poll the roothubs on bus suspend. */
988         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
989         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
990         del_timer_sync(&hcd->rh_timer);
991         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
992         del_timer_sync(&xhci->shared_hcd->rh_timer);
993
994         if (xhci->quirks & XHCI_SUSPEND_DELAY)
995                 usleep_range(1000, 1500);
996
997         spin_lock_irq(&xhci->lock);
998         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
999         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1000         /* step 1: stop endpoint */
1001         /* skipped assuming that port suspend has done */
1002
1003         /* step 2: clear Run/Stop bit */
1004         command = readl(&xhci->op_regs->command);
1005         command &= ~CMD_RUN;
1006         writel(command, &xhci->op_regs->command);
1007
1008         /* Some chips from Fresco Logic need an extraordinary delay */
1009         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1010
1011         if (xhci_handshake(&xhci->op_regs->status,
1012                       STS_HALT, STS_HALT, delay)) {
1013                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1014                 spin_unlock_irq(&xhci->lock);
1015                 return -ETIMEDOUT;
1016         }
1017         xhci_clear_command_ring(xhci);
1018
1019         /* step 3: save registers */
1020         xhci_save_registers(xhci);
1021
1022         /* step 4: set CSS flag */
1023         command = readl(&xhci->op_regs->command);
1024         command |= CMD_CSS;
1025         writel(command, &xhci->op_regs->command);
1026         xhci->broken_suspend = 0;
1027         if (xhci_handshake(&xhci->op_regs->status,
1028                                 STS_SAVE, 0, 10 * 1000)) {
1029         /*
1030          * AMD SNPS xHC 3.0 occasionally does not clear the
1031          * SSS bit of USBSTS and when driver tries to poll
1032          * to see if the xHC clears BIT(8) which never happens
1033          * and driver assumes that controller is not responding
1034          * and times out. To workaround this, its good to check
1035          * if SRE and HCE bits are not set (as per xhci
1036          * Section 5.4.2) and bypass the timeout.
1037          */
1038                 res = readl(&xhci->op_regs->status);
1039                 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1040                     (((res & STS_SRE) == 0) &&
1041                                 ((res & STS_HCE) == 0))) {
1042                         xhci->broken_suspend = 1;
1043                 } else {
1044                         xhci_warn(xhci, "WARN: xHC save state timeout\n");
1045                         spin_unlock_irq(&xhci->lock);
1046                         return -ETIMEDOUT;
1047                 }
1048         }
1049         spin_unlock_irq(&xhci->lock);
1050
1051         /*
1052          * Deleting Compliance Mode Recovery Timer because the xHCI Host
1053          * is about to be suspended.
1054          */
1055         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1056                         (!(xhci_all_ports_seen_u0(xhci)))) {
1057                 del_timer_sync(&xhci->comp_mode_recovery_timer);
1058                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1059                                 "%s: compliance mode recovery timer deleted",
1060                                 __func__);
1061         }
1062
1063         /* step 5: remove core well power */
1064         /* synchronize irq when using MSI-X */
1065         xhci_msix_sync_irqs(xhci);
1066
1067         return rc;
1068 }
1069 EXPORT_SYMBOL_GPL(xhci_suspend);
1070
1071 /*
1072  * start xHC (not bus-specific)
1073  *
1074  * This is called when the machine transition from S3/S4 mode.
1075  *
1076  */
1077 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1078 {
1079         u32                     command, temp = 0;
1080         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1081         struct usb_hcd          *secondary_hcd;
1082         int                     retval = 0;
1083         bool                    comp_timer_running = false;
1084
1085         if (!hcd->state)
1086                 return 0;
1087
1088         /* Wait a bit if either of the roothubs need to settle from the
1089          * transition into bus suspend.
1090          */
1091
1092         if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1093             time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1094                 msleep(100);
1095
1096         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1097         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1098
1099         spin_lock_irq(&xhci->lock);
1100         if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1101                 hibernated = true;
1102
1103         if (!hibernated) {
1104                 /* step 1: restore register */
1105                 xhci_restore_registers(xhci);
1106                 /* step 2: initialize command ring buffer */
1107                 xhci_set_cmd_ring_deq(xhci);
1108                 /* step 3: restore state and start state*/
1109                 /* step 3: set CRS flag */
1110                 command = readl(&xhci->op_regs->command);
1111                 command |= CMD_CRS;
1112                 writel(command, &xhci->op_regs->command);
1113                 /*
1114                  * Some controllers take up to 55+ ms to complete the controller
1115                  * restore so setting the timeout to 100ms. Xhci specification
1116                  * doesn't mention any timeout value.
1117                  */
1118                 if (xhci_handshake(&xhci->op_regs->status,
1119                               STS_RESTORE, 0, 100 * 1000)) {
1120                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1121                         spin_unlock_irq(&xhci->lock);
1122                         return -ETIMEDOUT;
1123                 }
1124                 temp = readl(&xhci->op_regs->status);
1125         }
1126
1127         /* If restore operation fails, re-initialize the HC during resume */
1128         if ((temp & STS_SRE) || hibernated) {
1129
1130                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1131                                 !(xhci_all_ports_seen_u0(xhci))) {
1132                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1133                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1134                                 "Compliance Mode Recovery Timer deleted!");
1135                 }
1136
1137                 /* Let the USB core know _both_ roothubs lost power. */
1138                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1139                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1140
1141                 xhci_dbg(xhci, "Stop HCD\n");
1142                 xhci_halt(xhci);
1143                 xhci_zero_64b_regs(xhci);
1144                 xhci_reset(xhci);
1145                 spin_unlock_irq(&xhci->lock);
1146                 xhci_cleanup_msix(xhci);
1147
1148                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1149                 temp = readl(&xhci->op_regs->status);
1150                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1151                 temp = readl(&xhci->ir_set->irq_pending);
1152                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1153
1154                 xhci_dbg(xhci, "cleaning up memory\n");
1155                 xhci_mem_cleanup(xhci);
1156                 xhci_debugfs_exit(xhci);
1157                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1158                             readl(&xhci->op_regs->status));
1159
1160                 /* USB core calls the PCI reinit and start functions twice:
1161                  * first with the primary HCD, and then with the secondary HCD.
1162                  * If we don't do the same, the host will never be started.
1163                  */
1164                 if (!usb_hcd_is_primary_hcd(hcd))
1165                         secondary_hcd = hcd;
1166                 else
1167                         secondary_hcd = xhci->shared_hcd;
1168
1169                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1170                 retval = xhci_init(hcd->primary_hcd);
1171                 if (retval)
1172                         return retval;
1173                 comp_timer_running = true;
1174
1175                 xhci_dbg(xhci, "Start the primary HCD\n");
1176                 retval = xhci_run(hcd->primary_hcd);
1177                 if (!retval) {
1178                         xhci_dbg(xhci, "Start the secondary HCD\n");
1179                         retval = xhci_run(secondary_hcd);
1180                 }
1181                 hcd->state = HC_STATE_SUSPENDED;
1182                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1183                 goto done;
1184         }
1185
1186         /* step 4: set Run/Stop bit */
1187         command = readl(&xhci->op_regs->command);
1188         command |= CMD_RUN;
1189         writel(command, &xhci->op_regs->command);
1190         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1191                   0, 250 * 1000);
1192
1193         /* step 5: walk topology and initialize portsc,
1194          * portpmsc and portli
1195          */
1196         /* this is done in bus_resume */
1197
1198         /* step 6: restart each of the previously
1199          * Running endpoints by ringing their doorbells
1200          */
1201
1202         spin_unlock_irq(&xhci->lock);
1203
1204         xhci_dbc_resume(xhci);
1205
1206  done:
1207         if (retval == 0) {
1208                 /* Resume root hubs only when have pending events. */
1209                 if (xhci_pending_portevent(xhci)) {
1210                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1211                         usb_hcd_resume_root_hub(hcd);
1212                 }
1213         }
1214
1215         /*
1216          * If system is subject to the Quirk, Compliance Mode Timer needs to
1217          * be re-initialized Always after a system resume. Ports are subject
1218          * to suffer the Compliance Mode issue again. It doesn't matter if
1219          * ports have entered previously to U0 before system's suspension.
1220          */
1221         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1222                 compliance_mode_recovery_timer_init(xhci);
1223
1224         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1225                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1226
1227         /* Re-enable port polling. */
1228         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1229         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1230         usb_hcd_poll_rh_status(xhci->shared_hcd);
1231         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1232         usb_hcd_poll_rh_status(hcd);
1233
1234         return retval;
1235 }
1236 EXPORT_SYMBOL_GPL(xhci_resume);
1237 #endif  /* CONFIG_PM */
1238
1239 /*-------------------------------------------------------------------------*/
1240
1241 /**
1242  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1243  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1244  * value to right shift 1 for the bitmask.
1245  *
1246  * Index  = (epnum * 2) + direction - 1,
1247  * where direction = 0 for OUT, 1 for IN.
1248  * For control endpoints, the IN index is used (OUT index is unused), so
1249  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1250  */
1251 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1252 {
1253         unsigned int index;
1254         if (usb_endpoint_xfer_control(desc))
1255                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1256         else
1257                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1258                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1259         return index;
1260 }
1261
1262 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1263  * address from the XHCI endpoint index.
1264  */
1265 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1266 {
1267         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1268         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1269         return direction | number;
1270 }
1271
1272 /* Find the flag for this endpoint (for use in the control context).  Use the
1273  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1274  * bit 1, etc.
1275  */
1276 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1277 {
1278         return 1 << (xhci_get_endpoint_index(desc) + 1);
1279 }
1280
1281 /* Find the flag for this endpoint (for use in the control context).  Use the
1282  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1283  * bit 1, etc.
1284  */
1285 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1286 {
1287         return 1 << (ep_index + 1);
1288 }
1289
1290 /* Compute the last valid endpoint context index.  Basically, this is the
1291  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1292  * we find the most significant bit set in the added contexts flags.
1293  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1294  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1295  */
1296 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1297 {
1298         return fls(added_ctxs) - 1;
1299 }
1300
1301 /* Returns 1 if the arguments are OK;
1302  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1303  */
1304 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1305                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1306                 const char *func) {
1307         struct xhci_hcd *xhci;
1308         struct xhci_virt_device *virt_dev;
1309
1310         if (!hcd || (check_ep && !ep) || !udev) {
1311                 pr_debug("xHCI %s called with invalid args\n", func);
1312                 return -EINVAL;
1313         }
1314         if (!udev->parent) {
1315                 pr_debug("xHCI %s called for root hub\n", func);
1316                 return 0;
1317         }
1318
1319         xhci = hcd_to_xhci(hcd);
1320         if (check_virt_dev) {
1321                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1322                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1323                                         func);
1324                         return -EINVAL;
1325                 }
1326
1327                 virt_dev = xhci->devs[udev->slot_id];
1328                 if (virt_dev->udev != udev) {
1329                         xhci_dbg(xhci, "xHCI %s called with udev and "
1330                                           "virt_dev does not match\n", func);
1331                         return -EINVAL;
1332                 }
1333         }
1334
1335         if (xhci->xhc_state & XHCI_STATE_HALTED)
1336                 return -ENODEV;
1337
1338         return 1;
1339 }
1340
1341 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1342                 struct usb_device *udev, struct xhci_command *command,
1343                 bool ctx_change, bool must_succeed);
1344
1345 /*
1346  * Full speed devices may have a max packet size greater than 8 bytes, but the
1347  * USB core doesn't know that until it reads the first 8 bytes of the
1348  * descriptor.  If the usb_device's max packet size changes after that point,
1349  * we need to issue an evaluate context command and wait on it.
1350  */
1351 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1352                 unsigned int ep_index, struct urb *urb)
1353 {
1354         struct xhci_container_ctx *out_ctx;
1355         struct xhci_input_control_ctx *ctrl_ctx;
1356         struct xhci_ep_ctx *ep_ctx;
1357         struct xhci_command *command;
1358         int max_packet_size;
1359         int hw_max_packet_size;
1360         int ret = 0;
1361
1362         out_ctx = xhci->devs[slot_id]->out_ctx;
1363         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1364         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1365         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1366         if (hw_max_packet_size != max_packet_size) {
1367                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1368                                 "Max Packet Size for ep 0 changed.");
1369                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1370                                 "Max packet size in usb_device = %d",
1371                                 max_packet_size);
1372                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1373                                 "Max packet size in xHCI HW = %d",
1374                                 hw_max_packet_size);
1375                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1376                                 "Issuing evaluate context command.");
1377
1378                 /* Set up the input context flags for the command */
1379                 /* FIXME: This won't work if a non-default control endpoint
1380                  * changes max packet sizes.
1381                  */
1382
1383                 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1384                 if (!command)
1385                         return -ENOMEM;
1386
1387                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1388                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1389                 if (!ctrl_ctx) {
1390                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1391                                         __func__);
1392                         ret = -ENOMEM;
1393                         goto command_cleanup;
1394                 }
1395                 /* Set up the modified control endpoint 0 */
1396                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1397                                 xhci->devs[slot_id]->out_ctx, ep_index);
1398
1399                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1400                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1401                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1402
1403                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1404                 ctrl_ctx->drop_flags = 0;
1405
1406                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1407                                 true, false);
1408
1409                 /* Clean up the input context for later use by bandwidth
1410                  * functions.
1411                  */
1412                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1413 command_cleanup:
1414                 kfree(command->completion);
1415                 kfree(command);
1416         }
1417         return ret;
1418 }
1419
1420 /*
1421  * non-error returns are a promise to giveback() the urb later
1422  * we drop ownership so next owner (or urb unlink) can get it
1423  */
1424 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1425 {
1426         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1427         unsigned long flags;
1428         int ret = 0;
1429         unsigned int slot_id, ep_index;
1430         unsigned int *ep_state;
1431         struct urb_priv *urb_priv;
1432         int num_tds;
1433
1434         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1435                                         true, true, __func__) <= 0)
1436                 return -EINVAL;
1437
1438         slot_id = urb->dev->slot_id;
1439         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1440         ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1441
1442         if (!HCD_HW_ACCESSIBLE(hcd)) {
1443                 if (!in_interrupt())
1444                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1445                 return -ESHUTDOWN;
1446         }
1447
1448         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1449                 num_tds = urb->number_of_packets;
1450         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1451             urb->transfer_buffer_length > 0 &&
1452             urb->transfer_flags & URB_ZERO_PACKET &&
1453             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1454                 num_tds = 2;
1455         else
1456                 num_tds = 1;
1457
1458         urb_priv = kzalloc(sizeof(struct urb_priv) +
1459                            num_tds * sizeof(struct xhci_td), mem_flags);
1460         if (!urb_priv)
1461                 return -ENOMEM;
1462
1463         urb_priv->num_tds = num_tds;
1464         urb_priv->num_tds_done = 0;
1465         urb->hcpriv = urb_priv;
1466
1467         trace_xhci_urb_enqueue(urb);
1468
1469         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1470                 /* Check to see if the max packet size for the default control
1471                  * endpoint changed during FS device enumeration
1472                  */
1473                 if (urb->dev->speed == USB_SPEED_FULL) {
1474                         ret = xhci_check_maxpacket(xhci, slot_id,
1475                                         ep_index, urb);
1476                         if (ret < 0) {
1477                                 xhci_urb_free_priv(urb_priv);
1478                                 urb->hcpriv = NULL;
1479                                 return ret;
1480                         }
1481                 }
1482         }
1483
1484         spin_lock_irqsave(&xhci->lock, flags);
1485
1486         if (xhci->xhc_state & XHCI_STATE_DYING) {
1487                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1488                          urb->ep->desc.bEndpointAddress, urb);
1489                 ret = -ESHUTDOWN;
1490                 goto free_priv;
1491         }
1492         if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1493                 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1494                           *ep_state);
1495                 ret = -EINVAL;
1496                 goto free_priv;
1497         }
1498         if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1499                 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1500                 ret = -EINVAL;
1501                 goto free_priv;
1502         }
1503
1504         switch (usb_endpoint_type(&urb->ep->desc)) {
1505
1506         case USB_ENDPOINT_XFER_CONTROL:
1507                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1508                                          slot_id, ep_index);
1509                 break;
1510         case USB_ENDPOINT_XFER_BULK:
1511                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1512                                          slot_id, ep_index);
1513                 break;
1514         case USB_ENDPOINT_XFER_INT:
1515                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1516                                 slot_id, ep_index);
1517                 break;
1518         case USB_ENDPOINT_XFER_ISOC:
1519                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1520                                 slot_id, ep_index);
1521         }
1522
1523         if (ret) {
1524 free_priv:
1525                 xhci_urb_free_priv(urb_priv);
1526                 urb->hcpriv = NULL;
1527         }
1528         spin_unlock_irqrestore(&xhci->lock, flags);
1529         return ret;
1530 }
1531
1532 /*
1533  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1534  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1535  * should pick up where it left off in the TD, unless a Set Transfer Ring
1536  * Dequeue Pointer is issued.
