TTY: move tty_lookup_driver to switch-cases
[linux-2.6-block.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100 #include <asm/system.h>
101
102 #include <linux/kbd_kern.h>
103 #include <linux/vt_kern.h>
104 #include <linux/selection.h>
105
106 #include <linux/kmod.h>
107 #include <linux/nsproxy.h>
108
109 #undef TTY_DEBUG_HANGUP
110
111 #define TTY_PARANOIA_CHECK 1
112 #define CHECK_TTY_COUNT 1
113
114 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
115         .c_iflag = ICRNL | IXON,
116         .c_oflag = OPOST | ONLCR,
117         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
118         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
119                    ECHOCTL | ECHOKE | IEXTEN,
120         .c_cc = INIT_C_CC,
121         .c_ispeed = 38400,
122         .c_ospeed = 38400
123 };
124
125 EXPORT_SYMBOL(tty_std_termios);
126
127 /* This list gets poked at by procfs and various bits of boot up code. This
128    could do with some rationalisation such as pulling the tty proc function
129    into this file */
130
131 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
132
133 /* Mutex to protect creating and releasing a tty. This is shared with
134    vt.c for deeply disgusting hack reasons */
135 DEFINE_MUTEX(tty_mutex);
136 EXPORT_SYMBOL(tty_mutex);
137
138 /* Spinlock to protect the tty->tty_files list */
139 DEFINE_SPINLOCK(tty_files_lock);
140
141 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
142 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
143 ssize_t redirected_tty_write(struct file *, const char __user *,
144                                                         size_t, loff_t *);
145 static unsigned int tty_poll(struct file *, poll_table *);
146 static int tty_open(struct inode *, struct file *);
147 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
148 #ifdef CONFIG_COMPAT
149 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
150                                 unsigned long arg);
151 #else
152 #define tty_compat_ioctl NULL
153 #endif
154 static int __tty_fasync(int fd, struct file *filp, int on);
155 static int tty_fasync(int fd, struct file *filp, int on);
156 static void release_tty(struct tty_struct *tty, int idx);
157 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
159
160 /**
161  *      alloc_tty_struct        -       allocate a tty object
162  *
163  *      Return a new empty tty structure. The data fields have not
164  *      been initialized in any way but has been zeroed
165  *
166  *      Locking: none
167  */
168
169 struct tty_struct *alloc_tty_struct(void)
170 {
171         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
172 }
173
174 /**
175  *      free_tty_struct         -       free a disused tty
176  *      @tty: tty struct to free
177  *
178  *      Free the write buffers, tty queue and tty memory itself.
179  *
180  *      Locking: none. Must be called after tty is definitely unused
181  */
182
183 void free_tty_struct(struct tty_struct *tty)
184 {
185         if (tty->dev)
186                 put_device(tty->dev);
187         kfree(tty->write_buf);
188         tty_buffer_free_all(tty);
189         kfree(tty);
190 }
191
192 static inline struct tty_struct *file_tty(struct file *file)
193 {
194         return ((struct tty_file_private *)file->private_data)->tty;
195 }
196
197 int tty_alloc_file(struct file *file)
198 {
199         struct tty_file_private *priv;
200
201         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
202         if (!priv)
203                 return -ENOMEM;
204
205         file->private_data = priv;
206
207         return 0;
208 }
209
210 /* Associate a new file with the tty structure */
211 void tty_add_file(struct tty_struct *tty, struct file *file)
212 {
213         struct tty_file_private *priv = file->private_data;
214
215         priv->tty = tty;
216         priv->file = file;
217
218         spin_lock(&tty_files_lock);
219         list_add(&priv->list, &tty->tty_files);
220         spin_unlock(&tty_files_lock);
221 }
222
223 /**
224  * tty_free_file - free file->private_data
225  *
226  * This shall be used only for fail path handling when tty_add_file was not
227  * called yet.
228  */
229 void tty_free_file(struct file *file)
230 {
231         struct tty_file_private *priv = file->private_data;
232
233         file->private_data = NULL;
234         kfree(priv);
235 }
236
237 /* Delete file from its tty */
238 void tty_del_file(struct file *file)
239 {
240         struct tty_file_private *priv = file->private_data;
241
242         spin_lock(&tty_files_lock);
243         list_del(&priv->list);
244         spin_unlock(&tty_files_lock);
245         tty_free_file(file);
246 }
247
248
249 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
250
251 /**
252  *      tty_name        -       return tty naming
253  *      @tty: tty structure
254  *      @buf: buffer for output
255  *
256  *      Convert a tty structure into a name. The name reflects the kernel
257  *      naming policy and if udev is in use may not reflect user space
258  *
259  *      Locking: none
260  */
261
262 char *tty_name(struct tty_struct *tty, char *buf)
263 {
264         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
265                 strcpy(buf, "NULL tty");
266         else
267                 strcpy(buf, tty->name);
268         return buf;
269 }
270
271 EXPORT_SYMBOL(tty_name);
272
273 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
274                               const char *routine)
275 {
276 #ifdef TTY_PARANOIA_CHECK
277         if (!tty) {
278                 printk(KERN_WARNING
279                         "null TTY for (%d:%d) in %s\n",
280                         imajor(inode), iminor(inode), routine);
281                 return 1;
282         }
283         if (tty->magic != TTY_MAGIC) {
284                 printk(KERN_WARNING
285                         "bad magic number for tty struct (%d:%d) in %s\n",
286                         imajor(inode), iminor(inode), routine);
287                 return 1;
288         }
289 #endif
290         return 0;
291 }
292
293 static int check_tty_count(struct tty_struct *tty, const char *routine)
294 {
295 #ifdef CHECK_TTY_COUNT
296         struct list_head *p;
297         int count = 0;
298
299         spin_lock(&tty_files_lock);
300         list_for_each(p, &tty->tty_files) {
301                 count++;
302         }
303         spin_unlock(&tty_files_lock);
304         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
305             tty->driver->subtype == PTY_TYPE_SLAVE &&
306             tty->link && tty->link->count)
307                 count++;
308         if (tty->count != count) {
309                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
310                                     "!= #fd's(%d) in %s\n",
311                        tty->name, tty->count, count, routine);
312                 return count;
313         }
314 #endif
315         return 0;
316 }
317
318 /**
319  *      get_tty_driver          -       find device of a tty
320  *      @dev_t: device identifier
321  *      @index: returns the index of the tty
322  *
323  *      This routine returns a tty driver structure, given a device number
324  *      and also passes back the index number.
325  *
326  *      Locking: caller must hold tty_mutex
327  */
328
329 static struct tty_driver *get_tty_driver(dev_t device, int *index)
330 {
331         struct tty_driver *p;
332
333         list_for_each_entry(p, &tty_drivers, tty_drivers) {
334                 dev_t base = MKDEV(p->major, p->minor_start);
335                 if (device < base || device >= base + p->num)
336                         continue;
337                 *index = device - base;
338                 return tty_driver_kref_get(p);
339         }
340         return NULL;
341 }
342
343 #ifdef CONFIG_CONSOLE_POLL
344
345 /**
346  *      tty_find_polling_driver -       find device of a polled tty
347  *      @name: name string to match
348  *      @line: pointer to resulting tty line nr
349  *
350  *      This routine returns a tty driver structure, given a name
351  *      and the condition that the tty driver is capable of polled
352  *      operation.
353  */
354 struct tty_driver *tty_find_polling_driver(char *name, int *line)
355 {
356         struct tty_driver *p, *res = NULL;
357         int tty_line = 0;
358         int len;
359         char *str, *stp;
360
361         for (str = name; *str; str++)
362                 if ((*str >= '0' && *str <= '9') || *str == ',')
363                         break;
364         if (!*str)
365                 return NULL;
366
367         len = str - name;
368         tty_line = simple_strtoul(str, &str, 10);
369
370         mutex_lock(&tty_mutex);
371         /* Search through the tty devices to look for a match */
372         list_for_each_entry(p, &tty_drivers, tty_drivers) {
373                 if (strncmp(name, p->name, len) != 0)
374                         continue;
375                 stp = str;
376                 if (*stp == ',')
377                         stp++;
378                 if (*stp == '\0')
379                         stp = NULL;
380
381                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
382                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
383                         res = tty_driver_kref_get(p);
384                         *line = tty_line;
385                         break;
386                 }
387         }
388         mutex_unlock(&tty_mutex);
389
390         return res;
391 }
392 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
393 #endif
394
395 /**
396  *      tty_check_change        -       check for POSIX terminal changes
397  *      @tty: tty to check
398  *
399  *      If we try to write to, or set the state of, a terminal and we're
400  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
401  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
402  *
403  *      Locking: ctrl_lock
404  */
405
406 int tty_check_change(struct tty_struct *tty)
407 {
408         unsigned long flags;
409         int ret = 0;
410
411         if (current->signal->tty != tty)
412                 return 0;
413
414         spin_lock_irqsave(&tty->ctrl_lock, flags);
415
416         if (!tty->pgrp) {
417                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
418                 goto out_unlock;
419         }
420         if (task_pgrp(current) == tty->pgrp)
421                 goto out_unlock;
422         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
423         if (is_ignored(SIGTTOU))
424                 goto out;
425         if (is_current_pgrp_orphaned()) {
426                 ret = -EIO;
427                 goto out;
428         }
429         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
430         set_thread_flag(TIF_SIGPENDING);
431         ret = -ERESTARTSYS;
432 out:
433         return ret;
434 out_unlock:
435         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
436         return ret;
437 }
438
439 EXPORT_SYMBOL(tty_check_change);
440
441 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
442                                 size_t count, loff_t *ppos)
443 {
444         return 0;
445 }
446
447 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
448                                  size_t count, loff_t *ppos)
449 {
450         return -EIO;
451 }
452
453 /* No kernel lock held - none needed ;) */
454 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
455 {
456         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
457 }
458
459 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
460                 unsigned long arg)
461 {
462         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
463 }
464
465 static long hung_up_tty_compat_ioctl(struct file *file,
466                                      unsigned int cmd, unsigned long arg)
467 {
468         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
469 }
470
471 static const struct file_operations tty_fops = {
472         .llseek         = no_llseek,
473         .read           = tty_read,
474         .write          = tty_write,
475         .poll           = tty_poll,
476         .unlocked_ioctl = tty_ioctl,
477         .compat_ioctl   = tty_compat_ioctl,
478         .open           = tty_open,
479         .release        = tty_release,
480         .fasync         = tty_fasync,
481 };
482
483 static const struct file_operations console_fops = {
484         .llseek         = no_llseek,
485         .read           = tty_read,
486         .write          = redirected_tty_write,
487         .poll           = tty_poll,
488         .unlocked_ioctl = tty_ioctl,
489         .compat_ioctl   = tty_compat_ioctl,
490         .open           = tty_open,
491         .release        = tty_release,
492         .fasync         = tty_fasync,
493 };
494
495 static const struct file_operations hung_up_tty_fops = {
496         .llseek         = no_llseek,
497         .read           = hung_up_tty_read,
498         .write          = hung_up_tty_write,
499         .poll           = hung_up_tty_poll,
500         .unlocked_ioctl = hung_up_tty_ioctl,
501         .compat_ioctl   = hung_up_tty_compat_ioctl,
502         .release        = tty_release,
503 };
504
505 static DEFINE_SPINLOCK(redirect_lock);
506 static struct file *redirect;
507
508 /**
509  *      tty_wakeup      -       request more data
510  *      @tty: terminal
511  *
512  *      Internal and external helper for wakeups of tty. This function
513  *      informs the line discipline if present that the driver is ready
514  *      to receive more output data.
515  */
516
517 void tty_wakeup(struct tty_struct *tty)
518 {
519         struct tty_ldisc *ld;
520
521         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
522                 ld = tty_ldisc_ref(tty);
523                 if (ld) {
524                         if (ld->ops->write_wakeup)
525                                 ld->ops->write_wakeup(tty);
526                         tty_ldisc_deref(ld);
527                 }
528         }
529         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
530 }
531
532 EXPORT_SYMBOL_GPL(tty_wakeup);
533
534 /**
535  *      __tty_hangup            -       actual handler for hangup events
536  *      @work: tty device
537  *
538  *      This can be called by the "eventd" kernel thread.  That is process
539  *      synchronous but doesn't hold any locks, so we need to make sure we
540  *      have the appropriate locks for what we're doing.
541  *
542  *      The hangup event clears any pending redirections onto the hung up
543  *      device. It ensures future writes will error and it does the needed
544  *      line discipline hangup and signal delivery. The tty object itself
545  *      remains intact.
