Merge tag 'pm-5.17-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux-block.git] / drivers / usb / gadget / udc / mv_udc_core.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2011 Marvell International Ltd. All rights reserved.
4  * Author: Chao Xie <chao.xie@marvell.com>
5  *         Neil Zhang <zhangwm@marvell.com>
6  */
7
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmapool.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/ioport.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/errno.h>
18 #include <linux/err.h>
19 #include <linux/timer.h>
20 #include <linux/list.h>
21 #include <linux/interrupt.h>
22 #include <linux/moduleparam.h>
23 #include <linux/device.h>
24 #include <linux/usb/ch9.h>
25 #include <linux/usb/gadget.h>
26 #include <linux/usb/otg.h>
27 #include <linux/pm.h>
28 #include <linux/io.h>
29 #include <linux/irq.h>
30 #include <linux/platform_device.h>
31 #include <linux/clk.h>
32 #include <linux/platform_data/mv_usb.h>
33 #include <asm/unaligned.h>
34
35 #include "mv_udc.h"
36
37 #define DRIVER_DESC             "Marvell PXA USB Device Controller driver"
38
39 #define ep_dir(ep)      (((ep)->ep_num == 0) ? \
40                                 ((ep)->udc->ep0_dir) : ((ep)->direction))
41
42 /* timeout value -- usec */
43 #define RESET_TIMEOUT           10000
44 #define FLUSH_TIMEOUT           10000
45 #define EPSTATUS_TIMEOUT        10000
46 #define PRIME_TIMEOUT           10000
47 #define READSAFE_TIMEOUT        1000
48
49 #define LOOPS_USEC_SHIFT        1
50 #define LOOPS_USEC              (1 << LOOPS_USEC_SHIFT)
51 #define LOOPS(timeout)          ((timeout) >> LOOPS_USEC_SHIFT)
52
53 static DECLARE_COMPLETION(release_done);
54
55 static const char driver_name[] = "mv_udc";
56
57 static void nuke(struct mv_ep *ep, int status);
58 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver);
59
60 /* for endpoint 0 operations */
61 static const struct usb_endpoint_descriptor mv_ep0_desc = {
62         .bLength =              USB_DT_ENDPOINT_SIZE,
63         .bDescriptorType =      USB_DT_ENDPOINT,
64         .bEndpointAddress =     0,
65         .bmAttributes =         USB_ENDPOINT_XFER_CONTROL,
66         .wMaxPacketSize =       EP0_MAX_PKT_SIZE,
67 };
68
69 static void ep0_reset(struct mv_udc *udc)
70 {
71         struct mv_ep *ep;
72         u32 epctrlx;
73         int i = 0;
74
75         /* ep0 in and out */
76         for (i = 0; i < 2; i++) {
77                 ep = &udc->eps[i];
78                 ep->udc = udc;
79
80                 /* ep0 dQH */
81                 ep->dqh = &udc->ep_dqh[i];
82
83                 /* configure ep0 endpoint capabilities in dQH */
84                 ep->dqh->max_packet_length =
85                         (EP0_MAX_PKT_SIZE << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
86                         | EP_QUEUE_HEAD_IOS;
87
88                 ep->dqh->next_dtd_ptr = EP_QUEUE_HEAD_NEXT_TERMINATE;
89
90                 epctrlx = readl(&udc->op_regs->epctrlx[0]);
91                 if (i) {        /* TX */
92                         epctrlx |= EPCTRL_TX_ENABLE
93                                 | (USB_ENDPOINT_XFER_CONTROL
94                                         << EPCTRL_TX_EP_TYPE_SHIFT);
95
96                 } else {        /* RX */
97                         epctrlx |= EPCTRL_RX_ENABLE
98                                 | (USB_ENDPOINT_XFER_CONTROL
99                                         << EPCTRL_RX_EP_TYPE_SHIFT);
100                 }
101
102                 writel(epctrlx, &udc->op_regs->epctrlx[0]);
103         }
104 }
105
106 /* protocol ep0 stall, will automatically be cleared on new transaction */
107 static void ep0_stall(struct mv_udc *udc)
108 {
109         u32     epctrlx;
110
111         /* set TX and RX to stall */
112         epctrlx = readl(&udc->op_regs->epctrlx[0]);
113         epctrlx |= EPCTRL_RX_EP_STALL | EPCTRL_TX_EP_STALL;
114         writel(epctrlx, &udc->op_regs->epctrlx[0]);
115
116         /* update ep0 state */
117         udc->ep0_state = WAIT_FOR_SETUP;
118         udc->ep0_dir = EP_DIR_OUT;
119 }
120
121 static int process_ep_req(struct mv_udc *udc, int index,
122         struct mv_req *curr_req)
123 {
124         struct mv_dtd   *curr_dtd;
125         struct mv_dqh   *curr_dqh;
126         int actual, remaining_length;
127         int i, direction;
128         int retval = 0;
129         u32 errors;
130         u32 bit_pos;
131
132         curr_dqh = &udc->ep_dqh[index];
133         direction = index % 2;
134
135         curr_dtd = curr_req->head;
136         actual = curr_req->req.length;
137
138         for (i = 0; i < curr_req->dtd_count; i++) {
139                 if (curr_dtd->size_ioc_sts & DTD_STATUS_ACTIVE) {
140                         dev_dbg(&udc->dev->dev, "%s, dTD not completed\n",
141                                 udc->eps[index].name);
142                         return 1;
143                 }
144
145                 errors = curr_dtd->size_ioc_sts & DTD_ERROR_MASK;
146                 if (!errors) {
147                         remaining_length =
148                                 (curr_dtd->size_ioc_sts & DTD_PACKET_SIZE)
149                                         >> DTD_LENGTH_BIT_POS;
150                         actual -= remaining_length;
151
152                         if (remaining_length) {
153                                 if (direction) {
154                                         dev_dbg(&udc->dev->dev,
155                                                 "TX dTD remains data\n");
156                                         retval = -EPROTO;
157                                         break;
158                                 } else
159                                         break;
160                         }
161                 } else {
162                         dev_info(&udc->dev->dev,
163                                 "complete_tr error: ep=%d %s: error = 0x%x\n",
164                                 index >> 1, direction ? "SEND" : "RECV",
165                                 errors);
166                         if (errors & DTD_STATUS_HALTED) {
167                                 /* Clear the errors and Halt condition */
168                                 curr_dqh->size_ioc_int_sts &= ~errors;
169                                 retval = -EPIPE;
170                         } else if (errors & DTD_STATUS_DATA_BUFF_ERR) {
171                                 retval = -EPROTO;
172                         } else if (errors & DTD_STATUS_TRANSACTION_ERR) {
173                                 retval = -EILSEQ;
174                         }
175                 }
176                 if (i != curr_req->dtd_count - 1)
177                         curr_dtd = (struct mv_dtd *)curr_dtd->next_dtd_virt;
178         }
179         if (retval)
180                 return retval;
181
182         if (direction == EP_DIR_OUT)
183                 bit_pos = 1 << curr_req->ep->ep_num;
184         else
185                 bit_pos = 1 << (16 + curr_req->ep->ep_num);
186
187         while (curr_dqh->curr_dtd_ptr == curr_dtd->td_dma) {
188                 if (curr_dtd->dtd_next == EP_QUEUE_HEAD_NEXT_TERMINATE) {
189                         while (readl(&udc->op_regs->epstatus) & bit_pos)
190                                 udelay(1);
191                         break;
192                 }
193                 udelay(1);
194         }
195
196         curr_req->req.actual = actual;
197
198         return 0;
199 }
200
201 /*
202  * done() - retire a request; caller blocked irqs
203  * @status : request status to be set, only works when
204  * request is still in progress.
205  */
206 static void done(struct mv_ep *ep, struct mv_req *req, int status)
207         __releases(&ep->udc->lock)
208         __acquires(&ep->udc->lock)
209 {
210         struct mv_udc *udc = NULL;
211         unsigned char stopped = ep->stopped;
212         struct mv_dtd *curr_td, *next_td;
213         int j;
214
215         udc = (struct mv_udc *)ep->udc;
216         /* Removed the req from fsl_ep->queue */
217         list_del_init(&req->queue);
218
219         /* req.status should be set as -EINPROGRESS in ep_queue() */
220         if (req->req.status == -EINPROGRESS)
221                 req->req.status = status;
222         else
223                 status = req->req.status;
224
225         /* Free dtd for the request */
226         next_td = req->head;
227         for (j = 0; j < req->dtd_count; j++) {
228                 curr_td = next_td;
229                 if (j != req->dtd_count - 1)
230                         next_td = curr_td->next_dtd_virt;
231                 dma_pool_free(udc->dtd_pool, curr_td, curr_td->td_dma);
232         }
233
234         usb_gadget_unmap_request(&udc->gadget, &req->req, ep_dir(ep));
235
236         if (status && (status != -ESHUTDOWN))
237                 dev_info(&udc->dev->dev, "complete %s req %p stat %d len %u/%u",
238                         ep->ep.name, &req->req, status,
239                         req->req.actual, req->req.length);
240
241         ep->stopped = 1;
242
243         spin_unlock(&ep->udc->lock);
244
245         usb_gadget_giveback_request(&ep->ep, &req->req);
246
247         spin_lock(&ep->udc->lock);
248         ep->stopped = stopped;
249 }
250
251 static int queue_dtd(struct mv_ep *ep, struct mv_req *req)
252 {
253         struct mv_udc *udc;
254         struct mv_dqh *dqh;
255         u32 bit_pos, direction;
256         u32 usbcmd, epstatus;
257         unsigned int loops;
258         int retval = 0;
259
260         udc = ep->udc;
261         direction = ep_dir(ep);
262         dqh = &(udc->ep_dqh[ep->ep_num * 2 + direction]);
263         bit_pos = 1 << (((direction == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
264
265         /* check if the pipe is empty */
266         if (!(list_empty(&ep->queue))) {
267                 struct mv_req *lastreq;
268                 lastreq = list_entry(ep->queue.prev, struct mv_req, queue);
269                 lastreq->tail->dtd_next =
270                         req->head->td_dma & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
271
272                 wmb();
273
274                 if (readl(&udc->op_regs->epprime) & bit_pos)
275                         goto done;
276
277                 loops = LOOPS(READSAFE_TIMEOUT);
278                 while (1) {
279                         /* start with setting the semaphores */
280                         usbcmd = readl(&udc->op_regs->usbcmd);
281                         usbcmd |= USBCMD_ATDTW_TRIPWIRE_SET;
282                         writel(usbcmd, &udc->op_regs->usbcmd);
283
284                         /* read the endpoint status */
285                         epstatus = readl(&udc->op_regs->epstatus) & bit_pos;
286
287                         /*
288                          * Reread the ATDTW semaphore bit to check if it is
289                          * cleared. When hardware see a hazard, it will clear
290                          * the bit or else we remain set to 1 and we can
291                          * proceed with priming of endpoint if not already
292                          * primed.
