Merge tag 'pci-v4.10-fixes-1' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[linux-2.6-block.git] / drivers / usb / host / xhci-mem.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 #include <linux/dma-mapping.h>
28
29 #include "xhci.h"
30 #include "xhci-trace.h"
31
32 /*
33  * Allocates a generic ring segment from the ring pool, sets the dma address,
34  * initializes the segment to zero, and sets the private next pointer to NULL.
35  *
36  * Section 4.11.1.1:
37  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
38  */
39 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
40                                                unsigned int cycle_state,
41                                                unsigned int max_packet,
42                                                gfp_t flags)
43 {
44         struct xhci_segment *seg;
45         dma_addr_t      dma;
46         int             i;
47
48         seg = kzalloc(sizeof *seg, flags);
49         if (!seg)
50                 return NULL;
51
52         seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
53         if (!seg->trbs) {
54                 kfree(seg);
55                 return NULL;
56         }
57
58         if (max_packet) {
59                 seg->bounce_buf = kzalloc(max_packet, flags | GFP_DMA);
60                 if (!seg->bounce_buf) {
61                         dma_pool_free(xhci->segment_pool, seg->trbs, dma);
62                         kfree(seg);
63                         return NULL;
64                 }
65         }
66         /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
67         if (cycle_state == 0) {
68                 for (i = 0; i < TRBS_PER_SEGMENT; i++)
69                         seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
70         }
71         seg->dma = dma;
72         seg->next = NULL;
73
74         return seg;
75 }
76
77 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
78 {
79         if (seg->trbs) {
80                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
81                 seg->trbs = NULL;
82         }
83         kfree(seg->bounce_buf);
84         kfree(seg);
85 }
86
87 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
88                                 struct xhci_segment *first)
89 {
90         struct xhci_segment *seg;
91
92         seg = first->next;
93         while (seg != first) {
94                 struct xhci_segment *next = seg->next;
95                 xhci_segment_free(xhci, seg);
96                 seg = next;
97         }
98         xhci_segment_free(xhci, first);
99 }
100
101 /*
102  * Make the prev segment point to the next segment.
103  *
104  * Change the last TRB in the prev segment to be a Link TRB which points to the
105  * DMA address of the next segment.  The caller needs to set any Link TRB
106  * related flags, such as End TRB, Toggle Cycle, and no snoop.
107  */
108 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
109                 struct xhci_segment *next, enum xhci_ring_type type)
110 {
111         u32 val;
112
113         if (!prev || !next)
114                 return;
115         prev->next = next;
116         if (type != TYPE_EVENT) {
117                 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
118                         cpu_to_le64(next->dma);
119
120                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
121                 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
122                 val &= ~TRB_TYPE_BITMASK;
123                 val |= TRB_TYPE(TRB_LINK);
124                 /* Always set the chain bit with 0.95 hardware */
125                 /* Set chain bit for isoc rings on AMD 0.96 host */
126                 if (xhci_link_trb_quirk(xhci) ||
127                                 (type == TYPE_ISOC &&
128                                  (xhci->quirks & XHCI_AMD_0x96_HOST)))
129                         val |= TRB_CHAIN;
130                 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
131         }
132 }
133
134 /*
135  * Link the ring to the new segments.
136  * Set Toggle Cycle for the new ring if needed.
137  */
138 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
139                 struct xhci_segment *first, struct xhci_segment *last,
140                 unsigned int num_segs)
141 {
142         struct xhci_segment *next;
143
144         if (!ring || !first || !last)
145                 return;
146
147         next = ring->enq_seg->next;
148         xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
149         xhci_link_segments(xhci, last, next, ring->type);
150         ring->num_segs += num_segs;
151         ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
152
153         if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
154                 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
155                         &= ~cpu_to_le32(LINK_TOGGLE);
156                 last->trbs[TRBS_PER_SEGMENT-1].link.control
157                         |= cpu_to_le32(LINK_TOGGLE);
158                 ring->last_seg = last;
159         }
160 }
161
162 /*
163  * We need a radix tree for mapping physical addresses of TRBs to which stream
164  * ID they belong to.  We need to do this because the host controller won't tell
165  * us which stream ring the TRB came from.  We could store the stream ID in an
166  * event data TRB, but that doesn't help us for the cancellation case, since the
167  * endpoint may stop before it reaches that event data TRB.
168  *
169  * The radix tree maps the upper portion of the TRB DMA address to a ring
170  * segment that has the same upper portion of DMA addresses.  For example, say I
171  * have segments of size 1KB, that are always 1KB aligned.  A segment may
172  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
173  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
174  * pass the radix tree a key to get the right stream ID:
175  *
176  *      0x10c90fff >> 10 = 0x43243
177  *      0x10c912c0 >> 10 = 0x43244
178  *      0x10c91400 >> 10 = 0x43245
179  *
180  * Obviously, only those TRBs with DMA addresses that are within the segment
181  * will make the radix tree return the stream ID for that ring.
182  *
183  * Caveats for the radix tree:
184  *
185  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
186  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
187  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
188  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
189  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
190  * extended systems (where the DMA address can be bigger than 32-bits),
191  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
192  */
193 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
194                 struct xhci_ring *ring,
195                 struct xhci_segment *seg,
196                 gfp_t mem_flags)
197 {
198         unsigned long key;
199         int ret;
200
201         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
202         /* Skip any segments that were already added. */
203         if (radix_tree_lookup(trb_address_map, key))
204                 return 0;
205
206         ret = radix_tree_maybe_preload(mem_flags);
207         if (ret)
208                 return ret;
209         ret = radix_tree_insert(trb_address_map,
210                         key, ring);
211         radix_tree_preload_end();
212         return ret;
213 }
214
215 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
216                 struct xhci_segment *seg)
217 {
218         unsigned long key;
219
220         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
221         if (radix_tree_lookup(trb_address_map, key))
222                 radix_tree_delete(trb_address_map, key);
223 }
224
225 static int xhci_update_stream_segment_mapping(
226                 struct radix_tree_root *trb_address_map,
227                 struct xhci_ring *ring,
228                 struct xhci_segment *first_seg,
229                 struct xhci_segment *last_seg,
230                 gfp_t mem_flags)
231 {
232         struct xhci_segment *seg;
233         struct xhci_segment *failed_seg;
234         int ret;
235
236         if (WARN_ON_ONCE(trb_address_map == NULL))
237                 return 0;
238
239         seg = first_seg;
240         do {
241                 ret = xhci_insert_segment_mapping(trb_address_map,
242                                 ring, seg, mem_flags);
243                 if (ret)
244                         goto remove_streams;
245                 if (seg == last_seg)
246                         return 0;
247                 seg = seg->next;
248         } while (seg != first_seg);
249
250         return 0;
251
252 remove_streams:
253         failed_seg = seg;
254         seg = first_seg;
255         do {
256                 xhci_remove_segment_mapping(trb_address_map, seg);
257                 if (seg == failed_seg)
258                         return ret;
259                 seg = seg->next;
260         } while (seg != first_seg);
261
262         return ret;
263 }
264
265 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
266 {
267         struct xhci_segment *seg;
268
269         if (WARN_ON_ONCE(ring->trb_address_map == NULL))
270                 return;
271
272         seg = ring->first_seg;
273         do {
274                 xhci_remove_segment_mapping(ring->trb_address_map, seg);
275                 seg = seg->next;
276         } while (seg != ring->first_seg);
277 }
278
279 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
280 {
281         return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
282                         ring->first_seg, ring->last_seg, mem_flags);
283 }
284
285 /* XXX: Do we need the hcd structure in all these functions? */
286 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
287 {
288         if (!ring)
289                 return;
290
291         if (ring->first_seg) {
292                 if (ring->type == TYPE_STREAM)
293                         xhci_remove_stream_mapping(ring);
294                 xhci_free_segments_for_ring(xhci, ring->first_seg);
295         }
296
297         kfree(ring);
298 }
299
300 static void xhci_initialize_ring_info(struct xhci_ring *ring,
301                                         unsigned int cycle_state)
302 {
303         /* The ring is empty, so the enqueue pointer == dequeue pointer */
304         ring->enqueue = ring->first_seg->trbs;
305         ring->enq_seg = ring->first_seg;
306         ring->dequeue = ring->enqueue;
307         ring->deq_seg = ring->first_seg;
308         /* The ring is initialized to 0. The producer must write 1 to the cycle
309          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
310          * compare CCS to the cycle bit to check ownership, so CCS = 1.
311          *
312          * New rings are initialized with cycle state equal to 1; if we are
313          * handling ring expansion, set the cycle state equal to the old ring.
314          */
315         ring->cycle_state = cycle_state;
316         /* Not necessary for new rings, but needed for re-initialized rings */
317         ring->enq_updates = 0;
318         ring->deq_updates = 0;
319
320         /*
321          * Each segment has a link TRB, and leave an extra TRB for SW
322          * accounting purpose
323          */
324         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
325 }
326
327 /* Allocate segments and link them for a ring */
328 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
329                 struct xhci_segment **first, struct xhci_segment **last,
330                 unsigned int num_segs, unsigned int cycle_state,
331                 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
332 {
333         struct xhci_segment *prev;
334
335         prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
336         if (!prev)
337                 return -ENOMEM;
338         num_segs--;
339
340         *first = prev;
341         while (num_segs > 0) {
342                 struct xhci_segment     *next;
343
344                 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
345                 if (!next) {
346                         prev = *first;
347                         while (prev) {
348                                 next = prev->next;
349                                 xhci_segment_free(xhci, prev);
350                                 prev = next;
351                         }
352                         return -ENOMEM;
353                 }
354                 xhci_link_segments(xhci, prev, next, type);
355
356                 prev = next;
357                 num_segs--;
358         }
359         xhci_link_segments(xhci, prev, *first, type);
360         *last = prev;
361
362         return 0;
363 }
364
365 /**
366  * Create a new ring with zero or more segments.
367  *
368  * Link each segment together into a ring.
369  * Set the end flag and the cycle toggle bit on the last segment.
370  * See section 4.9.1 and figures 15 and 16.
