Merge tag 'soc-ep93xx-dt-6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-block.git] / drivers / usb / host / oxu210hp-hcd.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it>
4  * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it>
5  *
6  * This code is *strongly* based on EHCI-HCD code by David Brownell since
7  * the chip is a quasi-EHCI compatible.
8  */
9
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/dmapool.h>
13 #include <linux/kernel.h>
14 #include <linux/delay.h>
15 #include <linux/ioport.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/timer.h>
20 #include <linux/list.h>
21 #include <linux/interrupt.h>
22 #include <linux/usb.h>
23 #include <linux/usb/hcd.h>
24 #include <linux/moduleparam.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/io.h>
27 #include <linux/iopoll.h>
28
29 #include <asm/irq.h>
30 #include <asm/unaligned.h>
31
32 #include <linux/irq.h>
33 #include <linux/platform_device.h>
34
35 #define DRIVER_VERSION "0.0.50"
36
37 #define OXU_DEVICEID                    0x00
38         #define OXU_REV_MASK            0xffff0000
39         #define OXU_REV_SHIFT           16
40         #define OXU_REV_2100            0x2100
41         #define OXU_BO_SHIFT            8
42         #define OXU_BO_MASK             (0x3 << OXU_BO_SHIFT)
43         #define OXU_MAJ_REV_SHIFT       4
44         #define OXU_MAJ_REV_MASK        (0xf << OXU_MAJ_REV_SHIFT)
45         #define OXU_MIN_REV_SHIFT       0
46         #define OXU_MIN_REV_MASK        (0xf << OXU_MIN_REV_SHIFT)
47 #define OXU_HOSTIFCONFIG                0x04
48 #define OXU_SOFTRESET                   0x08
49         #define OXU_SRESET              (1 << 0)
50
51 #define OXU_PIOBURSTREADCTRL            0x0C
52
53 #define OXU_CHIPIRQSTATUS               0x10
54 #define OXU_CHIPIRQEN_SET               0x14
55 #define OXU_CHIPIRQEN_CLR               0x18
56         #define OXU_USBSPHLPWUI         0x00000080
57         #define OXU_USBOTGLPWUI         0x00000040
58         #define OXU_USBSPHI             0x00000002
59         #define OXU_USBOTGI             0x00000001
60
61 #define OXU_CLKCTRL_SET                 0x1C
62         #define OXU_SYSCLKEN            0x00000008
63         #define OXU_USBSPHCLKEN         0x00000002
64         #define OXU_USBOTGCLKEN         0x00000001
65
66 #define OXU_ASO                         0x68
67         #define OXU_SPHPOEN             0x00000100
68         #define OXU_OVRCCURPUPDEN       0x00000800
69         #define OXU_ASO_OP              (1 << 10)
70         #define OXU_COMPARATOR          0x000004000
71
72 #define OXU_USBMODE                     0x1A8
73         #define OXU_VBPS                0x00000020
74         #define OXU_ES_LITTLE           0x00000000
75         #define OXU_CM_HOST_ONLY        0x00000003
76
77 /*
78  * Proper EHCI structs & defines
79  */
80
81 /* Magic numbers that can affect system performance */
82 #define EHCI_TUNE_CERR          3       /* 0-3 qtd retries; 0 == don't stop */
83 #define EHCI_TUNE_RL_HS         4       /* nak throttle; see 4.9 */
84 #define EHCI_TUNE_RL_TT         0
85 #define EHCI_TUNE_MULT_HS       1       /* 1-3 transactions/uframe; 4.10.3 */
86 #define EHCI_TUNE_MULT_TT       1
87 #define EHCI_TUNE_FLS           2       /* (small) 256 frame schedule */
88
89 struct oxu_hcd;
90
91 /* EHCI register interface, corresponds to EHCI Revision 0.95 specification */
92
93 /* Section 2.2 Host Controller Capability Registers */
94 struct ehci_caps {
95         /* these fields are specified as 8 and 16 bit registers,
96          * but some hosts can't perform 8 or 16 bit PCI accesses.
97          */
98         u32             hc_capbase;
99 #define HC_LENGTH(p)            (((p)>>00)&0x00ff)      /* bits 7:0 */
100 #define HC_VERSION(p)           (((p)>>16)&0xffff)      /* bits 31:16 */
101         u32             hcs_params;     /* HCSPARAMS - offset 0x4 */
102 #define HCS_DEBUG_PORT(p)       (((p)>>20)&0xf) /* bits 23:20, debug port? */
103 #define HCS_INDICATOR(p)        ((p)&(1 << 16)) /* true: has port indicators */
104 #define HCS_N_CC(p)             (((p)>>12)&0xf) /* bits 15:12, #companion HCs */
105 #define HCS_N_PCC(p)            (((p)>>8)&0xf)  /* bits 11:8, ports per CC */
106 #define HCS_PORTROUTED(p)       ((p)&(1 << 7))  /* true: port routing */
107 #define HCS_PPC(p)              ((p)&(1 << 4))  /* true: port power control */
108 #define HCS_N_PORTS(p)          (((p)>>0)&0xf)  /* bits 3:0, ports on HC */
109
110         u32             hcc_params;      /* HCCPARAMS - offset 0x8 */
111 #define HCC_EXT_CAPS(p)         (((p)>>8)&0xff) /* for pci extended caps */
112 #define HCC_ISOC_CACHE(p)       ((p)&(1 << 7))  /* true: can cache isoc frame */
113 #define HCC_ISOC_THRES(p)       (((p)>>4)&0x7)  /* bits 6:4, uframes cached */
114 #define HCC_CANPARK(p)          ((p)&(1 << 2))  /* true: can park on async qh */
115 #define HCC_PGM_FRAMELISTLEN(p) ((p)&(1 << 1))  /* true: periodic_size changes*/
116 #define HCC_64BIT_ADDR(p)       ((p)&(1))       /* true: can use 64-bit addr */
117         u8              portroute[8];    /* nibbles for routing - offset 0xC */
118 } __packed;
119
120
121 /* Section 2.3 Host Controller Operational Registers */
122 struct ehci_regs {
123         /* USBCMD: offset 0x00 */
124         u32             command;
125 /* 23:16 is r/w intr rate, in microframes; default "8" == 1/msec */
126 #define CMD_PARK        (1<<11)         /* enable "park" on async qh */
127 #define CMD_PARK_CNT(c) (((c)>>8)&3)    /* how many transfers to park for */
128 #define CMD_LRESET      (1<<7)          /* partial reset (no ports, etc) */
129 #define CMD_IAAD        (1<<6)          /* "doorbell" interrupt async advance */
130 #define CMD_ASE         (1<<5)          /* async schedule enable */
131 #define CMD_PSE         (1<<4)          /* periodic schedule enable */
132 /* 3:2 is periodic frame list size */
133 #define CMD_RESET       (1<<1)          /* reset HC not bus */
134 #define CMD_RUN         (1<<0)          /* start/stop HC */
135
136         /* USBSTS: offset 0x04 */
137         u32             status;
138 #define STS_ASS         (1<<15)         /* Async Schedule Status */
139 #define STS_PSS         (1<<14)         /* Periodic Schedule Status */
140 #define STS_RECL        (1<<13)         /* Reclamation */
141 #define STS_HALT        (1<<12)         /* Not running (any reason) */
142 /* some bits reserved */
143         /* these STS_* flags are also intr_enable bits (USBINTR) */
144 #define STS_IAA         (1<<5)          /* Interrupted on async advance */
145 #define STS_FATAL       (1<<4)          /* such as some PCI access errors */
146 #define STS_FLR         (1<<3)          /* frame list rolled over */
147 #define STS_PCD         (1<<2)          /* port change detect */
148 #define STS_ERR         (1<<1)          /* "error" completion (overflow, ...) */
149 #define STS_INT         (1<<0)          /* "normal" completion (short, ...) */
150
151 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
152
153         /* USBINTR: offset 0x08 */
154         u32             intr_enable;
155
156         /* FRINDEX: offset 0x0C */
157         u32             frame_index;    /* current microframe number */
158         /* CTRLDSSEGMENT: offset 0x10 */
159         u32             segment;        /* address bits 63:32 if needed */
160         /* PERIODICLISTBASE: offset 0x14 */
161         u32             frame_list;     /* points to periodic list */
162         /* ASYNCLISTADDR: offset 0x18 */
163         u32             async_next;     /* address of next async queue head */
164
165         u32             reserved[9];
166
167         /* CONFIGFLAG: offset 0x40 */
168         u32             configured_flag;
169 #define FLAG_CF         (1<<0)          /* true: we'll support "high speed" */
170
171         /* PORTSC: offset 0x44 */
172         u32             port_status[];  /* up to N_PORTS */
173 /* 31:23 reserved */
174 #define PORT_WKOC_E     (1<<22)         /* wake on overcurrent (enable) */
175 #define PORT_WKDISC_E   (1<<21)         /* wake on disconnect (enable) */
176 #define PORT_WKCONN_E   (1<<20)         /* wake on connect (enable) */
177 /* 19:16 for port testing */
178 #define PORT_LED_OFF    (0<<14)
179 #define PORT_LED_AMBER  (1<<14)
180 #define PORT_LED_GREEN  (2<<14)
181 #define PORT_LED_MASK   (3<<14)
182 #define PORT_OWNER      (1<<13)         /* true: companion hc owns this port */
183 #define PORT_POWER      (1<<12)         /* true: has power (see PPC) */
184 #define PORT_USB11(x) (((x)&(3<<10)) == (1<<10))        /* USB 1.1 device */
185 /* 11:10 for detecting lowspeed devices (reset vs release ownership) */
186 /* 9 reserved */
187 #define PORT_RESET      (1<<8)          /* reset port */
188 #define PORT_SUSPEND    (1<<7)          /* suspend port */
189 #define PORT_RESUME     (1<<6)          /* resume it */
190 #define PORT_OCC        (1<<5)          /* over current change */
191 #define PORT_OC         (1<<4)          /* over current active */
192 #define PORT_PEC        (1<<3)          /* port enable change */
193 #define PORT_PE         (1<<2)          /* port enable */
194 #define PORT_CSC        (1<<1)          /* connect status change */
195 #define PORT_CONNECT    (1<<0)          /* device connected */
196 #define PORT_RWC_BITS   (PORT_CSC | PORT_PEC | PORT_OCC)
197 } __packed;
198
199 #define QTD_NEXT(dma)   cpu_to_le32((u32)dma)
200
201 /*
202  * EHCI Specification 0.95 Section 3.5
203  * QTD: describe data transfer components (buffer, direction, ...)
204  * See Fig 3-6 "Queue Element Transfer Descriptor Block Diagram".
205  *
206  * These are associated only with "QH" (Queue Head) structures,
207  * used with control, bulk, and interrupt transfers.
208  */
209 struct ehci_qtd {
210         /* first part defined by EHCI spec */
211         __le32                  hw_next;                /* see EHCI 3.5.1 */
212         __le32                  hw_alt_next;            /* see EHCI 3.5.2 */
213         __le32                  hw_token;               /* see EHCI 3.5.3 */
214 #define QTD_TOGGLE      (1 << 31)       /* data toggle */
215 #define QTD_LENGTH(tok) (((tok)>>16) & 0x7fff)
216 #define QTD_IOC         (1 << 15)       /* interrupt on complete */
217 #define QTD_CERR(tok)   (((tok)>>10) & 0x3)
218 #define QTD_PID(tok)    (((tok)>>8) & 0x3)
219 #define QTD_STS_ACTIVE  (1 << 7)        /* HC may execute this */
220 #define QTD_STS_HALT    (1 << 6)        /* halted on error */
221 #define QTD_STS_DBE     (1 << 5)        /* data buffer error (in HC) */
222 #define QTD_STS_BABBLE  (1 << 4)        /* device was babbling (qtd halted) */
223 #define QTD_STS_XACT    (1 << 3)        /* device gave illegal response */
224 #define QTD_STS_MMF     (1 << 2)        /* incomplete split transaction */
225 #define QTD_STS_STS     (1 << 1)        /* split transaction state */
226 #define QTD_STS_PING    (1 << 0)        /* issue PING? */
227         __le32                  hw_buf[5];              /* see EHCI 3.5.4 */
228         __le32                  hw_buf_hi[5];           /* Appendix B */
229
230         /* the rest is HCD-private */
231         dma_addr_t              qtd_dma;                /* qtd address */
232         struct list_head        qtd_list;               /* sw qtd list */
233         struct urb              *urb;                   /* qtd's urb */
234         size_t                  length;                 /* length of buffer */
235
236         u32                     qtd_buffer_len;
237         void                    *buffer;
238         dma_addr_t              buffer_dma;
239         void                    *transfer_buffer;
240         void                    *transfer_dma;
241 } __aligned(32);
242
243 /* mask NakCnt+T in qh->hw_alt_next */
244 #define QTD_MASK cpu_to_le32 (~0x1f)
245
246 #define IS_SHORT_READ(token) (QTD_LENGTH(token) != 0 && QTD_PID(token) == 1)
247
248 /* Type tag from {qh, itd, sitd, fstn}->hw_next */
249 #define Q_NEXT_TYPE(dma) ((dma) & cpu_to_le32 (3 << 1))
250
251 /* values for that type tag */
252 #define Q_TYPE_QH       cpu_to_le32 (1 << 1)
253
254 /* next async queue entry, or pointer to interrupt/periodic QH */
255 #define QH_NEXT(dma)    (cpu_to_le32(((u32)dma)&~0x01f)|Q_TYPE_QH)
256
257 /* for periodic/async schedules and qtd lists, mark end of list */
258 #define EHCI_LIST_END   cpu_to_le32(1) /* "null pointer" to hw */
259
260 /*
261  * Entries in periodic shadow table are pointers to one of four kinds
262  * of data structure.  That's dictated by the hardware; a type tag is
263  * encoded in the low bits of the hardware's periodic schedule.  Use
264  * Q_NEXT_TYPE to get the tag.
265  *
266  * For entries in the async schedule, the type tag always says "qh".
267  */
268 union ehci_shadow {
269         struct ehci_qh          *qh;            /* Q_TYPE_QH */
270         __le32                  *hw_next;       /* (all types) */
271         void                    *ptr;
272 };
273
274 /*
275  * EHCI Specification 0.95 Section 3.6
276  * QH: describes control/bulk/interrupt endpoints
277  * See Fig 3-7 "Queue Head Structure Layout".
278  *
279  * These appear in both the async and (for interrupt) periodic schedules.