546  *
547  *      Locking:
548  *              BTM
549  *                redirect lock for undoing redirection
550  *                file list lock for manipulating list of ttys
551  *                tty_ldisc_lock from called functions
552  *                termios_mutex resetting termios data
553  *                tasklist_lock to walk task list for hangup event
554  *                  ->siglock to protect ->signal/->sighand
555  */
556 void __tty_hangup(struct tty_struct *tty)
557 {
558         struct file *cons_filp = NULL;
559         struct file *filp, *f = NULL;
560         struct task_struct *p;
561         struct tty_file_private *priv;
562         int    closecount = 0, n;
563         unsigned long flags;
564         int refs = 0;
565
566         if (!tty)
567                 return;
568
569
570         spin_lock(&redirect_lock);
571         if (redirect && file_tty(redirect) == tty) {
572                 f = redirect;
573                 redirect = NULL;
574         }
575         spin_unlock(&redirect_lock);
576
577         tty_lock();
578
579         /* some functions below drop BTM, so we need this bit */
580         set_bit(TTY_HUPPING, &tty->flags);
581
582         /* inuse_filps is protected by the single tty lock,
583            this really needs to change if we want to flush the
584            workqueue with the lock held */
585         check_tty_count(tty, "tty_hangup");
586
587         spin_lock(&tty_files_lock);
588         /* This breaks for file handles being sent over AF_UNIX sockets ? */
589         list_for_each_entry(priv, &tty->tty_files, list) {
590                 filp = priv->file;
591                 if (filp->f_op->write == redirected_tty_write)
592                         cons_filp = filp;
593                 if (filp->f_op->write != tty_write)
594                         continue;
595                 closecount++;
596                 __tty_fasync(-1, filp, 0);      /* can't block */
597                 filp->f_op = &hung_up_tty_fops;
598         }
599         spin_unlock(&tty_files_lock);
600
601         /*
602          * it drops BTM and thus races with reopen
603          * we protect the race by TTY_HUPPING
604          */
605         tty_ldisc_hangup(tty);
606
607         read_lock(&tasklist_lock);
608         if (tty->session) {
609                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
610                         spin_lock_irq(&p->sighand->siglock);
611                         if (p->signal->tty == tty) {
612                                 p->signal->tty = NULL;
613                                 /* We defer the dereferences outside fo
614                                    the tasklist lock */
615                                 refs++;
616                         }
617                         if (!p->signal->leader) {
618                                 spin_unlock_irq(&p->sighand->siglock);
619                                 continue;
620                         }
621                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
622                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
623                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
624                         spin_lock_irqsave(&tty->ctrl_lock, flags);
625                         if (tty->pgrp)
626                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
627                         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
628                         spin_unlock_irq(&p->sighand->siglock);
629                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
630         }
631         read_unlock(&tasklist_lock);
632
633         spin_lock_irqsave(&tty->ctrl_lock, flags);
634         clear_bit(TTY_THROTTLED, &tty->flags);
635         clear_bit(TTY_PUSH, &tty->flags);
636         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
637         put_pid(tty->session);
638         put_pid(tty->pgrp);
639         tty->session = NULL;
640         tty->pgrp = NULL;
641         tty->ctrl_status = 0;
642         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
643
644         /* Account for the p->signal references we killed */
645         while (refs--)
646                 tty_kref_put(tty);
647
648         /*
649          * If one of the devices matches a console pointer, we
650          * cannot just call hangup() because that will cause
651          * tty->count and state->count to go out of sync.
652          * So we just call close() the right number of times.
653          */
654         if (cons_filp) {
655                 if (tty->ops->close)
656                         for (n = 0; n < closecount; n++)
657                                 tty->ops->close(tty, cons_filp);
658         } else if (tty->ops->hangup)
659                 (tty->ops->hangup)(tty);
660         /*
661          * We don't want to have driver/ldisc interactions beyond
662          * the ones we did here. The driver layer expects no
663          * calls after ->hangup() from the ldisc side. However we
664          * can't yet guarantee all that.
665          */
666         set_bit(TTY_HUPPED, &tty->flags);
667         clear_bit(TTY_HUPPING, &tty->flags);
668         tty_ldisc_enable(tty);
669
670         tty_unlock();
671
672         if (f)
673                 fput(f);
674 }
675
676 static void do_tty_hangup(struct work_struct *work)
677 {
678         struct tty_struct *tty =
679                 container_of(work, struct tty_struct, hangup_work);
680
681         __tty_hangup(tty);
682 }
683
684 /**
685  *      tty_hangup              -       trigger a hangup event
686  *      @tty: tty to hangup
687  *
688  *      A carrier loss (virtual or otherwise) has occurred on this like
689  *      schedule a hangup sequence to run after this event.
690  */
691
692 void tty_hangup(struct tty_struct *tty)
693 {
694 #ifdef TTY_DEBUG_HANGUP
695         char    buf[64];
696         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
697 #endif
698         schedule_work(&tty->hangup_work);
699 }
700
701 EXPORT_SYMBOL(tty_hangup);
702
703 /**
704  *      tty_vhangup             -       process vhangup
705  *      @tty: tty to hangup
706  *
707  *      The user has asked via system call for the terminal to be hung up.
708  *      We do this synchronously so that when the syscall returns the process
709  *      is complete. That guarantee is necessary for security reasons.
710  */
711
712 void tty_vhangup(struct tty_struct *tty)
713 {
714 #ifdef TTY_DEBUG_HANGUP
715         char    buf[64];
716
717         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
718 #endif
719         __tty_hangup(tty);
720 }
721
722 EXPORT_SYMBOL(tty_vhangup);
723
724
725 /**
726  *      tty_vhangup_self        -       process vhangup for own ctty
727  *
728  *      Perform a vhangup on the current controlling tty
729  */
730
731 void tty_vhangup_self(void)
732 {
733         struct tty_struct *tty;
734
735         tty = get_current_tty();
736         if (tty) {
737                 tty_vhangup(tty);
738                 tty_kref_put(tty);
739         }
740 }
741
742 /**
743  *      tty_hung_up_p           -       was tty hung up
744  *      @filp: file pointer of tty
745  *
746  *      Return true if the tty has been subject to a vhangup or a carrier
747  *      loss
748  */
749
750 int tty_hung_up_p(struct file *filp)
751 {
752         return (filp->f_op == &hung_up_tty_fops);
753 }
754
755 EXPORT_SYMBOL(tty_hung_up_p);
756
757 static void session_clear_tty(struct pid *session)
758 {
759         struct task_struct *p;
760         do_each_pid_task(session, PIDTYPE_SID, p) {
761                 proc_clear_tty(p);
762         } while_each_pid_task(session, PIDTYPE_SID, p);
763 }
764
765 /**
766  *      disassociate_ctty       -       disconnect controlling tty
767  *      @on_exit: true if exiting so need to "hang up" the session
768  *
769  *      This function is typically called only by the session leader, when
770  *      it wants to disassociate itself from its controlling tty.
771  *
772  *      It performs the following functions:
773  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
774  *      (2)  Clears the tty from being controlling the session
775  *      (3)  Clears the controlling tty for all processes in the
776  *              session group.
777  *
778  *      The argument on_exit is set to 1 if called when a process is
779  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
780  *
781  *      Locking:
782  *              BTM is taken for hysterical raisins, and held when
783  *                called from no_tty().
784  *                tty_mutex is taken to protect tty
785  *                ->siglock is taken to protect ->signal/->sighand
786  *                tasklist_lock is taken to walk process list for sessions
787  *                  ->siglock is taken to protect ->signal/->sighand
788  */
789
790 void disassociate_ctty(int on_exit)
791 {
792         struct tty_struct *tty;
793
794         if (!current->signal->leader)
795                 return;
796
797         tty = get_current_tty();
798         if (tty) {
799                 struct pid *tty_pgrp = get_pid(tty->pgrp);
800                 if (on_exit) {
801                         if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
802                                 tty_vhangup(tty);
803                 }
804                 tty_kref_put(tty);
805                 if (tty_pgrp) {
806                         kill_pgrp(tty_pgrp, SIGHUP, on_exit);
807                         if (!on_exit)
808                                 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
809                         put_pid(tty_pgrp);
810                 }
811         } else if (on_exit) {
812                 struct pid *old_pgrp;
813                 spin_lock_irq(&current->sighand->siglock);
814                 old_pgrp = current->signal->tty_old_pgrp;
815                 current->signal->tty_old_pgrp = NULL;
816                 spin_unlock_irq(&current->sighand->siglock);
817                 if (old_pgrp) {
818                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
819                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
820                         put_pid(old_pgrp);
821                 }
822                 return;
823         }
824
825         spin_lock_irq(&current->sighand->siglock);
826         put_pid(current->signal->tty_old_pgrp);
827         current->signal->tty_old_pgrp = NULL;
828         spin_unlock_irq(&current->sighand->siglock);
829
830         tty = get_current_tty();
831         if (tty) {
832                 unsigned long flags;
833                 spin_lock_irqsave(&tty->ctrl_lock, flags);
834                 put_pid(tty->session);
835                 put_pid(tty->pgrp);
836                 tty->session = NULL;
837                 tty->pgrp = NULL;
838                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
839                 tty_kref_put(tty);
840         } else {
841 #ifdef TTY_DEBUG_HANGUP
842                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
843                        " = NULL", tty);
844 #endif
845         }
846
847         /* Now clear signal->tty under the lock */
848         read_lock(&tasklist_lock);
849         session_clear_tty(task_session(current));
850         read_unlock(&tasklist_lock);
851 }
852
853 /**
854  *
855  *      no_tty  - Ensure the current process does not have a controlling tty
856  */
857 void no_tty(void)
858 {
859         struct task_struct *tsk = current;
860         tty_lock();
861         disassociate_ctty(0);
862         tty_unlock();
863         proc_clear_tty(tsk);
864 }
865
866
867 /**
868  *      stop_tty        -       propagate flow control
869  *      @tty: tty to stop
870  *
871  *      Perform flow control to the driver. For PTY/TTY pairs we
872  *      must also propagate the TIOCKPKT status. May be called
873  *      on an already stopped device and will not re-call the driver
874  *      method.
875  *
876  *      This functionality is used by both the line disciplines for
877  *      halting incoming flow and by the driver. It may therefore be
878  *      called from any context, may be under the tty atomic_write_lock
879  *      but not always.
880  *
881  *      Locking:
882  *              Uses the tty control lock internally
883  */
884
885 void stop_tty(struct tty_struct *tty)
886 {
887         unsigned long flags;
888         spin_lock_irqsave(&tty->ctrl_lock, flags);
889         if (tty->stopped) {
890                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
891                 return;
892         }
893         tty->stopped = 1;
894         if (tty->link && tty->link->packet) {
895                 tty->ctrl_status &= ~TIOCPKT_START;
896                 tty->ctrl_status |= TIOCPKT_STOP;
897                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
898         }
899         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
900         if (tty->ops->stop)
901                 (tty->ops->stop)(tty);
902 }
903
904 EXPORT_SYMBOL(stop_tty);
905
906 /**
907  *      start_tty       -       propagate flow control
908  *      @tty: tty to start
909  *
910  *      Start a tty that has been stopped if at all possible. Perform
911  *      any necessary wakeups and propagate the TIOCPKT status. If this
912  *      is the tty was previous stopped and is being started then the
913  *      driver start method is invoked and the line discipline woken.
914  *
915  *      Locking:
916  *              ctrl_lock
917  */
918
919 void start_tty(struct tty_struct *tty)
920 {
921         unsigned long flags;
922         spin_lock_irqsave(&tty->ctrl_lock, flags);
923         if (!tty->stopped || tty->flow_stopped) {
924                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
925                 return;
926         }
927         tty->stopped = 0;
928         if (tty->link && tty->link->packet) {
929                 tty->ctrl_status &= ~TIOCPKT_STOP;
930                 tty->ctrl_status |= TIOCPKT_START;
931                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
932         }
933         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
934         if (tty->ops->start)
935                 (tty->ops->start)(tty);
936         /* If we have a running line discipline it may need kicking */
937         tty_wakeup(tty);
938 }
939
940 EXPORT_SYMBOL(start_tty);
941
942 /**
943  *      tty_read        -       read method for tty device files
944  *      @file: pointer to tty file
945  *      @buf: user buffer
946  *      @count: size of user buffer
947  *      @ppos: unused
948  *
949  *      Perform the read system call function on this terminal device. Checks
950  *      for hung up devices before calling the line discipline method.
951  *
952  *      Locking:
953  *              Locks the line discipline internally while needed. Multiple
954  *      read calls may be outstanding in parallel.