371  */
372 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
373                 unsigned int num_segs, unsigned int cycle_state,
374                 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
375 {
376         struct xhci_ring        *ring;
377         int ret;
378
379         ring = kzalloc(sizeof *(ring), flags);
380         if (!ring)
381                 return NULL;
382
383         ring->num_segs = num_segs;
384         ring->bounce_buf_len = max_packet;
385         INIT_LIST_HEAD(&ring->td_list);
386         ring->type = type;
387         if (num_segs == 0)
388                 return ring;
389
390         ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
391                         &ring->last_seg, num_segs, cycle_state, type,
392                         max_packet, flags);
393         if (ret)
394                 goto fail;
395
396         /* Only event ring does not use link TRB */
397         if (type != TYPE_EVENT) {
398                 /* See section 4.9.2.1 and 6.4.4.1 */
399                 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
400                         cpu_to_le32(LINK_TOGGLE);
401         }
402         xhci_initialize_ring_info(ring, cycle_state);
403         return ring;
404
405 fail:
406         kfree(ring);
407         return NULL;
408 }
409
410 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
411                 struct xhci_virt_device *virt_dev,
412                 unsigned int ep_index)
413 {
414         int rings_cached;
415
416         rings_cached = virt_dev->num_rings_cached;
417         if (rings_cached < XHCI_MAX_RINGS_CACHED) {
418                 virt_dev->ring_cache[rings_cached] =
419                         virt_dev->eps[ep_index].ring;
420                 virt_dev->num_rings_cached++;
421                 xhci_dbg(xhci, "Cached old ring, "
422                                 "%d ring%s cached\n",
423                                 virt_dev->num_rings_cached,
424                                 (virt_dev->num_rings_cached > 1) ? "s" : "");
425         } else {
426                 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
427                 xhci_dbg(xhci, "Ring cache full (%d rings), "
428                                 "freeing ring\n",
429                                 virt_dev->num_rings_cached);
430         }
431         virt_dev->eps[ep_index].ring = NULL;
432 }
433
434 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
435  * pointers to the beginning of the ring.
436  */
437 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
438                         struct xhci_ring *ring, unsigned int cycle_state,
439                         enum xhci_ring_type type)
440 {
441         struct xhci_segment     *seg = ring->first_seg;
442         int i;
443
444         do {
445                 memset(seg->trbs, 0,
446                                 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
447                 if (cycle_state == 0) {
448                         for (i = 0; i < TRBS_PER_SEGMENT; i++)
449                                 seg->trbs[i].link.control |=
450                                         cpu_to_le32(TRB_CYCLE);
451                 }
452                 /* All endpoint rings have link TRBs */
453                 xhci_link_segments(xhci, seg, seg->next, type);
454                 seg = seg->next;
455         } while (seg != ring->first_seg);
456         ring->type = type;
457         xhci_initialize_ring_info(ring, cycle_state);
458         /* td list should be empty since all URBs have been cancelled,
459          * but just in case...
460          */
461         INIT_LIST_HEAD(&ring->td_list);
462 }
463
464 /*
465  * Expand an existing ring.
466  * Look for a cached ring or allocate a new ring which has same segment numbers
467  * and link the two rings.
468  */
469 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
470                                 unsigned int num_trbs, gfp_t flags)
471 {
472         struct xhci_segment     *first;
473         struct xhci_segment     *last;
474         unsigned int            num_segs;
475         unsigned int            num_segs_needed;
476         int                     ret;
477
478         num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
479                                 (TRBS_PER_SEGMENT - 1);
480
481         /* Allocate number of segments we needed, or double the ring size */
482         num_segs = ring->num_segs > num_segs_needed ?
483                         ring->num_segs : num_segs_needed;
484
485         ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
486                         num_segs, ring->cycle_state, ring->type,
487                         ring->bounce_buf_len, flags);
488         if (ret)
489                 return -ENOMEM;
490
491         if (ring->type == TYPE_STREAM)
492                 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
493                                                 ring, first, last, flags);
494         if (ret) {
495                 struct xhci_segment *next;
496                 do {
497                         next = first->next;
498                         xhci_segment_free(xhci, first);
499                         if (first == last)
500                                 break;
501                         first = next;
502                 } while (true);
503                 return ret;
504         }
505
506         xhci_link_rings(xhci, ring, first, last, num_segs);
507         xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
508                         "ring expansion succeed, now has %d segments",
509                         ring->num_segs);
510
511         return 0;
512 }
513
514 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
515
516 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
517                                                     int type, gfp_t flags)
518 {
519         struct xhci_container_ctx *ctx;
520
521         if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
522                 return NULL;
523
524         ctx = kzalloc(sizeof(*ctx), flags);
525         if (!ctx)
526                 return NULL;
527
528         ctx->type = type;
529         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
530         if (type == XHCI_CTX_TYPE_INPUT)
531                 ctx->size += CTX_SIZE(xhci->hcc_params);
532
533         ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
534         if (!ctx->bytes) {
535                 kfree(ctx);
536                 return NULL;
537         }
538         return ctx;
539 }
540
541 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
542                              struct xhci_container_ctx *ctx)
543 {
544         if (!ctx)
545                 return;
546         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
547         kfree(ctx);
548 }
549
550 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
551                                               struct xhci_container_ctx *ctx)
552 {
553         if (ctx->type != XHCI_CTX_TYPE_INPUT)
554                 return NULL;
555
556         return (struct xhci_input_control_ctx *)ctx->bytes;
557 }
558
559 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
560                                         struct xhci_container_ctx *ctx)
561 {
562         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
563                 return (struct xhci_slot_ctx *)ctx->bytes;
564
565         return (struct xhci_slot_ctx *)
566                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
567 }
568
569 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
570                                     struct xhci_container_ctx *ctx,
571                                     unsigned int ep_index)
572 {
573         /* increment ep index by offset of start of ep ctx array */
574         ep_index++;
575         if (ctx->type == XHCI_CTX_TYPE_INPUT)
576                 ep_index++;
577
578         return (struct xhci_ep_ctx *)
579                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
580 }
581
582
583 /***************** Streams structures manipulation *************************/
584
585 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
586                 unsigned int num_stream_ctxs,
587                 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
588 {
589         struct device *dev = xhci_to_hcd(xhci)->self.controller;
590         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
591
592         if (size > MEDIUM_STREAM_ARRAY_SIZE)
593                 dma_free_coherent(dev, size,
594                                 stream_ctx, dma);
595         else if (size <= SMALL_STREAM_ARRAY_SIZE)
596                 return dma_pool_free(xhci->small_streams_pool,
597                                 stream_ctx, dma);
598         else
599                 return dma_pool_free(xhci->medium_streams_pool,
600                                 stream_ctx, dma);
601 }
602
603 /*
604  * The stream context array for each endpoint with bulk streams enabled can
605  * vary in size, based on:
606  *  - how many streams the endpoint supports,
607  *  - the maximum primary stream array size the host controller supports,
608  *  - and how many streams the device driver asks for.
609  *
610  * The stream context array must be a power of 2, and can be as small as
611  * 64 bytes or as large as 1MB.
612  */
613 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
614                 unsigned int num_stream_ctxs, dma_addr_t *dma,
615                 gfp_t mem_flags)
616 {
617         struct device *dev = xhci_to_hcd(xhci)->self.controller;
618         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
619
620         if (size > MEDIUM_STREAM_ARRAY_SIZE)
621                 return dma_alloc_coherent(dev, size,
622                                 dma, mem_flags);
623         else if (size <= SMALL_STREAM_ARRAY_SIZE)
624                 return dma_pool_alloc(xhci->small_streams_pool,
625                                 mem_flags, dma);
626         else
627                 return dma_pool_alloc(xhci->medium_streams_pool,
628                                 mem_flags, dma);
629 }
630
631 struct xhci_ring *xhci_dma_to_transfer_ring(
632                 struct xhci_virt_ep *ep,
633                 u64 address)
634 {
635         if (ep->ep_state & EP_HAS_STREAMS)
636                 return radix_tree_lookup(&ep->stream_info->trb_address_map,
637                                 address >> TRB_SEGMENT_SHIFT);
638         return ep->ring;
639 }
640
641 struct xhci_ring *xhci_stream_id_to_ring(
642                 struct xhci_virt_device *dev,
643                 unsigned int ep_index,
644                 unsigned int stream_id)
645 {
646         struct xhci_virt_ep *ep = &dev->eps[ep_index];
647
648         if (stream_id == 0)
649                 return ep->ring;
650         if (!ep->stream_info)
651                 return NULL;
652
653         if (stream_id > ep->stream_info->num_streams)
654                 return NULL;
655         return ep->stream_info->stream_rings[stream_id];
656 }
657
658 /*
659  * Change an endpoint's internal structure so it supports stream IDs.  The
660  * number of requested streams includes stream 0, which cannot be used by device
661  * drivers.
662  *
663  * The number of stream contexts in the stream context array may be bigger than
664  * the number of streams the driver wants to use.  This is because the number of
665  * stream context array entries must be a power of two.
666  */
667 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
668                 unsigned int num_stream_ctxs,
669                 unsigned int num_streams,
670                 unsigned int max_packet, gfp_t mem_flags)
671 {
672         struct xhci_stream_info *stream_info;
673         u32 cur_stream;
674         struct xhci_ring *cur_ring;
675         u64 addr;
676         int ret;
677
678         xhci_dbg(xhci, "Allocating %u streams and %u "
679                         "stream context array entries.\n",
680                         num_streams, num_stream_ctxs);
681         if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
682                 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
683                 return NULL;
684         }
685         xhci->cmd_ring_reserved_trbs++;
686
687         stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
688         if (!stream_info)
689                 goto cleanup_trbs;
690
691         stream_info->num_streams = num_streams;
692         stream_info->num_stream_ctxs = num_stream_ctxs;
693
694         /* Initialize the array of virtual pointers to stream rings. */
695         stream_info->stream_rings = kzalloc(
696                         sizeof(struct xhci_ring *)*num_streams,
697                         mem_flags);
698         if (!stream_info->stream_rings)
699                 goto cleanup_info;
700
701         /* Initialize the array of DMA addresses for stream rings for the HW. */
702         stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
703                         num_stream_ctxs, &stream_info->ctx_array_dma,
704                         mem_flags);
705         if (!stream_info->stream_ctx_array)
706                 goto cleanup_ctx;
707         memset(stream_info->stream_ctx_array, 0,
708                         sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
709
710         /* Allocate everything needed to free the stream rings later */
711         stream_info->free_streams_command =
712                 xhci_alloc_command(xhci, true, true, mem_flags);
713         if (!stream_info->free_streams_command)
714                 goto cleanup_ctx;
715
716         INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
717
718         /* Allocate rings for all the streams that the driver will use,
719          * and add their segment DMA addresses to the radix tree.
720          * Stream 0 is reserved.