280  */
281
282 struct ehci_qh {
283         /* first part defined by EHCI spec */
284         __le32                  hw_next;         /* see EHCI 3.6.1 */
285         __le32                  hw_info1;       /* see EHCI 3.6.2 */
286 #define QH_HEAD         0x00008000
287         __le32                  hw_info2;       /* see EHCI 3.6.2 */
288 #define QH_SMASK        0x000000ff
289 #define QH_CMASK        0x0000ff00
290 #define QH_HUBADDR      0x007f0000
291 #define QH_HUBPORT      0x3f800000
292 #define QH_MULT         0xc0000000
293         __le32                  hw_current;      /* qtd list - see EHCI 3.6.4 */
294
295         /* qtd overlay (hardware parts of a struct ehci_qtd) */
296         __le32                  hw_qtd_next;
297         __le32                  hw_alt_next;
298         __le32                  hw_token;
299         __le32                  hw_buf[5];
300         __le32                  hw_buf_hi[5];
301
302         /* the rest is HCD-private */
303         dma_addr_t              qh_dma;         /* address of qh */
304         union ehci_shadow       qh_next;        /* ptr to qh; or periodic */
305         struct list_head        qtd_list;       /* sw qtd list */
306         struct ehci_qtd         *dummy;
307         struct ehci_qh          *reclaim;       /* next to reclaim */
308
309         struct oxu_hcd          *oxu;
310         struct kref             kref;
311         unsigned int            stamp;
312
313         u8                      qh_state;
314 #define QH_STATE_LINKED         1               /* HC sees this */
315 #define QH_STATE_UNLINK         2               /* HC may still see this */
316 #define QH_STATE_IDLE           3               /* HC doesn't see this */
317 #define QH_STATE_UNLINK_WAIT    4               /* LINKED and on reclaim q */
318 #define QH_STATE_COMPLETING     5               /* don't touch token.HALT */
319
320         /* periodic schedule info */
321         u8                      usecs;          /* intr bandwidth */
322         u8                      gap_uf;         /* uframes split/csplit gap */
323         u8                      c_usecs;        /* ... split completion bw */
324         u16                     tt_usecs;       /* tt downstream bandwidth */
325         unsigned short          period;         /* polling interval */
326         unsigned short          start;          /* where polling starts */
327 #define NO_FRAME ((unsigned short)~0)                   /* pick new start */
328         struct usb_device       *dev;           /* access to TT */
329 } __aligned(32);
330
331 /*
332  * Proper OXU210HP structs
333  */
334
335 #define OXU_OTG_CORE_OFFSET     0x00400
336 #define OXU_OTG_CAP_OFFSET      (OXU_OTG_CORE_OFFSET + 0x100)
337 #define OXU_SPH_CORE_OFFSET     0x00800
338 #define OXU_SPH_CAP_OFFSET      (OXU_SPH_CORE_OFFSET + 0x100)
339
340 #define OXU_OTG_MEM             0xE000
341 #define OXU_SPH_MEM             0x16000
342
343 /* Only how many elements & element structure are specifies here. */
344 /* 2 host controllers are enabled - total size <= 28 kbytes */
345 #define DEFAULT_I_TDPS          1024
346 #define QHEAD_NUM               16
347 #define QTD_NUM                 32
348 #define SITD_NUM                8
349 #define MURB_NUM                8
350
351 #define BUFFER_NUM              8
352 #define BUFFER_SIZE             512
353
354 struct oxu_info {
355         struct usb_hcd *hcd[2];
356 };
357
358 struct oxu_buf {
359         u8                      buffer[BUFFER_SIZE];
360 } __aligned(BUFFER_SIZE);
361
362 struct oxu_onchip_mem {
363         struct oxu_buf          db_pool[BUFFER_NUM];
364
365         u32                     frame_list[DEFAULT_I_TDPS];
366         struct ehci_qh          qh_pool[QHEAD_NUM];
367         struct ehci_qtd         qtd_pool[QTD_NUM];
368 } __aligned(4 << 10);
369
370 #define EHCI_MAX_ROOT_PORTS     15              /* see HCS_N_PORTS */
371
372 struct oxu_murb {
373         struct urb              urb;
374         struct urb              *main;
375         u8                      last;
376 };
377
378 struct oxu_hcd {                                /* one per controller */
379         unsigned int            is_otg:1;
380
381         u8                      qh_used[QHEAD_NUM];
382         u8                      qtd_used[QTD_NUM];
383         u8                      db_used[BUFFER_NUM];
384         u8                      murb_used[MURB_NUM];
385
386         struct oxu_onchip_mem   __iomem *mem;
387         spinlock_t              mem_lock;
388
389         struct timer_list       urb_timer;
390
391         struct ehci_caps __iomem *caps;
392         struct ehci_regs __iomem *regs;
393
394         u32                     hcs_params;     /* cached register copy */
395         spinlock_t              lock;
396
397         /* async schedule support */
398         struct ehci_qh          *async;
399         struct ehci_qh          *reclaim;
400         unsigned int            reclaim_ready:1;
401         unsigned int            scanning:1;
402
403         /* periodic schedule support */
404         unsigned int            periodic_size;
405         __le32                  *periodic;      /* hw periodic table */
406         dma_addr_t              periodic_dma;
407         unsigned int            i_thresh;       /* uframes HC might cache */
408
409         union ehci_shadow       *pshadow;       /* mirror hw periodic table */
410         int                     next_uframe;    /* scan periodic, start here */
411         unsigned int            periodic_sched; /* periodic activity count */
412
413         /* per root hub port */
414         unsigned long           reset_done[EHCI_MAX_ROOT_PORTS];
415         /* bit vectors (one bit per port) */
416         unsigned long           bus_suspended;  /* which ports were
417                                                  * already suspended at the
418                                                  * start of a bus suspend
419                                                  */
420         unsigned long           companion_ports;/* which ports are dedicated
421                                                  * to the companion controller
422                                                  */
423
424         struct timer_list       watchdog;
425         unsigned long           actions;
426         unsigned int            stamp;
427         unsigned long           next_statechange;
428         u32                     command;
429
430         /* SILICON QUIRKS */
431         struct list_head        urb_list;       /* this is the head to urb
432                                                  * queue that didn't get enough
433                                                  * resources
434                                                  */
435         struct oxu_murb         *murb_pool;     /* murb per split big urb */
436         unsigned int            urb_len;
437
438         u8                      sbrn;           /* packed release number */
439 };
440
441 #define EHCI_IAA_JIFFIES        (HZ/100)        /* arbitrary; ~10 msec */
442 #define EHCI_IO_JIFFIES         (HZ/10)         /* io watchdog > irq_thresh */
443 #define EHCI_ASYNC_JIFFIES      (HZ/20)         /* async idle timeout */
444 #define EHCI_SHRINK_JIFFIES     (HZ/200)        /* async qh unlink delay */
445
446 enum ehci_timer_action {
447         TIMER_IO_WATCHDOG,
448         TIMER_IAA_WATCHDOG,
449         TIMER_ASYNC_SHRINK,
450         TIMER_ASYNC_OFF,
451 };
452
453 /*
454  * Main defines
455  */
456
457 #define oxu_dbg(oxu, fmt, args...) \
458                 dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
459 #define oxu_err(oxu, fmt, args...) \
460                 dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
461 #define oxu_info(oxu, fmt, args...) \
462                 dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
463
464 #ifdef CONFIG_DYNAMIC_DEBUG
465 #define DEBUG
466 #endif
467
468 static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu)
469 {
470         return container_of((void *) oxu, struct usb_hcd, hcd_priv);
471 }
472
473 static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd)
474 {
475         return (struct oxu_hcd *) (hcd->hcd_priv);
476 }
477
478 /*
479  * Debug stuff
480  */
481
482 #undef OXU_URB_TRACE
483 #undef OXU_VERBOSE_DEBUG
484
485 #ifdef OXU_VERBOSE_DEBUG
486 #define oxu_vdbg                        oxu_dbg
487 #else
488 #define oxu_vdbg(oxu, fmt, args...)     /* Nop */
489 #endif
490
491 #ifdef DEBUG
492
493 static int __attribute__((__unused__))
494 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
495 {
496         return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
497                 label, label[0] ? " " : "", status,
498                 (status & STS_ASS) ? " Async" : "",
499                 (status & STS_PSS) ? " Periodic" : "",
500                 (status & STS_RECL) ? " Recl" : "",
501                 (status & STS_HALT) ? " Halt" : "",
502                 (status & STS_IAA) ? " IAA" : "",
503                 (status & STS_FATAL) ? " FATAL" : "",
504                 (status & STS_FLR) ? " FLR" : "",
505                 (status & STS_PCD) ? " PCD" : "",
506                 (status & STS_ERR) ? " ERR" : "",
507                 (status & STS_INT) ? " INT" : ""
508                 );
509 }
510
511 static int __attribute__((__unused__))
512 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
513 {
514         return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
515                 label, label[0] ? " " : "", enable,
516                 (enable & STS_IAA) ? " IAA" : "",
517                 (enable & STS_FATAL) ? " FATAL" : "",
518                 (enable & STS_FLR) ? " FLR" : "",
519                 (enable & STS_PCD) ? " PCD" : "",
520                 (enable & STS_ERR) ? " ERR" : "",
521                 (enable & STS_INT) ? " INT" : ""
522                 );
523 }
524
525 static const char *const fls_strings[] =
526     { "1024", "512", "256", "??" };
527
528 static int dbg_command_buf(char *buf, unsigned len,
529                                 const char *label, u32 command)
530 {
531         return scnprintf(buf, len,
532                 "%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s",
533                 label, label[0] ? " " : "", command,
534                 (command & CMD_PARK) ? "park" : "(park)",
535                 CMD_PARK_CNT(command),
536                 (command >> 16) & 0x3f,
537                 (command & CMD_LRESET) ? " LReset" : "",
538                 (command & CMD_IAAD) ? " IAAD" : "",
539                 (command & CMD_ASE) ? " Async" : "",
540                 (command & CMD_PSE) ? " Periodic" : "",
541                 fls_strings[(command >> 2) & 0x3],
542                 (command & CMD_RESET) ? " Reset" : "",
543                 (command & CMD_RUN) ? "RUN" : "HALT"
544                 );
545 }
546
547 static int dbg_port_buf(char *buf, unsigned len, const char *label,
548                                 int port, u32 status)
549 {
550         char    *sig;
551
552         /* signaling state */
553         switch (status & (3 << 10)) {
554         case 0 << 10:
555                 sig = "se0";
556                 break;
557         case 1 << 10:
558                 sig = "k";      /* low speed */
559                 break;
560         case 2 << 10:
561                 sig = "j";
562                 break;
563         default:
564                 sig = "?";
565                 break;
566         }
567
568         return scnprintf(buf, len,
569                 "%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s",
570                 label, label[0] ? " " : "", port, status,
571                 (status & PORT_POWER) ? " POWER" : "",
572                 (status & PORT_OWNER) ? " OWNER" : "",
573                 sig,
574                 (status & PORT_RESET) ? " RESET" : "",
575                 (status & PORT_SUSPEND) ? " SUSPEND" : "",
576                 (status & PORT_RESUME) ? " RESUME" : "",
577                 (status & PORT_OCC) ? " OCC" : "",
578                 (status & PORT_OC) ? " OC" : "",
579                 (status & PORT_PEC) ? " PEC" : "",
580                 (status & PORT_PE) ? " PE" : "",
581                 (status & PORT_CSC) ? " CSC" : "",
582                 (status & PORT_CONNECT) ? " CONNECT" : ""
583             );
584 }
585
586 #else
587
588 static inline int __attribute__((__unused__))
589 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
590 { return 0; }
591
592 static inline int __attribute__((__unused__))
593 dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
594 { return 0; }
595
596 static inline int __attribute__((__unused__))
597 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
598 { return 0; }
599
600 static inline int __attribute__((__unused__))
601 dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
602 { return 0; }
603
604 #endif /* DEBUG */
605
606 /* functions have the "wrong" filename when they're output... */
607 #define dbg_status(oxu, label, status) { \
608         char _buf[80]; \
609         dbg_status_buf(_buf, sizeof _buf, label, status); \
610         oxu_dbg(oxu, "%s\n", _buf); \
611 }
612
613 #define dbg_cmd(oxu, label, command) { \
614         char _buf[80]; \
615         dbg_command_buf(_buf, sizeof _buf, label, command); \
616         oxu_dbg(oxu, "%s\n", _buf); \
617 }
618
619 #define dbg_port(oxu, label, port, status) { \
620         char _buf[80]; \
621         dbg_port_buf(_buf, sizeof _buf, label, port, status); \
622         oxu_dbg(oxu, "%s\n", _buf); \
623 }
624
625 /*
626  * Module parameters
627  */
628
629 /* Initial IRQ latency: faster than hw default */
630 static int log2_irq_thresh;                     /* 0 to 6 */
631 module_param(log2_irq_thresh, int, S_IRUGO);
632 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
633
634 /* Initial park setting: slower than hw default */
635 static unsigned park;
636 module_param(park, uint, S_IRUGO);
637 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
638
639 /* For flakey hardware, ignore overcurrent indicators */
640 static bool ignore_oc;
641 module_param(ignore_oc, bool, S_IRUGO);
642 MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications");
643
644
645 static void ehci_work(struct oxu_hcd *oxu);
646 static int oxu_hub_control(struct usb_hcd *hcd,
647                                 u16 typeReq, u16 wValue, u16 wIndex,
648                                 char *buf, u16 wLength);
649
650 /*
651  * Local functions
652  */
653
654 /* Low level read/write registers functions */
655 static inline u32 oxu_readl(void __iomem *base, u32 reg)
656 {
657         return readl(base + reg);
658 }
659
660 static inline void oxu_writel(void __iomem *base, u32 reg, u32 val)
661 {
662         writel(val, base + reg);
663 }
664
665 static inline void timer_action_done(struct oxu_hcd *oxu,
666                                         enum ehci_timer_action action)
667 {
668         clear_bit(action, &oxu->actions);
669 }
670
671 static inline void timer_action(struct oxu_hcd *oxu,
672                                         enum ehci_timer_action action)
673 {
674         if (!test_and_set_bit(action, &oxu->actions)) {
675                 unsigned long t;
676
677                 switch (action) {
678                 case TIMER_IAA_WATCHDOG:
679                         t = EHCI_IAA_JIFFIES;
680                         break;
681                 case TIMER_IO_WATCHDOG:
682                         t = EHCI_IO_JIFFIES;
683                         break;
684                 case TIMER_ASYNC_OFF:
685                         t = EHCI_ASYNC_JIFFIES;
686                         break;
687                 case TIMER_ASYNC_SHRINK:
688                 default:
689                         t = EHCI_SHRINK_JIFFIES;
690                         break;
691                 }
692                 t += jiffies;
693                 /* all timings except IAA watchdog can be overridden.
694                  * async queue SHRINK often precedes IAA.  while it's ready
695                  * to go OFF neither can matter, and afterwards the IO
696                  * watchdog stops unless there's still periodic traffic.
697                  */
698                 if (action != TIMER_IAA_WATCHDOG
699                                 && t > oxu->watchdog.expires
700                                 && timer_pending(&oxu->watchdog))
701                         return;
702                 mod_timer(&oxu->watchdog, t);
703         }
704 }
705
706 /*
707  * handshake - spin reading hc until handshake completes or fails
708  * @ptr: address of hc register to be read
709  * @mask: bits to look at in result of read
710  * @done: value of those bits when handshake succeeds
711  * @usec: timeout in microseconds
712  *
713  * Returns negative errno, or zero on success
714  *
715  * Success happens when the "mask" bits have the specified value (hardware
716  * handshake done).  There are two failure modes:  "usec" have passed (major
717  * hardware flakeout), or the register reads as all-ones (hardware removed).
718  *
719  * That last failure should_only happen in cases like physical cardbus eject
720  * before driver shutdown. But it also seems to be caused by bugs in cardbus
721  * bridge shutdown:  shutting down the bridge before the devices using it.
722  */
723 static int handshake(struct oxu_hcd *oxu, void __iomem *ptr,
724                                         u32 mask, u32 done, int usec)
725 {
726         u32 result;
727         int ret;
728
729         ret = readl_poll_timeout_atomic(ptr, result,
730                                         ((result & mask) == done ||
731                                          result == U32_MAX),
732                                         1, usec);
733         if (result == U32_MAX)          /* card removed */
734                 return -ENODEV;
735
736         return ret;
737 }
738
739 /* Force HC to halt state from unknown (EHCI spec section 2.3) */
740 static int ehci_halt(struct oxu_hcd *oxu)
741 {
742         u32     temp = readl(&oxu->regs->status);
743
744         /* disable any irqs left enabled by previous code */
745         writel(0, &oxu->regs->intr_enable);
746
747         if ((temp & STS_HALT) != 0)
748                 return 0;
749
750         temp = readl(&oxu->regs->command);
751         temp &= ~CMD_RUN;
752         writel(temp, &oxu->regs->command);
753         return handshake(oxu, &oxu->regs->status,
754                           STS_HALT, STS_HALT, 16 * 125);
755 }
756
757 /* Put TDI/ARC silicon into EHCI mode */
758 static void tdi_reset(struct oxu_hcd *oxu)
759 {
760         u32 __iomem *reg_ptr;
761         u32 tmp;
762
763         reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68);
764         tmp = readl(reg_ptr);
765         tmp |= 0x3;
766         writel(tmp, reg_ptr);
767 }
768
769 /* Reset a non-running (STS_HALT == 1) controller */
770 static int ehci_reset(struct oxu_hcd *oxu)
771 {
772         int     retval;
773         u32     command = readl(&oxu->regs->command);
774
775         command |= CMD_RESET;
776         dbg_cmd(oxu, "reset", command);
777         writel(command, &oxu->regs->command);
778         oxu_to_hcd(oxu)->state = HC_STATE_HALT;
779         oxu->next_statechange = jiffies;
780         retval = handshake(oxu, &oxu->regs->command,
781                             CMD_RESET, 0, 250 * 1000);
782
783         if (retval)
784                 return retval;
785
786         tdi_reset(oxu);
787
788         return retval;
789 }
790
791 /* Idle the controller (from running) */
792 static void ehci_quiesce(struct oxu_hcd *oxu)
793 {
794         u32     temp;
795
796 #ifdef DEBUG
797         BUG_ON(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state));
798 #endif
799
800         /* wait for any schedule enables/disables to take effect */
801         temp = readl(&oxu->regs->command) << 10;
802         temp &= STS_ASS | STS_PSS;
803         if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
804                                 temp, 16 * 125) != 0) {
805                 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
806                 return;
807         }
808
809         /* then disable anything that's still active */
810         temp = readl(&oxu->regs->command);
811         temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE);
812         writel(temp, &oxu->regs->command);
813
814         /* hardware can take 16 microframes to turn off ... */
815         if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
816                                 0, 16 * 125) != 0) {
817                 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
818                 return;
819         }
820 }
821
822 static int check_reset_complete(struct oxu_hcd *oxu, int index,
823                                 u32 __iomem *status_reg, int port_status)
824 {
825         if (!(port_status & PORT_CONNECT)) {
826                 oxu->reset_done[index] = 0;
827                 return port_status;
828         }
829
830         /* if reset finished and it's still not enabled -- handoff */
831         if (!(port_status & PORT_PE)) {
832                 oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n",
833                                 index+1);
834                 return port_status;
835         } else
836                 oxu_dbg(oxu, "port %d high speed\n", index + 1);
837
838         return port_status;
839 }
840
841 static void ehci_hub_descriptor(struct oxu_hcd *oxu,
842                                 struct usb_hub_descriptor *desc)
843 {
844         int ports = HCS_N_PORTS(oxu->hcs_params);
845         u16 temp;
846
847         desc->bDescriptorType = USB_DT_HUB;
848         desc->bPwrOn2PwrGood = 10;      /* oxu 1.0, 2.3.9 says 20ms max */
849         desc->bHubContrCurrent = 0;
850
851         desc->bNbrPorts = ports;
852         temp = 1 + (ports / 8);
853         desc->bDescLength = 7 + 2 * temp;
854
855         /* ports removable, and usb 1.0 legacy PortPwrCtrlMask */
856         memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
857         memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
858
859         temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
860         if (HCS_PPC(oxu->hcs_params))
861                 temp |= HUB_CHAR_INDV_PORT_LPSM; /* per-port power control */
862         else
863                 temp |= HUB_CHAR_NO_LPSM; /* no power switching */
864         desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp);
865 }
866
867
868 /* Allocate an OXU210HP on-chip memory data buffer
869  *
870  * An on-chip memory data buffer is required for each OXU210HP USB transfer.
871  * Each transfer descriptor has one or more on-chip memory data buffers.
872  *
873  * Data buffers are allocated from a fix sized pool of data blocks.
874  * To minimise fragmentation and give reasonable memory utlisation,
875  * data buffers are allocated with sizes the power of 2 multiples of
876  * the block size, starting on an address a multiple of the allocated size.
877  *
878  * FIXME: callers of this function require a buffer to be allocated for
879  * len=0. This is a waste of on-chip memory and should be fix. Then this
880  * function should be changed to not allocate a buffer for len=0.
881  */
882 static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len)
883 {
884         int n_blocks;   /* minium blocks needed to hold len */
885         int a_blocks;   /* blocks allocated */
886         int i, j;
887
888         /* Don't allocte bigger than supported */
889         if (len > BUFFER_SIZE * BUFFER_NUM) {
890                 oxu_err(oxu, "buffer too big (%d)\n", len);
891                 return -ENOMEM;
892         }
893
894         spin_lock(&oxu->mem_lock);
895
896         /* Number of blocks needed to hold len */
897         n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE;
898
899         /* Round the number of blocks up to the power of 2 */
900         for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1)
901                 ;
902
903         /* Find a suitable available data buffer */
904         for (i = 0; i < BUFFER_NUM;
905                         i += max(a_blocks, (int)oxu->db_used[i])) {
906
907                 /* Check all the required blocks are available */
908                 for (j = 0; j < a_blocks; j++)
909                         if (oxu->db_used[i + j])
910                                 break;
911
912                 if (j != a_blocks)
913                         continue;
914
915                 /* Allocate blocks found! */
916                 qtd->buffer = (void *) &oxu->mem->db_pool[i];
917                 qtd->buffer_dma = virt_to_phys(qtd->buffer);
918
919                 qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks;
920                 oxu->db_used[i] = a_blocks;
921
922                 spin_unlock(&oxu->mem_lock);
923
924                 return 0;
925         }
926
927         /* Failed */
928
929         spin_unlock(&oxu->mem_lock);
930
931         return -ENOMEM;
932 }
933
934 static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
935 {
936         int index;
937
938         spin_lock(&oxu->mem_lock);
939
940         index = (qtd->buffer - (void *) &oxu->mem->db_pool[0])
941                                                          / BUFFER_SIZE;
942         oxu->db_used[index] = 0;
943         qtd->qtd_buffer_len = 0;
944         qtd->buffer_dma = 0;
945         qtd->buffer = NULL;
946
947         spin_unlock(&oxu->mem_lock);
948 }
949
950 static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma)
951 {
952         memset(qtd, 0, sizeof *qtd);
953         qtd->qtd_dma = dma;
954         qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
955         qtd->hw_next = EHCI_LIST_END;
956         qtd->hw_alt_next = EHCI_LIST_END;
957         INIT_LIST_HEAD(&qtd->qtd_list);
958 }
959
960 static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
961 {
962         int index;
963
964         if (qtd->buffer)
965                 oxu_buf_free(oxu, qtd);
966
967         spin_lock(&oxu->mem_lock);
968
969         index = qtd - &oxu->mem->qtd_pool[0];
970         oxu->qtd_used[index] = 0;
971
972         spin_unlock(&oxu->mem_lock);
973 }
974
975 static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu)
976 {
977         int i;
978         struct ehci_qtd *qtd = NULL;
979
980         spin_lock(&oxu->mem_lock);
981
982         for (i = 0; i < QTD_NUM; i++)
983                 if (!oxu->qtd_used[i])
984                         break;
985
986         if (i < QTD_NUM) {
987                 qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i];
988                 memset(qtd, 0, sizeof *qtd);
989
990                 qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
991                 qtd->hw_next = EHCI_LIST_END;
992                 qtd->hw_alt_next = EHCI_LIST_END;
993                 INIT_LIST_HEAD(&qtd->qtd_list);
994
995                 qtd->qtd_dma = virt_to_phys(qtd);
996
997                 oxu->qtd_used[i] = 1;
998         }
999
1000         spin_unlock(&oxu->mem_lock);
1001
1002         return qtd;
1003 }
1004
1005 static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh)
1006 {
1007         int index;
1008
1009         spin_lock(&oxu->mem_lock);
1010
1011         index = qh - &oxu->mem->qh_pool[0];
1012         oxu->qh_used[index] = 0;
1013
1014         spin_unlock(&oxu->mem_lock);
1015 }
1016
1017 static void qh_destroy(struct kref *kref)
1018 {
1019         struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref);
1020         struct oxu_hcd *oxu = qh->oxu;
1021
1022         /* clean qtds first, and know this is not linked */
1023         if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1024                 oxu_dbg(oxu, "unused qh not empty!\n");
1025                 BUG();
1026         }
1027         if (qh->dummy)
1028                 oxu_qtd_free(oxu, qh->dummy);
1029         oxu_qh_free(oxu, qh);
1030 }
1031
1032 static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu)
1033 {
1034         int i;
1035         struct ehci_qh *qh = NULL;
1036
1037         spin_lock(&oxu->mem_lock);
1038
1039         for (i = 0; i < QHEAD_NUM; i++)
1040                 if (!oxu->qh_used[i])
1041                         break;
1042
1043         if (i < QHEAD_NUM) {
1044                 qh = (struct ehci_qh *) &oxu->mem->qh_pool[i];
1045                 memset(qh, 0, sizeof *qh);
1046
1047                 kref_init(&qh->kref);
1048                 qh->oxu = oxu;
1049                 qh->qh_dma = virt_to_phys(qh);
1050                 INIT_LIST_HEAD(&qh->qtd_list);
1051
1052                 /* dummy td enables safe urb queuing */
1053                 qh->dummy = ehci_qtd_alloc(oxu);
1054                 if (qh->dummy == NULL) {
1055                         oxu_dbg(oxu, "no dummy td\n");
1056                         oxu->qh_used[i] = 0;
1057                         qh = NULL;
1058                         goto unlock;
1059                 }
1060
1061                 oxu->qh_used[i] = 1;
1062         }
1063 unlock:
1064         spin_unlock(&oxu->mem_lock);
1065
1066         return qh;
1067 }
1068
1069 /* to share a qh (cpu threads, or hc) */
1070 static inline struct ehci_qh *qh_get(struct ehci_qh *qh)
1071 {
1072         kref_get(&qh->kref);
1073         return qh;
1074 }
1075
1076 static inline void qh_put(struct ehci_qh *qh)
1077 {
1078         kref_put(&qh->kref, qh_destroy);
1079 }
1080
1081 static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb)
1082 {
1083         int index;
1084
1085         spin_lock(&oxu->mem_lock);
1086
1087         index = murb - &oxu->murb_pool[0];
1088         oxu->murb_used[index] = 0;
1089
1090         spin_unlock(&oxu->mem_lock);
1091 }
1092
1093 static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu)
1094
1095 {
1096         int i;
1097         struct oxu_murb *murb = NULL;
1098
1099         spin_lock(&oxu->mem_lock);
1100
1101         for (i = 0; i < MURB_NUM; i++)
1102                 if (!oxu->murb_used[i])
1103                         break;
1104
1105         if (i < MURB_NUM) {
1106                 murb = &(oxu->murb_pool)[i];
1107
1108                 oxu->murb_used[i] = 1;
1109         }
1110
1111         spin_unlock(&oxu->mem_lock);
1112
1113         return murb;
1114 }
1115
1116 /* The queue heads and transfer descriptors are managed from pools tied
1117  * to each of the "per device" structures.