955  */
956
957 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
958                         loff_t *ppos)
959 {
960         int i;
961         struct inode *inode = file->f_path.dentry->d_inode;
962         struct tty_struct *tty = file_tty(file);
963         struct tty_ldisc *ld;
964
965         if (tty_paranoia_check(tty, inode, "tty_read"))
966                 return -EIO;
967         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
968                 return -EIO;
969
970         /* We want to wait for the line discipline to sort out in this
971            situation */
972         ld = tty_ldisc_ref_wait(tty);
973         if (ld->ops->read)
974                 i = (ld->ops->read)(tty, file, buf, count);
975         else
976                 i = -EIO;
977         tty_ldisc_deref(ld);
978         if (i > 0)
979                 inode->i_atime = current_fs_time(inode->i_sb);
980         return i;
981 }
982
983 void tty_write_unlock(struct tty_struct *tty)
984         __releases(&tty->atomic_write_lock)
985 {
986         mutex_unlock(&tty->atomic_write_lock);
987         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
988 }
989
990 int tty_write_lock(struct tty_struct *tty, int ndelay)
991         __acquires(&tty->atomic_write_lock)
992 {
993         if (!mutex_trylock(&tty->atomic_write_lock)) {
994                 if (ndelay)
995                         return -EAGAIN;
996                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
997                         return -ERESTARTSYS;
998         }
999         return 0;
1000 }
1001
1002 /*
1003  * Split writes up in sane blocksizes to avoid
1004  * denial-of-service type attacks
1005  */
1006 static inline ssize_t do_tty_write(
1007         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1008         struct tty_struct *tty,
1009         struct file *file,
1010         const char __user *buf,
1011         size_t count)
1012 {
1013         ssize_t ret, written = 0;
1014         unsigned int chunk;
1015
1016         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1017         if (ret < 0)
1018                 return ret;
1019
1020         /*
1021          * We chunk up writes into a temporary buffer. This
1022          * simplifies low-level drivers immensely, since they
1023          * don't have locking issues and user mode accesses.
1024          *
1025          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1026          * big chunk-size..
1027          *
1028          * The default chunk-size is 2kB, because the NTTY
1029          * layer has problems with bigger chunks. It will
1030          * claim to be able to handle more characters than
1031          * it actually does.
1032          *
1033          * FIXME: This can probably go away now except that 64K chunks
1034          * are too likely to fail unless switched to vmalloc...
1035          */
1036         chunk = 2048;
1037         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1038                 chunk = 65536;
1039         if (count < chunk)
1040                 chunk = count;
1041
1042         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1043         if (tty->write_cnt < chunk) {
1044                 unsigned char *buf_chunk;
1045
1046                 if (chunk < 1024)
1047                         chunk = 1024;
1048
1049                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1050                 if (!buf_chunk) {
1051                         ret = -ENOMEM;
1052                         goto out;
1053                 }
1054                 kfree(tty->write_buf);
1055                 tty->write_cnt = chunk;
1056                 tty->write_buf = buf_chunk;
1057         }
1058
1059         /* Do the write .. */
1060         for (;;) {
1061                 size_t size = count;
1062                 if (size > chunk)
1063                         size = chunk;
1064                 ret = -EFAULT;
1065                 if (copy_from_user(tty->write_buf, buf, size))
1066                         break;
1067                 ret = write(tty, file, tty->write_buf, size);
1068                 if (ret <= 0)
1069                         break;
1070                 written += ret;
1071                 buf += ret;
1072                 count -= ret;
1073                 if (!count)
1074                         break;
1075                 ret = -ERESTARTSYS;
1076                 if (signal_pending(current))
1077                         break;
1078                 cond_resched();
1079         }
1080         if (written) {
1081                 struct inode *inode = file->f_path.dentry->d_inode;
1082                 inode->i_mtime = current_fs_time(inode->i_sb);
1083                 ret = written;
1084         }
1085 out:
1086         tty_write_unlock(tty);
1087         return ret;
1088 }
1089
1090 /**
1091  * tty_write_message - write a message to a certain tty, not just the console.
1092  * @tty: the destination tty_struct
1093  * @msg: the message to write
1094  *
1095  * This is used for messages that need to be redirected to a specific tty.
1096  * We don't put it into the syslog queue right now maybe in the future if
1097  * really needed.
1098  *
1099  * We must still hold the BTM and test the CLOSING flag for the moment.
1100  */
1101
1102 void tty_write_message(struct tty_struct *tty, char *msg)
1103 {
1104         if (tty) {
1105                 mutex_lock(&tty->atomic_write_lock);
1106                 tty_lock();
1107                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1108                         tty_unlock();
1109                         tty->ops->write(tty, msg, strlen(msg));
1110                 } else
1111                         tty_unlock();
1112                 tty_write_unlock(tty);
1113         }
1114         return;
1115 }
1116
1117
1118 /**
1119  *      tty_write               -       write method for tty device file
1120  *      @file: tty file pointer
1121  *      @buf: user data to write
1122  *      @count: bytes to write
1123  *      @ppos: unused
1124  *
1125  *      Write data to a tty device via the line discipline.
1126  *
1127  *      Locking:
1128  *              Locks the line discipline as required
1129  *              Writes to the tty driver are serialized by the atomic_write_lock
1130  *      and are then processed in chunks to the device. The line discipline
1131  *      write method will not be invoked in parallel for each device.
1132  */
1133
1134 static ssize_t tty_write(struct file *file, const char __user *buf,
1135                                                 size_t count, loff_t *ppos)
1136 {
1137         struct inode *inode = file->f_path.dentry->d_inode;
1138         struct tty_struct *tty = file_tty(file);
1139         struct tty_ldisc *ld;
1140         ssize_t ret;
1141
1142         if (tty_paranoia_check(tty, inode, "tty_write"))
1143                 return -EIO;
1144         if (!tty || !tty->ops->write ||
1145                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1146                         return -EIO;
1147         /* Short term debug to catch buggy drivers */
1148         if (tty->ops->write_room == NULL)
1149                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1150                         tty->driver->name);
1151         ld = tty_ldisc_ref_wait(tty);
1152         if (!ld->ops->write)
1153                 ret = -EIO;
1154         else
1155                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1156         tty_ldisc_deref(ld);
1157         return ret;
1158 }
1159
1160 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1161                                                 size_t count, loff_t *ppos)
1162 {
1163         struct file *p = NULL;
1164
1165         spin_lock(&redirect_lock);
1166         if (redirect) {
1167                 get_file(redirect);
1168                 p = redirect;
1169         }
1170         spin_unlock(&redirect_lock);
1171
1172         if (p) {
1173                 ssize_t res;
1174                 res = vfs_write(p, buf, count, &p->f_pos);
1175                 fput(p);
1176                 return res;
1177         }
1178         return tty_write(file, buf, count, ppos);
1179 }
1180
1181 static char ptychar[] = "pqrstuvwxyzabcde";
1182
1183 /**
1184  *      pty_line_name   -       generate name for a pty
1185  *      @driver: the tty driver in use
1186  *      @index: the minor number
1187  *      @p: output buffer of at least 6 bytes
1188  *
1189  *      Generate a name from a driver reference and write it to the output
1190  *      buffer.
1191  *
1192  *      Locking: None
1193  */
1194 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1195 {
1196         int i = index + driver->name_base;
1197         /* ->name is initialized to "ttyp", but "tty" is expected */
1198         sprintf(p, "%s%c%x",
1199                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1200                 ptychar[i >> 4 & 0xf], i & 0xf);
1201 }
1202
1203 /**
1204  *      tty_line_name   -       generate name for a tty
1205  *      @driver: the tty driver in use
1206  *      @index: the minor number
1207  *      @p: output buffer of at least 7 bytes
1208  *
1209  *      Generate a name from a driver reference and write it to the output
1210  *      buffer.
1211  *
1212  *      Locking: None
1213  */
1214 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1215 {
1216         sprintf(p, "%s%d", driver->name, index + driver->name_base);
1217 }
1218
1219 /**
1220  *      tty_driver_lookup_tty() - find an existing tty, if any
1221  *      @driver: the driver for the tty
1222  *      @idx:    the minor number
1223  *
1224  *      Return the tty, if found or ERR_PTR() otherwise.
1225  *
1226  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1227  *      be held until the 'fast-open' is also done. Will change once we
1228  *      have refcounting in the driver and per driver locking
1229  */
1230 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1231                 struct inode *inode, int idx)
1232 {
1233         struct tty_struct *tty;
1234
1235         if (driver->ops->lookup)
1236                 return driver->ops->lookup(driver, inode, idx);
1237
1238         tty = driver->ttys[idx];
1239         return tty;
1240 }
1241
1242 /**
1243  *      tty_init_termios        -  helper for termios setup
1244  *      @tty: the tty to set up
1245  *
1246  *      Initialise the termios structures for this tty. Thus runs under
1247  *      the tty_mutex currently so we can be relaxed about ordering.
1248  */
1249
1250 int tty_init_termios(struct tty_struct *tty)
1251 {
1252         struct ktermios *tp;
1253         int idx = tty->index;
1254
1255         tp = tty->driver->termios[idx];
1256         if (tp == NULL) {
1257                 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1258                 if (tp == NULL)
1259                         return -ENOMEM;
1260                 memcpy(tp, &tty->driver->init_termios,
1261                                                 sizeof(struct ktermios));
1262                 tty->driver->termios[idx] = tp;
1263         }
1264         tty->termios = tp;
1265         tty->termios_locked = tp + 1;
1266
1267         /* Compatibility until drivers always set this */
1268         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1269         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1270         return 0;
1271 }
1272 EXPORT_SYMBOL_GPL(tty_init_termios);
1273
1274 /**
1275  *      tty_driver_install_tty() - install a tty entry in the driver
1276  *      @driver: the driver for the tty
1277  *      @tty: the tty
1278  *
1279  *      Install a tty object into the driver tables. The tty->index field
1280  *      will be set by the time this is called. This method is responsible
1281  *      for ensuring any need additional structures are allocated and
1282  *      configured.
1283  *
1284  *      Locking: tty_mutex for now
1285  */
1286 static int tty_driver_install_tty(struct tty_driver *driver,
1287                                                 struct tty_struct *tty)
1288 {
1289         int idx = tty->index;
1290         int ret;
1291
1292         if (driver->ops->install) {
1293                 ret = driver->ops->install(driver, tty);
1294                 return ret;
1295         }
1296
1297         if (tty_init_termios(tty) == 0) {
1298                 tty_driver_kref_get(driver);
1299                 tty->count++;
1300                 driver->ttys[idx] = tty;
1301                 return 0;
1302         }
1303         return -ENOMEM;
1304 }
1305
1306 /**
1307  *      tty_driver_remove_tty() - remove a tty from the driver tables
1308  *      @driver: the driver for the tty
1309  *      @idx:    the minor number
1310  *
1311  *      Remvoe a tty object from the driver tables. The tty->index field
1312  *      will be set by the time this is called.
1313  *
1314  *      Locking: tty_mutex for now
1315  */
1316 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1317 {
1318         if (driver->ops->remove)
1319                 driver->ops->remove(driver, tty);
1320         else
1321                 driver->ttys[tty->index] = NULL;
1322 }
1323
1324 /*
1325  *      tty_reopen()    - fast re-open of an open tty
1326  *      @tty    - the tty to open
1327  *
1328  *      Return 0 on success, -errno on error.
1329  *
1330  *      Locking: tty_mutex must be held from the time the tty was found
1331  *               till this open completes.
1332  */
1333 static int tty_reopen(struct tty_struct *tty)
1334 {
1335         struct tty_driver *driver = tty->driver;
1336
1337         if (test_bit(TTY_CLOSING, &tty->flags) ||
1338                         test_bit(TTY_HUPPING, &tty->flags) ||
1339                         test_bit(TTY_LDISC_CHANGING, &tty->flags))
1340                 return -EIO;
1341
1342         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1343             driver->subtype == PTY_TYPE_MASTER) {
1344                 /*
1345                  * special case for PTY masters: only one open permitted,
1346                  * and the slave side open count is incremented as well.
1347                  */
1348                 if (tty->count)
1349                         return -EIO;
1350
1351                 tty->link->count++;
1352         }
1353         tty->count++;
1354         tty->driver = driver; /* N.B. why do this every time?? */
1355
1356         mutex_lock(&tty->ldisc_mutex);
1357         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1358         mutex_unlock(&tty->ldisc_mutex);
1359
1360         return 0;
1361 }
1362
1363 /**
1364  *      tty_init_dev            -       initialise a tty device
1365  *      @driver: tty driver we are opening a device on
1366  *      @idx: device index
1367  *      @ret_tty: returned tty structure
1368  *      @first_ok: ok to open a new device (used by ptmx)
1369  *
1370  *      Prepare a tty device. This may not be a "new" clean device but
1371  *      could also be an active device. The pty drivers require special
1372  *      handling because of this.
1373  *
1374  *      Locking:
1375  *              The function is called under the tty_mutex, which
1376  *      protects us from the tty struct or driver itself going away.
1377  *
1378  *      On exit the tty device has the line discipline attached and
1379  *      a reference count of 1. If a pair was created for pty/tty use
1380  *      and the other was a pty master then it too has a reference count of 1.