293                          */
294                         if (readl(&udc->op_regs->usbcmd)
295                                 & USBCMD_ATDTW_TRIPWIRE_SET)
296                                 break;
297
298                         loops--;
299                         if (loops == 0) {
300                                 dev_err(&udc->dev->dev,
301                                         "Timeout for ATDTW_TRIPWIRE...\n");
302                                 retval = -ETIME;
303                                 goto done;
304                         }
305                         udelay(LOOPS_USEC);
306                 }
307
308                 /* Clear the semaphore */
309                 usbcmd = readl(&udc->op_regs->usbcmd);
310                 usbcmd &= USBCMD_ATDTW_TRIPWIRE_CLEAR;
311                 writel(usbcmd, &udc->op_regs->usbcmd);
312
313                 if (epstatus)
314                         goto done;
315         }
316
317         /* Write dQH next pointer and terminate bit to 0 */
318         dqh->next_dtd_ptr = req->head->td_dma
319                                 & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
320
321         /* clear active and halt bit, in case set from a previous error */
322         dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
323
324         /* Ensure that updates to the QH will occur before priming. */
325         wmb();
326
327         /* Prime the Endpoint */
328         writel(bit_pos, &udc->op_regs->epprime);
329
330 done:
331         return retval;
332 }
333
334 static struct mv_dtd *build_dtd(struct mv_req *req, unsigned *length,
335                 dma_addr_t *dma, int *is_last)
336 {
337         struct mv_dtd *dtd;
338         struct mv_udc *udc;
339         struct mv_dqh *dqh;
340         u32 temp, mult = 0;
341
342         /* how big will this transfer be? */
343         if (usb_endpoint_xfer_isoc(req->ep->ep.desc)) {
344                 dqh = req->ep->dqh;
345                 mult = (dqh->max_packet_length >> EP_QUEUE_HEAD_MULT_POS)
346                                 & 0x3;
347                 *length = min(req->req.length - req->req.actual,
348                                 (unsigned)(mult * req->ep->ep.maxpacket));
349         } else
350                 *length = min(req->req.length - req->req.actual,
351                                 (unsigned)EP_MAX_LENGTH_TRANSFER);
352
353         udc = req->ep->udc;
354
355         /*
356          * Be careful that no _GFP_HIGHMEM is set,
357          * or we can not use dma_to_virt
358          */
359         dtd = dma_pool_alloc(udc->dtd_pool, GFP_ATOMIC, dma);
360         if (dtd == NULL)
361                 return dtd;
362
363         dtd->td_dma = *dma;
364         /* initialize buffer page pointers */
365         temp = (u32)(req->req.dma + req->req.actual);
366         dtd->buff_ptr0 = cpu_to_le32(temp);
367         temp &= ~0xFFF;
368         dtd->buff_ptr1 = cpu_to_le32(temp + 0x1000);
369         dtd->buff_ptr2 = cpu_to_le32(temp + 0x2000);
370         dtd->buff_ptr3 = cpu_to_le32(temp + 0x3000);
371         dtd->buff_ptr4 = cpu_to_le32(temp + 0x4000);
372
373         req->req.actual += *length;
374
375         /* zlp is needed if req->req.zero is set */
376         if (req->req.zero) {
377                 if (*length == 0 || (*length % req->ep->ep.maxpacket) != 0)
378                         *is_last = 1;
379                 else
380                         *is_last = 0;
381         } else if (req->req.length == req->req.actual)
382                 *is_last = 1;
383         else
384                 *is_last = 0;
385
386         /* Fill in the transfer size; set active bit */
387         temp = ((*length << DTD_LENGTH_BIT_POS) | DTD_STATUS_ACTIVE);
388
389         /* Enable interrupt for the last dtd of a request */
390         if (*is_last && !req->req.no_interrupt)
391                 temp |= DTD_IOC;
392
393         temp |= mult << 10;
394
395         dtd->size_ioc_sts = temp;
396
397         mb();
398
399         return dtd;
400 }
401
402 /* generate dTD linked list for a request */
403 static int req_to_dtd(struct mv_req *req)
404 {
405         unsigned count;
406         int is_last, is_first = 1;
407         struct mv_dtd *dtd, *last_dtd = NULL;
408         dma_addr_t dma;
409
410         do {
411                 dtd = build_dtd(req, &count, &dma, &is_last);
412                 if (dtd == NULL)
413                         return -ENOMEM;
414
415                 if (is_first) {
416                         is_first = 0;
417                         req->head = dtd;
418                 } else {
419                         last_dtd->dtd_next = dma;
420                         last_dtd->next_dtd_virt = dtd;
421                 }
422                 last_dtd = dtd;
423                 req->dtd_count++;
424         } while (!is_last);
425
426         /* set terminate bit to 1 for the last dTD */
427         dtd->dtd_next = DTD_NEXT_TERMINATE;
428
429         req->tail = dtd;
430
431         return 0;
432 }
433
434 static int mv_ep_enable(struct usb_ep *_ep,
435                 const struct usb_endpoint_descriptor *desc)
436 {
437         struct mv_udc *udc;
438         struct mv_ep *ep;
439         struct mv_dqh *dqh;
440         u16 max = 0;
441         u32 bit_pos, epctrlx, direction;
442         const unsigned char zlt = 1;
443         unsigned char ios, mult;
444         unsigned long flags;
445
446         ep = container_of(_ep, struct mv_ep, ep);
447         udc = ep->udc;
448
449         if (!_ep || !desc
450                         || desc->bDescriptorType != USB_DT_ENDPOINT)
451                 return -EINVAL;
452
453         if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
454                 return -ESHUTDOWN;
455
456         direction = ep_dir(ep);
457         max = usb_endpoint_maxp(desc);
458
459         /*
460          * disable HW zero length termination select
461          * driver handles zero length packet through req->req.zero
462          */
463         bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
464
465         /* Check if the Endpoint is Primed */
466         if ((readl(&udc->op_regs->epprime) & bit_pos)
467                 || (readl(&udc->op_regs->epstatus) & bit_pos)) {
468                 dev_info(&udc->dev->dev,
469                         "ep=%d %s: Init ERROR: ENDPTPRIME=0x%x,"
470                         " ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
471                         (unsigned)ep->ep_num, direction ? "SEND" : "RECV",
472                         (unsigned)readl(&udc->op_regs->epprime),
473                         (unsigned)readl(&udc->op_regs->epstatus),
474                         (unsigned)bit_pos);
475                 goto en_done;
476         }
477
478         /* Set the max packet length, interrupt on Setup and Mult fields */
479         ios = 0;
480         mult = 0;
481         switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
482         case USB_ENDPOINT_XFER_BULK:
483         case USB_ENDPOINT_XFER_INT:
484                 break;
485         case USB_ENDPOINT_XFER_CONTROL:
486                 ios = 1;
487                 break;
488         case USB_ENDPOINT_XFER_ISOC:
489                 /* Calculate transactions needed for high bandwidth iso */
490                 mult = usb_endpoint_maxp_mult(desc);
491                 /* 3 transactions at most */
492                 if (mult > 3)
493                         goto en_done;
494                 break;
495         default:
496                 goto en_done;
497         }
498
499         spin_lock_irqsave(&udc->lock, flags);
500         /* Get the endpoint queue head address */
501         dqh = ep->dqh;
502         dqh->max_packet_length = (max << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
503                 | (mult << EP_QUEUE_HEAD_MULT_POS)
504                 | (zlt ? EP_QUEUE_HEAD_ZLT_SEL : 0)
505                 | (ios ? EP_QUEUE_HEAD_IOS : 0);
506         dqh->next_dtd_ptr = 1;
507         dqh->size_ioc_int_sts = 0;
508
509         ep->ep.maxpacket = max;
510         ep->ep.desc = desc;
511         ep->stopped = 0;
512
513         /* Enable the endpoint for Rx or Tx and set the endpoint type */
514         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
515         if (direction == EP_DIR_IN) {
516                 epctrlx &= ~EPCTRL_TX_ALL_MASK;
517                 epctrlx |= EPCTRL_TX_ENABLE | EPCTRL_TX_DATA_TOGGLE_RST
518                         | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
519                                 << EPCTRL_TX_EP_TYPE_SHIFT);
520         } else {
521                 epctrlx &= ~EPCTRL_RX_ALL_MASK;
522                 epctrlx |= EPCTRL_RX_ENABLE | EPCTRL_RX_DATA_TOGGLE_RST
523                         | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
524                                 << EPCTRL_RX_EP_TYPE_SHIFT);
525         }
526         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
527
528         /*
529          * Implement Guideline (GL# USB-7) The unused endpoint type must
530          * be programmed to bulk.