721          */
722
723         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
724                 stream_info->stream_rings[cur_stream] =
725                         xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
726                                         mem_flags);
727                 cur_ring = stream_info->stream_rings[cur_stream];
728                 if (!cur_ring)
729                         goto cleanup_rings;
730                 cur_ring->stream_id = cur_stream;
731                 cur_ring->trb_address_map = &stream_info->trb_address_map;
732                 /* Set deq ptr, cycle bit, and stream context type */
733                 addr = cur_ring->first_seg->dma |
734                         SCT_FOR_CTX(SCT_PRI_TR) |
735                         cur_ring->cycle_state;
736                 stream_info->stream_ctx_array[cur_stream].stream_ring =
737                         cpu_to_le64(addr);
738                 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
739                                 cur_stream, (unsigned long long) addr);
740
741                 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
742                 if (ret) {
743                         xhci_ring_free(xhci, cur_ring);
744                         stream_info->stream_rings[cur_stream] = NULL;
745                         goto cleanup_rings;
746                 }
747         }
748         /* Leave the other unused stream ring pointers in the stream context
749          * array initialized to zero.  This will cause the xHC to give us an
750          * error if the device asks for a stream ID we don't have setup (if it
751          * was any other way, the host controller would assume the ring is
752          * "empty" and wait forever for data to be queued to that stream ID).
753          */
754
755         return stream_info;
756
757 cleanup_rings:
758         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
759                 cur_ring = stream_info->stream_rings[cur_stream];
760                 if (cur_ring) {
761                         xhci_ring_free(xhci, cur_ring);
762                         stream_info->stream_rings[cur_stream] = NULL;
763                 }
764         }
765         xhci_free_command(xhci, stream_info->free_streams_command);
766 cleanup_ctx:
767         kfree(stream_info->stream_rings);
768 cleanup_info:
769         kfree(stream_info);
770 cleanup_trbs:
771         xhci->cmd_ring_reserved_trbs--;
772         return NULL;
773 }
774 /*
775  * Sets the MaxPStreams field and the Linear Stream Array field.
776  * Sets the dequeue pointer to the stream context array.
777  */
778 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
779                 struct xhci_ep_ctx *ep_ctx,
780                 struct xhci_stream_info *stream_info)
781 {
782         u32 max_primary_streams;
783         /* MaxPStreams is the number of stream context array entries, not the
784          * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
785          * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
786          */
787         max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
788         xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
789                         "Setting number of stream ctx array entries to %u",
790                         1 << (max_primary_streams + 1));
791         ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
792         ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
793                                        | EP_HAS_LSA);
794         ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
795 }
796
797 /*
798  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
799  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
800  * not at the beginning of the ring).
801  */
802 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
803                 struct xhci_virt_ep *ep)
804 {
805         dma_addr_t addr;
806         ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
807         addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
808         ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
809 }
810
811 /* Frees all stream contexts associated with the endpoint,
812  *
813  * Caller should fix the endpoint context streams fields.
814  */
815 void xhci_free_stream_info(struct xhci_hcd *xhci,
816                 struct xhci_stream_info *stream_info)
817 {
818         int cur_stream;
819         struct xhci_ring *cur_ring;
820
821         if (!stream_info)
822                 return;
823
824         for (cur_stream = 1; cur_stream < stream_info->num_streams;
825                         cur_stream++) {
826                 cur_ring = stream_info->stream_rings[cur_stream];
827                 if (cur_ring) {
828                         xhci_ring_free(xhci, cur_ring);
829                         stream_info->stream_rings[cur_stream] = NULL;
830                 }
831         }
832         xhci_free_command(xhci, stream_info->free_streams_command);
833         xhci->cmd_ring_reserved_trbs--;
834         if (stream_info->stream_ctx_array)
835                 xhci_free_stream_ctx(xhci,
836                                 stream_info->num_stream_ctxs,
837                                 stream_info->stream_ctx_array,
838                                 stream_info->ctx_array_dma);
839
840         kfree(stream_info->stream_rings);
841         kfree(stream_info);
842 }
843
844
845 /***************** Device context manipulation *************************/
846
847 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
848                 struct xhci_virt_ep *ep)
849 {
850         setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
851                     (unsigned long)ep);
852         ep->xhci = xhci;
853 }
854
855 static void xhci_free_tt_info(struct xhci_hcd *xhci,
856                 struct xhci_virt_device *virt_dev,
857                 int slot_id)
858 {
859         struct list_head *tt_list_head;
860         struct xhci_tt_bw_info *tt_info, *next;
861         bool slot_found = false;
862
863         /* If the device never made it past the Set Address stage,
864          * it may not have the real_port set correctly.
865          */
866         if (virt_dev->real_port == 0 ||
867                         virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
868                 xhci_dbg(xhci, "Bad real port.\n");
869                 return;
870         }
871
872         tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
873         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
874                 /* Multi-TT hubs will have more than one entry */
875                 if (tt_info->slot_id == slot_id) {
876                         slot_found = true;
877                         list_del(&tt_info->tt_list);
878                         kfree(tt_info);
879                 } else if (slot_found) {
880                         break;
881                 }
882         }
883 }
884
885 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
886                 struct xhci_virt_device *virt_dev,
887                 struct usb_device *hdev,
888                 struct usb_tt *tt, gfp_t mem_flags)
889 {
890         struct xhci_tt_bw_info          *tt_info;
891         unsigned int                    num_ports;
892         int                             i, j;
893
894         if (!tt->multi)
895                 num_ports = 1;
896         else
897                 num_ports = hdev->maxchild;
898
899         for (i = 0; i < num_ports; i++, tt_info++) {
900                 struct xhci_interval_bw_table *bw_table;
901
902                 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
903                 if (!tt_info)
904                         goto free_tts;
905                 INIT_LIST_HEAD(&tt_info->tt_list);
906                 list_add(&tt_info->tt_list,
907                                 &xhci->rh_bw[virt_dev->real_port - 1].tts);
908                 tt_info->slot_id = virt_dev->udev->slot_id;
909                 if (tt->multi)
910                         tt_info->ttport = i+1;
911                 bw_table = &tt_info->bw_table;
912                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
913                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
914         }
915         return 0;
916
917 free_tts:
918         xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
919         return -ENOMEM;
920 }
921
922
923 /* All the xhci_tds in the ring's TD list should be freed at this point.
924  * Should be called with xhci->lock held if there is any chance the TT lists
925  * will be manipulated by the configure endpoint, allocate device, or update
926  * hub functions while this function is removing the TT entries from the list.
927  */
928 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
929 {
930         struct xhci_virt_device *dev;
931         int i;
932         int old_active_eps = 0;
933
934         /* Slot ID 0 is reserved */
935         if (slot_id == 0 || !xhci->devs[slot_id])
936                 return;
937
938         dev = xhci->devs[slot_id];
939         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
940         if (!dev)
941                 return;
942
943         if (dev->tt_info)
944                 old_active_eps = dev->tt_info->active_eps;
945
946         for (i = 0; i < 31; ++i) {
947                 if (dev->eps[i].ring)
948                         xhci_ring_free(xhci, dev->eps[i].ring);
949                 if (dev->eps[i].stream_info)
950                         xhci_free_stream_info(xhci,
951                                         dev->eps[i].stream_info);
952                 /* Endpoints on the TT/root port lists should have been removed
953                  * when usb_disable_device() was called for the device.
954                  * We can't drop them anyway, because the udev might have gone
955                  * away by this point, and we can't tell what speed it was.
956                  */
957                 if (!list_empty(&dev->eps[i].bw_endpoint_list))
958                         xhci_warn(xhci, "Slot %u endpoint %u "
959                                         "not removed from BW list!\n",
960                                         slot_id, i);
961         }
962         /* If this is a hub, free the TT(s) from the TT list */
963         xhci_free_tt_info(xhci, dev, slot_id);
964         /* If necessary, update the number of active TTs on this root port */
965         xhci_update_tt_active_eps(xhci, dev, old_active_eps);
966
967         if (dev->ring_cache) {
968                 for (i = 0; i < dev->num_rings_cached; i++)
969                         xhci_ring_free(xhci, dev->ring_cache[i]);
970                 kfree(dev->ring_cache);
971         }
972
973         if (dev->in_ctx)
974                 xhci_free_container_ctx(xhci, dev->in_ctx);
975         if (dev->out_ctx)
976                 xhci_free_container_ctx(xhci, dev->out_ctx);
977
978         kfree(xhci->devs[slot_id]);
979         xhci->devs[slot_id] = NULL;
980 }
981
982 /*
983  * Free a virt_device structure.
984  * If the virt_device added a tt_info (a hub) and has children pointing to
985  * that tt_info, then free the child first. Recursive.
986  * We can't rely on udev at this point to find child-parent relationships.
987  */
988 void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
989 {
990         struct xhci_virt_device *vdev;
991         struct list_head *tt_list_head;
992         struct xhci_tt_bw_info *tt_info, *next;
993         int i;
994
995         vdev = xhci->devs[slot_id];
996         if (!vdev)
997                 return;
998
999         tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
1000         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
1001                 /* is this a hub device that added a tt_info to the tts list */
1002                 if (tt_info->slot_id == slot_id) {
1003                         /* are any devices using this tt_info? */
1004                         for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
1005                                 vdev = xhci->devs[i];
1006                                 if (vdev && (vdev->tt_info == tt_info))
1007                                         xhci_free_virt_devices_depth_first(
1008                                                 xhci, i);
1009                         }
1010                 }
1011         }
1012         /* we are now at a leaf device */
1013         xhci_free_virt_device(xhci, slot_id);
1014 }
1015
1016 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
1017                 struct usb_device *udev, gfp_t flags)
1018 {
1019         struct xhci_virt_device *dev;
1020         int i;
1021
1022         /* Slot ID 0 is reserved */
1023         if (slot_id == 0 || xhci->devs[slot_id]) {
1024                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
1025                 return 0;
1026         }
1027
1028         xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
1029         if (!xhci->devs[slot_id])
1030                 return 0;
1031         dev = xhci->devs[slot_id];
1032
1033         /* Allocate the (output) device context that will be used in the HC. */
1034         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
1035         if (!dev->out_ctx)
1036                 goto fail;
1037
1038         xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
1039                         (unsigned long long)dev->out_ctx->dma);
1040
1041         /* Allocate the (input) device context for address device command */
1042         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1043         if (!dev->in_ctx)
1044                 goto fail;
1045
1046         xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1047                         (unsigned long long)dev->in_ctx->dma);
1048
1049         /* Initialize the cancellation list and watchdog timers for each ep */
1050         for (i = 0; i < 31; i++) {
1051                 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1052                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1053                 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1054         }
1055
1056         /* Allocate endpoint 0 ring */
1057         dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1058         if (!dev->eps[0].ring)
1059                 goto fail;
1060
1061         /* Allocate pointers to the ring cache */
1062         dev->ring_cache = kzalloc(
1063                         sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
1064                         flags);
1065         if (!dev->ring_cache)
1066                 goto fail;
1067         dev->num_rings_cached = 0;
1068
1069         dev->udev = udev;
1070
1071         /* Point to output device context in dcbaa. */
1072         xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1073         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1074                  slot_id,
1075                  &xhci->dcbaa->dev_context_ptrs[slot_id],
1076                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1077
1078         return 1;
1079 fail:
1080         xhci_free_virt_device(xhci, slot_id);
1081         return 0;
1082 }
1083
1084 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1085                 struct usb_device *udev)
1086 {
1087         struct xhci_virt_device *virt_dev;
1088         struct xhci_ep_ctx      *ep0_ctx;
1089         struct xhci_ring        *ep_ring;
1090
1091         virt_dev = xhci->devs[udev->slot_id];
1092         ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1093         ep_ring = virt_dev->eps[0].ring;
1094         /*
1095          * FIXME we don't keep track of the dequeue pointer very well after a
1096          * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1097          * host to our enqueue pointer.  This should only be called after a
1098          * configured device has reset, so all control transfers should have
1099          * been completed or cancelled before the reset.