1118  * This is the initialisation and cleanup code.
1119  */
1120 static void ehci_mem_cleanup(struct oxu_hcd *oxu)
1121 {
1122         kfree(oxu->murb_pool);
1123         oxu->murb_pool = NULL;
1124
1125         if (oxu->async)
1126                 qh_put(oxu->async);
1127         oxu->async = NULL;
1128
1129         del_timer(&oxu->urb_timer);
1130
1131         oxu->periodic = NULL;
1132
1133         /* shadow periodic table */
1134         kfree(oxu->pshadow);
1135         oxu->pshadow = NULL;
1136 }
1137
1138 /* Remember to add cleanup code (above) if you add anything here.
1139  */
1140 static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags)
1141 {
1142         int i;
1143
1144         for (i = 0; i < oxu->periodic_size; i++)
1145                 oxu->mem->frame_list[i] = EHCI_LIST_END;
1146         for (i = 0; i < QHEAD_NUM; i++)
1147                 oxu->qh_used[i] = 0;
1148         for (i = 0; i < QTD_NUM; i++)
1149                 oxu->qtd_used[i] = 0;
1150
1151         oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags);
1152         if (!oxu->murb_pool)
1153                 goto fail;
1154
1155         for (i = 0; i < MURB_NUM; i++)
1156                 oxu->murb_used[i] = 0;
1157
1158         oxu->async = oxu_qh_alloc(oxu);
1159         if (!oxu->async)
1160                 goto fail;
1161
1162         oxu->periodic = (__le32 *) &oxu->mem->frame_list;
1163         oxu->periodic_dma = virt_to_phys(oxu->periodic);
1164
1165         for (i = 0; i < oxu->periodic_size; i++)
1166                 oxu->periodic[i] = EHCI_LIST_END;
1167
1168         /* software shadow of hardware table */
1169         oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags);
1170         if (oxu->pshadow != NULL)
1171                 return 0;
1172
1173 fail:
1174         oxu_dbg(oxu, "couldn't init memory\n");
1175         ehci_mem_cleanup(oxu);
1176         return -ENOMEM;
1177 }
1178
1179 /* Fill a qtd, returning how much of the buffer we were able to queue up.
1180  */
1181 static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len,
1182                                 int token, int maxpacket)
1183 {
1184         int i, count;
1185         u64 addr = buf;
1186
1187         /* one buffer entry per 4K ... first might be short or unaligned */
1188         qtd->hw_buf[0] = cpu_to_le32((u32)addr);
1189         qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32));
1190         count = 0x1000 - (buf & 0x0fff);        /* rest of that page */
1191         if (likely(len < count))                /* ... iff needed */
1192                 count = len;
1193         else {
1194                 buf +=  0x1000;
1195                 buf &= ~0x0fff;
1196
1197                 /* per-qtd limit: from 16K to 20K (best alignment) */
1198                 for (i = 1; count < len && i < 5; i++) {
1199                         addr = buf;
1200                         qtd->hw_buf[i] = cpu_to_le32((u32)addr);
1201                         qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32));
1202                         buf += 0x1000;
1203                         if ((count + 0x1000) < len)
1204                                 count += 0x1000;
1205                         else
1206                                 count = len;
1207                 }
1208
1209                 /* short packets may only terminate transfers */
1210                 if (count != len)
1211                         count -= (count % maxpacket);
1212         }
1213         qtd->hw_token = cpu_to_le32((count << 16) | token);
1214         qtd->length = count;
1215
1216         return count;
1217 }
1218
1219 static inline void qh_update(struct oxu_hcd *oxu,
1220                                 struct ehci_qh *qh, struct ehci_qtd *qtd)
1221 {
1222         /* writes to an active overlay are unsafe */
1223         BUG_ON(qh->qh_state != QH_STATE_IDLE);
1224
1225         qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma);
1226         qh->hw_alt_next = EHCI_LIST_END;
1227
1228         /* Except for control endpoints, we make hardware maintain data
1229          * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
1230          * and set the pseudo-toggle in udev. Only usb_clear_halt() will
1231          * ever clear it.
1232          */
1233         if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) {
1234                 unsigned        is_out, epnum;
1235
1236                 is_out = !(qtd->hw_token & cpu_to_le32(1 << 8));
1237                 epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f;
1238                 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
1239                         qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE);
1240                         usb_settoggle(qh->dev, epnum, is_out, 1);
1241                 }
1242         }
1243
1244         /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
1245         wmb();
1246         qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING);
1247 }
1248
1249 /* If it weren't for a common silicon quirk (writing the dummy into the qh
1250  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
1251  * recovery (including urb dequeue) would need software changes to a QH...
1252  */
1253 static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh)
1254 {
1255         struct ehci_qtd *qtd;
1256
1257         if (list_empty(&qh->qtd_list))
1258                 qtd = qh->dummy;
1259         else {
1260                 qtd = list_entry(qh->qtd_list.next,
1261                                 struct ehci_qtd, qtd_list);
1262                 /* first qtd may already be partially processed */
1263                 if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current)
1264                         qtd = NULL;
1265         }
1266
1267         if (qtd)
1268                 qh_update(oxu, qh, qtd);
1269 }
1270
1271 static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb,
1272                                 size_t length, u32 token)
1273 {
1274         /* count IN/OUT bytes, not SETUP (even short packets) */
1275         if (likely(QTD_PID(token) != 2))
1276                 urb->actual_length += length - QTD_LENGTH(token);
1277
1278         /* don't modify error codes */
1279         if (unlikely(urb->status != -EINPROGRESS))
1280                 return;
1281
1282         /* force cleanup after short read; not always an error */
1283         if (unlikely(IS_SHORT_READ(token)))
1284                 urb->status = -EREMOTEIO;
1285
1286         /* serious "can't proceed" faults reported by the hardware */
1287         if (token & QTD_STS_HALT) {
1288                 if (token & QTD_STS_BABBLE) {
1289                         /* FIXME "must" disable babbling device's port too */
1290                         urb->status = -EOVERFLOW;
1291                 } else if (token & QTD_STS_MMF) {
1292                         /* fs/ls interrupt xfer missed the complete-split */
1293                         urb->status = -EPROTO;
1294                 } else if (token & QTD_STS_DBE) {
1295                         urb->status = (QTD_PID(token) == 1) /* IN ? */
1296                                 ? -ENOSR  /* hc couldn't read data */
1297                                 : -ECOMM; /* hc couldn't write data */
1298                 } else if (token & QTD_STS_XACT) {
1299                         /* timeout, bad crc, wrong PID, etc; retried */
1300                         if (QTD_CERR(token))
1301                                 urb->status = -EPIPE;
1302                         else {
1303                                 oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n",
1304                                         urb->dev->devpath,
1305                                         usb_pipeendpoint(urb->pipe),
1306                                         usb_pipein(urb->pipe) ? "in" : "out");
1307                                 urb->status = -EPROTO;
1308                         }
1309                 /* CERR nonzero + no errors + halt --> stall */
1310                 } else if (QTD_CERR(token))
1311                         urb->status = -EPIPE;
1312                 else    /* unknown */
1313                         urb->status = -EPROTO;
1314
1315                 oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n",
1316                         usb_pipedevice(urb->pipe),
1317                         usb_pipeendpoint(urb->pipe),
1318                         usb_pipein(urb->pipe) ? "in" : "out",
1319                         token, urb->status);
1320         }
1321 }
1322
1323 static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb)
1324 __releases(oxu->lock)
1325 __acquires(oxu->lock)
1326 {
1327         if (likely(urb->hcpriv != NULL)) {
1328                 struct ehci_qh  *qh = (struct ehci_qh *) urb->hcpriv;
1329
1330                 /* S-mask in a QH means it's an interrupt urb */
1331                 if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) {
1332
1333                         /* ... update hc-wide periodic stats (for usbfs) */
1334                         oxu_to_hcd(oxu)->self.bandwidth_int_reqs--;
1335                 }
1336                 qh_put(qh);
1337         }
1338
1339         urb->hcpriv = NULL;
1340         switch (urb->status) {
1341         case -EINPROGRESS:              /* success */
1342                 urb->status = 0;
1343                 break;
1344         default:                        /* fault */
1345                 break;
1346         case -EREMOTEIO:                /* fault or normal */
1347                 if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
1348                         urb->status = 0;
1349                 break;
1350         case -ECONNRESET:               /* canceled */
1351         case -ENOENT:
1352                 break;
1353         }
1354
1355 #ifdef OXU_URB_TRACE
1356         oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n",
1357                 __func__, urb->dev->devpath, urb,
1358                 usb_pipeendpoint(urb->pipe),
1359                 usb_pipein(urb->pipe) ? "in" : "out",
1360                 urb->status,
1361                 urb->actual_length, urb->transfer_buffer_length);
1362 #endif
1363
1364         /* complete() can reenter this HCD */
1365         spin_unlock(&oxu->lock);
1366         usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status);
1367         spin_lock(&oxu->lock);
1368 }
1369
1370 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
1371 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
1372
1373 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
1374 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
1375
1376 #define HALT_BIT cpu_to_le32(QTD_STS_HALT)
1377
1378 /* Process and free completed qtds for a qh, returning URBs to drivers.
1379  * Chases up to qh->hw_current.  Returns number of completions called,
1380  * indicating how much "real" work we did.
1381  */
1382 static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh)
1383 {
1384         struct ehci_qtd *last = NULL, *end = qh->dummy;
1385         struct ehci_qtd *qtd, *tmp;
1386         int stopped;
1387         unsigned count = 0;
1388         int do_status = 0;
1389         u8 state;
1390         struct oxu_murb *murb = NULL;
1391
1392         if (unlikely(list_empty(&qh->qtd_list)))
1393                 return count;
1394
1395         /* completions (or tasks on other cpus) must never clobber HALT
1396          * till we've gone through and cleaned everything up, even when
1397          * they add urbs to this qh's queue or mark them for unlinking.
1398          *
1399          * NOTE:  unlinking expects to be done in queue order.
1400          */
1401         state = qh->qh_state;
1402         qh->qh_state = QH_STATE_COMPLETING;
1403         stopped = (state == QH_STATE_IDLE);
1404
1405         /* remove de-activated QTDs from front of queue.
1406          * after faults (including short reads), cleanup this urb
1407          * then let the queue advance.
1408          * if queue is stopped, handles unlinks.
1409          */
1410         list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
1411                 struct urb *urb;
1412                 u32 token = 0;
1413
1414                 urb = qtd->urb;
1415
1416                 /* Clean up any state from previous QTD ...*/
1417                 if (last) {
1418                         if (likely(last->urb != urb)) {
1419                                 if (last->urb->complete == NULL) {
1420                                         murb = (struct oxu_murb *) last->urb;
1421                                         last->urb = murb->main;
1422                                         if (murb->last) {
1423                                                 ehci_urb_done(oxu, last->urb);
1424                                                 count++;
1425                                         }
1426                                         oxu_murb_free(oxu, murb);
1427                                 } else {
1428                                         ehci_urb_done(oxu, last->urb);
1429                                         count++;
1430                                 }
1431                         }
1432                         oxu_qtd_free(oxu, last);
1433                         last = NULL;
1434                 }
1435
1436                 /* ignore urbs submitted during completions we reported */
1437                 if (qtd == end)
1438                         break;
1439
1440                 /* hardware copies qtd out of qh overlay */
1441                 rmb();
1442                 token = le32_to_cpu(qtd->hw_token);
1443
1444                 /* always clean up qtds the hc de-activated */
1445                 if ((token & QTD_STS_ACTIVE) == 0) {
1446
1447                         if ((token & QTD_STS_HALT) != 0) {
1448                                 stopped = 1;
1449
1450                         /* magic dummy for some short reads; qh won't advance.
1451                          * that silicon quirk can kick in with this dummy too.
1452                          */
1453                         } else if (IS_SHORT_READ(token) &&
1454                                         !(qtd->hw_alt_next & EHCI_LIST_END)) {
1455                                 stopped = 1;
1456                                 goto halt;
1457                         }
1458
1459                 /* stop scanning when we reach qtds the hc is using */
1460                 } else if (likely(!stopped &&
1461                                 HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) {
1462                         break;
1463
1464                 } else {
1465                         stopped = 1;
1466
1467                         if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)))
1468                                 urb->status = -ESHUTDOWN;
1469
1470                         /* ignore active urbs unless some previous qtd
1471                          * for the urb faulted (including short read) or
1472                          * its urb was canceled.  we may patch qh or qtds.
1473                          */
1474                         if (likely(urb->status == -EINPROGRESS))
1475                                 continue;
1476
1477                         /* issue status after short control reads */
1478                         if (unlikely(do_status != 0)
1479                                         && QTD_PID(token) == 0 /* OUT */) {
1480                                 do_status = 0;
1481                                 continue;
1482                         }
1483
1484                         /* token in overlay may be most current */
1485                         if (state == QH_STATE_IDLE
1486                                         && cpu_to_le32(qtd->qtd_dma)
1487                                                 == qh->hw_current)
1488                                 token = le32_to_cpu(qh->hw_token);
1489
1490                         /* force halt for unlinked or blocked qh, so we'll
1491                          * patch the qh later and so that completions can't
1492                          * activate it while we "know" it's stopped.
1493                          */
1494                         if ((HALT_BIT & qh->hw_token) == 0) {
1495 halt:
1496                                 qh->hw_token |= HALT_BIT;
1497                                 wmb();
1498                         }
1499                 }
1500
1501                 /* Remove it from the queue */
1502                 qtd_copy_status(oxu, urb->complete ?
1503                                         urb : ((struct oxu_murb *) urb)->main,
1504                                 qtd->length, token);
1505                 if ((usb_pipein(qtd->urb->pipe)) &&
1506                                 (NULL != qtd->transfer_buffer))
1507                         memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length);
1508                 do_status = (urb->status == -EREMOTEIO)
1509                                 && usb_pipecontrol(urb->pipe);
1510
1511                 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
1512                         last = list_entry(qtd->qtd_list.prev,
1513                                         struct ehci_qtd, qtd_list);
1514                         last->hw_next = qtd->hw_next;
1515                 }
1516                 list_del(&qtd->qtd_list);
1517                 last = qtd;
1518         }
1519
1520         /* last urb's completion might still need calling */
1521         if (likely(last != NULL)) {
1522                 if (last->urb->complete == NULL) {
1523                         murb = (struct oxu_murb *) last->urb;
1524                         last->urb = murb->main;
1525                         if (murb->last) {
1526                                 ehci_urb_done(oxu, last->urb);
1527                                 count++;
1528                         }
1529                         oxu_murb_free(oxu, murb);
1530                 } else {
1531                         ehci_urb_done(oxu, last->urb);
1532                         count++;
1533                 }
1534                 oxu_qtd_free(oxu, last);
1535         }
1536
1537         /* restore original state; caller must unlink or relink */
1538         qh->qh_state = state;
1539
1540         /* be sure the hardware's done with the qh before refreshing
1541          * it after fault cleanup, or recovering from silicon wrongly
1542          * overlaying the dummy qtd (which reduces DMA chatter).
1543          */
1544         if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) {
1545                 switch (state) {
1546                 case QH_STATE_IDLE:
1547                         qh_refresh(oxu, qh);
1548                         break;
1549                 case QH_STATE_LINKED:
1550                         /* should be rare for periodic transfers,
1551                          * except maybe high bandwidth ...
1552                          */
1553                         if ((cpu_to_le32(QH_SMASK)
1554                                         & qh->hw_info2) != 0) {
1555                                 intr_deschedule(oxu, qh);
1556                                 (void) qh_schedule(oxu, qh);
1557                         } else
1558                                 unlink_async(oxu, qh);
1559                         break;
1560                 /* otherwise, unlink already started */
1561                 }
1562         }
1563
1564         return count;
1565 }
1566
1567 /* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */
1568 #define hb_mult(wMaxPacketSize)         (1 + (((wMaxPacketSize) >> 11) & 0x03))
1569 /* ... and packet size, for any kind of endpoint descriptor */
1570 #define max_packet(wMaxPacketSize)      ((wMaxPacketSize) & 0x07ff)
1571
1572 /* Reverse of qh_urb_transaction: free a list of TDs.
1573  * used for cleanup after errors, before HC sees an URB's TDs.