531          */
532         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
533         if ((epctrlx & EPCTRL_RX_ENABLE) == 0) {
534                 epctrlx |= (USB_ENDPOINT_XFER_BULK
535                                 << EPCTRL_RX_EP_TYPE_SHIFT);
536                 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
537         }
538
539         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
540         if ((epctrlx & EPCTRL_TX_ENABLE) == 0) {
541                 epctrlx |= (USB_ENDPOINT_XFER_BULK
542                                 << EPCTRL_TX_EP_TYPE_SHIFT);
543                 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
544         }
545
546         spin_unlock_irqrestore(&udc->lock, flags);
547
548         return 0;
549 en_done:
550         return -EINVAL;
551 }
552
553 static int  mv_ep_disable(struct usb_ep *_ep)
554 {
555         struct mv_udc *udc;
556         struct mv_ep *ep;
557         struct mv_dqh *dqh;
558         u32 epctrlx, direction;
559         unsigned long flags;
560
561         ep = container_of(_ep, struct mv_ep, ep);
562         if ((_ep == NULL) || !ep->ep.desc)
563                 return -EINVAL;
564
565         udc = ep->udc;
566
567         /* Get the endpoint queue head address */
568         dqh = ep->dqh;
569
570         spin_lock_irqsave(&udc->lock, flags);
571
572         direction = ep_dir(ep);
573
574         /* Reset the max packet length and the interrupt on Setup */
575         dqh->max_packet_length = 0;
576
577         /* Disable the endpoint for Rx or Tx and reset the endpoint type */
578         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
579         epctrlx &= ~((direction == EP_DIR_IN)
580                         ? (EPCTRL_TX_ENABLE | EPCTRL_TX_TYPE)
581                         : (EPCTRL_RX_ENABLE | EPCTRL_RX_TYPE));
582         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
583
584         /* nuke all pending requests (does flush) */
585         nuke(ep, -ESHUTDOWN);
586
587         ep->ep.desc = NULL;
588         ep->stopped = 1;
589
590         spin_unlock_irqrestore(&udc->lock, flags);
591
592         return 0;
593 }
594
595 static struct usb_request *
596 mv_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
597 {
598         struct mv_req *req = NULL;
599
600         req = kzalloc(sizeof *req, gfp_flags);
601         if (!req)
602                 return NULL;
603
604         req->req.dma = DMA_ADDR_INVALID;
605         INIT_LIST_HEAD(&req->queue);
606
607         return &req->req;
608 }
609
610 static void mv_free_request(struct usb_ep *_ep, struct usb_request *_req)
611 {
612         struct mv_req *req = NULL;
613
614         req = container_of(_req, struct mv_req, req);
615
616         if (_req)
617                 kfree(req);
618 }
619
620 static void mv_ep_fifo_flush(struct usb_ep *_ep)
621 {
622         struct mv_udc *udc;
623         u32 bit_pos, direction;
624         struct mv_ep *ep;
625         unsigned int loops;
626
627         if (!_ep)
628                 return;
629
630         ep = container_of(_ep, struct mv_ep, ep);
631         if (!ep->ep.desc)
632                 return;
633
634         udc = ep->udc;
635         direction = ep_dir(ep);
636
637         if (ep->ep_num == 0)
638                 bit_pos = (1 << 16) | 1;
639         else if (direction == EP_DIR_OUT)
640                 bit_pos = 1 << ep->ep_num;
641         else
642                 bit_pos = 1 << (16 + ep->ep_num);
643
644         loops = LOOPS(EPSTATUS_TIMEOUT);
645         do {
646                 unsigned int inter_loops;
647
648                 if (loops == 0) {
649                         dev_err(&udc->dev->dev,
650                                 "TIMEOUT for ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
651                                 (unsigned)readl(&udc->op_regs->epstatus),
652                                 (unsigned)bit_pos);
653                         return;
654                 }
655                 /* Write 1 to the Flush register */
656                 writel(bit_pos, &udc->op_regs->epflush);
657
658                 /* Wait until flushing completed */
659                 inter_loops = LOOPS(FLUSH_TIMEOUT);
660                 while (readl(&udc->op_regs->epflush)) {
661                         /*
662                          * ENDPTFLUSH bit should be cleared to indicate this
663                          * operation is complete
664                          */
665                         if (inter_loops == 0) {
666                                 dev_err(&udc->dev->dev,
667                                         "TIMEOUT for ENDPTFLUSH=0x%x,"
668                                         "bit_pos=0x%x\n",
669                                         (unsigned)readl(&udc->op_regs->epflush),
670                                         (unsigned)bit_pos);
671                                 return;
672                         }
673                         inter_loops--;
674                         udelay(LOOPS_USEC);
675                 }
676                 loops--;
677         } while (readl(&udc->op_regs->epstatus) & bit_pos);
678 }
679
680 /* queues (submits) an I/O request to an endpoint */
681 static int
682 mv_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
683 {
684         struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
685         struct mv_req *req = container_of(_req, struct mv_req, req);
686         struct mv_udc *udc = ep->udc;
687         unsigned long flags;
688         int retval;
689
690         /* catch various bogus parameters */
691         if (!_req || !req->req.complete || !req->req.buf
692                         || !list_empty(&req->queue)) {
693                 dev_err(&udc->dev->dev, "%s, bad params", __func__);
694                 return -EINVAL;
695         }
696         if (unlikely(!_ep || !ep->ep.desc)) {
697                 dev_err(&udc->dev->dev, "%s, bad ep", __func__);
698                 return -EINVAL;
699         }
700
701         udc = ep->udc;
702         if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
703                 return -ESHUTDOWN;
704
705         req->ep = ep;
706
707         /* map virtual address to hardware */
708         retval = usb_gadget_map_request(&udc->gadget, _req, ep_dir(ep));
709         if (retval)
710                 return retval;
711
712         req->req.status = -EINPROGRESS;
713         req->req.actual = 0;
714         req->dtd_count = 0;
715
716         spin_lock_irqsave(&udc->lock, flags);
717
718         /* build dtds and push them to device queue */
719         if (!req_to_dtd(req)) {
720                 retval = queue_dtd(ep, req);
721                 if (retval) {
722                         spin_unlock_irqrestore(&udc->lock, flags);
723                         dev_err(&udc->dev->dev, "Failed to queue dtd\n");
724                         goto err_unmap_dma;
725                 }
726         } else {
727                 spin_unlock_irqrestore(&udc->lock, flags);
728                 dev_err(&udc->dev->dev, "Failed to dma_pool_alloc\n");
729                 retval = -ENOMEM;
730                 goto err_unmap_dma;
731         }
732
733         /* Update ep0 state */
734         if (ep->ep_num == 0)
735                 udc->ep0_state = DATA_STATE_XMIT;
736
737         /* irq handler advances the queue */
738         list_add_tail(&req->queue, &ep->queue);
739         spin_unlock_irqrestore(&udc->lock, flags);
740
741         return 0;
742
743 err_unmap_dma:
744         usb_gadget_unmap_request(&udc->gadget, _req, ep_dir(ep));
745
746         return retval;
747 }
748
749 static void mv_prime_ep(struct mv_ep *ep, struct mv_req *req)
750 {
751         struct mv_dqh *dqh = ep->dqh;
752         u32 bit_pos;
753
754         /* Write dQH next pointer and terminate bit to 0 */
755         dqh->next_dtd_ptr = req->head->td_dma
756                 & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
757
758         /* clear active and halt bit, in case set from a previous error */
759         dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
760
761         /* Ensure that updates to the QH will occure before priming. */
762         wmb();
763
764         bit_pos = 1 << (((ep_dir(ep) == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
765
766         /* Prime the Endpoint */
767         writel(bit_pos, &ep->udc->op_regs->epprime);
768 }
769
770 /* dequeues (cancels, unlinks) an I/O request from an endpoint */
771 static int mv_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
772 {
773         struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
774         struct mv_req *req;
775         struct mv_udc *udc = ep->udc;
776         unsigned long flags;
777         int stopped, ret = 0;
778         u32 epctrlx;
779
780         if (!_ep || !_req)
781                 return -EINVAL;
782
783         spin_lock_irqsave(&ep->udc->lock, flags);
784         stopped = ep->stopped;
785
786         /* Stop the ep before we deal with the queue */
787         ep->stopped = 1;
788         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
789         if (ep_dir(ep) == EP_DIR_IN)
790                 epctrlx &= ~EPCTRL_TX_ENABLE;
791         else
792                 epctrlx &= ~EPCTRL_RX_ENABLE;
793         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
794
795         /* make sure it's actually queued on this endpoint */
796         list_for_each_entry(req, &ep->queue, queue) {
797                 if (&req->req == _req)
798                         break;
799         }
800         if (&req->req != _req) {
801                 ret = -EINVAL;
802                 goto out;
803         }
804
805         /* The request is in progress, or completed but not dequeued */
806         if (ep->queue.next == &req->queue) {
807                 _req->status = -ECONNRESET;
808                 mv_ep_fifo_flush(_ep);  /* flush current transfer */
809
810                 /* The request isn't the last request in this ep queue */
811                 if (req->queue.next != &ep->queue) {
812                         struct mv_req *next_req;
813
814                         next_req = list_entry(req->queue.next,
815                                 struct mv_req, queue);
816
817                         /* Point the QH to the first TD of next request */
818                         mv_prime_ep(ep, next_req);
819                 } else {
820                         struct mv_dqh *qh;
821
822                         qh = ep->dqh;
823                         qh->next_dtd_ptr = 1;
824                         qh->size_ioc_int_sts = 0;
825                 }
826
827                 /* The request hasn't been processed, patch up the TD chain */
828         } else {
829                 struct mv_req *prev_req;
830
831                 prev_req = list_entry(req->queue.prev, struct mv_req, queue);
832                 writel(readl(&req->tail->dtd_next),
833                                 &prev_req->tail->dtd_next);
834
835         }
836
837         done(ep, req, -ECONNRESET);
838
839         /* Enable EP */
840 out:
841         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
842         if (ep_dir(ep) == EP_DIR_IN)
843                 epctrlx |= EPCTRL_TX_ENABLE;
844         else
845                 epctrlx |= EPCTRL_RX_ENABLE;
846         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
847         ep->stopped = stopped;
848
849         spin_unlock_irqrestore(&ep->udc->lock, flags);
850         return ret;
851 }
852
853 static void ep_set_stall(struct mv_udc *udc, u8 ep_num, u8 direction, int stall)
854 {
855         u32 epctrlx;
856