1100          */
1101         ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1102                                                         ep_ring->enqueue)
1103                                    | ep_ring->cycle_state);
1104 }
1105
1106 /*
1107  * The xHCI roothub may have ports of differing speeds in any order in the port
1108  * status registers.  xhci->port_array provides an array of the port speed for
1109  * each offset into the port status registers.
1110  *
1111  * The xHCI hardware wants to know the roothub port number that the USB device
1112  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1113  * know is the index of that port under either the USB 2.0 or the USB 3.0
1114  * roothub, but that doesn't give us the real index into the HW port status
1115  * registers. Call xhci_find_raw_port_number() to get real index.
1116  */
1117 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1118                 struct usb_device *udev)
1119 {
1120         struct usb_device *top_dev;
1121         struct usb_hcd *hcd;
1122
1123         if (udev->speed >= USB_SPEED_SUPER)
1124                 hcd = xhci->shared_hcd;
1125         else
1126                 hcd = xhci->main_hcd;
1127
1128         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1129                         top_dev = top_dev->parent)
1130                 /* Found device below root hub */;
1131
1132         return  xhci_find_raw_port_number(hcd, top_dev->portnum);
1133 }
1134
1135 /* Setup an xHCI virtual device for a Set Address command */
1136 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1137 {
1138         struct xhci_virt_device *dev;
1139         struct xhci_ep_ctx      *ep0_ctx;
1140         struct xhci_slot_ctx    *slot_ctx;
1141         u32                     port_num;
1142         u32                     max_packets;
1143         struct usb_device *top_dev;
1144
1145         dev = xhci->devs[udev->slot_id];
1146         /* Slot ID 0 is reserved */
1147         if (udev->slot_id == 0 || !dev) {
1148                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1149                                 udev->slot_id);
1150                 return -EINVAL;
1151         }
1152         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1153         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1154
1155         /* 3) Only the control endpoint is valid - one endpoint context */
1156         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1157         switch (udev->speed) {
1158         case USB_SPEED_SUPER_PLUS:
1159                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1160                 max_packets = MAX_PACKET(512);
1161                 break;
1162         case USB_SPEED_SUPER:
1163                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1164                 max_packets = MAX_PACKET(512);
1165                 break;
1166         case USB_SPEED_HIGH:
1167                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1168                 max_packets = MAX_PACKET(64);
1169                 break;
1170         /* USB core guesses at a 64-byte max packet first for FS devices */
1171         case USB_SPEED_FULL:
1172                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1173                 max_packets = MAX_PACKET(64);
1174                 break;
1175         case USB_SPEED_LOW:
1176                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1177                 max_packets = MAX_PACKET(8);
1178                 break;
1179         case USB_SPEED_WIRELESS:
1180                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1181                 return -EINVAL;
1182                 break;
1183         default:
1184                 /* Speed was set earlier, this shouldn't happen. */
1185                 return -EINVAL;
1186         }
1187         /* Find the root hub port this device is under */
1188         port_num = xhci_find_real_port_number(xhci, udev);
1189         if (!port_num)
1190                 return -EINVAL;
1191         slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1192         /* Set the port number in the virtual_device to the faked port number */
1193         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1194                         top_dev = top_dev->parent)
1195                 /* Found device below root hub */;
1196         dev->fake_port = top_dev->portnum;
1197         dev->real_port = port_num;
1198         xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1199         xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1200
1201         /* Find the right bandwidth table that this device will be a part of.
1202          * If this is a full speed device attached directly to a root port (or a
1203          * decendent of one), it counts as a primary bandwidth domain, not a
1204          * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1205          * will never be created for the HS root hub.
1206          */
1207         if (!udev->tt || !udev->tt->hub->parent) {
1208                 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1209         } else {
1210                 struct xhci_root_port_bw_info *rh_bw;
1211                 struct xhci_tt_bw_info *tt_bw;
1212
1213                 rh_bw = &xhci->rh_bw[port_num - 1];
1214                 /* Find the right TT. */
1215                 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1216                         if (tt_bw->slot_id != udev->tt->hub->slot_id)
1217                                 continue;
1218
1219                         if (!dev->udev->tt->multi ||
1220                                         (udev->tt->multi &&
1221                                          tt_bw->ttport == dev->udev->ttport)) {
1222                                 dev->bw_table = &tt_bw->bw_table;
1223                                 dev->tt_info = tt_bw;
1224                                 break;
1225                         }
1226                 }
1227                 if (!dev->tt_info)
1228                         xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1229         }
1230
1231         /* Is this a LS/FS device under an external HS hub? */
1232         if (udev->tt && udev->tt->hub->parent) {
1233                 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1234                                                 (udev->ttport << 8));
1235                 if (udev->tt->multi)
1236                         slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1237         }
1238         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1239         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1240
1241         /* Step 4 - ring already allocated */
1242         /* Step 5 */
1243         ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1244
1245         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1246         ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1247                                          max_packets);
1248
1249         ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1250                                    dev->eps[0].ring->cycle_state);
1251
1252         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1253
1254         return 0;
1255 }
1256
1257 /*
1258  * Convert interval expressed as 2^(bInterval - 1) == interval into
1259  * straight exponent value 2^n == interval.
1260  *
1261  */
1262 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1263                 struct usb_host_endpoint *ep)
1264 {
1265         unsigned int interval;
1266
1267         interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1268         if (interval != ep->desc.bInterval - 1)
1269                 dev_warn(&udev->dev,
1270                          "ep %#x - rounding interval to %d %sframes\n",
1271                          ep->desc.bEndpointAddress,
1272                          1 << interval,
1273                          udev->speed == USB_SPEED_FULL ? "" : "micro");
1274
1275         if (udev->speed == USB_SPEED_FULL) {
1276                 /*
1277                  * Full speed isoc endpoints specify interval in frames,
1278                  * not microframes. We are using microframes everywhere,
1279                  * so adjust accordingly.
1280                  */
1281                 interval += 3;  /* 1 frame = 2^3 uframes */
1282         }
1283
1284         return interval;
1285 }
1286
1287 /*
1288  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1289  * microframes, rounded down to nearest power of 2.
1290  */
1291 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1292                 struct usb_host_endpoint *ep, unsigned int desc_interval,
1293                 unsigned int min_exponent, unsigned int max_exponent)
1294 {
1295         unsigned int interval;
1296
1297         interval = fls(desc_interval) - 1;
1298         interval = clamp_val(interval, min_exponent, max_exponent);
1299         if ((1 << interval) != desc_interval)
1300                 dev_dbg(&udev->dev,
1301                          "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1302                          ep->desc.bEndpointAddress,
1303                          1 << interval,
1304                          desc_interval);
1305
1306         return interval;
1307 }
1308
1309 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1310                 struct usb_host_endpoint *ep)
1311 {
1312         if (ep->desc.bInterval == 0)
1313                 return 0;
1314         return xhci_microframes_to_exponent(udev, ep,
1315                         ep->desc.bInterval, 0, 15);
1316 }
1317
1318
1319 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1320                 struct usb_host_endpoint *ep)
1321 {
1322         return xhci_microframes_to_exponent(udev, ep,
1323                         ep->desc.bInterval * 8, 3, 10);
1324 }
1325
1326 /* Return the polling or NAK interval.
1327  *
1328  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1329  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1330  *
1331  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1332  * is set to 0.
1333  */
1334 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1335                 struct usb_host_endpoint *ep)
1336 {
1337         unsigned int interval = 0;
1338
1339         switch (udev->speed) {
1340         case USB_SPEED_HIGH:
1341                 /* Max NAK rate */
1342                 if (usb_endpoint_xfer_control(&ep->desc) ||
1343                     usb_endpoint_xfer_bulk(&ep->desc)) {
1344                         interval = xhci_parse_microframe_interval(udev, ep);
1345                         break;
1346                 }
1347                 /* Fall through - SS and HS isoc/int have same decoding */
1348
1349         case USB_SPEED_SUPER_PLUS:
1350         case USB_SPEED_SUPER:
1351                 if (usb_endpoint_xfer_int(&ep->desc) ||
1352                     usb_endpoint_xfer_isoc(&ep->desc)) {
1353                         interval = xhci_parse_exponent_interval(udev, ep);
1354                 }
1355                 break;
1356
1357         case USB_SPEED_FULL:
1358                 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1359                         interval = xhci_parse_exponent_interval(udev, ep);
1360                         break;
1361                 }
1362                 /*
1363                  * Fall through for interrupt endpoint interval decoding
1364                  * since it uses the same rules as low speed interrupt
1365                  * endpoints.
1366                  */
1367
1368         case USB_SPEED_LOW:
1369                 if (usb_endpoint_xfer_int(&ep->desc) ||
1370                     usb_endpoint_xfer_isoc(&ep->desc)) {
1371
1372                         interval = xhci_parse_frame_interval(udev, ep);
1373                 }
1374                 break;
1375
1376         default:
1377                 BUG();
1378         }
1379         return interval;
1380 }
1381
1382 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1383  * High speed endpoint descriptors can define "the number of additional
1384  * transaction opportunities per microframe", but that goes in the Max Burst
1385  * endpoint context field.