1574  */
1575 static void qtd_list_free(struct oxu_hcd *oxu,
1576                                 struct urb *urb, struct list_head *head)
1577 {
1578         struct ehci_qtd *qtd, *temp;
1579
1580         list_for_each_entry_safe(qtd, temp, head, qtd_list) {
1581                 list_del(&qtd->qtd_list);
1582                 oxu_qtd_free(oxu, qtd);
1583         }
1584 }
1585
1586 /* Create a list of filled qtds for this URB; won't link into qh.
1587  */
1588 static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu,
1589                                                 struct urb *urb,
1590                                                 struct list_head *head,
1591                                                 gfp_t flags)
1592 {
1593         struct ehci_qtd *qtd, *qtd_prev;
1594         dma_addr_t buf;
1595         int len, maxpacket;
1596         int is_input;
1597         u32 token;
1598         void *transfer_buf = NULL;
1599         int ret;
1600
1601         /*
1602          * URBs map to sequences of QTDs: one logical transaction
1603          */
1604         qtd = ehci_qtd_alloc(oxu);
1605         if (unlikely(!qtd))
1606                 return NULL;
1607         list_add_tail(&qtd->qtd_list, head);
1608         qtd->urb = urb;
1609
1610         token = QTD_STS_ACTIVE;
1611         token |= (EHCI_TUNE_CERR << 10);
1612         /* for split transactions, SplitXState initialized to zero */
1613
1614         len = urb->transfer_buffer_length;
1615         is_input = usb_pipein(urb->pipe);
1616         if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input)
1617                 urb->transfer_buffer = phys_to_virt(urb->transfer_dma);
1618
1619         if (usb_pipecontrol(urb->pipe)) {
1620                 /* SETUP pid */
1621                 ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest));
1622                 if (ret)
1623                         goto cleanup;
1624
1625                 qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest),
1626                                 token | (2 /* "setup" */ << 8), 8);
1627                 memcpy(qtd->buffer, qtd->urb->setup_packet,
1628                                 sizeof(struct usb_ctrlrequest));
1629
1630                 /* ... and always at least one more pid */
1631                 token ^= QTD_TOGGLE;
1632                 qtd_prev = qtd;
1633                 qtd = ehci_qtd_alloc(oxu);
1634                 if (unlikely(!qtd))
1635                         goto cleanup;
1636                 qtd->urb = urb;
1637                 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1638                 list_add_tail(&qtd->qtd_list, head);
1639
1640                 /* for zero length DATA stages, STATUS is always IN */
1641                 if (len == 0)
1642                         token |= (1 /* "in" */ << 8);
1643         }
1644
1645         /*
1646          * Data transfer stage: buffer setup
1647          */
1648
1649         ret = oxu_buf_alloc(oxu, qtd, len);
1650         if (ret)
1651                 goto cleanup;
1652
1653         buf = qtd->buffer_dma;
1654         transfer_buf = urb->transfer_buffer;
1655
1656         if (!is_input)
1657                 memcpy(qtd->buffer, qtd->urb->transfer_buffer, len);
1658
1659         if (is_input)
1660                 token |= (1 /* "in" */ << 8);
1661         /* else it's already initted to "out" pid (0 << 8) */
1662
1663         maxpacket = usb_maxpacket(urb->dev, urb->pipe);
1664
1665         /*
1666          * buffer gets wrapped in one or more qtds;
1667          * last one may be "short" (including zero len)
1668          * and may serve as a control status ack
1669          */
1670         for (;;) {
1671                 int this_qtd_len;
1672
1673                 this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket);
1674                 qtd->transfer_buffer = transfer_buf;
1675                 len -= this_qtd_len;
1676                 buf += this_qtd_len;
1677                 transfer_buf += this_qtd_len;
1678                 if (is_input)
1679                         qtd->hw_alt_next = oxu->async->hw_alt_next;
1680
1681                 /* qh makes control packets use qtd toggle; maybe switch it */
1682                 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
1683                         token ^= QTD_TOGGLE;
1684
1685                 if (likely(len <= 0))
1686                         break;
1687
1688                 qtd_prev = qtd;
1689                 qtd = ehci_qtd_alloc(oxu);
1690                 if (unlikely(!qtd))
1691                         goto cleanup;
1692                 if (likely(len > 0)) {
1693                         ret = oxu_buf_alloc(oxu, qtd, len);
1694                         if (ret)
1695                                 goto cleanup;
1696                 }
1697                 qtd->urb = urb;
1698                 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1699                 list_add_tail(&qtd->qtd_list, head);
1700         }
1701
1702         /* unless the bulk/interrupt caller wants a chance to clean
1703          * up after short reads, hc should advance qh past this urb
1704          */
1705         if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
1706                                 || usb_pipecontrol(urb->pipe)))
1707                 qtd->hw_alt_next = EHCI_LIST_END;
1708
1709         /*
1710          * control requests may need a terminating data "status" ack;
1711          * bulk ones may need a terminating short packet (zero length).
1712          */
1713         if (likely(urb->transfer_buffer_length != 0)) {
1714                 int     one_more = 0;
1715
1716                 if (usb_pipecontrol(urb->pipe)) {
1717                         one_more = 1;
1718                         token ^= 0x0100;        /* "in" <--> "out"  */
1719                         token |= QTD_TOGGLE;    /* force DATA1 */
1720                 } else if (usb_pipebulk(urb->pipe)
1721                                 && (urb->transfer_flags & URB_ZERO_PACKET)
1722                                 && !(urb->transfer_buffer_length % maxpacket)) {
1723                         one_more = 1;
1724                 }
1725                 if (one_more) {
1726                         qtd_prev = qtd;
1727                         qtd = ehci_qtd_alloc(oxu);
1728                         if (unlikely(!qtd))
1729                                 goto cleanup;
1730                         qtd->urb = urb;
1731                         qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1732                         list_add_tail(&qtd->qtd_list, head);
1733
1734                         /* never any data in such packets */
1735                         qtd_fill(qtd, 0, 0, token, 0);
1736                 }
1737         }
1738
1739         /* by default, enable interrupt on urb completion */
1740         qtd->hw_token |= cpu_to_le32(QTD_IOC);
1741         return head;
1742
1743 cleanup:
1744         qtd_list_free(oxu, urb, head);
1745         return NULL;
1746 }
1747
1748 /* Each QH holds a qtd list; a QH is used for everything except iso.
1749  *
1750  * For interrupt urbs, the scheduler must set the microframe scheduling
1751  * mask(s) each time the QH gets scheduled.  For highspeed, that's
1752  * just one microframe in the s-mask.  For split interrupt transactions
1753  * there are additional complications: c-mask, maybe FSTNs.
1754  */
1755 static struct ehci_qh *qh_make(struct oxu_hcd *oxu,
1756                                 struct urb *urb, gfp_t flags)
1757 {
1758         struct ehci_qh *qh = oxu_qh_alloc(oxu);
1759         u32 info1 = 0, info2 = 0;
1760         int is_input, type;
1761         int maxp = 0;
1762
1763         if (!qh)
1764                 return qh;
1765
1766         /*
1767          * init endpoint/device data for this QH
1768          */
1769         info1 |= usb_pipeendpoint(urb->pipe) << 8;
1770         info1 |= usb_pipedevice(urb->pipe) << 0;
1771
1772         is_input = usb_pipein(urb->pipe);
1773         type = usb_pipetype(urb->pipe);
1774         maxp = usb_maxpacket(urb->dev, urb->pipe);
1775
1776         /* Compute interrupt scheduling parameters just once, and save.
1777          * - allowing for high bandwidth, how many nsec/uframe are used?
1778          * - split transactions need a second CSPLIT uframe; same question
1779          * - splits also need a schedule gap (for full/low speed I/O)
1780          * - qh has a polling interval
1781          *
1782          * For control/bulk requests, the HC or TT handles these.
1783          */
1784         if (type == PIPE_INTERRUPT) {
1785                 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
1786                                                                 is_input, 0,
1787                                 hb_mult(maxp) * max_packet(maxp)));
1788                 qh->start = NO_FRAME;
1789
1790                 if (urb->dev->speed == USB_SPEED_HIGH) {
1791                         qh->c_usecs = 0;
1792                         qh->gap_uf = 0;
1793
1794                         qh->period = urb->interval >> 3;
1795                         if (qh->period == 0 && urb->interval != 1) {
1796                                 /* NOTE interval 2 or 4 uframes could work.
1797                                  * But interval 1 scheduling is simpler, and
1798                                  * includes high bandwidth.
1799                                  */
1800                                 oxu_dbg(oxu, "intr period %d uframes, NYET!\n",
1801                                         urb->interval);
1802                                 goto done;
1803                         }
1804                 } else {
1805                         struct usb_tt   *tt = urb->dev->tt;
1806                         int             think_time;
1807
1808                         /* gap is f(FS/LS transfer times) */
1809                         qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
1810                                         is_input, 0, maxp) / (125 * 1000);
1811
1812                         /* FIXME this just approximates SPLIT/CSPLIT times */
1813                         if (is_input) {         /* SPLIT, gap, CSPLIT+DATA */
1814                                 qh->c_usecs = qh->usecs + HS_USECS(0);
1815                                 qh->usecs = HS_USECS(1);
1816                         } else {                /* SPLIT+DATA, gap, CSPLIT */
1817                                 qh->usecs += HS_USECS(1);
1818                                 qh->c_usecs = HS_USECS(0);
1819                         }
1820
1821                         think_time = tt ? tt->think_time : 0;
1822                         qh->tt_usecs = NS_TO_US(think_time +
1823                                         usb_calc_bus_time(urb->dev->speed,
1824                                         is_input, 0, max_packet(maxp)));
1825                         qh->period = urb->interval;
1826                 }
1827         }
1828
1829         /* support for tt scheduling, and access to toggles */
1830         qh->dev = urb->dev;
1831
1832         /* using TT? */
1833         switch (urb->dev->speed) {
1834         case USB_SPEED_LOW:
1835                 info1 |= (1 << 12);     /* EPS "low" */
1836                 fallthrough;
1837
1838         case USB_SPEED_FULL:
1839                 /* EPS 0 means "full" */
1840                 if (type != PIPE_INTERRUPT)
1841                         info1 |= (EHCI_TUNE_RL_TT << 28);
1842                 if (type == PIPE_CONTROL) {
1843                         info1 |= (1 << 27);     /* for TT */
1844                         info1 |= 1 << 14;       /* toggle from qtd */
1845                 }
1846                 info1 |= maxp << 16;
1847
1848                 info2 |= (EHCI_TUNE_MULT_TT << 30);
1849                 info2 |= urb->dev->ttport << 23;
1850
1851                 /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
1852
1853                 break;
1854
1855         case USB_SPEED_HIGH:            /* no TT involved */
1856                 info1 |= (2 << 12);     /* EPS "high" */
1857                 if (type == PIPE_CONTROL) {
1858                         info1 |= (EHCI_TUNE_RL_HS << 28);
1859                         info1 |= 64 << 16;      /* usb2 fixed maxpacket */
1860                         info1 |= 1 << 14;       /* toggle from qtd */
1861                         info2 |= (EHCI_TUNE_MULT_HS << 30);
1862                 } else if (type == PIPE_BULK) {
1863                         info1 |= (EHCI_TUNE_RL_HS << 28);
1864                         info1 |= 512 << 16;     /* usb2 fixed maxpacket */
1865                         info2 |= (EHCI_TUNE_MULT_HS << 30);
1866                 } else {                /* PIPE_INTERRUPT */
1867                         info1 |= max_packet(maxp) << 16;
1868                         info2 |= hb_mult(maxp) << 30;
1869                 }
1870                 break;
1871         default:
1872                 oxu_dbg(oxu, "bogus dev %p speed %d\n", urb->dev, urb->dev->speed);
1873 done:
1874                 qh_put(qh);
1875                 return NULL;
1876         }
1877
1878         /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
1879
1880         /* init as live, toggle clear, advance to dummy */
1881         qh->qh_state = QH_STATE_IDLE;
1882         qh->hw_info1 = cpu_to_le32(info1);
1883         qh->hw_info2 = cpu_to_le32(info2);
1884         usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
1885         qh_refresh(oxu, qh);
1886         return qh;
1887 }
1888
1889 /* Move qh (and its qtds) onto async queue; maybe enable queue.
1890  */
1891 static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1892 {
1893         __le32 dma = QH_NEXT(qh->qh_dma);
1894         struct ehci_qh *head;
1895
1896         /* (re)start the async schedule? */
1897         head = oxu->async;
1898         timer_action_done(oxu, TIMER_ASYNC_OFF);
1899         if (!head->qh_next.qh) {
1900                 u32     cmd = readl(&oxu->regs->command);
1901
1902                 if (!(cmd & CMD_ASE)) {
1903                         /* in case a clear of CMD_ASE didn't take yet */
1904                         (void)handshake(oxu, &oxu->regs->status,
1905                                         STS_ASS, 0, 150);
1906                         cmd |= CMD_ASE | CMD_RUN;
1907                         writel(cmd, &oxu->regs->command);
1908                         oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1909                         /* posted write need not be known to HC yet ... */
1910                 }
1911         }
1912
1913         /* clear halt and/or toggle; and maybe recover from silicon quirk */
1914         if (qh->qh_state == QH_STATE_IDLE)
1915                 qh_refresh(oxu, qh);
1916
1917         /* splice right after start */
1918         qh->qh_next = head->qh_next;
1919         qh->hw_next = head->hw_next;
1920         wmb();
1921
1922         head->qh_next.qh = qh;
1923         head->hw_next = dma;
1924
1925         qh->qh_state = QH_STATE_LINKED;
1926         /* qtd completions reported later by interrupt */
1927 }
1928
1929 #define QH_ADDR_MASK    cpu_to_le32(0x7f)
1930
1931 /*
1932  * For control/bulk/interrupt, return QH with these TDs appended.
1933  * Allocates and initializes the QH if necessary.
1934  * Returns null if it can't allocate a QH it needs to.
1935  * If the QH has TDs (urbs) already, that's great.
1936  */
1937 static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu,
1938                                 struct urb *urb, struct list_head *qtd_list,
1939                                 int epnum, void **ptr)
1940 {
1941         struct ehci_qh *qh = NULL;
1942
1943         qh = (struct ehci_qh *) *ptr;
1944         if (unlikely(qh == NULL)) {
1945                 /* can't sleep here, we have oxu->lock... */
1946                 qh = qh_make(oxu, urb, GFP_ATOMIC);
1947                 *ptr = qh;
1948         }
1949         if (likely(qh != NULL)) {
1950                 struct ehci_qtd *qtd;
1951
1952                 if (unlikely(list_empty(qtd_list)))
1953                         qtd = NULL;
1954                 else
1955                         qtd = list_entry(qtd_list->next, struct ehci_qtd,
1956                                         qtd_list);
1957
1958                 /* control qh may need patching ... */
1959                 if (unlikely(epnum == 0)) {
1960
1961                         /* usb_reset_device() briefly reverts to address 0 */
1962                         if (usb_pipedevice(urb->pipe) == 0)
1963                                 qh->hw_info1 &= ~QH_ADDR_MASK;
1964                 }
1965
1966                 /* just one way to queue requests: swap with the dummy qtd.
1967                  * only hc or qh_refresh() ever modify the overlay.
1968                  */
1969                 if (likely(qtd != NULL)) {
1970                         struct ehci_qtd *dummy;
1971                         dma_addr_t dma;
1972                         __le32 token;
1973
1974                         /* to avoid racing the HC, use the dummy td instead of
1975                          * the first td of our list (becomes new dummy).  both
1976                          * tds stay deactivated until we're done, when the
1977                          * HC is allowed to fetch the old dummy (4.10.2).
1978                          */
1979                         token = qtd->hw_token;
1980                         qtd->hw_token = HALT_BIT;
1981                         wmb();
1982                         dummy = qh->dummy;
1983
1984                         dma = dummy->qtd_dma;
1985                         *dummy = *qtd;
1986                         dummy->qtd_dma = dma;
1987
1988                         list_del(&qtd->qtd_list);
1989                         list_add(&dummy->qtd_list, qtd_list);
1990                         list_splice(qtd_list, qh->qtd_list.prev);
1991
1992                         ehci_qtd_init(qtd, qtd->qtd_dma);
1993                         qh->dummy = qtd;
1994
1995                         /* hc must see the new dummy at list end */
1996                         dma = qtd->qtd_dma;
1997                         qtd = list_entry(qh->qtd_list.prev,
1998                                         struct ehci_qtd, qtd_list);
1999                         qtd->hw_next = QTD_NEXT(dma);
2000
2001                         /* let the hc process these next qtds */
2002                         dummy->hw_token = (token & ~(0x80));
2003                         wmb();
2004                         dummy->hw_token = token;
2005
2006                         urb->hcpriv = qh_get(qh);
2007                 }
2008         }
2009         return qh;
2010 }
2011
2012 static int submit_async(struct oxu_hcd  *oxu, struct urb *urb,
2013                         struct list_head *qtd_list, gfp_t mem_flags)
2014 {
2015         int epnum = urb->ep->desc.bEndpointAddress;
2016         unsigned long flags;
2017         struct ehci_qh *qh = NULL;
2018         int rc = 0;
2019 #ifdef OXU_URB_TRACE
2020         struct ehci_qtd *qtd;
2021
2022         qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
2023
2024         oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2025                 __func__, urb->dev->devpath, urb,
2026                 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
2027                 urb->transfer_buffer_length,
2028                 qtd, urb->ep->hcpriv);
2029 #endif
2030
2031         spin_lock_irqsave(&oxu->lock, flags);
2032         if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2033                 rc = -ESHUTDOWN;
2034                 goto done;
2035         }
2036
2037         qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2038         if (unlikely(qh == NULL)) {
2039                 rc = -ENOMEM;
2040                 goto done;
2041         }
2042
2043         /* Control/bulk operations through TTs don't need scheduling,
2044          * the HC and TT handle it when the TT has a buffer ready.
2045          */
2046         if (likely(qh->qh_state == QH_STATE_IDLE))
2047                 qh_link_async(oxu, qh_get(qh));
2048 done:
2049         spin_unlock_irqrestore(&oxu->lock, flags);
2050         if (unlikely(qh == NULL))
2051                 qtd_list_free(oxu, urb, qtd_list);
2052         return rc;
2053 }
2054
2055 /* The async qh for the qtds being reclaimed are now unlinked from the HC */
2056
2057 static void end_unlink_async(struct oxu_hcd *oxu)
2058 {
2059         struct ehci_qh *qh = oxu->reclaim;
2060         struct ehci_qh *next;
2061
2062         timer_action_done(oxu, TIMER_IAA_WATCHDOG);
2063
2064         qh->qh_state = QH_STATE_IDLE;
2065         qh->qh_next.qh = NULL;
2066         qh_put(qh);                     /* refcount from reclaim */
2067
2068         /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
2069         next = qh->reclaim;
2070         oxu->reclaim = next;
2071         oxu->reclaim_ready = 0;
2072         qh->reclaim = NULL;
2073
2074         qh_completions(oxu, qh);
2075
2076         if (!list_empty(&qh->qtd_list)
2077                         && HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2078                 qh_link_async(oxu, qh);
2079         else {
2080                 qh_put(qh);             /* refcount from async list */
2081
2082                 /* it's not free to turn the async schedule on/off; leave it
2083                  * active but idle for a while once it empties.