857         epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
858
859         if (stall) {
860                 if (direction == EP_DIR_IN)
861                         epctrlx |= EPCTRL_TX_EP_STALL;
862                 else
863                         epctrlx |= EPCTRL_RX_EP_STALL;
864         } else {
865                 if (direction == EP_DIR_IN) {
866                         epctrlx &= ~EPCTRL_TX_EP_STALL;
867                         epctrlx |= EPCTRL_TX_DATA_TOGGLE_RST;
868                 } else {
869                         epctrlx &= ~EPCTRL_RX_EP_STALL;
870                         epctrlx |= EPCTRL_RX_DATA_TOGGLE_RST;
871                 }
872         }
873         writel(epctrlx, &udc->op_regs->epctrlx[ep_num]);
874 }
875
876 static int ep_is_stall(struct mv_udc *udc, u8 ep_num, u8 direction)
877 {
878         u32 epctrlx;
879
880         epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
881
882         if (direction == EP_DIR_OUT)
883                 return (epctrlx & EPCTRL_RX_EP_STALL) ? 1 : 0;
884         else
885                 return (epctrlx & EPCTRL_TX_EP_STALL) ? 1 : 0;
886 }
887
888 static int mv_ep_set_halt_wedge(struct usb_ep *_ep, int halt, int wedge)
889 {
890         struct mv_ep *ep;
891         unsigned long flags;
892         int status = 0;
893         struct mv_udc *udc;
894
895         ep = container_of(_ep, struct mv_ep, ep);
896         udc = ep->udc;
897         if (!_ep || !ep->ep.desc) {
898                 status = -EINVAL;
899                 goto out;
900         }
901
902         if (ep->ep.desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
903                 status = -EOPNOTSUPP;
904                 goto out;
905         }
906
907         /*
908          * Attempt to halt IN ep will fail if any transfer requests
909          * are still queue
910          */
911         if (halt && (ep_dir(ep) == EP_DIR_IN) && !list_empty(&ep->queue)) {
912                 status = -EAGAIN;
913                 goto out;
914         }
915
916         spin_lock_irqsave(&ep->udc->lock, flags);
917         ep_set_stall(udc, ep->ep_num, ep_dir(ep), halt);
918         if (halt && wedge)
919                 ep->wedge = 1;
920         else if (!halt)
921                 ep->wedge = 0;
922         spin_unlock_irqrestore(&ep->udc->lock, flags);
923
924         if (ep->ep_num == 0) {
925                 udc->ep0_state = WAIT_FOR_SETUP;
926                 udc->ep0_dir = EP_DIR_OUT;
927         }
928 out:
929         return status;
930 }
931
932 static int mv_ep_set_halt(struct usb_ep *_ep, int halt)
933 {
934         return mv_ep_set_halt_wedge(_ep, halt, 0);
935 }
936
937 static int mv_ep_set_wedge(struct usb_ep *_ep)
938 {
939         return mv_ep_set_halt_wedge(_ep, 1, 1);
940 }
941
942 static const struct usb_ep_ops mv_ep_ops = {
943         .enable         = mv_ep_enable,
944         .disable        = mv_ep_disable,
945
946         .alloc_request  = mv_alloc_request,
947         .free_request   = mv_free_request,
948
949         .queue          = mv_ep_queue,
950         .dequeue        = mv_ep_dequeue,
951
952         .set_wedge      = mv_ep_set_wedge,
953         .set_halt       = mv_ep_set_halt,
954         .fifo_flush     = mv_ep_fifo_flush,     /* flush fifo */
955 };
956
957 static int udc_clock_enable(struct mv_udc *udc)
958 {
959         return clk_prepare_enable(udc->clk);
960 }
961
962 static void udc_clock_disable(struct mv_udc *udc)
963 {
964         clk_disable_unprepare(udc->clk);
965 }
966
967 static void udc_stop(struct mv_udc *udc)
968 {
969         u32 tmp;
970
971         /* Disable interrupts */
972         tmp = readl(&udc->op_regs->usbintr);
973         tmp &= ~(USBINTR_INT_EN | USBINTR_ERR_INT_EN |
974                 USBINTR_PORT_CHANGE_DETECT_EN | USBINTR_RESET_EN);
975         writel(tmp, &udc->op_regs->usbintr);
976
977         udc->stopped = 1;
978
979         /* Reset the Run the bit in the command register to stop VUSB */
980         tmp = readl(&udc->op_regs->usbcmd);
981         tmp &= ~USBCMD_RUN_STOP;
982         writel(tmp, &udc->op_regs->usbcmd);
983 }
984
985 static void udc_start(struct mv_udc *udc)
986 {
987         u32 usbintr;
988
989         usbintr = USBINTR_INT_EN | USBINTR_ERR_INT_EN
990                 | USBINTR_PORT_CHANGE_DETECT_EN
991                 | USBINTR_RESET_EN | USBINTR_DEVICE_SUSPEND;
992         /* Enable interrupts */
993         writel(usbintr, &udc->op_regs->usbintr);
994
995         udc->stopped = 0;
996
997         /* Set the Run bit in the command register */
998         writel(USBCMD_RUN_STOP, &udc->op_regs->usbcmd);
999 }
1000
1001 static int udc_reset(struct mv_udc *udc)
1002 {
1003         unsigned int loops;
1004         u32 tmp, portsc;
1005
1006         /* Stop the controller */
1007         tmp = readl(&udc->op_regs->usbcmd);
1008         tmp &= ~USBCMD_RUN_STOP;
1009         writel(tmp, &udc->op_regs->usbcmd);
1010
1011         /* Reset the controller to get default values */
1012         writel(USBCMD_CTRL_RESET, &udc->op_regs->usbcmd);
1013
1014         /* wait for reset to complete */
1015         loops = LOOPS(RESET_TIMEOUT);
1016         while (readl(&udc->op_regs->usbcmd) & USBCMD_CTRL_RESET) {
1017                 if (loops == 0) {
1018                         dev_err(&udc->dev->dev,
1019                                 "Wait for RESET completed TIMEOUT\n");
1020                         return -ETIMEDOUT;
1021                 }
1022                 loops--;
1023                 udelay(LOOPS_USEC);
1024         }
1025
1026         /* set controller to device mode */
1027         tmp = readl(&udc->op_regs->usbmode);
1028         tmp |= USBMODE_CTRL_MODE_DEVICE;
1029
1030         /* turn setup lockout off, require setup tripwire in usbcmd */
1031         tmp |= USBMODE_SETUP_LOCK_OFF;
1032
1033         writel(tmp, &udc->op_regs->usbmode);
1034
1035         writel(0x0, &udc->op_regs->epsetupstat);
1036
1037         /* Configure the Endpoint List Address */
1038         writel(udc->ep_dqh_dma & USB_EP_LIST_ADDRESS_MASK,
1039                 &udc->op_regs->eplistaddr);
1040
1041         portsc = readl(&udc->op_regs->portsc[0]);
1042         if (readl(&udc->cap_regs->hcsparams) & HCSPARAMS_PPC)
1043                 portsc &= (~PORTSCX_W1C_BITS | ~PORTSCX_PORT_POWER);
1044
1045         if (udc->force_fs)
1046                 portsc |= PORTSCX_FORCE_FULL_SPEED_CONNECT;
1047         else
1048                 portsc &= (~PORTSCX_FORCE_FULL_SPEED_CONNECT);
1049
1050         writel(portsc, &udc->op_regs->portsc[0]);
1051
1052         tmp = readl(&udc->op_regs->epctrlx[0]);
1053         tmp &= ~(EPCTRL_TX_EP_STALL | EPCTRL_RX_EP_STALL);
1054         writel(tmp, &udc->op_regs->epctrlx[0]);
1055
1056         return 0;
1057 }
1058
1059 static int mv_udc_enable_internal(struct mv_udc *udc)
1060 {
1061         int retval;
1062
1063         if (udc->active)
1064                 return 0;
1065
1066         dev_dbg(&udc->dev->dev, "enable udc\n");
1067         retval = udc_clock_enable(udc);
1068         if (retval)
1069                 return retval;
1070
1071         if (udc->pdata->phy_init) {
1072                 retval = udc->pdata->phy_init(udc->phy_regs);
1073                 if (retval) {
1074                         dev_err(&udc->dev->dev,
1075                                 "init phy error %d\n", retval);
1076                         udc_clock_disable(udc);
1077                         return retval;
1078                 }
1079         }
1080         udc->active = 1;
1081
1082         return 0;
1083 }
1084
1085 static int mv_udc_enable(struct mv_udc *udc)
1086 {
1087         if (udc->clock_gating)
1088                 return mv_udc_enable_internal(udc);
1089
1090         return 0;
1091 }
1092
1093 static void mv_udc_disable_internal(struct mv_udc *udc)
1094 {
1095         if (udc->active) {
1096                 dev_dbg(&udc->dev->dev, "disable udc\n");
1097                 if (udc->pdata->phy_deinit)
1098                         udc->pdata->phy_deinit(udc->phy_regs);
1099                 udc_clock_disable(udc);
1100                 udc->active = 0;
1101         }
1102 }
1103
1104 static void mv_udc_disable(struct mv_udc *udc)
1105 {
1106         if (udc->clock_gating)
1107                 mv_udc_disable_internal(udc);
1108 }
1109
1110 static int mv_udc_get_frame(struct usb_gadget *gadget)
1111 {
1112         struct mv_udc *udc;
1113         u16     retval;
1114
1115         if (!gadget)
1116                 return -ENODEV;
1117
1118         udc = container_of(gadget, struct mv_udc, gadget);
1119
1120         retval = readl(&udc->op_regs->frindex) & USB_FRINDEX_MASKS;
1121
1122         return retval;
1123 }
1124
1125 /* Tries to wake up the host connected to this gadget */
1126 static int mv_udc_wakeup(struct usb_gadget *gadget)
1127 {
1128         struct mv_udc *udc = container_of(gadget, struct mv_udc, gadget);
1129         u32 portsc;
1130
1131         /* Remote wakeup feature not enabled by host */
1132         if (!udc->remote_wakeup)
1133                 return -ENOTSUPP;
1134
1135         portsc = readl(&udc->op_regs->portsc);
1136         /* not suspended? */
1137         if (!(portsc & PORTSCX_PORT_SUSPEND))
1138                 return 0;
1139         /* trigger force resume */
1140         portsc |= PORTSCX_PORT_FORCE_RESUME;
1141         writel(portsc, &udc->op_regs->portsc[0]);
1142         return 0;
1143 }
1144
1145 static int mv_udc_vbus_session(struct usb_gadget *gadget, int is_active)
1146 {
1147         struct mv_udc *udc;
1148         unsigned long flags;
1149         int retval = 0;
1150
1151         udc = container_of(gadget, struct mv_udc, gadget);
1152         spin_lock_irqsave(&udc->lock, flags);
1153
1154         udc->vbus_active = (is_active != 0);
1155
1156         dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1157                 __func__, udc->softconnect, udc->vbus_active);
1158
1159         if (udc->driver && udc->softconnect && udc->vbus_active) {
1160                 retval = mv_udc_enable(udc);
1161                 if (retval == 0) {
1162                         /* Clock is disabled, need re-init registers */
1163                         udc_reset(udc);
1164                         ep0_reset(udc);
1165                         udc_start(udc);
1166                 }
1167         } else if (udc->driver && udc->softconnect) {
1168                 if (!udc->active)
1169                         goto out;
1170
1171                 /* stop all the transfer in queue*/
1172                 stop_activity(udc, udc->driver);
1173                 udc_stop(udc);
1174                 mv_udc_disable(udc);
1175         }
1176
1177 out:
1178         spin_unlock_irqrestore(&udc->lock, flags);
1179         return retval;
1180 }
1181
1182 static int mv_udc_pullup(struct usb_gadget *gadget, int is_on)
1183 {
1184         struct mv_udc *udc;
1185         unsigned long flags;
1186         int retval = 0;
1187
1188         udc = container_of(gadget, struct mv_udc, gadget);
1189         spin_lock_irqsave(&udc->lock, flags);
1190
1191         udc->softconnect = (is_on != 0);
1192
1193         dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1194                         __func__, udc->softconnect, udc->vbus_active);
1195
1196         if (udc->driver && udc->softconnect && udc->vbus_active) {
1197                 retval = mv_udc_enable(udc);
1198                 if (retval == 0) {
1199                         /* Clock is disabled, need re-init registers */
1200                         udc_reset(udc);
1201                         ep0_reset(udc);
1202                         udc_start(udc);
1203                 }