1386  */
1387 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1388                 struct usb_host_endpoint *ep)
1389 {
1390         if (udev->speed < USB_SPEED_SUPER ||
1391                         !usb_endpoint_xfer_isoc(&ep->desc))
1392                 return 0;
1393         return ep->ss_ep_comp.bmAttributes;
1394 }
1395
1396 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1397                                        struct usb_host_endpoint *ep)
1398 {
1399         /* Super speed and Plus have max burst in ep companion desc */
1400         if (udev->speed >= USB_SPEED_SUPER)
1401                 return ep->ss_ep_comp.bMaxBurst;
1402
1403         if (udev->speed == USB_SPEED_HIGH &&
1404             (usb_endpoint_xfer_isoc(&ep->desc) ||
1405              usb_endpoint_xfer_int(&ep->desc)))
1406                 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1407
1408         return 0;
1409 }
1410
1411 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1412 {
1413         int in;
1414
1415         in = usb_endpoint_dir_in(&ep->desc);
1416
1417         if (usb_endpoint_xfer_control(&ep->desc))
1418                 return CTRL_EP;
1419         if (usb_endpoint_xfer_bulk(&ep->desc))
1420                 return in ? BULK_IN_EP : BULK_OUT_EP;
1421         if (usb_endpoint_xfer_isoc(&ep->desc))
1422                 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1423         if (usb_endpoint_xfer_int(&ep->desc))
1424                 return in ? INT_IN_EP : INT_OUT_EP;
1425         return 0;
1426 }
1427
1428 /* Return the maximum endpoint service interval time (ESIT) payload.
1429  * Basically, this is the maxpacket size, multiplied by the burst size
1430  * and mult size.
1431  */
1432 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1433                 struct usb_host_endpoint *ep)
1434 {
1435         int max_burst;
1436         int max_packet;
1437
1438         /* Only applies for interrupt or isochronous endpoints */
1439         if (usb_endpoint_xfer_control(&ep->desc) ||
1440                         usb_endpoint_xfer_bulk(&ep->desc))
1441                 return 0;
1442
1443         /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1444         if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1445             USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1446                 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1447         /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1448         else if (udev->speed >= USB_SPEED_SUPER)
1449                 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1450
1451         max_packet = usb_endpoint_maxp(&ep->desc);
1452         max_burst = usb_endpoint_maxp_mult(&ep->desc);
1453         /* A 0 in max burst means 1 transfer per ESIT */
1454         return max_packet * max_burst;
1455 }
1456
1457 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1458  * Drivers will have to call usb_alloc_streams() to do that.
1459  */
1460 int xhci_endpoint_init(struct xhci_hcd *xhci,
1461                 struct xhci_virt_device *virt_dev,
1462                 struct usb_device *udev,
1463                 struct usb_host_endpoint *ep,
1464                 gfp_t mem_flags)
1465 {
1466         unsigned int ep_index;
1467         struct xhci_ep_ctx *ep_ctx;
1468         struct xhci_ring *ep_ring;
1469         unsigned int max_packet;
1470         enum xhci_ring_type ring_type;
1471         u32 max_esit_payload;
1472         u32 endpoint_type;
1473         unsigned int max_burst;
1474         unsigned int interval;
1475         unsigned int mult;
1476         unsigned int avg_trb_len;
1477         unsigned int err_count = 0;
1478
1479         ep_index = xhci_get_endpoint_index(&ep->desc);
1480         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1481
1482         endpoint_type = xhci_get_endpoint_type(ep);
1483         if (!endpoint_type)
1484                 return -EINVAL;
1485
1486         ring_type = usb_endpoint_type(&ep->desc);
1487
1488         /*
1489          * Get values to fill the endpoint context, mostly from ep descriptor.
1490          * The average TRB buffer lengt for bulk endpoints is unclear as we
1491          * have no clue on scatter gather list entry size. For Isoc and Int,
1492          * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1493          */
1494         max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1495         interval = xhci_get_endpoint_interval(udev, ep);
1496         mult = xhci_get_endpoint_mult(udev, ep);
1497         max_packet = usb_endpoint_maxp(&ep->desc);
1498         max_burst = xhci_get_endpoint_max_burst(udev, ep);
1499         avg_trb_len = max_esit_payload;
1500
1501         /* FIXME dig Mult and streams info out of ep companion desc */
1502
1503         /* Allow 3 retries for everything but isoc, set CErr = 3 */
1504         if (!usb_endpoint_xfer_isoc(&ep->desc))
1505                 err_count = 3;
1506         /* Some devices get this wrong */
1507         if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH)
1508                 max_packet = 512;
1509         /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1510         if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1511                 avg_trb_len = 8;
1512         /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1513         if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1514                 mult = 0;
1515
1516         /* Set up the endpoint ring */
1517         virt_dev->eps[ep_index].new_ring =
1518                 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1519         if (!virt_dev->eps[ep_index].new_ring) {
1520                 /* Attempt to use the ring cache */
1521                 if (virt_dev->num_rings_cached == 0)
1522                         return -ENOMEM;
1523                 virt_dev->num_rings_cached--;
1524                 virt_dev->eps[ep_index].new_ring =
1525                         virt_dev->ring_cache[virt_dev->num_rings_cached];
1526                 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1527                 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1528                                         1, ring_type);
1529         }
1530         virt_dev->eps[ep_index].skip = false;
1531         ep_ring = virt_dev->eps[ep_index].new_ring;
1532
1533         /* Fill the endpoint context */
1534         ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1535                                       EP_INTERVAL(interval) |
1536                                       EP_MULT(mult));
1537         ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1538                                        MAX_PACKET(max_packet) |
1539                                        MAX_BURST(max_burst) |
1540                                        ERROR_COUNT(err_count));
1541         ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1542                                   ep_ring->cycle_state);
1543
1544         ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1545                                       EP_AVG_TRB_LENGTH(avg_trb_len));
1546
1547         /* FIXME Debug endpoint context */
1548         return 0;
1549 }
1550
1551 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1552                 struct xhci_virt_device *virt_dev,
1553                 struct usb_host_endpoint *ep)
1554 {
1555         unsigned int ep_index;
1556         struct xhci_ep_ctx *ep_ctx;
1557
1558         ep_index = xhci_get_endpoint_index(&ep->desc);
1559         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1560
1561         ep_ctx->ep_info = 0;
1562         ep_ctx->ep_info2 = 0;
1563         ep_ctx->deq = 0;
1564         ep_ctx->tx_info = 0;
1565         /* Don't free the endpoint ring until the set interface or configuration
1566          * request succeeds.
1567          */
1568 }
1569
1570 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1571 {
1572         bw_info->ep_interval = 0;
1573         bw_info->mult = 0;
1574         bw_info->num_packets = 0;
1575         bw_info->max_packet_size = 0;
1576         bw_info->type = 0;
1577         bw_info->max_esit_payload = 0;
1578 }
1579
1580 void xhci_update_bw_info(struct xhci_hcd *xhci,
1581                 struct xhci_container_ctx *in_ctx,
1582                 struct xhci_input_control_ctx *ctrl_ctx,
1583                 struct xhci_virt_device *virt_dev)
1584 {
1585         struct xhci_bw_info *bw_info;
1586         struct xhci_ep_ctx *ep_ctx;
1587         unsigned int ep_type;
1588         int i;
1589
1590         for (i = 1; i < 31; ++i) {
1591                 bw_info = &virt_dev->eps[i].bw_info;
1592
1593                 /* We can't tell what endpoint type is being dropped, but
1594                  * unconditionally clearing the bandwidth info for non-periodic
1595                  * endpoints should be harmless because the info will never be
1596                  * set in the first place.
1597                  */
1598                 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1599                         /* Dropped endpoint */
1600                         xhci_clear_endpoint_bw_info(bw_info);
1601                         continue;
1602                 }
1603
1604                 if (EP_IS_ADDED(ctrl_ctx, i)) {
1605                         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1606                         ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1607
1608                         /* Ignore non-periodic endpoints */
1609                         if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1610                                         ep_type != ISOC_IN_EP &&
1611                                         ep_type != INT_IN_EP)
1612                                 continue;
1613
1614                         /* Added or changed endpoint */
1615                         bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1616                                         le32_to_cpu(ep_ctx->ep_info));
1617                         /* Number of packets and mult are zero-based in the
1618                          * input context, but we want one-based for the
1619                          * interval table.
1620                          */
1621                         bw_info->mult = CTX_TO_EP_MULT(
1622                                         le32_to_cpu(ep_ctx->ep_info)) + 1;
1623                         bw_info->num_packets = CTX_TO_MAX_BURST(
1624                                         le32_to_cpu(ep_ctx->ep_info2)) + 1;
1625                         bw_info->max_packet_size = MAX_PACKET_DECODED(
1626                                         le32_to_cpu(ep_ctx->ep_info2));
1627                         bw_info->type = ep_type;
1628                         bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1629                                         le32_to_cpu(ep_ctx->tx_info));
1630                 }
1631         }
1632 }
1633
1634 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1635  * Useful when you want to change one particular aspect of the endpoint and then
1636  * issue a configure endpoint command.
1637  */
1638 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1639                 struct xhci_container_ctx *in_ctx,
1640                 struct xhci_container_ctx *out_ctx,
1641                 unsigned int ep_index)
1642 {
1643         struct xhci_ep_ctx *out_ep_ctx;
1644         struct xhci_ep_ctx *in_ep_ctx;
1645
1646         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1647         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1648
1649         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1650         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1651         in_ep_ctx->deq = out_ep_ctx->deq;
1652         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1653 }
1654
1655 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1656  * Useful when you want to change one particular aspect of the endpoint and then
1657  * issue a configure endpoint command.  Only the context entries field matters,
1658  * but we'll copy the whole thing anyway.