1537  *
1538  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1539  * the ring.  Since the ring is a contiguous structure, they can't be physically
1540  * removed.  Instead, there are two options:
1541  *
1542  *  1) If the HC is in the middle of processing the URB to be canceled, we
1543  *     simply move the ring's dequeue pointer past those TRBs using the Set
1544  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1545  *     when drivers timeout on the last submitted URB and attempt to cancel.
1546  *
1547  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1548  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1549  *     HC will need to invalidate the any TRBs it has cached after the stop
1550  *     endpoint command, as noted in the xHCI 0.95 errata.
1551  *
1552  *  3) The TD may have completed by the time the Stop Endpoint Command
1553  *     completes, so software needs to handle that case too.
1554  *
1555  * This function should protect against the TD enqueueing code ringing the
1556  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1557  * It also needs to account for multiple cancellations on happening at the same
1558  * time for the same endpoint.
1559  *
1560  * Note that this function can be called in any context, or so says
1561  * usb_hcd_unlink_urb()
1562  */
1563 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1564 {
1565         unsigned long flags;
1566         int ret, i;
1567         u32 temp;
1568         struct xhci_hcd *xhci;
1569         struct urb_priv *urb_priv;
1570         struct xhci_td *td;
1571         unsigned int ep_index;
1572         struct xhci_ring *ep_ring;
1573         struct xhci_virt_ep *ep;
1574         struct xhci_command *command;
1575         struct xhci_virt_device *vdev;
1576
1577         xhci = hcd_to_xhci(hcd);
1578         spin_lock_irqsave(&xhci->lock, flags);
1579
1580         trace_xhci_urb_dequeue(urb);
1581
1582         /* Make sure the URB hasn't completed or been unlinked already */
1583         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1584         if (ret)
1585                 goto done;
1586
1587         /* give back URB now if we can't queue it for cancel */
1588         vdev = xhci->devs[urb->dev->slot_id];
1589         urb_priv = urb->hcpriv;
1590         if (!vdev || !urb_priv)
1591                 goto err_giveback;
1592
1593         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1594         ep = &vdev->eps[ep_index];
1595         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1596         if (!ep || !ep_ring)
1597                 goto err_giveback;
1598
1599         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1600         temp = readl(&xhci->op_regs->status);
1601         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1602                 xhci_hc_died(xhci);
1603                 goto done;
1604         }
1605
1606         /*
1607          * check ring is not re-allocated since URB was enqueued. If it is, then
1608          * make sure none of the ring related pointers in this URB private data
1609          * are touched, such as td_list, otherwise we overwrite freed data
1610          */
1611         if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1612                 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1613                 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1614                         td = &urb_priv->td[i];
1615                         if (!list_empty(&td->cancelled_td_list))
1616                                 list_del_init(&td->cancelled_td_list);
1617                 }
1618                 goto err_giveback;
1619         }
1620
1621         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1622                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1623                                 "HC halted, freeing TD manually.");
1624                 for (i = urb_priv->num_tds_done;
1625                      i < urb_priv->num_tds;
1626                      i++) {
1627                         td = &urb_priv->td[i];
1628                         if (!list_empty(&td->td_list))
1629                                 list_del_init(&td->td_list);
1630                         if (!list_empty(&td->cancelled_td_list))
1631                                 list_del_init(&td->cancelled_td_list);
1632                 }
1633                 goto err_giveback;
1634         }
1635
1636         i = urb_priv->num_tds_done;
1637         if (i < urb_priv->num_tds)
1638                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1639                                 "Cancel URB %p, dev %s, ep 0x%x, "
1640                                 "starting at offset 0x%llx",
1641                                 urb, urb->dev->devpath,
1642                                 urb->ep->desc.bEndpointAddress,
1643                                 (unsigned long long) xhci_trb_virt_to_dma(
1644                                         urb_priv->td[i].start_seg,
1645                                         urb_priv->td[i].first_trb));
1646
1647         for (; i < urb_priv->num_tds; i++) {
1648                 td = &urb_priv->td[i];
1649                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1650         }
1651
1652         /* Queue a stop endpoint command, but only if this is
1653          * the first cancellation to be handled.
1654          */
1655         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1656                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1657                 if (!command) {
1658                         ret = -ENOMEM;
1659                         goto done;
1660                 }
1661                 ep->ep_state |= EP_STOP_CMD_PENDING;
1662                 ep->stop_cmd_timer.expires = jiffies +
1663                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1664                 add_timer(&ep->stop_cmd_timer);
1665                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1666                                          ep_index, 0);
1667                 xhci_ring_cmd_db(xhci);
1668         }
1669 done:
1670         spin_unlock_irqrestore(&xhci->lock, flags);
1671         return ret;
1672
1673 err_giveback:
1674         if (urb_priv)
1675                 xhci_urb_free_priv(urb_priv);
1676         usb_hcd_unlink_urb_from_ep(hcd, urb);
1677         spin_unlock_irqrestore(&xhci->lock, flags);
1678         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1679         return ret;
1680 }
1681
1682 /* Drop an endpoint from a new bandwidth configuration for this device.
1683  * Only one call to this function is allowed per endpoint before
1684  * check_bandwidth() or reset_bandwidth() must be called.
1685  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1686  * add the endpoint to the schedule with possibly new parameters denoted by a
1687  * different endpoint descriptor in usb_host_endpoint.
1688  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1689  * not allowed.
1690  *
1691  * The USB core will not allow URBs to be queued to an endpoint that is being
1692  * disabled, so there's no need for mutual exclusion to protect
1693  * the xhci->devs[slot_id] structure.
1694  */
1695 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1696                 struct usb_host_endpoint *ep)
1697 {
1698         struct xhci_hcd *xhci;
1699         struct xhci_container_ctx *in_ctx, *out_ctx;
1700         struct xhci_input_control_ctx *ctrl_ctx;
1701         unsigned int ep_index;
1702         struct xhci_ep_ctx *ep_ctx;
1703         u32 drop_flag;
1704         u32 new_add_flags, new_drop_flags;
1705         int ret;
1706
1707         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1708         if (ret <= 0)
1709                 return ret;
1710         xhci = hcd_to_xhci(hcd);
1711         if (xhci->xhc_state & XHCI_STATE_DYING)
1712                 return -ENODEV;
1713
1714         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1715         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1716         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1717                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1718                                 __func__, drop_flag);
1719                 return 0;
1720         }
1721
1722         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1723         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1724         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1725         if (!ctrl_ctx) {
1726                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1727                                 __func__);
1728                 return 0;
1729         }
1730
1731         ep_index = xhci_get_endpoint_index(&ep->desc);
1732         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1733         /* If the HC already knows the endpoint is disabled,
1734          * or the HCD has noted it is disabled, ignore this request
1735          */
1736         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1737             le32_to_cpu(ctrl_ctx->drop_flags) &
1738             xhci_get_endpoint_flag(&ep->desc)) {
1739                 /* Do not warn when called after a usb_device_reset */
1740                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1741                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1742                                   __func__, ep);
1743                 return 0;
1744         }
1745
1746         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1747         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1748
1749         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1750         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1751
1752         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1753
1754         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1755
1756         if (xhci->quirks & XHCI_MTK_HOST)
1757                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1758
1759         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1760                         (unsigned int) ep->desc.bEndpointAddress,
1761                         udev->slot_id,
1762                         (unsigned int) new_drop_flags,
1763                         (unsigned int) new_add_flags);
1764         return 0;
1765 }
1766
1767 /* Add an endpoint to a new possible bandwidth configuration for this device.
1768  * Only one call to this function is allowed per endpoint before
1769  * check_bandwidth() or reset_bandwidth() must be called.
1770  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1771  * add the endpoint to the schedule with possibly new parameters denoted by a
1772  * different endpoint descriptor in usb_host_endpoint.
1773  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1774  * not allowed.
1775  *
1776  * The USB core will not allow URBs to be queued to an endpoint until the
1777  * configuration or alt setting is installed in the device, so there's no need
1778  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1779  */
1780 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1781                 struct usb_host_endpoint *ep)
1782 {
1783         struct xhci_hcd *xhci;
1784         struct xhci_container_ctx *in_ctx;
1785         unsigned int ep_index;
1786         struct xhci_input_control_ctx *ctrl_ctx;
1787         u32 added_ctxs;
1788         u32 new_add_flags, new_drop_flags;
1789         struct xhci_virt_device *virt_dev;
1790         int ret = 0;
1791
1792         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1793         if (ret <= 0) {
1794                 /* So we won't queue a reset ep command for a root hub */
1795                 ep->hcpriv = NULL;
1796                 return ret;
1797         }
1798         xhci = hcd_to_xhci(hcd);
1799         if (xhci->xhc_state & XHCI_STATE_DYING)
1800                 return -ENODEV;
1801
1802         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1803         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1804                 /* FIXME when we have to issue an evaluate endpoint command to
1805                  * deal with ep0 max packet size changing once we get the
1806                  * descriptors
1807                  */
1808                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1809                                 __func__, added_ctxs);
1810                 return 0;
1811         }
1812
1813         virt_dev = xhci->devs[udev->slot_id];
1814         in_ctx = virt_dev->in_ctx;
1815         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1816         if (!ctrl_ctx) {
1817                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1818                                 __func__);
1819                 return 0;
1820         }
1821
1822         ep_index = xhci_get_endpoint_index(&ep->desc);
1823         /* If this endpoint is already in use, and the upper layers are trying
1824          * to add it again without dropping it, reject the addition.
1825          */
1826         if (virt_dev->eps[ep_index].ring &&
1827                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1828                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1829                                 "without dropping it.\n",
1830                                 (unsigned int) ep->desc.bEndpointAddress);
1831                 return -EINVAL;
1832         }
1833
1834         /* If the HCD has already noted the endpoint is enabled,
1835          * ignore this request.
1836          */
1837         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1838                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1839                                 __func__, ep);
1840                 return 0;
1841         }
1842
1843         /*
1844          * Configuration and alternate setting changes must be done in
1845          * process context, not interrupt context (or so documenation
1846          * for usb_set_interface() and usb_set_configuration() claim).
1847          */
1848         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1849                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1850                                 __func__, ep->desc.bEndpointAddress);
1851                 return -ENOMEM;
1852         }
1853
1854         if (xhci->quirks & XHCI_MTK_HOST) {
1855                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1856                 if (ret < 0) {
1857                         xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1858                         virt_dev->eps[ep_index].new_ring = NULL;
1859                         return ret;
1860                 }
1861         }
1862
1863         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1864         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1865
1866         /* If xhci_endpoint_disable() was called for this endpoint, but the
1867          * xHC hasn't been notified yet through the check_bandwidth() call,
1868          * this re-adds a new state for the endpoint from the new endpoint
1869          * descriptors.  We must drop and re-add this endpoint, so we leave the
1870          * drop flags alone.
1871          */
1872         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1873
1874         /* Store the usb_device pointer for later use */
1875         ep->hcpriv = udev;
1876
1877         xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1878
1879         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1880                         (unsigned int) ep->desc.bEndpointAddress,
1881                         udev->slot_id,
1882                         (unsigned int) new_drop_flags,
1883                         (unsigned int) new_add_flags);
1884         return 0;
1885 }
1886
1887 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1888 {
1889         struct xhci_input_control_ctx *ctrl_ctx;
1890         struct xhci_ep_ctx *ep_ctx;
1891         struct xhci_slot_ctx *slot_ctx;
1892         int i;
1893
1894         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1895         if (!ctrl_ctx) {
1896                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1897                                 __func__);
1898                 return;
1899         }
1900
1901         /* When a device's add flag and drop flag are zero, any subsequent
1902          * configure endpoint command will leave that endpoint's state
1903          * untouched.  Make sure we don't leave any old state in the input
1904          * endpoint contexts.
1905          */
1906         ctrl_ctx->drop_flags = 0;
1907         ctrl_ctx->add_flags = 0;
1908         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1909         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1910         /* Endpoint 0 is always valid */
1911         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1912         for (i = 1; i < 31; i++) {
1913                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1914                 ep_ctx->ep_info = 0;
1915                 ep_ctx->ep_info2 = 0;
1916                 ep_ctx->deq = 0;
1917                 ep_ctx->tx_info = 0;
1918         }
1919 }
1920
1921 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1922                 struct usb_device *udev, u32 *cmd_status)
1923 {
1924         int ret;
1925
1926         switch (*cmd_status) {
1927         case COMP_COMMAND_ABORTED:
1928         case COMP_COMMAND_RING_STOPPED:
1929                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1930                 ret = -ETIME;
1931                 break;
1932         case COMP_RESOURCE_ERROR:
1933                 dev_warn(&udev->dev,
1934                          "Not enough host controller resources for new device state.\n");
1935                 ret = -ENOMEM;
1936                 /* FIXME: can we allocate more resources for the HC? */
1937                 break;
1938         case COMP_BANDWIDTH_ERROR:
1939         case COMP_SECONDARY_BANDWIDTH_ERROR:
1940                 dev_warn(&udev->dev,
1941                          "Not enough bandwidth for new device state.\n");
1942                 ret = -ENOSPC;
1943                 /* FIXME: can we go back to the old state? */
1944                 break;
1945         case COMP_TRB_ERROR:
1946                 /* the HCD set up something wrong */
1947                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1948                                 "add flag = 1, "
1949                                 "and endpoint is not disabled.\n");
1950                 ret = -EINVAL;
1951                 break;
1952         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1953                 dev_warn(&udev->dev,
1954                          "ERROR: Incompatible device for endpoint configure command.\n");
1955                 ret = -ENODEV;
1956                 break;
1957         case COMP_SUCCESS:
1958                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1959                                 "Successful Endpoint Configure command");
1960                 ret = 0;
1961                 break;
1962         default:
1963                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1964                                 *cmd_status);
1965                 ret = -EINVAL;
1966                 break;
1967         }
1968         return ret;
1969 }
1970
1971 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1972                 struct usb_device *udev, u32 *cmd_status)
1973 {
1974         int ret;
1975
1976         switch (*cmd_status) {
1977         case COMP_COMMAND_ABORTED:
1978         case COMP_COMMAND_RING_STOPPED:
1979                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1980                 ret = -ETIME;
1981                 break;
1982         case COMP_PARAMETER_ERROR:
1983                 dev_warn(&udev->dev,
1984                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1985                 ret = -EINVAL;
1986                 break;
1987         case COMP_SLOT_NOT_ENABLED_ERROR:
1988                 dev_warn(&udev->dev,
1989                         "WARN: slot not enabled for evaluate context command.\n");
1990                 ret = -EINVAL;
1991                 break;
1992         case COMP_CONTEXT_STATE_ERROR:
1993                 dev_warn(&udev->dev,
1994                         "WARN: invalid context state for evaluate context command.\n");
1995                 ret = -EINVAL;
1996                 break;
1997         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1998                 dev_warn(&udev->dev,
1999                         "ERROR: Incompatible device for evaluate context command.\n");
2000                 ret = -ENODEV;
2001                 break;
2002         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2003                 /* Max Exit Latency too large error */
2004                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2005                 ret = -EINVAL;
2006                 break;
2007         case COMP_SUCCESS:
2008                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2009                                 "Successful evaluate context command");
2010                 ret = 0;
2011                 break;
2012         default:
2013                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2014                         *cmd_status);
2015                 ret = -EINVAL;
2016                 break;
2017         }
2018         return ret;
2019 }
2020
2021 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2022                 struct xhci_input_control_ctx *ctrl_ctx)
2023 {
2024         u32 valid_add_flags;
2025         u32 valid_drop_flags;
2026
2027         /* Ignore the slot flag (bit 0), and the default control endpoint flag
2028          * (bit 1).  The default control endpoint is added during the Address
2029          * Device command and is never removed until the slot is disabled.
2030          */
2031         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2032         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2033
2034         /* Use hweight32 to count the number of ones in the add flags, or
2035          * number of endpoints added.  Don't count endpoints that are changed
2036          * (both added and dropped).
2037          */
2038         return hweight32(valid_add_flags) -
2039                 hweight32(valid_add_flags & valid_drop_flags);
2040 }
2041
2042 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2043                 struct xhci_input_control_ctx *ctrl_ctx)
2044 {
2045         u32 valid_add_flags;
2046         u32 valid_drop_flags;
2047
2048         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2049         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2050
2051         return hweight32(valid_drop_flags) -
2052                 hweight32(valid_add_flags & valid_drop_flags);
2053 }
2054
2055 /*
2056  * We need to reserve the new number of endpoints before the configure endpoint
2057  * command completes.  We can't subtract the dropped endpoints from the number
2058  * of active endpoints until the command completes because we can oversubscribe
2059  * the host in this case:
2060  *
2061  *  - the first configure endpoint command drops more endpoints than it adds
2062  *  - a second configure endpoint command that adds more endpoints is queued
2063  *  - the first configure endpoint command fails, so the config is unchanged
2064  *  - the second command may succeed, even though there isn't enough resources
2065  *
2066  * Must be called with xhci->lock held.