2084                  */
2085                 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)
2086                                 && oxu->async->qh_next.qh == NULL)
2087                         timer_action(oxu, TIMER_ASYNC_OFF);
2088         }
2089
2090         if (next) {
2091                 oxu->reclaim = NULL;
2092                 start_unlink_async(oxu, next);
2093         }
2094 }
2095
2096 /* makes sure the async qh will become idle */
2097 /* caller must own oxu->lock */
2098
2099 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2100 {
2101         int cmd = readl(&oxu->regs->command);
2102         struct ehci_qh *prev;
2103
2104 #ifdef DEBUG
2105         assert_spin_locked(&oxu->lock);
2106         BUG_ON(oxu->reclaim || (qh->qh_state != QH_STATE_LINKED
2107                                 && qh->qh_state != QH_STATE_UNLINK_WAIT));
2108 #endif
2109
2110         /* stop async schedule right now? */
2111         if (unlikely(qh == oxu->async)) {
2112                 /* can't get here without STS_ASS set */
2113                 if (oxu_to_hcd(oxu)->state != HC_STATE_HALT
2114                                 && !oxu->reclaim) {
2115                         /* ... and CMD_IAAD clear */
2116                         writel(cmd & ~CMD_ASE, &oxu->regs->command);
2117                         wmb();
2118                         /* handshake later, if we need to */
2119                         timer_action_done(oxu, TIMER_ASYNC_OFF);
2120                 }
2121                 return;
2122         }
2123
2124         qh->qh_state = QH_STATE_UNLINK;
2125         oxu->reclaim = qh = qh_get(qh);
2126
2127         prev = oxu->async;
2128         while (prev->qh_next.qh != qh)
2129                 prev = prev->qh_next.qh;
2130
2131         prev->hw_next = qh->hw_next;
2132         prev->qh_next = qh->qh_next;
2133         wmb();
2134
2135         if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) {
2136                 /* if (unlikely(qh->reclaim != 0))
2137                  *      this will recurse, probably not much
2138                  */
2139                 end_unlink_async(oxu);
2140                 return;
2141         }
2142
2143         oxu->reclaim_ready = 0;
2144         cmd |= CMD_IAAD;
2145         writel(cmd, &oxu->regs->command);
2146         (void) readl(&oxu->regs->command);
2147         timer_action(oxu, TIMER_IAA_WATCHDOG);
2148 }
2149
2150 static void scan_async(struct oxu_hcd *oxu)
2151 {
2152         struct ehci_qh *qh;
2153         enum ehci_timer_action action = TIMER_IO_WATCHDOG;
2154
2155         if (!++(oxu->stamp))
2156                 oxu->stamp++;
2157         timer_action_done(oxu, TIMER_ASYNC_SHRINK);
2158 rescan:
2159         qh = oxu->async->qh_next.qh;
2160         if (likely(qh != NULL)) {
2161                 do {
2162                         /* clean any finished work for this qh */
2163                         if (!list_empty(&qh->qtd_list)
2164                                         && qh->stamp != oxu->stamp) {
2165                                 int temp;
2166
2167                                 /* unlinks could happen here; completion
2168                                  * reporting drops the lock.  rescan using
2169                                  * the latest schedule, but don't rescan
2170                                  * qhs we already finished (no looping).
2171                                  */
2172                                 qh = qh_get(qh);
2173                                 qh->stamp = oxu->stamp;
2174                                 temp = qh_completions(oxu, qh);
2175                                 qh_put(qh);
2176                                 if (temp != 0)
2177                                         goto rescan;
2178                         }
2179
2180                         /* unlink idle entries, reducing HC PCI usage as well
2181                          * as HCD schedule-scanning costs.  delay for any qh
2182                          * we just scanned, there's a not-unusual case that it
2183                          * doesn't stay idle for long.
2184                          * (plus, avoids some kind of re-activation race.)
2185                          */
2186                         if (list_empty(&qh->qtd_list)) {
2187                                 if (qh->stamp == oxu->stamp)
2188                                         action = TIMER_ASYNC_SHRINK;
2189                                 else if (!oxu->reclaim
2190                                             && qh->qh_state == QH_STATE_LINKED)
2191                                         start_unlink_async(oxu, qh);
2192                         }
2193
2194                         qh = qh->qh_next.qh;
2195                 } while (qh);
2196         }
2197         if (action == TIMER_ASYNC_SHRINK)
2198                 timer_action(oxu, TIMER_ASYNC_SHRINK);
2199 }
2200
2201 /*
2202  * periodic_next_shadow - return "next" pointer on shadow list
2203  * @periodic: host pointer to qh/itd/sitd
2204  * @tag: hardware tag for type of this record
2205  */
2206 static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic,
2207                                                 __le32 tag)
2208 {
2209         switch (tag) {
2210         default:
2211         case Q_TYPE_QH:
2212                 return &periodic->qh->qh_next;
2213         }
2214 }
2215
2216 /* caller must hold oxu->lock */
2217 static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr)
2218 {
2219         union ehci_shadow *prev_p = &oxu->pshadow[frame];
2220         __le32 *hw_p = &oxu->periodic[frame];
2221         union ehci_shadow here = *prev_p;
2222
2223         /* find predecessor of "ptr"; hw and shadow lists are in sync */
2224         while (here.ptr && here.ptr != ptr) {
2225                 prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p));
2226                 hw_p = here.hw_next;
2227                 here = *prev_p;
2228         }
2229         /* an interrupt entry (at list end) could have been shared */
2230         if (!here.ptr)
2231                 return;
2232
2233         /* update shadow and hardware lists ... the old "next" pointers
2234          * from ptr may still be in use, the caller updates them.
2235          */
2236         *prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p));
2237         *hw_p = *here.hw_next;
2238 }
2239
2240 /* how many of the uframe's 125 usecs are allocated? */
2241 static unsigned short periodic_usecs(struct oxu_hcd *oxu,
2242                                         unsigned frame, unsigned uframe)
2243 {
2244         __le32 *hw_p = &oxu->periodic[frame];
2245         union ehci_shadow *q = &oxu->pshadow[frame];
2246         unsigned usecs = 0;
2247
2248         while (q->ptr) {
2249                 switch (Q_NEXT_TYPE(*hw_p)) {
2250                 case Q_TYPE_QH:
2251                 default:
2252                         /* is it in the S-mask? */
2253                         if (q->qh->hw_info2 & cpu_to_le32(1 << uframe))
2254                                 usecs += q->qh->usecs;
2255                         /* ... or C-mask? */
2256                         if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe)))
2257                                 usecs += q->qh->c_usecs;
2258                         hw_p = &q->qh->hw_next;
2259                         q = &q->qh->qh_next;
2260                         break;
2261                 }
2262         }
2263 #ifdef DEBUG
2264         if (usecs > 100)
2265                 oxu_err(oxu, "uframe %d sched overrun: %d usecs\n",
2266                                                 frame * 8 + uframe, usecs);
2267 #endif
2268         return usecs;
2269 }
2270
2271 static int enable_periodic(struct oxu_hcd *oxu)
2272 {
2273         u32 cmd;
2274         int status;
2275
2276         /* did clearing PSE did take effect yet?
2277          * takes effect only at frame boundaries...
2278          */
2279         status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125);
2280         if (status != 0) {
2281                 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
2282                 usb_hc_died(oxu_to_hcd(oxu));
2283                 return status;
2284         }
2285
2286         cmd = readl(&oxu->regs->command) | CMD_PSE;
2287         writel(cmd, &oxu->regs->command);
2288         /* posted write ... PSS happens later */
2289         oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
2290
2291         /* make sure ehci_work scans these */
2292         oxu->next_uframe = readl(&oxu->regs->frame_index)
2293                 % (oxu->periodic_size << 3);
2294         return 0;
2295 }
2296
2297 static int disable_periodic(struct oxu_hcd *oxu)
2298 {
2299         u32 cmd;
2300         int status;
2301
2302         /* did setting PSE not take effect yet?
2303          * takes effect only at frame boundaries...
2304          */
2305         status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125);
2306         if (status != 0) {
2307                 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
2308                 usb_hc_died(oxu_to_hcd(oxu));
2309                 return status;
2310         }
2311
2312         cmd = readl(&oxu->regs->command) & ~CMD_PSE;
2313         writel(cmd, &oxu->regs->command);
2314         /* posted write ... */
2315
2316         oxu->next_uframe = -1;
2317         return 0;
2318 }
2319
2320 /* periodic schedule slots have iso tds (normal or split) first, then a
2321  * sparse tree for active interrupt transfers.
2322  *
2323  * this just links in a qh; caller guarantees uframe masks are set right.
2324  * no FSTN support (yet; oxu 0.96+)
2325  */
2326 static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
2327 {
2328         unsigned i;
2329         unsigned period = qh->period;
2330
2331         dev_dbg(&qh->dev->dev,
2332                 "link qh%d-%04x/%p start %d [%d/%d us]\n",
2333                 period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2334                 qh, qh->start, qh->usecs, qh->c_usecs);
2335
2336         /* high bandwidth, or otherwise every microframe */
2337         if (period == 0)
2338                 period = 1;
2339
2340         for (i = qh->start; i < oxu->periodic_size; i += period) {
2341                 union ehci_shadow       *prev = &oxu->pshadow[i];
2342                 __le32                  *hw_p = &oxu->periodic[i];
2343                 union ehci_shadow       here = *prev;
2344                 __le32                  type = 0;
2345
2346                 /* skip the iso nodes at list head */
2347                 while (here.ptr) {
2348                         type = Q_NEXT_TYPE(*hw_p);
2349                         if (type == Q_TYPE_QH)
2350                                 break;
2351                         prev = periodic_next_shadow(prev, type);
2352                         hw_p = &here.qh->hw_next;
2353                         here = *prev;
2354                 }
2355
2356                 /* sorting each branch by period (slow-->fast)
2357                  * enables sharing interior tree nodes
2358                  */
2359                 while (here.ptr && qh != here.qh) {
2360                         if (qh->period > here.qh->period)
2361                                 break;
2362                         prev = &here.qh->qh_next;
2363                         hw_p = &here.qh->hw_next;
2364                         here = *prev;
2365                 }
2366                 /* link in this qh, unless some earlier pass did that */
2367                 if (qh != here.qh) {
2368                         qh->qh_next = here;
2369                         if (here.qh)
2370                                 qh->hw_next = *hw_p;
2371                         wmb();
2372                         prev->qh = qh;
2373                         *hw_p = QH_NEXT(qh->qh_dma);
2374                 }
2375         }
2376         qh->qh_state = QH_STATE_LINKED;
2377         qh_get(qh);
2378
2379         /* update per-qh bandwidth for usbfs */
2380         oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period
2381                 ? ((qh->usecs + qh->c_usecs) / qh->period)
2382                 : (qh->usecs * 8);
2383
2384         /* maybe enable periodic schedule processing */
2385         if (!oxu->periodic_sched++)
2386                 return enable_periodic(oxu);
2387
2388         return 0;
2389 }
2390
2391 static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
2392 {
2393         unsigned i;
2394         unsigned period;
2395
2396         /* FIXME:
2397          *   IF this isn't high speed
2398          *   and this qh is active in the current uframe
2399          *   (and overlay token SplitXstate is false?)
2400          * THEN
2401          *   qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore");
2402          */
2403
2404         /* high bandwidth, or otherwise part of every microframe */
2405         period = qh->period;
2406         if (period == 0)
2407                 period = 1;
2408
2409         for (i = qh->start; i < oxu->periodic_size; i += period)
2410                 periodic_unlink(oxu, i, qh);
2411
2412         /* update per-qh bandwidth for usbfs */
2413         oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period
2414                 ? ((qh->usecs + qh->c_usecs) / qh->period)
2415                 : (qh->usecs * 8);
2416
2417         dev_dbg(&qh->dev->dev,
2418                 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
2419                 qh->period,
2420                 le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2421                 qh, qh->start, qh->usecs, qh->c_usecs);
2422
2423         /* qh->qh_next still "live" to HC */
2424         qh->qh_state = QH_STATE_UNLINK;
2425         qh->qh_next.ptr = NULL;
2426         qh_put(qh);
2427
2428         /* maybe turn off periodic schedule */
2429         oxu->periodic_sched--;
2430         if (!oxu->periodic_sched)
2431                 (void) disable_periodic(oxu);
2432 }
2433
2434 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2435 {
2436         unsigned wait;
2437
2438         qh_unlink_periodic(oxu, qh);
2439
2440         /* simple/paranoid:  always delay, expecting the HC needs to read
2441          * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
2442          * expect hub_wq to clean up after any CSPLITs we won't issue.
2443          * active high speed queues may need bigger delays...
2444          */
2445         if (list_empty(&qh->qtd_list)
2446                 || (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0)
2447                 wait = 2;
2448         else
2449                 wait = 55;      /* worst case: 3 * 1024 */
2450
2451         udelay(wait);
2452         qh->qh_state = QH_STATE_IDLE;
2453         qh->hw_next = EHCI_LIST_END;
2454         wmb();
2455 }
2456
2457 static int check_period(struct oxu_hcd *oxu,
2458                         unsigned frame, unsigned uframe,
2459                         unsigned period, unsigned usecs)
2460 {
2461         int claimed;
2462
2463         /* complete split running into next frame?
2464          * given FSTN support, we could sometimes check...
2465          */
2466         if (uframe >= 8)
2467                 return 0;
2468
2469         /*
2470          * 80% periodic == 100 usec/uframe available
2471          * convert "usecs we need" to "max already claimed"
2472          */
2473         usecs = 100 - usecs;
2474
2475         /* we "know" 2 and 4 uframe intervals were rejected; so
2476          * for period 0, check _every_ microframe in the schedule.
2477          */
2478         if (unlikely(period == 0)) {
2479                 do {
2480                         for (uframe = 0; uframe < 7; uframe++) {
2481                                 claimed = periodic_usecs(oxu, frame, uframe);
2482                                 if (claimed > usecs)
2483                                         return 0;
2484                         }
2485                 } while ((frame += 1) < oxu->periodic_size);
2486
2487         /* just check the specified uframe, at that period */
2488         } else {
2489                 do {
2490                         claimed = periodic_usecs(oxu, frame, uframe);
2491                         if (claimed > usecs)
2492                                 return 0;
2493                 } while ((frame += period) < oxu->periodic_size);
2494         }
2495
2496         return 1;
2497 }
2498
2499 static int check_intr_schedule(struct oxu_hcd   *oxu,
2500                                 unsigned frame, unsigned uframe,
2501                                 const struct ehci_qh *qh, __le32 *c_maskp)
2502 {
2503         int retval = -ENOSPC;
2504
2505         if (qh->c_usecs && uframe >= 6)         /* FSTN territory? */
2506                 goto done;
2507
2508         if (!check_period(oxu, frame, uframe, qh->period, qh->usecs))
2509                 goto done;
2510         if (!qh->c_usecs) {
2511                 retval = 0;
2512                 *c_maskp = 0;
2513                 goto done;
2514         }
2515
2516 done:
2517         return retval;
2518 }
2519
2520 /* "first fit" scheduling policy used the first time through,
2521  * or when the previous schedule slot can't be re-used.
2522  */
2523 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2524 {
2525         int             status;
2526         unsigned        uframe;
2527         __le32          c_mask;
2528         unsigned        frame;          /* 0..(qh->period - 1), or NO_FRAME */
2529
2530         qh_refresh(oxu, qh);
2531         qh->hw_next = EHCI_LIST_END;
2532         frame = qh->start;
2533
2534         /* reuse the previous schedule slots, if we can */
2535         if (frame < qh->period) {
2536                 uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK);
2537                 status = check_intr_schedule(oxu, frame, --uframe,
2538                                 qh, &c_mask);
2539         } else {
2540                 uframe = 0;
2541                 c_mask = 0;
2542                 status = -ENOSPC;
2543         }
2544
2545         /* else scan the schedule to find a group of slots such that all
2546          * uframes have enough periodic bandwidth available.
2547          */
2548         if (status) {
2549                 /* "normal" case, uframing flexible except with splits */
2550                 if (qh->period) {
2551                         frame = qh->period - 1;
2552                         do {
2553                                 for (uframe = 0; uframe < 8; uframe++) {
2554                                         status = check_intr_schedule(oxu,
2555                                                         frame, uframe, qh,
2556                                                         &c_mask);
2557                                         if (status == 0)
2558                                                 break;
2559                                 }
2560                         } while (status && frame--);
2561
2562                 /* qh->period == 0 means every uframe */
2563                 } else {
2564                         frame = 0;
2565                         status = check_intr_schedule(oxu, 0, 0, qh, &c_mask);
2566                 }
2567                 if (status)
2568                         goto done;
2569                 qh->start = frame;
2570
2571                 /* reset S-frame and (maybe) C-frame masks */
2572                 qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK));
2573                 qh->hw_info2 |= qh->period
2574                         ? cpu_to_le32(1 << uframe)
2575                         : cpu_to_le32(QH_SMASK);
2576                 qh->hw_info2 |= c_mask;
2577         } else
2578                 oxu_dbg(oxu, "reused qh %p schedule\n", qh);
2579
2580         /* stuff into the periodic schedule */
2581         status = qh_link_periodic(oxu, qh);
2582 done:
2583         return status;
2584 }
2585
2586 static int intr_submit(struct oxu_hcd *oxu, struct urb *urb,
2587                         struct list_head *qtd_list, gfp_t mem_flags)
2588 {
2589         unsigned epnum;
2590         unsigned long flags;
2591         struct ehci_qh *qh;
2592         int status = 0;
2593         struct list_head        empty;
2594
2595         /* get endpoint and transfer/schedule data */
2596         epnum = urb->ep->desc.bEndpointAddress;
2597
2598         spin_lock_irqsave(&oxu->lock, flags);
2599
2600         if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2601                 status = -ESHUTDOWN;
2602                 goto done;
2603         }
2604
2605         /* get qh and force any scheduling errors */
2606         INIT_LIST_HEAD(&empty);
2607         qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv);
2608         if (qh == NULL) {
2609                 status = -ENOMEM;
2610                 goto done;
2611         }
2612         if (qh->qh_state == QH_STATE_IDLE) {
2613                 status = qh_schedule(oxu, qh);
2614                 if (status != 0)
2615                         goto done;
2616         }
2617
2618         /* then queue the urb's tds to the qh */
2619         qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2620         BUG_ON(qh == NULL);
2621
2622         /* ... update usbfs periodic stats */
2623         oxu_to_hcd(oxu)->self.bandwidth_int_reqs++;
2624
2625 done:
2626         spin_unlock_irqrestore(&oxu->lock, flags);
2627         if (status)
2628                 qtd_list_free(oxu, urb, qtd_list);
2629
2630         return status;
2631 }
2632
2633 static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb,
2634                                                 gfp_t mem_flags)
2635 {
2636         oxu_dbg(oxu, "iso support is missing!\n");
2637         return -ENOSYS;
2638 }
2639
2640 static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb,
2641                                                 gfp_t mem_flags)
2642 {
2643         oxu_dbg(oxu, "split iso support is missing!\n");
2644         return -ENOSYS;
2645 }
2646
2647 static void scan_periodic(struct oxu_hcd *oxu)
2648 {
2649         unsigned frame, clock, now_uframe, mod;
2650         unsigned modified;
2651
2652         mod = oxu->periodic_size << 3;
2653
2654         /*
2655          * When running, scan from last scan point up to "now"
2656          * else clean up by scanning everything that's left.
2657          * Touches as few pages as possible:  cache-friendly.