1659  */
1660 void xhci_slot_copy(struct xhci_hcd *xhci,
1661                 struct xhci_container_ctx *in_ctx,
1662                 struct xhci_container_ctx *out_ctx)
1663 {
1664         struct xhci_slot_ctx *in_slot_ctx;
1665         struct xhci_slot_ctx *out_slot_ctx;
1666
1667         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1668         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1669
1670         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1671         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1672         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1673         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1674 }
1675
1676 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1677 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1678 {
1679         int i;
1680         struct device *dev = xhci_to_hcd(xhci)->self.controller;
1681         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1682
1683         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1684                         "Allocating %d scratchpad buffers", num_sp);
1685
1686         if (!num_sp)
1687                 return 0;
1688
1689         xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1690         if (!xhci->scratchpad)
1691                 goto fail_sp;
1692
1693         xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1694                                      num_sp * sizeof(u64),
1695                                      &xhci->scratchpad->sp_dma, flags);
1696         if (!xhci->scratchpad->sp_array)
1697                 goto fail_sp2;
1698
1699         xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1700         if (!xhci->scratchpad->sp_buffers)
1701                 goto fail_sp3;
1702
1703         xhci->scratchpad->sp_dma_buffers =
1704                 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1705
1706         if (!xhci->scratchpad->sp_dma_buffers)
1707                 goto fail_sp4;
1708
1709         xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1710         for (i = 0; i < num_sp; i++) {
1711                 dma_addr_t dma;
1712                 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1713                                 flags);
1714                 if (!buf)
1715                         goto fail_sp5;
1716
1717                 xhci->scratchpad->sp_array[i] = dma;
1718                 xhci->scratchpad->sp_buffers[i] = buf;
1719                 xhci->scratchpad->sp_dma_buffers[i] = dma;
1720         }
1721
1722         return 0;
1723
1724  fail_sp5:
1725         for (i = i - 1; i >= 0; i--) {
1726                 dma_free_coherent(dev, xhci->page_size,
1727                                     xhci->scratchpad->sp_buffers[i],
1728                                     xhci->scratchpad->sp_dma_buffers[i]);
1729         }
1730         kfree(xhci->scratchpad->sp_dma_buffers);
1731
1732  fail_sp4:
1733         kfree(xhci->scratchpad->sp_buffers);
1734
1735  fail_sp3:
1736         dma_free_coherent(dev, num_sp * sizeof(u64),
1737                             xhci->scratchpad->sp_array,
1738                             xhci->scratchpad->sp_dma);
1739
1740  fail_sp2:
1741         kfree(xhci->scratchpad);
1742         xhci->scratchpad = NULL;
1743
1744  fail_sp:
1745         return -ENOMEM;
1746 }
1747
1748 static void scratchpad_free(struct xhci_hcd *xhci)
1749 {
1750         int num_sp;
1751         int i;
1752         struct device *dev = xhci_to_hcd(xhci)->self.controller;
1753
1754         if (!xhci->scratchpad)
1755                 return;
1756
1757         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1758
1759         for (i = 0; i < num_sp; i++) {
1760                 dma_free_coherent(dev, xhci->page_size,
1761                                     xhci->scratchpad->sp_buffers[i],
1762                                     xhci->scratchpad->sp_dma_buffers[i]);
1763         }
1764         kfree(xhci->scratchpad->sp_dma_buffers);
1765         kfree(xhci->scratchpad->sp_buffers);
1766         dma_free_coherent(dev, num_sp * sizeof(u64),
1767                             xhci->scratchpad->sp_array,
1768                             xhci->scratchpad->sp_dma);
1769         kfree(xhci->scratchpad);
1770         xhci->scratchpad = NULL;
1771 }
1772
1773 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1774                 bool allocate_in_ctx, bool allocate_completion,
1775                 gfp_t mem_flags)
1776 {
1777         struct xhci_command *command;
1778
1779         command = kzalloc(sizeof(*command), mem_flags);
1780         if (!command)
1781                 return NULL;
1782
1783         if (allocate_in_ctx) {
1784                 command->in_ctx =
1785                         xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1786                                         mem_flags);
1787                 if (!command->in_ctx) {
1788                         kfree(command);
1789                         return NULL;
1790                 }
1791         }
1792
1793         if (allocate_completion) {
1794                 command->completion =
1795                         kzalloc(sizeof(struct completion), mem_flags);
1796                 if (!command->completion) {
1797                         xhci_free_container_ctx(xhci, command->in_ctx);
1798                         kfree(command);
1799                         return NULL;
1800                 }
1801                 init_completion(command->completion);
1802         }
1803
1804         command->status = 0;
1805         INIT_LIST_HEAD(&command->cmd_list);
1806         return command;
1807 }
1808
1809 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1810 {
1811         if (urb_priv) {
1812                 kfree(urb_priv->td[0]);
1813                 kfree(urb_priv);
1814         }
1815 }
1816
1817 void xhci_free_command(struct xhci_hcd *xhci,
1818                 struct xhci_command *command)
1819 {
1820         xhci_free_container_ctx(xhci,
1821                         command->in_ctx);
1822         kfree(command->completion);
1823         kfree(command);
1824 }
1825
1826 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1827 {
1828         struct device   *dev = xhci_to_hcd(xhci)->self.controller;
1829         int size;
1830         int i, j, num_ports;
1831
1832         cancel_delayed_work_sync(&xhci->cmd_timer);
1833
1834         /* Free the Event Ring Segment Table and the actual Event Ring */
1835         size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1836         if (xhci->erst.entries)
1837                 dma_free_coherent(dev, size,
1838                                 xhci->erst.entries, xhci->erst.erst_dma_addr);
1839         xhci->erst.entries = NULL;
1840         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1841         if (xhci->event_ring)
1842                 xhci_ring_free(xhci, xhci->event_ring);
1843         xhci->event_ring = NULL;
1844         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1845
1846         if (xhci->lpm_command)
1847                 xhci_free_command(xhci, xhci->lpm_command);
1848         xhci->lpm_command = NULL;
1849         if (xhci->cmd_ring)
1850                 xhci_ring_free(xhci, xhci->cmd_ring);
1851         xhci->cmd_ring = NULL;
1852         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1853         xhci_cleanup_command_queue(xhci);
1854
1855         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1856         for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1857                 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1858                 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1859                         struct list_head *ep = &bwt->interval_bw[j].endpoints;
1860                         while (!list_empty(ep))
1861                                 list_del_init(ep->next);
1862                 }
1863         }
1864
1865         for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1866                 xhci_free_virt_devices_depth_first(xhci, i);
1867
1868         dma_pool_destroy(xhci->segment_pool);
1869         xhci->segment_pool = NULL;
1870         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1871
1872         dma_pool_destroy(xhci->device_pool);
1873         xhci->device_pool = NULL;
1874         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1875
1876         dma_pool_destroy(xhci->small_streams_pool);
1877         xhci->small_streams_pool = NULL;
1878         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1879                         "Freed small stream array pool");
1880
1881         dma_pool_destroy(xhci->medium_streams_pool);
1882         xhci->medium_streams_pool = NULL;
1883         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1884                         "Freed medium stream array pool");
1885
1886         if (xhci->dcbaa)
1887                 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1888                                 xhci->dcbaa, xhci->dcbaa->dma);
1889         xhci->dcbaa = NULL;
1890
1891         scratchpad_free(xhci);
1892
1893         if (!xhci->rh_bw)
1894                 goto no_bw;
1895
1896         for (i = 0; i < num_ports; i++) {
1897                 struct xhci_tt_bw_info *tt, *n;
1898                 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1899                         list_del(&tt->tt_list);
1900                         kfree(tt);
1901                 }
1902         }
1903
1904 no_bw:
1905         xhci->cmd_ring_reserved_trbs = 0;
1906         xhci->num_usb2_ports = 0;
1907         xhci->num_usb3_ports = 0;
1908         xhci->num_active_eps = 0;
1909         kfree(xhci->usb2_ports);
1910         kfree(xhci->usb3_ports);
1911         kfree(xhci->port_array);
1912         kfree(xhci->rh_bw);
1913         kfree(xhci->ext_caps);
1914
1915         xhci->usb2_ports = NULL;
1916         xhci->usb3_ports = NULL;
1917         xhci->port_array = NULL;
1918         xhci->rh_bw = NULL;
1919         xhci->ext_caps = NULL;
1920
1921         xhci->page_size = 0;
1922         xhci->page_shift = 0;
1923         xhci->bus_state[0].bus_suspended = 0;
1924         xhci->bus_state[1].bus_suspended = 0;
1925 }
1926
1927 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1928                 struct xhci_segment *input_seg,
1929                 union xhci_trb *start_trb,
1930                 union xhci_trb *end_trb,
1931                 dma_addr_t input_dma,
1932                 struct xhci_segment *result_seg,
1933                 char *test_name, int test_number)
1934 {
1935         unsigned long long start_dma;
1936         unsigned long long end_dma;
1937         struct xhci_segment *seg;
1938
1939         start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1940         end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1941
1942         seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1943         if (seg != result_seg) {
1944                 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1945                                 test_name, test_number);
1946                 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1947                                 "input DMA 0x%llx\n",
1948                                 input_seg,
1949                                 (unsigned long long) input_dma);
1950                 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1951                                 "ending TRB %p (0x%llx DMA)\n",
1952                                 start_trb, start_dma,
1953                                 end_trb, end_dma);
1954                 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1955                                 result_seg, seg);
1956                 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1957                           true);
1958                 return -1;
1959         }
1960         return 0;
1961 }
1962
1963 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1964 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1965 {
1966         struct {
1967                 dma_addr_t              input_dma;
1968                 struct xhci_segment     *result_seg;
1969         } simple_test_vector [] = {
1970                 /* A zeroed DMA field should fail */
1971                 { 0, NULL },
1972                 /* One TRB before the ring start should fail */
1973                 { xhci->event_ring->first_seg->dma - 16, NULL },
1974                 /* One byte before the ring start should fail */
1975                 { xhci->event_ring->first_seg->dma - 1, NULL },
1976                 /* Starting TRB should succeed */
1977                 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1978                 /* Ending TRB should succeed */
1979                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1980                         xhci->event_ring->first_seg },
1981                 /* One byte after the ring end should fail */
1982                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1983                 /* One TRB after the ring end should fail */
1984                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1985                 /* An address of all ones should fail */
1986                 { (dma_addr_t) (~0), NULL },
1987         };
1988         struct {
1989                 struct xhci_segment     *input_seg;
1990                 union xhci_trb          *start_trb;
1991                 union xhci_trb          *end_trb;
1992                 dma_addr_t              input_dma;
1993                 struct xhci_segment     *result_seg;
1994         } complex_test_vector [] = {
1995                 /* Test feeding a valid DMA address from a different ring */
1996                 {       .input_seg = xhci->event_ring->first_seg,
1997                         .start_trb = xhci->event_ring->first_seg->trbs,
1998                         .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1999                         .input_dma = xhci->cmd_ring->first_seg->dma,
2000                         .result_seg = NULL,
2001                 },
2002                 /* Test feeding a valid end TRB from a different ring */
2003                 {       .input_seg = xhci->event_ring->first_seg,
2004                         .start_trb = xhci->event_ring->first_seg->trbs,
2005                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2006                         .input_dma = xhci->cmd_ring->first_seg->dma,
2007                         .result_seg = NULL,
2008                 },