2067  */
2068 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2069                 struct xhci_input_control_ctx *ctrl_ctx)
2070 {
2071         u32 added_eps;
2072
2073         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2074         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2075                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2076                                 "Not enough ep ctxs: "
2077                                 "%u active, need to add %u, limit is %u.",
2078                                 xhci->num_active_eps, added_eps,
2079                                 xhci->limit_active_eps);
2080                 return -ENOMEM;
2081         }
2082         xhci->num_active_eps += added_eps;
2083         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2084                         "Adding %u ep ctxs, %u now active.", added_eps,
2085                         xhci->num_active_eps);
2086         return 0;
2087 }
2088
2089 /*
2090  * The configure endpoint was failed by the xHC for some other reason, so we
2091  * need to revert the resources that failed configuration would have used.
2092  *
2093  * Must be called with xhci->lock held.
2094  */
2095 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2096                 struct xhci_input_control_ctx *ctrl_ctx)
2097 {
2098         u32 num_failed_eps;
2099
2100         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2101         xhci->num_active_eps -= num_failed_eps;
2102         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2103                         "Removing %u failed ep ctxs, %u now active.",
2104                         num_failed_eps,
2105                         xhci->num_active_eps);
2106 }
2107
2108 /*
2109  * Now that the command has completed, clean up the active endpoint count by
2110  * subtracting out the endpoints that were dropped (but not changed).
2111  *
2112  * Must be called with xhci->lock held.
2113  */
2114 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2115                 struct xhci_input_control_ctx *ctrl_ctx)
2116 {
2117         u32 num_dropped_eps;
2118
2119         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2120         xhci->num_active_eps -= num_dropped_eps;
2121         if (num_dropped_eps)
2122                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2123                                 "Removing %u dropped ep ctxs, %u now active.",
2124                                 num_dropped_eps,
2125                                 xhci->num_active_eps);
2126 }
2127
2128 static unsigned int xhci_get_block_size(struct usb_device *udev)
2129 {
2130         switch (udev->speed) {
2131         case USB_SPEED_LOW:
2132         case USB_SPEED_FULL:
2133                 return FS_BLOCK;
2134         case USB_SPEED_HIGH:
2135                 return HS_BLOCK;
2136         case USB_SPEED_SUPER:
2137         case USB_SPEED_SUPER_PLUS:
2138                 return SS_BLOCK;
2139         case USB_SPEED_UNKNOWN:
2140         case USB_SPEED_WIRELESS:
2141         default:
2142                 /* Should never happen */
2143                 return 1;
2144         }
2145 }
2146
2147 static unsigned int
2148 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2149 {
2150         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2151                 return LS_OVERHEAD;
2152         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2153                 return FS_OVERHEAD;
2154         return HS_OVERHEAD;
2155 }
2156
2157 /* If we are changing a LS/FS device under a HS hub,
2158  * make sure (if we are activating a new TT) that the HS bus has enough
2159  * bandwidth for this new TT.
2160  */
2161 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2162                 struct xhci_virt_device *virt_dev,
2163                 int old_active_eps)
2164 {
2165         struct xhci_interval_bw_table *bw_table;
2166         struct xhci_tt_bw_info *tt_info;
2167
2168         /* Find the bandwidth table for the root port this TT is attached to. */
2169         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2170         tt_info = virt_dev->tt_info;
2171         /* If this TT already had active endpoints, the bandwidth for this TT
2172          * has already been added.  Removing all periodic endpoints (and thus
2173          * making the TT enactive) will only decrease the bandwidth used.
2174          */
2175         if (old_active_eps)
2176                 return 0;
2177         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2178                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2179                         return -ENOMEM;
2180                 return 0;
2181         }
2182         /* Not sure why we would have no new active endpoints...
2183          *
2184          * Maybe because of an Evaluate Context change for a hub update or a
2185          * control endpoint 0 max packet size change?
2186          * FIXME: skip the bandwidth calculation in that case.
2187          */
2188         return 0;
2189 }
2190
2191 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2192                 struct xhci_virt_device *virt_dev)
2193 {
2194         unsigned int bw_reserved;
2195
2196         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2197         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2198                 return -ENOMEM;
2199
2200         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2201         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2202                 return -ENOMEM;
2203
2204         return 0;
2205 }
2206
2207 /*
2208  * This algorithm is a very conservative estimate of the worst-case scheduling
2209  * scenario for any one interval.  The hardware dynamically schedules the
2210  * packets, so we can't tell which microframe could be the limiting factor in
2211  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2212  *
2213  * Obviously, we can't solve an NP complete problem to find the minimum worst
2214  * case scenario.  Instead, we come up with an estimate that is no less than
2215  * the worst case bandwidth used for any one microframe, but may be an
2216  * over-estimate.
2217  *
2218  * We walk the requirements for each endpoint by interval, starting with the
2219  * smallest interval, and place packets in the schedule where there is only one
2220  * possible way to schedule packets for that interval.  In order to simplify
2221  * this algorithm, we record the largest max packet size for each interval, and
2222  * assume all packets will be that size.
2223  *
2224  * For interval 0, we obviously must schedule all packets for each interval.
2225  * The bandwidth for interval 0 is just the amount of data to be transmitted
2226  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2227  * the number of packets).
2228  *
2229  * For interval 1, we have two possible microframes to schedule those packets
2230  * in.  For this algorithm, if we can schedule the same number of packets for
2231  * each possible scheduling opportunity (each microframe), we will do so.  The
2232  * remaining number of packets will be saved to be transmitted in the gaps in
2233  * the next interval's scheduling sequence.
2234  *
2235  * As we move those remaining packets to be scheduled with interval 2 packets,
2236  * we have to double the number of remaining packets to transmit.  This is
2237  * because the intervals are actually powers of 2, and we would be transmitting
2238  * the previous interval's packets twice in this interval.  We also have to be
2239  * sure that when we look at the largest max packet size for this interval, we
2240  * also look at the largest max packet size for the remaining packets and take
2241  * the greater of the two.
2242  *
2243  * The algorithm continues to evenly distribute packets in each scheduling
2244  * opportunity, and push the remaining packets out, until we get to the last
2245  * interval.  Then those packets and their associated overhead are just added
2246  * to the bandwidth used.
2247  */
2248 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2249                 struct xhci_virt_device *virt_dev,
2250                 int old_active_eps)
2251 {
2252         unsigned int bw_reserved;
2253         unsigned int max_bandwidth;
2254         unsigned int bw_used;
2255         unsigned int block_size;
2256         struct xhci_interval_bw_table *bw_table;
2257         unsigned int packet_size = 0;
2258         unsigned int overhead = 0;
2259         unsigned int packets_transmitted = 0;
2260         unsigned int packets_remaining = 0;
2261         unsigned int i;
2262
2263         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2264                 return xhci_check_ss_bw(xhci, virt_dev);
2265
2266         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2267                 max_bandwidth = HS_BW_LIMIT;
2268                 /* Convert percent of bus BW reserved to blocks reserved */
2269                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2270         } else {
2271                 max_bandwidth = FS_BW_LIMIT;
2272                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2273         }
2274
2275         bw_table = virt_dev->bw_table;
2276         /* We need to translate the max packet size and max ESIT payloads into
2277          * the units the hardware uses.
2278          */
2279         block_size = xhci_get_block_size(virt_dev->udev);
2280
2281         /* If we are manipulating a LS/FS device under a HS hub, double check
2282          * that the HS bus has enough bandwidth if we are activing a new TT.
2283          */
2284         if (virt_dev->tt_info) {
2285                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2286                                 "Recalculating BW for rootport %u",
2287                                 virt_dev->real_port);
2288                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2289                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2290                                         "newly activated TT.\n");
2291                         return -ENOMEM;
2292                 }
2293                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2294                                 "Recalculating BW for TT slot %u port %u",
2295                                 virt_dev->tt_info->slot_id,
2296                                 virt_dev->tt_info->ttport);
2297         } else {
2298                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2299                                 "Recalculating BW for rootport %u",
2300                                 virt_dev->real_port);
2301         }
2302
2303         /* Add in how much bandwidth will be used for interval zero, or the
2304          * rounded max ESIT payload + number of packets * largest overhead.
2305          */
2306         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2307                 bw_table->interval_bw[0].num_packets *
2308                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2309
2310         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2311                 unsigned int bw_added;
2312                 unsigned int largest_mps;
2313                 unsigned int interval_overhead;
2314
2315                 /*
2316                  * How many packets could we transmit in this interval?
2317                  * If packets didn't fit in the previous interval, we will need
2318                  * to transmit that many packets twice within this interval.
2319                  */
2320                 packets_remaining = 2 * packets_remaining +
2321                         bw_table->interval_bw[i].num_packets;
2322
2323                 /* Find the largest max packet size of this or the previous
2324                  * interval.
2325                  */
2326                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2327                         largest_mps = 0;
2328                 else {
2329                         struct xhci_virt_ep *virt_ep;
2330                         struct list_head *ep_entry;
2331
2332                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2333                         virt_ep = list_entry(ep_entry,
2334                                         struct xhci_virt_ep, bw_endpoint_list);
2335                         /* Convert to blocks, rounding up */
2336                         largest_mps = DIV_ROUND_UP(
2337                                         virt_ep->bw_info.max_packet_size,
2338                                         block_size);
2339                 }
2340                 if (largest_mps > packet_size)
2341                         packet_size = largest_mps;
2342
2343                 /* Use the larger overhead of this or the previous interval. */
2344                 interval_overhead = xhci_get_largest_overhead(
2345                                 &bw_table->interval_bw[i]);
2346                 if (interval_overhead > overhead)
2347                         overhead = interval_overhead;
2348
2349                 /* How many packets can we evenly distribute across
2350                  * (1 << (i + 1)) possible scheduling opportunities?
2351                  */
2352                 packets_transmitted = packets_remaining >> (i + 1);
2353
2354                 /* Add in the bandwidth used for those scheduled packets */
2355                 bw_added = packets_transmitted * (overhead + packet_size);
2356
2357                 /* How many packets do we have remaining to transmit? */
2358                 packets_remaining = packets_remaining % (1 << (i + 1));
2359
2360                 /* What largest max packet size should those packets have? */
2361                 /* If we've transmitted all packets, don't carry over the
2362                  * largest packet size.
2363                  */
2364                 if (packets_remaining == 0) {
2365                         packet_size = 0;
2366                         overhead = 0;
2367                 } else if (packets_transmitted > 0) {
2368                         /* Otherwise if we do have remaining packets, and we've
2369                          * scheduled some packets in this interval, take the
2370                          * largest max packet size from endpoints with this
2371                          * interval.
2372                          */
2373                         packet_size = largest_mps;
2374                         overhead = interval_overhead;
2375                 }
2376                 /* Otherwise carry over packet_size and overhead from the last
2377                  * time we had a remainder.
2378                  */
2379                 bw_used += bw_added;
2380                 if (bw_used > max_bandwidth) {
2381                         xhci_warn(xhci, "Not enough bandwidth. "
2382                                         "Proposed: %u, Max: %u\n",
2383                                 bw_used, max_bandwidth);
2384                         return -ENOMEM;
2385                 }
2386         }
2387         /*
2388          * Ok, we know we have some packets left over after even-handedly
2389          * scheduling interval 15.  We don't know which microframes they will
2390          * fit into, so we over-schedule and say they will be scheduled every
2391          * microframe.
2392          */
2393         if (packets_remaining > 0)
2394                 bw_used += overhead + packet_size;
2395
2396         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2397                 unsigned int port_index = virt_dev->real_port - 1;
2398
2399                 /* OK, we're manipulating a HS device attached to a
2400                  * root port bandwidth domain.  Include the number of active TTs
2401                  * in the bandwidth used.
2402                  */
2403                 bw_used += TT_HS_OVERHEAD *
2404                         xhci->rh_bw[port_index].num_active_tts;
2405         }
2406
2407         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2408                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2409                 "Available: %u " "percent",
2410                 bw_used, max_bandwidth, bw_reserved,
2411                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2412                 max_bandwidth);
2413
2414         bw_used += bw_reserved;
2415         if (bw_used > max_bandwidth) {
2416                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2417                                 bw_used, max_bandwidth);
2418                 return -ENOMEM;
2419         }
2420
2421         bw_table->bw_used = bw_used;
2422         return 0;
2423 }
2424
2425 static bool xhci_is_async_ep(unsigned int ep_type)
2426 {
2427         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2428                                         ep_type != ISOC_IN_EP &&
2429                                         ep_type != INT_IN_EP);
2430 }
2431
2432 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2433 {
2434         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2435 }
2436
2437 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2438 {
2439         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2440
2441         if (ep_bw->ep_interval == 0)
2442                 return SS_OVERHEAD_BURST +
2443                         (ep_bw->mult * ep_bw->num_packets *
2444                                         (SS_OVERHEAD + mps));
2445         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2446                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2447                                 1 << ep_bw->ep_interval);
2448
2449 }
2450
2451 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2452                 struct xhci_bw_info *ep_bw,
2453                 struct xhci_interval_bw_table *bw_table,
2454                 struct usb_device *udev,
2455                 struct xhci_virt_ep *virt_ep,
2456                 struct xhci_tt_bw_info *tt_info)
2457 {
2458         struct xhci_interval_bw *interval_bw;
2459         int normalized_interval;
2460
2461         if (xhci_is_async_ep(ep_bw->type))
2462                 return;
2463
2464         if (udev->speed >= USB_SPEED_SUPER) {
2465                 if (xhci_is_sync_in_ep(ep_bw->type))
2466                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2467                                 xhci_get_ss_bw_consumed(ep_bw);
2468                 else
2469                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2470                                 xhci_get_ss_bw_consumed(ep_bw);
2471                 return;
2472         }
2473
2474         /* SuperSpeed endpoints never get added to intervals in the table, so
2475          * this check is only valid for HS/FS/LS devices.
2476          */
2477         if (list_empty(&virt_ep->bw_endpoint_list))
2478                 return;
2479         /* For LS/FS devices, we need to translate the interval expressed in
2480          * microframes to frames.
2481          */
2482         if (udev->speed == USB_SPEED_HIGH)
2483                 normalized_interval = ep_bw->ep_interval;
2484         else
2485                 normalized_interval = ep_bw->ep_interval - 3;
2486
2487         if (normalized_interval == 0)
2488                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2489         interval_bw = &bw_table->interval_bw[normalized_interval];
2490         interval_bw->num_packets -= ep_bw->num_packets;
2491         switch (udev->speed) {
2492         case USB_SPEED_LOW:
2493                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2494                 break;
2495         case USB_SPEED_FULL:
2496                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2497                 break;
2498         case USB_SPEED_HIGH:
2499                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2500                 break;
2501         case USB_SPEED_SUPER:
2502         case USB_SPEED_SUPER_PLUS:
2503         case USB_SPEED_UNKNOWN:
2504         case USB_SPEED_WIRELESS:
2505                 /* Should never happen because only LS/FS/HS endpoints will get
2506                  * added to the endpoint list.
2507                  */
2508                 return;
2509         }
2510         if (tt_info)
2511                 tt_info->active_eps -= 1;
2512         list_del_init(&virt_ep->bw_endpoint_list);
2513 }
2514
2515 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2516                 struct xhci_bw_info *ep_bw,
2517                 struct xhci_interval_bw_table *bw_table,
2518                 struct usb_device *udev,
2519                 struct xhci_virt_ep *virt_ep,
2520                 struct xhci_tt_bw_info *tt_info)
2521 {
2522         struct xhci_interval_bw *interval_bw;
2523         struct xhci_virt_ep *smaller_ep;
2524         int normalized_interval;
2525
2526         if (xhci_is_async_ep(ep_bw->type))
2527                 return;
2528
2529         if (udev->speed == USB_SPEED_SUPER) {
2530                 if (xhci_is_sync_in_ep(ep_bw->type))
2531                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2532                                 xhci_get_ss_bw_consumed(ep_bw);
2533                 else
2534                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2535                                 xhci_get_ss_bw_consumed(ep_bw);
2536                 return;
2537         }
2538
2539         /* For LS/FS devices, we need to translate the interval expressed in
2540          * microframes to frames.