1204         } else if (udc->driver && udc->vbus_active) {
1205                 /* stop all the transfer in queue*/
1206                 stop_activity(udc, udc->driver);
1207                 udc_stop(udc);
1208                 mv_udc_disable(udc);
1209         }
1210
1211         spin_unlock_irqrestore(&udc->lock, flags);
1212         return retval;
1213 }
1214
1215 static int mv_udc_start(struct usb_gadget *, struct usb_gadget_driver *);
1216 static int mv_udc_stop(struct usb_gadget *);
1217 /* device controller usb_gadget_ops structure */
1218 static const struct usb_gadget_ops mv_ops = {
1219
1220         /* returns the current frame number */
1221         .get_frame      = mv_udc_get_frame,
1222
1223         /* tries to wake up the host connected to this gadget */
1224         .wakeup         = mv_udc_wakeup,
1225
1226         /* notify controller that VBUS is powered or not */
1227         .vbus_session   = mv_udc_vbus_session,
1228
1229         /* D+ pullup, software-controlled connect/disconnect to USB host */
1230         .pullup         = mv_udc_pullup,
1231         .udc_start      = mv_udc_start,
1232         .udc_stop       = mv_udc_stop,
1233 };
1234
1235 static int eps_init(struct mv_udc *udc)
1236 {
1237         struct mv_ep    *ep;
1238         char name[14];
1239         int i;
1240
1241         /* initialize ep0 */
1242         ep = &udc->eps[0];
1243         ep->udc = udc;
1244         strncpy(ep->name, "ep0", sizeof(ep->name));
1245         ep->ep.name = ep->name;
1246         ep->ep.ops = &mv_ep_ops;
1247         ep->wedge = 0;
1248         ep->stopped = 0;
1249         usb_ep_set_maxpacket_limit(&ep->ep, EP0_MAX_PKT_SIZE);
1250         ep->ep.caps.type_control = true;
1251         ep->ep.caps.dir_in = true;
1252         ep->ep.caps.dir_out = true;
1253         ep->ep_num = 0;
1254         ep->ep.desc = &mv_ep0_desc;
1255         INIT_LIST_HEAD(&ep->queue);
1256
1257         ep->ep_type = USB_ENDPOINT_XFER_CONTROL;
1258
1259         /* initialize other endpoints */
1260         for (i = 2; i < udc->max_eps * 2; i++) {
1261                 ep = &udc->eps[i];
1262                 if (i % 2) {
1263                         snprintf(name, sizeof(name), "ep%din", i / 2);
1264                         ep->direction = EP_DIR_IN;
1265                         ep->ep.caps.dir_in = true;
1266                 } else {
1267                         snprintf(name, sizeof(name), "ep%dout", i / 2);
1268                         ep->direction = EP_DIR_OUT;
1269                         ep->ep.caps.dir_out = true;
1270                 }
1271                 ep->udc = udc;
1272                 strncpy(ep->name, name, sizeof(ep->name));
1273                 ep->ep.name = ep->name;
1274
1275                 ep->ep.caps.type_iso = true;
1276                 ep->ep.caps.type_bulk = true;
1277                 ep->ep.caps.type_int = true;
1278
1279                 ep->ep.ops = &mv_ep_ops;
1280                 ep->stopped = 0;
1281                 usb_ep_set_maxpacket_limit(&ep->ep, (unsigned short) ~0);
1282                 ep->ep_num = i / 2;
1283
1284                 INIT_LIST_HEAD(&ep->queue);
1285                 list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
1286
1287                 ep->dqh = &udc->ep_dqh[i];
1288         }
1289
1290         return 0;
1291 }
1292
1293 /* delete all endpoint requests, called with spinlock held */
1294 static void nuke(struct mv_ep *ep, int status)
1295 {
1296         /* called with spinlock held */
1297         ep->stopped = 1;
1298
1299         /* endpoint fifo flush */
1300         mv_ep_fifo_flush(&ep->ep);
1301
1302         while (!list_empty(&ep->queue)) {
1303                 struct mv_req *req = NULL;
1304                 req = list_entry(ep->queue.next, struct mv_req, queue);
1305                 done(ep, req, status);
1306         }
1307 }
1308
1309 static void gadget_reset(struct mv_udc *udc, struct usb_gadget_driver *driver)
1310 {
1311         struct mv_ep    *ep;
1312
1313         nuke(&udc->eps[0], -ESHUTDOWN);
1314
1315         list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
1316                 nuke(ep, -ESHUTDOWN);
1317         }
1318
1319         /* report reset; the driver is already quiesced */
1320         if (driver) {
1321                 spin_unlock(&udc->lock);
1322                 usb_gadget_udc_reset(&udc->gadget, driver);
1323                 spin_lock(&udc->lock);
1324         }
1325 }
1326 /* stop all USB activities */
1327 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver)
1328 {
1329         struct mv_ep    *ep;
1330
1331         nuke(&udc->eps[0], -ESHUTDOWN);
1332
1333         list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
1334                 nuke(ep, -ESHUTDOWN);
1335         }
1336
1337         /* report disconnect; the driver is already quiesced */
1338         if (driver) {
1339                 spin_unlock(&udc->lock);
1340                 driver->disconnect(&udc->gadget);
1341                 spin_lock(&udc->lock);
1342         }
1343 }
1344
1345 static int mv_udc_start(struct usb_gadget *gadget,
1346                 struct usb_gadget_driver *driver)
1347 {
1348         struct mv_udc *udc;
1349         int retval = 0;
1350         unsigned long flags;
1351
1352         udc = container_of(gadget, struct mv_udc, gadget);
1353
1354         if (udc->driver)
1355                 return -EBUSY;
1356
1357         spin_lock_irqsave(&udc->lock, flags);
1358
1359         /* hook up the driver ... */
1360         driver->driver.bus = NULL;
1361         udc->driver = driver;
1362
1363         udc->usb_state = USB_STATE_ATTACHED;
1364         udc->ep0_state = WAIT_FOR_SETUP;
1365         udc->ep0_dir = EP_DIR_OUT;
1366
1367         spin_unlock_irqrestore(&udc->lock, flags);
1368
1369         if (udc->transceiver) {
1370                 retval = otg_set_peripheral(udc->transceiver->otg,
1371                                         &udc->gadget);
1372                 if (retval) {
1373                         dev_err(&udc->dev->dev,
1374                                 "unable to register peripheral to otg\n");
1375                         udc->driver = NULL;
1376                         return retval;
1377                 }
1378         }
1379
1380         /* When boot with cable attached, there will be no vbus irq occurred */
1381         if (udc->qwork)
1382                 queue_work(udc->qwork, &udc->vbus_work);
1383
1384         return 0;
1385 }
1386
1387 static int mv_udc_stop(struct usb_gadget *gadget)
1388 {
1389         struct mv_udc *udc;
1390         unsigned long flags;
1391
1392         udc = container_of(gadget, struct mv_udc, gadget);
1393
1394         spin_lock_irqsave(&udc->lock, flags);
1395
1396         mv_udc_enable(udc);
1397         udc_stop(udc);
1398
1399         /* stop all usb activities */
1400         udc->gadget.speed = USB_SPEED_UNKNOWN;
1401         stop_activity(udc, NULL);
1402         mv_udc_disable(udc);
1403
1404         spin_unlock_irqrestore(&udc->lock, flags);
1405
1406         /* unbind gadget driver */
1407         udc->driver = NULL;
1408
1409         return 0;
1410 }
1411
1412 static void mv_set_ptc(struct mv_udc *udc, u32 mode)
1413 {
1414         u32 portsc;
1415
1416         portsc = readl(&udc->op_regs->portsc[0]);
1417         portsc |= mode << 16;
1418         writel(portsc, &udc->op_regs->portsc[0]);
1419 }
1420
1421 static void prime_status_complete(struct usb_ep *ep, struct usb_request *_req)
1422 {
1423         struct mv_ep *mvep = container_of(ep, struct mv_ep, ep);
1424         struct mv_req *req = container_of(_req, struct mv_req, req);
1425         struct mv_udc *udc;
1426         unsigned long flags;
1427
1428         udc = mvep->udc;
1429
1430         dev_info(&udc->dev->dev, "switch to test mode %d\n", req->test_mode);
1431
1432         spin_lock_irqsave(&udc->lock, flags);
1433         if (req->test_mode) {
1434                 mv_set_ptc(udc, req->test_mode);
1435                 req->test_mode = 0;
1436         }
1437         spin_unlock_irqrestore(&udc->lock, flags);
1438 }
1439
1440 static int
1441 udc_prime_status(struct mv_udc *udc, u8 direction, u16 status, bool empty)
1442 {
1443         int retval = 0;
1444         struct mv_req *req;
1445         struct mv_ep *ep;
1446
1447         ep = &udc->eps[0];
1448         udc->ep0_dir = direction;
1449         udc->ep0_state = WAIT_FOR_OUT_STATUS;
1450
1451         req = udc->status_req;
1452
1453         /* fill in the reqest structure */
1454         if (empty == false) {
1455                 *((u16 *) req->req.buf) = cpu_to_le16(status);
1456                 req->req.length = 2;
1457         } else
1458                 req->req.length = 0;
1459
1460         req->ep = ep;
1461         req->req.status = -EINPROGRESS;
1462         req->req.actual = 0;
1463         if (udc->test_mode) {
1464                 req->req.complete = prime_status_complete;
1465                 req->test_mode = udc->test_mode;
1466                 udc->test_mode = 0;
1467         } else
1468                 req->req.complete = NULL;
1469         req->dtd_count = 0;
1470
1471         if (req->req.dma == DMA_ADDR_INVALID) {
1472                 req->req.dma = dma_map_single(ep->udc->gadget.dev.parent,
1473                                 req->req.buf, req->req.length,
1474                                 ep_dir(ep) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1475                 req->mapped = 1;
1476         }
1477
1478         /* prime the data phase */
1479         if (!req_to_dtd(req)) {
1480                 retval = queue_dtd(ep, req);
1481                 if (retval) {
1482                         dev_err(&udc->dev->dev,
1483                                 "Failed to queue dtd when prime status\n");
1484                         goto out;
1485                 }
1486         } else{ /* no mem */
1487                 retval = -ENOMEM;
1488                 dev_err(&udc->dev->dev,
1489                         "Failed to dma_pool_alloc when prime status\n");
1490                 goto out;
1491         }
1492
1493         list_add_tail(&req->queue, &ep->queue);
1494
1495         return 0;
1496 out:
1497         usb_gadget_unmap_request(&udc->gadget, &req->req, ep_dir(ep));
1498
1499         return retval;
1500 }
1501
1502 static void mv_udc_testmode(struct mv_udc *udc, u16 index)
1503 {
1504         if (index <= USB_TEST_FORCE_ENABLE) {
1505                 udc->test_mode = index;
1506                 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1507                         ep0_stall(udc);
1508         } else
1509                 dev_err(&udc->dev->dev,
1510                         "This test mode(%d) is not supported\n", index);
1511 }
1512
1513 static void ch9setaddress(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1514 {
1515         udc->dev_addr = (u8)setup->wValue;
1516
1517         /* update usb state */
1518         udc->usb_state = USB_STATE_ADDRESS;
1519
1520         if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1521                 ep0_stall(udc);
1522 }
1523
1524 static void ch9getstatus(struct mv_udc *udc, u8 ep_num,
1525         struct usb_ctrlrequest *setup)
1526 {
1527         u16 status = 0;
1528         int retval;
1529
1530         if ((setup->bRequestType & (USB_DIR_IN | USB_TYPE_MASK))
1531                 != (USB_DIR_IN | USB_TYPE_STANDARD))
1532                 return;
1533
1534         if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
1535                 status = 1 << USB_DEVICE_SELF_POWERED;
1536                 status |= udc->remote_wakeup << USB_DEVICE_REMOTE_WAKEUP;
1537         } else if ((setup->bRequestType & USB_RECIP_MASK)