2009                 /* Test feeding a valid start and end TRB from a different ring */
2010                 {       .input_seg = xhci->event_ring->first_seg,
2011                         .start_trb = xhci->cmd_ring->first_seg->trbs,
2012                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2013                         .input_dma = xhci->cmd_ring->first_seg->dma,
2014                         .result_seg = NULL,
2015                 },
2016                 /* TRB in this ring, but after this TD */
2017                 {       .input_seg = xhci->event_ring->first_seg,
2018                         .start_trb = &xhci->event_ring->first_seg->trbs[0],
2019                         .end_trb = &xhci->event_ring->first_seg->trbs[3],
2020                         .input_dma = xhci->event_ring->first_seg->dma + 4*16,
2021                         .result_seg = NULL,
2022                 },
2023                 /* TRB in this ring, but before this TD */
2024                 {       .input_seg = xhci->event_ring->first_seg,
2025                         .start_trb = &xhci->event_ring->first_seg->trbs[3],
2026                         .end_trb = &xhci->event_ring->first_seg->trbs[6],
2027                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2028                         .result_seg = NULL,
2029                 },
2030                 /* TRB in this ring, but after this wrapped TD */
2031                 {       .input_seg = xhci->event_ring->first_seg,
2032                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2033                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2034                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2035                         .result_seg = NULL,
2036                 },
2037                 /* TRB in this ring, but before this wrapped TD */
2038                 {       .input_seg = xhci->event_ring->first_seg,
2039                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2040                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2041                         .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2042                         .result_seg = NULL,
2043                 },
2044                 /* TRB not in this ring, and we have a wrapped TD */
2045                 {       .input_seg = xhci->event_ring->first_seg,
2046                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2047                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2048                         .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2049                         .result_seg = NULL,
2050                 },
2051         };
2052
2053         unsigned int num_tests;
2054         int i, ret;
2055
2056         num_tests = ARRAY_SIZE(simple_test_vector);
2057         for (i = 0; i < num_tests; i++) {
2058                 ret = xhci_test_trb_in_td(xhci,
2059                                 xhci->event_ring->first_seg,
2060                                 xhci->event_ring->first_seg->trbs,
2061                                 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2062                                 simple_test_vector[i].input_dma,
2063                                 simple_test_vector[i].result_seg,
2064                                 "Simple", i);
2065                 if (ret < 0)
2066                         return ret;
2067         }
2068
2069         num_tests = ARRAY_SIZE(complex_test_vector);
2070         for (i = 0; i < num_tests; i++) {
2071                 ret = xhci_test_trb_in_td(xhci,
2072                                 complex_test_vector[i].input_seg,
2073                                 complex_test_vector[i].start_trb,
2074                                 complex_test_vector[i].end_trb,
2075                                 complex_test_vector[i].input_dma,
2076                                 complex_test_vector[i].result_seg,
2077                                 "Complex", i);
2078                 if (ret < 0)
2079                         return ret;
2080         }
2081         xhci_dbg(xhci, "TRB math tests passed.\n");
2082         return 0;
2083 }
2084
2085 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2086 {
2087         u64 temp;
2088         dma_addr_t deq;
2089
2090         deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2091                         xhci->event_ring->dequeue);
2092         if (deq == 0 && !in_interrupt())
2093                 xhci_warn(xhci, "WARN something wrong with SW event ring "
2094                                 "dequeue ptr.\n");
2095         /* Update HC event ring dequeue pointer */
2096         temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2097         temp &= ERST_PTR_MASK;
2098         /* Don't clear the EHB bit (which is RW1C) because
2099          * there might be more events to service.
2100          */
2101         temp &= ~ERST_EHB;
2102         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2103                         "// Write event ring dequeue pointer, "
2104                         "preserving EHB bit");
2105         xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2106                         &xhci->ir_set->erst_dequeue);
2107 }
2108
2109 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2110                 __le32 __iomem *addr, int max_caps)
2111 {
2112         u32 temp, port_offset, port_count;
2113         int i;
2114         u8 major_revision;
2115         struct xhci_hub *rhub;
2116
2117         temp = readl(addr);
2118         major_revision = XHCI_EXT_PORT_MAJOR(temp);
2119
2120         if (major_revision == 0x03) {
2121                 rhub = &xhci->usb3_rhub;
2122         } else if (major_revision <= 0x02) {
2123                 rhub = &xhci->usb2_rhub;
2124         } else {
2125                 xhci_warn(xhci, "Ignoring unknown port speed, "
2126                                 "Ext Cap %p, revision = 0x%x\n",
2127                                 addr, major_revision);
2128                 /* Ignoring port protocol we can't understand. FIXME */
2129                 return;
2130         }
2131         rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2132         rhub->min_rev = XHCI_EXT_PORT_MINOR(temp);
2133
2134         /* Port offset and count in the third dword, see section 7.2 */
2135         temp = readl(addr + 2);
2136         port_offset = XHCI_EXT_PORT_OFF(temp);
2137         port_count = XHCI_EXT_PORT_COUNT(temp);
2138         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2139                         "Ext Cap %p, port offset = %u, "
2140                         "count = %u, revision = 0x%x",
2141                         addr, port_offset, port_count, major_revision);
2142         /* Port count includes the current port offset */
2143         if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2144                 /* WTF? "Valid values are â€˜1’ to MaxPorts" */
2145                 return;
2146
2147         rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2148         if (rhub->psi_count) {
2149                 rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2150                                     GFP_KERNEL);
2151                 if (!rhub->psi)
2152                         rhub->psi_count = 0;
2153
2154                 rhub->psi_uid_count++;
2155                 for (i = 0; i < rhub->psi_count; i++) {
2156                         rhub->psi[i] = readl(addr + 4 + i);
2157
2158                         /* count unique ID values, two consecutive entries can
2159                          * have the same ID if link is assymetric
2160                          */
2161                         if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2162                                   XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2163                                 rhub->psi_uid_count++;
2164
2165                         xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2166                                   XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2167                                   XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2168                                   XHCI_EXT_PORT_PLT(rhub->psi[i]),
2169                                   XHCI_EXT_PORT_PFD(rhub->psi[i]),
2170                                   XHCI_EXT_PORT_LP(rhub->psi[i]),
2171                                   XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2172                 }
2173         }
2174         /* cache usb2 port capabilities */
2175         if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2176                 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2177
2178         /* Check the host's USB2 LPM capability */
2179         if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2180                         (temp & XHCI_L1C)) {
2181                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2182                                 "xHCI 0.96: support USB2 software lpm");
2183                 xhci->sw_lpm_support = 1;
2184         }
2185
2186         if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2187                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2188                                 "xHCI 1.0: support USB2 software lpm");
2189                 xhci->sw_lpm_support = 1;
2190                 if (temp & XHCI_HLC) {
2191                         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2192                                         "xHCI 1.0: support USB2 hardware lpm");
2193                         xhci->hw_lpm_support = 1;
2194                 }
2195         }
2196
2197         port_offset--;
2198         for (i = port_offset; i < (port_offset + port_count); i++) {
2199                 /* Duplicate entry.  Ignore the port if the revisions differ. */
2200                 if (xhci->port_array[i] != 0) {
2201                         xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2202                                         " port %u\n", addr, i);
2203                         xhci_warn(xhci, "Port was marked as USB %u, "
2204                                         "duplicated as USB %u\n",
2205                                         xhci->port_array[i], major_revision);
2206                         /* Only adjust the roothub port counts if we haven't
2207                          * found a similar duplicate.
2208                          */
2209                         if (xhci->port_array[i] != major_revision &&
2210                                 xhci->port_array[i] != DUPLICATE_ENTRY) {
2211                                 if (xhci->port_array[i] == 0x03)
2212                                         xhci->num_usb3_ports--;
2213                                 else
2214                                         xhci->num_usb2_ports--;
2215                                 xhci->port_array[i] = DUPLICATE_ENTRY;
2216                         }
2217                         /* FIXME: Should we disable the port? */
2218                         continue;
2219                 }
2220                 xhci->port_array[i] = major_revision;
2221                 if (major_revision == 0x03)
2222                         xhci->num_usb3_ports++;
2223                 else
2224                         xhci->num_usb2_ports++;
2225         }
2226         /* FIXME: Should we disable ports not in the Extended Capabilities? */
2227 }
2228
2229 /*
2230  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2231  * specify what speeds each port is supposed to be.  We can't count on the port
2232  * speed bits in the PORTSC register being correct until a device is connected,
2233  * but we need to set up the two fake roothubs with the correct number of USB
2234  * 3.0 and USB 2.0 ports at host controller initialization time.
2235  */
2236 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2237 {
2238         void __iomem *base;
2239         u32 offset;
2240         unsigned int num_ports;
2241         int i, j, port_index;
2242         int cap_count = 0;
2243         u32 cap_start;
2244
2245         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2246         xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2247         if (!xhci->port_array)
2248                 return -ENOMEM;
2249
2250         xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2251         if (!xhci->rh_bw)
2252                 return -ENOMEM;
2253         for (i = 0; i < num_ports; i++) {
2254                 struct xhci_interval_bw_table *bw_table;
2255
2256                 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2257                 bw_table = &xhci->rh_bw[i].bw_table;
2258                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2259                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2260         }
2261         base = &xhci->cap_regs->hc_capbase;
2262
2263         cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2264         if (!cap_start) {
2265                 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2266                 return -ENODEV;
2267         }
2268
2269         offset = cap_start;
2270         /* count extended protocol capability entries for later caching */
2271         while (offset) {
2272                 cap_count++;
2273                 offset = xhci_find_next_ext_cap(base, offset,
2274                                                       XHCI_EXT_CAPS_PROTOCOL);
2275         }
2276
2277         xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2278         if (!xhci->ext_caps)
2279                 return -ENOMEM;
2280
2281         offset = cap_start;
2282
2283         while (offset) {
2284                 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2285                 if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
2286                         break;
2287                 offset = xhci_find_next_ext_cap(base, offset,
2288                                                 XHCI_EXT_CAPS_PROTOCOL);
2289         }
2290
2291         if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2292                 xhci_warn(xhci, "No ports on the roothubs?\n");
2293                 return -ENODEV;
2294         }
2295         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2296                         "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2297                         xhci->num_usb2_ports, xhci->num_usb3_ports);
2298
2299         /* Place limits on the number of roothub ports so that the hub
2300          * descriptors aren't longer than the USB core will allocate.