2541          */
2542         if (udev->speed == USB_SPEED_HIGH)
2543                 normalized_interval = ep_bw->ep_interval;
2544         else
2545                 normalized_interval = ep_bw->ep_interval - 3;
2546
2547         if (normalized_interval == 0)
2548                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2549         interval_bw = &bw_table->interval_bw[normalized_interval];
2550         interval_bw->num_packets += ep_bw->num_packets;
2551         switch (udev->speed) {
2552         case USB_SPEED_LOW:
2553                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2554                 break;
2555         case USB_SPEED_FULL:
2556                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2557                 break;
2558         case USB_SPEED_HIGH:
2559                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2560                 break;
2561         case USB_SPEED_SUPER:
2562         case USB_SPEED_SUPER_PLUS:
2563         case USB_SPEED_UNKNOWN:
2564         case USB_SPEED_WIRELESS:
2565                 /* Should never happen because only LS/FS/HS endpoints will get
2566                  * added to the endpoint list.
2567                  */
2568                 return;
2569         }
2570
2571         if (tt_info)
2572                 tt_info->active_eps += 1;
2573         /* Insert the endpoint into the list, largest max packet size first. */
2574         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2575                         bw_endpoint_list) {
2576                 if (ep_bw->max_packet_size >=
2577                                 smaller_ep->bw_info.max_packet_size) {
2578                         /* Add the new ep before the smaller endpoint */
2579                         list_add_tail(&virt_ep->bw_endpoint_list,
2580                                         &smaller_ep->bw_endpoint_list);
2581                         return;
2582                 }
2583         }
2584         /* Add the new endpoint at the end of the list. */
2585         list_add_tail(&virt_ep->bw_endpoint_list,
2586                         &interval_bw->endpoints);
2587 }
2588
2589 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2590                 struct xhci_virt_device *virt_dev,
2591                 int old_active_eps)
2592 {
2593         struct xhci_root_port_bw_info *rh_bw_info;
2594         if (!virt_dev->tt_info)
2595                 return;
2596
2597         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2598         if (old_active_eps == 0 &&
2599                                 virt_dev->tt_info->active_eps != 0) {
2600                 rh_bw_info->num_active_tts += 1;
2601                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2602         } else if (old_active_eps != 0 &&
2603                                 virt_dev->tt_info->active_eps == 0) {
2604                 rh_bw_info->num_active_tts -= 1;
2605                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2606         }
2607 }
2608
2609 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2610                 struct xhci_virt_device *virt_dev,
2611                 struct xhci_container_ctx *in_ctx)
2612 {
2613         struct xhci_bw_info ep_bw_info[31];
2614         int i;
2615         struct xhci_input_control_ctx *ctrl_ctx;
2616         int old_active_eps = 0;
2617
2618         if (virt_dev->tt_info)
2619                 old_active_eps = virt_dev->tt_info->active_eps;
2620
2621         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2622         if (!ctrl_ctx) {
2623                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2624                                 __func__);
2625                 return -ENOMEM;
2626         }
2627
2628         for (i = 0; i < 31; i++) {
2629                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2630                         continue;
2631
2632                 /* Make a copy of the BW info in case we need to revert this */
2633                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2634                                 sizeof(ep_bw_info[i]));
2635                 /* Drop the endpoint from the interval table if the endpoint is
2636                  * being dropped or changed.
2637                  */
2638                 if (EP_IS_DROPPED(ctrl_ctx, i))
2639                         xhci_drop_ep_from_interval_table(xhci,
2640                                         &virt_dev->eps[i].bw_info,
2641                                         virt_dev->bw_table,
2642                                         virt_dev->udev,
2643                                         &virt_dev->eps[i],
2644                                         virt_dev->tt_info);
2645         }
2646         /* Overwrite the information stored in the endpoints' bw_info */
2647         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2648         for (i = 0; i < 31; i++) {
2649                 /* Add any changed or added endpoints to the interval table */
2650                 if (EP_IS_ADDED(ctrl_ctx, i))
2651                         xhci_add_ep_to_interval_table(xhci,
2652                                         &virt_dev->eps[i].bw_info,
2653                                         virt_dev->bw_table,
2654                                         virt_dev->udev,
2655                                         &virt_dev->eps[i],
2656                                         virt_dev->tt_info);
2657         }
2658
2659         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2660                 /* Ok, this fits in the bandwidth we have.
2661                  * Update the number of active TTs.
2662                  */
2663                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2664                 return 0;
2665         }
2666
2667         /* We don't have enough bandwidth for this, revert the stored info. */
2668         for (i = 0; i < 31; i++) {
2669                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2670                         continue;
2671
2672                 /* Drop the new copies of any added or changed endpoints from
2673                  * the interval table.
2674                  */
2675                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2676                         xhci_drop_ep_from_interval_table(xhci,
2677                                         &virt_dev->eps[i].bw_info,
2678                                         virt_dev->bw_table,
2679                                         virt_dev->udev,
2680                                         &virt_dev->eps[i],
2681                                         virt_dev->tt_info);
2682                 }
2683                 /* Revert the endpoint back to its old information */
2684                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2685                                 sizeof(ep_bw_info[i]));
2686                 /* Add any changed or dropped endpoints back into the table */
2687                 if (EP_IS_DROPPED(ctrl_ctx, i))
2688                         xhci_add_ep_to_interval_table(xhci,
2689                                         &virt_dev->eps[i].bw_info,
2690                                         virt_dev->bw_table,
2691                                         virt_dev->udev,
2692                                         &virt_dev->eps[i],
2693                                         virt_dev->tt_info);
2694         }
2695         return -ENOMEM;
2696 }
2697
2698
2699 /* Issue a configure endpoint command or evaluate context command
2700  * and wait for it to finish.
2701  */
2702 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2703                 struct usb_device *udev,
2704                 struct xhci_command *command,
2705                 bool ctx_change, bool must_succeed)
2706 {
2707         int ret;
2708         unsigned long flags;
2709         struct xhci_input_control_ctx *ctrl_ctx;
2710         struct xhci_virt_device *virt_dev;
2711         struct xhci_slot_ctx *slot_ctx;
2712
2713         if (!command)
2714                 return -EINVAL;
2715
2716         spin_lock_irqsave(&xhci->lock, flags);
2717
2718         if (xhci->xhc_state & XHCI_STATE_DYING) {
2719                 spin_unlock_irqrestore(&xhci->lock, flags);
2720                 return -ESHUTDOWN;
2721         }
2722
2723         virt_dev = xhci->devs[udev->slot_id];
2724
2725         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2726         if (!ctrl_ctx) {
2727                 spin_unlock_irqrestore(&xhci->lock, flags);
2728                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2729                                 __func__);
2730                 return -ENOMEM;
2731         }
2732
2733         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2734                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2735                 spin_unlock_irqrestore(&xhci->lock, flags);
2736                 xhci_warn(xhci, "Not enough host resources, "
2737                                 "active endpoint contexts = %u\n",
2738                                 xhci->num_active_eps);
2739                 return -ENOMEM;
2740         }
2741         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2742             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2743                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2744                         xhci_free_host_resources(xhci, ctrl_ctx);
2745                 spin_unlock_irqrestore(&xhci->lock, flags);
2746                 xhci_warn(xhci, "Not enough bandwidth\n");
2747                 return -ENOMEM;
2748         }
2749
2750         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2751         trace_xhci_configure_endpoint(slot_ctx);
2752
2753         if (!ctx_change)
2754                 ret = xhci_queue_configure_endpoint(xhci, command,
2755                                 command->in_ctx->dma,
2756                                 udev->slot_id, must_succeed);
2757         else
2758                 ret = xhci_queue_evaluate_context(xhci, command,
2759                                 command->in_ctx->dma,
2760                                 udev->slot_id, must_succeed);
2761         if (ret < 0) {
2762                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2763                         xhci_free_host_resources(xhci, ctrl_ctx);
2764                 spin_unlock_irqrestore(&xhci->lock, flags);
2765                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2766                                 "FIXME allocate a new ring segment");
2767                 return -ENOMEM;
2768         }
2769         xhci_ring_cmd_db(xhci);
2770         spin_unlock_irqrestore(&xhci->lock, flags);
2771
2772         /* Wait for the configure endpoint command to complete */
2773         wait_for_completion(command->completion);
2774
2775         if (!ctx_change)
2776                 ret = xhci_configure_endpoint_result(xhci, udev,
2777                                                      &command->status);
2778         else
2779                 ret = xhci_evaluate_context_result(xhci, udev,
2780                                                    &command->status);
2781
2782         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2783                 spin_lock_irqsave(&xhci->lock, flags);
2784                 /* If the command failed, remove the reserved resources.
2785                  * Otherwise, clean up the estimate to include dropped eps.
2786                  */
2787                 if (ret)
2788                         xhci_free_host_resources(xhci, ctrl_ctx);
2789                 else
2790                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2791                 spin_unlock_irqrestore(&xhci->lock, flags);
2792         }
2793         return ret;
2794 }
2795
2796 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2797         struct xhci_virt_device *vdev, int i)
2798 {
2799         struct xhci_virt_ep *ep = &vdev->eps[i];
2800
2801         if (ep->ep_state & EP_HAS_STREAMS) {
2802                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2803                                 xhci_get_endpoint_address(i));
2804                 xhci_free_stream_info(xhci, ep->stream_info);
2805                 ep->stream_info = NULL;
2806                 ep->ep_state &= ~EP_HAS_STREAMS;
2807         }
2808 }
2809
2810 /* Called after one or more calls to xhci_add_endpoint() or
2811  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2812  * to call xhci_reset_bandwidth().
2813  *
2814  * Since we are in the middle of changing either configuration or
2815  * installing a new alt setting, the USB core won't allow URBs to be
2816  * enqueued for any endpoint on the old config or interface.  Nothing
2817  * else should be touching the xhci->devs[slot_id] structure, so we
2818  * don't need to take the xhci->lock for manipulating that.
2819  */
2820 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2821 {
2822         int i;
2823         int ret = 0;
2824         struct xhci_hcd *xhci;
2825         struct xhci_virt_device *virt_dev;
2826         struct xhci_input_control_ctx *ctrl_ctx;
2827         struct xhci_slot_ctx *slot_ctx;
2828         struct xhci_command *command;
2829
2830         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2831         if (ret <= 0)
2832                 return ret;
2833         xhci = hcd_to_xhci(hcd);
2834         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2835                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2836                 return -ENODEV;
2837
2838         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2839         virt_dev = xhci->devs[udev->slot_id];
2840
2841         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2842         if (!command)
2843                 return -ENOMEM;
2844
2845         command->in_ctx = virt_dev->in_ctx;
2846
2847         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2848         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2849         if (!ctrl_ctx) {
2850                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2851                                 __func__);
2852                 ret = -ENOMEM;
2853                 goto command_cleanup;
2854         }
2855         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2856         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2857         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2858
2859         /* Don't issue the command if there's no endpoints to update. */
2860         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2861             ctrl_ctx->drop_flags == 0) {
2862                 ret = 0;
2863                 goto command_cleanup;
2864         }
2865         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2866         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2867         for (i = 31; i >= 1; i--) {
2868                 __le32 le32 = cpu_to_le32(BIT(i));
2869
2870                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2871                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2872                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2873                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2874                         break;
2875                 }
2876         }
2877
2878         ret = xhci_configure_endpoint(xhci, udev, command,
2879                         false, false);
2880         if (ret)
2881                 /* Callee should call reset_bandwidth() */
2882                 goto command_cleanup;
2883
2884         /* Free any rings that were dropped, but not changed. */
2885         for (i = 1; i < 31; i++) {
2886                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2887                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2888                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2889                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2890                 }
2891         }
2892         xhci_zero_in_ctx(xhci, virt_dev);
2893         /*
2894          * Install any rings for completely new endpoints or changed endpoints,
2895          * and free any old rings from changed endpoints.
2896          */
2897         for (i = 1; i < 31; i++) {
2898                 if (!virt_dev->eps[i].new_ring)
2899                         continue;
2900                 /* Only free the old ring if it exists.
2901                  * It may not if this is the first add of an endpoint.
2902                  */
2903                 if (virt_dev->eps[i].ring) {
2904                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2905                 }
2906                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2907                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2908                 virt_dev->eps[i].new_ring = NULL;
2909         }
2910 command_cleanup:
2911         kfree(command->completion);
2912         kfree(command);
2913
2914         return ret;
2915 }
2916
2917 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2918 {
2919         struct xhci_hcd *xhci;
2920         struct xhci_virt_device *virt_dev;
2921         int i, ret;
2922
2923         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2924         if (ret <= 0)
2925                 return;
2926         xhci = hcd_to_xhci(hcd);
2927
2928         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2929         virt_dev = xhci->devs[udev->slot_id];
2930         /* Free any rings allocated for added endpoints */
2931         for (i = 0; i < 31; i++) {
2932                 if (virt_dev->eps[i].new_ring) {
2933                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2934                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2935                         virt_dev->eps[i].new_ring = NULL;
2936                 }
2937         }
2938         xhci_zero_in_ctx(xhci, virt_dev);
2939 }
2940
2941 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2942                 struct xhci_container_ctx *in_ctx,
2943                 struct xhci_container_ctx *out_ctx,
2944                 struct xhci_input_control_ctx *ctrl_ctx,
2945                 u32 add_flags, u32 drop_flags)
2946 {
2947         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2948         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2949         xhci_slot_copy(xhci, in_ctx, out_ctx);
2950         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2951 }
2952
2953 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2954                 unsigned int slot_id, unsigned int ep_index,
2955                 struct xhci_dequeue_state *deq_state)
2956 {
2957         struct xhci_input_control_ctx *ctrl_ctx;
2958         struct xhci_container_ctx *in_ctx;
2959         struct xhci_ep_ctx *ep_ctx;
2960         u32 added_ctxs;
2961         dma_addr_t addr;
2962
2963         in_ctx = xhci->devs[slot_id]->in_ctx;
2964         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2965         if (!ctrl_ctx) {
2966                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2967                                 __func__);
2968                 return;
2969         }
2970
2971         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2972                         xhci->devs[slot_id]->out_ctx, ep_index);
2973         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2974         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2975                         deq_state->new_deq_ptr);
2976         if (addr == 0) {
2977                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2978                                 "reset ep command\n");
2979                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2980                                 deq_state->new_deq_seg,
2981                                 deq_state->new_deq_ptr);
2982                 return;
2983         }
2984         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2985
2986         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2987         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2988                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2989                         added_ctxs, added_ctxs);
2990 }
2991
2992 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2993                                unsigned int stream_id, struct xhci_td *td)
2994 {
2995         struct xhci_dequeue_state deq_state;
2996         struct usb_device *udev = td->urb->dev;
2997
2998         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2999                         "Cleaning up stalled endpoint ring");
3000         /* We need to move the HW's dequeue pointer past this TD,
3001          * or it will attempt to resend it on the next doorbell ring.
3002          */
3003         xhci_find_new_dequeue_state(xhci, udev->slot_id,
3004                         ep_index, stream_id, td, &deq_state);
3005
3006         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3007                 return;
3008
3009         /* HW with the reset endpoint quirk will use the saved dequeue state to
3010          * issue a configure endpoint command later.
3011          */
3012         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3013                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3014                                 "Queueing new dequeue state");
3015                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
3016                                 ep_index, &deq_state);
3017         } else {
3018                 /* Better hope no one uses the input context between now and the
3019                  * reset endpoint completion!
3020                  * XXX: No idea how this hardware will react when stream rings
3021                  * are enabled.
3022                  */
3023                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3024                                 "Setting up input context for "
3025                                 "configure endpoint command");
3026                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
3027                                 ep_index, &deq_state);
3028         }
3029 }
3030
3031 /*
3032  * Called after usb core issues a clear halt control message.
3033  * The host side of the halt should already be cleared by a reset endpoint
3034  * command issued when the STALL event was received.
3035  *
3036  * The reset endpoint command may only be issued to endpoints in the halted
3037  * state. For software that wishes to reset the data toggle or sequence number
3038  * of an endpoint that isn't in the halted state this function will issue a
3039  * configure endpoint command with the Drop and Add bits set for the target
3040  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3041  */
3042
3043 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3044                 struct usb_host_endpoint *host_ep)
3045 {
3046         struct xhci_hcd *xhci;
3047         struct usb_device *udev;
3048         struct xhci_virt_device *vdev;
3049         struct xhci_virt_ep *ep;
3050         struct xhci_input_control_ctx *ctrl_ctx;
3051         struct xhci_command *stop_cmd, *cfg_cmd;
3052         unsigned int ep_index;
3053         unsigned long flags;
3054         u32 ep_flag;
3055
3056         xhci = hcd_to_xhci(hcd);
3057         if (!host_ep->hcpriv)
3058                 return;
3059         udev = (struct usb_device *) host_ep->hcpriv;
3060         vdev = xhci->devs[udev->slot_id];
3061         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3062         ep = &vdev->eps[ep_index];
3063
3064         /* Bail out if toggle is already being cleared by a endpoint reset */
3065         if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3066                 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3067                 return;
3068         }
3069         /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3070         if (usb_endpoint_xfer_control(&host_ep->desc) ||
3071             usb_endpoint_xfer_isoc(&host_ep->desc))
3072                 return;
3073
3074         ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3075
3076         if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3077                 return;
3078
3079         stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3080         if (!stop_cmd)
3081                 return;
3082
3083         cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3084         if (!cfg_cmd)
3085                 goto cleanup;
3086
3087         spin_lock_irqsave(&xhci->lock, flags);
3088
3089         /* block queuing new trbs and ringing ep doorbell */
3090         ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3091
3092         /*
3093          * Make sure endpoint ring is empty before resetting the toggle/seq.