1538                         == USB_RECIP_INTERFACE) {
1539                 /* get interface status */
1540                 status = 0;
1541         } else if ((setup->bRequestType & USB_RECIP_MASK)
1542                         == USB_RECIP_ENDPOINT) {
1543                 u8 ep_num, direction;
1544
1545                 ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1546                 direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1547                                 ? EP_DIR_IN : EP_DIR_OUT;
1548                 status = ep_is_stall(udc, ep_num, direction)
1549                                 << USB_ENDPOINT_HALT;
1550         }
1551
1552         retval = udc_prime_status(udc, EP_DIR_IN, status, false);
1553         if (retval)
1554                 ep0_stall(udc);
1555         else
1556                 udc->ep0_state = DATA_STATE_XMIT;
1557 }
1558
1559 static void ch9clearfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1560 {
1561         u8 ep_num;
1562         u8 direction;
1563         struct mv_ep *ep;
1564
1565         if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1566                 == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1567                 switch (setup->wValue) {
1568                 case USB_DEVICE_REMOTE_WAKEUP:
1569                         udc->remote_wakeup = 0;
1570                         break;
1571                 default:
1572                         goto out;
1573                 }
1574         } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1575                 == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1576                 switch (setup->wValue) {
1577                 case USB_ENDPOINT_HALT:
1578                         ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1579                         direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1580                                 ? EP_DIR_IN : EP_DIR_OUT;
1581                         if (setup->wValue != 0 || setup->wLength != 0
1582                                 || ep_num > udc->max_eps)
1583                                 goto out;
1584                         ep = &udc->eps[ep_num * 2 + direction];
1585                         if (ep->wedge == 1)
1586                                 break;
1587                         spin_unlock(&udc->lock);
1588                         ep_set_stall(udc, ep_num, direction, 0);
1589                         spin_lock(&udc->lock);
1590                         break;
1591                 default:
1592                         goto out;
1593                 }
1594         } else
1595                 goto out;
1596
1597         if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1598                 ep0_stall(udc);
1599 out:
1600         return;
1601 }
1602
1603 static void ch9setfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1604 {
1605         u8 ep_num;
1606         u8 direction;
1607
1608         if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1609                 == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1610                 switch (setup->wValue) {
1611                 case USB_DEVICE_REMOTE_WAKEUP:
1612                         udc->remote_wakeup = 1;
1613                         break;
1614                 case USB_DEVICE_TEST_MODE:
1615                         if (setup->wIndex & 0xFF
1616                                 ||  udc->gadget.speed != USB_SPEED_HIGH)
1617                                 ep0_stall(udc);
1618
1619                         if (udc->usb_state != USB_STATE_CONFIGURED
1620                                 && udc->usb_state != USB_STATE_ADDRESS
1621                                 && udc->usb_state != USB_STATE_DEFAULT)
1622                                 ep0_stall(udc);
1623
1624                         mv_udc_testmode(udc, (setup->wIndex >> 8));
1625                         goto out;
1626                 default:
1627                         goto out;
1628                 }
1629         } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1630                 == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1631                 switch (setup->wValue) {
1632                 case USB_ENDPOINT_HALT:
1633                         ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1634                         direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1635                                 ? EP_DIR_IN : EP_DIR_OUT;
1636                         if (setup->wValue != 0 || setup->wLength != 0
1637                                 || ep_num > udc->max_eps)
1638                                 goto out;
1639                         spin_unlock(&udc->lock);
1640                         ep_set_stall(udc, ep_num, direction, 1);
1641                         spin_lock(&udc->lock);
1642                         break;
1643                 default:
1644                         goto out;
1645                 }
1646         } else
1647                 goto out;
1648
1649         if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1650                 ep0_stall(udc);
1651 out:
1652         return;
1653 }
1654
1655 static void handle_setup_packet(struct mv_udc *udc, u8 ep_num,
1656         struct usb_ctrlrequest *setup)
1657         __releases(&ep->udc->lock)
1658         __acquires(&ep->udc->lock)
1659 {
1660         bool delegate = false;
1661
1662         nuke(&udc->eps[ep_num * 2 + EP_DIR_OUT], -ESHUTDOWN);
1663
1664         dev_dbg(&udc->dev->dev, "SETUP %02x.%02x v%04x i%04x l%04x\n",
1665                         setup->bRequestType, setup->bRequest,
1666                         setup->wValue, setup->wIndex, setup->wLength);
1667         /* We process some standard setup requests here */
1668         if ((setup->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1669                 switch (setup->bRequest) {
1670                 case USB_REQ_GET_STATUS:
1671                         ch9getstatus(udc, ep_num, setup);
1672                         break;
1673
1674                 case USB_REQ_SET_ADDRESS:
1675                         ch9setaddress(udc, setup);
1676                         break;
1677
1678                 case USB_REQ_CLEAR_FEATURE:
1679                         ch9clearfeature(udc, setup);
1680                         break;
1681
1682                 case USB_REQ_SET_FEATURE:
1683                         ch9setfeature(udc, setup);
1684                         break;
1685
1686                 default:
1687                         delegate = true;
1688                 }
1689         } else
1690                 delegate = true;
1691
1692         /* delegate USB standard requests to the gadget driver */
1693         if (delegate == true) {
1694                 /* USB requests handled by gadget */
1695                 if (setup->wLength) {
1696                         /* DATA phase from gadget, STATUS phase from udc */
1697                         udc->ep0_dir = (setup->bRequestType & USB_DIR_IN)
1698                                         ?  EP_DIR_IN : EP_DIR_OUT;
1699                         spin_unlock(&udc->lock);
1700                         if (udc->driver->setup(&udc->gadget,
1701                                 &udc->local_setup_buff) < 0)
1702                                 ep0_stall(udc);
1703                         spin_lock(&udc->lock);
1704                         udc->ep0_state = (setup->bRequestType & USB_DIR_IN)
1705                                         ?  DATA_STATE_XMIT : DATA_STATE_RECV;
1706                 } else {
1707                         /* no DATA phase, IN STATUS phase from gadget */
1708                         udc->ep0_dir = EP_DIR_IN;
1709                         spin_unlock(&udc->lock);
1710                         if (udc->driver->setup(&udc->gadget,
1711                                 &udc->local_setup_buff) < 0)
1712                                 ep0_stall(udc);
1713                         spin_lock(&udc->lock);
1714                         udc->ep0_state = WAIT_FOR_OUT_STATUS;
1715                 }
1716         }
1717 }
1718
1719 /* complete DATA or STATUS phase of ep0 prime status phase if needed */
1720 static void ep0_req_complete(struct mv_udc *udc,
1721         struct mv_ep *ep0, struct mv_req *req)
1722 {
1723         u32 new_addr;
1724
1725         if (udc->usb_state == USB_STATE_ADDRESS) {
1726                 /* set the new address */
1727                 new_addr = (u32)udc->dev_addr;
1728                 writel(new_addr << USB_DEVICE_ADDRESS_BIT_SHIFT,
1729                         &udc->op_regs->deviceaddr);
1730         }
1731
1732         done(ep0, req, 0);
1733
1734         switch (udc->ep0_state) {
1735         case DATA_STATE_XMIT:
1736                 /* receive status phase */
1737                 if (udc_prime_status(udc, EP_DIR_OUT, 0, true))
1738                         ep0_stall(udc);
1739                 break;
1740         case DATA_STATE_RECV:
1741                 /* send status phase */
1742                 if (udc_prime_status(udc, EP_DIR_IN, 0 , true))
1743                         ep0_stall(udc);
1744                 break;
1745         case WAIT_FOR_OUT_STATUS:
1746                 udc->ep0_state = WAIT_FOR_SETUP;
1747                 break;
1748         case WAIT_FOR_SETUP:
1749                 dev_err(&udc->dev->dev, "unexpect ep0 packets\n");
1750                 break;
1751         default:
1752                 ep0_stall(udc);
1753                 break;
1754         }
1755 }
1756
1757 static void get_setup_data(struct mv_udc *udc, u8 ep_num, u8 *buffer_ptr)
1758 {
1759         u32 temp;
1760         struct mv_dqh *dqh;
1761
1762         dqh = &udc->ep_dqh[ep_num * 2 + EP_DIR_OUT];
1763
1764         /* Clear bit in ENDPTSETUPSTAT */
1765         writel((1 << ep_num), &udc->op_regs->epsetupstat);
1766
1767         /* while a hazard exists when setup package arrives */
1768         do {
1769                 /* Set Setup Tripwire */
1770                 temp = readl(&udc->op_regs->usbcmd);
1771                 writel(temp | USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1772
1773                 /* Copy the setup packet to local buffer */
1774                 memcpy(buffer_ptr, (u8 *) dqh->setup_buffer, 8);
1775         } while (!(readl(&udc->op_regs->usbcmd) & USBCMD_SETUP_TRIPWIRE_SET));
1776
1777         /* Clear Setup Tripwire */
1778         temp = readl(&udc->op_regs->usbcmd);
1779         writel(temp & ~USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1780 }
1781
1782 static void irq_process_tr_complete(struct mv_udc *udc)
1783 {
1784         u32 tmp, bit_pos;
1785         int i, ep_num = 0, direction = 0;
1786         struct mv_ep    *curr_ep;
1787         struct mv_req *curr_req, *temp_req;
1788         int status;
1789
1790         /*
1791          * We use separate loops for ENDPTSETUPSTAT and ENDPTCOMPLETE
1792          * because the setup packets are to be read ASAP
1793          */
1794
1795         /* Process all Setup packet received interrupts */
1796         tmp = readl(&udc->op_regs->epsetupstat);
1797
1798         if (tmp) {
1799                 for (i = 0; i < udc->max_eps; i++) {
1800                         if (tmp & (1 << i)) {
1801                                 get_setup_data(udc, i,
1802                                         (u8 *)(&udc->local_setup_buff));
1803                                 handle_setup_packet(udc, i,
1804                                         &udc->local_setup_buff);
1805                         }
1806                 }
1807         }
1808
1809         /* Don't clear the endpoint setup status register here.