1381  *
1382  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1383  * failed open.  The new code protects the open with a mutex, so it's
1384  * really quite straightforward.  The mutex locking can probably be
1385  * relaxed for the (most common) case of reopening a tty.
1386  */
1387
1388 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1389                                                                 int first_ok)
1390 {
1391         struct tty_struct *tty;
1392         int retval;
1393
1394         /* Check if pty master is being opened multiple times */
1395         if (driver->subtype == PTY_TYPE_MASTER &&
1396                 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1397                 return ERR_PTR(-EIO);
1398         }
1399
1400         /*
1401          * First time open is complex, especially for PTY devices.
1402          * This code guarantees that either everything succeeds and the
1403          * TTY is ready for operation, or else the table slots are vacated
1404          * and the allocated memory released.  (Except that the termios
1405          * and locked termios may be retained.)
1406          */
1407
1408         if (!try_module_get(driver->owner))
1409                 return ERR_PTR(-ENODEV);
1410
1411         tty = alloc_tty_struct();
1412         if (!tty) {
1413                 retval = -ENOMEM;
1414                 goto err_module_put;
1415         }
1416         initialize_tty_struct(tty, driver, idx);
1417
1418         retval = tty_driver_install_tty(driver, tty);
1419         if (retval < 0)
1420                 goto err_deinit_tty;
1421
1422         /*
1423          * Structures all installed ... call the ldisc open routines.
1424          * If we fail here just call release_tty to clean up.  No need
1425          * to decrement the use counts, as release_tty doesn't care.
1426          */
1427         retval = tty_ldisc_setup(tty, tty->link);
1428         if (retval)
1429                 goto err_release_tty;
1430         return tty;
1431
1432 err_deinit_tty:
1433         deinitialize_tty_struct(tty);
1434         free_tty_struct(tty);
1435 err_module_put:
1436         module_put(driver->owner);
1437         return ERR_PTR(retval);
1438
1439         /* call the tty release_tty routine to clean out this slot */
1440 err_release_tty:
1441         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1442                                  "clearing slot %d\n", idx);
1443         release_tty(tty, idx);
1444         return ERR_PTR(retval);
1445 }
1446
1447 void tty_free_termios(struct tty_struct *tty)
1448 {
1449         struct ktermios *tp;
1450         int idx = tty->index;
1451         /* Kill this flag and push into drivers for locking etc */
1452         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1453                 /* FIXME: Locking on ->termios array */
1454                 tp = tty->termios;
1455                 tty->driver->termios[idx] = NULL;
1456                 kfree(tp);
1457         }
1458 }
1459 EXPORT_SYMBOL(tty_free_termios);
1460
1461 void tty_shutdown(struct tty_struct *tty)
1462 {
1463         tty_driver_remove_tty(tty->driver, tty);
1464         tty_free_termios(tty);
1465 }
1466 EXPORT_SYMBOL(tty_shutdown);
1467
1468 /**
1469  *      release_one_tty         -       release tty structure memory
1470  *      @kref: kref of tty we are obliterating
1471  *
1472  *      Releases memory associated with a tty structure, and clears out the
1473  *      driver table slots. This function is called when a device is no longer
1474  *      in use. It also gets called when setup of a device fails.
1475  *
1476  *      Locking:
1477  *              tty_mutex - sometimes only
1478  *              takes the file list lock internally when working on the list
1479  *      of ttys that the driver keeps.
1480  *
1481  *      This method gets called from a work queue so that the driver private
1482  *      cleanup ops can sleep (needed for USB at least)
1483  */
1484 static void release_one_tty(struct work_struct *work)
1485 {
1486         struct tty_struct *tty =
1487                 container_of(work, struct tty_struct, hangup_work);
1488         struct tty_driver *driver = tty->driver;
1489
1490         if (tty->ops->cleanup)
1491                 tty->ops->cleanup(tty);
1492
1493         tty->magic = 0;
1494         tty_driver_kref_put(driver);
1495         module_put(driver->owner);
1496
1497         spin_lock(&tty_files_lock);
1498         list_del_init(&tty->tty_files);
1499         spin_unlock(&tty_files_lock);
1500
1501         put_pid(tty->pgrp);
1502         put_pid(tty->session);
1503         free_tty_struct(tty);
1504 }
1505
1506 static void queue_release_one_tty(struct kref *kref)
1507 {
1508         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1509
1510         if (tty->ops->shutdown)
1511                 tty->ops->shutdown(tty);
1512         else
1513                 tty_shutdown(tty);
1514
1515         /* The hangup queue is now free so we can reuse it rather than
1516            waste a chunk of memory for each port */
1517         INIT_WORK(&tty->hangup_work, release_one_tty);
1518         schedule_work(&tty->hangup_work);
1519 }
1520
1521 /**
1522  *      tty_kref_put            -       release a tty kref
1523  *      @tty: tty device
1524  *
1525  *      Release a reference to a tty device and if need be let the kref
1526  *      layer destruct the object for us
1527  */
1528
1529 void tty_kref_put(struct tty_struct *tty)
1530 {
1531         if (tty)
1532                 kref_put(&tty->kref, queue_release_one_tty);
1533 }
1534 EXPORT_SYMBOL(tty_kref_put);
1535
1536 /**
1537  *      release_tty             -       release tty structure memory
1538  *
1539  *      Release both @tty and a possible linked partner (think pty pair),
1540  *      and decrement the refcount of the backing module.
1541  *
1542  *      Locking:
1543  *              tty_mutex - sometimes only
1544  *              takes the file list lock internally when working on the list
1545  *      of ttys that the driver keeps.
1546  *              FIXME: should we require tty_mutex is held here ??
1547  *
1548  */
1549 static void release_tty(struct tty_struct *tty, int idx)
1550 {
1551         /* This should always be true but check for the moment */
1552         WARN_ON(tty->index != idx);
1553
1554         if (tty->link)
1555                 tty_kref_put(tty->link);
1556         tty_kref_put(tty);
1557 }
1558
1559 /**
1560  *      tty_release             -       vfs callback for close
1561  *      @inode: inode of tty
1562  *      @filp: file pointer for handle to tty
1563  *
1564  *      Called the last time each file handle is closed that references
1565  *      this tty. There may however be several such references.
1566  *
1567  *      Locking:
1568  *              Takes bkl. See tty_release_dev
1569  *
1570  * Even releasing the tty structures is a tricky business.. We have
1571  * to be very careful that the structures are all released at the
1572  * same time, as interrupts might otherwise get the wrong pointers.
1573  *
1574  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1575  * lead to double frees or releasing memory still in use.
1576  */
1577
1578 int tty_release(struct inode *inode, struct file *filp)
1579 {
1580         struct tty_struct *tty = file_tty(filp);
1581         struct tty_struct *o_tty;
1582         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1583         int     devpts;
1584         int     idx;
1585         char    buf[64];
1586
1587         if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1588                 return 0;
1589
1590         tty_lock();
1591         check_tty_count(tty, "tty_release_dev");
1592
1593         __tty_fasync(-1, filp, 0);
1594
1595         idx = tty->index;
1596         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1597                       tty->driver->subtype == PTY_TYPE_MASTER);
1598         devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1599         o_tty = tty->link;
1600
1601 #ifdef TTY_PARANOIA_CHECK
1602         if (idx < 0 || idx >= tty->driver->num) {
1603                 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1604                                   "free (%s)\n", tty->name);
1605                 tty_unlock();
1606                 return 0;
1607         }
1608         if (!devpts) {
1609                 if (tty != tty->driver->ttys[idx]) {
1610                         tty_unlock();
1611                         printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1612                                "for (%s)\n", idx, tty->name);
1613                         return 0;
1614                 }
1615                 if (tty->termios != tty->driver->termios[idx]) {
1616                         tty_unlock();
1617                         printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1618                                "for (%s)\n",
1619                                idx, tty->name);
1620                         return 0;
1621                 }
1622         }
1623 #endif
1624
1625 #ifdef TTY_DEBUG_HANGUP
1626         printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1627                tty_name(tty, buf), tty->count);
1628 #endif
1629
1630 #ifdef TTY_PARANOIA_CHECK
1631         if (tty->driver->other &&
1632              !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1633                 if (o_tty != tty->driver->other->ttys[idx]) {
1634                         tty_unlock();
1635                         printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1636                                           "not o_tty for (%s)\n",
1637                                idx, tty->name);
1638                         return 0 ;
1639                 }
1640                 if (o_tty->termios != tty->driver->other->termios[idx]) {
1641                         tty_unlock();
1642                         printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1643                                           "not o_termios for (%s)\n",
1644                                idx, tty->name);
1645                         return 0;
1646                 }
1647                 if (o_tty->link != tty) {
1648                         tty_unlock();
1649                         printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1650                         return 0;
1651                 }
1652         }
1653 #endif
1654         if (tty->ops->close)
1655                 tty->ops->close(tty, filp);
1656
1657         tty_unlock();
1658         /*
1659          * Sanity check: if tty->count is going to zero, there shouldn't be
1660          * any waiters on tty->read_wait or tty->write_wait.  We test the
1661          * wait queues and kick everyone out _before_ actually starting to
1662          * close.  This ensures that we won't block while releasing the tty
1663          * structure.
1664          *
1665          * The test for the o_tty closing is necessary, since the master and
1666          * slave sides may close in any order.  If the slave side closes out
1667          * first, its count will be one, since the master side holds an open.
1668          * Thus this test wouldn't be triggered at the time the slave closes,
1669          * so we do it now.
1670          *
1671          * Note that it's possible for the tty to be opened again while we're
1672          * flushing out waiters.  By recalculating the closing flags before
1673          * each iteration we avoid any problems.
1674          */
1675         while (1) {
1676                 /* Guard against races with tty->count changes elsewhere and
1677                    opens on /dev/tty */
1678
1679                 mutex_lock(&tty_mutex);
1680                 tty_lock();
1681                 tty_closing = tty->count <= 1;
1682                 o_tty_closing = o_tty &&
1683                         (o_tty->count <= (pty_master ? 1 : 0));
1684                 do_sleep = 0;
1685
1686                 if (tty_closing) {
1687                         if (waitqueue_active(&tty->read_wait)) {
1688                                 wake_up_poll(&tty->read_wait, POLLIN);
1689                                 do_sleep++;
1690                         }
1691                         if (waitqueue_active(&tty->write_wait)) {
1692                                 wake_up_poll(&tty->write_wait, POLLOUT);
1693                                 do_sleep++;
1694                         }
1695                 }
1696                 if (o_tty_closing) {
1697                         if (waitqueue_active(&o_tty->read_wait)) {
1698                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1699                                 do_sleep++;
1700                         }
1701                         if (waitqueue_active(&o_tty->write_wait)) {
1702                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1703                                 do_sleep++;
1704                         }
1705                 }
1706                 if (!do_sleep)
1707                         break;
1708
1709                 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1710                                     "active!\n", tty_name(tty, buf));
1711                 tty_unlock();
1712                 mutex_unlock(&tty_mutex);
1713                 schedule();
1714         }
1715
1716         /*
1717          * The closing flags are now consistent with the open counts on
1718          * both sides, and we've completed the last operation that could
1719          * block, so it's safe to proceed with closing.
1720          */
1721         if (pty_master) {
1722                 if (--o_tty->count < 0) {
1723                         printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1724                                             "(%d) for %s\n",
1725                                o_tty->count, tty_name(o_tty, buf));
1726                         o_tty->count = 0;
1727                 }
1728         }
1729         if (--tty->count < 0) {
1730                 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1731                        tty->count, tty_name(tty, buf));
1732                 tty->count = 0;
1733         }
1734
1735         /*
1736          * We've decremented tty->count, so we need to remove this file
1737          * descriptor off the tty->tty_files list; this serves two
1738          * purposes:
1739          *  - check_tty_count sees the correct number of file descriptors
1740          *    associated with this tty.
1741          *  - do_tty_hangup no longer sees this file descriptor as
1742          *    something that needs to be handled for hangups.
1743          */
1744         tty_del_file(filp);
1745
1746         /*
1747          * Perform some housekeeping before deciding whether to return.
1748          *
1749          * Set the TTY_CLOSING flag if this was the last open.  In the
1750          * case of a pty we may have to wait around for the other side
1751          * to close, and TTY_CLOSING makes sure we can't be reopened.
1752          */
1753         if (tty_closing)
1754                 set_bit(TTY_CLOSING, &tty->flags);
1755         if (o_tty_closing)
1756                 set_bit(TTY_CLOSING, &o_tty->flags);
1757
1758         /*
1759          * If _either_ side is closing, make sure there aren't any
1760          * processes that still think tty or o_tty is their controlling
1761          * tty.