3094          * Driver is required to synchronously cancel all transfer request.
3095          * Stop the endpoint to force xHC to update the output context
3096          */
3097
3098         if (!list_empty(&ep->ring->td_list)) {
3099                 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3100                 spin_unlock_irqrestore(&xhci->lock, flags);
3101                 xhci_free_command(xhci, cfg_cmd);
3102                 goto cleanup;
3103         }
3104         xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, ep_index, 0);
3105         xhci_ring_cmd_db(xhci);
3106         spin_unlock_irqrestore(&xhci->lock, flags);
3107
3108         wait_for_completion(stop_cmd->completion);
3109
3110         spin_lock_irqsave(&xhci->lock, flags);
3111
3112         /* config ep command clears toggle if add and drop ep flags are set */
3113         ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3114         xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3115                                            ctrl_ctx, ep_flag, ep_flag);
3116         xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3117
3118         xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3119                                       udev->slot_id, false);
3120         xhci_ring_cmd_db(xhci);
3121         spin_unlock_irqrestore(&xhci->lock, flags);
3122
3123         wait_for_completion(cfg_cmd->completion);
3124
3125         ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3126         xhci_free_command(xhci, cfg_cmd);
3127 cleanup:
3128         xhci_free_command(xhci, stop_cmd);
3129 }
3130
3131 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3132                 struct usb_device *udev, struct usb_host_endpoint *ep,
3133                 unsigned int slot_id)
3134 {
3135         int ret;
3136         unsigned int ep_index;
3137         unsigned int ep_state;
3138
3139         if (!ep)
3140                 return -EINVAL;
3141         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3142         if (ret <= 0)
3143                 return -EINVAL;
3144         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3145                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3146                                 " descriptor for ep 0x%x does not support streams\n",
3147                                 ep->desc.bEndpointAddress);
3148                 return -EINVAL;
3149         }
3150
3151         ep_index = xhci_get_endpoint_index(&ep->desc);
3152         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3153         if (ep_state & EP_HAS_STREAMS ||
3154                         ep_state & EP_GETTING_STREAMS) {
3155                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3156                                 "already has streams set up.\n",
3157                                 ep->desc.bEndpointAddress);
3158                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3159                                 "dynamic stream context array reallocation.\n");
3160                 return -EINVAL;
3161         }
3162         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3163                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3164                                 "endpoint 0x%x; URBs are pending.\n",
3165                                 ep->desc.bEndpointAddress);
3166                 return -EINVAL;
3167         }
3168         return 0;
3169 }
3170
3171 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3172                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3173 {
3174         unsigned int max_streams;
3175
3176         /* The stream context array size must be a power of two */
3177         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3178         /*
3179          * Find out how many primary stream array entries the host controller
3180          * supports.  Later we may use secondary stream arrays (similar to 2nd
3181          * level page entries), but that's an optional feature for xHCI host
3182          * controllers. xHCs must support at least 4 stream IDs.
3183          */
3184         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3185         if (*num_stream_ctxs > max_streams) {
3186                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3187                                 max_streams);
3188                 *num_stream_ctxs = max_streams;
3189                 *num_streams = max_streams;
3190         }
3191 }
3192
3193 /* Returns an error code if one of the endpoint already has streams.
3194  * This does not change any data structures, it only checks and gathers
3195  * information.
3196  */
3197 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3198                 struct usb_device *udev,
3199                 struct usb_host_endpoint **eps, unsigned int num_eps,
3200                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3201 {
3202         unsigned int max_streams;
3203         unsigned int endpoint_flag;
3204         int i;
3205         int ret;
3206
3207         for (i = 0; i < num_eps; i++) {
3208                 ret = xhci_check_streams_endpoint(xhci, udev,
3209                                 eps[i], udev->slot_id);
3210                 if (ret < 0)
3211                         return ret;
3212
3213                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3214                 if (max_streams < (*num_streams - 1)) {
3215                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3216                                         eps[i]->desc.bEndpointAddress,
3217                                         max_streams);
3218                         *num_streams = max_streams+1;
3219                 }
3220
3221                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3222                 if (*changed_ep_bitmask & endpoint_flag)
3223                         return -EINVAL;
3224                 *changed_ep_bitmask |= endpoint_flag;
3225         }
3226         return 0;
3227 }
3228
3229 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3230                 struct usb_device *udev,
3231                 struct usb_host_endpoint **eps, unsigned int num_eps)
3232 {
3233         u32 changed_ep_bitmask = 0;
3234         unsigned int slot_id;
3235         unsigned int ep_index;
3236         unsigned int ep_state;
3237         int i;
3238
3239         slot_id = udev->slot_id;
3240         if (!xhci->devs[slot_id])
3241                 return 0;
3242
3243         for (i = 0; i < num_eps; i++) {
3244                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3245                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3246                 /* Are streams already being freed for the endpoint? */
3247                 if (ep_state & EP_GETTING_NO_STREAMS) {
3248                         xhci_warn(xhci, "WARN Can't disable streams for "
3249                                         "endpoint 0x%x, "
3250                                         "streams are being disabled already\n",
3251                                         eps[i]->desc.bEndpointAddress);
3252                         return 0;
3253                 }
3254                 /* Are there actually any streams to free? */
3255                 if (!(ep_state & EP_HAS_STREAMS) &&
3256                                 !(ep_state & EP_GETTING_STREAMS)) {
3257                         xhci_warn(xhci, "WARN Can't disable streams for "
3258                                         "endpoint 0x%x, "
3259                                         "streams are already disabled!\n",
3260                                         eps[i]->desc.bEndpointAddress);
3261                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3262                                         "with non-streams endpoint\n");
3263                         return 0;
3264                 }
3265                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3266         }
3267         return changed_ep_bitmask;
3268 }
3269
3270 /*
3271  * The USB device drivers use this function (through the HCD interface in USB
3272  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3273  * coordinate mass storage command queueing across multiple endpoints (basically
3274  * a stream ID == a task ID).
3275  *
3276  * Setting up streams involves allocating the same size stream context array
3277  * for each endpoint and issuing a configure endpoint command for all endpoints.
3278  *
3279  * Don't allow the call to succeed if one endpoint only supports one stream
3280  * (which means it doesn't support streams at all).
3281  *
3282  * Drivers may get less stream IDs than they asked for, if the host controller
3283  * hardware or endpoints claim they can't support the number of requested
3284  * stream IDs.
3285  */
3286 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3287                 struct usb_host_endpoint **eps, unsigned int num_eps,
3288                 unsigned int num_streams, gfp_t mem_flags)
3289 {
3290         int i, ret;
3291         struct xhci_hcd *xhci;
3292         struct xhci_virt_device *vdev;
3293         struct xhci_command *config_cmd;
3294         struct xhci_input_control_ctx *ctrl_ctx;
3295         unsigned int ep_index;
3296         unsigned int num_stream_ctxs;
3297         unsigned int max_packet;
3298         unsigned long flags;
3299         u32 changed_ep_bitmask = 0;
3300
3301         if (!eps)
3302                 return -EINVAL;
3303
3304         /* Add one to the number of streams requested to account for
3305          * stream 0 that is reserved for xHCI usage.
3306          */
3307         num_streams += 1;
3308         xhci = hcd_to_xhci(hcd);
3309         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3310                         num_streams);
3311
3312         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3313         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3314                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3315                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3316                 return -ENOSYS;
3317         }
3318
3319         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3320         if (!config_cmd)
3321                 return -ENOMEM;
3322
3323         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3324         if (!ctrl_ctx) {
3325                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3326                                 __func__);
3327                 xhci_free_command(xhci, config_cmd);
3328                 return -ENOMEM;
3329         }
3330
3331         /* Check to make sure all endpoints are not already configured for
3332          * streams.  While we're at it, find the maximum number of streams that
3333          * all the endpoints will support and check for duplicate endpoints.
3334          */
3335         spin_lock_irqsave(&xhci->lock, flags);
3336         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3337                         num_eps, &num_streams, &changed_ep_bitmask);
3338         if (ret < 0) {
3339                 xhci_free_command(xhci, config_cmd);
3340                 spin_unlock_irqrestore(&xhci->lock, flags);
3341                 return ret;
3342         }
3343         if (num_streams <= 1) {
3344                 xhci_warn(xhci, "WARN: endpoints can't handle "
3345                                 "more than one stream.\n");
3346                 xhci_free_command(xhci, config_cmd);
3347                 spin_unlock_irqrestore(&xhci->lock, flags);
3348                 return -EINVAL;
3349         }
3350         vdev = xhci->devs[udev->slot_id];
3351         /* Mark each endpoint as being in transition, so
3352          * xhci_urb_enqueue() will reject all URBs.
3353          */
3354         for (i = 0; i < num_eps; i++) {
3355                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3356                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3357         }
3358         spin_unlock_irqrestore(&xhci->lock, flags);
3359
3360         /* Setup internal data structures and allocate HW data structures for
3361          * streams (but don't install the HW structures in the input context
3362          * until we're sure all memory allocation succeeded).
3363          */
3364         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3365         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3366                         num_stream_ctxs, num_streams);
3367
3368         for (i = 0; i < num_eps; i++) {
3369                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3370                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3371                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3372                                 num_stream_ctxs,
3373                                 num_streams,
3374                                 max_packet, mem_flags);
3375                 if (!vdev->eps[ep_index].stream_info)
3376                         goto cleanup;
3377                 /* Set maxPstreams in endpoint context and update deq ptr to
3378                  * point to stream context array. FIXME
3379                  */
3380         }
3381
3382         /* Set up the input context for a configure endpoint command. */
3383         for (i = 0; i < num_eps; i++) {
3384                 struct xhci_ep_ctx *ep_ctx;
3385
3386                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3387                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3388
3389                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3390                                 vdev->out_ctx, ep_index);
3391                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3392                                 vdev->eps[ep_index].stream_info);
3393         }
3394         /* Tell the HW to drop its old copy of the endpoint context info
3395          * and add the updated copy from the input context.
3396          */
3397         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3398                         vdev->out_ctx, ctrl_ctx,
3399                         changed_ep_bitmask, changed_ep_bitmask);
3400
3401         /* Issue and wait for the configure endpoint command */
3402         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3403                         false, false);
3404
3405         /* xHC rejected the configure endpoint command for some reason, so we
3406          * leave the old ring intact and free our internal streams data
3407          * structure.
3408          */
3409         if (ret < 0)
3410                 goto cleanup;
3411
3412         spin_lock_irqsave(&xhci->lock, flags);
3413         for (i = 0; i < num_eps; i++) {
3414                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3415                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3416                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3417                          udev->slot_id, ep_index);
3418                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3419         }
3420         xhci_free_command(xhci, config_cmd);
3421         spin_unlock_irqrestore(&xhci->lock, flags);
3422
3423         /* Subtract 1 for stream 0, which drivers can't use */
3424         return num_streams - 1;
3425
3426 cleanup:
3427         /* If it didn't work, free the streams! */
3428         for (i = 0; i < num_eps; i++) {
3429                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3430                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3431                 vdev->eps[ep_index].stream_info = NULL;
3432                 /* FIXME Unset maxPstreams in endpoint context and
3433                  * update deq ptr to point to normal string ring.
3434                  */
3435                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3436                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3437                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3438         }
3439         xhci_free_command(xhci, config_cmd);
3440         return -ENOMEM;
3441 }
3442
3443 /* Transition the endpoint from using streams to being a "normal" endpoint
3444  * without streams.
3445  *
3446  * Modify the endpoint context state, submit a configure endpoint command,
3447  * and free all endpoint rings for streams if that completes successfully.
3448  */
3449 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3450                 struct usb_host_endpoint **eps, unsigned int num_eps,
3451                 gfp_t mem_flags)
3452 {
3453         int i, ret;
3454         struct xhci_hcd *xhci;
3455         struct xhci_virt_device *vdev;
3456         struct xhci_command *command;
3457         struct xhci_input_control_ctx *ctrl_ctx;
3458         unsigned int ep_index;
3459         unsigned long flags;
3460         u32 changed_ep_bitmask;
3461
3462         xhci = hcd_to_xhci(hcd);
3463         vdev = xhci->devs[udev->slot_id];
3464
3465         /* Set up a configure endpoint command to remove the streams rings */
3466         spin_lock_irqsave(&xhci->lock, flags);
3467         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3468                         udev, eps, num_eps);
3469         if (changed_ep_bitmask == 0) {
3470                 spin_unlock_irqrestore(&xhci->lock, flags);
3471                 return -EINVAL;
3472         }
3473
3474         /* Use the xhci_command structure from the first endpoint.  We may have
3475          * allocated too many, but the driver may call xhci_free_streams() for
3476          * each endpoint it grouped into one call to xhci_alloc_streams().
3477          */
3478         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3479         command = vdev->eps[ep_index].stream_info->free_streams_command;
3480         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3481         if (!ctrl_ctx) {
3482                 spin_unlock_irqrestore(&xhci->lock, flags);
3483                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3484                                 __func__);
3485                 return -EINVAL;
3486         }
3487
3488         for (i = 0; i < num_eps; i++) {
3489                 struct xhci_ep_ctx *ep_ctx;
3490
3491                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3492                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3493                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3494                         EP_GETTING_NO_STREAMS;
3495
3496                 xhci_endpoint_copy(xhci, command->in_ctx,
3497                                 vdev->out_ctx, ep_index);
3498                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3499                                 &vdev->eps[ep_index]);
3500         }
3501         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3502                         vdev->out_ctx, ctrl_ctx,
3503                         changed_ep_bitmask, changed_ep_bitmask);
3504         spin_unlock_irqrestore(&xhci->lock, flags);
3505
3506         /* Issue and wait for the configure endpoint command,
3507          * which must succeed.
3508          */
3509         ret = xhci_configure_endpoint(xhci, udev, command,
3510                         false, true);
3511
3512         /* xHC rejected the configure endpoint command for some reason, so we
3513          * leave the streams rings intact.
3514          */
3515         if (ret < 0)
3516                 return ret;
3517
3518         spin_lock_irqsave(&xhci->lock, flags);
3519         for (i = 0; i < num_eps; i++) {
3520                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3521                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3522                 vdev->eps[ep_index].stream_info = NULL;
3523                 /* FIXME Unset maxPstreams in endpoint context and
3524                  * update deq ptr to point to normal string ring.
3525                  */
3526                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3527                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3528         }
3529         spin_unlock_irqrestore(&xhci->lock, flags);
3530
3531         return 0;
3532 }
3533
3534 /*
3535  * Deletes endpoint resources for endpoints that were active before a Reset
3536  * Device command, or a Disable Slot command.  The Reset Device command leaves
3537  * the control endpoint intact, whereas the Disable Slot command deletes it.
3538  *
3539  * Must be called with xhci->lock held.
3540  */
3541 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3542         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3543 {
3544         int i;
3545         unsigned int num_dropped_eps = 0;
3546         unsigned int drop_flags = 0;
3547
3548         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3549                 if (virt_dev->eps[i].ring) {
3550                         drop_flags |= 1 << i;
3551                         num_dropped_eps++;
3552                 }
3553         }
3554         xhci->num_active_eps -= num_dropped_eps;
3555         if (num_dropped_eps)
3556                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3557                                 "Dropped %u ep ctxs, flags = 0x%x, "
3558                                 "%u now active.",
3559                                 num_dropped_eps, drop_flags,
3560                                 xhci->num_active_eps);
3561 }
3562
3563 /*
3564  * This submits a Reset Device Command, which will set the device state to 0,
3565  * set the device address to 0, and disable all the endpoints except the default
3566  * control endpoint.  The USB core should come back and call
3567  * xhci_address_device(), and then re-set up the configuration.  If this is
3568  * called because of a usb_reset_and_verify_device(), then the old alternate
3569  * settings will be re-installed through the normal bandwidth allocation
3570  * functions.
3571  *
3572  * Wait for the Reset Device command to finish.  Remove all structures
3573  * associated with the endpoints that were disabled.  Clear the input device
3574  * structure? Reset the control endpoint 0 max packet size?
3575  *
3576  * If the virt_dev to be reset does not exist or does not match the udev,
3577  * it means the device is lost, possibly due to the xHC restore error and
3578  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3579  * re-allocate the device.