1810          * It is cleared as a setup packet is read out of the buffer
1811          */
1812
1813         /* Process non-setup transaction complete interrupts */
1814         tmp = readl(&udc->op_regs->epcomplete);
1815
1816         if (!tmp)
1817                 return;
1818
1819         writel(tmp, &udc->op_regs->epcomplete);
1820
1821         for (i = 0; i < udc->max_eps * 2; i++) {
1822                 ep_num = i >> 1;
1823                 direction = i % 2;
1824
1825                 bit_pos = 1 << (ep_num + 16 * direction);
1826
1827                 if (!(bit_pos & tmp))
1828                         continue;
1829
1830                 if (i == 1)
1831                         curr_ep = &udc->eps[0];
1832                 else
1833                         curr_ep = &udc->eps[i];
1834                 /* process the req queue until an uncomplete request */
1835                 list_for_each_entry_safe(curr_req, temp_req,
1836                         &curr_ep->queue, queue) {
1837                         status = process_ep_req(udc, i, curr_req);
1838                         if (status)
1839                                 break;
1840
1841                         /* write back status to req */
1842                         curr_req->req.status = status;
1843
1844                         /* ep0 request completion */
1845                         if (ep_num == 0) {
1846                                 ep0_req_complete(udc, curr_ep, curr_req);
1847                                 break;
1848                         } else {
1849                                 done(curr_ep, curr_req, status);
1850                         }
1851                 }
1852         }
1853 }
1854
1855 static void irq_process_reset(struct mv_udc *udc)
1856 {
1857         u32 tmp;
1858         unsigned int loops;
1859
1860         udc->ep0_dir = EP_DIR_OUT;
1861         udc->ep0_state = WAIT_FOR_SETUP;
1862         udc->remote_wakeup = 0;         /* default to 0 on reset */
1863
1864         /* The address bits are past bit 25-31. Set the address */
1865         tmp = readl(&udc->op_regs->deviceaddr);
1866         tmp &= ~(USB_DEVICE_ADDRESS_MASK);
1867         writel(tmp, &udc->op_regs->deviceaddr);
1868
1869         /* Clear all the setup token semaphores */
1870         tmp = readl(&udc->op_regs->epsetupstat);
1871         writel(tmp, &udc->op_regs->epsetupstat);
1872
1873         /* Clear all the endpoint complete status bits */
1874         tmp = readl(&udc->op_regs->epcomplete);
1875         writel(tmp, &udc->op_regs->epcomplete);
1876
1877         /* wait until all endptprime bits cleared */
1878         loops = LOOPS(PRIME_TIMEOUT);
1879         while (readl(&udc->op_regs->epprime) & 0xFFFFFFFF) {
1880                 if (loops == 0) {
1881                         dev_err(&udc->dev->dev,
1882                                 "Timeout for ENDPTPRIME = 0x%x\n",
1883                                 readl(&udc->op_regs->epprime));
1884                         break;
1885                 }
1886                 loops--;
1887                 udelay(LOOPS_USEC);
1888         }
1889
1890         /* Write 1s to the Flush register */
1891         writel((u32)~0, &udc->op_regs->epflush);
1892
1893         if (readl(&udc->op_regs->portsc[0]) & PORTSCX_PORT_RESET) {
1894                 dev_info(&udc->dev->dev, "usb bus reset\n");
1895                 udc->usb_state = USB_STATE_DEFAULT;
1896                 /* reset all the queues, stop all USB activities */
1897                 gadget_reset(udc, udc->driver);
1898         } else {
1899                 dev_info(&udc->dev->dev, "USB reset portsc 0x%x\n",
1900                         readl(&udc->op_regs->portsc));
1901
1902                 /*
1903                  * re-initialize
1904                  * controller reset
1905                  */
1906                 udc_reset(udc);
1907
1908                 /* reset all the queues, stop all USB activities */
1909                 stop_activity(udc, udc->driver);
1910
1911                 /* reset ep0 dQH and endptctrl */
1912                 ep0_reset(udc);
1913
1914                 /* enable interrupt and set controller to run state */
1915                 udc_start(udc);
1916
1917                 udc->usb_state = USB_STATE_ATTACHED;
1918         }
1919 }
1920
1921 static void handle_bus_resume(struct mv_udc *udc)
1922 {
1923         udc->usb_state = udc->resume_state;
1924         udc->resume_state = 0;
1925
1926         /* report resume to the driver */
1927         if (udc->driver) {
1928                 if (udc->driver->resume) {
1929                         spin_unlock(&udc->lock);
1930                         udc->driver->resume(&udc->gadget);
1931                         spin_lock(&udc->lock);
1932                 }
1933         }
1934 }
1935
1936 static void irq_process_suspend(struct mv_udc *udc)
1937 {
1938         udc->resume_state = udc->usb_state;
1939         udc->usb_state = USB_STATE_SUSPENDED;
1940
1941         if (udc->driver->suspend) {
1942                 spin_unlock(&udc->lock);
1943                 udc->driver->suspend(&udc->gadget);
1944                 spin_lock(&udc->lock);
1945         }
1946 }
1947
1948 static void irq_process_port_change(struct mv_udc *udc)
1949 {
1950         u32 portsc;
1951
1952         portsc = readl(&udc->op_regs->portsc[0]);
1953         if (!(portsc & PORTSCX_PORT_RESET)) {
1954                 /* Get the speed */
1955                 u32 speed = portsc & PORTSCX_PORT_SPEED_MASK;
1956                 switch (speed) {
1957                 case PORTSCX_PORT_SPEED_HIGH:
1958                         udc->gadget.speed = USB_SPEED_HIGH;
1959                         break;
1960                 case PORTSCX_PORT_SPEED_FULL:
1961                         udc->gadget.speed = USB_SPEED_FULL;
1962                         break;
1963                 case PORTSCX_PORT_SPEED_LOW:
1964                         udc->gadget.speed = USB_SPEED_LOW;
1965                         break;
1966                 default:
1967                         udc->gadget.speed = USB_SPEED_UNKNOWN;
1968                         break;
1969                 }
1970         }
1971
1972         if (portsc & PORTSCX_PORT_SUSPEND) {
1973                 udc->resume_state = udc->usb_state;
1974                 udc->usb_state = USB_STATE_SUSPENDED;
1975                 if (udc->driver->suspend) {
1976                         spin_unlock(&udc->lock);
1977                         udc->driver->suspend(&udc->gadget);
1978                         spin_lock(&udc->lock);
1979                 }
1980         }
1981
1982         if (!(portsc & PORTSCX_PORT_SUSPEND)
1983                 && udc->usb_state == USB_STATE_SUSPENDED) {
1984                 handle_bus_resume(udc);
1985         }
1986
1987         if (!udc->resume_state)
1988                 udc->usb_state = USB_STATE_DEFAULT;
1989 }
1990
1991 static void irq_process_error(struct mv_udc *udc)
1992 {
1993         /* Increment the error count */
1994         udc->errors++;
1995 }
1996
1997 static irqreturn_t mv_udc_irq(int irq, void *dev)
1998 {
1999         struct mv_udc *udc = (struct mv_udc *)dev;
2000         u32 status, intr;
2001
2002         /* Disable ISR when stopped bit is set */
2003         if (udc->stopped)
2004                 return IRQ_NONE;
2005
2006         spin_lock(&udc->lock);
2007
2008         status = readl(&udc->op_regs->usbsts);
2009         intr = readl(&udc->op_regs->usbintr);
2010         status &= intr;
2011
2012         if (status == 0) {
2013                 spin_unlock(&udc->lock);
2014                 return IRQ_NONE;
2015         }
2016
2017         /* Clear all the interrupts occurred */
2018         writel(status, &udc->op_regs->usbsts);
2019
2020         if (status & USBSTS_ERR)
2021                 irq_process_error(udc);
2022
2023         if (status & USBSTS_RESET)
2024                 irq_process_reset(udc);
2025
2026         if (status & USBSTS_PORT_CHANGE)
2027                 irq_process_port_change(udc);
2028
2029         if (status & USBSTS_INT)
2030                 irq_process_tr_complete(udc);
2031
2032         if (status & USBSTS_SUSPEND)
2033                 irq_process_suspend(udc);
2034
2035         spin_unlock(&udc->lock);
2036
2037         return IRQ_HANDLED;
2038 }
2039
2040 static irqreturn_t mv_udc_vbus_irq(int irq, void *dev)
2041 {
2042         struct mv_udc *udc = (struct mv_udc *)dev;
2043
2044         /* polling VBUS and init phy may cause too much time*/
2045         if (udc->qwork)
2046                 queue_work(udc->qwork, &udc->vbus_work);
2047
2048         return IRQ_HANDLED;
2049 }
2050
2051 static void mv_udc_vbus_work(struct work_struct *work)
2052 {
2053         struct mv_udc *udc;
2054         unsigned int vbus;
2055
2056         udc = container_of(work, struct mv_udc, vbus_work);
2057         if (!udc->pdata->vbus)
2058                 return;
2059
2060         vbus = udc->pdata->vbus->poll();
2061         dev_info(&udc->dev->dev, "vbus is %d\n", vbus);
2062
2063         if (vbus == VBUS_HIGH)
2064                 mv_udc_vbus_session(&udc->gadget, 1);
2065         else if (vbus == VBUS_LOW)
2066                 mv_udc_vbus_session(&udc->gadget, 0);
2067 }
2068
2069 /* release device structure */
2070 static void gadget_release(struct device *_dev)
2071 {
2072         struct mv_udc *udc;
2073
2074         udc = dev_get_drvdata(_dev);
2075
2076         complete(udc->done);
2077 }
2078
2079 static int mv_udc_remove(struct platform_device *pdev)
2080 {
2081         struct mv_udc *udc;
2082
2083         udc = platform_get_drvdata(pdev);
2084
2085         usb_del_gadget_udc(&udc->gadget);
2086
2087         if (udc->qwork)
2088                 destroy_workqueue(udc->qwork);
2089
2090         /* free memory allocated in probe */
2091         dma_pool_destroy(udc->dtd_pool);
2092
2093         if (udc->ep_dqh)
2094                 dma_free_coherent(&pdev->dev, udc->ep_dqh_size,
2095                         udc->ep_dqh, udc->ep_dqh_dma);
2096
2097         mv_udc_disable(udc);
2098
2099         /* free dev, wait for the release() finished */
2100         wait_for_completion(udc->done);
2101
2102         return 0;
2103 }
2104
2105 static int mv_udc_probe(struct platform_device *pdev)
2106 {
2107         struct mv_usb_platform_data *pdata = dev_get_platdata(&pdev->dev);
2108         struct mv_udc *udc;
2109         int retval = 0;
2110         struct resource *r;
2111         size_t size;
2112
2113         if (pdata == NULL) {
2114                 dev_err(&pdev->dev, "missing platform_data\n");
2115                 return -ENODEV;
2116         }
2117
2118         udc = devm_kzalloc(&pdev->dev, sizeof(*udc), GFP_KERNEL);
2119         if (udc == NULL)
2120                 return -ENOMEM;
2121
2122         udc->done = &release_done;
2123         udc->pdata = dev_get_platdata(&pdev->dev);
2124         spin_lock_init(&udc->lock);
2125
2126         udc->dev = pdev;
2127
2128         if (pdata->mode == MV_USB_MODE_OTG) {
2129                 udc->transceiver = devm_usb_get_phy(&pdev->dev,
2130                                         USB_PHY_TYPE_USB2);
2131                 if (IS_ERR(udc->transceiver)) {
2132                         retval = PTR_ERR(udc->transceiver);
2133
2134                         if (retval == -ENXIO)
2135                                 return retval;
2136
2137                         udc->transceiver = NULL;
2138                         return -EPROBE_DEFER;
2139                 }
2140         }
2141
2142         /* udc only have one sysclk. */
2143         udc->clk = devm_clk_get(&pdev->dev, NULL);
2144         if (IS_ERR(udc->clk))
2145                 return PTR_ERR(udc->clk);
2146
2147         r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "capregs");
2148         if (r == NULL) {
2149                 dev_err(&pdev->dev, "no I/O memory resource defined\n");
2150                 return -ENODEV;
2151         }
2152
2153         udc->cap_regs = (struct mv_cap_regs __iomem *)
2154                 devm_ioremap(&pdev->dev, r->start, resource_size(r));
2155         if (udc->cap_regs == NULL) {
2156                 dev_err(&pdev->dev, "failed to map I/O memory\n");
2157                 return -EBUSY;
2158         }
2159
2160         r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "phyregs");
2161         if (r == NULL) {
2162                 dev_err(&pdev->dev, "no phy I/O memory resource defined\n");
2163                 return -ENODEV;
2164         }
2165
2166         udc->phy_regs = devm_ioremap(&pdev->dev, r->start, resource_size(r));
2167         if (udc->phy_regs == NULL) {
2168                 dev_err(&pdev->dev, "failed to map phy I/O memory\n");
2169                 return -EBUSY;
2170         }
2171
2172         /* we will acces controller register, so enable the clk */
2173         retval = mv_udc_enable_internal(udc);
2174         if (retval)
2175                 return retval;
2176
2177         udc->op_regs =
2178                 (struct mv_op_regs __iomem *)((unsigned long)udc->cap_regs
2179                 + (readl(&udc->cap_regs->caplength_hciversion)
2180                         & CAPLENGTH_MASK));
2181         udc->max_eps = readl(&udc->cap_regs->dccparams) & DCCPARAMS_DEN_MASK;
2182
2183         /*
2184          * some platform will use usb to download image, it may not disconnect
2185          * usb gadget before loading kernel. So first stop udc here.