1762          */
1763         if (tty_closing || o_tty_closing) {
1764                 read_lock(&tasklist_lock);
1765                 session_clear_tty(tty->session);
1766                 if (o_tty)
1767                         session_clear_tty(o_tty->session);
1768                 read_unlock(&tasklist_lock);
1769         }
1770
1771         mutex_unlock(&tty_mutex);
1772
1773         /* check whether both sides are closing ... */
1774         if (!tty_closing || (o_tty && !o_tty_closing)) {
1775                 tty_unlock();
1776                 return 0;
1777         }
1778
1779 #ifdef TTY_DEBUG_HANGUP
1780         printk(KERN_DEBUG "freeing tty structure...");
1781 #endif
1782         /*
1783          * Ask the line discipline code to release its structures
1784          */
1785         tty_ldisc_release(tty, o_tty);
1786         /*
1787          * The release_tty function takes care of the details of clearing
1788          * the slots and preserving the termios structure.
1789          */
1790         release_tty(tty, idx);
1791
1792         /* Make this pty number available for reallocation */
1793         if (devpts)
1794                 devpts_kill_index(inode, idx);
1795         tty_unlock();
1796         return 0;
1797 }
1798
1799 /**
1800  *      tty_open_current_tty - get tty of current task for open
1801  *      @device: device number
1802  *      @filp: file pointer to tty
1803  *      @return: tty of the current task iff @device is /dev/tty
1804  *
1805  *      We cannot return driver and index like for the other nodes because
1806  *      devpts will not work then. It expects inodes to be from devpts FS.
1807  */
1808 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1809 {
1810         struct tty_struct *tty;
1811
1812         if (device != MKDEV(TTYAUX_MAJOR, 0))
1813                 return NULL;
1814
1815         tty = get_current_tty();
1816         if (!tty)
1817                 return ERR_PTR(-ENXIO);
1818
1819         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1820         /* noctty = 1; */
1821         tty_kref_put(tty);
1822         /* FIXME: we put a reference and return a TTY! */
1823         return tty;
1824 }
1825
1826 /**
1827  *      tty_lookup_driver - lookup a tty driver for a given device file
1828  *      @device: device number
1829  *      @filp: file pointer to tty
1830  *      @noctty: set if the device should not become a controlling tty
1831  *      @index: index for the device in the @return driver
1832  *      @return: driver for this inode (with increased refcount)
1833  *
1834  *      If @return is not erroneous, the caller is responsible to decrement the
1835  *      refcount by tty_driver_kref_put.
1836  *
1837  *      Locking: tty_mutex protects get_tty_driver
1838  */
1839 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1840                 int *noctty, int *index)
1841 {
1842         struct tty_driver *driver;
1843
1844         switch (device) {
1845 #ifdef CONFIG_VT
1846         case MKDEV(TTY_MAJOR, 0): {
1847                 extern struct tty_driver *console_driver;
1848                 driver = tty_driver_kref_get(console_driver);
1849                 *index = fg_console;
1850                 *noctty = 1;
1851                 break;
1852         }
1853 #endif
1854         case MKDEV(TTYAUX_MAJOR, 1): {
1855                 struct tty_driver *console_driver = console_device(index);
1856                 if (console_driver) {
1857                         driver = tty_driver_kref_get(console_driver);
1858                         if (driver) {
1859                                 /* Don't let /dev/console block */
1860                                 filp->f_flags |= O_NONBLOCK;
1861                                 *noctty = 1;
1862                                 break;
1863                         }
1864                 }
1865                 return ERR_PTR(-ENODEV);
1866         }
1867         default:
1868                 driver = get_tty_driver(device, index);
1869                 if (!driver)
1870                         return ERR_PTR(-ENODEV);
1871                 break;
1872         }
1873         return driver;
1874 }
1875
1876 /**
1877  *      tty_open                -       open a tty device
1878  *      @inode: inode of device file
1879  *      @filp: file pointer to tty
1880  *
1881  *      tty_open and tty_release keep up the tty count that contains the
1882  *      number of opens done on a tty. We cannot use the inode-count, as
1883  *      different inodes might point to the same tty.
1884  *
1885  *      Open-counting is needed for pty masters, as well as for keeping
1886  *      track of serial lines: DTR is dropped when the last close happens.
1887  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1888  *
1889  *      The termios state of a pty is reset on first open so that
1890  *      settings don't persist across reuse.
1891  *
1892  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1893  *               tty->count should protect the rest.
1894  *               ->siglock protects ->signal/->sighand
1895  */
1896
1897 static int tty_open(struct inode *inode, struct file *filp)
1898 {
1899         struct tty_struct *tty;
1900         int noctty, retval;
1901         struct tty_driver *driver = NULL;
1902         int index;
1903         dev_t device = inode->i_rdev;
1904         unsigned saved_flags = filp->f_flags;
1905
1906         nonseekable_open(inode, filp);
1907
1908 retry_open:
1909         retval = tty_alloc_file(filp);
1910         if (retval)
1911                 return -ENOMEM;
1912
1913         noctty = filp->f_flags & O_NOCTTY;
1914         index  = -1;
1915         retval = 0;
1916
1917         mutex_lock(&tty_mutex);
1918         tty_lock();
1919
1920         tty = tty_open_current_tty(device, filp);
1921         if (IS_ERR(tty)) {
1922                 retval = PTR_ERR(tty);
1923                 goto err_unlock;
1924         } else if (!tty) {
1925                 driver = tty_lookup_driver(device, filp, &noctty, &index);
1926                 if (IS_ERR(driver)) {
1927                         retval = PTR_ERR(driver);
1928                         goto err_unlock;
1929                 }
1930
1931                 /* check whether we're reopening an existing tty */
1932                 tty = tty_driver_lookup_tty(driver, inode, index);
1933                 if (IS_ERR(tty)) {
1934                         retval = PTR_ERR(tty);
1935                         goto err_unlock;
1936                 }
1937         }
1938
1939         if (tty) {
1940                 retval = tty_reopen(tty);
1941                 if (retval)
1942                         tty = ERR_PTR(retval);
1943         } else
1944                 tty = tty_init_dev(driver, index, 0);
1945
1946         mutex_unlock(&tty_mutex);
1947         if (driver)
1948                 tty_driver_kref_put(driver);
1949         if (IS_ERR(tty)) {
1950                 tty_unlock();
1951                 retval = PTR_ERR(tty);
1952                 goto err_file;
1953         }
1954
1955         tty_add_file(tty, filp);
1956
1957         check_tty_count(tty, "tty_open");
1958         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1959             tty->driver->subtype == PTY_TYPE_MASTER)
1960                 noctty = 1;
1961 #ifdef TTY_DEBUG_HANGUP
1962         printk(KERN_DEBUG "opening %s...", tty->name);
1963 #endif
1964         if (tty->ops->open)
1965                 retval = tty->ops->open(tty, filp);
1966         else
1967                 retval = -ENODEV;
1968         filp->f_flags = saved_flags;
1969
1970         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1971                                                 !capable(CAP_SYS_ADMIN))
1972                 retval = -EBUSY;
1973
1974         if (retval) {
1975 #ifdef TTY_DEBUG_HANGUP
1976                 printk(KERN_DEBUG "error %d in opening %s...", retval,
1977                        tty->name);
1978 #endif
1979                 tty_unlock(); /* need to call tty_release without BTM */
1980                 tty_release(inode, filp);
1981                 if (retval != -ERESTARTSYS)
1982                         return retval;
1983
1984                 if (signal_pending(current))
1985                         return retval;
1986
1987                 schedule();
1988                 /*
1989                  * Need to reset f_op in case a hangup happened.
1990                  */
1991                 tty_lock();
1992                 if (filp->f_op == &hung_up_tty_fops)
1993                         filp->f_op = &tty_fops;
1994                 tty_unlock();
1995                 goto retry_open;
1996         }
1997         tty_unlock();
1998
1999
2000         mutex_lock(&tty_mutex);
2001         tty_lock();
2002         spin_lock_irq(&current->sighand->siglock);
2003         if (!noctty &&
2004             current->signal->leader &&
2005             !current->signal->tty &&
2006             tty->session == NULL)
2007                 __proc_set_tty(current, tty);
2008         spin_unlock_irq(&current->sighand->siglock);
2009         tty_unlock();
2010         mutex_unlock(&tty_mutex);
2011         return 0;
2012 err_unlock:
2013         tty_unlock();
2014         mutex_unlock(&tty_mutex);
2015         /* after locks to avoid deadlock */
2016         if (!IS_ERR_OR_NULL(driver))
2017                 tty_driver_kref_put(driver);
2018 err_file:
2019         tty_free_file(filp);
2020         return retval;
2021 }
2022
2023
2024
2025 /**
2026  *      tty_poll        -       check tty status
2027  *      @filp: file being polled
2028  *      @wait: poll wait structures to update
2029  *
2030  *      Call the line discipline polling method to obtain the poll
2031  *      status of the device.
2032  *
2033  *      Locking: locks called line discipline but ldisc poll method
2034  *      may be re-entered freely by other callers.
2035  */
2036
2037 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2038 {
2039         struct tty_struct *tty = file_tty(filp);
2040         struct tty_ldisc *ld;
2041         int ret = 0;
2042
2043         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2044                 return 0;
2045
2046         ld = tty_ldisc_ref_wait(tty);
2047         if (ld->ops->poll)
2048                 ret = (ld->ops->poll)(tty, filp, wait);
2049         tty_ldisc_deref(ld);
2050         return ret;
2051 }
2052
2053 static int __tty_fasync(int fd, struct file *filp, int on)
2054 {
2055         struct tty_struct *tty = file_tty(filp);
2056         unsigned long flags;
2057         int retval = 0;
2058
2059         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2060                 goto out;
2061
2062         retval = fasync_helper(fd, filp, on, &tty->fasync);
2063         if (retval <= 0)
2064                 goto out;
2065
2066         if (on) {
2067                 enum pid_type type;
2068                 struct pid *pid;
2069                 if (!waitqueue_active(&tty->read_wait))
2070                         tty->minimum_to_wake = 1;
2071                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2072                 if (tty->pgrp) {
2073                         pid = tty->pgrp;
2074                         type = PIDTYPE_PGID;
2075                 } else {
2076                         pid = task_pid(current);
2077                         type = PIDTYPE_PID;
2078                 }
2079                 get_pid(pid);
2080                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2081                 retval = __f_setown(filp, pid, type, 0);
2082                 put_pid(pid);
2083                 if (retval)
2084                         goto out;
2085         } else {
2086                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2087                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2088         }
2089         retval = 0;
2090 out:
2091         return retval;
2092 }
2093
2094 static int tty_fasync(int fd, struct file *filp, int on)
2095 {
2096         int retval;
2097         tty_lock();
2098         retval = __tty_fasync(fd, filp, on);
2099         tty_unlock();
2100         return retval;
2101 }
2102
2103 /**
2104  *      tiocsti                 -       fake input character
2105  *      @tty: tty to fake input into
2106  *      @p: pointer to character
2107  *
2108  *      Fake input to a tty device. Does the necessary locking and
2109  *      input management.
2110  *
2111  *      FIXME: does not honour flow control ??
2112  *
2113  *      Locking:
2114  *              Called functions take tty_ldisc_lock
2115  *              current->signal->tty check is safe without locks
2116  *
2117  *      FIXME: may race normal receive processing
2118  */
2119
2120 static int tiocsti(struct tty_struct *tty, char __user *p)
2121 {
2122         char ch, mbz = 0;
2123         struct tty_ldisc *ld;
2124
2125         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2126                 return -EPERM;
2127         if (get_user(ch, p))
2128                 return -EFAULT;
2129         tty_audit_tiocsti(tty, ch);
2130         ld = tty_ldisc_ref_wait(tty);
2131         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2132         tty_ldisc_deref(ld);
2133         return 0;
2134 }
2135
2136 /**
2137  *      tiocgwinsz              -       implement window query ioctl
2138  *      @tty; tty
2139  *      @arg: user buffer for result
2140  *
2141  *      Copies the kernel idea of the window size into the user buffer.
2142  *
2143  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2144  *              is consistent.
2145  */
2146
2147 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2148 {
2149         int err;
2150
2151         mutex_lock(&tty->termios_mutex);
2152         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2153         mutex_unlock(&tty->termios_mutex);
2154
2155         return err ? -EFAULT: 0;
2156 }
2157
2158 /**
2159  *      tty_do_resize           -       resize event
2160  *      @tty: tty being resized
2161  *      @rows: rows (character)
2162  *      @cols: cols (character)
2163  *
2164  *      Update the termios variables and send the necessary signals to
2165  *      peform a terminal resize correctly
2166  */
2167
2168 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2169 {
2170         struct pid *pgrp;
2171         unsigned long flags;
2172
2173         /* Lock the tty */
2174         mutex_lock(&tty->termios_mutex);
2175         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2176                 goto done;
2177         /* Get the PID values and reference them so we can
2178            avoid holding the tty ctrl lock while sending signals */
2179         spin_lock_irqsave(&tty->ctrl_lock, flags);
2180         pgrp = get_pid(tty->pgrp);
2181         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2182
2183         if (pgrp)
2184                 kill_pgrp(pgrp, SIGWINCH, 1);
2185         put_pid(pgrp);
2186
2187         tty->winsize = *ws;
2188 done:
2189         mutex_unlock(&tty->termios_mutex);
2190         return 0;
2191 }
2192
2193 /**
2194  *      tiocswinsz              -       implement window size set ioctl
2195  *      @tty; tty side of tty
2196  *      @arg: user buffer for result
2197  *
2198  *      Copies the user idea of the window size to the kernel. Traditionally
2199  *      this is just advisory information but for the Linux console it
2200  *      actually has driver level meaning and triggers a VC resize.