2301          */
2302         if (xhci->num_usb3_ports > 15) {
2303                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2304                                 "Limiting USB 3.0 roothub ports to 15.");
2305                 xhci->num_usb3_ports = 15;
2306         }
2307         if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2308                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2309                                 "Limiting USB 2.0 roothub ports to %u.",
2310                                 USB_MAXCHILDREN);
2311                 xhci->num_usb2_ports = USB_MAXCHILDREN;
2312         }
2313
2314         /*
2315          * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2316          * Not sure how the USB core will handle a hub with no ports...
2317          */
2318         if (xhci->num_usb2_ports) {
2319                 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2320                                 xhci->num_usb2_ports, flags);
2321                 if (!xhci->usb2_ports)
2322                         return -ENOMEM;
2323
2324                 port_index = 0;
2325                 for (i = 0; i < num_ports; i++) {
2326                         if (xhci->port_array[i] == 0x03 ||
2327                                         xhci->port_array[i] == 0 ||
2328                                         xhci->port_array[i] == DUPLICATE_ENTRY)
2329                                 continue;
2330
2331                         xhci->usb2_ports[port_index] =
2332                                 &xhci->op_regs->port_status_base +
2333                                 NUM_PORT_REGS*i;
2334                         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2335                                         "USB 2.0 port at index %u, "
2336                                         "addr = %p", i,
2337                                         xhci->usb2_ports[port_index]);
2338                         port_index++;
2339                         if (port_index == xhci->num_usb2_ports)
2340                                 break;
2341                 }
2342         }
2343         if (xhci->num_usb3_ports) {
2344                 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2345                                 xhci->num_usb3_ports, flags);
2346                 if (!xhci->usb3_ports)
2347                         return -ENOMEM;
2348
2349                 port_index = 0;
2350                 for (i = 0; i < num_ports; i++)
2351                         if (xhci->port_array[i] == 0x03) {
2352                                 xhci->usb3_ports[port_index] =
2353                                         &xhci->op_regs->port_status_base +
2354                                         NUM_PORT_REGS*i;
2355                                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2356                                                 "USB 3.0 port at index %u, "
2357                                                 "addr = %p", i,
2358                                                 xhci->usb3_ports[port_index]);
2359                                 port_index++;
2360                                 if (port_index == xhci->num_usb3_ports)
2361                                         break;
2362                         }
2363         }
2364         return 0;
2365 }
2366
2367 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2368 {
2369         dma_addr_t      dma;
2370         struct device   *dev = xhci_to_hcd(xhci)->self.controller;
2371         unsigned int    val, val2;
2372         u64             val_64;
2373         struct xhci_segment     *seg;
2374         u32 page_size, temp;
2375         int i;
2376
2377         INIT_LIST_HEAD(&xhci->cmd_list);
2378
2379         /* init command timeout work */
2380         INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2381         init_completion(&xhci->cmd_ring_stop_completion);
2382
2383         page_size = readl(&xhci->op_regs->page_size);
2384         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2385                         "Supported page size register = 0x%x", page_size);
2386         for (i = 0; i < 16; i++) {
2387                 if ((0x1 & page_size) != 0)
2388                         break;
2389                 page_size = page_size >> 1;
2390         }
2391         if (i < 16)
2392                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2393                         "Supported page size of %iK", (1 << (i+12)) / 1024);
2394         else
2395                 xhci_warn(xhci, "WARN: no supported page size\n");
2396         /* Use 4K pages, since that's common and the minimum the HC supports */
2397         xhci->page_shift = 12;
2398         xhci->page_size = 1 << xhci->page_shift;
2399         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2400                         "HCD page size set to %iK", xhci->page_size / 1024);
2401
2402         /*
2403          * Program the Number of Device Slots Enabled field in the CONFIG
2404          * register with the max value of slots the HC can handle.
2405          */
2406         val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2407         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2408                         "// xHC can handle at most %d device slots.", val);
2409         val2 = readl(&xhci->op_regs->config_reg);
2410         val |= (val2 & ~HCS_SLOTS_MASK);
2411         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2412                         "// Setting Max device slots reg = 0x%x.", val);
2413         writel(val, &xhci->op_regs->config_reg);
2414
2415         /*
2416          * Section 5.4.8 - doorbell array must be
2417          * "physically contiguous and 64-byte (cache line) aligned".
2418          */
2419         xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2420                         flags);
2421         if (!xhci->dcbaa)
2422                 goto fail;
2423         memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2424         xhci->dcbaa->dma = dma;
2425         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2426                         "// Device context base array address = 0x%llx (DMA), %p (virt)",
2427                         (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2428         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2429
2430         /*
2431          * Initialize the ring segment pool.  The ring must be a contiguous
2432          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2433          * however, the command ring segment needs 64-byte aligned segments
2434          * and our use of dma addresses in the trb_address_map radix tree needs
2435          * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2436          */
2437         xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2438                         TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2439
2440         /* See Table 46 and Note on Figure 55 */
2441         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2442                         2112, 64, xhci->page_size);
2443         if (!xhci->segment_pool || !xhci->device_pool)
2444                 goto fail;
2445
2446         /* Linear stream context arrays don't have any boundary restrictions,
2447          * and only need to be 16-byte aligned.
2448          */
2449         xhci->small_streams_pool =
2450                 dma_pool_create("xHCI 256 byte stream ctx arrays",
2451                         dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2452         xhci->medium_streams_pool =
2453                 dma_pool_create("xHCI 1KB stream ctx arrays",
2454                         dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2455         /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2456          * will be allocated with dma_alloc_coherent()
2457          */
2458
2459         if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2460                 goto fail;
2461
2462         /* Set up the command ring to have one segments for now. */
2463         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2464         if (!xhci->cmd_ring)
2465                 goto fail;
2466         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2467                         "Allocated command ring at %p", xhci->cmd_ring);
2468         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2469                         (unsigned long long)xhci->cmd_ring->first_seg->dma);
2470
2471         /* Set the address in the Command Ring Control register */
2472         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2473         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2474                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2475                 xhci->cmd_ring->cycle_state;
2476         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2477                         "// Setting command ring address to 0x%x", val);
2478         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2479         xhci_dbg_cmd_ptrs(xhci);
2480
2481         xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2482         if (!xhci->lpm_command)
2483                 goto fail;
2484
2485         /* Reserve one command ring TRB for disabling LPM.
2486          * Since the USB core grabs the shared usb_bus bandwidth mutex before
2487          * disabling LPM, we only need to reserve one TRB for all devices.
2488          */
2489         xhci->cmd_ring_reserved_trbs++;
2490
2491         val = readl(&xhci->cap_regs->db_off);
2492         val &= DBOFF_MASK;
2493         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2494                         "// Doorbell array is located at offset 0x%x"
2495                         " from cap regs base addr", val);
2496         xhci->dba = (void __iomem *) xhci->cap_regs + val;
2497         xhci_dbg_regs(xhci);
2498         xhci_print_run_regs(xhci);
2499         /* Set ir_set to interrupt register set 0 */
2500         xhci->ir_set = &xhci->run_regs->ir_set[0];
2501
2502         /*
2503          * Event ring setup: Allocate a normal ring, but also setup
2504          * the event ring segment table (ERST).  Section 4.9.3.
2505          */
2506         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2507         xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2508                                         0, flags);
2509         if (!xhci->event_ring)
2510                 goto fail;
2511         if (xhci_check_trb_in_td_math(xhci) < 0)
2512                 goto fail;
2513
2514         xhci->erst.entries = dma_alloc_coherent(dev,
2515                         sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2516                         flags);
2517         if (!xhci->erst.entries)
2518                 goto fail;
2519         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2520                         "// Allocated event ring segment table at 0x%llx",
2521                         (unsigned long long)dma);
2522
2523         memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2524         xhci->erst.num_entries = ERST_NUM_SEGS;
2525         xhci->erst.erst_dma_addr = dma;
2526         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2527                         "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2528                         xhci->erst.num_entries,
2529                         xhci->erst.entries,
2530                         (unsigned long long)xhci->erst.erst_dma_addr);
2531
2532         /* set ring base address and size for each segment table entry */
2533         for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2534                 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2535                 entry->seg_addr = cpu_to_le64(seg->dma);
2536                 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2537                 entry->rsvd = 0;
2538                 seg = seg->next;
2539         }
2540
2541         /* set ERST count with the number of entries in the segment table */
2542         val = readl(&xhci->ir_set->erst_size);
2543         val &= ERST_SIZE_MASK;
2544         val |= ERST_NUM_SEGS;
2545         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2546                         "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2547                         val);
2548         writel(val, &xhci->ir_set->erst_size);
2549
2550         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2551                         "// Set ERST entries to point to event ring.");
2552         /* set the segment table base address */
2553         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2554                         "// Set ERST base address for ir_set 0 = 0x%llx",
2555                         (unsigned long long)xhci->erst.erst_dma_addr);
2556         val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2557         val_64 &= ERST_PTR_MASK;
2558         val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2559         xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2560
2561         /* Set the event ring dequeue address */
2562         xhci_set_hc_event_deq(xhci);
2563         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2564                         "Wrote ERST address to ir_set 0.");
2565         xhci_print_ir_set(xhci, 0);
2566
2567         /*
2568          * XXX: Might need to set the Interrupter Moderation Register to
2569          * something other than the default (~1ms minimum between interrupts).
2570          * See section 5.5.1.2.
2571          */
2572         for (i = 0; i < MAX_HC_SLOTS; ++i)
2573                 xhci->devs[i] = NULL;
2574         for (i = 0; i < USB_MAXCHILDREN; ++i) {
2575                 xhci->bus_state[0].resume_done[i] = 0;
2576                 xhci->bus_state[1].resume_done[i] = 0;
2577                 /* Only the USB 2.0 completions will ever be used. */
2578                 init_completion(&xhci->bus_state[1].rexit_done[i]);
2579         }
2580
2581         if (scratchpad_alloc(xhci, flags))
2582                 goto fail;
2583         if (xhci_setup_port_arrays(xhci, flags))
2584                 goto fail;
2585
2586         /* Enable USB 3.0 device notifications for function remote wake, which
2587          * is necessary for allowing USB 3.0 devices to do remote wakeup from
2588          * U3 (device suspend).
2589          */
2590         temp = readl(&xhci->op_regs->dev_notification);
2591         temp &= ~DEV_NOTE_MASK;
2592         temp |= DEV_NOTE_FWAKE;
2593         writel(temp, &xhci->op_regs->dev_notification);
2594
2595         return 0;
2596
2597 fail:
2598         xhci_warn(xhci, "Couldn't initialize memory\n");
2599         xhci_halt(xhci);
2600         xhci_reset(xhci);
2601         xhci_mem_cleanup(xhci);
2602         return -ENOMEM;
2603 }