3580  */
3581 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3582                 struct usb_device *udev)
3583 {
3584         int ret, i;
3585         unsigned long flags;
3586         struct xhci_hcd *xhci;
3587         unsigned int slot_id;
3588         struct xhci_virt_device *virt_dev;
3589         struct xhci_command *reset_device_cmd;
3590         struct xhci_slot_ctx *slot_ctx;
3591         int old_active_eps = 0;
3592
3593         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3594         if (ret <= 0)
3595                 return ret;
3596         xhci = hcd_to_xhci(hcd);
3597         slot_id = udev->slot_id;
3598         virt_dev = xhci->devs[slot_id];
3599         if (!virt_dev) {
3600                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3601                                 "not exist. Re-allocate the device\n", slot_id);
3602                 ret = xhci_alloc_dev(hcd, udev);
3603                 if (ret == 1)
3604                         return 0;
3605                 else
3606                         return -EINVAL;
3607         }
3608
3609         if (virt_dev->tt_info)
3610                 old_active_eps = virt_dev->tt_info->active_eps;
3611
3612         if (virt_dev->udev != udev) {
3613                 /* If the virt_dev and the udev does not match, this virt_dev
3614                  * may belong to another udev.
3615                  * Re-allocate the device.
3616                  */
3617                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3618                                 "not match the udev. Re-allocate the device\n",
3619                                 slot_id);
3620                 ret = xhci_alloc_dev(hcd, udev);
3621                 if (ret == 1)
3622                         return 0;
3623                 else
3624                         return -EINVAL;
3625         }
3626
3627         /* If device is not setup, there is no point in resetting it */
3628         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3629         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3630                                                 SLOT_STATE_DISABLED)
3631                 return 0;
3632
3633         trace_xhci_discover_or_reset_device(slot_ctx);
3634
3635         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3636         /* Allocate the command structure that holds the struct completion.
3637          * Assume we're in process context, since the normal device reset
3638          * process has to wait for the device anyway.  Storage devices are
3639          * reset as part of error handling, so use GFP_NOIO instead of
3640          * GFP_KERNEL.
3641          */
3642         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3643         if (!reset_device_cmd) {
3644                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3645                 return -ENOMEM;
3646         }
3647
3648         /* Attempt to submit the Reset Device command to the command ring */
3649         spin_lock_irqsave(&xhci->lock, flags);
3650
3651         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3652         if (ret) {
3653                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3654                 spin_unlock_irqrestore(&xhci->lock, flags);
3655                 goto command_cleanup;
3656         }
3657         xhci_ring_cmd_db(xhci);
3658         spin_unlock_irqrestore(&xhci->lock, flags);
3659
3660         /* Wait for the Reset Device command to finish */
3661         wait_for_completion(reset_device_cmd->completion);
3662
3663         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3664          * unless we tried to reset a slot ID that wasn't enabled,
3665          * or the device wasn't in the addressed or configured state.
3666          */
3667         ret = reset_device_cmd->status;
3668         switch (ret) {
3669         case COMP_COMMAND_ABORTED:
3670         case COMP_COMMAND_RING_STOPPED:
3671                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3672                 ret = -ETIME;
3673                 goto command_cleanup;
3674         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3675         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3676                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3677                                 slot_id,
3678                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3679                 xhci_dbg(xhci, "Not freeing device rings.\n");
3680                 /* Don't treat this as an error.  May change my mind later. */
3681                 ret = 0;
3682                 goto command_cleanup;
3683         case COMP_SUCCESS:
3684                 xhci_dbg(xhci, "Successful reset device command.\n");
3685                 break;
3686         default:
3687                 if (xhci_is_vendor_info_code(xhci, ret))
3688                         break;
3689                 xhci_warn(xhci, "Unknown completion code %u for "
3690                                 "reset device command.\n", ret);
3691                 ret = -EINVAL;
3692                 goto command_cleanup;
3693         }
3694
3695         /* Free up host controller endpoint resources */
3696         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3697                 spin_lock_irqsave(&xhci->lock, flags);
3698                 /* Don't delete the default control endpoint resources */
3699                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3700                 spin_unlock_irqrestore(&xhci->lock, flags);
3701         }
3702
3703         /* Everything but endpoint 0 is disabled, so free the rings. */
3704         for (i = 1; i < 31; i++) {
3705                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3706
3707                 if (ep->ep_state & EP_HAS_STREAMS) {
3708                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3709                                         xhci_get_endpoint_address(i));
3710                         xhci_free_stream_info(xhci, ep->stream_info);
3711                         ep->stream_info = NULL;
3712                         ep->ep_state &= ~EP_HAS_STREAMS;
3713                 }
3714
3715                 if (ep->ring) {
3716                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3717                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3718                 }
3719                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3720                         xhci_drop_ep_from_interval_table(xhci,
3721                                         &virt_dev->eps[i].bw_info,
3722                                         virt_dev->bw_table,
3723                                         udev,
3724                                         &virt_dev->eps[i],
3725                                         virt_dev->tt_info);
3726                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3727         }
3728         /* If necessary, update the number of active TTs on this root port */
3729         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3730         ret = 0;
3731
3732 command_cleanup:
3733         xhci_free_command(xhci, reset_device_cmd);
3734         return ret;
3735 }
3736
3737 /*
3738  * At this point, the struct usb_device is about to go away, the device has
3739  * disconnected, and all traffic has been stopped and the endpoints have been
3740  * disabled.  Free any HC data structures associated with that device.
3741  */
3742 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3743 {
3744         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3745         struct xhci_virt_device *virt_dev;
3746         struct xhci_slot_ctx *slot_ctx;
3747         int i, ret;
3748
3749 #ifndef CONFIG_USB_DEFAULT_PERSIST
3750         /*
3751          * We called pm_runtime_get_noresume when the device was attached.
3752          * Decrement the counter here to allow controller to runtime suspend
3753          * if no devices remain.
3754          */
3755         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3756                 pm_runtime_put_noidle(hcd->self.controller);
3757 #endif
3758
3759         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3760         /* If the host is halted due to driver unload, we still need to free the
3761          * device.
3762          */
3763         if (ret <= 0 && ret != -ENODEV)
3764                 return;
3765
3766         virt_dev = xhci->devs[udev->slot_id];
3767         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3768         trace_xhci_free_dev(slot_ctx);
3769
3770         /* Stop any wayward timer functions (which may grab the lock) */
3771         for (i = 0; i < 31; i++) {
3772                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3773                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3774         }
3775         xhci_debugfs_remove_slot(xhci, udev->slot_id);
3776         virt_dev->udev = NULL;
3777         ret = xhci_disable_slot(xhci, udev->slot_id);
3778         if (ret)
3779                 xhci_free_virt_device(xhci, udev->slot_id);
3780 }
3781
3782 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3783 {
3784         struct xhci_command *command;
3785         unsigned long flags;
3786         u32 state;
3787         int ret = 0;
3788
3789         command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3790         if (!command)
3791                 return -ENOMEM;
3792
3793         spin_lock_irqsave(&xhci->lock, flags);
3794         /* Don't disable the slot if the host controller is dead. */
3795         state = readl(&xhci->op_regs->status);
3796         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3797                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3798                 spin_unlock_irqrestore(&xhci->lock, flags);
3799                 kfree(command);
3800                 return -ENODEV;
3801         }
3802
3803         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3804                                 slot_id);
3805         if (ret) {
3806                 spin_unlock_irqrestore(&xhci->lock, flags);
3807                 kfree(command);
3808                 return ret;
3809         }
3810         xhci_ring_cmd_db(xhci);
3811         spin_unlock_irqrestore(&xhci->lock, flags);
3812         return ret;
3813 }
3814
3815 /*
3816  * Checks if we have enough host controller resources for the default control
3817  * endpoint.
3818  *
3819  * Must be called with xhci->lock held.
3820  */
3821 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3822 {
3823         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3824                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3825                                 "Not enough ep ctxs: "
3826                                 "%u active, need to add 1, limit is %u.",
3827                                 xhci->num_active_eps, xhci->limit_active_eps);
3828                 return -ENOMEM;
3829         }
3830         xhci->num_active_eps += 1;
3831         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3832                         "Adding 1 ep ctx, %u now active.",
3833                         xhci->num_active_eps);
3834         return 0;
3835 }
3836
3837
3838 /*
3839  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3840  * timed out, or allocating memory failed.  Returns 1 on success.
3841  */
3842 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3843 {
3844         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3845         struct xhci_virt_device *vdev;
3846         struct xhci_slot_ctx *slot_ctx;
3847         unsigned long flags;
3848         int ret, slot_id;
3849         struct xhci_command *command;
3850
3851         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3852         if (!command)
3853                 return 0;
3854
3855         spin_lock_irqsave(&xhci->lock, flags);
3856         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3857         if (ret) {
3858                 spin_unlock_irqrestore(&xhci->lock, flags);
3859                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3860                 xhci_free_command(xhci, command);
3861                 return 0;
3862         }
3863         xhci_ring_cmd_db(xhci);
3864         spin_unlock_irqrestore(&xhci->lock, flags);
3865
3866         wait_for_completion(command->completion);
3867         slot_id = command->slot_id;
3868
3869         if (!slot_id || command->status != COMP_SUCCESS) {
3870                 xhci_err(xhci, "Error while assigning device slot ID\n");
3871                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3872                                 HCS_MAX_SLOTS(
3873                                         readl(&xhci->cap_regs->hcs_params1)));
3874                 xhci_free_command(xhci, command);
3875                 return 0;
3876         }
3877
3878         xhci_free_command(xhci, command);
3879
3880         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3881                 spin_lock_irqsave(&xhci->lock, flags);
3882                 ret = xhci_reserve_host_control_ep_resources(xhci);
3883                 if (ret) {
3884                         spin_unlock_irqrestore(&xhci->lock, flags);
3885                         xhci_warn(xhci, "Not enough host resources, "
3886                                         "active endpoint contexts = %u\n",
3887                                         xhci->num_active_eps);
3888                         goto disable_slot;
3889                 }
3890                 spin_unlock_irqrestore(&xhci->lock, flags);
3891         }
3892         /* Use GFP_NOIO, since this function can be called from
3893          * xhci_discover_or_reset_device(), which may be called as part of
3894          * mass storage driver error handling.
3895          */
3896         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3897                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3898                 goto disable_slot;
3899         }
3900         vdev = xhci->devs[slot_id];
3901         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3902         trace_xhci_alloc_dev(slot_ctx);
3903
3904         udev->slot_id = slot_id;
3905
3906         xhci_debugfs_create_slot(xhci, slot_id);
3907
3908 #ifndef CONFIG_USB_DEFAULT_PERSIST
3909         /*
3910          * If resetting upon resume, we can't put the controller into runtime
3911          * suspend if there is a device attached.
3912          */
3913         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3914                 pm_runtime_get_noresume(hcd->self.controller);
3915 #endif
3916
3917         /* Is this a LS or FS device under a HS hub? */
3918         /* Hub or peripherial? */
3919         return 1;
3920
3921 disable_slot:
3922         ret = xhci_disable_slot(xhci, udev->slot_id);
3923         if (ret)
3924                 xhci_free_virt_device(xhci, udev->slot_id);
3925
3926         return 0;
3927 }
3928
3929 /*
3930  * Issue an Address Device command and optionally send a corresponding
3931  * SetAddress request to the device.
3932  */
3933 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3934                              enum xhci_setup_dev setup)
3935 {
3936         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3937         unsigned long flags;
3938         struct xhci_virt_device *virt_dev;
3939         int ret = 0;
3940         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3941         struct xhci_slot_ctx *slot_ctx;
3942         struct xhci_input_control_ctx *ctrl_ctx;
3943         u64 temp_64;
3944         struct xhci_command *command = NULL;
3945
3946         mutex_lock(&xhci->mutex);
3947
3948         if (xhci->xhc_state) {  /* dying, removing or halted */
3949                 ret = -ESHUTDOWN;
3950                 goto out;
3951         }
3952
3953         if (!udev->slot_id) {
3954                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3955                                 "Bad Slot ID %d", udev->slot_id);
3956                 ret = -EINVAL;
3957                 goto out;
3958         }
3959
3960         virt_dev = xhci->devs[udev->slot_id];
3961
3962         if (WARN_ON(!virt_dev)) {
3963                 /*
3964                  * In plug/unplug torture test with an NEC controller,
3965                  * a zero-dereference was observed once due to virt_dev = 0.
3966                  * Print useful debug rather than crash if it is observed again!
3967                  */
3968                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3969                         udev->slot_id);
3970                 ret = -EINVAL;
3971                 goto out;
3972         }
3973         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3974         trace_xhci_setup_device_slot(slot_ctx);
3975
3976         if (setup == SETUP_CONTEXT_ONLY) {
3977                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3978                     SLOT_STATE_DEFAULT) {
3979                         xhci_dbg(xhci, "Slot already in default state\n");
3980                         goto out;
3981                 }
3982         }
3983
3984         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3985         if (!command) {
3986                 ret = -ENOMEM;
3987                 goto out;
3988         }
3989
3990         command->in_ctx = virt_dev->in_ctx;
3991
3992         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3993         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3994         if (!ctrl_ctx) {
3995                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3996                                 __func__);
3997                 ret = -EINVAL;
3998                 goto out;
3999         }
4000         /*
4001          * If this is the first Set Address since device plug-in or
4002          * virt_device realloaction after a resume with an xHCI power loss,
4003          * then set up the slot context.
4004          */
4005         if (!slot_ctx->dev_info)
4006                 xhci_setup_addressable_virt_dev(xhci, udev);
4007         /* Otherwise, update the control endpoint ring enqueue pointer. */
4008         else
4009                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4010         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4011         ctrl_ctx->drop_flags = 0;
4012
4013         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4014                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4015
4016         spin_lock_irqsave(&xhci->lock, flags);
4017         trace_xhci_setup_device(virt_dev);
4018         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4019                                         udev->slot_id, setup);
4020         if (ret) {
4021                 spin_unlock_irqrestore(&xhci->lock, flags);
4022                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4023                                 "FIXME: allocate a command ring segment");
4024                 goto out;
4025         }
4026         xhci_ring_cmd_db(xhci);
4027         spin_unlock_irqrestore(&xhci->lock, flags);
4028
4029         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4030         wait_for_completion(command->completion);
4031
4032         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4033          * the SetAddress() "recovery interval" required by USB and aborting the
4034          * command on a timeout.
4035          */
4036         switch (command->status) {
4037         case COMP_COMMAND_ABORTED:
4038         case COMP_COMMAND_RING_STOPPED:
4039                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4040                 ret = -ETIME;
4041                 break;
4042         case COMP_CONTEXT_STATE_ERROR:
4043         case COMP_SLOT_NOT_ENABLED_ERROR:
4044                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4045                          act, udev->slot_id);
4046                 ret = -EINVAL;
4047                 break;
4048         case COMP_USB_TRANSACTION_ERROR:
4049                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4050
4051                 mutex_unlock(&xhci->mutex);
4052                 ret = xhci_disable_slot(xhci, udev->slot_id);
4053                 if (!ret)
4054                         xhci_alloc_dev(hcd, udev);
4055                 kfree(command->completion);
4056                 kfree(command);
4057                 return -EPROTO;
4058         case COMP_INCOMPATIBLE_DEVICE_ERROR:
4059                 dev_warn(&udev->dev,
4060                          "ERROR: Incompatible device for setup %s command\n", act);
4061                 ret = -ENODEV;
4062                 break;
4063         case COMP_SUCCESS:
4064                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4065                                "Successful setup %s command", act);
4066                 break;
4067         default:
4068                 xhci_err(xhci,
4069                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
4070                          act, command->status);
4071                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4072                 ret = -EINVAL;
4073                 break;
4074         }
4075         if (ret)
4076                 goto out;
4077         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4078         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4079                         "Op regs DCBAA ptr = %#016llx", temp_64);
4080         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4081                 "Slot ID %d dcbaa entry @%p = %#016llx",
4082                 udev->slot_id,
4083                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4084                 (unsigned long long)
4085                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4086         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4087                         "Output Context DMA address = %#08llx",
4088                         (unsigned long long)virt_dev->out_ctx->dma);
4089         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4090                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4091         /*
4092          * USB core uses address 1 for the roothubs, so we add one to the
4093          * address given back to us by the HC.
4094          */
4095         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4096                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4097         /* Zero the input context control for later use */
4098         ctrl_ctx->add_flags = 0;
4099         ctrl_ctx->drop_flags = 0;
4100
4101         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4102                        "Internal device address = %d",
4103                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4104 out:
4105         mutex_unlock(&xhci->mutex);
4106         if (command) {
4107                 kfree(command->completion);
4108                 kfree(command);
4109         }
4110         return ret;
4111 }
4112
4113 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4114 {
4115         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4116 }
4117
4118 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4119 {
4120         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4121 }
4122
4123 /*
4124  * Transfer the port index into real index in the HW port status
4125  * registers. Caculate offset between the port's PORTSC register
4126  * and port status base. Divide the number of per port register
4127  * to get the real index. The raw port number bases 1.