2658          */
2659         now_uframe = oxu->next_uframe;
2660         if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2661                 clock = readl(&oxu->regs->frame_index);
2662         else
2663                 clock = now_uframe + mod - 1;
2664         clock %= mod;
2665
2666         for (;;) {
2667                 union ehci_shadow       q, *q_p;
2668                 __le32                  type, *hw_p;
2669
2670                 /* don't scan past the live uframe */
2671                 frame = now_uframe >> 3;
2672                 if (frame != (clock >> 3)) {
2673                         /* safe to scan the whole frame at once */
2674                         now_uframe |= 0x07;
2675                 }
2676
2677 restart:
2678                 /* scan each element in frame's queue for completions */
2679                 q_p = &oxu->pshadow[frame];
2680                 hw_p = &oxu->periodic[frame];
2681                 q.ptr = q_p->ptr;
2682                 type = Q_NEXT_TYPE(*hw_p);
2683                 modified = 0;
2684
2685                 while (q.ptr != NULL) {
2686                         union ehci_shadow temp;
2687
2688                         switch (type) {
2689                         case Q_TYPE_QH:
2690                                 /* handle any completions */
2691                                 temp.qh = qh_get(q.qh);
2692                                 type = Q_NEXT_TYPE(q.qh->hw_next);
2693                                 q = q.qh->qh_next;
2694                                 modified = qh_completions(oxu, temp.qh);
2695                                 if (unlikely(list_empty(&temp.qh->qtd_list)))
2696                                         intr_deschedule(oxu, temp.qh);
2697                                 qh_put(temp.qh);
2698                                 break;
2699                         default:
2700                                 oxu_dbg(oxu, "corrupt type %d frame %d shadow %p\n",
2701                                         type, frame, q.ptr);
2702                                 q.ptr = NULL;
2703                         }
2704
2705                         /* assume completion callbacks modify the queue */
2706                         if (unlikely(modified))
2707                                 goto restart;
2708                 }
2709
2710                 /* Stop when we catch up to the HC */
2711
2712                 /* FIXME:  this assumes we won't get lapped when
2713                  * latencies climb; that should be rare, but...
2714                  * detect it, and just go all the way around.
2715                  * FLR might help detect this case, so long as latencies
2716                  * don't exceed periodic_size msec (default 1.024 sec).
2717                  */
2718
2719                 /* FIXME: likewise assumes HC doesn't halt mid-scan */
2720
2721                 if (now_uframe == clock) {
2722                         unsigned        now;
2723
2724                         if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2725                                 break;
2726                         oxu->next_uframe = now_uframe;
2727                         now = readl(&oxu->regs->frame_index) % mod;
2728                         if (now_uframe == now)
2729                                 break;
2730
2731                         /* rescan the rest of this frame, then ... */
2732                         clock = now;
2733                 } else {
2734                         now_uframe++;
2735                         now_uframe %= mod;
2736                 }
2737         }
2738 }
2739
2740 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
2741  * The firmware seems to think that powering off is a wakeup event!
2742  * This routine turns off remote wakeup and everything else, on all ports.
2743  */
2744 static void ehci_turn_off_all_ports(struct oxu_hcd *oxu)
2745 {
2746         int port = HCS_N_PORTS(oxu->hcs_params);
2747
2748         while (port--)
2749                 writel(PORT_RWC_BITS, &oxu->regs->port_status[port]);
2750 }
2751
2752 static void ehci_port_power(struct oxu_hcd *oxu, int is_on)
2753 {
2754         unsigned port;
2755
2756         if (!HCS_PPC(oxu->hcs_params))
2757                 return;
2758
2759         oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down");
2760         for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; ) {
2761                 if (is_on)
2762                         oxu_hub_control(oxu_to_hcd(oxu), SetPortFeature,
2763                                 USB_PORT_FEAT_POWER, port--, NULL, 0);
2764                 else
2765                         oxu_hub_control(oxu_to_hcd(oxu), ClearPortFeature,
2766                                 USB_PORT_FEAT_POWER, port--, NULL, 0);
2767         }
2768
2769         msleep(20);
2770 }
2771
2772 /* Called from some interrupts, timers, and so on.
2773  * It calls driver completion functions, after dropping oxu->lock.
2774  */
2775 static void ehci_work(struct oxu_hcd *oxu)
2776 {
2777         timer_action_done(oxu, TIMER_IO_WATCHDOG);
2778         if (oxu->reclaim_ready)
2779                 end_unlink_async(oxu);
2780
2781         /* another CPU may drop oxu->lock during a schedule scan while
2782          * it reports urb completions.  this flag guards against bogus
2783          * attempts at re-entrant schedule scanning.
2784          */
2785         if (oxu->scanning)
2786                 return;
2787         oxu->scanning = 1;
2788         scan_async(oxu);
2789         if (oxu->next_uframe != -1)
2790                 scan_periodic(oxu);
2791         oxu->scanning = 0;
2792
2793         /* the IO watchdog guards against hardware or driver bugs that
2794          * misplace IRQs, and should let us run completely without IRQs.
2795          * such lossage has been observed on both VT6202 and VT8235.
2796          */
2797         if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) &&
2798                         (oxu->async->qh_next.ptr != NULL ||
2799                          oxu->periodic_sched != 0))
2800                 timer_action(oxu, TIMER_IO_WATCHDOG);
2801 }
2802
2803 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2804 {
2805         /* if we need to use IAA and it's busy, defer */
2806         if (qh->qh_state == QH_STATE_LINKED
2807                         && oxu->reclaim
2808                         && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) {
2809                 struct ehci_qh          *last;
2810
2811                 for (last = oxu->reclaim;
2812                                 last->reclaim;
2813                                 last = last->reclaim)
2814                         continue;
2815                 qh->qh_state = QH_STATE_UNLINK_WAIT;
2816                 last->reclaim = qh;
2817
2818         /* bypass IAA if the hc can't care */
2819         } else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim)
2820                 end_unlink_async(oxu);
2821
2822         /* something else might have unlinked the qh by now */
2823         if (qh->qh_state == QH_STATE_LINKED)
2824                 start_unlink_async(oxu, qh);
2825 }
2826
2827 /*
2828  * USB host controller methods
2829  */
2830
2831 static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd)
2832 {
2833         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2834         u32 status, pcd_status = 0;
2835         int bh;
2836
2837         spin_lock(&oxu->lock);
2838
2839         status = readl(&oxu->regs->status);
2840
2841         /* e.g. cardbus physical eject */
2842         if (status == ~(u32) 0) {
2843                 oxu_dbg(oxu, "device removed\n");
2844                 goto dead;
2845         }
2846
2847         /* Shared IRQ? */
2848         status &= INTR_MASK;
2849         if (!status || unlikely(hcd->state == HC_STATE_HALT)) {
2850                 spin_unlock(&oxu->lock);
2851                 return IRQ_NONE;
2852         }
2853
2854         /* clear (just) interrupts */
2855         writel(status, &oxu->regs->status);
2856         readl(&oxu->regs->command);     /* unblock posted write */
2857         bh = 0;
2858
2859 #ifdef OXU_VERBOSE_DEBUG
2860         /* unrequested/ignored: Frame List Rollover */
2861         dbg_status(oxu, "irq", status);
2862 #endif
2863
2864         /* INT, ERR, and IAA interrupt rates can be throttled */
2865
2866         /* normal [4.15.1.2] or error [4.15.1.1] completion */
2867         if (likely((status & (STS_INT|STS_ERR)) != 0))
2868                 bh = 1;
2869
2870         /* complete the unlinking of some qh [4.15.2.3] */
2871         if (status & STS_IAA) {
2872                 oxu->reclaim_ready = 1;
2873                 bh = 1;
2874         }
2875
2876         /* remote wakeup [4.3.1] */
2877         if (status & STS_PCD) {
2878                 unsigned i = HCS_N_PORTS(oxu->hcs_params);
2879                 pcd_status = status;
2880
2881                 /* resume root hub? */
2882                 if (!(readl(&oxu->regs->command) & CMD_RUN))
2883                         usb_hcd_resume_root_hub(hcd);
2884
2885                 while (i--) {
2886                         int pstatus = readl(&oxu->regs->port_status[i]);
2887
2888                         if (pstatus & PORT_OWNER)
2889                                 continue;
2890                         if (!(pstatus & PORT_RESUME)
2891                                         || oxu->reset_done[i] != 0)
2892                                 continue;
2893
2894                         /* start USB_RESUME_TIMEOUT resume signaling from this
2895                          * port, and make hub_wq collect PORT_STAT_C_SUSPEND to
2896                          * stop that signaling.
2897                          */
2898                         oxu->reset_done[i] = jiffies +
2899                                 msecs_to_jiffies(USB_RESUME_TIMEOUT);
2900                         oxu_dbg(oxu, "port %d remote wakeup\n", i + 1);
2901                         mod_timer(&hcd->rh_timer, oxu->reset_done[i]);
2902                 }
2903         }
2904
2905         /* PCI errors [4.15.2.4] */
2906         if (unlikely((status & STS_FATAL) != 0)) {
2907                 /* bogus "fatal" IRQs appear on some chips... why?  */
2908                 status = readl(&oxu->regs->status);
2909                 dbg_cmd(oxu, "fatal", readl(&oxu->regs->command));
2910                 dbg_status(oxu, "fatal", status);
2911                 if (status & STS_HALT) {
2912                         oxu_err(oxu, "fatal error\n");
2913 dead:
2914                         ehci_reset(oxu);
2915                         writel(0, &oxu->regs->configured_flag);
2916                         usb_hc_died(hcd);
2917                         /* generic layer kills/unlinks all urbs, then
2918                          * uses oxu_stop to clean up the rest
2919                          */
2920                         bh = 1;
2921                 }
2922         }
2923
2924         if (bh)
2925                 ehci_work(oxu);
2926         spin_unlock(&oxu->lock);
2927         if (pcd_status & STS_PCD)
2928                 usb_hcd_poll_rh_status(hcd);
2929         return IRQ_HANDLED;
2930 }
2931
2932 static irqreturn_t oxu_irq(struct usb_hcd *hcd)
2933 {
2934         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2935         int ret = IRQ_HANDLED;
2936
2937         u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS);
2938         u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET);
2939
2940         /* Disable all interrupt */
2941         oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable);
2942
2943         if ((oxu->is_otg && (status & OXU_USBOTGI)) ||
2944                 (!oxu->is_otg && (status & OXU_USBSPHI)))
2945                 oxu210_hcd_irq(hcd);
2946         else
2947                 ret = IRQ_NONE;
2948
2949         /* Enable all interrupt back */
2950         oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable);
2951
2952         return ret;
2953 }
2954
2955 static void oxu_watchdog(struct timer_list *t)
2956 {
2957         struct oxu_hcd  *oxu = from_timer(oxu, t, watchdog);
2958         unsigned long flags;
2959
2960         spin_lock_irqsave(&oxu->lock, flags);
2961
2962         /* lost IAA irqs wedge things badly; seen with a vt8235 */
2963         if (oxu->reclaim) {
2964                 u32 status = readl(&oxu->regs->status);
2965                 if (status & STS_IAA) {
2966                         oxu_vdbg(oxu, "lost IAA\n");
2967                         writel(STS_IAA, &oxu->regs->status);
2968                         oxu->reclaim_ready = 1;
2969                 }
2970         }
2971
2972         /* stop async processing after it's idled a bit */
2973         if (test_bit(TIMER_ASYNC_OFF, &oxu->actions))
2974                 start_unlink_async(oxu, oxu->async);
2975
2976         /* oxu could run by timer, without IRQs ... */
2977         ehci_work(oxu);
2978
2979         spin_unlock_irqrestore(&oxu->lock, flags);
2980 }
2981
2982 /* One-time init, only for memory state.
2983  */
2984 static int oxu_hcd_init(struct usb_hcd *hcd)
2985 {
2986         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2987         u32 temp;
2988         int retval;
2989         u32 hcc_params;
2990
2991         spin_lock_init(&oxu->lock);
2992
2993         timer_setup(&oxu->watchdog, oxu_watchdog, 0);
2994
2995         /*
2996          * hw default: 1K periodic list heads, one per frame.
2997          * periodic_size can shrink by USBCMD update if hcc_params allows.
2998          */
2999         oxu->periodic_size = DEFAULT_I_TDPS;
3000         retval = ehci_mem_init(oxu, GFP_KERNEL);
3001         if (retval < 0)
3002                 return retval;
3003
3004         /* controllers may cache some of the periodic schedule ... */
3005         hcc_params = readl(&oxu->caps->hcc_params);
3006         if (HCC_ISOC_CACHE(hcc_params))         /* full frame cache */
3007                 oxu->i_thresh = 8;
3008         else                                    /* N microframes cached */
3009                 oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params);
3010
3011         oxu->reclaim = NULL;
3012         oxu->reclaim_ready = 0;
3013         oxu->next_uframe = -1;
3014
3015         /*
3016          * dedicate a qh for the async ring head, since we couldn't unlink
3017          * a 'real' qh without stopping the async schedule [4.8].  use it
3018          * as the 'reclamation list head' too.
3019          * its dummy is used in hw_alt_next of many tds, to prevent the qh
3020          * from automatically advancing to the next td after short reads.
3021          */
3022         oxu->async->qh_next.qh = NULL;
3023         oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma);
3024         oxu->async->hw_info1 = cpu_to_le32(QH_HEAD);
3025         oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT);
3026         oxu->async->hw_qtd_next = EHCI_LIST_END;
3027         oxu->async->qh_state = QH_STATE_LINKED;
3028         oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma);
3029
3030         /* clear interrupt enables, set irq latency */
3031         if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
3032                 log2_irq_thresh = 0;
3033         temp = 1 << (16 + log2_irq_thresh);
3034         if (HCC_CANPARK(hcc_params)) {
3035                 /* HW default park == 3, on hardware that supports it (like
3036                  * NVidia and ALI silicon), maximizes throughput on the async
3037                  * schedule by avoiding QH fetches between transfers.
3038                  *
3039                  * With fast usb storage devices and NForce2, "park" seems to
3040                  * make problems:  throughput reduction (!), data errors...
3041                  */
3042                 if (park) {
3043                         park = min(park, (unsigned) 3);
3044                         temp |= CMD_PARK;
3045                         temp |= park << 8;
3046                 }
3047                 oxu_dbg(oxu, "park %d\n", park);
3048         }
3049         if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
3050                 /* periodic schedule size can be smaller than default */
3051                 temp &= ~(3 << 2);
3052                 temp |= (EHCI_TUNE_FLS << 2);
3053         }
3054         oxu->command = temp;
3055
3056         return 0;
3057 }
3058
3059 /* Called during probe() after chip reset completes.
3060  */
3061 static int oxu_reset(struct usb_hcd *hcd)
3062 {
3063         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3064
3065         spin_lock_init(&oxu->mem_lock);
3066         INIT_LIST_HEAD(&oxu->urb_list);
3067         oxu->urb_len = 0;
3068
3069         if (oxu->is_otg) {
3070                 oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET;
3071                 oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \
3072                         HC_LENGTH(readl(&oxu->caps->hc_capbase));
3073
3074                 oxu->mem = hcd->regs + OXU_SPH_MEM;
3075         } else {
3076                 oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET;
3077                 oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \
3078                         HC_LENGTH(readl(&oxu->caps->hc_capbase));
3079
3080                 oxu->mem = hcd->regs + OXU_OTG_MEM;
3081         }
3082
3083         oxu->hcs_params = readl(&oxu->caps->hcs_params);
3084         oxu->sbrn = 0x20;
3085
3086         return oxu_hcd_init(hcd);
3087 }
3088
3089 static int oxu_run(struct usb_hcd *hcd)
3090 {
3091         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3092         int retval;
3093         u32 temp, hcc_params;
3094
3095         hcd->uses_new_polling = 1;
3096
3097         /* EHCI spec section 4.1 */
3098         retval = ehci_reset(oxu);
3099         if (retval != 0) {
3100                 ehci_mem_cleanup(oxu);
3101                 return retval;
3102         }
3103         writel(oxu->periodic_dma, &oxu->regs->frame_list);
3104         writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3105
3106         /* hcc_params controls whether oxu->regs->segment must (!!!)
3107          * be used; it constrains QH/ITD/SITD and QTD locations.
3108          * dma_pool consistent memory always uses segment zero.
3109          * streaming mappings for I/O buffers, like dma_map_single(),
3110          * can return segments above 4GB, if the device allows.
3111          *
3112          * NOTE:  the dma mask is visible through dev->dma_mask, so
3113          * drivers can pass this info along ... like NETIF_F_HIGHDMA,
3114          * Scsi_Host.highmem_io, and so forth.  It's readonly to all
3115          * host side drivers though.
3116          */
3117         hcc_params = readl(&oxu->caps->hcc_params);
3118         if (HCC_64BIT_ADDR(hcc_params))
3119                 writel(0, &oxu->regs->segment);
3120
3121         oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE |
3122                                 CMD_ASE | CMD_RESET);
3123         oxu->command |= CMD_RUN;
3124         writel(oxu->command, &oxu->regs->command);
3125         dbg_cmd(oxu, "init", oxu->command);
3126
3127         /*
3128          * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
3129          * are explicitly handed to companion controller(s), so no TT is
3130          * involved with the root hub.  (Except where one is integrated,
3131          * and there's no companion controller unless maybe for USB OTG.)
3132          */
3133         hcd->state = HC_STATE_RUNNING;
3134         writel(FLAG_CF, &oxu->regs->configured_flag);
3135         readl(&oxu->regs->command);     /* unblock posted writes */
3136
3137         temp = HC_VERSION(readl(&oxu->caps->hc_capbase));
3138         oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n",
3139                 ((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f),
3140                 temp >> 8, temp & 0xff, DRIVER_VERSION,
3141                 ignore_oc ? ", overcurrent ignored" : "");
3142
3143         writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */
3144
3145         return 0;
3146 }
3147
3148 static void oxu_stop(struct usb_hcd *hcd)
3149 {
3150         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3151
3152         /* Turn off port power on all root hub ports. */
3153         ehci_port_power(oxu, 0);
3154
3155         /* no more interrupts ... */
3156         del_timer_sync(&oxu->watchdog);
3157
3158         spin_lock_irq(&oxu->lock);
3159         if (HC_IS_RUNNING(hcd->state))
3160                 ehci_quiesce(oxu);
3161
3162         ehci_reset(oxu);
3163         writel(0, &oxu->regs->intr_enable);
3164         spin_unlock_irq(&oxu->lock);
3165
3166         /* let companion controllers work when we aren't */
3167         writel(0, &oxu->regs->configured_flag);
3168
3169         /* root hub is shut down separately (first, when possible) */
3170         spin_lock_irq(&oxu->lock);
3171         if (oxu->async)
3172                 ehci_work(oxu);
3173         spin_unlock_irq(&oxu->lock);
3174         ehci_mem_cleanup(oxu);
3175
3176         dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status));
3177 }
3178
3179 /* Kick in for silicon on any bus (not just pci, etc).
3180  * This forcibly disables dma and IRQs, helping kexec and other cases
3181  * where the next system software may expect clean state.
3182  */
3183 static void oxu_shutdown(struct usb_hcd *hcd)
3184 {
3185         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3186
3187         (void) ehci_halt(oxu);
3188         ehci_turn_off_all_ports(oxu);
3189
3190         /* make BIOS/etc use companion controller during reboot */
3191         writel(0, &oxu->regs->configured_flag);
3192
3193         /* unblock posted writes */
3194         readl(&oxu->regs->configured_flag);
3195 }
3196
3197 /* Non-error returns are a promise to giveback() the urb later
3198  * we drop ownership so next owner (or urb unlink) can get it
3199  *
3200  * urb + dev is in hcd.self.controller.urb_list
3201  * we're queueing TDs onto software and hardware lists
3202  *
3203  * hcd-specific init for hcpriv hasn't been done yet
3204  *
3205  * NOTE:  control, bulk, and interrupt share the same code to append TDs
3206  * to a (possibly active) QH, and the same QH scanning code.