2201  *
2202  *      Locking:
2203  *              Driver dependent. The default do_resize method takes the
2204  *      tty termios mutex and ctrl_lock. The console takes its own lock
2205  *      then calls into the default method.
2206  */
2207
2208 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2209 {
2210         struct winsize tmp_ws;
2211         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2212                 return -EFAULT;
2213
2214         if (tty->ops->resize)
2215                 return tty->ops->resize(tty, &tmp_ws);
2216         else
2217                 return tty_do_resize(tty, &tmp_ws);
2218 }
2219
2220 /**
2221  *      tioccons        -       allow admin to move logical console
2222  *      @file: the file to become console
2223  *
2224  *      Allow the administrator to move the redirected console device
2225  *
2226  *      Locking: uses redirect_lock to guard the redirect information
2227  */
2228
2229 static int tioccons(struct file *file)
2230 {
2231         if (!capable(CAP_SYS_ADMIN))
2232                 return -EPERM;
2233         if (file->f_op->write == redirected_tty_write) {
2234                 struct file *f;
2235                 spin_lock(&redirect_lock);
2236                 f = redirect;
2237                 redirect = NULL;
2238                 spin_unlock(&redirect_lock);
2239                 if (f)
2240                         fput(f);
2241                 return 0;
2242         }
2243         spin_lock(&redirect_lock);
2244         if (redirect) {
2245                 spin_unlock(&redirect_lock);
2246                 return -EBUSY;
2247         }
2248         get_file(file);
2249         redirect = file;
2250         spin_unlock(&redirect_lock);
2251         return 0;
2252 }
2253
2254 /**
2255  *      fionbio         -       non blocking ioctl
2256  *      @file: file to set blocking value
2257  *      @p: user parameter
2258  *
2259  *      Historical tty interfaces had a blocking control ioctl before
2260  *      the generic functionality existed. This piece of history is preserved
2261  *      in the expected tty API of posix OS's.
2262  *
2263  *      Locking: none, the open file handle ensures it won't go away.
2264  */
2265
2266 static int fionbio(struct file *file, int __user *p)
2267 {
2268         int nonblock;
2269
2270         if (get_user(nonblock, p))
2271                 return -EFAULT;
2272
2273         spin_lock(&file->f_lock);
2274         if (nonblock)
2275                 file->f_flags |= O_NONBLOCK;
2276         else
2277                 file->f_flags &= ~O_NONBLOCK;
2278         spin_unlock(&file->f_lock);
2279         return 0;
2280 }
2281
2282 /**
2283  *      tiocsctty       -       set controlling tty
2284  *      @tty: tty structure
2285  *      @arg: user argument
2286  *
2287  *      This ioctl is used to manage job control. It permits a session
2288  *      leader to set this tty as the controlling tty for the session.
2289  *
2290  *      Locking:
2291  *              Takes tty_mutex() to protect tty instance
2292  *              Takes tasklist_lock internally to walk sessions
2293  *              Takes ->siglock() when updating signal->tty
2294  */
2295
2296 static int tiocsctty(struct tty_struct *tty, int arg)
2297 {
2298         int ret = 0;
2299         if (current->signal->leader && (task_session(current) == tty->session))
2300                 return ret;
2301
2302         mutex_lock(&tty_mutex);
2303         /*
2304          * The process must be a session leader and
2305          * not have a controlling tty already.
2306          */
2307         if (!current->signal->leader || current->signal->tty) {
2308                 ret = -EPERM;
2309                 goto unlock;
2310         }
2311
2312         if (tty->session) {
2313                 /*
2314                  * This tty is already the controlling
2315                  * tty for another session group!
2316                  */
2317                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2318                         /*
2319                          * Steal it away
2320                          */
2321                         read_lock(&tasklist_lock);
2322                         session_clear_tty(tty->session);
2323                         read_unlock(&tasklist_lock);
2324                 } else {
2325                         ret = -EPERM;
2326                         goto unlock;
2327                 }
2328         }
2329         proc_set_tty(current, tty);
2330 unlock:
2331         mutex_unlock(&tty_mutex);
2332         return ret;
2333 }
2334
2335 /**
2336  *      tty_get_pgrp    -       return a ref counted pgrp pid
2337  *      @tty: tty to read
2338  *
2339  *      Returns a refcounted instance of the pid struct for the process
2340  *      group controlling the tty.
2341  */
2342
2343 struct pid *tty_get_pgrp(struct tty_struct *tty)
2344 {
2345         unsigned long flags;
2346         struct pid *pgrp;
2347
2348         spin_lock_irqsave(&tty->ctrl_lock, flags);
2349         pgrp = get_pid(tty->pgrp);
2350         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2351
2352         return pgrp;
2353 }
2354 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2355
2356 /**
2357  *      tiocgpgrp               -       get process group
2358  *      @tty: tty passed by user
2359  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2360  *      @p: returned pid
2361  *
2362  *      Obtain the process group of the tty. If there is no process group
2363  *      return an error.
2364  *
2365  *      Locking: none. Reference to current->signal->tty is safe.
2366  */
2367
2368 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2369 {
2370         struct pid *pid;
2371         int ret;
2372         /*
2373          * (tty == real_tty) is a cheap way of
2374          * testing if the tty is NOT a master pty.
2375          */
2376         if (tty == real_tty && current->signal->tty != real_tty)
2377                 return -ENOTTY;
2378         pid = tty_get_pgrp(real_tty);
2379         ret =  put_user(pid_vnr(pid), p);
2380         put_pid(pid);
2381         return ret;
2382 }
2383
2384 /**
2385  *      tiocspgrp               -       attempt to set process group
2386  *      @tty: tty passed by user
2387  *      @real_tty: tty side device matching tty passed by user
2388  *      @p: pid pointer
2389  *
2390  *      Set the process group of the tty to the session passed. Only
2391  *      permitted where the tty session is our session.
2392  *
2393  *      Locking: RCU, ctrl lock
2394  */
2395
2396 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2397 {
2398         struct pid *pgrp;
2399         pid_t pgrp_nr;
2400         int retval = tty_check_change(real_tty);
2401         unsigned long flags;
2402
2403         if (retval == -EIO)
2404                 return -ENOTTY;
2405         if (retval)
2406                 return retval;
2407         if (!current->signal->tty ||
2408             (current->signal->tty != real_tty) ||
2409             (real_tty->session != task_session(current)))
2410                 return -ENOTTY;
2411         if (get_user(pgrp_nr, p))
2412                 return -EFAULT;
2413         if (pgrp_nr < 0)
2414                 return -EINVAL;
2415         rcu_read_lock();
2416         pgrp = find_vpid(pgrp_nr);
2417         retval = -ESRCH;
2418         if (!pgrp)
2419                 goto out_unlock;
2420         retval = -EPERM;
2421         if (session_of_pgrp(pgrp) != task_session(current))
2422                 goto out_unlock;
2423         retval = 0;
2424         spin_lock_irqsave(&tty->ctrl_lock, flags);
2425         put_pid(real_tty->pgrp);
2426         real_tty->pgrp = get_pid(pgrp);
2427         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2428 out_unlock:
2429         rcu_read_unlock();
2430         return retval;
2431 }
2432
2433 /**
2434  *      tiocgsid                -       get session id
2435  *      @tty: tty passed by user
2436  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2437  *      @p: pointer to returned session id
2438  *
2439  *      Obtain the session id of the tty. If there is no session
2440  *      return an error.
2441  *
2442  *      Locking: none. Reference to current->signal->tty is safe.
2443  */
2444
2445 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2446 {
2447         /*
2448          * (tty == real_tty) is a cheap way of
2449          * testing if the tty is NOT a master pty.
2450         */
2451         if (tty == real_tty && current->signal->tty != real_tty)
2452                 return -ENOTTY;
2453         if (!real_tty->session)
2454                 return -ENOTTY;
2455         return put_user(pid_vnr(real_tty->session), p);
2456 }
2457
2458 /**
2459  *      tiocsetd        -       set line discipline
2460  *      @tty: tty device
2461  *      @p: pointer to user data
2462  *
2463  *      Set the line discipline according to user request.
2464  *
2465  *      Locking: see tty_set_ldisc, this function is just a helper
2466  */
2467
2468 static int tiocsetd(struct tty_struct *tty, int __user *p)
2469 {
2470         int ldisc;
2471         int ret;
2472
2473         if (get_user(ldisc, p))
2474                 return -EFAULT;
2475
2476         ret = tty_set_ldisc(tty, ldisc);
2477
2478         return ret;
2479 }
2480
2481 /**
2482  *      send_break      -       performed time break
2483  *      @tty: device to break on
2484  *      @duration: timeout in mS
2485  *
2486  *      Perform a timed break on hardware that lacks its own driver level
2487  *      timed break functionality.
2488  *
2489  *      Locking:
2490  *              atomic_write_lock serializes
2491  *
2492  */
2493
2494 static int send_break(struct tty_struct *tty, unsigned int duration)
2495 {
2496         int retval;
2497
2498         if (tty->ops->break_ctl == NULL)
2499                 return 0;
2500
2501         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2502                 retval = tty->ops->break_ctl(tty, duration);
2503         else {
2504                 /* Do the work ourselves */
2505                 if (tty_write_lock(tty, 0) < 0)
2506                         return -EINTR;
2507                 retval = tty->ops->break_ctl(tty, -1);
2508                 if (retval)
2509                         goto out;
2510                 if (!signal_pending(current))
2511                         msleep_interruptible(duration);
2512                 retval = tty->ops->break_ctl(tty, 0);
2513 out:
2514                 tty_write_unlock(tty);
2515                 if (signal_pending(current))
2516                         retval = -EINTR;
2517         }
2518         return retval;
2519 }
2520
2521 /**
2522  *      tty_tiocmget            -       get modem status
2523  *      @tty: tty device
2524  *      @file: user file pointer
2525  *      @p: pointer to result
2526  *
2527  *      Obtain the modem status bits from the tty driver if the feature
2528  *      is supported. Return -EINVAL if it is not available.
2529  *
2530  *      Locking: none (up to the driver)
2531  */
2532
2533 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2534 {
2535         int retval = -EINVAL;
2536
2537         if (tty->ops->tiocmget) {
2538                 retval = tty->ops->tiocmget(tty);
2539
2540                 if (retval >= 0)
2541                         retval = put_user(retval, p);
2542         }
2543         return retval;
2544 }
2545
2546 /**
2547  *      tty_tiocmset            -       set modem status
2548  *      @tty: tty device
2549  *      @cmd: command - clear bits, set bits or set all
2550  *      @p: pointer to desired bits
2551  *
2552  *      Set the modem status bits from the tty driver if the feature
2553  *      is supported. Return -EINVAL if it is not available.
2554  *
2555  *      Locking: none (up to the driver)
2556  */
2557
2558 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2559              unsigned __user *p)
2560 {
2561         int retval;
2562         unsigned int set, clear, val;
2563
2564         if (tty->ops->tiocmset == NULL)
2565                 return -EINVAL;
2566
2567         retval = get_user(val, p);
2568         if (retval)
2569                 return retval;
2570         set = clear = 0;
2571         switch (cmd) {
2572         case TIOCMBIS:
2573                 set = val;
2574                 break;
2575         case TIOCMBIC:
2576                 clear = val;
2577                 break;
2578         case TIOCMSET:
2579                 set = val;
2580                 clear = ~val;
2581                 break;
2582         }
2583         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2584         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2585         return tty->ops->tiocmset(tty, set, clear);
2586 }
2587
2588 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2589 {
2590         int retval = -EINVAL;
2591         struct serial_icounter_struct icount;
2592         memset(&icount, 0, sizeof(icount));
2593         if (tty->ops->get_icount)
2594                 retval = tty->ops->get_icount(tty, &icount);
2595         if (retval != 0)
2596                 return retval;
2597         if (copy_to_user(arg, &icount, sizeof(icount)))
2598                 return -EFAULT;
2599         return 0;
2600 }
2601
2602 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2603 {
2604         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2605             tty->driver->subtype == PTY_TYPE_MASTER)
2606                 tty = tty->link;
2607         return tty;
2608 }
2609 EXPORT_SYMBOL(tty_pair_get_tty);
2610
2611 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2612 {
2613         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2614             tty->driver->subtype == PTY_TYPE_MASTER)
2615             return tty;
2616         return tty->link;
2617 }
2618 EXPORT_SYMBOL(tty_pair_get_pty);
2619
2620 /*
2621  * Split this up, as gcc can choke on it otherwise..