4128  */
4129 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4130 {
4131         struct xhci_hub *rhub;
4132
4133         rhub = xhci_get_rhub(hcd);
4134         return rhub->ports[port1 - 1]->hw_portnum + 1;
4135 }
4136
4137 /*
4138  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4139  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4140  */
4141 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4142                         struct usb_device *udev, u16 max_exit_latency)
4143 {
4144         struct xhci_virt_device *virt_dev;
4145         struct xhci_command *command;
4146         struct xhci_input_control_ctx *ctrl_ctx;
4147         struct xhci_slot_ctx *slot_ctx;
4148         unsigned long flags;
4149         int ret;
4150
4151         spin_lock_irqsave(&xhci->lock, flags);
4152
4153         virt_dev = xhci->devs[udev->slot_id];
4154
4155         /*
4156          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4157          * xHC was re-initialized. Exit latency will be set later after
4158          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4159          */
4160
4161         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4162                 spin_unlock_irqrestore(&xhci->lock, flags);
4163                 return 0;
4164         }
4165
4166         /* Attempt to issue an Evaluate Context command to change the MEL. */
4167         command = xhci->lpm_command;
4168         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4169         if (!ctrl_ctx) {
4170                 spin_unlock_irqrestore(&xhci->lock, flags);
4171                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4172                                 __func__);
4173                 return -ENOMEM;
4174         }
4175
4176         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4177         spin_unlock_irqrestore(&xhci->lock, flags);
4178
4179         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4180         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4181         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4182         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4183         slot_ctx->dev_state = 0;
4184
4185         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4186                         "Set up evaluate context for LPM MEL change.");
4187
4188         /* Issue and wait for the evaluate context command. */
4189         ret = xhci_configure_endpoint(xhci, udev, command,
4190                         true, true);
4191
4192         if (!ret) {
4193                 spin_lock_irqsave(&xhci->lock, flags);
4194                 virt_dev->current_mel = max_exit_latency;
4195                 spin_unlock_irqrestore(&xhci->lock, flags);
4196         }
4197         return ret;
4198 }
4199
4200 #ifdef CONFIG_PM
4201
4202 /* BESL to HIRD Encoding array for USB2 LPM */
4203 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4204         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4205
4206 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4207 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4208                                         struct usb_device *udev)
4209 {
4210         int u2del, besl, besl_host;
4211         int besl_device = 0;
4212         u32 field;
4213
4214         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4215         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4216
4217         if (field & USB_BESL_SUPPORT) {
4218                 for (besl_host = 0; besl_host < 16; besl_host++) {
4219                         if (xhci_besl_encoding[besl_host] >= u2del)
4220                                 break;
4221                 }
4222                 /* Use baseline BESL value as default */
4223                 if (field & USB_BESL_BASELINE_VALID)
4224                         besl_device = USB_GET_BESL_BASELINE(field);
4225                 else if (field & USB_BESL_DEEP_VALID)
4226                         besl_device = USB_GET_BESL_DEEP(field);
4227         } else {
4228                 if (u2del <= 50)
4229                         besl_host = 0;
4230                 else
4231                         besl_host = (u2del - 51) / 75 + 1;
4232         }
4233
4234         besl = besl_host + besl_device;
4235         if (besl > 15)
4236                 besl = 15;
4237
4238         return besl;
4239 }
4240
4241 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4242 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4243 {
4244         u32 field;
4245         int l1;
4246         int besld = 0;
4247         int hirdm = 0;
4248
4249         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4250
4251         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4252         l1 = udev->l1_params.timeout / 256;
4253
4254         /* device has preferred BESLD */
4255         if (field & USB_BESL_DEEP_VALID) {
4256                 besld = USB_GET_BESL_DEEP(field);
4257                 hirdm = 1;
4258         }
4259
4260         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4261 }
4262
4263 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4264                         struct usb_device *udev, int enable)
4265 {
4266         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4267         struct xhci_port **ports;
4268         __le32 __iomem  *pm_addr, *hlpm_addr;
4269         u32             pm_val, hlpm_val, field;
4270         unsigned int    port_num;
4271         unsigned long   flags;
4272         int             hird, exit_latency;
4273         int             ret;
4274
4275         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4276                         !udev->lpm_capable)
4277                 return -EPERM;
4278
4279         if (!udev->parent || udev->parent->parent ||
4280                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4281                 return -EPERM;
4282
4283         if (udev->usb2_hw_lpm_capable != 1)
4284                 return -EPERM;
4285
4286         spin_lock_irqsave(&xhci->lock, flags);
4287
4288         ports = xhci->usb2_rhub.ports;
4289         port_num = udev->portnum - 1;
4290         pm_addr = ports[port_num]->addr + PORTPMSC;
4291         pm_val = readl(pm_addr);
4292         hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4293         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4294
4295         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4296                         enable ? "enable" : "disable", port_num + 1);
4297
4298         if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4299                 /* Host supports BESL timeout instead of HIRD */
4300                 if (udev->usb2_hw_lpm_besl_capable) {
4301                         /* if device doesn't have a preferred BESL value use a
4302                          * default one which works with mixed HIRD and BESL
4303                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4304                          */
4305                         if ((field & USB_BESL_SUPPORT) &&
4306                             (field & USB_BESL_BASELINE_VALID))
4307                                 hird = USB_GET_BESL_BASELINE(field);
4308                         else
4309                                 hird = udev->l1_params.besl;
4310
4311                         exit_latency = xhci_besl_encoding[hird];
4312                         spin_unlock_irqrestore(&xhci->lock, flags);
4313
4314                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4315                          * input context for link powermanagement evaluate
4316                          * context commands. It is protected by hcd->bandwidth
4317                          * mutex and is shared by all devices. We need to set
4318                          * the max ext latency in USB 2 BESL LPM as well, so
4319                          * use the same mutex and xhci_change_max_exit_latency()
4320                          */
4321                         mutex_lock(hcd->bandwidth_mutex);
4322                         ret = xhci_change_max_exit_latency(xhci, udev,
4323                                                            exit_latency);
4324                         mutex_unlock(hcd->bandwidth_mutex);
4325
4326                         if (ret < 0)
4327                                 return ret;
4328                         spin_lock_irqsave(&xhci->lock, flags);
4329
4330                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4331                         writel(hlpm_val, hlpm_addr);
4332                         /* flush write */
4333                         readl(hlpm_addr);
4334                 } else {
4335                         hird = xhci_calculate_hird_besl(xhci, udev);
4336                 }
4337
4338                 pm_val &= ~PORT_HIRD_MASK;
4339                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4340                 writel(pm_val, pm_addr);
4341                 pm_val = readl(pm_addr);
4342                 pm_val |= PORT_HLE;
4343                 writel(pm_val, pm_addr);
4344                 /* flush write */
4345                 readl(pm_addr);
4346         } else {
4347                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4348                 writel(pm_val, pm_addr);
4349                 /* flush write */
4350                 readl(pm_addr);
4351                 if (udev->usb2_hw_lpm_besl_capable) {
4352                         spin_unlock_irqrestore(&xhci->lock, flags);
4353                         mutex_lock(hcd->bandwidth_mutex);
4354                         xhci_change_max_exit_latency(xhci, udev, 0);
4355                         mutex_unlock(hcd->bandwidth_mutex);
4356                         return 0;
4357                 }
4358         }
4359
4360         spin_unlock_irqrestore(&xhci->lock, flags);
4361         return 0;
4362 }
4363
4364 /* check if a usb2 port supports a given extened capability protocol
4365  * only USB2 ports extended protocol capability values are cached.
4366  * Return 1 if capability is supported
4367  */
4368 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4369                                            unsigned capability)
4370 {
4371         u32 port_offset, port_count;
4372         int i;
4373
4374         for (i = 0; i < xhci->num_ext_caps; i++) {
4375                 if (xhci->ext_caps[i] & capability) {
4376                         /* port offsets starts at 1 */
4377                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4378                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4379                         if (port >= port_offset &&
4380                             port < port_offset + port_count)
4381                                 return 1;
4382                 }
4383         }
4384         return 0;
4385 }
4386
4387 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4388 {
4389         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4390         int             portnum = udev->portnum - 1;
4391
4392         if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4393                 return 0;
4394
4395         /* we only support lpm for non-hub device connected to root hub yet */
4396         if (!udev->parent || udev->parent->parent ||
4397                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4398                 return 0;
4399
4400         if (xhci->hw_lpm_support == 1 &&
4401                         xhci_check_usb2_port_capability(
4402                                 xhci, portnum, XHCI_HLC)) {
4403                 udev->usb2_hw_lpm_capable = 1;
4404                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4405                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4406                 if (xhci_check_usb2_port_capability(xhci, portnum,
4407                                         XHCI_BLC))
4408                         udev->usb2_hw_lpm_besl_capable = 1;
4409         }
4410
4411         return 0;
4412 }
4413
4414 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4415
4416 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4417 static unsigned long long xhci_service_interval_to_ns(
4418                 struct usb_endpoint_descriptor *desc)
4419 {
4420         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4421 }
4422
4423 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4424                 enum usb3_link_state state)
4425 {
4426         unsigned long long sel;
4427         unsigned long long pel;
4428         unsigned int max_sel_pel;
4429         char *state_name;
4430
4431         switch (state) {
4432         case USB3_LPM_U1:
4433                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4434                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4435                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4436                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4437                 state_name = "U1";
4438                 break;
4439         case USB3_LPM_U2:
4440                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4441                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4442                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4443                 state_name = "U2";
4444                 break;
4445         default:
4446                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4447                                 __func__);
4448                 return USB3_LPM_DISABLED;
4449         }
4450
4451         if (sel <= max_sel_pel && pel <= max_sel_pel)
4452                 return USB3_LPM_DEVICE_INITIATED;
4453
4454         if (sel > max_sel_pel)
4455                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4456                                 "due to long SEL %llu ms\n",
4457                                 state_name, sel);
4458         else
4459                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4460                                 "due to long PEL %llu ms\n",
4461                                 state_name, pel);
4462         return USB3_LPM_DISABLED;
4463 }
4464
4465 /* The U1 timeout should be the maximum of the following values:
4466  *  - For control endpoints, U1 system exit latency (SEL) * 3
4467  *  - For bulk endpoints, U1 SEL * 5
4468  *  - For interrupt endpoints:
4469  *    - Notification EPs, U1 SEL * 3
4470  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4471  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4472  */
4473 static unsigned long long xhci_calculate_intel_u1_timeout(
4474                 struct usb_device *udev,
4475                 struct usb_endpoint_descriptor *desc)
4476 {
4477         unsigned long long timeout_ns;
4478         int ep_type;
4479         int intr_type;
4480
4481         ep_type = usb_endpoint_type(desc);
4482         switch (ep_type) {
4483         case USB_ENDPOINT_XFER_CONTROL:
4484                 timeout_ns = udev->u1_params.sel * 3;
4485                 break;
4486         case USB_ENDPOINT_XFER_BULK:
4487                 timeout_ns = udev->u1_params.sel * 5;
4488                 break;
4489         case USB_ENDPOINT_XFER_INT:
4490                 intr_type = usb_endpoint_interrupt_type(desc);
4491                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4492                         timeout_ns = udev->u1_params.sel * 3;
4493                         break;
4494                 }
4495                 /* Otherwise the calculation is the same as isoc eps */
4496                 /* fall through */
4497         case USB_ENDPOINT_XFER_ISOC:
4498                 timeout_ns = xhci_service_interval_to_ns(desc);
4499                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4500                 if (timeout_ns < udev->u1_params.sel * 2)
4501                         timeout_ns = udev->u1_params.sel * 2;
4502                 break;
4503         default:
4504                 return 0;
4505         }
4506
4507         return timeout_ns;
4508 }
4509
4510 /* Returns the hub-encoded U1 timeout value. */
4511 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4512                 struct usb_device *udev,
4513                 struct usb_endpoint_descriptor *desc)
4514 {
4515         unsigned long long timeout_ns;
4516
4517         /* Prevent U1 if service interval is shorter than U1 exit latency */
4518         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4519                 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4520                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4521                         return USB3_LPM_DISABLED;
4522                 }
4523         }
4524
4525         if (xhci->quirks & XHCI_INTEL_HOST)
4526                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4527         else
4528                 timeout_ns = udev->u1_params.sel;
4529
4530         /* The U1 timeout is encoded in 1us intervals.
4531          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4532          */
4533         if (timeout_ns == USB3_LPM_DISABLED)
4534                 timeout_ns = 1;
4535         else
4536                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4537
4538         /* If the necessary timeout value is bigger than what we can set in the
4539          * USB 3.0 hub, we have to disable hub-initiated U1.
4540          */
4541         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4542                 return timeout_ns;
4543         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4544                         "due to long timeout %llu ms\n", timeout_ns);
4545         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4546 }
4547
4548 /* The U2 timeout should be the maximum of:
4549  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4550  *  - largest bInterval of any active periodic endpoint (to avoid going
4551  *    into lower power link states between intervals).
4552  *  - the U2 Exit Latency of the device
4553  */
4554 static unsigned long long xhci_calculate_intel_u2_timeout(
4555                 struct usb_device *udev,
4556                 struct usb_endpoint_descriptor *desc)
4557 {
4558         unsigned long long timeout_ns;
4559         unsigned long long u2_del_ns;
4560
4561         timeout_ns = 10 * 1000 * 1000;
4562
4563         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4564                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4565                 timeout_ns = xhci_service_interval_to_ns(desc);
4566
4567         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4568         if (u2_del_ns > timeout_ns)
4569                 timeout_ns = u2_del_ns;
4570
4571         return timeout_ns;
4572 }
4573
4574 /* Returns the hub-encoded U2 timeout value. */
4575 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4576                 struct usb_device *udev,
4577                 struct usb_endpoint_descriptor *desc)
4578 {
4579         unsigned long long timeout_ns;
4580
4581         /* Prevent U2 if service interval is shorter than U2 exit latency */
4582         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4583                 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4584                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4585                         return USB3_LPM_DISABLED;
4586                 }
4587         }
4588
4589         if (xhci->quirks & XHCI_INTEL_HOST)
4590                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4591         else
4592                 timeout_ns = udev->u2_params.sel;
4593
4594         /* The U2 timeout is encoded in 256us intervals */
4595         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4596         /* If the necessary timeout value is bigger than what we can set in the
4597          * USB 3.0 hub, we have to disable hub-initiated U2.
4598          */
4599         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4600                 return timeout_ns;
4601         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4602                         "due to long timeout %llu ms\n", timeout_ns);
4603         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4604 }
4605
4606 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4607                 struct usb_device *udev,
4608                 struct usb_endpoint_descriptor *desc,
4609                 enum usb3_link_state state,
4610                 u16 *timeout)
4611 {
4612         if (state == USB3_LPM_U1)
4613                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4614         else if (state == USB3_LPM_U2)
4615                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4616
4617         return USB3_LPM_DISABLED;
4618 }
4619
4620 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4621                 struct usb_device *udev,
4622                 struct usb_endpoint_descriptor *desc,
4623                 enum usb3_link_state state,
4624                 u16 *timeout)
4625 {
4626         u16 alt_timeout;
4627
4628         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4629                 desc, state, timeout);
4630
4631         /* If we found we can't enable hub-initiated LPM, or
4632          * the U1 or U2 exit latency was too high to allow
4633          * device-initiated LPM as well, just stop searching.
4634          */
4635         if (alt_timeout == USB3_LPM_DISABLED ||
4636                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4637                 *timeout = alt_timeout;
4638                 return -E2BIG;
4639         }
4640         if (alt_timeout > *timeout)
4641                 *timeout = alt_timeout;
4642         return 0;
4643 }
4644
4645 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4646                 struct usb_device *udev,
4647                 struct usb_host_interface *alt,
4648                 enum usb3_link_state state,
4649                 u16 *timeout)
4650 {
4651         int j;
4652
4653         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4654                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4655                                         &alt->endpoint[j].desc, state, timeout))
4656                         return -E2BIG;
4657                 continue;
4658         }
4659         return 0;
4660 }
4661
4662 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4663                 enum usb3_link_state state)
4664 {
4665         struct usb_device *parent;
4666         unsigned int num_hubs;
4667
4668         if (state == USB3_LPM_U2)
4669                 return 0;
4670
4671         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4672         for (parent = udev->parent, num_hubs = 0; parent->parent;
4673                         parent = parent->parent)
4674                 num_hubs++;
4675
4676         if (num_hubs < 2)
4677                 return 0;
4678
4679         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4680                         " below second-tier hub.\n");
4681         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4682                         "to decrease power consumption.\n");
4683         return -E2BIG;
4684 }
4685
4686 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4687                 struct usb_device *udev,
4688                 enum usb3_link_state state)
4689 {
4690         if (xhci->quirks & XHCI_INTEL_HOST)
4691                 return xhci_check_intel_tier_policy(udev, state);
4692         else
4693                 return 0;
4694 }
4695
4696 /* Returns the U1 or U2 timeout that should be enabled.