3207  */
3208 static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
3209                                 gfp_t mem_flags)
3210 {
3211         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3212         struct list_head qtd_list;
3213
3214         INIT_LIST_HEAD(&qtd_list);
3215
3216         switch (usb_pipetype(urb->pipe)) {
3217         case PIPE_CONTROL:
3218         case PIPE_BULK:
3219         default:
3220                 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
3221                         return -ENOMEM;
3222                 return submit_async(oxu, urb, &qtd_list, mem_flags);
3223
3224         case PIPE_INTERRUPT:
3225                 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
3226                         return -ENOMEM;
3227                 return intr_submit(oxu, urb, &qtd_list, mem_flags);
3228
3229         case PIPE_ISOCHRONOUS:
3230                 if (urb->dev->speed == USB_SPEED_HIGH)
3231                         return itd_submit(oxu, urb, mem_flags);
3232                 else
3233                         return sitd_submit(oxu, urb, mem_flags);
3234         }
3235 }
3236
3237 /* This function is responsible for breaking URBs with big data size
3238  * into smaller size and processing small urbs in sequence.
3239  */
3240 static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
3241                                 gfp_t mem_flags)
3242 {
3243         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3244         int num, rem;
3245         void *transfer_buffer;
3246         struct urb *murb;
3247         int i, ret;
3248
3249         /* If not bulk pipe just enqueue the URB */
3250         if (!usb_pipebulk(urb->pipe))
3251                 return __oxu_urb_enqueue(hcd, urb, mem_flags);
3252
3253         /* Otherwise we should verify the USB transfer buffer size! */
3254         transfer_buffer = urb->transfer_buffer;
3255
3256         num = urb->transfer_buffer_length / 4096;
3257         rem = urb->transfer_buffer_length % 4096;
3258         if (rem != 0)
3259                 num++;
3260
3261         /* If URB is smaller than 4096 bytes just enqueue it! */
3262         if (num == 1)
3263                 return __oxu_urb_enqueue(hcd, urb, mem_flags);
3264
3265         /* Ok, we have more job to do! :) */
3266
3267         for (i = 0; i < num - 1; i++) {
3268                 /* Get free micro URB poll till a free urb is received */
3269
3270                 do {
3271                         murb = (struct urb *) oxu_murb_alloc(oxu);
3272                         if (!murb)
3273                                 schedule();
3274                 } while (!murb);
3275
3276                 /* Coping the urb */
3277                 memcpy(murb, urb, sizeof(struct urb));
3278
3279                 murb->transfer_buffer_length = 4096;
3280                 murb->transfer_buffer = transfer_buffer + i * 4096;
3281
3282                 /* Null pointer for the encodes that this is a micro urb */
3283                 murb->complete = NULL;
3284
3285                 ((struct oxu_murb *) murb)->main = urb;
3286                 ((struct oxu_murb *) murb)->last = 0;
3287
3288                 /* This loop is to guarantee urb to be processed when there's
3289                  * not enough resources at a particular time by retrying.
3290                  */
3291                 do {
3292                         ret  = __oxu_urb_enqueue(hcd, murb, mem_flags);
3293                         if (ret)
3294                                 schedule();
3295                 } while (ret);
3296         }
3297
3298         /* Last urb requires special handling  */
3299
3300         /* Get free micro URB poll till a free urb is received */
3301         do {
3302                 murb = (struct urb *) oxu_murb_alloc(oxu);
3303                 if (!murb)
3304                         schedule();
3305         } while (!murb);
3306
3307         /* Coping the urb */
3308         memcpy(murb, urb, sizeof(struct urb));
3309
3310         murb->transfer_buffer_length = rem > 0 ? rem : 4096;
3311         murb->transfer_buffer = transfer_buffer + (num - 1) * 4096;
3312
3313         /* Null pointer for the encodes that this is a micro urb */
3314         murb->complete = NULL;
3315
3316         ((struct oxu_murb *) murb)->main = urb;
3317         ((struct oxu_murb *) murb)->last = 1;
3318
3319         do {
3320                 ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
3321                 if (ret)
3322                         schedule();
3323         } while (ret);
3324
3325         return ret;
3326 }
3327
3328 /* Remove from hardware lists.
3329  * Completions normally happen asynchronously
3330  */
3331 static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
3332 {
3333         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3334         struct ehci_qh *qh;
3335         unsigned long flags;
3336
3337         spin_lock_irqsave(&oxu->lock, flags);
3338         switch (usb_pipetype(urb->pipe)) {
3339         case PIPE_CONTROL:
3340         case PIPE_BULK:
3341         default:
3342                 qh = (struct ehci_qh *) urb->hcpriv;
3343                 if (!qh)
3344                         break;
3345                 unlink_async(oxu, qh);
3346                 break;
3347
3348         case PIPE_INTERRUPT:
3349                 qh = (struct ehci_qh *) urb->hcpriv;
3350                 if (!qh)
3351                         break;
3352                 switch (qh->qh_state) {
3353                 case QH_STATE_LINKED:
3354                         intr_deschedule(oxu, qh);
3355                         fallthrough;
3356                 case QH_STATE_IDLE:
3357                         qh_completions(oxu, qh);
3358                         break;
3359                 default:
3360                         oxu_dbg(oxu, "bogus qh %p state %d\n",
3361                                         qh, qh->qh_state);
3362                         goto done;
3363                 }
3364
3365                 /* reschedule QH iff another request is queued */
3366                 if (!list_empty(&qh->qtd_list)
3367                                 && HC_IS_RUNNING(hcd->state)) {
3368                         int status;
3369
3370                         status = qh_schedule(oxu, qh);
3371                         spin_unlock_irqrestore(&oxu->lock, flags);
3372
3373                         if (status != 0) {
3374                                 /* shouldn't happen often, but ...
3375                                  * FIXME kill those tds' urbs
3376                                  */
3377                                 dev_err(hcd->self.controller,
3378                                         "can't reschedule qh %p, err %d\n", qh,
3379                                         status);
3380                         }
3381                         return status;
3382                 }
3383                 break;
3384         }
3385 done:
3386         spin_unlock_irqrestore(&oxu->lock, flags);
3387         return 0;
3388 }
3389
3390 /* Bulk qh holds the data toggle */
3391 static void oxu_endpoint_disable(struct usb_hcd *hcd,
3392                                         struct usb_host_endpoint *ep)
3393 {
3394         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3395         unsigned long           flags;
3396         struct ehci_qh          *qh, *tmp;
3397
3398         /* ASSERT:  any requests/urbs are being unlinked */
3399         /* ASSERT:  nobody can be submitting urbs for this any more */
3400
3401 rescan:
3402         spin_lock_irqsave(&oxu->lock, flags);
3403         qh = ep->hcpriv;
3404         if (!qh)
3405                 goto done;
3406
3407         /* endpoints can be iso streams.  for now, we don't
3408          * accelerate iso completions ... so spin a while.
3409          */
3410         if (qh->hw_info1 == 0) {
3411                 oxu_vdbg(oxu, "iso delay\n");
3412                 goto idle_timeout;
3413         }
3414
3415         if (!HC_IS_RUNNING(hcd->state))
3416                 qh->qh_state = QH_STATE_IDLE;
3417         switch (qh->qh_state) {
3418         case QH_STATE_LINKED:
3419                 for (tmp = oxu->async->qh_next.qh;
3420                                 tmp && tmp != qh;
3421                                 tmp = tmp->qh_next.qh)
3422                         continue;
3423                 /* periodic qh self-unlinks on empty */
3424                 if (!tmp)
3425                         goto nogood;
3426                 unlink_async(oxu, qh);
3427                 fallthrough;
3428         case QH_STATE_UNLINK:           /* wait for hw to finish? */
3429 idle_timeout:
3430                 spin_unlock_irqrestore(&oxu->lock, flags);
3431                 schedule_timeout_uninterruptible(1);
3432                 goto rescan;
3433         case QH_STATE_IDLE:             /* fully unlinked */
3434                 if (list_empty(&qh->qtd_list)) {
3435                         qh_put(qh);
3436                         break;
3437                 }
3438                 fallthrough;
3439         default:
3440 nogood:
3441                 /* caller was supposed to have unlinked any requests;
3442                  * that's not our job.  just leak this memory.
3443                  */
3444                 oxu_err(oxu, "qh %p (#%02x) state %d%s\n",
3445                         qh, ep->desc.bEndpointAddress, qh->qh_state,
3446                         list_empty(&qh->qtd_list) ? "" : "(has tds)");
3447                 break;
3448         }
3449         ep->hcpriv = NULL;
3450 done:
3451         spin_unlock_irqrestore(&oxu->lock, flags);
3452 }
3453
3454 static int oxu_get_frame(struct usb_hcd *hcd)
3455 {
3456         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3457
3458         return (readl(&oxu->regs->frame_index) >> 3) %
3459                 oxu->periodic_size;
3460 }
3461
3462 /* Build "status change" packet (one or two bytes) from HC registers */
3463 static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf)
3464 {
3465         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3466         u32 temp, mask, status = 0;
3467         int ports, i, retval = 1;
3468         unsigned long flags;
3469
3470         /* if !PM, root hub timers won't get shut down ... */
3471         if (!HC_IS_RUNNING(hcd->state))
3472                 return 0;
3473
3474         /* init status to no-changes */
3475         buf[0] = 0;
3476         ports = HCS_N_PORTS(oxu->hcs_params);
3477         if (ports > 7) {
3478                 buf[1] = 0;
3479                 retval++;
3480         }
3481
3482         /* Some boards (mostly VIA?) report bogus overcurrent indications,
3483          * causing massive log spam unless we completely ignore them.  It
3484          * may be relevant that VIA VT8235 controllers, where PORT_POWER is
3485          * always set, seem to clear PORT_OCC and PORT_CSC when writing to
3486          * PORT_POWER; that's surprising, but maybe within-spec.
3487          */
3488         if (!ignore_oc)
3489                 mask = PORT_CSC | PORT_PEC | PORT_OCC;
3490         else
3491                 mask = PORT_CSC | PORT_PEC;
3492
3493         /* no hub change reports (bit 0) for now (power, ...) */
3494
3495         /* port N changes (bit N)? */
3496         spin_lock_irqsave(&oxu->lock, flags);
3497         for (i = 0; i < ports; i++) {
3498                 temp = readl(&oxu->regs->port_status[i]);
3499
3500                 /*
3501                  * Return status information even for ports with OWNER set.
3502                  * Otherwise hub_wq wouldn't see the disconnect event when a
3503                  * high-speed device is switched over to the companion
3504                  * controller by the user.
3505                  */
3506
3507                 if (!(temp & PORT_CONNECT))
3508                         oxu->reset_done[i] = 0;
3509                 if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 &&
3510                                 time_after_eq(jiffies, oxu->reset_done[i]))) {
3511                         if (i < 7)
3512                                 buf[0] |= 1 << (i + 1);
3513                         else
3514                                 buf[1] |= 1 << (i - 7);
3515                         status = STS_PCD;
3516                 }
3517         }
3518         /* FIXME autosuspend idle root hubs */
3519         spin_unlock_irqrestore(&oxu->lock, flags);
3520         return status ? retval : 0;
3521 }
3522
3523 /* Returns the speed of a device attached to a port on the root hub. */
3524 static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu,
3525                                                 unsigned int portsc)
3526 {
3527         switch ((portsc >> 26) & 3) {
3528         case 0:
3529                 return 0;
3530         case 1:
3531                 return USB_PORT_STAT_LOW_SPEED;
3532         case 2:
3533         default:
3534                 return USB_PORT_STAT_HIGH_SPEED;
3535         }
3536 }
3537
3538 #define PORT_WAKE_BITS  (PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E)
3539 static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq,
3540                                 u16 wValue, u16 wIndex, char *buf, u16 wLength)
3541 {
3542         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3543         int ports = HCS_N_PORTS(oxu->hcs_params);
3544         u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1];
3545         u32 temp, status;
3546         unsigned long   flags;
3547         int retval = 0;
3548         unsigned selector;
3549
3550         /*
3551          * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
3552          * HCS_INDICATOR may say we can change LEDs to off/amber/green.
3553          * (track current state ourselves) ... blink for diagnostics,
3554          * power, "this is the one", etc.  EHCI spec supports this.
3555          */
3556
3557         spin_lock_irqsave(&oxu->lock, flags);
3558         switch (typeReq) {
3559         case ClearHubFeature:
3560                 switch (wValue) {
3561                 case C_HUB_LOCAL_POWER:
3562                 case C_HUB_OVER_CURRENT:
3563                         /* no hub-wide feature/status flags */
3564                         break;
3565                 default:
3566                         goto error;
3567                 }
3568                 break;
3569         case ClearPortFeature:
3570                 if (!wIndex || wIndex > ports)
3571                         goto error;
3572                 wIndex--;
3573                 temp = readl(status_reg);
3574
3575                 /*
3576                  * Even if OWNER is set, so the port is owned by the
3577                  * companion controller, hub_wq needs to be able to clear
3578                  * the port-change status bits (especially
3579                  * USB_PORT_STAT_C_CONNECTION).
3580                  */
3581
3582                 switch (wValue) {
3583                 case USB_PORT_FEAT_ENABLE:
3584                         writel(temp & ~PORT_PE, status_reg);
3585                         break;
3586                 case USB_PORT_FEAT_C_ENABLE:
3587                         writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg);
3588                         break;
3589                 case USB_PORT_FEAT_SUSPEND:
3590                         if (temp & PORT_RESET)
3591                                 goto error;
3592                         if (temp & PORT_SUSPEND) {
3593                                 if ((temp & PORT_PE) == 0)
3594                                         goto error;
3595                                 /* resume signaling for 20 msec */
3596                                 temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS);
3597                                 writel(temp | PORT_RESUME, status_reg);
3598                                 oxu->reset_done[wIndex] = jiffies
3599                                                 + msecs_to_jiffies(20);
3600                         }
3601                         break;
3602                 case USB_PORT_FEAT_C_SUSPEND:
3603                         /* we auto-clear this feature */
3604                         break;
3605                 case USB_PORT_FEAT_POWER:
3606                         if (HCS_PPC(oxu->hcs_params))
3607                                 writel(temp & ~(PORT_RWC_BITS | PORT_POWER),
3608                                           status_reg);
3609                         break;
3610                 case USB_PORT_FEAT_C_CONNECTION:
3611                         writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg);
3612                         break;
3613                 case USB_PORT_FEAT_C_OVER_CURRENT:
3614                         writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg);
3615                         break;
3616                 case USB_PORT_FEAT_C_RESET:
3617                         /* GetPortStatus clears reset */
3618                         break;
3619                 default:
3620                         goto error;
3621                 }
3622                 readl(&oxu->regs->command);     /* unblock posted write */
3623                 break;
3624         case GetHubDescriptor:
3625                 ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *)
3626                         buf);
3627                 break;
3628         case GetHubStatus:
3629                 /* no hub-wide feature/status flags */
3630                 memset(buf, 0, 4);
3631                 break;
3632         case GetPortStatus:
3633                 if (!wIndex || wIndex > ports)
3634                         goto error;
3635                 wIndex--;
3636                 status = 0;
3637                 temp = readl(status_reg);
3638
3639                 /* wPortChange bits */
3640                 if (temp & PORT_CSC)
3641                         status |= USB_PORT_STAT_C_CONNECTION << 16;
3642                 if (temp & PORT_PEC)
3643                         status |= USB_PORT_STAT_C_ENABLE << 16;
3644                 if ((temp & PORT_OCC) && !ignore_oc)
3645                         status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3646
3647                 /* whoever resumes must GetPortStatus to complete it!! */
3648                 if (temp & PORT_RESUME) {
3649
3650                         /* Remote Wakeup received? */
3651                         if (!oxu->reset_done[wIndex]) {
3652                                 /* resume signaling for 20 msec */
3653                                 oxu->reset_done[wIndex] = jiffies
3654                                                 + msecs_to_jiffies(20);
3655                                 /* check the port again */
3656                                 mod_timer(&oxu_to_hcd(oxu)->rh_timer,
3657                                                 oxu->reset_done[wIndex]);
3658                         }
3659
3660                         /* resume completed? */
3661                         else if (time_after_eq(jiffies,
3662                                         oxu->reset_done[wIndex])) {
3663                                 status |= USB_PORT_STAT_C_SUSPEND << 16;
3664                                 oxu->reset_done[wIndex] = 0;
3665
3666                                 /* stop resume signaling */
3667                                 temp = readl(status_reg);
3668                                 writel(temp & ~(PORT_RWC_BITS | PORT_RESUME),
3669                                         status_reg);
3670                                 retval = handshake(oxu, status_reg,
3671                                            PORT_RESUME, 0, 2000 /* 2msec */);
3672                                 if (retval != 0) {
3673                                         oxu_err(oxu,
3674                                                 "port %d resume error %d\n",
3675                                                 wIndex + 1, retval);
3676                                         goto error;
3677                                 }
3678                                 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
3679                         }
3680                 }
3681
3682                 /* whoever resets must GetPortStatus to complete it!! */
3683                 if ((temp & PORT_RESET)
3684                                 && time_after_eq(jiffies,
3685                                         oxu->reset_done[wIndex])) {
3686                         status |= USB_PORT_STAT_C_RESET << 16;
3687                         oxu->reset_done[wIndex] = 0;
3688
3689                         /* force reset to complete */
3690                         writel(temp & ~(PORT_RWC_BITS | PORT_RESET),
3691                                         status_reg);
3692                         /* REVISIT:  some hardware needs 550+ usec to clear
3693                          * this bit; seems too long to spin routinely...
3694                          */
3695                         retval = handshake(oxu, status_reg,
3696                                         PORT_RESET, 0, 750);
3697                         if (retval != 0) {
3698                                 oxu_err(oxu, "port %d reset error %d\n",
3699                                         wIndex + 1, retval);
3700                                 goto error;
3701                         }
3702
3703                         /* see what we found out */
3704                         temp = check_reset_complete(oxu, wIndex, status_reg,
3705                                         readl(status_reg));
3706                 }
3707
3708                 /* transfer dedicated ports to the companion hc */
3709                 if ((temp & PORT_CONNECT) &&
3710                                 test_bit(wIndex, &oxu->companion_ports)) {
3711                         temp &= ~PORT_RWC_BITS;
3712                         temp |= PORT_OWNER;
3713                         writel(temp, status_reg);
3714                         oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1);
3715                         temp = readl(status_reg);
3716                 }
3717
3718                 /*
3719                  * Even if OWNER is set, there's no harm letting hub_wq
3720                  * see the wPortStatus values (they should all be 0 except
3721                  * for PORT_POWER anyway).