2622  */
2623 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2624 {
2625         struct tty_struct *tty = file_tty(file);
2626         struct tty_struct *real_tty;
2627         void __user *p = (void __user *)arg;
2628         int retval;
2629         struct tty_ldisc *ld;
2630         struct inode *inode = file->f_dentry->d_inode;
2631
2632         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2633                 return -EINVAL;
2634
2635         real_tty = tty_pair_get_tty(tty);
2636
2637         /*
2638          * Factor out some common prep work
2639          */
2640         switch (cmd) {
2641         case TIOCSETD:
2642         case TIOCSBRK:
2643         case TIOCCBRK:
2644         case TCSBRK:
2645         case TCSBRKP:
2646                 retval = tty_check_change(tty);
2647                 if (retval)
2648                         return retval;
2649                 if (cmd != TIOCCBRK) {
2650                         tty_wait_until_sent(tty, 0);
2651                         if (signal_pending(current))
2652                                 return -EINTR;
2653                 }
2654                 break;
2655         }
2656
2657         /*
2658          *      Now do the stuff.
2659          */
2660         switch (cmd) {
2661         case TIOCSTI:
2662                 return tiocsti(tty, p);
2663         case TIOCGWINSZ:
2664                 return tiocgwinsz(real_tty, p);
2665         case TIOCSWINSZ:
2666                 return tiocswinsz(real_tty, p);
2667         case TIOCCONS:
2668                 return real_tty != tty ? -EINVAL : tioccons(file);
2669         case FIONBIO:
2670                 return fionbio(file, p);
2671         case TIOCEXCL:
2672                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2673                 return 0;
2674         case TIOCNXCL:
2675                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2676                 return 0;
2677         case TIOCNOTTY:
2678                 if (current->signal->tty != tty)
2679                         return -ENOTTY;
2680                 no_tty();
2681                 return 0;
2682         case TIOCSCTTY:
2683                 return tiocsctty(tty, arg);
2684         case TIOCGPGRP:
2685                 return tiocgpgrp(tty, real_tty, p);
2686         case TIOCSPGRP:
2687                 return tiocspgrp(tty, real_tty, p);
2688         case TIOCGSID:
2689                 return tiocgsid(tty, real_tty, p);
2690         case TIOCGETD:
2691                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2692         case TIOCSETD:
2693                 return tiocsetd(tty, p);
2694         case TIOCVHANGUP:
2695                 if (!capable(CAP_SYS_ADMIN))
2696                         return -EPERM;
2697                 tty_vhangup(tty);
2698                 return 0;
2699         case TIOCGDEV:
2700         {
2701                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2702                 return put_user(ret, (unsigned int __user *)p);
2703         }
2704         /*
2705          * Break handling
2706          */
2707         case TIOCSBRK:  /* Turn break on, unconditionally */
2708                 if (tty->ops->break_ctl)
2709                         return tty->ops->break_ctl(tty, -1);
2710                 return 0;
2711         case TIOCCBRK:  /* Turn break off, unconditionally */
2712                 if (tty->ops->break_ctl)
2713                         return tty->ops->break_ctl(tty, 0);
2714                 return 0;
2715         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2716                 /* non-zero arg means wait for all output data
2717                  * to be sent (performed above) but don't send break.
2718                  * This is used by the tcdrain() termios function.
2719                  */
2720                 if (!arg)
2721                         return send_break(tty, 250);
2722                 return 0;
2723         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2724                 return send_break(tty, arg ? arg*100 : 250);
2725
2726         case TIOCMGET:
2727                 return tty_tiocmget(tty, p);
2728         case TIOCMSET:
2729         case TIOCMBIC:
2730         case TIOCMBIS:
2731                 return tty_tiocmset(tty, cmd, p);
2732         case TIOCGICOUNT:
2733                 retval = tty_tiocgicount(tty, p);
2734                 /* For the moment allow fall through to the old method */
2735                 if (retval != -EINVAL)
2736                         return retval;
2737                 break;
2738         case TCFLSH:
2739                 switch (arg) {
2740                 case TCIFLUSH:
2741                 case TCIOFLUSH:
2742                 /* flush tty buffer and allow ldisc to process ioctl */
2743                         tty_buffer_flush(tty);
2744                         break;
2745                 }
2746                 break;
2747         }
2748         if (tty->ops->ioctl) {
2749                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2750                 if (retval != -ENOIOCTLCMD)
2751                         return retval;
2752         }
2753         ld = tty_ldisc_ref_wait(tty);
2754         retval = -EINVAL;
2755         if (ld->ops->ioctl) {
2756                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2757                 if (retval == -ENOIOCTLCMD)
2758                         retval = -EINVAL;
2759         }
2760         tty_ldisc_deref(ld);
2761         return retval;
2762 }
2763
2764 #ifdef CONFIG_COMPAT
2765 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2766                                 unsigned long arg)
2767 {
2768         struct inode *inode = file->f_dentry->d_inode;
2769         struct tty_struct *tty = file_tty(file);
2770         struct tty_ldisc *ld;
2771         int retval = -ENOIOCTLCMD;
2772
2773         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2774                 return -EINVAL;
2775
2776         if (tty->ops->compat_ioctl) {
2777                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2778                 if (retval != -ENOIOCTLCMD)
2779                         return retval;
2780         }
2781
2782         ld = tty_ldisc_ref_wait(tty);
2783         if (ld->ops->compat_ioctl)
2784                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2785         else
2786                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2787         tty_ldisc_deref(ld);
2788
2789         return retval;
2790 }
2791 #endif
2792
2793 /*
2794  * This implements the "Secure Attention Key" ---  the idea is to
2795  * prevent trojan horses by killing all processes associated with this
2796  * tty when the user hits the "Secure Attention Key".  Required for
2797  * super-paranoid applications --- see the Orange Book for more details.
2798  *
2799  * This code could be nicer; ideally it should send a HUP, wait a few
2800  * seconds, then send a INT, and then a KILL signal.  But you then
2801  * have to coordinate with the init process, since all processes associated
2802  * with the current tty must be dead before the new getty is allowed
2803  * to spawn.
2804  *
2805  * Now, if it would be correct ;-/ The current code has a nasty hole -
2806  * it doesn't catch files in flight. We may send the descriptor to ourselves
2807  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2808  *
2809  * Nasty bug: do_SAK is being called in interrupt context.  This can
2810  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2811  */
2812 void __do_SAK(struct tty_struct *tty)
2813 {
2814 #ifdef TTY_SOFT_SAK
2815         tty_hangup(tty);
2816 #else
2817         struct task_struct *g, *p;
2818         struct pid *session;
2819         int             i;
2820         struct file     *filp;
2821         struct fdtable *fdt;
2822
2823         if (!tty)
2824                 return;
2825         session = tty->session;
2826
2827         tty_ldisc_flush(tty);
2828
2829         tty_driver_flush_buffer(tty);
2830
2831         read_lock(&tasklist_lock);
2832         /* Kill the entire session */
2833         do_each_pid_task(session, PIDTYPE_SID, p) {
2834                 printk(KERN_NOTICE "SAK: killed process %d"
2835                         " (%s): task_session(p)==tty->session\n",
2836                         task_pid_nr(p), p->comm);
2837                 send_sig(SIGKILL, p, 1);
2838         } while_each_pid_task(session, PIDTYPE_SID, p);
2839         /* Now kill any processes that happen to have the
2840          * tty open.
2841          */
2842         do_each_thread(g, p) {
2843                 if (p->signal->tty == tty) {
2844                         printk(KERN_NOTICE "SAK: killed process %d"
2845                             " (%s): task_session(p)==tty->session\n",
2846                             task_pid_nr(p), p->comm);
2847                         send_sig(SIGKILL, p, 1);
2848                         continue;
2849                 }
2850                 task_lock(p);
2851                 if (p->files) {
2852                         /*
2853                          * We don't take a ref to the file, so we must
2854                          * hold ->file_lock instead.
2855                          */
2856                         spin_lock(&p->files->file_lock);
2857                         fdt = files_fdtable(p->files);
2858                         for (i = 0; i < fdt->max_fds; i++) {
2859                                 filp = fcheck_files(p->files, i);
2860                                 if (!filp)
2861                                         continue;
2862                                 if (filp->f_op->read == tty_read &&
2863                                     file_tty(filp) == tty) {
2864                                         printk(KERN_NOTICE "SAK: killed process %d"
2865                                             " (%s): fd#%d opened to the tty\n",
2866                                             task_pid_nr(p), p->comm, i);
2867                                         force_sig(SIGKILL, p);
2868                                         break;
2869                                 }
2870                         }
2871                         spin_unlock(&p->files->file_lock);
2872                 }
2873                 task_unlock(p);
2874         } while_each_thread(g, p);
2875         read_unlock(&tasklist_lock);
2876 #endif
2877 }
2878
2879 static void do_SAK_work(struct work_struct *work)
2880 {
2881         struct tty_struct *tty =
2882                 container_of(work, struct tty_struct, SAK_work);
2883         __do_SAK(tty);
2884 }
2885
2886 /*
2887  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2888  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2889  * the values which we write to it will be identical to the values which it
2890  * already has. --akpm
2891  */
2892 void do_SAK(struct tty_struct *tty)
2893 {
2894         if (!tty)
2895                 return;
2896         schedule_work(&tty->SAK_work);
2897 }
2898
2899 EXPORT_SYMBOL(do_SAK);
2900
2901 static int dev_match_devt(struct device *dev, void *data)
2902 {
2903         dev_t *devt = data;
2904         return dev->devt == *devt;
2905 }
2906
2907 /* Must put_device() after it's unused! */
2908 static struct device *tty_get_device(struct tty_struct *tty)
2909 {
2910         dev_t devt = tty_devnum(tty);
2911         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2912 }
2913
2914
2915 /**
2916  *      initialize_tty_struct
2917  *      @tty: tty to initialize
2918  *
2919  *      This subroutine initializes a tty structure that has been newly
2920  *      allocated.
2921  *
2922  *      Locking: none - tty in question must not be exposed at this point
2923  */
2924
2925 void initialize_tty_struct(struct tty_struct *tty,
2926                 struct tty_driver *driver, int idx)
2927 {
2928         memset(tty, 0, sizeof(struct tty_struct));
2929         kref_init(&tty->kref);
2930         tty->magic = TTY_MAGIC;
2931         tty_ldisc_init(tty);
2932         tty->session = NULL;
2933         tty->pgrp = NULL;
2934         tty->overrun_time = jiffies;
2935         tty->buf.head = tty->buf.tail = NULL;
2936         tty_buffer_init(tty);
2937         mutex_init(&tty->termios_mutex);
2938         mutex_init(&tty->ldisc_mutex);
2939         init_waitqueue_head(&tty->write_wait);
2940         init_waitqueue_head(&tty->read_wait);
2941         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2942         mutex_init(&tty->atomic_read_lock);
2943         mutex_init(&tty->atomic_write_lock);
2944         mutex_init(&tty->output_lock);
2945         mutex_init(&tty->echo_lock);
2946         spin_lock_init(&tty->read_lock);
2947         spin_lock_init(&tty->ctrl_lock);
2948         INIT_LIST_HEAD(&tty->tty_files);
2949         INIT_WORK(&tty->SAK_work, do_SAK_work);
2950
2951         tty->driver = driver;
2952         tty->ops = driver->ops;
2953         tty->index = idx;
2954         tty_line_name(driver, idx, tty->name);
2955         tty->dev = tty_get_device(tty);
2956 }
2957
2958 /**
2959  *      deinitialize_tty_struct
2960  *      @tty: tty to deinitialize
2961  *
2962  *      This subroutine deinitializes a tty structure that has been newly
2963  *      allocated but tty_release cannot be called on that yet.
2964  *
2965  *      Locking: none - tty in question must not be exposed at this point
2966  */
2967 void deinitialize_tty_struct(struct tty_struct *tty)
2968 {
2969         tty_ldisc_deinit(tty);
2970 }
2971
2972 /**
2973  *      tty_put_char    -       write one character to a tty
2974  *      @tty: tty
2975  *      @ch: character
2976  *
2977  *      Write one byte to the tty using the provided put_char method
2978  *      if present. Returns the number of characters successfully output.