2186          */
2187         udc_stop(udc);
2188         writel(0xFFFFFFFF, &udc->op_regs->usbsts);
2189
2190         size = udc->max_eps * sizeof(struct mv_dqh) *2;
2191         size = (size + DQH_ALIGNMENT - 1) & ~(DQH_ALIGNMENT - 1);
2192         udc->ep_dqh = dma_alloc_coherent(&pdev->dev, size,
2193                                         &udc->ep_dqh_dma, GFP_KERNEL);
2194
2195         if (udc->ep_dqh == NULL) {
2196                 dev_err(&pdev->dev, "allocate dQH memory failed\n");
2197                 retval = -ENOMEM;
2198                 goto err_disable_clock;
2199         }
2200         udc->ep_dqh_size = size;
2201
2202         /* create dTD dma_pool resource */
2203         udc->dtd_pool = dma_pool_create("mv_dtd",
2204                         &pdev->dev,
2205                         sizeof(struct mv_dtd),
2206                         DTD_ALIGNMENT,
2207                         DMA_BOUNDARY);
2208
2209         if (!udc->dtd_pool) {
2210                 retval = -ENOMEM;
2211                 goto err_free_dma;
2212         }
2213
2214         size = udc->max_eps * sizeof(struct mv_ep) *2;
2215         udc->eps = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
2216         if (udc->eps == NULL) {
2217                 retval = -ENOMEM;
2218                 goto err_destroy_dma;
2219         }
2220
2221         /* initialize ep0 status request structure */
2222         udc->status_req = devm_kzalloc(&pdev->dev, sizeof(struct mv_req),
2223                                         GFP_KERNEL);
2224         if (!udc->status_req) {
2225                 retval = -ENOMEM;
2226                 goto err_destroy_dma;
2227         }
2228         INIT_LIST_HEAD(&udc->status_req->queue);
2229
2230         /* allocate a small amount of memory to get valid address */
2231         udc->status_req->req.buf = kzalloc(8, GFP_KERNEL);
2232         udc->status_req->req.dma = DMA_ADDR_INVALID;
2233
2234         udc->resume_state = USB_STATE_NOTATTACHED;
2235         udc->usb_state = USB_STATE_POWERED;
2236         udc->ep0_dir = EP_DIR_OUT;
2237         udc->remote_wakeup = 0;
2238
2239         r = platform_get_resource(udc->dev, IORESOURCE_IRQ, 0);
2240         if (r == NULL) {
2241                 dev_err(&pdev->dev, "no IRQ resource defined\n");
2242                 retval = -ENODEV;
2243                 goto err_destroy_dma;
2244         }
2245         udc->irq = r->start;
2246         if (devm_request_irq(&pdev->dev, udc->irq, mv_udc_irq,
2247                 IRQF_SHARED, driver_name, udc)) {
2248                 dev_err(&pdev->dev, "Request irq %d for UDC failed\n",
2249                         udc->irq);
2250                 retval = -ENODEV;
2251                 goto err_destroy_dma;
2252         }
2253
2254         /* initialize gadget structure */
2255         udc->gadget.ops = &mv_ops;      /* usb_gadget_ops */
2256         udc->gadget.ep0 = &udc->eps[0].ep;      /* gadget ep0 */
2257         INIT_LIST_HEAD(&udc->gadget.ep_list);   /* ep_list */
2258         udc->gadget.speed = USB_SPEED_UNKNOWN;  /* speed */
2259         udc->gadget.max_speed = USB_SPEED_HIGH; /* support dual speed */
2260
2261         /* the "gadget" abstracts/virtualizes the controller */
2262         udc->gadget.name = driver_name;         /* gadget name */
2263
2264         eps_init(udc);
2265
2266         /* VBUS detect: we can disable/enable clock on demand.*/
2267         if (udc->transceiver)
2268                 udc->clock_gating = 1;
2269         else if (pdata->vbus) {
2270                 udc->clock_gating = 1;
2271                 retval = devm_request_threaded_irq(&pdev->dev,
2272                                 pdata->vbus->irq, NULL,
2273                                 mv_udc_vbus_irq, IRQF_ONESHOT, "vbus", udc);
2274                 if (retval) {
2275                         dev_info(&pdev->dev,
2276                                 "Can not request irq for VBUS, "
2277                                 "disable clock gating\n");
2278                         udc->clock_gating = 0;
2279                 }
2280
2281                 udc->qwork = create_singlethread_workqueue("mv_udc_queue");
2282                 if (!udc->qwork) {
2283                         dev_err(&pdev->dev, "cannot create workqueue\n");
2284                         retval = -ENOMEM;
2285                         goto err_destroy_dma;
2286                 }
2287
2288                 INIT_WORK(&udc->vbus_work, mv_udc_vbus_work);
2289         }
2290
2291         /*
2292          * When clock gating is supported, we can disable clk and phy.
2293          * If not, it means that VBUS detection is not supported, we
2294          * have to enable vbus active all the time to let controller work.
2295          */
2296         if (udc->clock_gating)
2297                 mv_udc_disable_internal(udc);
2298         else
2299                 udc->vbus_active = 1;
2300
2301         retval = usb_add_gadget_udc_release(&pdev->dev, &udc->gadget,
2302                         gadget_release);
2303         if (retval)
2304                 goto err_create_workqueue;
2305
2306         platform_set_drvdata(pdev, udc);
2307         dev_info(&pdev->dev, "successful probe UDC device %s clock gating.\n",
2308                 udc->clock_gating ? "with" : "without");
2309
2310         return 0;
2311
2312 err_create_workqueue:
2313         if (udc->qwork)
2314                 destroy_workqueue(udc->qwork);
2315 err_destroy_dma:
2316         dma_pool_destroy(udc->dtd_pool);
2317 err_free_dma:
2318         dma_free_coherent(&pdev->dev, udc->ep_dqh_size,
2319                         udc->ep_dqh, udc->ep_dqh_dma);
2320 err_disable_clock:
2321         mv_udc_disable_internal(udc);
2322
2323         return retval;
2324 }
2325
2326 #ifdef CONFIG_PM
2327 static int mv_udc_suspend(struct device *dev)
2328 {
2329         struct mv_udc *udc;
2330
2331         udc = dev_get_drvdata(dev);
2332
2333         /* if OTG is enabled, the following will be done in OTG driver*/
2334         if (udc->transceiver)
2335                 return 0;
2336
2337         if (udc->pdata->vbus && udc->pdata->vbus->poll)
2338                 if (udc->pdata->vbus->poll() == VBUS_HIGH) {
2339                         dev_info(&udc->dev->dev, "USB cable is connected!\n");
2340                         return -EAGAIN;
2341                 }
2342
2343         /*
2344          * only cable is unplugged, udc can suspend.
2345          * So do not care about clock_gating == 1.
2346          */
2347         if (!udc->clock_gating) {
2348                 udc_stop(udc);
2349
2350                 spin_lock_irq(&udc->lock);
2351                 /* stop all usb activities */
2352                 stop_activity(udc, udc->driver);
2353                 spin_unlock_irq(&udc->lock);
2354
2355                 mv_udc_disable_internal(udc);
2356         }
2357
2358         return 0;
2359 }
2360
2361 static int mv_udc_resume(struct device *dev)
2362 {
2363         struct mv_udc *udc;
2364         int retval;
2365
2366         udc = dev_get_drvdata(dev);
2367
2368         /* if OTG is enabled, the following will be done in OTG driver*/
2369         if (udc->transceiver)
2370                 return 0;
2371
2372         if (!udc->clock_gating) {
2373                 retval = mv_udc_enable_internal(udc);
2374                 if (retval)
2375                         return retval;
2376
2377                 if (udc->driver && udc->softconnect) {
2378                         udc_reset(udc);
2379                         ep0_reset(udc);
2380                         udc_start(udc);
2381                 }
2382         }
2383
2384         return 0;
2385 }
2386
2387 static const struct dev_pm_ops mv_udc_pm_ops = {
2388         .suspend        = mv_udc_suspend,
2389         .resume         = mv_udc_resume,
2390 };
2391 #endif
2392
2393 static void mv_udc_shutdown(struct platform_device *pdev)
2394 {
2395         struct mv_udc *udc;
2396         u32 mode;
2397
2398         udc = platform_get_drvdata(pdev);
2399         /* reset controller mode to IDLE */
2400         mv_udc_enable(udc);
2401         mode = readl(&udc->op_regs->usbmode);
2402         mode &= ~3;
2403         writel(mode, &udc->op_regs->usbmode);
2404         mv_udc_disable(udc);
2405 }
2406
2407 static struct platform_driver udc_driver = {
2408         .probe          = mv_udc_probe,
2409         .remove         = mv_udc_remove,
2410         .shutdown       = mv_udc_shutdown,
2411         .driver         = {
2412                 .name   = "mv-udc",
2413 #ifdef CONFIG_PM
2414                 .pm     = &mv_udc_pm_ops,
2415 #endif
2416         },
2417 };
2418
2419 module_platform_driver(udc_driver);
2420 MODULE_ALIAS("platform:mv-udc");
2421 MODULE_DESCRIPTION(DRIVER_DESC);
2422 MODULE_AUTHOR("Chao Xie <chao.xie@marvell.com>");
2423 MODULE_LICENSE("GPL");