3722                  */
3723
3724                 if (temp & PORT_CONNECT) {
3725                         status |= USB_PORT_STAT_CONNECTION;
3726                         /* status may be from integrated TT */
3727                         status |= oxu_port_speed(oxu, temp);
3728                 }
3729                 if (temp & PORT_PE)
3730                         status |= USB_PORT_STAT_ENABLE;
3731                 if (temp & (PORT_SUSPEND|PORT_RESUME))
3732                         status |= USB_PORT_STAT_SUSPEND;
3733                 if (temp & PORT_OC)
3734                         status |= USB_PORT_STAT_OVERCURRENT;
3735                 if (temp & PORT_RESET)
3736                         status |= USB_PORT_STAT_RESET;
3737                 if (temp & PORT_POWER)
3738                         status |= USB_PORT_STAT_POWER;
3739
3740 #ifndef OXU_VERBOSE_DEBUG
3741         if (status & ~0xffff)   /* only if wPortChange is interesting */
3742 #endif
3743                 dbg_port(oxu, "GetStatus", wIndex + 1, temp);
3744                 put_unaligned(cpu_to_le32(status), (__le32 *) buf);
3745                 break;
3746         case SetHubFeature:
3747                 switch (wValue) {
3748                 case C_HUB_LOCAL_POWER:
3749                 case C_HUB_OVER_CURRENT:
3750                         /* no hub-wide feature/status flags */
3751                         break;
3752                 default:
3753                         goto error;
3754                 }
3755                 break;
3756         case SetPortFeature:
3757                 selector = wIndex >> 8;
3758                 wIndex &= 0xff;
3759                 if (!wIndex || wIndex > ports)
3760                         goto error;
3761                 wIndex--;
3762                 temp = readl(status_reg);
3763                 if (temp & PORT_OWNER)
3764                         break;
3765
3766                 temp &= ~PORT_RWC_BITS;
3767                 switch (wValue) {
3768                 case USB_PORT_FEAT_SUSPEND:
3769                         if ((temp & PORT_PE) == 0
3770                                         || (temp & PORT_RESET) != 0)
3771                                 goto error;
3772                         if (device_may_wakeup(&hcd->self.root_hub->dev))
3773                                 temp |= PORT_WAKE_BITS;
3774                         writel(temp | PORT_SUSPEND, status_reg);
3775                         break;
3776                 case USB_PORT_FEAT_POWER:
3777                         if (HCS_PPC(oxu->hcs_params))
3778                                 writel(temp | PORT_POWER, status_reg);
3779                         break;
3780                 case USB_PORT_FEAT_RESET:
3781                         if (temp & PORT_RESUME)
3782                                 goto error;
3783                         /* line status bits may report this as low speed,
3784                          * which can be fine if this root hub has a
3785                          * transaction translator built in.
3786                          */
3787                         oxu_vdbg(oxu, "port %d reset\n", wIndex + 1);
3788                         temp |= PORT_RESET;
3789                         temp &= ~PORT_PE;
3790
3791                         /*
3792                          * caller must wait, then call GetPortStatus
3793                          * usb 2.0 spec says 50 ms resets on root
3794                          */
3795                         oxu->reset_done[wIndex] = jiffies
3796                                         + msecs_to_jiffies(50);
3797                         writel(temp, status_reg);
3798                         break;
3799
3800                 /* For downstream facing ports (these):  one hub port is put
3801                  * into test mode according to USB2 11.24.2.13, then the hub
3802                  * must be reset (which for root hub now means rmmod+modprobe,
3803                  * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
3804                  * about the EHCI-specific stuff.
3805                  */
3806                 case USB_PORT_FEAT_TEST:
3807                         if (!selector || selector > 5)
3808                                 goto error;
3809                         ehci_quiesce(oxu);
3810                         ehci_halt(oxu);
3811                         temp |= selector << 16;
3812                         writel(temp, status_reg);
3813                         break;
3814
3815                 default:
3816                         goto error;
3817                 }
3818                 readl(&oxu->regs->command);     /* unblock posted writes */
3819                 break;
3820
3821         default:
3822 error:
3823                 /* "stall" on error */
3824                 retval = -EPIPE;
3825         }
3826         spin_unlock_irqrestore(&oxu->lock, flags);
3827         return retval;
3828 }
3829
3830 #ifdef CONFIG_PM
3831
3832 static int oxu_bus_suspend(struct usb_hcd *hcd)
3833 {
3834         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3835         int port;
3836         int mask;
3837
3838         oxu_dbg(oxu, "suspend root hub\n");
3839
3840         if (time_before(jiffies, oxu->next_statechange))
3841                 msleep(5);
3842
3843         port = HCS_N_PORTS(oxu->hcs_params);
3844         spin_lock_irq(&oxu->lock);
3845
3846         /* stop schedules, clean any completed work */
3847         if (HC_IS_RUNNING(hcd->state)) {
3848                 ehci_quiesce(oxu);
3849                 hcd->state = HC_STATE_QUIESCING;
3850         }
3851         oxu->command = readl(&oxu->regs->command);
3852         if (oxu->reclaim)
3853                 oxu->reclaim_ready = 1;
3854         ehci_work(oxu);
3855
3856         /* Unlike other USB host controller types, EHCI doesn't have
3857          * any notion of "global" or bus-wide suspend.  The driver has
3858          * to manually suspend all the active unsuspended ports, and
3859          * then manually resume them in the bus_resume() routine.
3860          */
3861         oxu->bus_suspended = 0;
3862         while (port--) {
3863                 u32 __iomem *reg = &oxu->regs->port_status[port];
3864                 u32 t1 = readl(reg) & ~PORT_RWC_BITS;
3865                 u32 t2 = t1;
3866
3867                 /* keep track of which ports we suspend */
3868                 if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) &&
3869                                 !(t1 & PORT_SUSPEND)) {
3870                         t2 |= PORT_SUSPEND;
3871                         set_bit(port, &oxu->bus_suspended);
3872                 }
3873
3874                 /* enable remote wakeup on all ports */
3875                 if (device_may_wakeup(&hcd->self.root_hub->dev))
3876                         t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E;
3877                 else
3878                         t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E);
3879
3880                 if (t1 != t2) {
3881                         oxu_vdbg(oxu, "port %d, %08x -> %08x\n",
3882                                 port + 1, t1, t2);
3883                         writel(t2, reg);
3884                 }
3885         }
3886
3887         spin_unlock_irq(&oxu->lock);
3888         /* turn off now-idle HC */
3889         del_timer_sync(&oxu->watchdog);
3890         spin_lock_irq(&oxu->lock);
3891         ehci_halt(oxu);
3892         hcd->state = HC_STATE_SUSPENDED;
3893
3894         /* allow remote wakeup */
3895         mask = INTR_MASK;
3896         if (!device_may_wakeup(&hcd->self.root_hub->dev))
3897                 mask &= ~STS_PCD;
3898         writel(mask, &oxu->regs->intr_enable);
3899         readl(&oxu->regs->intr_enable);
3900
3901         oxu->next_statechange = jiffies + msecs_to_jiffies(10);
3902         spin_unlock_irq(&oxu->lock);
3903         return 0;
3904 }
3905
3906 /* Caller has locked the root hub, and should reset/reinit on error */
3907 static int oxu_bus_resume(struct usb_hcd *hcd)
3908 {
3909         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3910         u32 temp;
3911         int i;
3912
3913         if (time_before(jiffies, oxu->next_statechange))
3914                 msleep(5);
3915         spin_lock_irq(&oxu->lock);
3916
3917         /* Ideally and we've got a real resume here, and no port's power
3918          * was lost.  (For PCI, that means Vaux was maintained.)  But we
3919          * could instead be restoring a swsusp snapshot -- so that BIOS was
3920          * the last user of the controller, not reset/pm hardware keeping
3921          * state we gave to it.
3922          */
3923         temp = readl(&oxu->regs->intr_enable);
3924         oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss");
3925
3926         /* at least some APM implementations will try to deliver
3927          * IRQs right away, so delay them until we're ready.
3928          */
3929         writel(0, &oxu->regs->intr_enable);
3930
3931         /* re-init operational registers */
3932         writel(0, &oxu->regs->segment);
3933         writel(oxu->periodic_dma, &oxu->regs->frame_list);
3934         writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3935
3936         /* restore CMD_RUN, framelist size, and irq threshold */
3937         writel(oxu->command, &oxu->regs->command);
3938
3939         /* Some controller/firmware combinations need a delay during which
3940          * they set up the port statuses.  See Bugzilla #8190. */
3941         mdelay(8);
3942
3943         /* manually resume the ports we suspended during bus_suspend() */
3944         i = HCS_N_PORTS(oxu->hcs_params);
3945         while (i--) {
3946                 temp = readl(&oxu->regs->port_status[i]);
3947                 temp &= ~(PORT_RWC_BITS
3948                         | PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E);
3949                 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3950                         oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
3951                         temp |= PORT_RESUME;
3952                 }
3953                 writel(temp, &oxu->regs->port_status[i]);
3954         }
3955         i = HCS_N_PORTS(oxu->hcs_params);
3956         mdelay(20);
3957         while (i--) {
3958                 temp = readl(&oxu->regs->port_status[i]);
3959                 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3960                         temp &= ~(PORT_RWC_BITS | PORT_RESUME);
3961                         writel(temp, &oxu->regs->port_status[i]);
3962                         oxu_vdbg(oxu, "resumed port %d\n", i + 1);
3963                 }
3964         }
3965         (void) readl(&oxu->regs->command);
3966
3967         /* maybe re-activate the schedule(s) */
3968         temp = 0;
3969         if (oxu->async->qh_next.qh)
3970                 temp |= CMD_ASE;
3971         if (oxu->periodic_sched)
3972                 temp |= CMD_PSE;
3973         if (temp) {
3974                 oxu->command |= temp;
3975                 writel(oxu->command, &oxu->regs->command);
3976         }
3977
3978         oxu->next_statechange = jiffies + msecs_to_jiffies(5);
3979         hcd->state = HC_STATE_RUNNING;
3980
3981         /* Now we can safely re-enable irqs */
3982         writel(INTR_MASK, &oxu->regs->intr_enable);
3983
3984         spin_unlock_irq(&oxu->lock);
3985         return 0;
3986 }
3987
3988 #else
3989
3990 static int oxu_bus_suspend(struct usb_hcd *hcd)
3991 {
3992         return 0;
3993 }
3994
3995 static int oxu_bus_resume(struct usb_hcd *hcd)
3996 {
3997         return 0;
3998 }
3999
4000 #endif  /* CONFIG_PM */
4001
4002 static const struct hc_driver oxu_hc_driver = {
4003         .description =          "oxu210hp_hcd",
4004         .product_desc =         "oxu210hp HCD",
4005         .hcd_priv_size =        sizeof(struct oxu_hcd),
4006
4007         /*
4008          * Generic hardware linkage
4009          */
4010         .irq =                  oxu_irq,
4011         .flags =                HCD_MEMORY | HCD_USB2,
4012
4013         /*
4014          * Basic lifecycle operations
4015          */
4016         .reset =                oxu_reset,
4017         .start =                oxu_run,
4018         .stop =                 oxu_stop,
4019         .shutdown =             oxu_shutdown,
4020
4021         /*
4022          * Managing i/o requests and associated device resources
4023          */
4024         .urb_enqueue =          oxu_urb_enqueue,
4025         .urb_dequeue =          oxu_urb_dequeue,
4026         .endpoint_disable =     oxu_endpoint_disable,
4027
4028         /*
4029          * Scheduling support
4030          */
4031         .get_frame_number =     oxu_get_frame,
4032
4033         /*
4034          * Root hub support
4035          */
4036         .hub_status_data =      oxu_hub_status_data,
4037         .hub_control =          oxu_hub_control,
4038         .bus_suspend =          oxu_bus_suspend,
4039         .bus_resume =           oxu_bus_resume,
4040 };
4041
4042 /*
4043  * Module stuff
4044  */
4045
4046 static void oxu_configuration(struct platform_device *pdev, void __iomem *base)
4047 {
4048         u32 tmp;
4049
4050         /* Initialize top level registers.
4051          * First write ever
4052          */
4053         oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
4054         oxu_writel(base, OXU_SOFTRESET, OXU_SRESET);
4055         oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
4056
4057         tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL);
4058         oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040);
4059
4060         oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN |
4061                                         OXU_COMPARATOR | OXU_ASO_OP);
4062
4063         tmp = oxu_readl(base, OXU_CLKCTRL_SET);
4064         oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN);
4065
4066         /* Clear all top interrupt enable */
4067         oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff);
4068
4069         /* Clear all top interrupt status */
4070         oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff);
4071
4072         /* Enable all needed top interrupt except OTG SPH core */
4073         oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI);
4074 }
4075
4076 static int oxu_verify_id(struct platform_device *pdev, void __iomem *base)
4077 {
4078         u32 id;
4079         static const char * const bo[] = {
4080                 "reserved",
4081                 "128-pin LQFP",
4082                 "84-pin TFBGA",
4083                 "reserved",
4084         };
4085
4086         /* Read controller signature register to find a match */
4087         id = oxu_readl(base, OXU_DEVICEID);
4088         dev_info(&pdev->dev, "device ID %x\n", id);
4089         if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT))
4090                 return -1;
4091
4092         dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n",
4093                 id >> OXU_REV_SHIFT,
4094                 bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT],
4095                 (id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT,
4096                 (id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT);
4097
4098         return 0;
4099 }
4100
4101 static const struct hc_driver oxu_hc_driver;
4102 static struct usb_hcd *oxu_create(struct platform_device *pdev,
4103                                 unsigned long memstart, unsigned long memlen,
4104                                 void __iomem *base, int irq, int otg)
4105 {
4106         struct device *dev = &pdev->dev;
4107
4108         struct usb_hcd *hcd;
4109         struct oxu_hcd *oxu;
4110         int ret;
4111
4112         /* Set endian mode and host mode */
4113         oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET),
4114                                 OXU_USBMODE,
4115                                 OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS);
4116
4117         hcd = usb_create_hcd(&oxu_hc_driver, dev,
4118                                 otg ? "oxu210hp_otg" : "oxu210hp_sph");
4119         if (!hcd)
4120                 return ERR_PTR(-ENOMEM);
4121
4122         hcd->rsrc_start = memstart;
4123         hcd->rsrc_len = memlen;
4124         hcd->regs = base;
4125         hcd->irq = irq;
4126         hcd->state = HC_STATE_HALT;
4127
4128         oxu = hcd_to_oxu(hcd);
4129         oxu->is_otg = otg;
4130
4131         ret = usb_add_hcd(hcd, irq, IRQF_SHARED);
4132         if (ret < 0) {
4133                 usb_put_hcd(hcd);
4134                 return ERR_PTR(ret);
4135         }
4136
4137         device_wakeup_enable(hcd->self.controller);
4138         return hcd;
4139 }
4140
4141 static int oxu_init(struct platform_device *pdev,
4142                                 unsigned long memstart, unsigned long memlen,
4143                                 void __iomem *base, int irq)
4144 {
4145         struct oxu_info *info = platform_get_drvdata(pdev);
4146         struct usb_hcd *hcd;
4147         int ret;
4148
4149         /* First time configuration at start up */
4150         oxu_configuration(pdev, base);
4151
4152         ret = oxu_verify_id(pdev, base);
4153         if (ret) {
4154                 dev_err(&pdev->dev, "no devices found!\n");
4155                 return -ENODEV;
4156         }
4157
4158         /* Create the OTG controller */
4159         hcd = oxu_create(pdev, memstart, memlen, base, irq, 1);
4160         if (IS_ERR(hcd)) {
4161                 dev_err(&pdev->dev, "cannot create OTG controller!\n");
4162                 ret = PTR_ERR(hcd);
4163                 goto error_create_otg;
4164         }
4165         info->hcd[0] = hcd;
4166
4167         /* Create the SPH host controller */
4168         hcd = oxu_create(pdev, memstart, memlen, base, irq, 0);
4169         if (IS_ERR(hcd)) {
4170                 dev_err(&pdev->dev, "cannot create SPH controller!\n");
4171                 ret = PTR_ERR(hcd);
4172                 goto error_create_sph;
4173         }
4174         info->hcd[1] = hcd;
4175
4176         oxu_writel(base, OXU_CHIPIRQEN_SET,
4177                 oxu_readl(base, OXU_CHIPIRQEN_SET) | 3);
4178
4179         return 0;
4180
4181 error_create_sph:
4182         usb_remove_hcd(info->hcd[0]);
4183         usb_put_hcd(info->hcd[0]);
4184
4185 error_create_otg:
4186         return ret;
4187 }
4188
4189 static int oxu_drv_probe(struct platform_device *pdev)
4190 {
4191         struct resource *res;
4192         void __iomem *base;
4193         unsigned long memstart, memlen;
4194         int irq, ret;
4195         struct oxu_info *info;
4196
4197         if (usb_disabled())
4198                 return -ENODEV;
4199
4200         /*
4201          * Get the platform resources
4202          */
4203         irq = platform_get_irq(pdev, 0);
4204         if (irq < 0)
4205                 return irq;
4206         dev_dbg(&pdev->dev, "IRQ resource %d\n", irq);
4207
4208         base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
4209         if (IS_ERR(base)) {
4210                 ret = PTR_ERR(base);
4211                 goto error;
4212         }
4213         memstart = res->start;
4214         memlen = resource_size(res);
4215
4216         ret = irq_set_irq_type(irq, IRQF_TRIGGER_FALLING);
4217         if (ret) {
4218                 dev_err(&pdev->dev, "error setting irq type\n");
4219                 ret = -EFAULT;
4220                 goto error;
4221         }
4222
4223         /* Allocate a driver data struct to hold useful info for both
4224          * SPH & OTG devices
4225          */
4226         info = devm_kzalloc(&pdev->dev, sizeof(struct oxu_info), GFP_KERNEL);
4227         if (!info) {
4228                 ret = -EFAULT;
4229                 goto error;
4230         }
4231         platform_set_drvdata(pdev, info);
4232
4233         ret = oxu_init(pdev, memstart, memlen, base, irq);
4234         if (ret < 0) {
4235                 dev_dbg(&pdev->dev, "cannot init USB devices\n");
4236                 goto error;
4237         }
4238
4239         dev_info(&pdev->dev, "devices enabled and running\n");
4240         platform_set_drvdata(pdev, info);
4241
4242         return 0;
4243
4244 error:
4245         dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret);
4246         return ret;
4247 }
4248
4249 static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd)
4250 {
4251         usb_remove_hcd(hcd);
4252         usb_put_hcd(hcd);
4253 }
4254
4255 static void oxu_drv_remove(struct platform_device *pdev)
4256 {
4257         struct oxu_info *info = platform_get_drvdata(pdev);
4258
4259         oxu_remove(pdev, info->hcd[0]);
4260         oxu_remove(pdev, info->hcd[1]);
4261 }
4262
4263 static void oxu_drv_shutdown(struct platform_device *pdev)
4264 {
4265         oxu_drv_remove(pdev);
4266 }
4267
4268 #if 0
4269 /* FIXME: TODO */
4270 static int oxu_drv_suspend(struct device *dev)
4271 {
4272         struct platform_device *pdev = to_platform_device(dev);
4273         struct usb_hcd *hcd = dev_get_drvdata(dev);
4274
4275         return 0;
4276 }
4277
4278 static int oxu_drv_resume(struct device *dev)
4279 {
4280         struct platform_device *pdev = to_platform_device(dev);
4281         struct usb_hcd *hcd = dev_get_drvdata(dev);
4282
4283         return 0;
4284 }
4285 #else
4286 #define oxu_drv_suspend NULL
4287 #define oxu_drv_resume  NULL
4288 #endif
4289
4290 static struct platform_driver oxu_driver = {
4291         .probe          = oxu_drv_probe,
4292         .remove_new     = oxu_drv_remove,
4293         .shutdown       = oxu_drv_shutdown,
4294         .suspend        = oxu_drv_suspend,
4295         .resume         = oxu_drv_resume,
4296         .driver = {
4297                 .name = "oxu210hp-hcd",
4298                 .bus = &platform_bus_type
4299         }
4300 };
4301
4302 module_platform_driver(oxu_driver);
4303
4304 MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION);
4305 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
4306 MODULE_LICENSE("GPL");