2979  *
2980  *      Note: the specific put_char operation in the driver layer may go
2981  *      away soon. Don't call it directly, use this method
2982  */
2983
2984 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2985 {
2986         if (tty->ops->put_char)
2987                 return tty->ops->put_char(tty, ch);
2988         return tty->ops->write(tty, &ch, 1);
2989 }
2990 EXPORT_SYMBOL_GPL(tty_put_char);
2991
2992 struct class *tty_class;
2993
2994 /**
2995  *      tty_register_device - register a tty device
2996  *      @driver: the tty driver that describes the tty device
2997  *      @index: the index in the tty driver for this tty device
2998  *      @device: a struct device that is associated with this tty device.
2999  *              This field is optional, if there is no known struct device
3000  *              for this tty device it can be set to NULL safely.
3001  *
3002  *      Returns a pointer to the struct device for this tty device
3003  *      (or ERR_PTR(-EFOO) on error).
3004  *
3005  *      This call is required to be made to register an individual tty device
3006  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3007  *      that bit is not set, this function should not be called by a tty
3008  *      driver.
3009  *
3010  *      Locking: ??
3011  */
3012
3013 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3014                                    struct device *device)
3015 {
3016         char name[64];
3017         dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3018
3019         if (index >= driver->num) {
3020                 printk(KERN_ERR "Attempt to register invalid tty line number "
3021                        " (%d).\n", index);
3022                 return ERR_PTR(-EINVAL);
3023         }
3024
3025         if (driver->type == TTY_DRIVER_TYPE_PTY)
3026                 pty_line_name(driver, index, name);
3027         else
3028                 tty_line_name(driver, index, name);
3029
3030         return device_create(tty_class, device, dev, NULL, name);
3031 }
3032 EXPORT_SYMBOL(tty_register_device);
3033
3034 /**
3035  *      tty_unregister_device - unregister a tty device
3036  *      @driver: the tty driver that describes the tty device
3037  *      @index: the index in the tty driver for this tty device
3038  *
3039  *      If a tty device is registered with a call to tty_register_device() then
3040  *      this function must be called when the tty device is gone.
3041  *
3042  *      Locking: ??
3043  */
3044
3045 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3046 {
3047         device_destroy(tty_class,
3048                 MKDEV(driver->major, driver->minor_start) + index);
3049 }
3050 EXPORT_SYMBOL(tty_unregister_device);
3051
3052 struct tty_driver *alloc_tty_driver(int lines)
3053 {
3054         struct tty_driver *driver;
3055
3056         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3057         if (driver) {
3058                 kref_init(&driver->kref);
3059                 driver->magic = TTY_DRIVER_MAGIC;
3060                 driver->num = lines;
3061                 /* later we'll move allocation of tables here */
3062         }
3063         return driver;
3064 }
3065 EXPORT_SYMBOL(alloc_tty_driver);
3066
3067 static void destruct_tty_driver(struct kref *kref)
3068 {
3069         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3070         int i;
3071         struct ktermios *tp;
3072         void *p;
3073
3074         if (driver->flags & TTY_DRIVER_INSTALLED) {
3075                 /*
3076                  * Free the termios and termios_locked structures because
3077                  * we don't want to get memory leaks when modular tty
3078                  * drivers are removed from the kernel.
3079                  */
3080                 for (i = 0; i < driver->num; i++) {
3081                         tp = driver->termios[i];
3082                         if (tp) {
3083                                 driver->termios[i] = NULL;
3084                                 kfree(tp);
3085                         }
3086                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3087                                 tty_unregister_device(driver, i);
3088                 }
3089                 p = driver->ttys;
3090                 proc_tty_unregister_driver(driver);
3091                 driver->ttys = NULL;
3092                 driver->termios = NULL;
3093                 kfree(p);
3094                 cdev_del(&driver->cdev);
3095         }
3096         kfree(driver);
3097 }
3098
3099 void tty_driver_kref_put(struct tty_driver *driver)
3100 {
3101         kref_put(&driver->kref, destruct_tty_driver);
3102 }
3103 EXPORT_SYMBOL(tty_driver_kref_put);
3104
3105 void tty_set_operations(struct tty_driver *driver,
3106                         const struct tty_operations *op)
3107 {
3108         driver->ops = op;
3109 };
3110 EXPORT_SYMBOL(tty_set_operations);
3111
3112 void put_tty_driver(struct tty_driver *d)
3113 {
3114         tty_driver_kref_put(d);
3115 }
3116 EXPORT_SYMBOL(put_tty_driver);
3117
3118 /*
3119  * Called by a tty driver to register itself.
3120  */
3121 int tty_register_driver(struct tty_driver *driver)
3122 {
3123         int error;
3124         int i;
3125         dev_t dev;
3126         void **p = NULL;
3127         struct device *d;
3128
3129         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3130                 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3131                 if (!p)
3132                         return -ENOMEM;
3133         }
3134
3135         if (!driver->major) {
3136                 error = alloc_chrdev_region(&dev, driver->minor_start,
3137                                                 driver->num, driver->name);
3138                 if (!error) {
3139                         driver->major = MAJOR(dev);
3140                         driver->minor_start = MINOR(dev);
3141                 }
3142         } else {
3143                 dev = MKDEV(driver->major, driver->minor_start);
3144                 error = register_chrdev_region(dev, driver->num, driver->name);
3145         }
3146         if (error < 0) {
3147                 kfree(p);
3148                 return error;
3149         }
3150
3151         if (p) {
3152                 driver->ttys = (struct tty_struct **)p;
3153                 driver->termios = (struct ktermios **)(p + driver->num);
3154         } else {
3155                 driver->ttys = NULL;
3156                 driver->termios = NULL;
3157         }
3158
3159         cdev_init(&driver->cdev, &tty_fops);
3160         driver->cdev.owner = driver->owner;
3161         error = cdev_add(&driver->cdev, dev, driver->num);
3162         if (error) {
3163                 unregister_chrdev_region(dev, driver->num);
3164                 driver->ttys = NULL;
3165                 driver->termios = NULL;
3166                 kfree(p);
3167                 return error;
3168         }
3169
3170         mutex_lock(&tty_mutex);
3171         list_add(&driver->tty_drivers, &tty_drivers);
3172         mutex_unlock(&tty_mutex);
3173
3174         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3175                 for (i = 0; i < driver->num; i++) {
3176                         d = tty_register_device(driver, i, NULL);
3177                         if (IS_ERR(d)) {
3178                                 error = PTR_ERR(d);
3179                                 goto err;
3180                         }
3181                 }
3182         }
3183         proc_tty_register_driver(driver);
3184         driver->flags |= TTY_DRIVER_INSTALLED;
3185         return 0;
3186
3187 err:
3188         for (i--; i >= 0; i--)
3189                 tty_unregister_device(driver, i);
3190
3191         mutex_lock(&tty_mutex);
3192         list_del(&driver->tty_drivers);
3193         mutex_unlock(&tty_mutex);
3194
3195         unregister_chrdev_region(dev, driver->num);
3196         driver->ttys = NULL;
3197         driver->termios = NULL;
3198         kfree(p);
3199         return error;
3200 }
3201
3202 EXPORT_SYMBOL(tty_register_driver);
3203
3204 /*
3205  * Called by a tty driver to unregister itself.
3206  */
3207 int tty_unregister_driver(struct tty_driver *driver)
3208 {
3209 #if 0
3210         /* FIXME */
3211         if (driver->refcount)
3212                 return -EBUSY;
3213 #endif
3214         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3215                                 driver->num);
3216         mutex_lock(&tty_mutex);
3217         list_del(&driver->tty_drivers);
3218         mutex_unlock(&tty_mutex);
3219         return 0;
3220 }
3221
3222 EXPORT_SYMBOL(tty_unregister_driver);
3223
3224 dev_t tty_devnum(struct tty_struct *tty)
3225 {
3226         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3227 }
3228 EXPORT_SYMBOL(tty_devnum);
3229
3230 void proc_clear_tty(struct task_struct *p)
3231 {
3232         unsigned long flags;
3233         struct tty_struct *tty;
3234         spin_lock_irqsave(&p->sighand->siglock, flags);
3235         tty = p->signal->tty;
3236         p->signal->tty = NULL;
3237         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3238         tty_kref_put(tty);
3239 }
3240
3241 /* Called under the sighand lock */
3242
3243 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3244 {
3245         if (tty) {
3246                 unsigned long flags;
3247                 /* We should not have a session or pgrp to put here but.... */
3248                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3249                 put_pid(tty->session);
3250                 put_pid(tty->pgrp);
3251                 tty->pgrp = get_pid(task_pgrp(tsk));
3252                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3253                 tty->session = get_pid(task_session(tsk));
3254                 if (tsk->signal->tty) {
3255                         printk(KERN_DEBUG "tty not NULL!!\n");
3256                         tty_kref_put(tsk->signal->tty);
3257                 }
3258         }
3259         put_pid(tsk->signal->tty_old_pgrp);
3260         tsk->signal->tty = tty_kref_get(tty);
3261         tsk->signal->tty_old_pgrp = NULL;
3262 }
3263
3264 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3265 {
3266         spin_lock_irq(&tsk->sighand->siglock);
3267         __proc_set_tty(tsk, tty);
3268         spin_unlock_irq(&tsk->sighand->siglock);
3269 }
3270
3271 struct tty_struct *get_current_tty(void)
3272 {
3273         struct tty_struct *tty;
3274         unsigned long flags;
3275
3276         spin_lock_irqsave(&current->sighand->siglock, flags);
3277         tty = tty_kref_get(current->signal->tty);
3278         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3279         return tty;
3280 }
3281 EXPORT_SYMBOL_GPL(get_current_tty);
3282
3283 void tty_default_fops(struct file_operations *fops)
3284 {
3285         *fops = tty_fops;
3286 }
3287
3288 /*
3289  * Initialize the console device. This is called *early*, so
3290  * we can't necessarily depend on lots of kernel help here.
3291  * Just do some early initializations, and do the complex setup
3292  * later.
3293  */
3294 void __init console_init(void)
3295 {
3296         initcall_t *call;
3297
3298         /* Setup the default TTY line discipline. */
3299         tty_ldisc_begin();
3300
3301         /*
3302          * set up the console device so that later boot sequences can
3303          * inform about problems etc..
3304          */
3305         call = __con_initcall_start;
3306         while (call < __con_initcall_end) {
3307                 (*call)();
3308                 call++;
3309         }
3310 }
3311
3312 static char *tty_devnode(struct device *dev, mode_t *mode)
3313 {
3314         if (!mode)
3315                 return NULL;
3316         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3317             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3318                 *mode = 0666;
3319         return NULL;
3320 }
3321
3322 static int __init tty_class_init(void)
3323 {
3324         tty_class = class_create(THIS_MODULE, "tty");
3325         if (IS_ERR(tty_class))
3326                 return PTR_ERR(tty_class);
3327         tty_class->devnode = tty_devnode;
3328         return 0;
3329 }
3330
3331 postcore_initcall(tty_class_init);
3332
3333 /* 3/2004 jmc: why do these devices exist? */
3334 static struct cdev tty_cdev, console_cdev;
3335
3336 static ssize_t show_cons_active(struct device *dev,
3337                                 struct device_attribute *attr, char *buf)
3338 {
3339         struct console *cs[16];
3340         int i = 0;
3341         struct console *c;
3342         ssize_t count = 0;
3343
3344         console_lock();
3345         for_each_console(c) {
3346                 if (!c->device)
3347                         continue;
3348                 if (!c->write)
3349                         continue;
3350                 if ((c->flags & CON_ENABLED) == 0)
3351                         continue;
3352                 cs[i++] = c;
3353                 if (i >= ARRAY_SIZE(cs))
3354                         break;
3355         }
3356         while (i--)
3357                 count += sprintf(buf + count, "%s%d%c",
3358                                  cs[i]->name, cs[i]->index, i ? ' ':'\n');
3359         console_unlock();
3360
3361         return count;
3362 }
3363 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3364
3365 static struct device *consdev;
3366
3367 void console_sysfs_notify(void)
3368 {
3369         if (consdev)
3370                 sysfs_notify(&consdev->kobj, NULL, "active");
3371 }
3372
3373 /*
3374  * Ok, now we can initialize the rest of the tty devices and can count
3375  * on memory allocations, interrupts etc..
3376  */
3377 int __init tty_init(void)
3378 {
3379         cdev_init(&tty_cdev, &tty_fops);
3380         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3381             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3382                 panic("Couldn't register /dev/tty driver\n");
3383         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3384
3385         cdev_init(&console_cdev, &console_fops);
3386         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3387             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3388                 panic("Couldn't register /dev/console driver\n");
3389         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3390                               "console");
3391         if (IS_ERR(consdev))
3392                 consdev = NULL;
3393         else
3394                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3395
3396 #ifdef CONFIG_VT
3397         vty_init(&console_fops);
3398 #endif
3399         return 0;
3400 }
3401