4697  * If the tier check or timeout setting functions return with a non-zero exit
4698  * code, that means the timeout value has been finalized and we shouldn't look
4699  * at any more endpoints.
4700  */
4701 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4702                         struct usb_device *udev, enum usb3_link_state state)
4703 {
4704         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4705         struct usb_host_config *config;
4706         char *state_name;
4707         int i;
4708         u16 timeout = USB3_LPM_DISABLED;
4709
4710         if (state == USB3_LPM_U1)
4711                 state_name = "U1";
4712         else if (state == USB3_LPM_U2)
4713                 state_name = "U2";
4714         else {
4715                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4716                                 state);
4717                 return timeout;
4718         }
4719
4720         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4721                 return timeout;
4722
4723         /* Gather some information about the currently installed configuration
4724          * and alternate interface settings.
4725          */
4726         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4727                         state, &timeout))
4728                 return timeout;
4729
4730         config = udev->actconfig;
4731         if (!config)
4732                 return timeout;
4733
4734         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4735                 struct usb_driver *driver;
4736                 struct usb_interface *intf = config->interface[i];
4737
4738                 if (!intf)
4739                         continue;
4740
4741                 /* Check if any currently bound drivers want hub-initiated LPM
4742                  * disabled.
4743                  */
4744                 if (intf->dev.driver) {
4745                         driver = to_usb_driver(intf->dev.driver);
4746                         if (driver && driver->disable_hub_initiated_lpm) {
4747                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4748                                                 "at request of driver %s\n",
4749                                                 state_name, driver->name);
4750                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4751                         }
4752                 }
4753
4754                 /* Not sure how this could happen... */
4755                 if (!intf->cur_altsetting)
4756                         continue;
4757
4758                 if (xhci_update_timeout_for_interface(xhci, udev,
4759                                         intf->cur_altsetting,
4760                                         state, &timeout))
4761                         return timeout;
4762         }
4763         return timeout;
4764 }
4765
4766 static int calculate_max_exit_latency(struct usb_device *udev,
4767                 enum usb3_link_state state_changed,
4768                 u16 hub_encoded_timeout)
4769 {
4770         unsigned long long u1_mel_us = 0;
4771         unsigned long long u2_mel_us = 0;
4772         unsigned long long mel_us = 0;
4773         bool disabling_u1;
4774         bool disabling_u2;
4775         bool enabling_u1;
4776         bool enabling_u2;
4777
4778         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4779                         hub_encoded_timeout == USB3_LPM_DISABLED);
4780         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4781                         hub_encoded_timeout == USB3_LPM_DISABLED);
4782
4783         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4784                         hub_encoded_timeout != USB3_LPM_DISABLED);
4785         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4786                         hub_encoded_timeout != USB3_LPM_DISABLED);
4787
4788         /* If U1 was already enabled and we're not disabling it,
4789          * or we're going to enable U1, account for the U1 max exit latency.
4790          */
4791         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4792                         enabling_u1)
4793                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4794         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4795                         enabling_u2)
4796                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4797
4798         if (u1_mel_us > u2_mel_us)
4799                 mel_us = u1_mel_us;
4800         else
4801                 mel_us = u2_mel_us;
4802         /* xHCI host controller max exit latency field is only 16 bits wide. */
4803         if (mel_us > MAX_EXIT) {
4804                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4805                                 "is too big.\n", mel_us);
4806                 return -E2BIG;
4807         }
4808         return mel_us;
4809 }
4810
4811 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4812 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4813                         struct usb_device *udev, enum usb3_link_state state)
4814 {
4815         struct xhci_hcd *xhci;
4816         u16 hub_encoded_timeout;
4817         int mel;
4818         int ret;
4819
4820         xhci = hcd_to_xhci(hcd);
4821         /* The LPM timeout values are pretty host-controller specific, so don't
4822          * enable hub-initiated timeouts unless the vendor has provided
4823          * information about their timeout algorithm.
4824          */
4825         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4826                         !xhci->devs[udev->slot_id])
4827                 return USB3_LPM_DISABLED;
4828
4829         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4830         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4831         if (mel < 0) {
4832                 /* Max Exit Latency is too big, disable LPM. */
4833                 hub_encoded_timeout = USB3_LPM_DISABLED;
4834                 mel = 0;
4835         }
4836
4837         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4838         if (ret)
4839                 return ret;
4840         return hub_encoded_timeout;
4841 }
4842
4843 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4844                         struct usb_device *udev, enum usb3_link_state state)
4845 {
4846         struct xhci_hcd *xhci;
4847         u16 mel;
4848
4849         xhci = hcd_to_xhci(hcd);
4850         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4851                         !xhci->devs[udev->slot_id])
4852                 return 0;
4853
4854         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4855         return xhci_change_max_exit_latency(xhci, udev, mel);
4856 }
4857 #else /* CONFIG_PM */
4858
4859 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4860                                 struct usb_device *udev, int enable)
4861 {
4862         return 0;
4863 }
4864
4865 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4866 {
4867         return 0;
4868 }
4869
4870 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4871                         struct usb_device *udev, enum usb3_link_state state)
4872 {
4873         return USB3_LPM_DISABLED;
4874 }
4875
4876 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4877                         struct usb_device *udev, enum usb3_link_state state)
4878 {
4879         return 0;
4880 }
4881 #endif  /* CONFIG_PM */
4882
4883 /*-------------------------------------------------------------------------*/
4884
4885 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4886  * internal data structures for the device.
4887  */
4888 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4889                         struct usb_tt *tt, gfp_t mem_flags)
4890 {
4891         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4892         struct xhci_virt_device *vdev;
4893         struct xhci_command *config_cmd;
4894         struct xhci_input_control_ctx *ctrl_ctx;
4895         struct xhci_slot_ctx *slot_ctx;
4896         unsigned long flags;
4897         unsigned think_time;
4898         int ret;
4899
4900         /* Ignore root hubs */
4901         if (!hdev->parent)
4902                 return 0;
4903
4904         vdev = xhci->devs[hdev->slot_id];
4905         if (!vdev) {
4906                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4907                 return -EINVAL;
4908         }
4909
4910         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
4911         if (!config_cmd)
4912                 return -ENOMEM;
4913
4914         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4915         if (!ctrl_ctx) {
4916                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4917                                 __func__);
4918                 xhci_free_command(xhci, config_cmd);
4919                 return -ENOMEM;
4920         }
4921
4922         spin_lock_irqsave(&xhci->lock, flags);
4923         if (hdev->speed == USB_SPEED_HIGH &&
4924                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4925                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4926                 xhci_free_command(xhci, config_cmd);
4927                 spin_unlock_irqrestore(&xhci->lock, flags);
4928                 return -ENOMEM;
4929         }
4930
4931         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4932         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4933         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4934         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4935         /*
4936          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4937          * but it may be already set to 1 when setup an xHCI virtual
4938          * device, so clear it anyway.
4939          */
4940         if (tt->multi)
4941                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4942         else if (hdev->speed == USB_SPEED_FULL)
4943                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4944
4945         if (xhci->hci_version > 0x95) {
4946                 xhci_dbg(xhci, "xHCI version %x needs hub "
4947                                 "TT think time and number of ports\n",
4948                                 (unsigned int) xhci->hci_version);
4949                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4950                 /* Set TT think time - convert from ns to FS bit times.
4951                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4952                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4953                  *
4954                  * xHCI 1.0: this field shall be 0 if the device is not a
4955                  * High-spped hub.
4956                  */
4957                 think_time = tt->think_time;
4958                 if (think_time != 0)
4959                         think_time = (think_time / 666) - 1;
4960                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4961                         slot_ctx->tt_info |=
4962                                 cpu_to_le32(TT_THINK_TIME(think_time));
4963         } else {
4964                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4965                                 "TT think time or number of ports\n",
4966                                 (unsigned int) xhci->hci_version);
4967         }
4968         slot_ctx->dev_state = 0;
4969         spin_unlock_irqrestore(&xhci->lock, flags);
4970
4971         xhci_dbg(xhci, "Set up %s for hub device.\n",
4972                         (xhci->hci_version > 0x95) ?
4973                         "configure endpoint" : "evaluate context");
4974
4975         /* Issue and wait for the configure endpoint or
4976          * evaluate context command.
4977          */
4978         if (xhci->hci_version > 0x95)
4979                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4980                                 false, false);
4981         else
4982                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4983                                 true, false);
4984
4985         xhci_free_command(xhci, config_cmd);
4986         return ret;
4987 }
4988
4989 static int xhci_get_frame(struct usb_hcd *hcd)
4990 {
4991         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4992         /* EHCI mods by the periodic size.  Why? */
4993         return readl(&xhci->run_regs->microframe_index) >> 3;
4994 }
4995
4996 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4997 {
4998         struct xhci_hcd         *xhci;
4999         /*
5000          * TODO: Check with DWC3 clients for sysdev according to
5001          * quirks
5002          */
5003         struct device           *dev = hcd->self.sysdev;
5004         unsigned int            minor_rev;
5005         int                     retval;
5006
5007         /* Accept arbitrarily long scatter-gather lists */
5008         hcd->self.sg_tablesize = ~0;
5009
5010         /* support to build packet from discontinuous buffers */
5011         hcd->self.no_sg_constraint = 1;
5012
5013         /* XHCI controllers don't stop the ep queue on short packets :| */
5014         hcd->self.no_stop_on_short = 1;
5015
5016         xhci = hcd_to_xhci(hcd);
5017
5018         if (usb_hcd_is_primary_hcd(hcd)) {
5019                 xhci->main_hcd = hcd;
5020                 xhci->usb2_rhub.hcd = hcd;
5021                 /* Mark the first roothub as being USB 2.0.
5022                  * The xHCI driver will register the USB 3.0 roothub.
5023                  */
5024                 hcd->speed = HCD_USB2;
5025                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5026                 /*
5027                  * USB 2.0 roothub under xHCI has an integrated TT,
5028                  * (rate matching hub) as opposed to having an OHCI/UHCI
5029                  * companion controller.
5030                  */
5031                 hcd->has_tt = 1;
5032         } else {
5033                 /*
5034                  * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol
5035                  * minor revision instead of sbrn
5036                  */
5037                 minor_rev = xhci->usb3_rhub.min_rev;
5038                 if (minor_rev) {
5039                         hcd->speed = HCD_USB31;
5040                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5041                 }
5042                 xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n",
5043                           minor_rev,
5044                           minor_rev ? "Enhanced" : "");
5045
5046                 xhci->usb3_rhub.hcd = hcd;
5047                 /* xHCI private pointer was set in xhci_pci_probe for the second
5048                  * registered roothub.
5049                  */
5050                 return 0;
5051         }
5052
5053         mutex_init(&xhci->mutex);
5054         xhci->cap_regs = hcd->regs;
5055         xhci->op_regs = hcd->regs +
5056                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5057         xhci->run_regs = hcd->regs +
5058                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5059         /* Cache read-only capability registers */
5060         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5061         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5062         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5063         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5064         xhci->hci_version = HC_VERSION(xhci->hcc_params);
5065         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5066         if (xhci->hci_version > 0x100)
5067                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5068
5069         xhci->quirks |= quirks;
5070
5071         get_quirks(dev, xhci);
5072
5073         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5074          * success event after a short transfer. This quirk will ignore such
5075          * spurious event.
5076          */
5077         if (xhci->hci_version > 0x96)
5078                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5079
5080         /* Make sure the HC is halted. */
5081         retval = xhci_halt(xhci);
5082         if (retval)
5083                 return retval;
5084
5085         xhci_zero_64b_regs(xhci);
5086
5087         xhci_dbg(xhci, "Resetting HCD\n");
5088         /* Reset the internal HC memory state and registers. */
5089         retval = xhci_reset(xhci);
5090         if (retval)
5091                 return retval;
5092         xhci_dbg(xhci, "Reset complete\n");
5093
5094         /*
5095          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5096          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5097          * address memory pointers actually. So, this driver clears the AC64
5098          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5099          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5100          */
5101         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5102                 xhci->hcc_params &= ~BIT(0);
5103
5104         /* Set dma_mask and coherent_dma_mask to 64-bits,
5105          * if xHC supports 64-bit addressing */
5106         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5107                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5108                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5109                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5110         } else {
5111                 /*
5112                  * This is to avoid error in cases where a 32-bit USB
5113                  * controller is used on a 64-bit capable system.
5114                  */
5115                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5116                 if (retval)
5117                         return retval;
5118                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5119                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5120         }
5121
5122         xhci_dbg(xhci, "Calling HCD init\n");
5123         /* Initialize HCD and host controller data structures. */
5124         retval = xhci_init(hcd);
5125         if (retval)
5126                 return retval;
5127         xhci_dbg(xhci, "Called HCD init\n");
5128
5129         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5130                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5131
5132         return 0;
5133 }
5134 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5135
5136 static const struct hc_driver xhci_hc_driver = {
5137         .description =          "xhci-hcd",
5138         .product_desc =         "xHCI Host Controller",
5139         .hcd_priv_size =        sizeof(struct xhci_hcd),
5140
5141         /*
5142          * generic hardware linkage
5143          */
5144         .irq =                  xhci_irq,
5145         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
5146
5147         /*
5148          * basic lifecycle operations
5149          */
5150         .reset =                NULL, /* set in xhci_init_driver() */
5151         .start =                xhci_run,
5152         .stop =                 xhci_stop,
5153         .shutdown =             xhci_shutdown,
5154
5155         /*
5156          * managing i/o requests and associated device resources
5157          */
5158         .urb_enqueue =          xhci_urb_enqueue,
5159         .urb_dequeue =          xhci_urb_dequeue,
5160         .alloc_dev =            xhci_alloc_dev,
5161         .free_dev =             xhci_free_dev,
5162         .alloc_streams =        xhci_alloc_streams,
5163         .free_streams =         xhci_free_streams,
5164         .add_endpoint =         xhci_add_endpoint,
5165         .drop_endpoint =        xhci_drop_endpoint,
5166         .endpoint_reset =       xhci_endpoint_reset,
5167         .check_bandwidth =      xhci_check_bandwidth,
5168         .reset_bandwidth =      xhci_reset_bandwidth,
5169         .address_device =       xhci_address_device,
5170         .enable_device =        xhci_enable_device,
5171         .update_hub_device =    xhci_update_hub_device,
5172         .reset_device =         xhci_discover_or_reset_device,
5173
5174         /*
5175          * scheduling support
5176          */
5177         .get_frame_number =     xhci_get_frame,
5178
5179         /*
5180          * root hub support
5181          */
5182         .hub_control =          xhci_hub_control,
5183         .hub_status_data =      xhci_hub_status_data,
5184         .bus_suspend =          xhci_bus_suspend,
5185         .bus_resume =           xhci_bus_resume,
5186         .get_resuming_ports =   xhci_get_resuming_ports,
5187
5188         /*
5189          * call back when device connected and addressed
5190          */
5191         .update_device =        xhci_update_device,
5192         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5193         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5194         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5195         .find_raw_port_number = xhci_find_raw_port_number,
5196 };
5197
5198 void xhci_init_driver(struct hc_driver *drv,
5199                       const struct xhci_driver_overrides *over)
5200 {
5201         BUG_ON(!over);
5202
5203         /* Copy the generic table to drv then apply the overrides */
5204         *drv = xhci_hc_driver;
5205
5206         if (over) {
5207                 drv->hcd_priv_size += over->extra_priv_size;
5208                 if (over->reset)
5209                         drv->reset = over->reset;
5210                 if (over->start)
5211                         drv->start = over->start;
5212         }
5213 }
5214 EXPORT_SYMBOL_GPL(xhci_init_driver);
5215
5216 MODULE_DESCRIPTION(DRIVER_DESC);
5217 MODULE_AUTHOR(DRIVER_AUTHOR);
5218 MODULE_LICENSE("GPL");
5219
5220 static int __init xhci_hcd_init(void)
5221 {
5222         /*
5223          * Check the compiler generated sizes of structures that must be laid
5224          * out in specific ways for hardware access.
5225          */
5226         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5227         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5228         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5229         /* xhci_device_control has eight fields, and also
5230          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5231          */
5232         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5233         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5234         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5235         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5236         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5237         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5238         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5239
5240         if (usb_disabled())
5241                 return -ENODEV;
5242
5243         xhci_debugfs_create_root();
5244
5245         return 0;
5246 }
5247
5248 /*
5249  * If an init function is provided, an exit function must also be provided
5250  * to allow module unload.
5251  */
5252 static void __exit xhci_hcd_fini(void)
5253 {
5254         xhci_debugfs_remove_root();
5255 }
5256
5257 module_init(xhci_hcd_init);
5258 module_exit(xhci_hcd_fini);